
Master’s Programme in Mathematics and Operations Research

Experimental evaluation of
record linkage algorithms in
a secure banking environment

Christian Segercrantz

MASTER’S
THESIS

Aalto University
MASTER’S THESIS 2023

Experimental evaluation of record
linkage algorithms in a secure bank-
ing environment

Christian Segercrantz

Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Technology.
Otaniemi, July 31, 2023

Supervisor: Prof. Alexander Jung
Advisor: PhD Giuseppe Scavo

Aalto University
School of Science
Master’s Programme in Mathematics and
Operations Research

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Christian Segercrantz

Title
Experimental evaluation of record linkage algorithms in a secure banking environment

School School of Science

Master’s programme Mathematics and Operations Research

Major Systems and Operations Research Code SCI3055

Supervisor Professor Alexander Jung

Advisor PhD Giuseppe Scavo

Level Master’s thesis Date July 31, 2023 Pages 82+24 Language English

Abstract
This thesis studies record linkage algorithms in secure banking environments. Financial

crime prevention laws require financial institutions to identify and monitor high-risk
customers and transactions using in-house and third-party data sources. Examples of such
data are lists of terrorist financers, sanctioned persons, and convicted financial criminals.
The data from the various sources may not share unique identifiers, such as social security
numbers or business IDs, which makes it non-trivial to determine whether two records
belong to the same person. Thus, we must find ways to combine data sets by matching
the records in a secure and privacy-preserving banking environment. The environment
requires vetted, robust, and resource-optimized solutions and implementations.

This thesis studies theory and previous works on deterministic and probabilistic record
linkage methods, their theoretical frameworks, and their application areas. Furthermore,
we implement solutions to two record linkage problems based on deterministic and proba-
bilistic methods. The problems are based on linking juridical person records respectively
natural person records.

To perform deterministic record linkage, we create a pipeline using blocking, string
embedding, and string similarity algorithms. We evaluate two different string embedding
models: TF-IDF and Word2Vec. For probabilistic record linkage, we use the Python
package Splink. The package is based on the Fellegi-Sunter model, which shows how to
calculate the posterior probability of a pair being a match or a non-match. The package
uses the expectation-maximization algorithm to find the values for the posterior probability
and the m- and u-variables.

The results show that deterministic and probabilistic record linkage are feasible within
the scope of this thesis and have different application areas. We find that different
parameters have a significant impact on embedding-based models. The outcome of the
TF-IDF-based model mainly relies on the values of the feature vector length and the
string similarity threshold. Conversely, the Word2Vec-based model is affected nearly
exclusively by random bucket projection distance threshold. The probabilistic model
requires comparably vast resource investments to function as desired, and the causalities
between input and output are not easily detected. However, when correctly set up, the
method can model complex underlying data distributions.

This thesis provides a framework for the industry to use record linkage. The framework
consists of two methods, deterministic and probabilistic record linkage, and recommenda-
tions on how to use them.

Keywords record linkage, experimental, entity matching, deterministic, probabilistic,
Splink, secure bank environment, financial crime prevention, Fellegi-Sunter,
string embedding

ii

Sammandrag
Aalto-universitetet, PB 11000, 00076 Aalto www.aalto.fi

Författare
Christian Segercrantz

Titel
Experimentell utvärdering av sammanlänkningsalgoritmer i en säker bankomgivning

Högskola Högskolan för teknikvetenskaper

Magisterprogram Mathematics and Operations Research

Huvudämne Systems and Operations Research Kod SCI3055

Övervakare Professor Alexander Jung

Handledare Filosofie doktor Giuseppe Scavo

Arbetets slag Diplomarbete Datum 31 juli 2023 Sidantal 82+24 Språk Engelska

Sammandrag
Det här diplomarbetet studerar algoritmer för sammanlänkning av uppgifter i en säker

bankomgivning. Lagar mot finansbrott kräver att finansiella institutioner identifierar
och övervakar högriskkunder och -transaktioner med hjälp av interna och tredje partens
datakällor. Exempel på sådan data är listor på finansierare av terrorism, sanktionerade
personer och dömda finansbrottslingar. Datan från de olika källorna delar nödvändigtvis
inte unika identifierare, såsom personnummer och FO-nummer, vilket gör det icke-trivialt
att avgöra ifall två dataposter tillhör samma person. Därmed är vi tvungna att hitta sätt
att kombinera dataset genom att matcha uppgifter i en säker och integritetsbevarande
bankomgivning. Omgivningen kräver granskade, robusta och resursoptimerade lösningar
och implementeringar.

Det här diplomarbetet studerar teori och tidigare arbeten om deterministiska och pro-
babilistiska metoder för sammanlänkande av uppgifter, deras teoretiska koncept och
tillämpningsområden. Utöver detta implementerar vi lösningar på två sammanlänknings-
problem baserade på deterministiska och probabilistiska metoder. Dessa problem baserar
sig på sammanlänkning av juridiska respektive naturliga personers uppgifter.

För att utföra deterministisk sammanlänkning skapar vi en pipeline med hjälp av bloc-
kindelning, stränginbäddning och algoritmer för stränglikhet. Vi evaluerar två modeller
baserade på stränginbäddning: TF-IDF och Word2Vec. För det probabilistiska samman-
länkandet använder vi Splink-paketet för Python. Paketet baserar sig på Fellegi-Sunter
modellen, som anger posteriori-sannolikheten att ett par är en match eller icke-match.
Paketet använder väntevärdesmaximerings-algoritmen för att hitta värden för posteriori-
sannolikheten samt m- och u-variablerna.

Resultaten visar att deterministisk och probabilistisk sammanlänkning är genomförbart
inom diplomarbetets omfattning och att de har olika tillämpningsområden. Vi visar att
olika parametrar har signifikant inverkan på inbäddningsbaserade modeller. Resultatet
av den TF-IDF-baserade modellen beror främst på värdena av attributvektorns längd och
stränglikhetens tröskelvärde. Word2Vec-baserade modellen påverkas däremot nästintill
endast av avståndströskelvärdet för slumpmässig kategoriprojicering. Den probabilistiska
modellen kräver jämförelsevis stora resursinvesteringar för att fungera som önskat, och
orsakssambanden mellan input och output är inte lätta att upptäcka. Dock kan metoden
modellera komplexa underliggande datadistributioner när den är korrekt konfigurerad.

Detta diplomarbete ger ett ramverk för industrin för att använda sammanlänkning
av uppgifter. Ramverket består av två metoder, deterministisk och probabilistisk upp-
giftslänkning, och rekommendationer om hur man använder dem.

Nyckelord sammanlänkning, experimentell, entitetsmatchning, deterministisk,
probabilistisk, Splink, säker bankomgivning, förebyggande av ekonomisk
brottslighet, Fellegi-Sunter, stränginbäddning

iii

Preface and acknowledgements

This is literally the final work I am completing for my degree. I started

my career at Aalto University nine years ago and today it comes to an

end. I am thankful for the education and opportunities I have received. As

the journey ends, I know I will feel many emotions, among them surely

happiness, sadness, and pride. However, currently I am mostly relieved.

Firstly, I want to thank Nordea Bank for providing and supporting me

with this thesis. I especially want to thank my advisor PhD Giuseppe

Scavo for his guidance, patience, and help. I want to thank Prof. Alex Jung

for supervising my thesis. Thank you to my parents for all their support

during not only my thesis writing or time at the university, but during

my whole education. I want to thank my sisters for the inspiration and

guidance they have provided. Thank you Astrid and Anna for supporting

me both grammatically and content-wise with the thesis.

Further, the orange support troupe and the elegant enjoyers of bubbles

also deserve a thank you for all the fun during late hours. I additionally

want to thank every single person I have had the honour to work together

with during my volunteer career, all the working-groups, committees, and

boards. A special thanks among these groups goes to Östmetron and "The

board who said NO". Finally, a huge thank you to Teknologföreningen and

Aalto University Student Union for making all of this possible.

The time at the university has given me lessons for life. The lectures,

exercise sessions, and projects have prepared me for the technical work I

will be engaging in, while my student activities have prepared me for life

situations and general human interactions. These will, surely, provide me

with tools for life.

Iuvenis in aeternum,

Christian Segercrantz

Otnäs, 31.7.2023

iv

Contents

Abstract ii

Abstrakt iii

Preface iv

Contents v

1. Introduction 1

2. Data 3

2.1 Dan & Bradstreet data . 3

2.2 Dow Jones watch list data 4

2.3 Common attributes . 5

2.3.1 Juridical person-based data 5

2.3.2 Natural person-based data 6

3. Methods 8

3.1 Record linkage . 8

3.1.1 Probabilistic record linkage 9

3.1.2 Deterministic record linkage 12

3.1.3 Term frequency–inverse document frequency . . 13

3.1.4 Word2Vec . 15

3.2 Blocking . 15

3.2.1 Locality-sensitive hashing 16

3.3 Expectation maximization 17

3.4 String comparison algorithms 18

3.4.1 Jaro similarity . 18

3.4.2 Levensthein distance 20

3.5 Phonetic encoding . 21

v

Contents

3.5.1 Soundex . 21

3.6 Performance metrics . 22

3.6.1 Precision . 22

3.6.2 Recall . 22

3.6.3 F1-score . 23

4. Implementation 24

4.1 Setup . 24

4.2 Deterministic record linkage implementation 25

4.2.1 Data preprocessing 25

4.2.2 Embedding the strings 27

4.2.3 Blocking through random bucket projection . . . 29

4.2.4 String similarity comparison 29

4.3 Probabilistic record linkage implementation 30

4.3.1 Case statements 32

4.3.2 Blocking . 34

4.3.3 Term-frequency adjustments 34

4.4 Ground truth . 35

5. Results 36

5.1 Data dimensionality . 36

5.1.1 Deterministic record linkage 36

5.1.2 Probabilistic record linkage 37

5.2 Environmental challenges 37

5.3 Deterministic record linkage results 39

5.3.1 TF-IDF-based pipeline 40

5.3.2 Word2Vec based pipeline 48

5.3.3 Comparing embedding method 59

5.3.4 Optimal model results on the juridical person

records . 64

5.3.5 Optimal model results on the natural person

records . 67

5.4 Probabilistic record linkage results 68

5.5 Comparison of deterministic and probabilistic methods . . 71

6. Conclusions 74

6.1 Future research . 76

A. Ground truth settings 83

A.1 Stop words . 83

vi

Contents

B. Additional parameter plots for the embedding-based pipelines 84

B.1 TF-IDF . 85

B.1.1 Feature vector length 85

B.1.2 String similarity threshold 88

B.1.3 Random bucket projection distance threshold . . 91

B.2 Word2Vec . 94

B.2.1 Feature vector length 94

B.2.2 String similarity threshold 97

B.2.3 Random bucket projection distance threshold . . 100

C. Splink settings 103

C.1 Case statements . 103

C.1.1 First name . 103

C.1.2 Last name . 103

C.1.3 Middle names . 104

C.1.4 Date of birth . 104

C.1.5 Country . 104

C.2 Global blocking rules . 105

C.3 Local blocking rules . 105

C.4 Deterministic rules for priori probability 106

vii

1. Introduction

Financial institutions, such as banks, must abide by laws dictating actions

against financial crime and money-laundering [1, 2]. This means monitor-

ing customers that are convicted criminals or at high risk of performing

criminal actions. From the financial institutions ’ perspective, records of

high-risk individuals can be found in both internal and external sources.

By joining data sets, we can obtain enriched data on which we can perform

tasks, such as research, advanced analytics, or machine learning [3]. How-

ever, a significant challenge arises when the records do not share a unique

identifier with the institution’s internal data sets. Linking records without

unique identifiers is also a prevalent problem in domains like history [4],

medicine [3, 5] and social sciences [6, 7]. This thesis aims to find a feasible

way to join data sets that do not share a common unique identifier, given

the constraints of the restricted, secure, and privacy-preserving banking

environment.

As the author writes this thesis for the author’s employer, Nordea Bank,

we must consider unique constraints when conducting and writing this

thesis. These constraints exist due to the privacy and security measures

required by the bank. For example, the author cannot use or publish

customer information in the study. Similarly, the author must do all

programming in an in-house controlled environment. Additionally, these

environments are resource restricted and require well-optimized solutions.

We must find methods available in our environment that satisfy the

above environmental requirements and performance expectations. We

can use Cartesian join and run pair-by-pair comparison algorithms on the

complete data set. However, since Cartesian join scales as O(
∏︁

iNi), where

Ni is the length of the i:th data set, the amount of comparisons required

grows polynomially. Additionally, simple pair-wise comparison methods

do not provide good results. We need to find more efficient and accurate

1

Introduction

approaches. Hence, we look for an alternative approach using advanced

record linkage methods.

Record linkage, also known as data matching, data linkage, entity reso-

lution, or entity matching, is the task of identifying the records that refer

to the same entity or individual, i.e., person, across multiple data sets.

A record is a collection of information about a person, either juridical or

natural [8]. Record linkage is required when joining data sets that do

not share a unique identifier, such as a social security or business iden-

tification number. Thus, one must match the records using the person’s

characteristics. These characteristics can be, for example, name, date of

birth, address, gender, and industry.

Furthermore, record linkage can be divided into deterministic and prob-

abilistic categories. This thesis investigates both categories and applies

them to relevant problems. For problems where the deterministic ap-

proach is suitable, embedding-based solutions, commonly used in natural

language processing, are applied. The probabilistic record linkage frame-

work, initially proposed by Fellegi and Sunter [9], is employed for settings

suitable for the probabilistic methods. Both deterministic and probabilistic

record linkages have been applied to a wide variety of problems [3, 4, 5,

6, 7, 10]. Deciding upon which method to use depends on the result and a

range of resource-related questions, such as time, data quality, and desired

result [11].

This thesis investigates the available methods and tools, considering their

relevant areas of use and the previously mentioned restrictive environment.

We evaluate and report the impact of factors, such as parameters and

design choices, on run-time and performance metrics. Finally, the thesis

recommends what model to use depending on the nature of the linkage

problem.

Chapter 2 introduces the data used in the thesis. We give an overview of

the theory and mathematics used in the work in Chapter 3. How the theo-

retical frameworks and methods are used and implemented is discussed

in Chapter 4. Chapter 5 introduces the thesis results and discusses their

implications. Finally, Chapter 6 presents the conclusions drawn from the

study and recommends further research in the field.

2

2. Data

This chapter describes the data used in the thesis. We present the origins,

characteristics, and transformations for each data set. The chapter is

split into three sections, one for each data source and one discussing the

commonalities of the data.

2.1 Dan & Bradstreet data

One of the two main data sets we use in this thesis is the Dan & Bradstreet

(DnB) [12] provided data. Dan & Bradstreet is a commercial company that

gathers and harmonises data. Nordea uses the DnB data as a third-party

solution for standardising global data on registered companies. The data

consists of subsets, of which this thesis uses two: company-based data and

associated party-based data.

Company based data

The company-based data consists of registered companies around the

world. It contains information about the company and its governance, e.g.

business name, country, mother company, and subsidiaries. It consists of

532 387 535 records and 115 attributes which take up approximately 227MB

when stored in a Pyspark data frame. We filter the data only to contain

companies based in Finland. The filtered data consists of 2 146 245 records.

Associated party data

The associated party-based data consists of the parties associated with the

entities of the previous data. Parties can be, e.g. managing directors, sig-

nificant shareholders, or otherwise persons of interest. The data describe

the link between the associated party and the entity and attributes of the

associated party, e.g. name, date of birth, address, country of residence,

and ownership percentage. The data consist of 249 481 914 records and 86

3

Data

attributes, which take up approximately 187MB when stored in a Pyspark

data frame. We filter the data only to include natural persons with an

ownership percentage greater than or equal to 50% and Finland in the

country attribute. The filtered data consist of 340 630 records.

2.2 Dow Jones watch list data

The Dow Jones (DJ) dataset [13] is a data set of records of people that are

of interest to monitor for financial institutions. The records are snapshots

of specific times not updated after the initial addition to the database. This

characteristic means that information may change over time, such as an

address, country of residence or even name, in the case of juridical persons,

and may be outdated compared to other data sets where records are being

updated as information changes, such as the previously discussed DnB

data.

We receive the data split into two separate data sets, one juridical person-

based and one natural person-based data set. We present both data sets

here.

Juridical person-based data

The data describes juridical persons, i.e. entities, and why they have been

added to the watch list. The data set contains information concerning the

reason for being added to the watch list and information about the entity,

e.g. name, address, country, and other incident-related information.

The complete data set consists of 254 097 records and 28 attributes which

take up approximately 180MB when stored in a Pyspark data frame. How-

ever, many records contain aggregations of different versions of the same

information, e.g. if a company has changed name or address, multiple

versions might be found in the data. The data can be parsed or vertically

expanded into separate records. When parsed, the data set consists of

2 037 085 records.

Furthermore, we filter the data only to contain records of juridical persons

associated with Finland. The data may include multiple countries per

record: Records that match any of the three will be included in cases where

we filter the data. The filtered data set consists of 1 346 records.

4

Data

Natural person-based data

The data describe natural persons and why they have been added to the

watch list. The data set contains information about the natural persons,

e.g. name and variations, gender, country information, and reason for

being added to the list.

The complete data set consists of 3 131 919 records and 39 attributes

which take up approximately 189MB when stored in a Pyspark data frame.

Similarly to the entity-based data set, the person-based data contains

records with aggregations. We get a total of 10 631 028 records by parsing

the aggregations to separate records.

Additionally, we filter the data only to include persons connected to Fin-

land. Similarly to juridical persons, each record may contain connections

to multiple countries, such as citizenship or residency. Records containing

any reference to Finland are kept. The filtered data set consists of 43 843

records.

2.3 Common attributes

In order to link the records of the two data sets, the sets need to share

attributes used for the linkage. This section presents and discusses the

attributes shared between the data sets.

2.3.1 Juridical person-based data

In the juridical person-based data, we can find an overlap of common

attributes. The shared attributes contain name, address, city and country.

The entities of these data sets will be referred to as juridical persons. The

Cartesian join of the data sets produces 2 888 845 770 ≈ 2.9 · 109 pairs to

compare.

Table 2.1 presents a mock data set miming the attributes of the DnB data.

The quality of data is excellent and standardised. Table 2.2 illustrates the

data of the DJ data set and the quality of the records. We can see that

the quality is very inconstant. Some records, not illustrated in the table,

even contain data unrelated to its column, e.g. a reference to connections

to other entities in the address attribute.

5

Data

Table 2.1. A demonstration of the DnB data of juridical person records. The records are
created randomly by the author and have no connection to real entities.

Id Name Address City Country
1 Company LTD Main street 1 Tampere Finland
2 AB Yhtiö OY Pääkatu 24 A 14 Helsinki Finland
3 Asunto-osakeyhtiö A/S Rantatie 5 Espoo Finland
4 Teemu Teekkari T:mi Pohjolantie 456 Oulu Finland

Table 2.2. A demonstration of the DJ data of juridical person records. The records are
created randomly by the author and have no connection to real entities.

Id Name Address City Country
1 Company LTD PL 123 Finland
2 AB Yhtiö OY Helsinki; 00100 Finland
3 Asunto-osakeyhtiö A/S
4 Teemu Teekkari T:mi Pohjolantie 456 A 15 Oulu Finland

2.3.2 Natural person-based data

The Cartesian join of the two data sets produces 14 934 241 090 ≈ 14.9 · 109

pairs to compare. The natural person data in the two data sets have a

relatively small overlap of attributes compared to how many attributes

natural persons have. Additionally, in some cases, the data quality or ratio

of missing data makes some attributes unusable. The attributes that have

been concluded usable are name, country of origin or affiliation, and date

of birth.

Table 2.3 shows a fictive example of the DnB data set. Table 2.4 highlights

a fictive set of records from the DJ data set similar to the one we use. The

table highlights the data quality level, where compared to Table 2.3, data

may be missing or have differing levels of accuracy.

Data cleaning

To improve the data quality, we apply cleaning and augmentation steps

to the data. First, the name is split into first, middle and last names.

We perform the split such that the first string before a white space is

considered the first name, and the last string after the last white space is

considered the last name. The remaining part is considered the middle

Table 2.3. A demonstration of the DnB data of natural person records. The records are
created randomly by the author and have no connection to real persons.

Id Name Date of birth Country
1 Teemu Kalevi Teekkari 1976-03 Finland
2 Aino Helmi Kaarina Niminen 2000-04 Finland
3 Antero Mikael-Jussi Koivunen 1994-01 Finland
4 Lucas Johansson 1986-11 Sweden

6

Data

Table 2.4. A demonstration of the DJ data of natural person records. The records are
created randomly by the author and have no connection to real persons.

Id Name Date of birth Country
1 Teemu Kalevi Teekkari Fin
2 Aino Niminen 2000-04-03 Fin
3 Antero Mikael-Jussi Koivunen 1994 Fin
4 Lucas Johansson 1986-11-2 Swe

name. If only two strings are present in the name, the middle name is

considered missing and set to null.

The quality of the date of birth attribute of the two data sets differs

significantly. In the DnB data, the date of birth consists of only the year

and month. Conversely, the DJ data set may include anything from only a

year to the full date of birth. To compare the attribute, these are changed

to all have a complete date format, and the missing date is set to one. For

example, if we have a value of "1994", it is set to "1994-01-01", and "2000-

05" becomes "2000-05-01". We discuss the impacts of this modification on

attribute comparison in Section 4.3.1.

Additionally, we use phonetic algorithms to construct attributes that we

can use for record comparison. These are particularly useful for comparing

names that sound the same but are spelt differently, for example, "Steven"

and "Stephen". We create phonetic attributes for first and last names.

The two data sets have different ways of spelling country names. For

example, both "Russia" and "Russia Federation" exist in the data sets.

Even inside the same data set, notably the DJ data set, the spelling of

countries may be different due to how the data set has been created. Hence,

we check and map the values to standard spelling. This is also beneficial

in later parts when we can be sure there is only one way to spell the name

of a country.

This gives us eight attributes for record linkage: full name, first name,

phonetic encoding of the first name, middle names, last name, phonetic

encoding of the last name, date of birth and country.

7

3. Methods

This section presents the methods and theoretical frameworks we use in

the thesis. First, Section 3.1 explains the concept of record linkage. The

section further provides a deep dive into probabilistic and deterministic

record linkage. Thereafter, Sections 3.2 to 3.5 present algorithms and

methods related to those mentioned above or otherwise used. Finally,

in Section 3.6, we present the methodology related to estimating the

performance of the employed methods.

3.1 Record linkage

A record is a sub-sample of information about a person, either juridical or

natural. A record can take many forms, such as a name, sentence, book,

website, or collection of attributes [8]. When stored in databases, records

are usually referred to as rows [14, 15]. Hence, in record linkage, we aim

to connect different pieces of information, i.e. records, to the same person.

Record linkage aims to classify pairs of records in the product space made

of the Cartesian join C = A×B, where A and B are data sets of records.

We classify the pairs into either M, the set of true matches, U, the set of

true non-matches and the set of possible matches [16]. We discuss two

main classification methods: deterministic and probabilistic record linkage.

These are presented in the following sections.

Figure 4.1 illustrates a typical pipeline for a record linkage involving two

data sets. The two data sets are first pre-processed to standardise data

and have the same attributes available for the rest of the pipeline. Then,

we perform a Cartesian join on the data sets to get a set consisting of all

possible pairs. Following that, we create data blocks using a blocking algo-

rithm to reduce the required comparisons of the following steps. Finally,

we perform the linkage and obtain the linked data set. This linked data

8

Methods

Figure 3.1. A diagram of a typical record linkage pipeline.

set includes the match probability: 1 or 0 for a deterministic record linkage

or a number in the range [0, 1] for the probabilistic record linkage.

3.1.1 Probabilistic record linkage

Probabilistic record linkage, sometimes called fuzzy matching, is one of two

main categories of record linkage methods. The probabilistic record linkage

theory is based on the work by Fellegi and Sunter [9] and is presented

here. The method calculates a posterior probability of a comparison pair

being a match. To get the probability, we sum up the evidence of the

agreement level of each attribute of the comparison pairs. The evidence,

or weights, is assigned to each agreement level using variables indicating

their probability of being a match or a non-match. The pairs can then be

assigned to the matching set M, non-matching set U, or the set of possible

matches. If the probability exceeds a set limit Rupper, we assign it to M. If

the probability is lower than a set limit Rlower, we assign it to U and else

9

Methods

we assign it to the set of possible matching pairs. The possible matches

require human review to sort into M or U. The sorting of possible matches

is beyond the scope of this thesis.

To estimate the weight of each attribute comparison, the method uses

two variables: m and u, where m is the probability that two fields match,

or are sufficiently close, when the pair belongs to the set M and, similarly,

u is the probability that the attributes match, or are sufficiently close when

the pair belongs to the non-matching set U. These variables exist for each

attribute we compare.

Take sets A and B whose elements we denote a and b. We assume the

two sets have at least one common element. We denote the set of pairs

created by taking the Cartesian join between the two sets as

C = A×B = M ∪U (3.1)

where M denotes the matches between the two sets,

M = {(a,b) : a = b,a ∈ A,b ∈ B}, (3.2)

and U denotes the non-matches between the two sets,

U = {(a,b) : a ̸= b,a ∈ A,b ∈ B}. (3.3)

We may additionally use blocking, discussed further in Section 3.2, to filter

out some pairs from C.

We denote the records of the members of each set α(a) respectively β(b).

We define the comparison vector γ associated with each pair of records as:

γ(α(a), β(b)) =
[︂
γ1(α(a), β(b)) γ2(α(a), β(b)) ... γk−1(α(a), β(b)) γk(α(a), β(b))

]︂
(3.4)

where each element represents a specific comparison, e.g. the compari-

son of first names, dates of birth, or home country. To simplify, we will

denote γ(α(a), β(b)) as γ(a,b) or simply γ. Γ denotes the set of all possible

realisations of γ.

We denote the conditional probability γ(a,b) when a = b with

m(γ) = m(γ(a,b)) =P [γ(a,b)|(a,b) ∈ M] (3.5)

=
∑︂

(a,b)∈M

P [γ(a,b)]P [(a,b)|M] . (3.6)

10

Methods

Respectively, we denote the conditional probability of γ(a,b) when a ̸= b

as u(γ).

Based on the comparison vector γ(a,b), we want to classify the pair (a,b)

as a match, denoted A1, possible match, denoted A2, or non-match, denoted

A3. We do this using linkage rules, denoted by L, which we define as a

mapping from the space of comparison vectors Γ onto a set of random

decision functions D where

d(γ) ={P (A1|γ), P (A2|γ), P (A3|γ)}, d ∈ D, γ ∈ Γ (3.7)

s.t.
3∑︂

i=1

P (Ai|γ) = 1 (3.8)

Two types of errors can occur with each linkage rule: Type I and Type II.

A Type I, i.e. a false positive error, occurs when we classify a non-matching

pair as a match. This happens with probability

P (A1|U) =
∑︂
γ∈Γ

u(γ)P (A1|γ). (3.9)

Similarly, a Type II error, i.e. a false negative, occurs when we classify a

matching pair as a non-match and has probability

P (A3|U) =
∑︂
γ∈Γ

m(γ)P (A3|γ). (3.10)

As stated by Fellegi and Sunter [9], an optimal linkage rule L is such a

rule for which it holds that

P (A2|L(λ, µ)) ≤ P (A2|L′(λ, µ)), (3.11)

for every L′(λ, µ) where λ = P (A3|M) and µ = P (A1|U). We can define

the cost of the linkage error in various ways based on the application and

requirements.

We calculate the posterior probability for each pair as

q̂i,j = P (M|γi,j , θ̂), (3.12)

where θ̂ is the the set of the estimated parameters m, u, and the prior

probability p. With the posterior probability q̂i,j , we can sort the pairs into

M and U using the limits Rupper and Rlower. One may also choose only to

use one limit and sort all pairs directly into M and U. This thesis only

11

Methods

uses one limit. Furthermore, in case blocking is used, any pair that does

not belong to any block is automatically assigned to U.

In most cases, m and u can be estimated accurately from the data. Take,

for example, an attribute with months as options. Seeing that u = 1
12 is

trivial. Estimating m is more complex, as it requires knowing the distri-

bution of the attribute’s values. One can use techniques like Expectation

Maximization to estimate the values of m and u. Expectation Maximiza-

tion is discussed further in Section 3.3. Similarly, p can be defined using

prior knowledge or estimated from the data by defining some deterministic

rules.

Seminal papers have further improved the Fellegi-Sunter model. Winkler

[17] introduced the possibility of using multiple comparison levels per

attribute. This allows us to compare an attribute using, e.g. exact match

and a string similarity metric. Zhu et al. [18] proposed adjusting the

weights based on the rarity of the compared value, i.e., performing term

frequency adjustments. This may mean increasing or decreasing the

weight of a variable based on its rarity.

There are limitations to the probabilistic method and the data. The model

assumes that the attributes are independent and identically distributed

(IID) [9]. However, this is rarely the case in real-world examples. For exam-

ple, address, city, zip code, and country information are not independent.

However, this assumption can be relaxed in most cases without severe

consequences [19] or even with improved performance [20].

Another limitation is the dependency on accurate estimates of the prob-

ability parameters m and u. Without enough pairs belonging to M, the

model can have trouble estimating the variables accurately, and the pro-

duced matches’ quality may not be high [7]. In order to solve this problem,

blocking, discussed in Section 3.2, is crucial. By using good blocking rules,

we can filter out pairs that belong to U and thus have to perform less

computationally complex actions on them [7].

3.1.2 Deterministic record linkage

Compared to probabilistic record linkage, deterministic uses an "all-or-

nothing" approach. If a pair agrees on enough comparison levels, it is

determined to be a match; if the pair does not agree, it is determined

to be a non-match. All comparison rules and weighting are given equal

importance when establishing if the pair is a match. Thus, the pairs

will either be a match or a non-match; no possible matches exist for the

12

Methods

deterministic record linkage.

Deterministic record linkage is commonly based on rule-based compari-

son. These rules may be exact or partial matches using string similarity

algorithms or edit distances. Such partial matching algorithms are pre-

sented later in this chapter. This thesis uses a deterministic record linkage

model based on string embeddings.

In natural-language processing (NLP) tasks, one creates numerical repre-

sentations of the strings. We call such representations "string embeddings".

This representation aims to encode semantic and syntactic information

about the string and its context. String embedding enables numerical

algorithms and machine learning methods to process the data.

There are multiple ways to perform string embedding. The most basic

way is one-hot encoding. It consists of creating a new feature for each

string present in the corpus. Handcrafted features using, for example,

n-grams and part-of-speech are a traditional and a step more advanced

method. State-of-the-art applications use neural network-based algorithms

to create and optimise embeddings [21].

This section discusses two different string embedding-based methods:

TF-IDF and Word2Vec. We present the principles of these models and the

modifications we make to the base models.

3.1.3 Term frequency–inverse document frequency

The "term frequency–inverse document frequency" (TF-IDF) method is a

token-based method for describing how important words are in the context

of both the document and the corpus. In the context of this study, the

document represents a single string to compare, and the corpus is the

collection of all strings. As the term "term frequency–inverse document

frequency" suggests, the method is based on how much weight a term has

in the document and how specific the term is. The term frequency [22] can

be calculated as

tf(t, d) =
ft,d

Σt′∈dft′,d
, (3.13)

where ft,d is the count of the term t in document d. In other words, each

term is weighed based on how many times it occurs in the document.

The inverse document frequency [23] can be calculated as

idf(t,D) = log

(︃
|D|

|{d ∈ D : t ∈ d}|

)︃
(3.14)

where |D| denotes the number of documents and {d ∈ D : t ∈ d} denotes

13

Methods

the collection of those documents where the term t appears in them. We

use the following modified version:

idf(t,D) = log

(︃
|D|+ 1

|{d ∈ D : t ∈ d}|+ 1

)︃
. (3.15)

We do this to solve the problem of division by zero when the term t is not

in the corpus.

We then calculate the TF-IDF as the product of the two previous terms

such that

tfidf(t, d,D) = tf(t, d) · idf(t,D). (3.16)

Hashing trick

The hashing trick [24], also known as feature hashing, is a technique used

to map text or words to numerical vectors. We use it to save memory when

creating the embedded vectors due to setting a vector length N that is less

than (or equal to) the corpus size |D|. Since we only need to save numerical

indices and N ≤ |D| columns, the hashing trick saves memory when we

store the sparse vectors created by the model. Additionally, no global

dictionary needs to be precalculated, removing overhead. The downside of

this method is that hash collisions might appear depending on the relative

sizes of the corpus |D| and the vector length N . Some hash collisions are

inevitable if we choose a vector length N that is less than the corpus size

|D|. However, when the size N is large, collisions become rare enough not

to impact the downstream operations and results.

We calculate the hash of a document as follows. We choose a number

N , which is the length of the new vector, i.e. the dimensions of the vector

space. We define hash(t) as some hashing function. We can then define the

function h(t) as

h(t) = hash(t) mod N (3.17)

where mod is the modulo operator. Thus, we calculate the element of the

vector representation for each document D as

vi = Σt∈D1h(t)=i (3.18)

where vi is the i:th element in the vector representing D.

14

Methods

3.1.4 Word2Vec

Word2Vec [25] is a natural-language process (NLP) used to compute dense

string embeddings of words. The algorithm takes in words or strings of

arbitrary lengths and outputs a numerical vector of predetermined length.

We use these vectors for downstream processing in machine learning, data

analytics, or other algorithms. We can use the Word2Vec model for tasks

like text or word similarity comparison, recommendation systems, and

sentiment analysis. Word2Vec is a widely used and effective algorithm for

generating word embedding and can be used in a wide range of NLP tasks

[25, 26].

Word2Vec is a neural network, or deep learning, based method. Mikolov

et al. [25] implemented the so-called continuous-bag-of-words (CBOW) and

skip-gram model architectures to lessen the computational complexity of

the model. These methods allow the model to use context information

around the word of interest without becoming as complex as a feed-forward

neural network.

The Word2Vec algorithm is trained on a large corpus of words to provide

accurate results. The algorithm user trains the algorithm to predict a

word’s context, i.e., neighbouring words (in case of skip-gram), or to predict

the word based on its context. In the original paper, Mikolov et al. [25]

trained the algorithm on the Google News corpus. This corpus contained

the one million most frequent words of six billion possible tokens.

Word2Vec has some limitations. A standard limitation of any neural

network-based algorithm is the need for extensive training data. Addition-

ally, the algorithm does not handle out-of-vocabulary words. If the word

does not exist in the training set, there is no way for the algorithm to learn

how to embed the word. Additionally, the semantics of words spelt the

same but have different meanings, e.g. "bat", as in the animal or a hitting

bat, are not considered.

3.2 Blocking

In record linkage, we would like to compare every potential pair of records

using a Cartesian join. However, this might be computationally infeasible

since the Cartesian join scales as O(
∏︁

iNi). Blocking is a technique that

attempts to reduce the number of pairs compared while keeping the recall

high [27]. There are multiple ways to perform it, depending on the frame-

15

Methods

work used. One method that this thesis uses is a rule-based method. The

rule filters out pairs that do not match on a particular attribute. Another

method is only to consider such pairs of vectors which have a distance d

lower than the threshold T in some projected space. We discuss both these

methods later in the thesis.

Blocking has multiple use cases. It lessens the computational load of any

following operations applied. By using blocking, we reduce the comparisons

to O(
∏︁

iBnmax,i) [27], where B is the number of blocks created and nmax,i

the size of the largest block created. It also improves the precision of

the operation, although at the risk of the expense of the recall. Due to

the potential costs, benefits, and repeatability, Christen and Goiser [28]

recommend reporting the used blocking rules.

3.2.1 Locality-sensitive hashing

One way to perform blocking is through locality-sensitive hashing (LHS).

Contrary to most uses of hashing that strive to minimise collision of the

hashed strings, locality-sensitive hashing aims to maximise hash collisions

of similar items [29]. A locality-sensitive hashing family F consists of a

set of functions h : M → S that maps elements from the metric space to

buckets s ∈ S. We define the following properties for the family F : the

metric space M, the threshold R > 0, an approximation factor c > 1, and

probabilities P1 and P2. The following conditions have to be satisfied for F :

1. if d(p, q) ≤ R, i.e. the distance between two points p and q are less than

the threshold R, then the probability that h(p) = h(q) is at least P1.

2. if d(p, q) ≥ cR, i.e. the distance between two points p and q are greater

than the approximation factor c times threshold R, then the probability

that h(p) = h(q) is at most P2.

The greater the probability P1 is compared to P2, the more interesting the

family is.

Random bucket projection

Random bucket projection (RBP) is a form of locality-sensitive hashing

[30]. It functions as a dimensionality reduction technique. Using randomly

constructed buckets, or vectors, it projects high-dimensional data onto a

lower-dimensional space.

16

Methods

Let us take the high dimensional vector x̄ ∈ Rn, that we want to hash,

and the bucket vector r̄ ∈ Rn. We random sample the bucket vector

elements from some distribution. A normal distribution, i.e. ri ∼ N (0, 1),

or a uniform distribution, i.e. ri ∼ U(0, 1) are common choices.

Next, we need the hashed vector representation. The algorithm projects

the original vector x̄ onto the bucket vector r̄’s coordinate system and takes

the operation’s sign. We perform this calculation by taking the sign of the

dot product of the two vectors sgn(r̄⊤x̄).

We determine the dimension of the lower-dimensional representation by

generating k bucket vectors such that k < n and performing the above-

mentioned operation for each vector. I.e. the hashed vector becomes

h̄ =
[︂
sgn(r̄⊤1 x̄), sgn(r̄

⊤
2 x̄), ..., sgn(r̄

⊤
k−1x̄), sgn(r̄

⊤
k x̄)

]︂
.

Since we lower the dimensionality of the vectors, we obtain a reduction

in computational complexity and memory requirements for the following

operations. Additionally, due to the dimension reduction, there is a higher

probability that similar data points will have hash collisions and have the

same lower dimensional representation.

3.3 Expectation maximization

Expectation maximisation (EM) is an iterative numerical method for find-

ing the maximum likelihood estimate of a model [31]. One can use the EM

algorithm when it is unfeasible to solve the maximum likelihood estimate

directly. Thus, the EM algorithm works as a general-purpose algorithm

for maximum likelihood estimation whenever other ways of optimising the

likelihood function are complex. An example is mixture models, where

the parameters of each component’s underlying distributions and latent

variables are unknown [32]. We would need to integrate over all possible

values, rendering the option to optimise the likelihood directly infeasi-

ble. This work focuses on models with unknown parameters and latent

variables.

The algorithm works in two steps: The E-step and the M-step. The

E-step, expectation step, estimates the posterior probability of the value of

the latent variables based on the current values of the parameters θ. The

M-step, maximisation step, maximises the complete data log-likelihood of

the unknown variables θ regarding the data and the latent variables.

17

Methods

We can summarise the algorithm as follows:

θ(t+1) = argmax
θ

EZ∼p(·|X,θ(t))[log p(X,Z|θ)], (3.19)

where θt is the unknown variable at interation step t, X is the known data,

Z is the latent variable, and E is expectation operator. In the setting of this

thesis, the latent variable is whether a pair is a match, and the unknown

variables are, e.g., the m- and u-variables. The algorithm runs until

some convergence criteria is met, e.g., a maximum number of iterations

is reached or the difference between some variables for t and t+ 1 is less

than a threshold value.

3.4 String comparison algorithms

The string comparison algorithms, or string similarity metrics, are popular

measures often used in deduplication and record linkage tasks to identify

potential matches between two datasets based on common attributes such

as names, addresses, or dates of birth. In this section, we introduce the

algorithms used in this thesis.

3.4.1 Jaro similarity

Jaro similarity, proposed by Jaro [33], measures the edit distance between

two strings. The algorithm measures insertions, deletions, and substitu-

tions required to transform one string into another. It does not penalise for

transpositions (swaps) of characters close enough to each other. However,

it is not a true mathematical distance metric as it does not satisfy the

triangle inequality.

The algorithm compares the similarity between two strings by comparing

the characters of each string and their placements, i.e., it considers the

characters’ order and any transpositions (swaps) needed to make the

strings match.

The output of the algorithms is a number between zero and one. Zero

means that the strings are a perfect match, and one means that the strings

have no similarity at all.

18

Methods

The similarity is defined as

simj =

⎧⎪⎨⎪⎩0 if m = 0

1
3

(︂
m
|s1| +

m
|s2| +

m−t
m

)︂
otherwise

(3.20)

where m is the number of matching characters, |si| is the length of string

si, and t the number of transpositions. The metric considers two characters

matching if they are the same and are no further apart than max(|s1|,|s2|)
2 −1.

The transpositions t are the sum of matching characters not in the right

position divided by two.

The three parts of the second case in Equation 3.20 have specific inter-

pretations:

1. The proportion of matching characters in string 1.

2. The proportion of matching characters in string 2.

3. The proportion of matching characters that are transposed. The number

is divided by m and not the total characters because it only accounts for

the characters that match.

The algorithm is useful for comparing strings containing typos, mis-

spellings, or other minor differences. When strings are entered manually,

e.g., through surveys and thus prone to human errors, string similarity

algorithms are helpful when doing string matching and record linkage.

A feature of the algorithm, sometimes a shortcoming, is that it does not

consider the length of the words the algorithm compares, which can lead

to false matches in very long or short strings. It also cannot distinguish

between transposition and some other type of error. The algorithm is also

sensitive to outliers and, thus, is not robust.

Jaro-Winkler similarity

The Jaro-Winkler similarity is a variant of the Jaro similarity described

above [17]. The Jaro-Winkler similarity emphasises strings that match at

the start of the strings. The algorithm uses a prefix scale p to positively

weight the prefix of length l of the strings.

The Jaro-Winkler similarity is calculated as

simjw = simj + lp(1− simj), (3.21)

19

Methods

where l is the length of the common prefix to consider and p is the weighting

factor of how much the common prefix string is adjusted positively. l can

take a maximum value of 4 and p a maximum value of 0.25, otherwise the

similarity would become larger than 1.

Similarly to the Jaro similarity, the Jaro-Winkler similarity is not a

true mathematical metric as it does not satisfy the triangle inequality or

identity axiom.

3.4.2 Levensthein distance

The Levensthein distance [34] is an edit distance. It can be used to de-

termine how many insertions, deletions, or substitutions are required to

convert one word into another. The Levensthein distance follows the tri-

angle inequality. Additionally, the following bounds can be given on the

distance:

1. The distance is, at most, the length of the longer string.

2. The distance is zero if and only if the strings are equal.

3. The distance is at least the differences in the string sizes.

The Levensthein distance can be calculated as

lev(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |a| = 0 ∨ |b| = 0

lev(tail(a), tail(b)) head(a) = head(b)

1 + min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lev(tail(a), b)

lev(a, tail(b))

lev(tail(a), tail(b))

otherwise

(3.22)

where a and b are the strings to compare, head is the first element of the

string, and tail is all but the first element.

Since the Levensthein distance is not normalised, longer strings with

multiple errors give larger distances than short strings with fewer errors.

For example, "Hello" and "Helo" have a distance of one while "Greetings"

and "Greting" has two. However, these two examples might look equally

right or wrong for a human since a large percentage of both are correct.

The computational complexity of the Levensthein distance can become

20

Methods

a problem, especially in long strings. Backurs and Indyk [35] show that

for two strings of length n, the Levensthein distance cannot be calculated

in less time than O(n2−ϵ) for any ϵ greater than zero. This holds unless

the strong exponential time hypothesis is false. Thus, performing many

comparisons using the Levensthein distance is a computationally complex

task and may be unfeasible regarding computation time or memory.

3.5 Phonetic encoding

When we perform record linkage on names, we must consider that names

may be pronounced the same way but spelt differently. In this case, pho-

netic encoding is useful for us. Phonetic encoding encodes homophones,

words pronounced the same but with differing meanings or spelling, to the

same encoding. In our case, we may have names that may be misspelt but

pronounced the same. For example, we pronounce "Steven" and "Stephen"

the same but spell them differently.

3.5.1 Soundex

The Soundex algorithm is a phonetic encoding algorithm. Since it was

patented in 1918, many variations have been created and used. A version

used by the U.S. government is maintained by The National Archives and

Records Administration (NARA) [36]. Here we will shortly explain the

general concept of the algorithm.

The Soundex code consists of a letter and three digits. The letter is the

first letter of the original string. From the remaining string, we disregard

all vowels and, depending on the version, some other letters. For example,

the NARA version also disregards H and W. Finally, we encode the three

first letters of the remaining string according to a mapping table. The

mapping of NARA [36] can be seen in Table 3.1. If the string is too short,

i.e. it does not have three letters left, the code will be padded with zeroes

at the end to create the four-character long code. For example, Christian

becomes C623, and Ida becomes I300.

21

Methods

Table 3.1. The Soundex letter mapping table [36].

Number Represents the letters
1 B, F, P, V
2 C, G, J, K, Q, S, X, Z
3 D, T
4 L
5 M, N
6 R

3.6 Performance metrics

To be able to compare the outcome of different methods, performance

metrics are necessary. This study uses three performance metrics: recall,

precision and F1-score. These metrics measure the outcome of some (binary

classification) model or method compared to a ground truth. We use

these metrics to account for the size imbalance of the sets M and U. The

performance metrics are presented shortly in this section.

3.6.1 Precision

Precision measures the validity of the outcome or, in lay terms, how large

a part of the returned values belongs to the ground truth. We can calculate

the precision as

Precision = Pr =
True Positives

True Positives + False Positives
. (3.23)

The metric ranges between zero and one, where higher indicates a better

result.

3.6.2 Recall

Recall measures the completeness of the outcome or, in lay terms, how

many algorithm-indicated positives belong to the ground truth. Recall can

be calculated as

Recall = Rc =
True Positives

True Positives + False Negatives
. (3.24)

and ranges between 0 and 1, where higher is better.

22

Methods

3.6.3 F1-score

F1-score is the harmonic mean of precision and recall. The F1-score is

defined as

F1 =
2

1
Rc +

1
Pr

= 2
Pr · Rc
Pr + Rc

. (3.25)

and ranges between 0 and 1, where higher is better.

23

4. Implementation

This section presents the implementation of the theoretical frameworks,

methods, and algorithms in the setting of this thesis. Section 4.1 gives

an introduction to the technical setup used for the programmatic work

conducted in relation to the thesis. Section 4.2 and Section 4.3 present

the implementation of the deterministic, respectively, probabilistic record

linkage methods. Finally, we discuss the usage and creation of the ground

truth data set used to evaluate the methods used.

4.1 Setup

One of the critical parts of the study is the technical setup used to run

the algorithms. Due to the nature of the business at a bank, the robust-

ness and security of the computing environment are of high importance.

This exceptional environment means that the user must thoroughly vet

hardware or software before use.

The setup used for computation is an in-house Hadoop cluster running

Spark 2.4 [37] and Python 3.7. The author uses a Livy endpoint connection

from Cloud Pak For Data (CP4D) to connect to the cluster and its data.

Thus, we use CP4D as a code editor and interface while all data is located

on the Hadoop cluster and the calculations run on it.

Hadoop has a separate UI and server for saving logs of jobs. This partic-

ular setup has some derivative effects on the logs, and understanding the

impact is essential, especially when working with software that outputs

log messages instead of printed strings. Additionally, one cannot directly

output graphical objects and plots created by the Hadoop cluster into CP4D

through the Livy connection.

24

Implementation

4.2 Deterministic record linkage implementation

This section discusses the pipelines and implementations used for the

deterministic record linkage implementing the string embedding-based

methods discussed in Section 3.1.2. The pipeline consists of the following

parts:

• Data preprocessing

• String embedding

• Blocking through random bucket projection

• String similarity comparison

First, we present the pipeline in general and then each part in depth.

Figure 4.1 presents a diagram of the pipeline.

The pipeline takes two separate data sets with two attributes as input:

the ID and the entity describing string, i.e. the entity string. The IDs

remain untouched during the pipeline as their purpose is to connect back

to the original record and data set. The entity strings go through the

preprocessing steps to harmonise the data and filter out non-informative

parts and noise. The strings are then tokenised, i.e. split into vectors

consisting of the words of the string. We then embed these tokenised

vectors into numeric vectors. We divide the data sets into blocks of pairs to

reduce the number of potential matches. Finally, we compare each pair’s

entity strings using a string similarity method and those above a certain

threshold are considered matches.

4.2.1 Data preprocessing

The preprocessing stage of the pipeline is crucial for the method; the

methods used for embedding the vectors are sensitive to the content of the

corpus. Since we use the methods for names of either natural or juridical

persons, the strings mostly contain names and rare words. Due to the

rarity, we wish to, in most cases, preserve the original form of the string.

However, some standardisation steps are necessary.

Standardising the case of the letters, in our case to lower case, makes all

names and strings written with the same characters count as the same

25

Implementation

Figure 4.1. A diagram of the string embedding-based deterministic record linkage
pipeline.

26

Implementation

word. This standardisation uses the Python string method "lower" provided

in the base Python package.

Punctuation and some special characters are removed, such as ";" (semi-

colon), "," (comma), "." (dot), ":" (colon), and "\" (backslash). Other special

characters, like "&" (ampersand) and "–" (hyphen), are left since they can

be essential parts in some names, e.g. double names of natural persons.

We execute the removal using the "regexp_replace"-function applied to the

entity string columns of a PySpark data frame.

Next, we tokenise the strings. Any characters separated by whitespaces,

hyphens, or ampersands are considered separate words and tokenised.

In other words, in the upcoming embedding step, we encode all strings

separated with the aforementioned special characters from string to a

numeric value. We perform the tokenisation using the hashing trick,

discussed in Section 3.1.3, to make the memory requirement smaller. We

use PySparks "RegexTokenizer"-function for this.

The definition of stop words is commonly used words in the used language.

E.g. "the", "a", and "is" are common stop words in English. Such words

usually contain little to no information about the string or its context.

Removing stop words lessens the computational load and creates a more

robust model. In the context of this work, the concept of stop words is

more challenging. When talking about natural persons, stop words may

be titles, like "Mr." or "Ms.". For juridical persons, "Incorporated", "LLC",

or "PLC" are examples of such words in English. When defining what

words to remove, it does not matter only which language and country is in

question but also the context of the corpus. We accomplish the task using

PySparks "StopWordsRemover" function.

We can apply the preprocessing step to transform strings such as "Nordea

Bank OYJ" or "AB Nordea Bank" into the vector
[︂
"nordea" "bank"

]︂
. This

vector can then be given to the embedding step of the pipeline to transform

into a vector of numeric values.

4.2.2 Embedding the strings

This section presents the central part of the pipeline, the embedding.

The theory behind the two methods used to create the embeddings, TF-

IDF and Word2Vec, are presented in Sections 3.1.3 and 3.1.4 respectively.

Furthermore, this section presents the methods’ usage, training, and

tuning. PySpark implements both methods, which are named "HashingTF"

and "Word2Vec" respectively.

27

Implementation

Term frequency–inverse document frequency

PySpark supplies two different ways of counting term frequencies of words:

a traditional bag-of-words style, where the algorithm assigns each word a

column in a matrix, or a method utilising the Hashing Trick, presented in

Section 3.1.3. These are implemented in PySpark as "CountVectorizer" re-

spectively "HashingTF". Additionally, PySpark provides the "IDF" function

to calculate the inverse document frequency.

As previously discussed in Section 3.1.3, there are clear benefits and risks

of using the hashing trick over the bag-of-words approach. The hashing

trick reduces the computational load due to lessened memory requirements

and overhead. Due to the benefits, we use the method implementing the

hashing trick. The risk of using the hashing trick is its impact on the

model outcome; hash collisions may cause poor model performance. In the

context of this work, this is a significant factor. It is, however, essential to

note that the output of both aforementioned methods is sparse vectors.

The "HashingTF" has a critical parameter: the dimension of the embed-

ded vector. This parameter directly affects the amount of potential hash

clashing and memory usage. Theoretically, one would like to maximise this

number while keeping the model within memory limitations to minimise

hash clashes. In practice, one must ensure that the pipeline is stable on

each run, i.e. does not crash due to running out of memory.

The algorithm’s output is a sparse vector containing the TF-IDF weights

of each token in the previously produced vector. For example,
[︂
"nordea" "bank"

]︂
can become

[︂
0 1 0 0 1

]︂
if we use a vector length of five.

Word2Vec

The Word2Vec method, in contrast to TF-IDF, produces a dense distributed

vector representation of the terms in the corpus. As discussed in Section

3.1.4, the Word2Vec model considers context around the words to create the

document’s distributed representation. Specifically, the implementation

available in PySpark is based on the skip-gram model.

The model has the following hyperparameters, which require defining:

• the dimension of the output vectors

• the minimum number of appearances of a word to be included in the

model

28

Implementation

• the maximum allowed document length

• the maximum number of iterations of the model

• the step size of the optimiser

Of these, the dimension of the vectors is critical. As discussed in the

previous section, the larger the output, the higher the required memory

and amount of information possible to embed into the vector. The maximum

allowed document length, the maximum number of iterations of the model,

and the step size of the optimiser are kept at their default values, defined

by the function, to lessen the complexity of the tuning step.

The minimum token appearance, while usually an important hyperpa-

rameter to reduce noise, has a different implication in the setting of this

thesis. Since we apply the algorithm to names, infrequent words are

significant as some may uniquely identify their respective entities. This

context-specific irregularity leads us to keep the parameter as 0, allowing

all words, in order not to filter out any vital information.

4.2.3 Blocking through random bucket projection

Due to the number of candidate pairs, e.g. approximately 14.9 · 109 for the

natural persons, it is unfeasible to use computationally complex similarity

measures before or after embedding the strings. Thus, we apply block-

ing through locality-sensitive hashing using random bucket projection to

reduce the required comparisons. PySpark implements this in the "Bucket-

edRandomProjectionLSH"-function. We discuss the technique in depth in

Section 3.2.1.

The blocking aims to increase precision and reduce computational com-

plexity while retaining as high a recall as possible. Thus, we aim to filter

out as many pairs that do not match while keeping all true matches. We

do this by assigning every vector created in the proceeding step to a bucket

of length j. Once we have these vectors, we discard those pairs with an

Euclidean distance greater than d.

4.2.4 String similarity comparison

As a final step in the embedding-based method, we use the similarity of the

strings to compare the pairs. This step does not improve the recall but aims

29

Implementation

to improve the precision by filtering out pairs with unintentional hash

clashes due to the vector embedding and random bucket projection. Since

the previous steps have aimed to filter out most of the false negatives, we

can now apply more computationally complex algorithms to the remaining

pairs.

The tokenised string will be compared instead of comparing the original

entity string. We order the vector of tokens alphabetically not to have

the order of the words impact the outcome. Next, we combine the vector

elements into a string with whitespaces separating it. Finally, we calculate

the string similarity metric between the two strings. All pairs below a

user-defined threshold are filtered out.

The core of this step is the string similarity algorithm used for the

comparison. Choosing which metric to use ought to be derived from the

result one wants to achieve. We can consider two categories of algorithms.

Firstly, those that return a normalised similarity value between 0 and

1. Secondly, edit distances that return an integer describing how many

operations are required to transform one string to the other. Contrary to

the definition, the algorithm’s implementation may turn the scale around

such that the returned value is 1− simj . Thus, 1 equals a perfect match

and 0 a complete non-match.

The Jaro and Jaro-Winkler string similarities, discussed in Section 3.4.1,

are good candidates for the choice of metric. For the implementation, we

use the JaroWinkler-package’s "jarowinkler_similarity"-function [38]. The

function takes in any string or array of objects and compares them using

the string similarity algorithm. Contrary to the theoretical description of

the methods, the package’s functions reverse the similarity scale so that

one equals a perfect similarity and zero no similarity.

4.3 Probabilistic record linkage implementation

This section discusses the setup and implementation of the probabilistic

record linkage solution. The solution uses Splink [39], a python package

based on the research by Enamorado, Fifield, and Imai [7] and developed by

the British Ministry of Justice. Splink uses the probabilistic record linkage

theory created by Fellegi and Sunter [9] and the expectation-maximisation

algorithm [31] to estimate the unknown linkage variables m and u. We

present the theory in Section 3.1.1. In this section, we first give an overview

of the workflow of the algorithm and then present the core concepts in

30

Implementation

more detail.

For each attribute we compare, we start by defining the comparisons, i.e.

the case statements. We can define the statements using Splinks built-in

comparisons or define them manually. Each comparison will have at least

two case statements, of which one is the case for all comparisons not in

any other case statement. However, one can have as many statements as

necessary, such as multiple string similarity comparisons.

We then evaluate the prior probability that a random pair is a match. We

do this by defining a set of deterministic rules that retrieves a sub-sample

of all possible pairs. We construct these rules to have as high precision as

possible. We then estimate the recall of the sub-sample. Based on this, we

can estimate how rare a random match is in the data and, thus, the prior

probability of a pair being a true match.

Next, we get an initial value for u for each case statement. We do this

by taking a random sub-sample of the Cartesian product of all pairs and

estimating u based on the sub-sample. We assume that true matches

in this sub-sample are very unlikely and that the pairs are most likely

non-matches.

We employ the EM algorithm to define m and tune u. We do this by

defining local blocking rules. Each rule creates a sub-sample on which we

apply the EM algorithm to tune the m- and u-variables on a case-statement

level. The algorithm only tunes those attributes that each rule does not

use to create the sub-sample. For example, if we create a sub-sample

using a blocking rule such that the first name needs to be an exact match

between the pair, then we do not tune the variables related to the first

name. The algorithm moves to the following rule once a maximum amount

of iterations is reached or the algorithm converges, i.e. the change in model

parameters between iterations is less than a set value.

Finally, we use the trained model to predict the match probabilities. We

do this on a sub-sample of the data defined using the global blocking rules.

We create the comparison vector for each pair in the sub-sample, use the

trained variables to assign a weight to the vector elements, and sum up

the values to get the match probability.

Many of the previous steps suggest using sub-samples instead of the

complete data. This is due to two reasons. Firstly, the sub-sample needs to

be small enough to run in a feasible amount of time in the environment.

Secondly, the sub-sample created by the blocking rules must contain be-

tween 1% and 99% true matches to function correctly, i.e., to properly tune

31

Implementation

the variables.

4.3.1 Case statements

Case statements are at the core of the probabilistic model. The case

statements are a series of levels of comparisons for each attribute that

describe the level of agreement. Building these with the desired outcome

in mind is vital. We can view the case statements as a series of if-else

statements, each progressing in descending order of agreement. The

exception to this is missing data, which is handled separately.

Let us take as an example the case statements of the "first name" at-

tribute. An example based on the "first name" attribute could look some-

thing like this:

1. If either data point is missing, the agreement level is set to -1

2. Else, if both data points match exactly, set the agreement level to 3

3. Else, if the data points have a Jaro-Winkler similarity of 0.94 or higher,

set the agreement level to 2

4. Else, if the data points have a Jaro-Winkler similarity of 0.88 or higher,

set the agreement level to 1

5. Else, set the agreement level to 0

We can make a complete model by creating statements for each attribute

to compare the records.

We can use different comparisons depending on the attribute type and by

utilising context information. For example, character and string-based at-

tributes are suitable to compare using string-based similarity metrics. We

can compare dates using either time-based differences, where a difference

in days is more similar than a difference in months, or string similarity,

where each differing digit is weighted equally independently of its position

or meaning.

Choosing what kind of similarity to use might depend on the context. In

the case of a date, using string similarity might be beneficial if we suspect

a typo due to manual data ingestion. In contrast, time-based similarity can

be suitable if we compare records from two systems that possibly return

32

Implementation

different dates that are temporally close to each other.

The following parts will discuss the chosen case statements and the

reasoning behind the choice for each attribute. The comparison vector

consists of the results of comparisons between the following attributes:

1. First name

2. Middle names

3. Last name

4. Date of birth

5. Country

Note that all parts handle missing data or null values the same: by not

assigning any weight to that comparison. Thus, we will not mention it

hereafter. We present a complete list of the case statement in Appendix C.1.

We compare first and last names using identical settings. We use three

different comparison levels: exact match, soundex match, and all other

comparisons. Additionally, we apply term-frequency adjustments to both

comparisons.

We compare the middle names using an exact match, Levensthein dis-

tance for thresholds at one and two, and all other comparisons. We do not

use Soundex for middle names as the numbers of middle names vary and

may cause unexpected interactions. Additionally, we apply term-frequency

adjustments to the middle name comparisons.

The algorithm compares the date of birth at different temporal levels.

Note that all the dates are in the format "YYYY-MM-DD". Due to us filling

in missing data, we artificially create a lot of first of months and first

of January dates. First, we consider exact matches between the dates.

The second comparison level compares the year and month, such that

the seven first characters must match and either of the two dates’ last

two characters are "01". Thirdly, we compare the year similarly to the

previous comparison, i.e., the four first characters must match and either

of the dates’ last five characters are "01-01". Finally, we consider all other

comparisons. Due to filling in the missing data, we apply term-frequency

adjustments to the comparison.

33

Implementation

We perform the country comparison as an exact match, as the country

column contains no deviating values, and apply term-frequency adjust-

ments.

4.3.2 Blocking

Blocking is a technique for reducing potential pairs to compare, discussed

in Section 3.2. It is a core functionality of Splink, as blocking allows using

large amounts of data. By using well-formulated rules for creating blocks,

we can keep the number of pairs to compare low to reduce computational

complexity.

One should define the blocking rules so that the blocks created filter out

as many non-matching pairs as possible while keeping as many matching

pairs as possible. Additionally, for a computational advantage, the blocks

should be of similar size as the algorithm’s run-time depends on the largest

block. Each pair will only be evaluated once despite how often it appears

in different blocking rules. Due to this solution by Splink, one does not

have to worry about creating duplicate pairs and impacting the evaluation

time.

We use global blocking rules [39] to limit the number of pairs we evaluate

in the prediction phase. We construct these rules such that they maximise

recall. The tuned model then weighs and sums the attributes to predict

matches and non-matches.

We use local blocking rules [39] in the expectation-maximisation step of

the algorithm. We maximise precision in the construction of the local block-

ing rules to have a balanced label occurrence. The parameters are trained

separately for each rule. The EM algorithm is run until convergence for

each rule’s training. Tuning is turned off for the u- and m-variables corre-

sponding to attributes used to create a rule. We cannot tune the variable

estimates for those variables since all pairs’ comparison levels would be

equal.

4.3.3 Term-frequency adjustments

Splink also includes the option to adjust the evidence level based on the

frequency of the term found that matches. Down-weighting common op-

tions gives more significant evidence to pairs matching rare values, i.e.,

attributes with cardinality skew.

Let us take last names as an example. The Finnish last name ’Korhonen’

34

Implementation

is, as of 2023, the most common last name [40]. This difference in rarity

means that similarity on ’Korhonen’ is less evidence of a match than a more

uncommon last name. The model infers the term-frequency adjustments

from the data during training.

4.4 Ground truth

Standard data metrics are helpful tools for comparing the performance of

different methods, models, and choices of parameters. We use recall, preci-

sion, and F1-score to evaluate the results. However, the aforementioned

methods require labelled data and due to the nature of our study, our data

is unlabelled, and the methods are unsupervised.

We construct ground truth data sets of the data to solve the problem. We

construct a ground truth for each of the two problems: the juridical person

records and the natural person records. The ground truth will consist of

all Dow Jones records and their corresponding matches from the DnB data

set.

Juridical persons

We use a simple matching scheme that removes certain generic words and

abbreviations, like "AB", "OY", "LTD", etc. and transforms the string to

lowercase. The complete list of words removed can be found in Appendix A.

We perform an exact match join on the two data sets to find matches. The

remaining companies in the DJ subset are then gone through by hand and

matched in the DnB dataset. The ground truth consists of 1694 matches;

all other pairs are non-matches.

Natural persons

We use a deterministic matching scheme to construct the ground truth set.

The author received the scheme from financial crime prevention experts

familiar with the data. We join the data sets by matching on first name,

last name, birth year, and birth month. The ground truth consists of 413

matches; all other pairs are considered non-matches.

35

5. Results

The section presents the results of the used algorithms divided into two

main categories: deterministic and probabilistic methods. Section 5.1 first

presents results related to the dimensionality of the data and how that

affects the choice of method. Secondly, Section 5.2 presents the challenges

faced due to the technical environment and infrastructure presented in

Section 4.1. Section 5.3 first presents the results of the parameters for

each of the embedding-based models and then presents the results of the

optimal models. Section 5.4 presents the results of the probabilistic model.

Finally, Section 5.5 compares the deterministic and probabilistic methods

and the results of the respective model to each other.

5.1 Data dimensionality

Among the two methods, the deterministic and the probabilistic, used in

this study, there are vast differences in requirements and functionality

based on the dimensionality of the data. These differences and their impact

will be discussed in this section.

5.1.1 Deterministic record linkage

As discussed in Chapter 4, the embedding-based methods take a single

attribute, the entity string, as input for the record linkage. The additional

ID is only used to link it back to the original dataset and record. This

means that any information to be used for the linkage needs to be added

to the string. This section reviews the results of the amount of information

injected into the entity string.

The baseline information used in all cases is the juridical person’s name

with the "stop words" removed. The list of removed words can be found in

Appendix A. The following attributes can also be added to the entity string:

36

Results

address, city, and country.

The results show that any additional information outside the company

name leads to a worse-performing algorithm where precision and recall

decrease. There may be multiple causes for this: the model highlights

unique information through the TF-IDF and Word2Vec algorithms. Adding

information common among many records, such as the city or country, will

not add any unique information. Alternatively, when the strings get longer

minor differences in how the information has been written may add up

and lead to differences between the strings. The address, for example, may

have differing levels of information: one may have the name of the road

and the street number and the other the road, street number, floor number,

and apartment number.

The best result is gained by not including anything but the name in the

string. If one is sure that the data is entered identically in both data sets,

one could see an increase in performance by using more information in the

entity string.

5.1.2 Probabilistic record linkage

At the core of the probabilistic record linkage method is the summation of

the evidence given by different attributes. For this method to be usable,

multiple attributes are required. Using the method with a single attribute

is similar to writing a chain of if-else clauses for a deterministic match.

Additionally, if the data has more attributes, it becomes easier for the user

to create blocking rules and engineer the algorithm’s training.

Furthermore, as per Enamorado, Fifield, and Imai [7], the algorithm

will only perform well if the two data sets overlap considerably. However,

well-constructed blocking rules may be a solution to this problem.

5.2 Environmental challenges

We can attribute many issues faced during this work to the restrictiveness

of our environment. As discussed in Section 4.1, the work setup is both

very restricted and outdated in the context of the speed at which the

field of machine learning and data science develops [41]. Without a great

understanding of the particular setup, its strengths, and its weaknesses,

work using the setup may become very challenging. To give an example

of the challenges encountered, consider that the average time to install a

37

Results

Python package is two months.

One of the most significant challenges is to use pure 2.4 PySpark. Due

to the environment, we cannot use additional Java Archives files (.jar)

[42], and hence any non-native functions. The new DataFrame API with

its methods, introduced in Spark 3.0, is also unavailable. Not using the

current major version makes finding help and guidance more challenging,

adding a layer of difficulty to engineering and programming.

Writing new distributed Spark functions is complex and requires ad-

vanced computer science knowledge, programming of parallel computers

and distributed systems. Hence, many experienced programmer resources

are required to build an algorithm that would support any needs that

may arise. As this is outside the scope of the thesis, only native PySpark

functions have been used.

Due to the setup described in Section 4.1, the logs of anything run on

the cluster are not returned to the interface but saved to separate log

files. Thus, a significant part of Splinks informative messages, which are

output as logs instead of printed strings, are saved to the Hadoop log server

instead of being shown to the user. Performing iterative tests on the model

is challenging and time-consuming since the user must download the logs

and search for the desired output in the log file.

Additionally, graphical objects and plots, on which Splink relies to convey

information to the user, are impossible to view. This restriction means

that the user has to use an alternative environment or setup to perform

the analytical part of the creation of the model. These alternative envi-

ronments are, however, only suited for running a sub-sample of the data

due to hardware restrictions. This also means that the user cannot be

sure whether the model is performing as expected when moving from a

subset of the data on which they perform the exploratory modelling to the

complete data.

When running Splink on PySpark, Splink uses the Spark SQL engine

as the backend for running calculations. Hence, any restrictions or short-

comings of the Spark SQL engine also apply to Splink, including existing

implementations of used algorithms and the lack of algorithms. For ex-

ample, Spark SQL does not natively have a Jaro or Jaro-Winkler string

similarity algorithm implemented. Splink has implemented a custom Java

Archives file which introduces needed algorithms. However, as previously

mentioned, we cannot add this to the environment to solve the problem.

Thus, we must only choose case statements and blocking rules that do not

38

Results

use algorithms not implemented in Spark SQL Engine.

5.3 Deterministic record linkage results

This section presents the results of the deterministic record linkage. First,

we examine the impact of the different parameters on the time require-

ments for the algorithm to run, the memory required for the final result

and the performance metrics. We separately present the TF-IDF-based and

Word2Vec-based pipelines’ results. Consecutively, we compare the results

of both to each other. Finally, we present the optimal model performance

on the two record linkage problems: juridical and natural persons.

The parameter impact on the data set of juridical person records, pre-

sented in Chapter 2, is investigated. The data related to juridical person

records are chosen due to the previously discussed data dimensionality

challenges, as the author hypothesises that the model will perform worse

on the natural person-based data.

The complete pipeline has eight different parameters: "Length of em-

bedded vector", "Length of bucket", "Number of hash tables", "Use address

information","Use city information", "Use country information", "String

similarity threshold", and "RBP distance threshold". The pipeline includes

constructing the entity string, performing RBP, and comparing string simi-

larity. We can see additional information about the parameters and their

values in Section 5.3. Based on the discussion in Section 5.1.1, we de-

scope the Boolean parameters related to including additional information

in the "Entity string"-field. Additionally, two of the values do not seem

to impact the result outside of being non-zero: "Length of bucket" and

"Number of hash tables". Running multiple iterations of our model is a

time-consuming task, and we hence also descope parameters "Length of

bucket" and "Number of hash tables". We end up with the three following

parameters: "Length of embedded vector", "String similarity threshold",

and "Distance threshold".

We evaluate the algorithm and the choices of parameters against five

metrics:

1. Relative time: The wall time needed to execute the complete algorithm

divided by the fastest iteration of the algorithm.

2. Recall

39

Results

Table 5.1. The parameters of the interactive deterministic approach. We present each
parameter, its data type, and possible values.

Parameter Data type Possible values
Length of embedded vector Integer [1 .. ∞)
Length of bucket Float [0,1]
Number of hash tables Integer [1 .. ∞)
Use address information Boolean {True, False}
Use city information Boolean {True, False}
Use country information Boolean {True, False}
String similarity threshold Float [0,1]
RBP distance threshold Float [0, ∞)

3. Precision

4. F1-score

5. Memory: The memory required for the final data frame.

We give detailed explanations of the recall, precision and F1-score in

Section 3.6. The effect of the parameter values on the time is complex to

determine; a bias in the data may be attributed to differences in the cluster

load depending on the time of day. Thus, even though we may see a trend

in the variables affecting time, it may be attributed to the cluster’s load.

We are cautious when interpreting results and outliers in the time metric.

The algorithms will be run 1000 times for each of the two models, the

TF-IDF- and Word2Vec-based models. We draw a value for each parameter

from a uniform random distribution for each iteration. The value of the

string similarity threshold is in the interval [0, 1], and the value for the

RBP distance threshold is a square root of the integer values in the range

[0, 9]. For the TF-IDF model, the feature vector length is a power of 10,

and we draw the exponent from the interval [2, 6.69], i.e. the length is in

the range [100,∼ 5000000]. For the Word2Vec model, the feature vector

length is an integer in the range [1, 7]. These ranges of values for the

feature vector length and RBP distance threshold have been chosen based

on initial tests indicating that larger values than the previously given ones

lead to errors and crashes due to the system running out of memory.

5.3.1 TF-IDF-based pipeline

This section highlights the parameters’ effect on the TF-IDF-based embed-

ding pipeline. The results will be measured using the five performance

metrics: relative time, F1-score, precision, recall and memory usage of the

40

Results

Figure 5.1. The TF-IDF-based algorithm’s precision as a function of the feature vector’s
length.

final data frame. All plots related to the parameters of the TF-IDF pipeline

can be seen in Appendix B.2 in addition to that presented in this section.

Feature vector length

This section presents the effect of the feature vector length on the perfor-

mance metrics. Notice that the x-axis is logarithmic in all the figures in

this section.

In Figure 5.1, we can see the precision as a function of the feature length.

We observe an evident positive trend between the variable and the metric.

We can see that the feature vector length creates a minimum possible

precision with a logistic-like form. However, we can see a few outliers lie

below this curve.

The F1-score displays a strong positive correlation between the length

and the F1-score. This phenomenon can be seen in Figure 5.2. The F1-score

is mainly affected by the strong effect of the feature vector length on the

precision.

Figure 5.3 shows the memory usage as a function of the feature vector

length. We find no significant trend between the variables. Due to the

sparsity of the vector, the size of the vector may become large but still

require only little memory, as only a fraction of the elements are non-zero,

and memory usage can thus be handled efficiently.

To summarise the results of the effects of the feature vector length, we

41

Results

Figure 5.2. The F1-score of the TF-IDF-based algorithm as a function of the feature
vector’s length.

Figure 5.3. The memory usage of the final data frame of the TF-IDF-based pipeline as a
function of the feature vector’s length.

42

Results

Figure 5.4. The recall of the TF-IDF-based algorithm as a function of the string similarity
threshold.

can conclude that increasing the feature vector’s length positively impacts

the precision. Additionally, at the high end of the range, the relative time

increases as well. This is due to the hash clashes described earlier; with

longer feature vectors, fewer hash clashes occur. The user is to consider

this trade-off based on the size of the problem at hand and the desired

outcome.

String similarity threshold

This section examines the impact of the string similarity threshold on the

performance metrics. Figure 5.4 depicts the recall as a function of the

threshold. The trend is evident: a higher threshold decreases the recall.

We can see a slight drop in the recall at approximately 0.59 and a more

significant one after 0.82, a negative exponential trend. This drop can be

explained by the fact that the string similarity threshold only filters out

pairs, so the fewer that are filtered, the higher the chance that more true

positives remain in the set.

In Figure 5.5, we can observe the effects of the string similarity threshold

on the precision. After 0.6, the worst-case precision increases linearly.

Furthermore, at approximately 0.92, the precision is equal to 1. The

context explains this phenomenon of a cut-off threshold: the higher the

string similarity, the more likely the two strings are to be a true match.

Additionally, in Figure 5.6, we can see that the feature vector length plays

43

Results

Figure 5.5. The precision of the TF-IDF-based algorithm as a function of the string
similarity threshold.

a vital role in the outcome of the string similarity threshold. When using

a longer feature vector, the string similarity threshold can be lower and

produce similar precision.

In Figure 5.7, we can see the combined effects of recall and precision. As

the harmonic mean of recall and precision, the F1-score exhibits charac-

teristics of both metrics: the apparent drop-off at the higher values of the

parameter and the evident increase after a specific cut-off value of 0.6.

Figure 5.8 shows the memory usage as a function of the string similarity

threshold. We find a negative trend of α ≈ −852.94. The nature of the

string similarity explains this phenomenon: a higher similarity threshold

filters out more potential pairs, and the final result is a relatively smaller

data frame.

To summarise, the effects of the string similarity threshold on the per-

formance metrics are apparent. At values around 0.6, the parameter’s

value starts positively affecting the algorithm’s outcome. Similarly, at 0.82

it starts having a negative impact. When choosing the parameter value,

we decide between filtering out true positives and allowing false positives.

Additionally, higher values lead to less memory usage.

Random bucket projection distance threshold

This section examines the impact of the RBP distance threshold on the

performance metrics. Figure 5.9 illustrates the effect of the RBP distance

44

Results

Figure 5.6. The precision of the TF-IDF-based algorithm as a function of the string
similarity threshold divided into intervals by the feature vector length.

Figure 5.7. The F1-score of the TF-IDF-based algorithm as a function of the string simi-
larity threshold.

45

Results

Figure 5.8. The memory usage of the final data frame of the TF-IDF-based pipeline as a
function of the string similarity threshold.

threshold on the F1-score. The data expresses a negative α ≈ −0.005

correlation. Compared to the other two parameters, the RBP distance

threshold does not impact the F1-score significantly.

We examine the relationship between the distance threshold and the

memory usage using Figure 5.10. We can see a positive α ≈ 175.13 trend

between the distance threshold and the memory usage of the final data

frame. Since more pairs are allowed through the pipeline, additional

memory is required to store the data.

The effects of the distance threshold parameter are minor. The method of

random bucket projection and filtering by threshold is intended to bring up

the precision at lower parameter values and decrease the computational

load at a potential cost of the recall. The results do not reflect this intention.

However, the author notes that unless we use a low distance threshold, the

memory required during the pipeline evaluation causes additional memory

requirements and can produce errors and crashes. Due to the setup, we

cannot capture the memory usage of the intermediate objects, but the

mentioned behaviour has been experienced. Thus, the author recommends

using a low threshold in practice.

Summary

Figure 5.11 highlights the combined effect of the three variables on the

F1-score. As previously discussed, we can see that the feature vector length

46

Results

Figure 5.9. The F1-score of the TF-IDF-based algorithm as a function of the RBP distance
threshold.

Figure 5.10. The memory usage of the final data frame of the TF-IDF-based pipeline as a
function of the RBP distance threshold.

47

Results

Figure 5.11. A scatter plot highlighting the combined effect of the variables of the TF-
IDF-based model on the F1-score. "Features" stand for feature vector length,
"SST" for string similarity threshold and "RBP" for random bucket projection
distance threshold. The feature vector length is on a logarithmic scale.

Table 5.2. The optimal range of values for the parameters of the TF-IDF-based pipeline.

Parameter Optimal range
Feature vector length [105, 106.69]

String similarity threshold [0.84, 0.92)

RBP distance threshold {0}

and the string similarity threshold impact the F1-score significantly com-

pared to the RBP distance threshold. By choosing the right combination of

string similarity threshold and feature vector length, we can achieve high

F1-scores.

Memory usage mostly stays the same based on the variables’ values.

However, since the reported measure is the final data frame memory usage,

it does not have the required memory during the pipeline. With increasing

RBP distance thresholds, we encounter crashes due to memory errors. The

author recommends using values in the ranges indicated in Table 5.2.

5.3.2 Word2Vec based pipeline

This section highlights the parameters’ effect on the Word2Vec-based em-

bedding pipeline. The results will be measured using the five performance

metrics: relative time, F1-score, precision, recall and memory usage of

the final data frame. All plots related to the parameters of the Word2Vec

48

Results

Figure 5.12. The recall of the Word2Vec-based algorithm as a function of the feature
vector’s length.

pipeline can be seen in Appendix B.2 additionally to those presented in

this section.

Feature vector length

We can see the recall as a function of the feature vector length in Fig-

ure 5.12. Generally, a high recall is present at all levels, with some outliers

below the Rc = 0.6 line. Using the string similarity threshold as a second

variable, we can see that the outliers result from a very high string similar-

ity threshold. We can observe the string similarity threshold as a second

explanatory variable in Figure 5.13. The feature vector length does thus

not have a significant impact.

In Figure 5.14, we can see the precision as a function of the feature vector

length. The plot shows us clusters at the high and low end of the y-axis,

with some points between the clusters. If we examine Figure 5.15, we

can see that, similarly to the recall above, it is a single interval of the

string similarity threshold that is the source of the data points between

the clusters. Additionally, those belonging to the two categories, with a

string similarity threshold of less than 0.84, are clustered at the bottom,

with a few outliers at the top.

Figure 5.16 illustrates the F1-score as a function of the feature vector

length. As discussed earlier, due to the nature of the F1-score, we can

see both the precisions and the recalls behaviour in the F1-score. No

49

Results

Figure 5.13. The recall of the Word2Vec-based algorithm as a function of the feature
vector’s length divided into string similarity threshold intervals.

Figure 5.14. The Word2Vec-based algorithm’s precision as a function of the feature vector’s
length.

50

Results

Figure 5.15. The Word2Vec-based algorithm’s precision as a function of the feature vector’s
length divided into categories based on the string similarity threshold.

correlation exists between a higher feature vector length and a higher

F1-score. We can confirm this by fitting a line to the data and seeing

that |α| ≤ 0.001, where α is the slope. Figure 5.17 shows us how the RBP

distance affects the F1-score as a secondary explanatory variable. Only

when the distance is zero can the algorithm achieve an F1-score of more

than 0.83.

In Figure 5.18, we can see how the feature vector length impacts the

memory usage of the final data frame. We find no significant differences

between the lengths and only a slope of α = 48.261 for the fitted line. This

slope is insignificant in the scale of the y-axis.

Based on the figures in this section, we conclude that the feature vector

length does not significantly impact performance metrics. In combination

with the string similarity threshold, we can obtain decent values. However,

as we present later, we can obtain excellent F1-scores with any examined

feature vector length above two as long as the RBP distance threshold is

low enough.

String similarity threshold

In this section, we examine the effects of the string similarity threshold

on the performance metrics. We begin by examining the recall, which we

can see in Figure 5.19. We see a nearly identical curve as for the TF-IDF

version, which we display in Figure 5.4 — a similar small drop just prior

to 0.6 and a sharp downward slope after 0.83.

51

Results

Figure 5.16. The F1-score of the Word2Vec-based algorithm as a function of the feature
vector’s length.

Figure 5.17. The F1-score of the Word2Vec-based algorithm as a function of the feature
vector’s length divided into RBP distance intervals.

52

Results

Figure 5.18. The memory usage of the final data frame of the Word2Vec-based pipeline as
a function of the feature vector’s length.

Figure 5.19. The recall of the Word2Vec-based algorithm as a function of the string
similarity threshold.

53

Results

Figure 5.20. The precision of the Word2Vec-based algorithm as a function of the string
similarity threshold.

The precision, which we can see in Figure 5.20, displays unexpected

behaviour. For the worst-case scenario precision, we can see a very low

precision for the string similarity threshold until approximately 0.7, at

which point it rises sharply. However, simultaneously, we can see points

with very high precision across the x-axis. By examining Figure 5.21,

which shows us the RBP distance as a second explanatory variable, we

can see that an RBP distance threshold of zero gives a high precision. The

figure also shows a few outlier points that behave differently. We find no

explanation for these.

The F1-score, seen in Figure 5.22, displays the same features in the

precision and recall. Additionally, Figure 5.23 shows us the effect of the

RBP distance value on the precision: An RBP value of zero behaves differ-

ently from the other values. Thus, when choosing string similarity value,

we must know the RBP value to make a correct evaluation. Additionally,

choosing values over 0.9 impacts the F1-score negatively in all scenarios.

In conclusion, the results presented in this section indicate that the

string similarity threshold is not an essential factor in the outcome of the

pipeline since having the correct RBP distance threshold renders the effect

of the string similarity threshold insignificant. This holds as long as the

parameter is below 0.9. However, examining all three parameter values

shows that setting a string similarity value is recommended.

54

Results

Figure 5.21. The precision of the Word2Vec-based algorithm as a function of the string
similarity threshold divided into categories based on the RBP distance value.

Figure 5.22. The F1-score of the Word2Vec-based algorithm as a function of the string
similarity threshold.

55

Results

Figure 5.23. The F1-score of the Word2Vec-based algorithm as a function of the string
similarity threshold divided into categories based on the RBP distance value.

Distance threshold

In this section, we investigate the impact of the RBP distance on the

performance metrics. We can see the relative time as a function of the

distance in Figure 5.24. We can observe a slight positive linear trend of

α ≈ 0.158. However, the magnitude of this trend is minor compared to the

scale of the relative time and the range of the RBP distance threshold.

The distance threshold significantly impacts the precision, visible in

Figure 5.25. We can see that at a distance equal to zero, the precision

acquires only values above 0.6 and mostly values close to 1. A negative

α ≈ −0.202 correlation exists between the distance threshold and the

precision. In Figure 5.26, we can see that the lower values at a distance

equal to 0 result from a low feature vector length. Similarly, Figure 5.27

shows that the lower precision values at distance zero all have lower

string similarity threshold, below 0.6. Similarly, at the other RBP distance

threshold values, only string similarities in the highest interval lead to

high precision values.

As previously concluded, the F1-score combines the behaviours of preci-

sion and recall. Figure 5.28 summarises the effect of the distance threshold

well as a distance threshold of zero provides the best F1-score.

The impact of the RBP distance threshold is significant. Using an RBP

distance threshold of zero significantly improves the pipeline results. Addi-

tionally, combined with a low string similarity threshold, we achieve the

best F1-scores.

56

Results

Figure 5.24. The relative time needed to run the Word2Vec-based algorithm as a function
of the random bucket projection distance threshold.

Figure 5.25. The precision of the Word2Vec-based algorithm as a function of the random
bucket projection distance threshold.

57

Results

Figure 5.26. The precision of the Word2Vec-based algorithm as a function of the random
bucket projection distance threshold categorised based on the feature vector
length.

Figure 5.27. The precision of the Word2Vec-based algorithm as a function of the random
bucket projection distance threshold categorised based on the feature vector
length.

58

Results

Figure 5.28. The F1-score of the Word2Vec-based algorithm as a function of the random
bucket projection distance threshold.

Table 5.3. The optimal range of values for the parameters of the Word2Vec-based pipeline.

Parameter Optimal range
Feature vector length [2, 7]

String similarity threshold [0.6, 0.84)

RBP distance threshold {0}

Summary

Figure 5.29 summarises the effects of the three variables on the F1-score.

As discussed earlier, the RBP distance threshold is the most influential

of the three variables. The key takeaway is setting the RBP distance to

0, keeping the string similarity threshold below 0.84 and having a feature

vector length of more than two. The author recommends using values in

the intervals seen in Table 5.3

5.3.3 Comparing embedding method

This section compares the TF-IDF-based embedding algorithm to the

Word2Vec-based embedding algorithm. One of the main problems set

out to solve is the methods’ feasibility and performance. Thus, we want to

compare the models to find differences in performance and whether one

is superior. To determine differences and superiority, we plot the results

of the two models and compare them, using all iterations and only the

iterations using the optimal interval of the parameters.

Figure 5.30 presents the violin plot of the relative time needed for each

59

Results

Figure 5.29. A scatter plot highlighting the combined effect of the variables of the
Word2Vec-based model on the F1-score. "Features" stand for feature vector
length, "SST" for string similarity threshold and "RBP" for random bucket
projection distance threshold. The feature vector length is on a logarithmic
scale.

model. Note that the relative time here is compared to the combined

shortest time of both runs. Both Figure 5.30a and Figure 5.30b show the

same result: the TF-IDF model requires less computational time.

The F1-score comparison, presented in Figure 5.31. Figure 5.31a, shows

that the median and largest part of the mass lays close to zero for the

Word2Vec-based model while the opposite is true for the TF-IDF model.

Figure 5.31b shows that our choice of the optimal values for the Word2Vec

model does not give us an unambiguous result but that the choice of a

parameter within the interval may still lead to bad F1-scores. Contrary, the

TF-IDF model performs well or exceptionally well in the chosen interval.

Figure 5.32 presents the models’ precision. Figure 5.32a shows similar

behavior displayed by the F1-score. Figure 5.32b attempts to show the

precision using the optimal parameter intervals. However, the TF-IDF-

based results are tightly grouped around one; thus, no kernel density can

be estimated. For the Word2Vec model, the contrary is true; the result

cluster around zero and one. Thus, a similar phenomenon is seen. We

conclude that the TF-IDF-based model outperforms the Word2Vec-based

model as the precision is clustered around one in the optimal range.

Figure 5.33 illustrates the recall of the model results. The Word2Vec-

based model indicates superiority in the optimal parameter interval, as

60

Results

(a) Using all data.

(b) Using the optimal parameter intervals seen in Tables 5.2 and 5.3.

Figure 5.30. The TF-IDF- and the Word2Vec-based algorithms plotted against relative
time.

61

Results

(a) Using all data.

(b) Using the optimal parameter intervals seen in Tables 5.2 and 5.3.

Figure 5.31. The TF-IDF- and the Word2Vec-based algorithms plotted against f1-score.

62

Results

(a) Using all data.

(b) Using the optimal parameter intervals seen in Tables 5.2 and 5.3.

Figure 5.32. The TF-IDF- and the Word2Vec-based algorithms plotted against precision.
Due to the value being tightly clustered respectively evenly spread out,
estimating a kernel density for the optimal parameter interval is not possible.

63

Results

seen in Figure 5.33b. Meanwhile, the models behave similarly when all the

iterations are used. Regarding the recall, we conclude that the Word2Vec-

based model outperforms its counterpart.

Figure 5.34a shows the memory usage of the final data frame using all

iterations. In the worst-case scenario, the TF-IDF-based solution uses more

memory. However, the TF-IDF-based model outperforms its counterpart in

the optimal range, seen in Figure 5.34b. The memory usage of the final

data frame can mainly be explained by poor precision, which leads to more

false positives being included in the final data frame.

Based on the above evidence, the author recommends using the TF-IDF-

based solution due to the lower time requirements and higher performance

across the spectrum of the variables, especially in the range of the optimal

parameter interval. In the following sections, we use the TF-IDF model

to evaluate the deterministic record linker’s performance and compare it

with the probabilistic record linker.

5.3.4 Optimal model results on the juridical person records

This section presents the result of the optimally tuned embedding-based

approach on data of juridical person records. We choose the parameters

based on the results of the previous section and seen in Table 5.4. The

results can be seen in Table 5.5. We can see an exceptional performance,

with an F1-score of 98.58% at approximately 10 minutes of run time.

Table 5.4. The model parameters used in the optimal embedding-based record linker for
the entites

Name Value
Model TF-IDF
Feature vector length 5 · 106
RBP distance threshold 0
String similarity threshold 0.8

Table 5.5. The deterministic record linkers performance metrics for the juridical person
record linkage using the setup in Table 5.4.

Name Value
Time 10min 4s
Precision 97.42%
Recall 99.76%
F1-score 98.58%
Memory 603MB

64

Results

(a) Using all data.

(b) Using the optimal parameter intervals seen in Tables 5.2 and 5.3.

Figure 5.33. The TF-IDF- and the Word2Vec-based algorithms plotted against recall.

65

Results

(a) Using all data.

(b) Using the optimal parameter intervals seen in Tables 5.2 and 5.3.

Figure 5.34. The TF-IDF- and the Word2Vec-based algorithms plotted against memory
usage of the final data frame.

66

Results

5.3.5 Optimal model results on the natural person records

In this section, we present the results of the embedding-based approach

on the natural person-based data. Based on the previously discussed data

dimensionality, the author hypothesises that the model will perform worse

than on the records of juridical persons. Names are weaker identifiers

for natural persons than for juridical persons since more natural persons

share names compared to juridical persons. Thus, when only including

a name attribute to match on, it is highly likely that the record linkage

algorithm will match non-matching persons due to them having the same

names.

We are using the name of the natural persons as Entity string. Depending

on the quality of the data source, the name may contain middle names.

Based on the previous results in Section 5.3, we have chosen the model

parameters seen in Table 5.6.

Table 5.6. The model parameters used in the embedding-based record linker for the
natural persons.

Name Value
Model TF-IDF
Feature vector length 5 · 106
RBP distance threshold 1
String similarity threshold 0.8

Table 5.7 presents the performance metrics. We can see that the precision,

at 35.08%, is very low compared to the entity-based data results. At 82.32%,

the recall is higher than the precision but also falls behind the juridical

person-based results. The F1-score, as the harmonic mean of the recall

and precision, reflects the previous results with a value of 49.20%.

When manually reviewing the results, the author finds that many false

positives have the same name but are not the same person. The linker

cannot differentiate between persons with the same name due to not

having any additional information about the persons, such as date of

birth or location. This conclusion is in line with the hypothesis presented

previously.

Furthermore, the poor precision may stem from alphabetically ordering

the words in the vector before comparing the strings. The ordering may

benefit the juridical person linkage, but the outcome may hurt natural

persons record linkage as first, middle and last names may be compared

wrongly. In conclusion, the method does not perform well on natural person

records.

67

Results

Table 5.7. The embedding-based record linker performance metrics for the natural persons
using the setup in Table 5.6.

Name Value
Time 19min 43s
Precision 35.08%
Recall 82.32%
F1-score 49.20%
Memory 994MB

5.4 Probabilistic record linkage results

We present the results of the probabilistic record linkage in this section.

Contrary to the deterministic record linkage, we will only explore one set

of parameters for the probabilistic linker. This is because the probabilistic

method, based on Splink, requires careful engineering of rules, settings

and parameters. Furthermore, we will only assess the method on the data

sets of natural person records. We have iteratively engineered the setup for

the results we present in this section. Appendix C presents the complete

setup used for the results.

We employ a set of global blocking rules to limit the number of evalu-

ations required in the prediction phase. We present the global blocking

rules and the number of new unique pairs generated in Appendix C.2. The

reduction ratio, as defined by Christen and Goiser [28], we achieve with

these rules is 99, 93% of the complete Cartesian join data set C. Figure 5.35

presents the generated pairs created by each rule. Note that if an earlier

rule, i.e. higher up in the figure, includes a pair, it is not included in a later,

i.e. lower, rule. Thus, the first rule contributes most of the generated pairs.

Splink calculates the prior probability of a match using a set of deter-

ministic matching rules seen in Appendix C.4. These rules estimate the

probability of two random records to match to be 6.49 · 10−7.

We estimate an initial value for the u-variables using a random sample of

109 pairs. The local blocking rules, used for estimating the m-variables and

tune u-variables, can be seen Appendix C.3. The appendix also presents

the unique pairs each local blocking rule generates.

Figure 5.35. A illustration of the effect of the global blocking rules employed. The rules
are in the same order as those in Figure 5.35. The plot is created using
Splink [39]

68

Results

Table 5.8. The probabilistic record linker performance metrics for the natural person data.
The metrics are given for pairs considered a match if they have a posterior
probability of 0.8.

Name Value
Time 2h 38min 26s
Precision 52.67%
Recall 88.38%
F1-score 66.00%
Memory 571MB

Figure 5.36 presents the tuned weight of each case statement and the

a priori probablity. Furthermore, Figure 5.37 presents the occurrence

percentage for each case statement based on the model’s estimates of pairs

being matches and non-matches. We can see that the training of the model

has been a success due to the higher comparison levels, such as exact

match, giving more substantial evidence and due to the large negative

magnitude of the prior probability. However, we can see that some of the

bars’ magnitude and direction are not as expected. This might indicate

that the model has diverged from the true distribution.

Firstly, the Soundex match of the first name has an extensive negative bar.

Due to the large magnitude, any pair that matches this case statement is

practically rendered impossible to be a highly probable match. Figure 5.37

explains the cause of the phenomena. As, according to the model, 100%

of the matching pairs have an exact match on the first name, there is no

evidence that a Soundex match leads to a match. Hence, the m-variable

takes a value of 0 and the u-variable dominates.

Secondly, the year matching of the date of birth displays similar be-

haviour to the Soundex match of the first name. The model estimates a 0%

occurrence of the year matching, as shown in Figure 5.37.

Finally, the two "All other comparisons" of first and middle names follow

the same logic. However, these are less of a problem as those comparisons

are expected to be negative. However, a well-behaving model is expected

to have smaller magnitudes.

By setting the limit for matching and non-matching pairs at a posterior

probability of 0.8, we can order the pairs into M and U. Table 5.8 presents

the performance metrics at this limit. The F1-score is low compared to

the extended run-time of the model. However, when performing a manual

review of the indicated false positives, we find many true matches that are

not part of our ground truth. Similarly, when reviewing the false negatives,

we find that they are genuinely non-matches. Thus, the model works better

than the performance metrics show.

69

Results

Figure 5.36. A illustration of the match weight, i.e. ratio, between m- and u-variables,
for each attribute and case statement. The bars extending to the right side
indicate positive evidence that the pair is a match, and vice-versa for the
bars extending to the left. The length of the bar indicates the magnitude of
the evidence. The purple bars represent a value in the range [−30,−25] and
the blue bars [−65,−60]. The plot is created using Splink [39].

While engineering the setup, rules and parameters, the author faced

challenges in obtaining the desired outcome. We want the model, i.e. the

variables, to reflect the underlying distribution of data and errors, and

we have some idea of the distribution. During multiple iterations, we

saw models that did not reflect our picture of the underlying distribution

through, e.g., comparison level match probability with the wrong sign, too

great magnitude or a combination of both. The effects and interactions of

the method are not transparent and easily understandable. If we add or

remove a rule or comparison level, we might see unexpected behaviour of

the tuned variables. As discussed, even the final model has flaws; some

case statements have m-variable values of 0. By manual review, we know

that there are matches that fall into this comparison level.

70

Results

Figure 5.37. A illustration of the occurrence percentage for each attribute and case state-
ment in, by the algorithm estimated, true matches and true non-matches.
The plot is created using Splink [39].

5.5 Comparison of deterministic and probabilistic methods

We start by comparing the results of the record linkage of the data set of

natural person records. We recall that the deterministic method achieved

an F1-score of 49.20% in approximately 20 minutes and that the complete

results are visible in Table 5.7. Similarly, the probabilistic method achieved

an F1-score of 66.00% in approximately 2.6 hours. Thus we can see that the

probabilistic method outperforms the deterministic method on all metrics

except for time. However, as we saw previously, the probabilistic method

performs better than the metrics indicated due to how we create the ground

truth.

Secondly, we review the results of the record linkage of the juridical data

set. As discussed previously, we did not perform a record linkage using

the probabilistic method for this data due to the nature of the method

and the resource requirements. Additionally, the deterministic method

has outstanding results on the data with an F1-score of 98.58%. Thus, the

deterministic record linker is well suited for linking records of juridical

persons using only the name.

There are two prominent factors to consider when deciding which model

to use for a record linkage problem. Firstly, one must consider the data. The

set of pairs C created by the Cartesian join, and the number of overlapping

attributes should be considered. We recommend using the probabilistic

record linker when the number of overlapping attributes is large. The rule-

based blocking possibilities must be assessed if C is large. If we cannot

split the data into blocks and get a high reduction ratio, the deterministic

71

Results

Table 5.9. A presentation of the advantages and disadvantages of the two models based
on the findings of this thesis

Advantagdes Disadvantages

Probablistic method

Can model advanced
underlying distribu-
tions in the data.

Requires more than
one attribute to func-
tion.

Can simultaneously
implement multiple
string similarity or
comparison algo-
rithms and train
them separately.

Interactions and
causalities can be
hard to grasp for the
user.

Provides clear vi-
sualisations and
insights.

Requires significant
overlap of records to
be tunable.

Is computationally
more demanding.

Requires significant
engineering and
knowledge of the
data to setup

Deterministic method
Uses a single at-
tribute to perform
the linkage.

Uses a single at-
tribute to perform
the linkage.

Is computationally
less demanding.

Suffers from poor
precision unless the
attribute is unique.

Requires little engi-
neering to set up.

record is expected to perform better.

Secondly, consider the available time, personnel resources and know-how

of the personnel. Suppose the combination of these three does not provide a

sufficient level of knowledgeable working hours and algorithmic run-time.

In that case, one should consider using the deterministic record linker as

it requires fewer human resources and less computational time to set up

and use.

We can conclude that both models are feasible and have their application

areas. A summary of the advantages and disadvantages can be seen in

Table 5.9. The author urges the potential user to consider the previously

mentioned factors and consider and weigh them based on the wanted

outcome. Table 5.10 visualises the recommendations in a simple table.

72

Results

Table 5.10. The recommendation of the method to use based on the findings in the thesis.
Attributes refer to the number of attributes usable for linkage. Resources refer
to the human and computational resources available to solve the problem.

hhhhhhhhhhhhhhhhhAttributes
Resources Low availability High availability

Large amount Requires consideration Probabilistic
Low amount Deterministic Probabilistic

73

6. Conclusions

From a financial crime prevention perspective, having as much information

as possible on the customers is essential. Record linkage is central because

it allows the bank to combine internal and external data sources without a

shared unique identifier. The record linkage must be feasible in the context

of the restrictive and secure environment that the bank IT infrastructure

offers. These requirements set certain restraints on the possibilities of

methods, as they have to be offered by and usable in the bank’s existing

environment.

This thesis studied the usage of record linkage in the previously men-

tioned environment. We presented the theoretical frameworks regarding

deterministic and probabilistic record linkage and related key concepts,

such as embedding, blocking and string similarity algorithms. Further-

more, we studied and presented the impact of different factors on the

outcome of the model and the outcome of the chosen optimal models on the

data.

From previous works [11] and the results, we conclude that the two

methods excel at linking two different types of records. The deterministic

record linker can use minimal data, a single attribute, to perform linkage.

Additionally, the deterministic linker requires minimal setting tweaking

and engineering for the user to set up. However, when a single attribute

is not enough to link the records uniquely, the linker suffers from low

precision.

We found that the TF-IDF-based pipeline outperforms the Word2Vec-

based pipeline. This result is based on the consistency, the lower time

requirement, and the superior F1-score of the result of the TF-IDF-based

solutions. We found that the most impactful parameter for the TF-IDF-

based pipeline was the feature vector length, and for the Word2Vec-based

pipeline, the random bucket projection distance threshold. Furthermore,

74

Conclusions

the thesis recommended optimal interval ranges for each model.

We achieved an F1-score of 98.58% on the linkage task of juridical person

records in a wall-clock time of 10min 4s. The pipeline used the TF-IDF-

based string embedding model, with a feature vector length of 5 · 106,

Jaro-Winkler similarity threshold of 0.8, and random bucket projection

distance threshold of 0. The same method achieved an F1-score of 49.20%

on the linkage task of natural person records in a time of 19min 43s using

TF-IDF-based string embedding model, with feature vector length of 5 · 106,

Jaro-Winkler similarity threshold of 0.8, and random bucket projection

distance threshold of 1.

We constructed and presented a setup for the probabilistic record linker,

including settings, rules, and case statements. We found that using the

constructed setup, we achieved an F1-score of 66.00% in approximately 2.6

hours. Furthermore, we concluded that the performance metrics based on

the ground truth may provide pessimistic results due to how the ground

truth is created.

Finally, we compared the deterministic and probabilistic methods to each

other. We found that the probabilistic method only functions in a setting

where more than one attribute is usable for the record linker. Furthermore,

the performance increases and the linker becomes easier to use when more

attributes are available. Being able to define multiple levels of matching,

ranging from exact to partial matches, enables the user to create a rich

linkage environment. However, the probabilistic method requires well

engineered settings and rules to function properly an provide desired

results.

Inversely, the deterministic method excels at linking records that have

a unique attribute used for linking. For example, a juridical person’s

name is a suitable attribute for linkage with the deterministic method.

Additionally, minimal engineering is required from the user to use the

deterministic record linker.

Based on the findings, the thesis recommended using the methods for

scenarios described as suitable above. Additionally, we recommended

considering the human and computational resources when deciding which

method to use.

75

Conclusions

6.1 Future research

This section recommends areas of future research. First, we will discuss

alternative ways to use the two models formulated in this thesis. Secondly,

we propose changes to the architecture of the presented models. Finally,

we address models and methods beyond the scope of this thesis.

We found that the deterministic record linker produces poor precision

when working with the data of natural person records. The deterministic

model could be used as a pre-evaluated global blocking rule for the proba-

bilistic approach. This could be done by running the deterministic record

linker with such parameter values that it maximises recall at the expense

of precision. By creating an additional attribute for the pairs, we could

improve the recall of the global blocking rules of the probabilistic method.

To improve the performance of the probabilistic record linker, we propose

to investigate the limit of the probabilistic record linker used to determine

which pairs are matches and non-matches. We propose analysing the

recall-precision curve to determine an optimal limit.

Studying how to implement and access comparison and string simi-

larity algorithms not available in the Spark SQL engine could benefit

linkage problems related to the probabilistic method. For example, being

able to use Jaro similarity [33], Jaro-Winkler similarity [17], and Dam-

erau–Levenshtein distance [43] would enable the users of the method to

potentially create more flexible, suitable, and accurate linkage models.

Similarly, by studying the effects of using different string similarity com-

parison algorithms for the deterministic record linker, we could learn how

different algorithms perform on different problems.

The Word2Vec-based model we used uses n-gram words. However, as

our documents, i.e. names, are short compared to general NLP tasks,

there is potential to benefit from n-gram letter embedding compared to

n-gram word embeddings. The Python package fastText [44], based on

the research by Bojanowski et al. [45], implements sub-word information.

Initial research should be directed on whether or not this is a feasible

solution in the environment proposed in this thesis.

TStudies show that Bayesian methods are viable options for record

linkage problems [46, 47, 48]. As discussed earlier, the methods must

be feasible and scalable to link data sets of large magnitudes. McVeigh,

Spahn, and Murray [48] proposes a scalable Bayesian method which is an

algorithm of interest.

76

Conclusions

In our work, we have compared TF-IDF, a numerical statistic, to Word2Vec,

a deep-learning model. Based on the paper by Barlaug and Gulla [49],

we can see that other models for string-embedding exist, and a neural

network can replace steps of the record linkage process. Future research

could be directed at finding neural networks that provide improved results

on string embedding. The paper also proposes potential in an end-to-end

approach using a deep neural network, which had not been seen at the

time of the paper’s writing. However, if future research finds a suitable

method, it could provide an excellent solution to record linkage problems

in the restrictive bank environment.

However, most neural network methods are supervised and require large

amounts of labelled data. An unsupervised method, similar to Splink, is

found in ZeroER [50]. The paper shows that the model achieves comparable

performance to supervised approaches using novel techniques, such as

a generative model that learns the data distribution of the matches and

non-matches.

77

Bibliography

[1] European Parliament and Council. Directive (EU) 2015/849 of the

European Parliament and of the Council.

https://eur- lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:

32015L0849&from=EN. May 2015.

[2] European Parliament and Council. Directive (EU) 2018/843 of the

European Parliament and of the Council.

https://eur- lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:

32015L0849&from=EN. May 2018.

[3] Douglas P Jutte, Leslie L Roos, and Marni D Brownell. “Administra-

tive record linkage as a tool for public health research”. In: Annual

Review of Public Health 32 (2011), pp. 91–108.

[4] Walter A Rocca et al. “History of the Rochester Epidemiology Project:

half a century of medical records linkage in a US population”. In:

Mayo Clinic proceedings. Vol. 87. 12. Elsevier. 2012, pp. 1202–1213.

[5] Eugene Rogot, Paul Sorlie, and Norman J Johnson. “Probabilistic

methods in matching census samples to the National Death Index”.

In: Journal of Chronic Diseases 39.9 (1986), pp. 719–734.

[6] Steven Ruggles, Catherine A Fitch, and Evan Roberts. “Historical

census record linkage”. In: Annual Review of Sociology 44 (2018),

pp. 19–37.

[7] Ted Enamorado, Benjamin Fifield, and Kosuke Imai. “Using a proba-

bilistic model to assist merging of large-scale administrative records”.

In: American Political Science Review 113.2 (2019), pp. 353–371.

[8] Halbert L Dunn. “Record linkage”. In: American Journal of Public

Health and the Nations Health 36.12 (1946), pp. 1412–1416.

78

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L0849&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L0849&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L0849&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L0849&from=EN

Bibliography

[9] Ivan P Fellegi and Alan B Sunter. “A theory for record linkage”.

In: Journal of the American Statistical Association 64.328 (1969),

pp. 1183–1210.

[10] Miranda Tromp et al. “Results from simulated data sets: probabilistic

record linkage outperforms deterministic record linkage”. In: Journal

of Clinical Epidemiology 64.5 (2011), pp. 565–572.

[11] Stacie B Dusetzina et al. “An overview of record linkage methods”.

In: Linking Data for Health Services Research: A Framework and

Instructional Guide [Internet] (2014).

[12] Dun & Bradstreet. URL: https://www.dnb.com/.

[13] Dow Jones Watch List Feeds. URL: https://developer.dowjones.com/

site/docs/risk_and_compliance_feeds/watchlist_ame_soc/dow_jones_

watchlist/index.gsp.

[14] Atul Kahate. Introduction to database management systems. Pearson

Education India, 2004.

[15] Thomas M Connolly and Carolyn E Begg. Database Solutions: A

step-by-step guide to building databases. Pearson Education, 2004.

[16] William E. Winkler. “Data Linkage”. In: Encyclopedia of Cryptogra-

phy and Security. Ed. by Henk C. A. van Tilborg and Sushil Jajodia.

Boston, MA: Springer US, 2011, pp. 301–303. ISBN: 978-1-4419-5906-

5. DOI: 10.1007/978-1-4419-5906-5_750. URL: https://doi.org/10.1007/

978-1-4419-5906-5_750.

[17] William E Winkler. “String comparator metrics and enhanced deci-

sion rules in the Fellegi-Sunter model of record linkage.” In: (1990).

[18] Vivienne J Zhu et al. “An empiric modification to the probabilistic

record linkage algorithm using frequency-based weight scaling”. In:

Journal of the American Medical Informatics Association 16.5 (2009),

pp. 738–745.

[19] William E Winkler. Using the EM algorithm for weight computation

in the Fellegi-Sunter model of record linkage. US Bureau of the

Census Washington, DC, 2000.

[20] CF Jeff Wu. “On the convergence properties of the EM algorithm”.

In: The Annals of Statistics (1983), pp. 95–103.

[21] Diksha Khurana et al. “Natural language processing: State of the

art, current trends and challenges”. In: Multimedia Tools and Appli-

cations 82.3 (2023), pp. 3713–3744.

79

https://www.dnb.com/
https://developer.dowjones.com/site/docs/risk_and_compliance_feeds/watchlist_ame_soc/dow_jones_watchlist/index.gsp
https://developer.dowjones.com/site/docs/risk_and_compliance_feeds/watchlist_ame_soc/dow_jones_watchlist/index.gsp
https://developer.dowjones.com/site/docs/risk_and_compliance_feeds/watchlist_ame_soc/dow_jones_watchlist/index.gsp
https://doi.org/10.1007/978-1-4419-5906-5_750
https://doi.org/10.1007/978-1-4419-5906-5_750
https://doi.org/10.1007/978-1-4419-5906-5_750

Bibliography

[22] Hans Peter Luhn. “A statistical approach to mechanized encoding

and searching of literary information”. In: IBM Journal of Research

and Development 1.4 (1957), pp. 309–317.

[23] Karen Sparck Jones. “A statistical interpretation of term specificity

and its application in retrieval”. In: Journal of Documentation 28.1

(1972), pp. 11–21.

[24] Kilian Weinberger et al. “Feature hashing for large scale multitask

learning”. In: Proceedings of the 26th Annual International Confer-

ence on Machine Learning. 2009, pp. 1113–1120.

[25] Tomas Mikolov et al. “Efficient estimation of word representations

in vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[26] Kenneth Ward Church. “Word2Vec”. In: Natural Language Engineer-

ing 23.1 (2017), pp. 155–162.

[27] Rebecca C Steorts et al. “A comparison of blocking methods for record

linkage”. In: Privacy in Statistical Databases: UNESCO Chair in

Data Privacy, International Conference, PSD 2014, Ibiza, Spain,

September 17-19, 2014. Proceedings. Springer. 2014, pp. 253–268.

[28] Peter Christen and Karl Goiser. “Quality and complexity measures

for data linkage and deduplication”. In: Quality Measures in Data

Mining (2007), pp. 127–151.

[29] Jingdong Wang et al. “Hashing for similarity search: A survey”. In:

arXiv preprint arXiv:1408.2927 (2014).

[30] Moses S Charikar. “Similarity estimation techniques from round-

ing algorithms”. In: Proceedings of theTthiry-Fourth Annual ACM

Symposium on Theory of Computing. 2002, pp. 380–388.

[31] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum

likelihood from incomplete data via the EM algorithm”. In: Journal

of the Royal Statistical Society: Series B (methodological) 39.1 (1977),

pp. 1–22.

[32] Douglas A Reynolds et al. “Gaussian mixture models.” In: Encyclope-

dia of Biometrics 741.659-663 (2009).

[33] Matthew A Jaro. “Advances in record-linkage methodology as applied

to matching the 1985 census of Tampa, Florida”. In: Journal of the

American Statistical Association 84.406 (1989), pp. 414–420.

80

Bibliography

[34] Vladimir I Levenshtein et al. “Binary codes capable of correcting

deletions, insertions, and reversals”. In: Soviet Physics Doklady.

Vol. 10. 8. Soviet Union. 1966, pp. 707–710.

[35] Arturs Backurs and Piotr Indyk. “Edit distance cannot be computed

in strongly subquadratic time (unless SETH is false)”. In: Proceed-

ings of the Forty-Seventh Annual ACM Symposium on Theory of

Computing. 2015, pp. 51–58.

[36] Aug. 2022. URL: https://www.archives.gov/research/census/soundex.

[37] The Apache Software Foundation. Spark python api docs. May 2021.

URL: https://spark.apache.org/docs/2.4.0/api/python/index.html.

[38] Max Bachmann. Maxbachmann/Jarowinkler: Python library for fast

approximate string matching using Jaro and Jaro-Winkler similarity.

Sept. 2022. URL: https://github.com/maxbachmann/JaroWinkler.

[39] Robin Linacre et al. “Splink: Free software for probabilistic record

linkage at scale.” In: International Journal of Population Data Sci-

ence 7.3 (Aug. 2022). DOI: 10 . 23889 / ijpds . v7i3 . 1794. URL: https :

//ijpds.org/article/view/1794.

[40] J Clausnitzer. Finland: Most common surnames 2023. Mar. 2023.

URL: https : / / www . statista . com / statistics / 1017219 / most - common -

surnames-finland/#:~:text=As%20of%20February%202023%2C%20Korhonen,

Nieminen%2C%20M%C3%A4kel%C3%A4%2C%20and%20H%C3%A4m%C3%A4l%C3%A4inen..

[41] Jaime Sevilla et al. “Compute trends across three eras of machine

learning”. In: 2022 International Joint Conference on Neural Net-

works (IJCNN). IEEE. 2022, pp. 1–8.

[42] URL: https://docs.oracle.com/javase/8/docs/technotes/guides/jar/

jarGuide.html.

[43] Fred J Damerau. “A technique for computer detection and correc-

tion of spelling errors”. In: Communications of the ACM 7.3 (1964),

pp. 171–176.

[44] Armand Joulin et al. “FastText.zip: Compressing text classification

models”. In: arXiv preprint arXiv:1612.03651 (2016).

[45] Piotr Bojanowski et al. “Enriching Word Vectors with Subword Infor-

mation”. In: arXiv preprint arXiv:1607.04606 (2016).

[46] Andrea Tancredi and Brunero Liseo. “A hierarchical Bayesian ap-

proach to record linkage and population size problems”. In: (2011).

81

https://www.archives.gov/research/census/soundex
https://spark.apache.org/docs/2.4.0/api/python/index.html
https://github.com/maxbachmann/JaroWinkler
https://doi.org/10.23889/ijpds.v7i3.1794
https://ijpds.org/article/view/1794
https://ijpds.org/article/view/1794
https://www.statista.com/statistics/1017219/most-common-surnames-finland/#:~:text=As%20of%20February%202023%2C%20Korhonen,Nieminen%2C%20M%C3%A4kel%C3%A4%2C%20and%20H%C3%A4m%C3%A4l%C3%A4inen.
https://www.statista.com/statistics/1017219/most-common-surnames-finland/#:~:text=As%20of%20February%202023%2C%20Korhonen,Nieminen%2C%20M%C3%A4kel%C3%A4%2C%20and%20H%C3%A4m%C3%A4l%C3%A4inen.
https://www.statista.com/statistics/1017219/most-common-surnames-finland/#:~:text=As%20of%20February%202023%2C%20Korhonen,Nieminen%2C%20M%C3%A4kel%C3%A4%2C%20and%20H%C3%A4m%C3%A4l%C3%A4inen.
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html

Bibliography

[47] Marco Fortini et al. “On Bayesian record linkage”. In: Research in

Official Statistics 4.1 (2001), pp. 185–198.

[48] Brendan S McVeigh, Bradley T Spahn, and Jared S Murray. “Scal-

ing Bayesian probabilistic record linkage with post-hoc blocking:

an application to the california great registers”. In: arXiv preprint

arXiv:1905.05337 (2019).

[49] Nils Barlaug and Jon Atle Gulla. “Neural networks for entity match-

ing: A survey”. In: ACM Transactions on Knowledge Discovery from

Data (TKDD) 15.3 (2021), pp. 1–37.

[50] Renzhi Wu et al. “Zeroer: Entity resolution using zero labeled ex-

amples”. In: Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data. 2020, pp. 1149–1164.

82

A. Ground truth settings

A.1 Stop words

A regular expression has been used to remove the any stop words from the

ground truth strings. The regular expression is the following:

(?i)(\s|\b)(O\.?Y\.?J?(\:.\s)?|R\.?Y(?!\.)|R\.?Y\.?|A\.?B\.?P?(\:.\s)?

|K\.?Y\.?|A\.?\/?S\.?|T\:?MI|LTD\.?|PLC|JA|L\.?L\.?C\.?|I\.?N\.?C\.?|

S\.?\s?R\.?|P&C|&|\,)(\s|\b), which translates to the following list of sym-

bols, words, and alternative spellings of them:

1. OYJ

2. RY

3. ABP

4. KY

5. AS

6. T:MI

7. LTD

8. PLC

9. JA

10. LLC

11. INC

12. SR

13. P&C

14. &

15. ,

These wore empirically found to be present in the data and removed.

83

B. Additional parameter plots for the
embedding-based pipelines

This appendix presents all plots related to the deterministic record linker

parameter tuning. The plots are divided into sections by string-embedding

model. Furthermore, subsection represent the primary explanatory vari-

able and is further divided into sections by the secondary explanatory

variable used to categories the points.

84

Additional parameter plots for the embedding-based pipelines

B.1 TF-IDF

B.1.1 Feature vector length

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.1. The feature vector’s length of the TF-IDF-based algorithm as a function of the
performance metrics.

85

Additional parameter plots for the embedding-based pipelines

String similarity threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.2. The feature vector’s length of the TF-IDF-based algorithm as a function of the
performance metrics divided into intervals by the string similarity threshold.

86

Additional parameter plots for the embedding-based pipelines

Random bucket projection distance threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.3. The feature vector’s length of the TF-IDF-based algorithm as a function of the
performance metrics divided into intervals by the random bucket projection
distance threshold.

87

Additional parameter plots for the embedding-based pipelines

B.1.2 String similarity threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.4. The string similarity threshold of the TF-IDF-based algorithm as a function
of the performance metrics.

88

Additional parameter plots for the embedding-based pipelines

Feature vector length

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.5. The string similarity threshold of the TF-IDF-based algorithm as a function of
the performance metrics divided into intervals by the feature vector’s length.

89

Additional parameter plots for the embedding-based pipelines

Random bucket projection distance threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.6. The string similarity threshold of the TF-IDF-based algorithm as a function
of the performance metrics divided into intervals by the random bucket pro-
jection distance threshold.

90

Additional parameter plots for the embedding-based pipelines

B.1.3 Random bucket projection distance threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.7. The random bucket projection distance threshold of the TF-IDF-based algo-
rithm as a function of the performance metrics.

91

Additional parameter plots for the embedding-based pipelines

Feature vector length

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.8. The random bucket projection distance threshold of the TF-IDF-based algo-
rithm as a function of the performance metrics divided into intervals by the
feature vector’s length.

92

Additional parameter plots for the embedding-based pipelines

String similarity threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.9. The random bucket projection distance threshold of the TF-IDF-based algo-
rithm as a function of the performance metrics divided into intervals by the
string similarity threshold.

93

Additional parameter plots for the embedding-based pipelines

B.2 Word2Vec

B.2.1 Feature vector length

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.10. The feature vector’s length of the Word2Vec-based algorithm as a function of
the performance metrics.

94

Additional parameter plots for the embedding-based pipelines

String similarity threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.11. The feature vector’s length of the Word2Vec-based algorithm as a function
of the performance metrics divided into intervals by the string similarity
threshold.

95

Additional parameter plots for the embedding-based pipelines

Random bucket projection distance threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.12. The feature vector’s length of the Word2Vec-based algorithm as a function
of the performance metrics divided into intervals by the random bucket
projection distance threshold.

96

Additional parameter plots for the embedding-based pipelines

B.2.2 String similarity threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.13. The string similarity threshold of the Word2Vec-based algorithm as a func-
tion of the performance metrics.

97

Additional parameter plots for the embedding-based pipelines

Feature vector length

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.14. The string similarity threshold of the Word2Vec-based algorithm as a func-
tion of the performance metrics divided into intervals by the feature vector’s
length.

98

Additional parameter plots for the embedding-based pipelines

Random bucket projection distance threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.15. The string similarity threshold of the Word2Vec-based algorithm as a func-
tion of the performance metrics divided into intervals by the random bucket
projection distance threshold.

99

Additional parameter plots for the embedding-based pipelines

B.2.3 Random bucket projection distance threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.16. The random bucket projection distance threshold of the Word2Vec-based
algorithm as a function of the performance metrics.

100

Additional parameter plots for the embedding-based pipelines

Feature vector length

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.17. The random bucket projection distance threshold of the Word2Vec-based
algorithm as a function of the performance metrics divided into intervals by
the feature vector’s length.

101

Additional parameter plots for the embedding-based pipelines

String similarity threshold

(a) The relative time needed to run. (b) The F1-score.

(c) The precision. (d) The recall.

(e) The memory usage [MB].

Figure 2.18. The random bucket projection distance threshold of the Word2Vec-based
algorithm as a function of the performance metrics divided into intervals by
the string similarity threshold.

102

C. Splink settings

This appendix presents the settings used in relation to the Splink-package.

The version of the Splink-pakage the thesis uses is version 3.9.2. When

referenced to, the "l" and "r" SQL tables stand for the tables representing

the DJ respectively the DnB data sets.

C.1 Case statements

C.1.1 First name

The first name is compared on using the following statements:

1. Exact match

2. Exact soundex match

3. All other comparisons

C.1.2 Last name

The last name is compared on using the following statements:

1. Exact match

2. Exact soundex match

3. All other comparisons

103

Splink settings

C.1.3 Middle names

The middle names is compared on using the following statements:

1. Exact match

2. Levensthein distance of less than or equal to one

3. Levensthein distance of less than or equal to two

4. All other comparisons

Note that in the case of multiple middle names they are not compared

separately.

C.1.4 Date of birth

The date of birth is compared on using the following statements:

1. Exact match

2. Year and month matches, i.e., the 7 first characters matches and either

date of birth ends in "01"

3. Year matches, i.e., the 4 first characters matches and either date of birth

ends in "01-01"

4. All other comparisons

Note that the the date of birth is written in the form "YYYY-MM-DD".

C.1.5 Country

The country is compared on using the following statements:

1. Exact match

2. All other comparisons

104

Splink settings

C.2 Global blocking rules

1. (l.firstname_soundex = r.firstname_soundex

OR l.firstname LIKE CONCAT(’%’, r.middlenames, ’%’)

OR r.firstname LIKE CONCAT(’%’, l.middlenames, ’%’))

AND left(l.lastname, 1) = left(r.lastname, 1)

generates 288 875 665 new unique pairs

2. l.lastname_soundex = r.lastname_soundex

generates 3 767 685 new unique pairs

3. left(l.date_of_birth,4) = left(r.date_of_birth,4)

AND left(l.firstname,1) = left(r.firstname,1)

AND left(l.lastname,1) = left(r.lastname,1)

AND l.country = r.country

generates 108 362 new unique pairs

C.3 Local blocking rules

1. l.firstname_soundex = r.firstname_soundex

AND l.lastname_soundex = r.lastname_soundex

generates 133 934 pairs

2. l.date_of_birth = r.date_of_birth

OR (left(l.date_of_birth,7) = left(r.date_of_birth,7) AND (right(l.date_of_birth,2) = ’01’ or right(r.date_of_birth,2) = ’01’))

OR (left(l.date_of_birth,4) = left(r.date_of_birth,4) and (right(r.date_of_birth,5) = ’01-01’ or right(l.date_of_birth,5) = ’01-01’))

generates 2 663 169 pairs

3. ’left(l.date_of_birth,4) = left(r.date_of_birth,4) AND l.country = r.country’

generates 13 953 644 pairs

105

Splink settings

4. l.country = r.country AND l.firstname_soundex = r.firstname_soundex

generates 52 331 322 pairs

5. l.country = r.country AND l.middlenames = r.middlenames

generates 15 085 053 pairs

6. ’l.country = r.country AND l.lastname_soundex = r.lastname_soundex’

generates 9 760 947 pairs

7. ’l.middlenames = r.middlenames AND l.lastname_soundex = r.lastname_soundex’

generates 44 935 pairs

C.4 Deterministic rules for priori probability

l.firstname_soundex = r.firstname_soundex

AND l.lastname_soundex = r.lastname_soundex

AND left(l.date_of_birth,4) = left(r.date_of_birth,4)

AND l.country = r.country

106

	Abstract
	Abstrakt
	Preface
	Contents
	Introduction
	Data
	Dan & Bradstreet data
	Dow Jones watch list data
	Common attributes
	Juridical person-based data
	Natural person-based data

	Methods
	Record linkage
	Probabilistic record linkage
	Deterministic record linkage
	Term frequency–inverse document frequency
	Word2Vec

	Blocking
	Locality-sensitive hashing

	Expectation maximization
	String comparison algorithms
	Jaro similarity
	Levensthein distance

	Phonetic encoding
	Soundex

	Performance metrics
	Precision
	Recall
	F1-score

	Implementation
	Setup
	Deterministic record linkage implementation
	Data preprocessing
	Embedding the strings
	Blocking through random bucket projection
	String similarity comparison

	Probabilistic record linkage implementation
	Case statements
	Blocking
	Term-frequency adjustments

	Ground truth

	Results
	Data dimensionality
	Deterministic record linkage
	Probabilistic record linkage

	Environmental challenges
	Deterministic record linkage results
	TF-IDF-based pipeline
	Word2Vec based pipeline
	Comparing embedding method
	Optimal model results on the juridical person records
	Optimal model results on the natural person records

	Probabilistic record linkage results
	Comparison of deterministic and probabilistic methods

	Conclusions
	Future research

	Ground truth settings
	Stop words

	Additional parameter plots for the embedding-based pipelines
	TF-IDF
	Feature vector length
	String similarity threshold
	Random bucket projection distance threshold

	Word2Vec
	Feature vector length
	String similarity threshold
	Random bucket projection distance threshold

	Splink settings
	Case statements
	First name
	Last name
	Middle names
	Date of birth
	Country

	Global blocking rules
	Local blocking rules
	Deterministic rules for priori probability

