
Master’s programme in Mathematics and Operations Research

Techno-Economic Analysis of Compute
Express Link in Radio Networks

Juho Saranpää

Master’s Thesis
2025

© 2025

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Author Juho Saranpää
Title Techno-Economic Analysis of Compute Express Link in Radio Networks
Degree programme Mathematics and Operations Research
Major Systems and Operations Research
Supervisor Harri Hakula
Advisor Jari Karppinen
Collaborative partner Nokia Solutions and Networks Oy
Date 14 March 2025 Number of pages 63 Language English

Abstract
This thesis examines the transformative role of Compute Express Link (CXL) in
addressing critical challenges in modern computing, such as resource utilization, scal-
ability, and performance optimization. With a focus on Nokia’s Cloud-RAN product,
the research highlights how CXL’s memory pooling, hardware cache coherency, and
high-speed interconnect capabilities enable efficient resource allocation, lower CPU
overhead, and reduced latency. By decoupling memory from compute nodes and
supporting coherent, multi-host shared memory, CXL provides significant advantages
over traditional paradigms like PCIe and kernel-mediated Linux networking.

Through the development of comprehensive cost and performance models, the
thesis lays a foundation for evaluating the economic and technical impact of CXL
adoption. These models assess key metrics, including memory bandwidth utilization,
CPU efficiency, and system throughput, while integrating dimensions such as power
consumption and hardware provisioning. While specific simulations highlight the
potential of CXL to enhance throughput and optimize resource utilization, these
models are designed as a framework for future studies. When real-world data becomes
available, the models can be applied to quantify performance and cost implications at a
high level, offering a versatile tool for analyzing CXL and other emerging technologies.

The research further explores CXL’s compatibility with multi-tenancy principles,
enabling flexible and scalable resource sharing in cloud environments. By reducing
stranded resources and overprovisioning, CXL supports cost-effective, logically
isolated multi-tenant architectures.

This work contributes to the field by not only demonstrating CXL’s potential
benefits but also providing adaptable models for evaluating its impact. These models
ensure that future studies can effectively assess CXL’s performance and cost efficiency,
guiding the design and optimization of next-generation computing architectures as
real-world deployments and data mature.

Keywords Compute Express Link, Memory Pooling, Linux Networking, Cost
Modeling , High-speed Interconnect, Multi-tenancy, Cloud Computing

Tekijä Juho Saranpää
Työn nimi Compute Express Link-teknologian teknillistaloudellinen analyysi

radioverkoissa
Koulutusohjelma Mathematics and Operations Research
Pääaine Systems and Operations Research
Työn valvoja Harri Hakula
Työn ohjaaja Jari Karppinen
Yhteistyötaho Nokia Solutions and Networks Oy
Päivämäärä 14.3.2025 Sivumäärä 63 Kieli englanti

Tiivistelmä
Tämä diplomityö tutkii Compute Express Linkin (CXL) roolia modernin laskennan
keskeisten haasteiden, kuten resurssien hyödyntämisen, skaalautuvuuden ja suoritus-
kyvyn optimoinnin, ratkaisemisessa. Tutkimuksessa keskitytään erityisesti Nokian
Cloud-RAN-tuotteeseen ja tarkastellaan, kuinka CXL:n muistin jakaminen, välimuis-
tin koherenssi ja nopea liitäntä mahdollistavat tehokkaan resurssien kohdentamisen,
pienemmän suoritinylikuorman ja alhaisemman viiveen. Erottamalla muistin lasken-
tasolmuista ja tukemalla koherenttia, usean isännän jakamaa muistia CXL tarjoaa
merkittäviä etuja perinteisiin lähestymistapoihin verrattuna.

Työssä kehitetään kattavia kustannus- ja tehokkuusmalleja, jotka luovat poh-
jan CXL:n käyttöönoton taloudellisten ja teknisten vaikutusten arvioinnille. Näissä
malleissa tarkastellaan keskeisiä mittareita, kuten muistikaistan käyttöä, suorittimen
tehokkuutta ja järjestelmän suorituskykyä, ja niihin sisällytetään myös energian-
kulutuksen näkökulma. Vaikka simulaatiot osoittavat CXL:n potentiaalin parantaa
suorityskykyä ja optimoida resurssien käyttöä, mallit on suunniteltu alustaksi tuleville
tutkimuksille. Kun oikeata dataa on saatavilla, malleja voidaan hyödyntää suoritusky-
vyn ja kustannusvaikutusten arviointiin laajalla tasolla, tarjoten monipuolisen työkalun
CXL:n ja muiden kehittyvien teknologioiden analysointiin.

Tutkimus tarkastelee myös CXL:n yhteensopivuutta monikäyttäjäperiaatteiden
kanssa,mikä mahdollistaa joustavan ja skaalautuvan resurssien jaon pilviympäristöissä.
Vähentämällä käyttämättömiä resursseja ja ylimitoitusta CXL tukee kustannustehok-
kaita, loogisesti eristettyjä monikäyttäjäarkkitehtuureja.

Tämä työ tukee tutkimusta paitsi osoittamalla CXL:n mahdolliset hyödyt myös tar-
joamalla mukautettavia malleja sen vaikutusten arviointiin. Nämä mallit varmistavat,
että tulevat tutkimukset voivat tehokkaasti arvioida CXL:n suorituskykyä ja kustan-
nustehokkuutta, ohjaten seuraavan sukupolven laskenta-arkkitehtuurien suunnittelua
ja optimointia.

Avainsanat Compute Express Link, Kustannusarviointi, Pilvilaskenta, Radioverkot,
Verkkoarkkitehtuuri, Tehokkuusmallit

Preface
First, I express my deepest gratitude to my family and friends for their great support
throughout this thesis research. Your belief in me has been a source of motivation and
strength.

I alsortfelt thanks to my supervisor, Dr. Harri Hakula, for his guidance, insightful
feedback, and patience during the development of this thesis. His expertise and
mentorship have been important in shaping this work. I am equally grateful to my
Nokia advisor, Jari Karppinen, whose practical insights and professional advice have
been crucial in connecting theoretical concepts to real-world applications.

The process of creating this thesis has been a great learning experience, broadening
my understanding of fields beyond my own background in mathematics. I have
explored aspects of computer science, electrical engineering, and telecommunications
engineering, gaining an understanding of the interdisciplinary nature of modern
technological advancements.

Completing this thesis has been a rewarding challenge, and I am grateful to
everyone who has supported me along the way. Thank you for being part of this
milestone in my academic journey.

Helsinki, 27 February 2025

Juho Saranpää

5

Contents
Abstract 3

Abstract (in Finnish) 4

Preface 5

Contents 6

1 Introduction 9
1.1 Motivation to this thesis . 9
1.2 Main results and findings . 9
1.3 Structure of the thesis . 10

2 Compute Express Link (CXL) 11
2.1 Motivation for CXL . 11
2.2 Generations . 13

2.2.1 CXL 1.0/1.1 . 14
2.2.2 CXL 2.0 . 14
2.2.3 CXL 3.0 . 15
2.2.4 CXL 3.1 . 16

2.3 Protocol types . 16
2.3.1 CXL.io . 16
2.3.2 CXL.cache . 17
2.3.3 CXL.memory . 18

2.4 Device types . 18
2.4.1 Type 1 . 18
2.4.2 Type 2 . 19
2.4.3 Type 3 . 20

3 Literature Review 22
3.1 Performance Studies - Microsoft Pond 22
3.2 Performance Studies - Intel . 24
3.3 Cost models . 26

3.3.1 Power Management in CXL 28
3.3.2 Power Consumption in Cloud RAN 28
3.3.3 Cost Study - Google . 29
3.3.4 Cost studies - Yale & ByteDance 31

4 Message-based communication in Nokia Cloud-RAN 34
4.1 Introduction . 34
4.2 Problem description: From messaging to data sharing 34
4.3 Messaging in communication networking 38

4.3.1 Microservices and Messaging 38
4.3.2 Container Network Interface 39

6

4.3.3 Kubernetes CNI . 40
4.3.4 Linux Network messaging 40
4.3.5 Kernel by-pass and Dataplane Development Kit 43

5 Techno-Economic Analysis 45
5.1 Total Cost Model . 45
5.2 Performance models . 47

5.2.1 Round-Trip Time (RTT) modeling 47
5.2.2 Throughput Model . 52

5.3 Use Cases . 54
5.3.1 Memory Pooling . 54
5.3.2 Multi-Tenancy . 57

6 Conclusions 59

7 Contributions and Future Directions 60

7

Abbreviations
ASIC Application-Specific Integrated Circuit
CAPEX Capital Expenditures
CNI Container Network Interface
CPU Central Processing Unit
CXL Compute Express Link
DDR Double Data Rate (Memory)
DIMM Dual Inline Memory Module
DLLP Data Link Layer Packets
DPDK Data Plane Development Kit
GP-GPUs General-Purpose Graphics Processing Units
GPUs Graphics Processing Units
HBM High-Bandwidth Memory
HDM Host-Managed Device Memory
HTTP Hypertext Transfer Protocol
IPC Inter-Process Communication
MA Microservices Architecture
MESI Modified, Exclusive, Shared, Invalid (Cache Coherence Protocol)
NIC Network Interface Card
NUMA Non-Uniform Memory Access
OPEX Operational Expenditures
PBR Port-Based Routing
PCIe Peripheral Component Interconnect Express
PDM Private Device Memory
QoS Quality of Service
RDMA Remote Direct Memory Access
RPC Remote Procedure Call
TCO Total Cost of Ownership
VM Virtual Machine
zNUMA Zero-Core Virtual NUMA

8

1 Introduction
The rapid growth of cloud computing and high-performance computing has created an
urgent need for more efficient resource utilization and scalable infrastructure. Compute
Express Link (CXL) is a new interconnect technology that responses to this need of the
new progress in data centers. CXL enables high-speed, low-latency communication
between CPUs, memory, and accelerators. Also, CXL offers solutions such as memory
pooling, dynamic resource allocation, and enhanced performance scalability.

This thesis explores the impact of CXL on modern computing environments,
focusing on its ability to improve resource sharing and system efficiency. The study
develops a framework for evaluating both the direct and indirect effects of CXL,
including performance modeling and a total cost model. This research explores key use
cases like memory pooling and multi-tenancy to show how CXL improves resource
use, lowers hardware costs, and boosts scalability. It highlights how CXL solves major
cloud and distributed computing challenges, making infrastructure more efficient and
flexible.

The findings presented in this thesis aim to deepen the understanding of CXL’s
capabilities and establish its potential for next-generation computing systems. Through
analytical models and use case evaluations, this work provides valuable insights
into how CXL can improve resource management, enabling more cost-effective and
scalable solutions for future workloads.

1.1 Motivation to this thesis
The study focuses on assessing the potential impact of CXL, especially concerning its
implications for Microservices Architecture (MA) in telecommunications equipment
systems. The aim is to evaluate the benefits in terms of cost, taking into account various
factors, including performance, system complexity, implementation and maintenance
costs (CAPEX and OPEX), application migration, and energy consumption. The
ultimate goal is to provide a comprehensive understanding of the techno-economic
aspects of CXL, ideally backed by relevant cost data.

The study faces challenges due to the early version of available CXL hardware,
ongoing development of Linux drivers, and the CXL software bundle. In cases where
empirical data is unavailable, simulations are conducted using in-house tools designed
for CXL. The work is forward-looking, intended to examine the potential operational
advantages of CXL in the coming years.

1.2 Main results and findings
This thesis shows that Compute Express Link is a powerful technology that improves
resource utilization, scalability, and performance in cloud computing. By enabling
memory pooling, reducing CPU load, and providing faster connections, CXL has
a possibility to make systems more efficient and cost-effective. A key contribution
of this work is the development of models that help evaluate CXL’s impact on
system performance and costs. The research also highlights CXL’s benefits for cloud

computing by reducing wasted resources and improving multi-tenant environments.
With its scalability and ongoing improvements, especially in CXL 3.0-specification,
this technology is set to play a major role in future computing.

1.3 Structure of the thesis
This thesis is structured as follows: It begins with Compute Express Link section which
provides an overview of CXL technology, detailing its protocols (CXL.io, CXL.cache,
CXL.memory), device types, and generational advancements, highlighting its role
in addressing memory coherence and scalability challenges. The Literature review
evaluates the cost implications of CXL adoption through models and case studies,
showing its potential to reduce memory provisioning costs and optimize total cost of
ownership.

The thesis continues with Message-Based Communication in Nokia Cloud-RAN,
showcasing CXL’s role in enhancing Kubernetes-based networking by bypassing
kernel bottlenecks. In Techno-Economic analysis, simulation-based evaluations
of Round-Trip Time (RTT) and throughput highlight CXL’s benefits in reducing
CPU overhead, improving memory bandwidth, and enabling scalability. Use Cases
and Future Directions explore practical applications such as memory pooling and
multi-tenancy while identifying areas for further research, including integration with
emerging interconnect technologies. Finally, the conclusions summarize the findings,
highlighting the transformative potential of CXL to shape efficient and scalable
computing architectures.

10

2 Compute Express Link (CXL)
This section explores the development and capabilities of CXL across its generations,
focusing on how it has been developed to address the growing demands of modern
computing systems. Starting with its introduction, the section provides an overview
of key features in CXL 1.0/1.1, 2.0, and 3.0, with a comparative summary in Table
1. Each generation is examined in detail, highlighting contributions to memory
pooling, resource sharing, and system scalability. The section also discusses core
protocols—CXL.io, CXL.cache, and CXL.memory. Finally, the classification of
CXL devices into Types 1, 2, and 3 is presented, highlighting their distinct roles in
enhancing the memory and computing infrastructure. Together, this section provides
a comprehensive view of how CXL is shaping the future of high-performance and
distributed computing.

2.1 Motivation for CXL
CXL CXL has a broad definition that includes graphics processing units (GPUs),
general-purpose graphics processing units (GP-GPUs), field-programmable gate arrays
(FPGAs), and different purpose-built accelerators and storage devices. Traditionally,
these devices have used the Peripheral Component Interconnect-Express® (PCIe®)
serial interface. PCIe architecture features a host device, typically a CPU or chipset,
and a multitude of peripheral devices, such as graphics cards, network cards, storage
devices, and expansion cards. Employing a point-to-point topology, PCIe establishes
direct connections between each peripheral device and the host through dedicated
serial links referred to as "lanes." These lanes, composed of pairs of differential
signaling lines, facilitate the bidirectional transmission of data. The PCIe architecture
is a hierarchical structure comprising distinct layers, including the physical layer, the
data link layer, and the transaction layer. [1].

Although the PCIe interface has been effective for various devices, it also exhibits
inherent limitations. These limitations led to the development of CXL, which solves
four key challenges and offers a more efficient way to connect devices. [2].

The first challenge addressed by CXL pertains to achieving coherent access to
both system and device memory. Traditional systems establish coherence with system
memory through DDR, integrating it with the CPU cache hierarchy. In contrast, PCIe
devices access system memory non-coherently, passing through the host’s root complex
(RC) to maintain consistency with CPU caching semantics. This non-coherent access
limits the PCIe device’s ability to cache system memory for exploiting temporal or
spatial locality, hindering the execution of atomic sequences of operations. Moreover,
memory attached to a PCIe device is accessed non-coherently from the host, preventing
its mapping to the cacheable system address space. While non-coherent accesses
are suitable for streaming I/O operations, they pose challenges for accelerators,
particularly in emerging applications such as Artificial Intelligence (AI), Machine
Learning (ML), and smart network interface cards (NICs). In these scenarios, devices
aim to simultaneously access specific portions of data structures with the CPU, utilizing
device-local caches without the need for complete data structure transfers. [2].

11

The second challenge addressed by CXL is the issue of memory scalability, driven
by the escalating demand for both memory capacity and bandwidth in tandem with the
exponential growth of computational requirements. The conventional DDR memory,
however, fails to keep pace with this growing demand, leading to constraints on memory
bandwidth per CPU. This limitation is primarily attributed to the pin-inefficiency
of the parallel DDR interface, which complicates scaling by adding DDR channels,
thereby escalating platform costs and introducing signal integrity challenges. PCIe
pins show promise because they offer higher memory bandwidth per pin. For example,
a x16 Gen5 PCIe port operating at 32 GT/s offers 256 GB/s with only 64 signal pins,
surpassing the capabilities of DDR5-6400, which provides 50 GB/s with approximately
200 signal pins. Moreover, PCIe supports longer reach with retimers, enabling the
relocation of memory farther away from CPUs and the utilization of more than 15W of
power per DIMM, ultimately enhancing performance. Despite these advantages, PCIe
faces a significant drawback as it does not support coherency, and memory attached to
devices cannot be mapped to the coherent memory space. Consequently, PCIe has not
been able to replace DDR in addressing the growing demand for memory scalability.
[2].

The third challenge addressed by CXL is the inefficiency due to resource stranding,
particularly evident in modern data centers. Stranded resources occur when one
resource remains idle while another resource, such as computing power, is fully
utilized. This happens because compute, memory, and I/O devices are tightly linked
within a single server. As a result, servers must be overprovisioned with memory and
accelerators to handle peak workloads, leading to wasted resources. For example, when
a server runs an application needing more memory or accelerators than available, it
cannot borrow these resources from an underutilized server in the same rack. Instead,
it must contend with the performance consequences of page misses. Conversely,
servers with all cores engaged by workloads often have unused memory. This
stranding of resources has significant repercussions, including adverse effects on
power consumption, cost, and sustainability. Low resource usage due to stranding have
been observed at big technology companies such as Alibaba, AWS, Google, Meta,
and Microsoft. Solving this issue is crucial for maximizing resource use and reducing
power, costs, and environmental impact in modern data centers. [2].

The fourth challenge addressed by CXL involves the issue of fine-grained data
sharing in distributed systems. Distributed systems often rely on fine-grained synchro-
nization, where updates are small and latency-sensitive, causing work blocks during
updates. Examples of such scenarios include partition/aggregate design patterns
in web-scale applications like web search, social network content composition, and
advertisement selection. In these systems, query updates are typically under 2kB,
such as a search result. Distributed databases, which depend on kB-scale pages, and
distributed consensus with even smaller updates, also fall within this category. Sharing
data at such a fine granularity amplifies the impact of communication delays in typical
data center networks, dominating the wait time for updates and consequently impeding
crucial use cases. For instance, transmitting 4kB at 50GB/s (400Gbit/s) takes under
2 microseconds, but communication delays on current networks often exceed 10
microseconds. To address this challenge, a coherent shared-memory implementation

12

is proposed as a solution, aiming to reduce communication delays to sub-microsecond
levels, as further elaborated in later sections. [2].

2.2 Generations
Since its launch in 2019, CXL has gained momentum in the industry, combining various
companies and standards. Initially, there were competing interconnect standards like
OpenCAPI, GenZ, and CCIX. However, CXL’s membership has grown to around 250
companies. Intel released CXL 1.0 in March 2019, and the consortium released CXL
1.1 in September 2019, introducing compliance testing mechanisms. Subsequently,
CXL 2.0 and CXL 3.0 were published in November 2020 and August 2022, respectively,
expanding usage models while maintaining backward compatibility. Over time, the
industry has widely adopted CXL, making it a central standard. [2]. Key differences
between CXL-generations are seen in Table 1. Next, each generation is presented
in more detail. More detailed information about the generations and features can be
found in the latest specification [3].

Table 1: Features of different CXL generations, highlighting the increasing capabilities
with each new iteration. The growth in features is especially notable in CXL 2.0 and
CXL 3.0, showcasing advancements in memory pooling, switching, and scalability
[4].

Feature CXL 1.0/1.1 CXL 2.0 CXL 3.0
Release Date 2019 2020 2022 H1
Max Link Rate 32 GT/s 32 GT/s 64 GT/s
Flit 68 Byte (up to 32 GT/s)
Flit 256 Byte (up to 64 GT/s)
Type 1, Type 2, and Type 3 Devices
Memory Pooling w/ MLDs
Global Persistent Flush
CXL IDE
Switching (Single-level)
Switching (Multi-level)
Direct Memory Access for Peer-to-
Peer
Enhanced Coherency (256 Byte Flit)
Memory Sharing (256 Byte Flit)
Multiple Type 1 & Type 2 Devices
per Root Port
Fabric Capabilities (256 Byte Flit)

13

2.2.1 CXL 1.0/1.1

CXL 1.0, launched in March 2019, offers dynamic multiplexing for various protocols,
including I/O (CXL.io), caching (CXL.cache), and memory semantics (CXL.memory).
It establishes a unified memory space between the host CPU and connected CXL
devices, enabling resource sharing and improving performance, while also simplifying
the software stack and reducing data movement. [2].

CXL is similar to PCIe in its asymmetric protocol design. In a CXL setup, the
host processor includes a ’Root Complex’ (RC) for each CXL link, connecting to
an ’End Point’ device. The host processor manages cache coherency, and system
configuration is performed by software through instructions executed in the host
processor, generating the necessary configuration transactions to access each device.

CXL supports native link widths of x16, x8, and x4, with x2 and x1 widths available
in degraded mode. Degraded mode is activated when there are higher-than-expected
error rates on a PCIe link, causing it to automatically switch to narrower widths and
lower frequencies. Native data rates of 32.0 GT/s (CXL 1.0/2.0) and 64.0 GT/s (CXL
3.0) are supported, while degraded mode allows for 16.0 GT/s and 8.0 GT/s data rates.

2.2.2 CXL 2.0

CXL’s second generation introduces resource pooling, allowing the allocation of
the same resources to different hosts at different times. This dynamic resource
reassignment addresses resource stranding by breaking the tight coupling of resources
to individual hosts. If one host runs a compute-intensive workload but doesn’t use
its assigned device memory, operators can reassign it to another host running a
memory-intensive workload. This flexibility allows operators to provision memory
based on the average case rather than the worst-case memory capacity for various
workloads, saving significant memory. This resource pooling concept can also be
applied to other resources like accelerators.

CXL 2.0 introduces several key features, including Hot-Plug, Single Level Switch-
ing, Quality-of-Service (QoS) for Memory, Memory Pooling, Device Pooling, and
Global Persistent Flush (GPF). Hot-Plug, previously not possible in CXL 1.1, enables
adding CXL resources after the platform boots, allowing for traditional physical
hot-plug and dynamic resource pooling.

To support a single level of switching, CXL standardizes address decoding for
CXL.memory regions in hierarchical decoders (HDM). This approach follows the
PCIe memory decode model, allowing for decode at each switch, eliminating the
need for the host or switch to fully decode all agents in the hierarchy. Multi-host
connections and device pooling are facilitated by representing the CXL topology as
a virtual hierarchy (VH) for each host, which includes switches and virtual bridges.
CXL 2.0 is limited to directed tree topologies with at most one path between each host
and device, and scalability is limited to a single switch level.

Device Pooling builds upon multi-host switch support, allowing devices to be
dynamically assigned to one host at a time. CXL defines Single-Logical-Device (SLD)
for standard devices and Multi-Logical-Device (MLD) for devices whose resources

14

can be divided into logical devices (up to 16) that can be assigned to different hosts
simultaneously.

In scenarios where resources may become oversubscribed, CXL 2.0 addresses
Quality-of-Service issues by introducing a DevLoad field in CXL.memory Response
messages. This field informs the host about the observed load in the device it is
accessing, enabling the host to adjust its request rate based on this load information.
The reference model defines load-based adjustments to the injection rate to ensure
efficient resource utilization.

2.2.3 CXL 3.0

CXL 3.0 aims to address data sharing challenges in large distributed systems by
expanding the resource pooling introduced in CXL 2.0. This expansion reaches a
much larger scale with multi-level switching and supports protocols for up to 4096
end devices. These end devices can include host CPUs, memory, accelerators, I/O
devices, and more. The goal is to dynamically compose systems based on specific
workloads, ultimately delivering power-efficient performance and reducing total cost
of ownership (TCO) in large distributed systems.

CXL 3.0, built on PCIe 6.0 technology, doubles the transfer rate to 64GT/s
without adding latency compared to previous generations. This results in a maximum
aggregate raw bandwidth of 256GB/s for x16 width links. CXL 3.0 leverages PCIe
6.0’s lightweight FEC and strong CRC for error-free transmission using 256B flits on
PAM-4 signaling to achieve 64GT/s. It introduces a latency-optimized flit variant that
further reduces latency by breaking up the CRC in 128B sub-flit granular transfers to
mitigate store-and-forward overheads in the physical layer. The new 256B flit format
remains backward compatible with previous CXL generations.

CXL Type-2 devices, known as accelerators with memory, gain the ability to
back invalidate the host’s caches, a feature called enhanced coherency. This enhances
memory management and coherency for host-managed device-attached memory
(HDM), allowing for more efficient memory mapping and management. It also enables
direct peer access to HDM memory without host involvement and the ability for Type
2/Type 3 devices to back invalidate a cache line through the host processor.

Building upon the concept of memory pooling introduced in CXL 2.0, CXL 3.0
introduces memory sharing. Memory sharing allows CXL-attached memory to be
coherently shared across hosts using hardware coherency, enabling simultaneous
access by multiple hosts without software coordination. This facilitates the creation of
clusters of machines for solving large problems through shared memory constructs.

CXL 3.0 introduces fabric capabilities, departing from traditional tree-based
architectural structures. It supports up to 4096 nodes with a scalable addressing
mechanism called Port Based Routing (PBR). These nodes can include CPU hosts,
CXL accelerators with or without memory, PCIe devices, and Global Fabric Attached
Memory (GFAM) devices, which can be accessed by multiple nodes using port-based
routing. CXL fabric opens up possibilities for building powerful systems comprising
compute and memory elements tailored for specific workloads.

15

2.2.4 CXL 3.1

The CXL 3.1 specification introduces various features, including enhancements to
CXL Fabric capabilities and extended requirements for Fabric Decode and Routing. It
defines the Fabric Manager API for Port Based Routing (PBR) Switch and enables
host-to-host communication with the Global Integrated Memory (GIM) concept.

Additionally, the specification facilitates direct Peer-to-Peer (P2P) CXL.mem
support through PBR Switches and introduces the Trusted Execution Environment
Security Protocol (TSP). Memory Expander functionality sees improvements, and
Extended Meta Data supports up to 32-bits per cache line of host-specific state.

The CXL 3.1 specification also provides improved visibility into errors related to
CXL memory devices and offers expanded visibility and control over the Reliability,
Availability, and Serviceability (RAS) aspects of CXL memory devices. Notably, it
maintains full backward compatibility with CXL 2.0, CXL 1.1, and CXL 1.0. [3].

2.3 Protocol types
This subsection explores the core protocols of the CXL framework: CXL.io,
CXL.cache, and CXL.memory. The CXL.io protocol handles key tasks such as
device discovery, initialization, and direct memory access (DMA), leveraging a
PCIe-based, asynchronous, packetized protocol that ensures efficient communica-
tion through flow control mechanisms and virtual channels for quality of service.
CXL.cache enables devices to coherently cache host memory using the MESI protocol,
with the host managing coherence and address translation, ensuring streamlined
cache operations and consistency across systems. Finally, CXL.memory provides
devices with the capability to expose memory as Host-Managed Device Memory
(HDM), supporting both memory expansion and accelerator scenarios. It incorporates
flexible coherence models and ensures efficient, ordered memory access for advanced
computing workloads. Together, these protocols form a comprehensive framework for
high-performance memory and I/O management. [3].

2.3.1 CXL.io

The CXL.io protocol serves various functions like device discovery, configuration,
initialization, I/O virtualization, and direct memory access (DMA) with non-coherent
load-store semantics [3]. It it based on Peripheral Component Interconnect Express
(PCIe). Unlike early PCI-based architectures, CXL.io uses a split-transaction, credit-
based, packetized protocol. This means that completion of CXL.io requests arrives
independently and asynchronously, allowing for concurrent transactions. CXL.io
employs three flow-control classes (FCs): posted (P) for memory writes and messages,
non-posted (NP) for transactions requiring completion like memory reads and con-
figuration/I/O read/writes, and completions (C). CXL.io adheres to PCIe ordering
rules across these FCs to ensure forward progress and maintain a producer-consumer
ordering model.

16

Additionally, CXL.io enforces two virtual channels (VCs) to guarantee quality
of service (QoS). Traffic with varying requirements and latency characteristics is
segregated into different VCs to minimize top-of-queue blocking in the system. For
instance, bandwidth-intensive bulk traffic and latency-sensitive isochronous traffic can
be placed in separate VCs with distinct arbitration policies. Similarly, DRAM accesses
and persistent memory accesses are assigned to different VCs due to their disparate
latency and bandwidth characteristics, preventing interference between the two.

CXL.io relies on standard PCIe DLLPs for tasks like sharing credits, ensuring
reliable TLP delivery, and power management. It also leverages the PCIe configuration
space and enhances it for CXL-specific purposes. This approach enables compatibility
with the existing device discovery mechanism. It is anticipated that PCIe device drivers
will be updated to utilize new features like CXL.cache and CXL.mem, while system
software will be responsible for programming the associated registers related to these
new capabilities. [3].

2.3.2 CXL.cache

The CXL.cache protocol enables a device to cache host memory using the MESI
coherence protocol with a 64-byte cache line size [2]. The protocol simplifies device
management by having the host handle coherence tracking for peer caches, and the
device never directly interacts with peer caches. It employs three channels in each
direction: Host-to-Device (H2D) and Device-to-Host (D2H), including Request,
Response, and Data channels. These channels operate independently, except that a
Snoop message from the host in the H2D Request channel must push a prior Global
Observation (GO) message in the H2D Response for the same cache line address,
indicating coherence state (MESI) and the coherency commitment point.

CXL.cache uses host physical addresses, while caching devices, like CPUs, operate
on virtual addresses. Devices implement a Device Translation Look-aside Buffer
(DTLB) to cache page table entries, and they use the Address Translation Services
(ATS) of PCIe (and CXL.io) to fetch virtual-to-physical translations and access control.
CXL extends ATS to convey whether access to an address is allowed to use CXL.cache
or limited to CXL.io. The DTLB is non-coherent, so the host processor is responsible
for tracking entries pending in DTLBs and initiating invalidation when necessary.

The D2H Request channel includes commands for Read, Read0, Read0-Write, and
Write, allowing the device to request coherence state and data, coherence state only,
direct data write, and cache eviction. The H2D Response channel provides coherence
state information, and the H2D Data channel delivers data.

The H2D Request channel allows the host to change coherence state in the device,
referred to as "Snooping" (Snp), with the device updating its cache and potentially
returning data. The protocol ensures proper ordering to handle conflicting accesses,
specifically Req-to-Snoop and Eviction-to-Snoop cases, where the order of GO
messages and Snoop messages is crucial for correct processing and maintaining cache
coherence. [2].

17

2.3.3 CXL.memory

The Memory Protocol in CXL allows a device to expose Host-managed Device
Memory (HDM), which the host can manage and access as if it were native DDR
memory. This protocol is media-independent, employing straightforward reads and
writes with Host Physical Addresses that the device translates into its media address
space. For devices that wish to cache this memory, advanced semantics enable
direct caching and tracking of host caching by the device. The protocol utilizes two
channels in each direction: Master-to-Subordinate (M2S) and Subordinate-to-Master
(S2M), offering Request, Request-with-Data (RwD), Non-Data-Response (NDR), and
Data-Response (DRS) channels.

The two primary use cases for CXL.mem are "host memory expander" and
"accelerator memory exposed to the host," with corresponding protocol requirements
designated as HDM-H and HDM-D. HDM-H doesn’t assume any coherence protocol,
while HDM-D includes cache state and cache snooping attributes. The coherence
model allows devices to change host cache state using the CXL.cache request, referred
to as the "Bias Flip" flow, which influences how the host handles the data. This flow
ensures coherent memory access within the system and utilizes ordered channels for
HDM-D addresses to prevent race conditions. [3].

2.4 Device types
There are three different profiles for CXL devices described in the CXL 1.0/1.1
specification. The following sections describe the devices that can be attached via
CXL.

2.4.1 Type 1

CXL Type 1 devices have unique requirements, specially benefiting from a fully
coherent cache in the device. Thus, standard producer-consumer ordering models
are in many cases inadequate for these devices. For instance, a need to perform
complex atomics beyond PCIe’s standard operations might be challenging. Basic cache
coherency allows these devices to implement custom ordering models and an unlimited
range of atomic operations, requiring only a small cache that can be tracked by the host’s
snoop filter capacity. CXL accommodates such devices with its optional CXL.cache
link, enabling cache coherency transactions through the CXL.cache protocol. [3]. A
basic example of a Type 1 device is seen in Figure 1.

18

Figure 1: This figure provides a basic example of a CXL Type 1 device. Unlike
standard producer-consumer ordering models, these devices require advanced cache
coherency to support complex atomic operations. CXL addresses this need through its
optional CXL.cache link, allowing cache coherency transactions via the CXL.cache
protocol. This enables more efficient data ordering and atomic operations while
minimizing cache size requirements.

2.4.2 Type 2

CXL Type 2 devices feature both a fully coherent cache and attached memory, such as
DDR or High-Bandwidth Memory (HBM) [3]. These devices use a high-speed data
link between the accelerator and device-attached memory to achieve their performance.
CXL’s primary goal is to allow the Host to efficiently transfer data to and from device-
attached memory without introducing significant software and hardware burden that
would negate the accelerator’s benefits.

It’s crucial to differentiate HDM from traditional I/O and PCIe Private Device
Memory (PDM). For example, a GPGPU with attached GDDR treats device-attached
memory as private, making it inaccessible to the Host and lacking coherence with the
rest of the system. This private memory is managed only by the device’s hardware and
driver and is mainly used for intermediate storage of large datasets. The drawback of
this approach is the need for high-bandwidth data transfers between Host memory and
device-attached memory for operand inputs and result outputs. A basic example of a
type 2 device is seen in Figure 2.

19

Figure 2: This figure provides a basic example of a CXL Type 2 device, which includes
both a fully coherent cache and attached memory, such as DDR or High-Bandwidth
Memory. These devices use a high-speed data link between the accelerator and
device-attached memory to enhance performance. The key advantage of CXL is that it
allows the host to efficiently transfer data to and from device-attached memory without
adding unnecessary software or hardware complexity.

There are two ways for ensuring device coherence of Host-managed Device
Memory (HDM). The first method utilizes CXL.Cache to maintain coherence, known
as "Device coherent," and it’s identified by the suffix "D" (HDM-D). The second
method relies on the dedicated channel in CXL.mem called Back-Invalidation Snoop,
and it’s denoted by the suffix "DB" (HDM-DB). [3].

2.4.3 Type 3

CXL Type 3 devices support both CXL.io and CXL.mem protocols. Unlike traditional
accelerators that operate on host memory, these devices don’t utilize CXL.cache for
requests. Instead, they focus on CXL.mem to fulfill Host-initiated requests. The
CXL.io protocol serves functions like device discovery, enumeration, error reporting,
and management, and it can also be used for other I/O-specific applications by the
device.A basic example of a Type 3 device, a memory expander, is seen in Figure 3.
[3].

This architecture is memory technology-agnostic and allows for various memory
organization possibilities based on the Host’s support. When Type 3 device memory
is exposed as HDM-DB, it enables the device to manage coherence with the host
directly, facilitating in-memory computing and direct access via UIO on CXL.io. [3].

20

Figure 3: This figure provides a basic example of a CXL Type 3 device, which
supports both the CXL.io and CXL.mem protocols. Unlike traditional accelerators
that rely on host memory and use CXL.cache, Type 3 devices do not handle cache
requests. Instead, they primarily use CXL.mem to respond to host-initiated memory
requests.

21

3 Literature Review
Memory constitutes a significant cost in data centers and cloud servers, accounting for
40% (Meta) and 50% (Azure) of a server’s overall cost. This financial pressure has
spurred research into methods such as far memory, memory compression, and Intel
Optane memory to reduce RAM needs and costs. The consequences of insufficient
or excess memory include stranded cores or stranded memory. CXL offers lower
latency and hardware support for cache coherence, enabling efficient access to remote
memory. This has led to the exploration of CXL memory pools in data centers and
cloud networks, potentially reducing memory requirements and overall costs according
to recent research. [5].

Currently, most available CXL hardware is based on version 1.1, with some
vendors incorporating selected features from version 2.0. Versions 3.0 and 3.1 depend
on improvements in PCIe, set to be achieved in the ratified Gen 6 of that protocol.
In addition, all major x86 server-class CPU vendors have adopted CXL. [6]. Intel
supports CXL from Sapphire Rapids (SPR) CPUs and Agilex7 FPGAs, covering all
three protocols. AMD plans CXL support in Genoa CPUs and SmartNIC devices.
ARM has announced CXL 2.0 support in V2, N2, and E2 series CPUs. [2].

This section begins by examining two performance studies that evaluate the impact
of CXL on modern computing systems. The first study by Microsoft investigates
the Pond system, which employs CXL-based memory pooling to optimize resource
utilization and reduce costs in public cloud environments, focusing on its effect on
NUMA systems and latency-sensitive workloads [7]. The second study by Intel
examines the performance differences between true and emulated CXL memory,
exploring factors such as latency, bandwidth efficiency, and cache interactions [8].
Following these performance assessments, the section transitions to cost models,
presenting theoretical frameworks and real-world examples to evaluate the Total Cost
of Ownership (TCO) for CXL-enabled systems. These models incorporate both capital
and operational expenditures, providing insights into the economic implications of
using CXL in data centers and cloud environments.

3.1 Performance Studies - Microsoft Pond
Li et al. [7] introduces Pond, a pioneering system that achieves both competitive cost
and equivalent memory performance to that of a single Non-Uniform Memory Access
(NUMA) node in public cloud environments.

In a NUMA system, memory is organized into NUMA nodes. Each node
encompasses memory with consistent access characteristics for a specific processor.
Nodes exhibit affinity to both processors and devices, with locally attached devices
having optimal performance when accessing memory within a NUMA node. Memory
allocated from the most suitable NUMA node for a processor is termed "local node."
For instance, in a system with one node per socket, each having four cores, the NUMA
architecture ensures specific memory access characteristics for processors within each
node. [9].

Pond employs a combination of hardware and system techniques, relying on the

22

Compute Express Link (CXL) standard for efficient cacheable load/store accesses to
pooled memory across different processor architectures. Despite higher latencies in
CXL accesses compared to same-NUMA-node accesses, Pond mitigates this impact
through innovative systems support for CXL-based pooling.

The feasibility of Pond is grounded in four key insights. Firstly, analysis of Azure
production clusters indicates that pool sizes between 8-16 sockets result in substantial
Dynamic Random Access Memory (DRAM) savings. Second, by emulating various
memory access overheads, Pond identifies workloads suitable for allocation in pool
memory, emphasizing the challenge of achieving same-NUMA-node performance
for specific workloads. Machine learning models are trained to identify insensitive
workloads for pre-allocation on the Pond memory pool.

Third, observations from Azure measurements reveal that approximately 50% of
virtual machines (VMs) utilize less than 50% of their allocated memory. Allocating
untouched memory from the pool has minimal performance impact, particularly for
latency-sensitive VMs, when exposed to the VM’s guest OS as a zero-core virtual
NUMA (zNUMA) node. This concept holds true, contrary to prior assumptions, and
effectively biases memory allocations away from the zNUMA node.

Fourth, Pond optimally allocates CXL memory with same-NUMA-node perfor-
mance by predicting VM latency sensitivity and the amount of untouched memory. In
cases of incorrect predictions, Pond introduces a novel monitoring system that detects
poor memory performance and triggers a mitigation, migrating the VM to use only
same-NUMA-node memory. Importantly, all inputs for training and running Pond’s
machine learning models are obtained from existing hardware telemetry with minimal
overhead.

First, the study focuses on assessing memory stranding and untouched memory at
Azure through the analysis of production data. The dataset comprises measurements
from 100 cloud clusters over a 75-day period, encompassing mainstream first-party
and third-party VM workloads. These clusters are chosen to be representative of the
majority of the server fleet, with similar deployment years and spanning various major
regions globally. Each cluster’s trace includes millions of per-VM arrival/departure
events, detailing time, duration, resource demands, and server-id.

In summary, the analysis reveals varying degrees of memory stranding, ranging
from 3-27% at the 95th percentile, with occasional outliers reaching 36%. Almost all
virtual machines (VMs) can fit within a single NUMA node. The implementation of
memory pooling across 16-32 sockets demonstrates the potential for a 10% reduction in
cluster memory demand, indicating substantial cost reductions. However, the success
of memory pooling hinges on allocating a significant portion of Dynamic Random
Access Memory (DRAM) to memory pools. Providers embarking on DRAM pool
implementation with cross-NUMA latencies must exercise careful management to
mitigate potential performance impacts.

Secondly, the study characterizes the performance impact of CXL latency for
typical workloads in Azure’s datacenters. The evaluation involves 158 workloads
under two scenarios of emulated CXL access latencies, representing a 1.82-times
and 2.22-times increase in memory latency. The comparison is made with workload
performance under NUMA-local memory placement.

23

Under a 182% increase in memory latency, the study observes that 26% of the
158 workloads experience less than a 1% slowdown with CXL, while an additional
17% see less than a 5% slowdown. Conversely, 21% of workloads face more than a
25% slowdown. Variations are noted among different workload classes, with graph
processing workloads generally exhibiting higher slowdowns, albeit with significant
variability within each class. Azure’s proprietary workloads are less impacted, with 6
out of 13 production workloads showing minimal effects (<1%), attributed to their
NUMA-awareness and data placement optimizations.

Under a 222% increase in memory latency, the effects intensify. Approximately
23% of the 158 workloads experience less than a 1% slowdown, while 14% see less
than a 5% slowdown. More than 37% of workloads face greater than a 25% slowdown.
The study observes a magnification of effects seen under lower latency, indicating that
workloads performing well under a 182% increase also tend to perform well under a
222% increase, while those severely affected by the former are even more impacted by
the latter.

Finally, the study evaluates the performance of pond with a prototype setup. This
prototype setup uses production servers at Azure and similarly-configured lab servers.
The production servers include two configurations: Intel Skylake 8157M sockets with
384GB of DDR4 each or two AMD EPYC 7452 sockets with 512GB of DDR4 each.
The Intel configuration exhibits 78ns NUMA-local latency, 80GB/s bandwidth locally,
and 142ns remote latency with 30GB/s bandwidth (equivalent to 3/4 of a CXL ×8
link). On the AMD configuration, the measurements are 115ns NUMA-local latency
and 255ns remote latency. The BIOS settings disable hyper-threading, turbo-boost,
and C-states. Performance baselines are established using VMs entirely backed by
NUMA-local DRAM.

In summary, with a pool size of 16 sockets, Pond achieves a 9% reduction in
overall DRAM requirements under a 182% latency increase and a 7% reduction under
a 222% latency increase. In comparison, the Static approach reduces DRAM by 3%.
The 7-9% reduction leads into an overall reduction of 3.5% in cloud server cost.

3.2 Performance Studies - Intel
The Intel study [8] involves running a set of benchmarks to not only compare the
performance of true CXL memory with emulated CXL memory but also to analyze
the intricate interplay between the CPU and CXL memory in detail.

The evaluation employs a server with two Intel Sapphire Rapids (SPR) CPU
sockets, each socket equipped differently. One socket contains eight 4800 MT/s DDR5
DRAM DIMMs (128 GB) across eight memory channels, while the other socket has
only one 4800 MT/s DDR5 DRAM DIMM to emulate the bandwidth and capacity of
CXL memory. The Intel SPR CPU integrates four CPU chiplets, each with up to 15
cores and two DDR5 DRAM channels. Users can choose to use the chiplets either as
a unified CPU or as separate NUMA nodes in the SNC mode, offering flexibility for
resource isolation. Hyper-threading is turned off, and the CPU core clock frequency is
set to 2.1 GHz for more predictable performance.

Three CXL memory devices are utilized, featuring different CXL IPs (ASIC-based

24

hard IP and FPGA-based soft IP) and DRAM technologies (DDR5-4800, DDR4-2400,
and DDR4-3200). The CXL protocol’s flexibility allows seamless accommodation
of various memory technologies, including DRAM, persistent memory, flash, and
emerging memory technologies, potentially resulting in different latency and bandwidth
characteristics among CXL memory devices.

The study observes a reduction in memory access latency with the implementation
of full-duplex CXL and Ultra Path Interconnect(UPI) interfaces. The use of these
interfaces leads to a significant decrease in memory access latency, particularly
demonstrated by the "memo" microbenchmark. This benchmark reveals a 76% lower
load latency for emulated CXL memory when compared to Intel MLC (Memory
Latency Checker), highlighting the advantages derived from the full-duplex capabilities
of these interfaces.

The latency associated with accessing true CXL memory devices is found to be
highly dependent on the specific design of the CXL controller. The study introduces
different CXL controllers, including CXL-A, CXL-B, and CXL-C, each exhibiting
varying levels of latency. Notably, CXL-A shows only a 35% longer load latency
than DDR5-R, while CXL-C demonstrates almost a threefold increase in load latency
compared to DDR4-2400. These variations underscore the impact of CXL controller
design on memory access performance.

A noteworthy finding is the comparison between emulated CXL memory and true
CXL memory in terms of latency. Emulated CXL memory is observed to have longer
memory access latency than its true CXL counterpart. This difference arises from
the cache coherence checks involved with emulated CXL memory, which requires
coordination with the remote CPU. In contrast, true CXL memory, despite being
exposed as a remote NUMA node, benefits from on-chip structures, resulting in lower
latency.

The study explores the impact of cache coherence overheads on store latency,
particularly due to cache write-allocate policies. The latency of st to emulated CXL
memory is found to increase more significantly than st to true CXL memory. This
discrepancy is attributed to the higher cache coherence overheads associated with
emulated CXL memory, especially during cache coherence checks with the remote
CPU.

Bandwidth efficiency is identified as strongly dependent on the efficiency of CXL
controllers. Different CXL controllers, such as CXL-A, CXL-B, and CXL-C, exhibit
varying levels of bandwidth efficiency, influenced by factors like memory read/write
ratios. The study emphasizes the importance of considering these controller-specific
characteristics when assessing the overall efficiency of CXL memory systems.

The investigation underscores the competitive bandwidth efficiency offered by true
CXL memory, particularly concerning store operations, when compared to emulated
CXL memory. Emulated CXL memory experiences more pronounced bandwidth
efficiency degradation, primarily due to the additional overhead associated with cache
coherence checks.

An essential aspect explored in the study is the interaction between CXL memory
and the CPU’s cache hierarchy. This interaction differs significantly from local DDR
memory, impacting Last-Level Cache (LLC) hit/miss and interference characteristics.

25

Understanding these interactions is deemed crucial for analyzing the performance of
applications utilizing CXL memory, especially in the context of Sub-NUMA Clustering
(SNC) modes.

In summary, load instructions on CXL-attached memory can be 35% slower
than NUMA, while stores show slightly lower overheads. The efficiency of memory
transfer is measured in terms of nominal bandwidth capacity, with CXL interconnects
demonstrating 46% efficiency for loads, compared to 70% for NUMA. Surprisingly,
stores to a CXL device can be 12% more bandwidth efficient than to a neighbor
NUMA socket, attributed to the bypassing of coherency checks on the CXL device.

3.3 Cost models
Understanding andaccurately estimating the costs associatedwith a data center is crucial
for effective planning and decision-making. Cost models provide a structured approach
to evaluate both capital expenditures (CapEx) and operating expenditures (OpEx),
offering insights into initial investments and ongoing expenses. These models not
only help in forecasting long-term financial commitments but also enable comparisons
between different infrastructure configurations, scalability options, and efficiency
measures. By exploring cost models, we can analyze the trade-offs between upfront
investments and operational savings, as well as identify areas where optimizations can
lead to significant cost reductions over time. [10], [11].

The Total Cost of Ownership (TCO) is the comprehensive sum of all costs over an
n-year period, categorized into CapEx and OpEx. Capital expenditures encompass
depreciated costs for acquiring servers, software licensing, networking, storage, power
and cooling equipment, and facilities (Example in Table 2). Operational expenditures
consist of real estate, power, cooling, support, and maintenance costs, as well as
administrator and personnel expenses (Example in Table 3). OpEx is calculated based
on the daily operational costs to maintain and operate the devices. [12].

26

Table 2: Example CapEx for a Data Center. This describes key cost categories
and important considerations. The categories include infrastructure, IT equipment,
power and cooling systems, security, software, and network infrastructure. Each row
highlights factors that influence costs, such as performance requirements, energy
efficiency, scalability, and regulatory compliance.

CapEx Category Considerations CapEx (=C)

Infrastructure Location, size, redundancies, construction
costs

x

IT Equipment Performance requirements, scalability,
technology lifecycle

x

Power Systems Power capacity, redundancy, energy
efficiency

x

Cooling Systems Cooling capacity, energy efficiency (PUE) x
Security Systems Regulatory compliance, risk mitigation x
Software Compatibility, scalability, vendor lock-in x
Network Infrastructure Bandwidth requirements, future expansion x

Table 3: Example OpEx for a Data Center. This describes key cost categories and
important factors. The categories include power consumption, maintenance, real estate
rent, and overall operational expenditures. Each row highlights factors affecting costs,
such as energy efficiency, hardware upkeep, rental space, and total ongoing expenses.

OpEx Category Considerations Annual Cost

Operating Power Power consumption per server,
energy efficiency, and electricity

rates

𝑥 =C

Maintenance Costs Regular hardware and software
maintenance, replacement cycles

𝑥 =C

Real Estate Rent Data center area in square meters,
rent per square meter

𝑥 =C

Operational expenditures Sum of all operating expenses 𝑥 =C

The surge in AI-driven demand has significantly impacted the capital expenditures
of leading cloud providers, driving substantial investments in infrastructure and
technology. Amazon Web Services (AWS) reported triple-digit growth in AI-related
revenue, far outpacing its overall growth, and plans to allocate $75 billion in 2024
primarily for AI services. CEO Andy Jassy noted that generative AI demand is
expanding three times faster than AWS did at a comparable stage. Microsoft increased
its CaPex by 34% year-over-year for Q3 2024, with an estimated 13.3% of spending
directed toward AI infrastructure, the highest proportion among its peers. Similarly,
Google (Alphabet) saw a 35% year-over-year rise in CaPex, with approximately 6.8%

27

invested in AI-related infrastructure. These figures highlight AI’s pivotal role in
shaping cloud providers’ financial strategies. [13].

3.3.1 Power Management in CXL

CXL implementations are mandated to incorporate Physical Layer Power Management,
encompassing both protocol-specific Link Power Management and CXL Physical
Layer power management. This responsibility falls on the ARB/MUX Layer, which
oversees the coordination of power management states among various protocols on
both sides of the links. [3].

To enhance power management for CXL-connected devices across the entire
system, a hierarchical architecture is established. This framework treats discrete
devices as autonomous entities, allowing for local execution of thermal and power
management. Coordination with the processor is achieved through Vendor-defined
Messages (VDMs) over CXL. The communication for coordination involves PM2IP
and IP2PM messages. Additionally, the system can support simplified protocols. [3].

In terms of CXL Physical Layer, it supports L1 and L2 states as defined in the PCIe
Base Specification. While entry and exit conditions adhere to PCIe specifications,
the CXL ARB/MUX takes charge of directing the entry and exit from Physical Layer
Power Management states. [3].

CXL Link Power Management facilitates Active Link State Power Management
(ASPM), supporting L1 and L2 power states. In 256B Flit mode, there is support for
L0p negotiation as well. The PM Entry/Exit process is segmented into three phases.
In 68B Flit mode, if the LTSSM undergoes Recovery before the ARB/MUX vLSM
transitions to the PM state, the PM Entry process must recommence from Phase
1. However, in 256B Flit mode, PM entry handshakes remain unaffected by Link
Recovery transitions. [3].

3.3.2 Power Consumption in Cloud RAN

The power consumption of cloud networks is a critical concern due to its significant
environmental and economic impact. As digital services continue to expand, data
centers now consume a staggering 30 billion watts of electricity globally, equivalent
to the output of 30 nuclear power plants. [14] . This massive energy consumption not
only contributes to rising operational costs for businesses but also leads to substantial
greenhouse gas emissions. Cloud computing, while offering numerous benefits, can
potentially exacerbate this issue if not managed efficiently. However, when optimized,
cloud services can be up to 93% more energy-efficient than on-premises data centers.
[15].

Nokia conducted a study to analyze power consumption in their cloud network
product, using two setups utilizing different vendors. The research measured the total
power consumption of each setup, specifically breaking down the contributions of
CPU and memory. To maintain confidentiality, the actual consumption values were
replaced with percentage figures in the study. These values (Table 4) were calculated
using equations (1) & (2). This approach underscores the significant role that CPU and

28

memory play in the overall energy efficiency of cloud network operations, highlighting
the critical need for optimizing these components to reduce power usage and enhance
sustainability in cloud environments.

CPU Power Percentage =
Total CPU Power

Total Power Consumption
× 100 (1)

Memory Power Percentage =
Total Memory Power

Total Power Consumption
× 100 (2)

Table 4: Power consumption data for Vendor 1 and Vendor 2, presenting the percentage
of total power consumption attributed to CPU and memory usage under two different
test setups.

Vendor 1 Vendor 2

T (°C) CPU (%) MEM (%) T (°C) CPU (%) MEM (%)

20 41.5 8.3 20 54.5 9.8
25 41.4 8.3 25 53.3 10.0
30 40.7 8.2 30 51.5 10.3
35 40.5 8.2 35 50.7 10.1
40 39.1 8.0 40 46.6 9.5
45 36.1 7.4 45 38.6 8.1

The data (Figure 4) highlights the impact of increasing chamber temperature on
the power consumption distribution between the CPU and memory in two vendors’
systems. Vendor 1 demonstrates relatively stable CPU power consumption, decreasing
slightly from 41.5% to 36.1%, and memory power consumption also shows a small
reduction from 8.3% to 7.4%. In contrast, Vendor 2 exhibits a more pronounced decline
in CPU power consumption, dropping from 54.5% at 20°C to 38.6% at 45°C, with
memory power consumption decreasing from 9.8% to 8.1% over the same temperature
range. These trends indicate that Vendor 1’s components are less sensitive to increasing
chamber temperatures compared to Vendor 2, suggesting better thermal efficiency.
Vendor 2’s steeper decline in CPU power indicates potential thermal management
challenges that may require optimization to maintain consistent performance in higher
temperature environments.

3.3.3 Cost Study - Google

Google scholars argued against the profitability of CXL memory pooling in their study
[5]. The primary challenge with implementing CXL memory pools lies in the cost
factor. While the main advantage of a CXL memory pool is to reduce the overall RAM
requirements of data centers and cloud systems, the associated infrastructure costs
are a significant consideration. Currently, servers are provisioned to accommodate
the maximum footprint of all virtual machines (VMs) or containers simultaneously,

29

Figure 4: Plot of power consumption (%) for Vendor 1 and Vendor 2. This illustrates
the effect of increasing chamber temperature on the distribution of power consumption
between the CPU and memory in the test setups.

resulting in high memory usage. CXL memory pools enable servers to provision for
expected use and store cold data in the pool when VMs reach their maximum footprint.
However, the implementation of CXL requires a parallel network infrastructure,
different from Ethernet, involving a CXL appliance at the top of the rack (or server)
with dedicated cabling to all servers. This infrastructure adds to the overall cost of
implementing CXL technology.

While the idea of a shared pool to meet peak memory needs and lower per-server
memory costs seems beneficial, there are practical issues. The assumption that memory
is interchangeable and can be reduced by a small fraction (e.g., 7-9%) may not be
applicable in reality. In addition, the analysis overlooks the expenses associated with
additional cabling and networking infrastructure required for CXL implementation.
Cloud and datacenter servers face limitations in DRAM capacity due to discrete steps,
and small reductions in memory may not result in cost savings. Modern server CPUs,
such as those by Intel and AMD, have 8 or 12 DDR channels. To maximize memory
bandwidth, servers populate every channel, but DIMMs are available in specific sizes
(e.g., 32GB, 48GB, 64GB), and each channel must have the same-sized DIMM. This
constraint leads to servers having fixed configurations with predetermined amounts of
memory, restricting flexibility.

According to Pond’s findings, allocating 25% of VM memory on average to
a shared pool results in minimal performance slowdowns, with only 1% of VMs
experiencing more than a 5% slowdown. This can be accomplished, for instance,
by replacing 128GB DIMMs with 96GB DIMMs. However, it’s crucial to note that
while this allocation is feasible, it doesn’t actually reduce the total amount of memory
required. Servers still demand the same overall memory capacity; the only difference
is that a portion of it is now housed in a CXL-connected memory appliance.

30

Attempting to implement CXL memory pools faces challenges, as reducing server
RAM by 7% or 9% is not feasible. Instead, servers must cut their RAM by 25%, and
the CXL memory pool extracts 7-9% from this reduced amount. This necessitates
targeting a specific memory amount in the CXL pool device, which proves challenging
due to the need to populate every socket for maximum throughput and the large jumps
in DIMM size. While there are specific configurations where this approach can be
successful, it imposes constraints on the overall system, limiting choices in memory,
core count, and the degree of CXL pooling.

They also see a challenge with CXL memory pools in the significant increase in
software complexity. Experimental results on real hardware reveal that, for random
accesses, CXL devices exhibit slower performance than the optimal values indicated
in standard documents. While CXL has high latency, its substantial throughput allows
competitive transfer of larger memory blocks (a few kilobytes) compared to DRAM.
However, achieving this involves explicitly copying remote memory into local memory,
transforming the CXL pool from directly accessed memory to a distant memory cache.
The absence of commercially available CXL devices and non-disclosure agreements
limiting result publication without prior approval adds further complications, relying
on experimental findings from specific papers for conclusions.

This paper’s performance evaluation is based on the two existing CXL bench-
marking papers [7],[8]. In these researches, they use CXL 1.0/1.1 versions, which
have only the first CXL features. At this moment, there are no papers available yet on
benchmarking newest CXL versions (3.0 & 3.1). Therefore, the missing features of
the newest CXL version effect the performance comparison.

3.3.4 Cost studies - Yale & ByteDance

The study [16] conducted by Yale and ByteDance researchers investigates the per-
formance of ASIC (Application-Specific Integrated Circuit) CXL memory within
different data-center scenarios. They aim to understand how CXL memory, when
integrated through specially designed policies and strategies, can impact critical per-
formance metrics such as throughput, latency, and cost reduction. They are focusing
on commercial CXL 1.1 Type-3 devices, using CXL.io and CXL.mem protocols for
memory expansion in single-server environments.

They are using an experimental test platform consists of three servers with specific
configurations. Two of these servers are designated for the CXL experiments. Each of
these servers is equipped with dual Intel Xeon 4th Generation CPUs, known as Sapphire
Rapids, 1 TB of 4800 MHz DDR5 memory, and two 1.92 TB SSDs. Additionally,
each server includes two A1000 CXL Gen5 x16 ASIC memory expander modules
from AsteraLabs. Each module provides 256 GB of 4800 MHz memory, resulting in a
total of 512 GB of additional memory per server. Both A1000 memory modules are
attached to socket 0 of the respective servers. The third server serves as the baseline
and is configured identically to the CXL experiment servers, with dual Intel Xeon
4th Generation CPUs, 1 TB of 4800 MHz DDR5 memory, and two 1.92 TB SSDs,
but without the CXL memory expanders. This baseline server is used for initiating
client requests and running workloads that strictly utilize the main memory during the

31

application assessments. All three servers are interconnected via 100 Gbps Ethernet
links to ensure high-speed communication and data transfer between them.

The cost analysis reveals that adopting CXL memory expansion offers signif-
icant benefits for data center applications, including comparable performance and
operational cost savings. However, determining the Return on Investment (ROI) for
such innovative technology poses a significant challenge. Although detailed technical
specifications and benchmark performance results are available, accurately forecasting
Total Cost of Ownership (TCO) savings remains difficult due to the complexity of
simulating benchmarks at production scale and the limited availability of CXL hard-
ware. Traditional cost models, which could provide such forecasts, require extensive
internal and sensitive information that is often inaccessible.

To address this, the researchers propose an Abstract Cost Model designed to
estimate TCO savings without relying on internal or sensitive data. This model uses a
set of metrics obtainable through microbenchmarks and a few empirical values that
are easier to approximate or access, providing a viable means to evaluate the economic
viability of implementing CXL technology.

Using a capacity-bound application like Spark SQL as an example, the model
demonstrates that additional capacity enabled by CXL memory reduces data spillage
to SSDs, resulting in higher throughput and fewer servers needed to meet performance
targets. By dividing the execution time into segments processed by main memory,
CXL memory, and SSD storage, the researchers establish a method to approximate
execution times and thus, cost savings.

The model measures baseline performance (throughput when most data is spilled to
SSD), relative performance when the entire working set is in main memory (MMEM),
and relative performance when the entire working set is in CXL memory. These
measurements are then used to formulate a cost model that estimates the TCO savings.

For example, with certain performance ratios and cost assumptions, the model
suggests that using CXL memory could reduce the number of servers by approximately
32.71%, leading to an estimated TCO saving of 25.98%.

The Abstract Cost Model (Table 5) provides an accessible way to estimate the
benefits of using CXL memory, guiding the design of next-generation infrastructure.
The model is adaptable, allowing for the inclusion of additional infrastructure expenses
such as the cost of CXL memory controllers, switches, PCBs, and cables as fixed
constants. However, it currently focuses on one application type at a time, which poses
a challenge for data centers evaluating cost savings for multiple distinct applications
with shared resources, an area identified for future investigation.

𝑇𝐶𝑂𝑠𝑎𝑣𝑖𝑛𝑔 = 1 − 𝑇𝐶𝑂𝐶𝑋𝐿

𝑇𝐶𝑂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

= 1 − 𝑁𝐶𝑋𝐿

𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑅𝑡

𝑁𝐶𝑋𝐿

𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

=
𝐶𝑅𝑐 (𝑅𝑑 − 1)

𝑅𝑐𝑅𝑑 (𝐶 + 1) − 𝐶𝑅𝑐 − 𝑅𝑑

32

Table 5: This table defines parameters used in the abstract cost model. The parameters
include throughput measurements for different memory configurations (SSD, main
memory, and CXL memory), memory capacity ratios, and the number of servers
required in baseline and CXL-equipped clusters. Additionally, it includes a parameter
for comparing the total cost of ownership between standard and CXL-enabled servers.

Parameter Description Example Value

𝑃𝑠 Throughput when (almost) the entire working
set is spilled to SSD on a server. Normalized to

1 in the cost model.

1

𝑅𝑑 Relative throughput when the entire working set
is in main memory on a server, normalized to

𝑃𝑠.

10

𝑅𝑐 Relative throughput when the entire working set
is in CXL memory on a server, normalized to

𝑃𝑠.

8

𝐷 The MMEM capacity allocated to each server.
For completeness only, not used in the cost

model.

-

𝐶 The ratio of main memory to CXL capacity on a
CXL server. E.g., 2 means the server has 2×
MMEM capacity compared to CXL memory.

2

𝑁baseline Number of servers in the baseline cluster. -
𝑁𝑐𝑥𝑙 Number of servers in the cluster with CXL

memory to deliver the same performance as the
baseline.

-

𝑅𝑡 Relative TCO comparing a server equipped with
CXL memory vs. a baseline server. E.g., if a

server with CXL memory costs 10% more than
the baseline server, this parameter is 1.1.

1.1

33

4 Message-based communication in Nokia Cloud-
RAN

This section explores the transformative role of CXL in enabling efficient, low-
latency communication within Nokia Cloud-RAN. CXL reduces CPU overhead and
accelerates data sharing by introducing cache-coherent, multi-host shared memory,
offering significant advantages over traditional networking paradigms like IPC. It
addresses critical challenges in modern data center environments, such as resource
utilization, scalability, and unsynchronized memory access, while facilitating faster
intra-rack communication. Through performance models and real-world use cases, we
demonstrate how CXL optimizes microservices architectures, enhances Kubernetes-
based networking, and supports scalable multi-tenancy, making it a cornerstone
technology for future cloud infrastructures.

4.1 Introduction
Compute Express Link 3.0 enables multi-host shared memory with hardware cache
coherency across compute nodes, reducing CPU usage by allowing applications to
share pointers to data instead of serializing and transmitting it. However, this introduces
safety risks, as shared memory removes the isolation between sender and receiver that
networking typically provides. This can lead to unsynchronized memory access if the
sender modifies data while the receiver is processing it, which could cause significant
issues, especially in scenarios involving mutually distrustful applications. [3].

Moreover, CXL 3.0 introduces a new transport layer by enabling multiple hosts
to communicate through fast, byte-addressable, cache-coherent shared memory.
With CXL, hosts can map the same shared memory region, allowing updates via
load/store instructions to be instantly visible to all connected hosts without explicit
communication. Compared to RDMA and HTTP, CXL-based RPC frameworks could
offer significant performance improvements in communication latency. [3].

In scenarios where up to 32 servers are connected to a shared memory pool via
CXL, this architecture would limit memory sharing to a single rack (32–64 nodes). For
longer-range communication, CXL is expected to coexist with conventional networking
like TCP and RDMA. This setup suits datacenter environments, where microservices
distributed across multiple servers typically communicate using RPCs, enabling faster
intra-rack communication through shared memory while relying on RDMA for larger
distances. [17].

4.2 Problem description: From messaging to data sharing
Nokia Cloud RAN, or Virtualized Radio Access Network (vRAN), is an advanced
Radio Access Network solution designed to meet the demands of 5G networks and
beyond. It disaggregates traditional RAN hardware and software, leveraging a cloud-
native architecture to provide agility, scalability, flexibility, and openness. Nokia Cloud
RAN enables Communication Service Providers (CSPs) and enterprises to enhance

34

cost and resource efficiency while introducing new services for the enterprise space.
By utilizing shared edge infrastructure for edge cloud deployments, it supports the
deployment of 5G radio capacity and paves the way for 6G evolution. A key feature of
Nokia Cloud RAN is its integration of specialized hardware acceleration through the
Nokia Cloud RAN SmartNIC, which ensures performance parity with purpose-built
RAN environments and delivers an energy-efficient solution for demanding Layer
1 processing. It complements existing network assets, facilitates synergies with
enterprise on-premises clouds, and provides seamless interworking with classical
RANs. [18].

Nokia’s Cloud RAN product uses Kubernetes networking to manage its distributed
architecture (Figure 5), which comprises nodes and clusters interconnected via a
Container Network Interface (CNI). In the current implementation, inter-node com-
munication relies on the traditional Linux networking stack, which, while functional,
introduces latency and inefficiencies that can impact overall system performance.

Figure 5: This figure illustrates the current system architecture, consisting of nodes
and clusters interconnected via CNI. In this implementation, pod-to-pod communica-
tion relies on the traditional Linux networking stack, which introduces latency and
inefficiencies that can affect overall system performance.

As the demand for low-latency, high-efficiency communication in cloud-native
environments grows, Nokia is exploring the adoption of CXL technology to enhance
inter-node messaging (Figure 6). CXL offers a promising alternative by enabling the
creation of high-speed CXL socket connections that effectively bypass the kernel,
reducing latency and improving resource utilization. Integrating CXL into the Cloud

35

RAN product could significantly optimize data transfer and scalability, aligning with
the evolving requirements of next-generation cloud-based networks.

Figure 6: This figure illustrates the CXL system architecture, where nodes are
connected to a CXL device using the CXL.mem protocol. This approach creates
a CXL socket, enabling pod-to-pod communication entirely within user space. By
bypassing the transition into kernel space, this method reduces latency, lowers CPU
overhead, and improves overall network performance.

The current Linux networking stack used by Cloud RAN relies on transitioning
between user space and kernel space when communication between pods is required
(Figure 7). This involves copying data from user space into kernel space for processing,
which introduces additional latency and consumes CPU resources, especially in
scenarios involving high-frequency or large-volume pod-to-pod communication. As
Cloud RAN systems scale and the demand for low-latency, high-efficiency networking
increases, this traditional approach becomes a bottleneck.

A promising future alternative involves leveraging CXL technology to establish a
CXL socket, enabling pod-to-pod communication to occur entirely within user space
(Figure 8). This paradigm would eliminate the need for data to transition into kernel
space, thereby reducing latency, minimizing CPU overhead, and optimizing the overall
performance of the networking stack. By bypassing the kernel entirely, a CXL-based
approach not only streamlines the data path but also aligns with the growing need for
high-performance, scalable networking solutions in modern cloud-native architectures.

36

Figure 7: This figure illustrates Pod-to-Pod communication, showing how packets
are transmitted through the IP stack in kernel space. In this traditional approach, pods
rely on the kernel networking stack to send and receive packets between them.

Figure 8: This figure illustrates Pod-to-Pod communication with CXL, demonstrating
how CXL enables the creation of a CXL socket connection within user space. By
using CXL, packets can bypass kernel space, improving communication efficiency
between pods.

37

4.3 Messaging in communication networking
This section explores key technological advancements in modern computing, focusing
on microservices, container network interfaces (CNI), Kubernetes networking, and
innovations in Linux networking stacks. It examines the principles of microservices
architecture, emphasizing modularity, scalability, and decentralized data management,
alongside messaging paradigms crucial for their operation. The discussion transi-
tions into the role of CNIs in containerized environments, contrasting approaches
like Docker’s CNM and Kubernetes-supported CNI, and highlighting their impact
on efficient container orchestration. Kubernetes is presented as a robust platform
that leverages CNIs to optimize resource utilization and ensure seamless inter-Pod
communication. The limitations and challenges of traditional Linux networking stacks
are analyzed, particularly in the context of high-speed and low-latency demands,
showcasing the evolution of network processing techniques like kernel bypassing
and frameworks such as DPDK. Together, these advancements highlight the synergy
between emerging technologies in cloud-native and networking domains, offering
insights into scalability, performance optimization, and operational efficiency.

4.3.1 Microservices and Messaging

While the core concepts behind microservices, such as dividing services into functions
that communicate through programming interfaces, are not new, recent advancements
in cloud computing have allowed these principles to be extended in novel ways. The
cloud has facilitated rapid, flexible, and scalable implementations of microservices,
evolving beyond the traditional, rigid approaches of Service-Oriented Architectures
(SOA). This evolution is driven by the demand for interchangeable and adaptable
components that leverage the inherent advantages of cloud infrastructure. [19].

Microservices architecture emphasizes modularity, scalability, and decentraliza-
tion, allowing for a more flexible and maintainable approach to software development.
As discussed in [20], one of its core principles is the decomposition of a system into
small, independent components, each referred to as a microservice. These microser-
vices encapsulate all the resources, such as business logic and data, necessary for their
functionality, enabling them to operate autonomously. This modular design allows
for easier deployment, replacement, and modification of individual services without
affecting the rest of the system. By structuring services in this way, microservices
facilitate a more agile development process, where updates and improvements can be
made incrementally, enhancing the system’s overall adaptability and scalability.

Another key characteristic of microservices is that they are typically organized
around business capabilities rather than technical layers. Each microservice is
responsible for a specific business function, such as managing a shopping cart or
handling payment processing, and encapsulates all related functionalities and data
within its scope. This organizational model aligns with the structure of business
operations, making it easier to scale specific services based on demand or changes in
business requirements. This approach also promotes the autonomy of development
teams, as each team can focus on building and maintaining a specific service without

38

the need for constant coordination with other teams. This reduces dependencies and
increases the efficiency of development and deployment processes.

Data management in microservices is also decentralized, with each microservice
handling its own data storage and management. Unlike traditional centralized databases,
where data is shared across multiple components, each microservice maintains its
own data model and storage solution. This allows each service to select the most
appropriate storage technology, whether it be a relational database, file system, or
other data storage mechanisms. While this decentralized data management introduces
complexities, such as managing distributed transactions, it provides greater flexibility
and enables services to operate independently, further enhancing the scalability and
resilience of the overall system.

In microservices architecture, messaging plays a critical role in enabling communi-
cation between services. Microservices are considered "smart endpoints" because they
encapsulate all necessary resources for their functionality. These endpoints communi-
cate via messaging, which is typically asynchronous and lightweight. Microservices
use lightweight message buses like ZeroMQ for simple, reliable communication. This
decoupling of the service logic from the messaging mechanism enhances the flexibility
and longevity of the services.

The "dumbness" in microservices refers to the minimal role of the message bus.
Microservices use RESTful protocols, allowing for decentralized and choreographed
service interactions, focusing on message-passing without requiring extensive middle-
ware, which improves scalability and reduces complexity. [20].

4.3.2 Container Network Interface

As the number of cloud-deployed applications grows, the overhead associated with
virtualization remains a significant concern [21]. Traditional virtual machines (VMs)
rely on virtualized hardware and require a complete operating system (OS) instance,
which results in a large footprint. This limitation reduces the number of VMs that
can be consolidated on a single physical machine, and the prolonged OS startup time
renders VMs inefficient for hosting short-lived applications. In contrast, container-
based virtualization mitigates these challenges by sharing OS libraries and the kernel
among applications, each operating within an isolated namespace, or container.

As container adoption expands across various sectors and the scale of containerized
applications continues to increase, there is a growing demand for a standardized
container network specification. Currently, two main standards for container network
interfaces exist. The Container Network Model (CNM), proposed by Docker, consists
of modules such as sandbox, network, and endpoints, and has been adopted by
organizations like VMWare and Weave. In contrast, the Container Network Interface
(CNI), a community-driven standard developed by Google and CoreOS, offers a
more streamlined and flexible design. CNI is supported by platforms such as Apache
Mesos and Kubernetes. Additionally, several open-source projects, such as Calico, are
compatible with both standards. [21].

39

4.3.3 Kubernetes CNI

Nokia uses Kubernetes which is the leading container orchestration platform used by
cloud service providers (CSPs) to optimize cloud resource utilization [22]. It offers
the flexibility to run various containerized cloud applications on both physical and
virtual cloud infrastructures. In Kubernetes, the "Pod" represents the fundamental
unit for deployment, scaling, and management, containing one or more containers
that share resources such as networking. Pods can be dynamically scaled to meet
workload demands and ensure resilience. The increasing adoption of microservices
and function-as-a-service architectures requires the support of numerous containers
and efficient communication between them. To meet these demands, Kubernetes
automates, scales, and secures its orchestration and networking processes for large-
scale deployments. The platform utilizes the Container Network Interface (CNI) as
the foundation for its networking, assigning each Pod a unique IP address for cluster
communication. CNI plugins manage inter-Pod communication and various network
operations.

Kubernetes networking relies on both Linux and Kubernetes namespaces, which
serve distinct purposes. Linux network namespaces provide network isolation for
each Pod, allowing independent operation from the host and other Pods. In contrast,
Kubernetes namespaces facilitate the division of a physical cluster into multiple virtual
clusters, promoting flexible resource management and network policy application.
While these namespaces are not fully isolated, they help allocate resources and
implement network policies across different user workloads. [22].

The Kubernetes networking model addresses four types of communication: intra-
Pod (within a Pod), inter-Pod (between Pods), Service-to-Pod, and external-to-service
communication. Kubernetes specifies the network model but relies on CNI plugins
for implementation, with key requirements being IP addressability of Pods and
communication without network address translation (NAT). Popular CNI plugins
include Flannel, Weave, Calico, Cilium, and Kuberouter. Kubernetes Network Policy
allows for traffic control and isolation, enforcing rules for ingress and egress traffic and
determining which Pods can communicate with each other. Once a policy is applied,
unapproved traffic is blocked, providing fine-grained control over network interactions.
[23].

4.3.4 Linux Network messaging

The slowdown of Moore’s Law, the end of Dennard scaling, and the rapid adaptation of
high-bandwidth links have placed traditional host network stacks under considerable
strain [24]. Over recent years, while datacenter access link bandwidth and the
associated computational demands for packet processing have increased by 4 to 10
times, technological advancements in critical host resources—such as CPU clock
speeds, core counts, cache sizes, and NIC buffer capacities—have remained relatively
stagnant. Consequently, the challenge of designing CPU-efficient host network stacks
has gained prominence. To address this issue, the research community has proposed a
variety of solutions, including optimizations to the Linux network stack, hardware

40

offloading techniques, Remote Direct Memory Access (RDMA), clean-slate userspace
network stacks, and specialized host networking hardware. However, a comprehensive
understanding of the CPU inefficiencies in traditional Linux network stacks is essential
to inform the design space for these solutions. This task is inherently complex due to
the size and intricacy of the Linux network stack, which consists of numerous tightly
integrated components forming an end-to-end packet processing pipeline.

The Linux network stack (Figure 9) has distinct data paths for the sender-side
(from application to NIC) and the receiver-side (from NIC to application). It tightly
integrates multiple components into a unified, end-to-end packet processing pipeline.
In the context of the kernel space having three layers—Transport (L4), Networking
(L3), and Data Link (L2)—the sender and receiver processes can be described as
follows:

Figure 9: This figure illustrates the architecture of the Linux networking stack,
describing how application data packets travel through user space, kernel space, and
the network interface card. The figure highlights the flow of packets as they pass
through Layer 2, Layer 3, and Layer 4 of the Linux networking stack, demonstrating
the processing steps involved in packet transmission and reception.

When an application issues a write system call, the Transport Layer (L4) initiates
the creation of socket buffers (SKBS), which act as containers for packet data. The
kernel copies data from the userspace buffer into these skbs in the Network Layer
(L3). The TCP/IP protocols in this layer handle the segmentation of skbs into smaller
chunks, typically sized according to the Maximum Transmission Unit (MTU). This
process uses a feature called Generic Segmentation Offload (GSO), optimizing the

41

handling of large data blocks. Once segmented, the skbs are passed to the Data
Link Layer (L2), where the data is prepared for physical transmission. The skbs are
placed in the transmit (Tx) queue of the Network Interface Card (NIC) driver, awaiting
transmission. Using Direct Memory Access (DMA), the NIC fetches the packet data
directly from the kernel buffers without additional CPU intervention, ensuring efficient
communication between the kernel and the hardware.

On the receiving end, when a packet arrives, the Data Link Layer (L2) is first
engaged. The NIC, equipped with receive (Rx) queues and memory buffers, transfers
incoming frames from the network to kernel memory using DMA. The NIC then
signals the driver through interrupts, allowing the CPU to process the new data. NAPI
polling is triggered to efficiently process incoming frames in bursts, reducing the
overhead of frequent interrupts. The driver allocates SKBS to hold the incoming
packet data. In the Network Layer (L3), protocols like IP handle the packet’s routing
and other layer 3 operations. To optimize performance, SKBS may be merged through
Generic Receive Offload (GRO) or its hardware counterpart, Large Receive Offload
(LRO), which reduces the number of packets that need processing. Finally, the
Transport Layer (L4) takes over for any remaining processing, such as ensuring proper
TCP sequencing. The SKBS are then delivered to the application’s receive queue.
Data copying between the kernel and userspace occurs only once, with the kernel
operations being optimized by manipulating metadata and pointers to the skbs, avoiding
unnecessary data duplication. [24].

The Linux network stack is optimized for general-purpose networking, supporting
a range of protocols like IPv4, IPv6, TCP, and UDP, and functions well for applications
requiring up to 1 Gbit/s [25]. However, it struggles to maintain performance at
higher speeds, such as 10 Gbit/s, where packet loss becomes a problem due to system
limitations. The primary bottleneck is the CPU, which has limited cycles per second.
The more CPU cycles consumed per packet, the fewer packets can be processed,
restricting throughput.

Additionally, memory management introduces further inefficiencies. Per-packet
memory allocation and deallocation, the complexity of the sk_buff data structure, and
multiple memory copies all contribute to significant CPU overhead. These design
choices make the Linux network stack suitable for general use but not for high-speed
packet processing. To address these challenges, specialized frameworks—discussed in
later sections—introduce optimizations to reduce CPU cycles per packet and improve
memory handling, enabling higher-speed network applications. [25].

In the Linux networking stack, latency refers to the time delay experienced by
a network packet as it travels through the stack from the source to the destination
[26]. It states the time taken for a packet to be processed by the operating system’s
network layers (both in the kernel and user space) and the physical network interface,
along with the time spent traversing the network to its destination. Latency operates
independently from throughput, meaning that increasing throughput—by processing
or sending more messages—does not inherently reduce latency. The significance
of latency varies by application. Latency-sensitive applications face performance
degradation when resources stall while awaiting data from the network. If no other
threads can be scheduled during this wait, the application is considered latency-

42

dependent. In contrast, applications that can mask latency by scheduling multiple
threads shift toward a throughput-oriented approach. However, spawning many threads
to hide latency may reduce system efficiency due to increased overhead from context
switching, thread migration, and contention for shared resources.

A significant portion of TCP/IP latency arises from the software interface, where
the asynchronous nature of communication requires the receiving node to interrupt a
processor and identify the appropriate application through protocol stacks. This leads
to context switching and data copying before the message is processed, introducing
delays. Additionally, techniques like interrupt moderation, used by NICs to reduce
processing overhead, can further add to latency by batching packets, even if some
packets are more latency-sensitive than others.

TCP/IP has much higher latency than hardware-based protocols like Infiniband
and Myrinet because TCP/IP relies heavily on software for packet handling, including
packetization, segmentation, reassembly, and data movement. In contrast, Infiniband
and Myrinet perform these tasks directly in hardware, allowing data to be delivered
straight to user space without requiring transitions between kernel space and user
space or costly memory copies. This hardware-based approach significantly reduces
latency compared to TCP/IP’s software-intensive process. [26].

4.3.5 Kernel by-pass and Dataplane Development Kit

Between 2010 and 2012, researchers introduced methods to use static, pre-allocated
buffers with minimal metadata for common packet operations, such as IPv4 packet
forwarding. A key innovation in these systems was the move to perform all packet
processing in user space, bypassing the traditional operating system stackby transferring
packets directly between the NIC and user space. These approaches also utilized
batching techniques for system calls and device access, with a write barrier preceding
them. This research led to the development of general frameworks for fast user-space
packet I/O, such as netmap and The Data Plane Development Kit (DPDK). [27].

DPDK (Figure 10) is designed to improve packet processing performance by
bypassing the traditional Linux network stack [25]. It allows applications to directly
interact with network hardware, avoiding the overhead of kernel-based packet handling.
DPDK operates in user space, using techniques such as polling (instead of interrupts)
and zero-copy mechanisms to minimize delays and maximize throughput.

Unlike the Linux network stack, which relies on context switches, system calls,
and memory copies between kernel and user space, DPDK maps network hardware
resources directly into user space, enabling faster packet processing. This approach
significantly reduces latency and CPU overhead, making DPDK ideal for high-
performance networking environments like telecommunications, data centers, and
real-time processing systems. [25].

43

Figure 10: This figure illustrates the architecture of DPDK Kernel Bypass, showing
how DPDK improves packet processing performance by bypassing the traditional
Linux network stack. By operating in user space, DPDK enables applications to
directly interact with network hardware, eliminating the overhead associated with
system calls, context switches, and kernel-based packet handling, resulting in lower
latency and higher throughput.

44

5 Techno-Economic Analysis
This section examines a techno-economic analysis of CXL-enabled networking stacks.
It introduces a Total Cost Model that breaks down costs into different parts, such
as CPU processing, memory access, network overhead, power consumption, and
hardware costs. Unlike traditional models, this approach considers real-world factors
like caching inefficiencies and power consumption changes to provide a more accurate
cost analysis. The section also explores performance models, focusing on how CXL
affects Round-Trip Time (RTT) and data throughput. Example simulations compare
systems with and without CXL, showing how it can improve efficiency. Finally,
the section looks at practical use cases, such as memory pooling and multi-tenancy,
demonstrating how CXL helps optimize resource utilization and scalability. By
combining cost, performance, and real-world use cases, this section provides an
understanding of the benefits of CXL.

5.1 Total Cost Model
The Total Cost Model provides a comprehensive framework for evaluating the eco-
nomic impact of CXL-enabled networking stacks by breaking down costs into specific,
measurable components. Unlike traditional CapEx and OpEx models, which aggregate
costs into broad categories, this approach incorporates granular elements such as CPU
processing, memory access, network overhead, power consumption, and hardware
acquisition and maintenance costs. By integrating these components, along with
non-linear dynamics such as caching inefficiencies, network congestion, and power
utilization under varying workloads, the model offers a detailed and realistic repre-
sentation of real-world system costs. Moreover, it directly links costs to performance
metrics like round-trip time (RTT) and bandwidth efficiency, enabling a focused
comparison between CXL-enabled systems and traditional Linux kernel stacks. This
method not only highlights the cost savings and performance benefits introduced by
CXL but also provides a flexible and adaptable framework for evaluating its advantages
across diverse scenarios.

The total cost (𝐶total) of a CXL enabled networking stack, presented in Figure 8,
can be modeled as the sum of multiple cost components: CPU processing costs,
memory access costs, network overhead costs, power consumption costs, and hardware
acquisition and maintenance costs. This model allows for a direct comparison with the
costs of a traditional Linux kernel networking stack, incorporating both the advantages
introduced by CXL and the inherent inefficiencies of kernel-mediated operations.

𝐶total = 𝐶cpu + 𝐶memory + 𝐶network + 𝐶power + 𝐶hardware

Non-linearities arise in several cost components. The CPU cost (𝐶cpu) is determined
by the processing time per packet (𝑇cpu), the CPU utilization (𝑈cpu), and the cost
per CPU cycle (𝐶cycle). For larger packet sizes, the cost grows quadratically due to
increased computational complexity such as fragmentation, modeled as:

45

𝐶cpu = 𝑇cpu ·𝑈cpu · 𝐶cycle ·
(︄
1 + 𝛼cpu ·

(︃
𝑆

𝑆max

)︃2
)︄
,

where 𝛼cpu is a scaling factor for non-linear effects, 𝑆 is the packet size, and 𝑆max is a
normalization constant.

Memory access costs (𝐶memory) are influenced by the number of packets processed
(𝑁packets), the probability of cache hits (𝑃cache), and the costs of accessing cache and
DRAM (𝐶cache and 𝐶dram, respectively). Cache hit probability decreases exponentially
with increasing packet size due to reduced caching efficiency:

𝑃cache(𝑆) = 𝑃base · 𝑒−𝑆/𝑆max ,

where 𝑃base is the base cache hit probability, and 𝑆max is a scaling parameter. Memory
cost is then calculated as:

𝐶memory = 𝑁packets · (𝑃cache · 𝐶cache + (1 − 𝑃cache) · 𝐶dram) .
Network overhead costs (𝐶network) grow non-linearly due to retransmissions and
congestion. This behavior is captured using a power-law relationship between packet
size and transmission cost:

𝐶network =
𝑁packets · RTT

𝐵link
· 𝐶transmission ·

(︃
𝑆

𝑆ref

)︃ 𝛽
,

where RTT is the round-trip time, 𝐵link the link bandwidth, 𝐶transmission the cost per
transmitted packet, 𝑆ref a reference size, and 𝛽 an exponent capturing the severity of
non-linearity.
Power consumption costs (𝐶power) exhibit non-linear growth due to inefficiencies at
higher system utilization, modeled as:

𝐶power =
(︁
𝑃cpu · 𝑇cpu + 𝑃memory · 𝑇memory + 𝑃nic · 𝑇network

)︁
·
(︂
1 + 𝛼power ·𝑈2

)︂
,

where 𝑃cpu, 𝑃memory, and𝑃nic denote the power consumption rates of the CPU, memory,
and NIC, respectively; 𝛼power is a scaling factor for inefficiency; and 𝑈 is system
utilization. Finally, hardware costs (𝐶hardware) include acquisition and maintenance
expenses, with savings from CXL factored in:

𝐶hardware = 𝐶base + 𝐶maintenance − Savings due to CXL.
By summing these components, the total costs for CXL-enabled and traditional
networking stacks are expressed as:

𝐶total,CXL = 𝐶cpu,CXL + 𝐶memory,CXL + 𝐶network,CXL + 𝐶power,CXL + 𝐶hardware,CXL,

𝐶total,base = 𝐶cpu,base + 𝐶memory,base + 𝐶network,base + 𝐶power,base + 𝐶hardware,base.

46

The relative cost improvement can then be evaluated as:

Δ𝐶 =
𝐶total,base − 𝐶total,CXL

𝐶total,base
× 100%.

By integrating non-linear behaviors into the cost model, this framework accurately
reflects real-world inefficiencies and advantages. CXL’s ability to reduce CPU
overhead, improve cache efficiency, and lower active power consumption results in
significant cost savings and performance improvements over traditional networking
stacks.

5.2 Performance models
Next, we examine performance models for CXL-enabled systems, focusing on its
impact on Round-Trip Time (RTT) and throughput. RTT is modeled as the sum of CPU
processing, memory access, and network transmission latencies, with CXL reducing
CPU and memory latencies via kernel bypass and increased memory bandwidth. The
throughput model evaluates data handling capacity, showing how CXL’s enhance-
ments to memory bandwidth and CPU efficiency sustain higher rates even for larger
packet sizes. Simulations compare baseline and CXL-enabled systems under varying
packet sizes, demonstrating significant performance improvements in both RTT and
throughput. Compact visualizations illustrate CXL’s ability to optimize latency and
maximize throughput in high-performance networking environments.

5.2.1 Round-Trip Time (RTT) modeling

A mathematical simulation model for CXL in Latency and Round-Trip Time (RTT)
modeling focuses on quantifying how CXL’s memory access optimizations (like
kernel bypass and high-speed direct memory access) impact the overall latency and
round-trip communication time between endpoints, such as pods or containers in a
distributed environment. We use available bandwidth instead of theoretical bandwidth
because it reflects the actual portion of memory bandwidth that can be utilized by
an application or process under real-world conditions. While theoretical bandwidth
represents the maximum achievable rate under ideal scenarios, it does not account
for factors like hardware contention, system overhead, inefficient memory access
patterns, and workload-specific characteristics, which reduce the bandwidth effectively
accessible to the application. By focusing on available bandwidth, especially in
memory-intensive tasks, we can accurately model and optimize performance, identify
bottlenecks, and assess improvements such as those enabled by technologies like CXL,
which reduce kernel overhead and increase the fraction of bandwidth accessible to
applications.

The generic RTT is composed of three components:

RTTtotal = 𝐿cpu + 𝐿memory + 𝐿network (3)

The generic equation for RTT describes the fundamental components of processing,
memory access, and network latency (Table 6). With the introduction of CXL, the

47

Table 6: Latency Parameters in the RTT Model.

Parameter Definition Formula

𝐿cpu CPU processing latency per packet -
𝐿memory Memory access latency per packet,

dependent on available memory
bandwidth

-

𝐿network Network transmission latency -
𝐿memory Memory latency calculated from packet

size and available memory bandwidth

packet size
𝐵available

mem

latency characteristics change due to the improved efficiency of memory access and
CPU processing. To reflect these CXL-specific changes, we introduce two reduction
factors, 𝛼 and 𝛽. They represent the decrease in CPU processing time and memory
access time, respectively. The RTT equation for CXL (5) uses these factors, showing
how CXL accelerates packet processing by reducing both CPU and memory-related
delays. Specifically, the CPU processing time is scaled by (1 - 𝛼), and the memory
access time is scaled by (1 - 𝛽). Also, the CXL system has its own variable for available
memory bandwidth (Table 7).

RTTCXL = (1 − 𝛼) · 𝐿cpu + (1 − 𝛽) · 𝐿memory + 𝐿network (4)

RTTCXL = (1 − 𝛼) · 𝐿cpu + (1 − 𝛽) · packet size
𝐵

available,CXL
mem

+ 𝐿network (5)

Table 7: CXL-Specific Parameters in the RTT Model.

Parameter Definition Formula

𝛼 Reduction factor for CPU processing time -
𝛽 Reduction factor for memory access time -
𝐵available

mem, CXL Available memory bandwidth with CXL -
(1 − 𝛼) · 𝐿cpu Reduced CPU processing time -
(1 − 𝛽) · 𝐿memory Reduced memory access time with CXL (1 − 𝛽) · packet size

𝐵
available,CXL
mem

Next, we create a simulation model for CXL in the context of RTT. This simulation
is a performance modeling exercise designed to assess and quantify the impact of
CXL on the latency and round-trip time of network communication. This simulation
aims to illustrate how CXL can optimize communication between nodes, such as pods
or containers in distributed environments, by reducing the latency involved in CPU
processing and memory access.

The simulation can be categorized as performance modeling and comparative
analysis. It uses mathematical equations to represent RTT in a network communication

48

setup, allowing us to see how CXL affects key components of latency. The RTT
is modeled as the sum of CPU processing time, memory access time, and network
transmission time. By introducing reduction factors specific to CXL-enabled environ-
ments, the simulation clearly compares systems that use traditional kernel-mediated
memory access and those that leverage CXL’s enhanced memory capabilities.

The main objective of this simulation is to break down and analyze RTT into its core
components and to demonstrate how CXL influences each. The components include
CPU processing time, memory access time, and network transmission latency. In a
typical network setup, memory access and CPU processing can contribute significantly
to overall latency, especially in memory-bound or CPU-intensive applications. By
reducing the processing load on the CPU and allowing direct memory access, CXL
can reduce these components, leading to lower RTTs. This comparative analysis helps
visualize the potential performance benefits CXL brings to network communication.

The simulation calculates RTT for a range of packet sizes in two scenarios: one
without CXL and one with CXL. It uses baseline values for CPU time, memory
bandwidth, and packet size to calculate 𝑅𝑇𝑇𝑛𝑜𝐶𝑋𝐿 and 𝑅𝑇𝑇𝐶𝑋𝐿 (all parameters are
listed in Table 8). By adjusting the reduction factors 𝛼 and 𝛽 , as well as comparing
different bandwidths, the simulation shows how CXL’s kernel bypass and high-speed
memory access capabilities reduce latency in memory-intensive applications. This
comparative analysis helps illustrate that CXL-enabled systems can handle larger data
transfers more efficiently and maintain lower latency even as packet size increases.

Table 8: Parameters used in RTT-simulation.

Parameter Definition Value in Simulation
𝐿cpu Baseline CPU processing time 0.5 ms
𝐵available

mem Baseline memory bandwidth without CXL 20 GB/s
𝐵

available,CXL
mem Memory bandwidth with CXL 40 GB/s

𝐿network Baseline network latency 1 ms
Packet size Range of packet sizes 500 bytes to 5mb
𝛼 CPU processing reduction factor with

CXL
0.3

𝛽 Memory access reduction factor with
CXL

0.4

49

Figure 11: Round-Trip Time (RTT) Comparison with and without CXL (up to 5000
bytes)

Figure 12: Round-Trip Time (RTT) Comparison with and without CXL (up to 5MB)

The output of the simulation includes plots showing how RTT scales with packet
size. Without CXL, RTT increases more steeply as packet size grows due to limitations
in memory bandwidth and increased CPU processing load. However, with CXL,
the RTT curve grows more slowly, indicating reduced latency. This is because the
enhanced memory bandwidth provided by CXL reduces the 𝐿𝑚𝑒𝑚𝑜𝑟𝑦 component, and
kernel bypass reduces the 𝐿𝑐𝑝𝑢 component.

50

While CXL primarily impacts 𝐿𝑐𝑝𝑢 and 𝐿𝑚𝑒𝑚𝑜𝑟𝑦 , its indirect influence on
𝐿𝑛𝑒𝑡𝑤𝑜𝑟𝑘 comes from reducing queuing delays (𝐿𝑞𝑢𝑒𝑢𝑒) and minimizing retransmis-
sions (𝐿𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛). Faster packet processing and memory access reduce queueing
backlogs and improve overall network efficiency, indirectly reducing network-related
delays.

The output of the simulation includes plots showing how RTT scales with packet
size. Without CXL, RTT increases more steeply as packet size grows due to limitations
in memory access delay (𝑀) and increased CPU processing delay (𝐶). However, with
CXL, the RTT curve grows more slowly, indicating reduced latency. This is because
the enhanced memory bandwidth provided by CXL reduces 𝑀, and kernel bypass
reduces 𝐶.

While CXL primarily impacts CPU processing delay and memory access delay, it
also indirectly influences network delay by reducing queuing delay (𝑄) and minimizing
retransmission delay (𝑅). Faster packet processing and memory access lower queuing
backlogs and improve overall network efficiency, which indirectly reduces network-
related delays.

The earlier model of RTT (5) can be extended by breaking down network delay
into its components: propagation delay (𝑃), transmission delay (𝑇), queuing delay
(Q), network processing delay (𝑋), and retransmission delay (𝑅). This refined model
accounts for how data packets experience latency at various stages of the network, from
the physical transmission of signals to delays caused by congestion, device processing,
and packet retransmissions. By substituting network delay with its expanded formula,
the model becomes:

RTTtotal = 𝐶 + 𝑀 + (𝑃 + 𝑇 +𝑄 + 𝑋 + 𝑅), (6)

providing a more detailed understanding of RTT and enabling a granular analysis
of how CXL’s optimizations, such as reduced queueing delays and lower retransmission
rates, indirectly enhance network latency. All variables used are listed in Table 9. This
extended model serves as a framework for evaluating both direct and indirect effects
of CXL on system performance.

Table 9: Definitions of variables in the extended version of RTT.

Variable Definition

C CPU processing delay
M Memory access delay
P Propagation delay
T Transmission delay
Q Queuing delay
X Processing delay
R Retransmission delay

51

5.2.2 Throughput Model

To simulate CXL’s effect on data throughput, we need to model how CXL impacts
the system’s ability to process and transmit data efficiently. Throughput, typically
measured in packets per second or bits per second, depends on factors such as memory
bandwidth, CPU processing capabilities, and network transmission speed. By enabling
kernel bypass and high-speed direct memory access, CXL can significantly enhance
throughput by reducing CPU overhead and increasing memory bandwidth.

Throughput (𝑇throughput) depends on memory bandwidth, CPU processing capabil-
ities, and network transmission speed. We define throughput as:

𝑇throughput = min
(︃

𝐵mem
packet size

, 𝑇CPU, 𝑇network

)︃
. (7)

The parameters in the throughput model are defined in Table 10.

Table 10: Parameters used in the throughput model.

Parameter Definition

𝐵mem Available memory bandwidth (in bytes per second)
𝑇CPU Maximum packet processing rate determined by CPU capabilities
𝑇network Maximum network transmission rate

CXL improves 𝐵mem and 𝑇CPU by enabling direct memory access and reducing CPU
processing load. This results in higher throughput due to:

• Increased memory bandwidth: Faster memory access.

• Reduced CPU load: Kernel bypass reduces CPU cycles needed for packet
handling.

The simulation we are conducting next is a performance modeling and comparative
analysis aimed at evaluating how CXL impacts data throughput in a networked
system. This type of simulation helps quantify the improvements in data handling
capabilities introduced by CXL, focusing on two main enhancements: increased
memory bandwidth and reduced CPU processing overhead. By simulating both
baseline (without CXL) and CXL-enabled scenarios, we can observe the potential
performance gains in terms of data throughput and understand CXL’s practical benefits
in high-performance environments.

This simulation is best described as a deterministic analysis. It uses fixed input
parameters, such as memory bandwidth, CPU processing rate, and network rate, to
produce predictable outcomes (Table 11). The objective is to determine the maximum
achievable throughput under specific conditions and compare it between a traditional
setup and a CXL-enhanced system. Additionally, it is a comparative analysis because it
focuses on contrasting two states: a baseline without CXL and an improved state with
CXL. This comparison highlights how CXL’s features can boost system performance
by providing better memory bandwidth and reducing CPU load.

52

The simulation is structured as a theoretical model that assumes ideal conditions for
demonstrating potential throughput gains. It does not incorporate real-world network
variability such as congestion, packet loss, or other system-specific overheads. Instead,
it isolates key factors like memory access time and CPU processing capabilities to
show how CXL technology can improve these metrics. While real-world applications
may show slightly different results due to external factors, this model provides a clear
and controlled environment to visualize the fundamental advantages of CXL.

CXL can significantly improve throughput by enabling direct memory access
and reducing CPU workload. These improvements translate into higher available
memory bandwidth and faster data handling. In practical terms, this means that data
can be processed more efficiently, especially when handling larger packet sizes. The
simulation models this by applying increased memory bandwidth and improved CPU
processing rates to a CXL-enabled system. By comparing these with the baseline
values, we can see how much more data the system can handle per unit of time with
CXL.

Table 11: Parameters used in throughput simulation.

Parameter Definition Value in Simulation

𝐵noCXL
mem Baseline memory bandwidth 20 GB/s

𝐵CXL
mem CXL-enabled memory bandwidth 40 GB/s

Packet size Range of packet sizes 500 to 50,000 bytes
𝑇CPU CPU processing rate (without/with CXL) 5M / 8M packets/s
𝑇network Network packet processing rate 10M packets/s

53

Figure 13: Simulation of data Throughput Comparison with and without CXL. This
displays how the throughput decreases when packet size grows larger.

The results of the simulation (Figure 13) should show that without CXL, throughput
is lower, especially for larger packet sizes where memory access time becomes the
limiting factor. In contrast, the CXL-enabled scenario should demonstrate improved
throughput due to increased memory bandwidth and reduced CPU load. This means
that with CXL, the system can handle more data per second, allowing for more efficient
processing of large packet sizes and enhancing overall performance.

5.3 Use Cases
This section explores the potential of CXL focusing on two key use cases: memory
pooling and multi-tenancy. CXL’s ability to decouple memory from compute resources
enables shared memory pools that optimize resource utilization, reduce costs, and
improve scalability. In multi-tenant environments, CXL facilitates dynamic allocation
of memory resources across multiple workloads, enhancing performance isolation
and enabling flexible resource provisioning.

5.3.1 Memory Pooling

Memory pooling, or memory disaggregation, enables sharing memory resources
across multiple systems to improve utilization, elasticity, and resource management
efficiency. By decoupling memory from individual compute nodes, it allows memory
to be dynamically allocated based on real-time demands, reducing inefficiencies and
overprovisioning. [28].

Memory pooling addresses the challenge of memory stranding, where memory
remains unused because other resources, such as CPU cores, have been exhausted.

54

This imbalance often arises in cloud environments due to the difficulty of precisely
matching cluster configurations to the diverse and fluctuating resource demands of
applications. By disaggregating memory and pooling it through technologies like
CXL, resources can be dynamically reassigned across multiple hosts. This flexibility
eliminates the need to provision each server for worst-case scenarios, optimizing
memory utilization and significantly reducing stranded resources. With CXL, memory
pooling achieves low-latency access and high bandwidth, aligning closely with the
performance of local DRAM, while enabling more efficient and scalable resource
management. [7].

There are two primary methods for managing memory pooling: page-based and
object-based. In the page-based approach, virtual memory techniques are used to
enable seamless access to remote memory without requiring changes to application
code. When a local memory page is unavailable, data is swapped between the host’s
DRAM and remote memory over a network connection, triggered by page faults.
Although practical, this method relies heavily on the traditional memory hierarchy
and suffers from latency due to frequent data movement and cache management. [28].

The object-based approach takes a different path, interacting with remote memory
through custom databases like key-value stores instead of relying on virtual memory
systems. This reduces issues like page faults and context switching but requires
significant modifications to application code and interfaces. Both methods rely on
high-performance network interfaces, such as RDMA, to transfer data between local
and remote memory. However, these transfers introduce redundancies, such as multiple
memory copies and software overhead, resulting in latency that is significantly higher
than local DRAM access. [28].

CXL offers a transformative solution to these challenges. Its cache coherence
capabilities enable it to address the inefficiencies of traditional memory pooling
methods by reducing data movement overhead and improving resource sharing.
By dynamically allocating memory resources with minimal latency, CXL not only
optimizes utilization but also eliminates the need for overprovisioning, lowering
hardware costs. [28].

In a traditional 3-node cluster (Figure 14), each node is equipped with dedicated
memory sized for peak workload demands. This design often results in significant
memory over-provisioning, as each node must independently account for workload
spikes, leaving unused memory resources stranded during normal operations.

55

Figure 14: Capacity requirements for a 3-node cluster, displaying that in a traditional
architecture, each node must be designed to handle the peak workload independently,
ensuring system stability under maximum demand.

CXL-enabled memory pooling transforms this model by decoupling memory from
individual nodes and enabling all three nodes to access a shared pool of memory. This
approach ensures that memory resources are dynamically allocated based on actual
workload demands, reducing the total capacity required to maintain performance
across the cluster.

For example, consider a scenario where each node typically uses 32 GB of memory
but is provisioned with 128 GB to handle peak loads. In a traditional setup, the total
memory capacity across the cluster would be 384 GB (128 GB × 3 nodes). With
CXL-enabled pooling, memory can be centrally managed and allocated dynamically,
allowing the cluster to meet peak demands with a smaller total memory pool. If peak
loads rarely occur simultaneously across all nodes, the cluster might require only 192
GB or less in the pooled memory—potentially a 50% reduction in capacity.

𝐶𝑝𝑒𝑎𝑘 = 128 GB

𝐶𝑛𝑜𝑟𝑚 = 32 GB∑︁
𝐶𝑤𝑖𝑡ℎ𝑜𝑢𝑡
𝑚𝑒𝑚𝑜𝑟𝑦 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 = 𝐶𝑝𝑒𝑎𝑘 + 𝐶𝑝𝑒𝑎𝑘 + 𝐶𝑝𝑒𝑎𝑘 = 384 GB∑︁

𝐶𝑤𝑖𝑡ℎ
𝑚𝑒𝑚𝑜𝑟𝑦 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 = 𝐶𝑝𝑒𝑎𝑘 + 𝐶𝑛𝑜𝑟𝑚 + 𝐶𝑛𝑜𝑟𝑚 = 192 GB

56

Figure 15: Capacity requirements for a 3-node cluster with and without memory
pooling, illustrating the difference in total memory allocation. When memory pooling
is enabled, the required memory is approximately half of that in a traditional 3-node
system, demonstrating the efficiency gained through memory pooling.

This reduction in memory requirements translates to lower costs for hardware
and reduced power consumption, as fewer DIMMs are needed. Additionally, pooled
memory improves flexibility, as any unused capacity can be instantly reallocated to
nodes experiencing temporary spikes in demand, avoiding bottlenecks and improving
overall performance. By eliminating the inefficiencies of fixed memory provisioning,
CXL-enabled memory pooling revolutionizes resource utilization in multi-node
clusters.

5.3.2 Multi-Tenancy

Multi-tenancy is a cloud computing architecture where multiple tenants (users or
organizations) share the same software or infrastructure resources, optimizing resource
utilization and reducing costs. Unlike traditional single-tenant setups, where each
tenant operates a separate, customized instance, multi-tenancy allows all tenants to
use a shared application instance that is configurable to meet their unique needs. This
setup leads to significant hardware resource sharing, as multiple tenants can share
the same software and database instances, reducing the number of instances required
and simplifying updates and maintenance. Multi-tenancy offers high configurability,
enabling tenants to tailor their experience without needing separate instances. Data
management within multi-tenancy can be achieved through methods like database
isolation, schema separation, or shared tables, ensuring data security and separation.
The approach can also involve virtualization or physical separation of resources,
though these are costlier options. Ultimately, multi-tenancy enhances efficiency,

57

lowers costs, simplifies deployment, and creates opportunities for data aggregation and
user behavior analysis, making it a cornerstone of modern cloud computing, especially
in Software as a Service (SaaS) applications. [29].

CXL-enabled memory pooling not only optimizes resource utilization but also
aligns seamlessly with multi-tenancy principles, enhancing the efficiency of shared
infrastructure in multi-tenant environments. In a multi-tenant setup, multiple tenants
(applications or organizations) share the same physical or virtual infrastructure, while
maintaining logical isolation. CXL memory pooling introduces dynamic resource
sharing, enabling the system to allocate memory flexibly based on the actual, aggregated
demand of all tenants. [3]

In a traditional non-pooled setup, each tenant or node might require dedicated
memory provisioned for its peak usage, much like in the described cluster scenario.
This results in substantial over-provisioning and stranded memory resources, as each
tenant’s peak demand is unlikely to coincide with others. For example, if multiple
tenants operate independently on a three-node cluster, each tenant’s workload spike
requires its node’s memory to be fully provisioned, leading to the same inefficiencies
seen in the traditional single-tenant model.

With CXL-enabled pooling, memory is decoupled from individual nodes and
centrally managed. This allows tenants to share a common memory pool, with
the system dynamically allocating resources based on real-time workload demands.
Consider the earlier example where each node is provisioned for a 128 GB peak but
typically requires only 32 GB. In a multi-tenant environment using pooled memory,
tenants can collectively draw from a smaller shared pool, such as 192 GB, because not
all tenants are likely to hit their peak demand simultaneously.

This model has profound implications for multi-tenancy, as it enables more effi-
cient resource sharing and cost reduction by dynamically allocating memory from a
centralized pool based on real-time tenant demands. Instead of provisioning separate,
peak-capacity resources for each tenant, CXL-enabled pooling allows tenants to share
a smaller total memory pool, reducing hardware costs and power consumption while
maintaining performance. It also enhances scalability, as the shared pool can accom-
modate growing workloads or additional tenants without requiring dedicated resources.
Logical isolation ensures data security, aligning with multi-tenancy principles, while
centralized management simplifies maintenance and updates, benefiting all tenants
simultaneously. By addressing inefficiencies and enabling flexible resource allocation,
this model significantly enhances the cost-effectiveness and scalability of multi-tenant
systems. [30],[3].

58

6 Conclusions
This thesis has comprehensively examined the potential of CXL in addressing modern
computing challenges in resource utilization, scalability, and performance optimization.
By leveraging CXL’s capabilities, such as dynamic memory pooling, high-speed
interconnects, and enhanced coherency, significant improvements in system efficiency,
scalability, and cost-effectiveness have been demonstrated.

A key contribution of this work is the development of cost and performance
models that provide a structured framework to evaluate the impact of CXL on system
design and operation. These models quantify key metrics such as memory bandwidth
utilization, CPU overhead reduction, and overall system throughput. Importantly,
the models also incorporate cost dimensions, such as hardware provisioning, power
consumption, and resource efficiency, making them versatile tools for analyzing the
economic implications of CXL adoption.

The cost models are designed to be adaptable, allowing their application to
new interconnect technologies alongside CXL. By focusing on essential metrics
such as memory bandwidth, CPU processing capabilities, and network throughput,
these models can evaluate both existing and upcoming interconnect technologies.
This adaptability provides a robust framework for comparing interconnect solutions,
ensuring their scalability and efficiency.

The research highlights several significant insights about the potential of CXL in
modern computing systems. CXL-enabled memory pooling has proven to be highly
effective in improving resource utilization and scalability by separating memory from
individual compute nodes. This reduces stranded resources and over-provisioning,
leading to significant cost savings; examples demonstrate that memory provisioning
can be reduced by up to 50% in typical multi-node cluster setups. In performance
optimization, the throughput models developed in this thesis reveal that CXL enhances
system performance by increasing memory bandwidth and reducing CPU overhead,
particularly in high-performance and large-scale workloads. The integration of cost
efficiency into these analyses further validates that CXL’s ability to dynamically
allocate resources translates into lower hardware costs, reduced power consumption,
and improved overall system economics.

Additionally, CXL has shown compatibility with multi-tenancy principles, enabling
flexible resource allocation while maintaining logical isolation. This improves the
efficiency of shared infrastructures and reduces operational costs, making it an
important component for cloud computing architectures. Furthermore, the backward
compatibility and continuous advancements of CXL, especially in CXL 3.0, highlight
its scalability for large distributed systems. The introduction of features such as
multi-level switching and fabric capabilities demonstrates its ability to support diverse
applications, including artificial intelligence and data-intensive workloads, solidifying
its role as a key enabler of future computing environments.

59

7 Contributions and Future Directions
This thesis contributes by not only showcasing the advantages of CXL but also
providing a framework for evaluating any upcoming interconnect technology. The cost
and performance models developed serve as a fundamental framework for assessing
the efficiency and economic viability of emerging solutions in memory and compute
architectures.

Future research can use this work by applying these models to evaluate new
interconnect technologies, such as Gen-Z, NVLink. Furthermore, real-world validation
through case studies in hybrid cloud, edge computing, or artificial intelligence
workloads can further refine these models. Investigating integration with non-volatile
memory, disaggregated storage, and advanced coherence protocols will also deepen
our understanding of next-generation system architectures. CXL represents a new shift
in resource management and interconnect technology. Its ability to optimize resource
allocation, improve system performance, and reduce costs makes it a cornerstone of
modern computing. The cost and performance models developed in this thesis provide
a scalable and flexible framework to evaluate not only CXL but also other emerging
interconnects, ensuring that the findings remain relevant as technology evolves. This
adaptability ensures that the models will continue to guide the design and optimization
of future high-performance and distributed computing systems.

60

References
[1] Santhosh Nagaraj Nag. Technical analysis of PCIe to PCIe 6: A next-generation

interface evolution. World Journal of Engineering and Technology, 11(3):504–
525, 2023.

[2] Debendra Das Sharma, Robert Blankenship, and Daniel S Berger. An in-
troduction to the compute express link (CXL) interconnect. arXiv preprint
arXiv:2306.11227, 2023.

[3] Compute Express Link Consortium. Compute Express Link (CXL) Specification,
Revision 3.1 . https://computeexpresslink.org/wp-content/uploa
ds/2024/02/CXL-3.1-Specification.pdf, 2023. Accessed: 2025-01-04.

[4] DD Sharma. Compute Express Link 3.0 . https://www.design-reuse.com
/articles/52865/compute-express-link-3-0.html, 2023. Accessed:
2025-01-04.

[5] Philip Levis, Kun Lin, and Amy Tai. A case against CXL memory pooling.
In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks, pages
18–24, 2023.

[6] Alberto Lerner and Gustavo Alonso. CXL and the return of scale-up database
engines. arXiv preprint arXiv:2401.01150, 2024.

[7] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti,
Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,
et al. Pond: CXL-based memory pooling systems for cloud platforms. In
Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, pages 574–587,
2023.

[8] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, et al. Demystifying
CXL memory with genuine CXL-ready systems and devices. In Proceedings
of the 56th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 105–121, 2023.

[9] Christoph Lameter. Numa (non-uniform memory access): An overview: Numa
becomes more common because memory controllers get close to execution units
on microprocessors. Queue, 11(7):40–51, 2013.

[10] Doaa Bliedy, Sherif Mazen, and Ehab Ezzat. Cost model for establishing
a data center. International Journal of Computer Science, Engineering and
Applications, 8:11–30, 2018.

[11] Jonathan Koomey, Pitt Turner, John Stanley, and Bruce Taylor. A simple model
for determining true total cost of ownership for data centers. Uptime Institute,
2007.

61

https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-Specification.pdf
https://www.design-reuse.com/articles/52865/compute-express-link-3-0.html
https://www.design-reuse.com/articles/52865/compute-express-link-3-0.html

[12] Katsantonis Konstantinos, Mitropoulou Persefoni, Filiopoulou Evangelia, Micha-
lakelis Christos, and Nikolaidou Mara. Cloud computing and economic growth.
In Proceedings of the 19th Panhellenic Conference on Informatics, pages 209–
214, 2015.

[13] Alan Weissberger. Canalys gartner: Ai investments drive growth in cloud
infrastructure spending. Technical report, IEEE ComSoc Technology Blog,
2024.

[14] Svystus Oleksii. How to Achieve Energy Efficiency and Sustainability in Cloud-
Based Solutions. https://tech-stack.com/blog/how-to-achieve-ene
rgy-efficiency-and-sustainability-in-cloud-based-solutions
/, 2023. Accessed: 2025-01-65.

[15] WSP. Cloud Computing Study for Microsoft. https://www.wsp.com/en-g
l/insights/microsoft-cloud-computing-environmental-benefit
-study, 2023. Accessed: 2025-01-65.

[16] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang, Hao Xiang,
Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao, et al. Exploring per-
formance and cost optimization with ASIC-based CXL memory. In Proceedings
of the Nineteenth European Conference on Computer Systems, pages 818–833,
2024.

[17] Suyash Mahar, Ehsan Hajyjasini, Seungjin Lee, Zifeng Zhang, Mingyao Shen,
and Steven Swanson. Telepathic datacenters: Fast RPCs using shared CXL
memory. arXiv preprint arXiv:2408.11325, 2024.

[18] Nokia. Cloud RAN . https://www.nokia.com/networks/mobile-net
works/airscale-radio-access/cloud-ran/.html, 2025. Accessed:
2025-01-04.

[19] Alan Sill. The design and architecture of microservices. IEEE Cloud Computing,
3(5):76–80, 2016.

[20] Dharmendra Shadĳa, Mo Rezai, and Richard Hill. Towards an understanding
of microservices. In 2017 23rd International Conference on Automation and
Computing (ICAC), pages 1–6. IEEE, 2017.

[21] Kun Suo, Yong Zhao, Wei Chen, and Jia Rao. An analysis and empirical study of
container networks. In IEEE INFOCOM 2018-IEEE Conference On Computer
Communications, pages 189–197. IEEE, 2018.

[22] Shixiong Qi, Sameer G Kulkarni, and KK Ramakrishnan. Assessing container
network interface plugins: Functionality, performance, and scalability. IEEE
Transactions on Network and Service Management, 18(1):656–671, 2020.

62

https://tech-stack.com/blog/how-to-achieve-energy-efficiency-and-sustainability-in-cloud-based-solutions/
https://tech-stack.com/blog/how-to-achieve-energy-efficiency-and-sustainability-in-cloud-based-solutions/
https://tech-stack.com/blog/how-to-achieve-energy-efficiency-and-sustainability-in-cloud-based-solutions/
https://www.wsp.com/en-gl/insights/microsoft-cloud-computing-environmental-benefit-study
https://www.wsp.com/en-gl/insights/microsoft-cloud-computing-environmental-benefit-study
https://www.wsp.com/en-gl/insights/microsoft-cloud-computing-environmental-benefit-study
https://www.nokia.com/networks/mobile-networks/airscale-radio-access/cloud-ran/.html
https://www.nokia.com/networks/mobile-networks/airscale-radio-access/cloud-ran/.html

[23] Kubernetes. Kubernetes: Services, Load Balancing, and Networking . https:
//kubernetes.io/docs/concepts/services-networking/#the-kub
ernetes-network-model, 2024. Accessed: 2024-10-08.

[24] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and
Rachit Agarwal. Understanding host network stack overheads. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, pages 65–77, 2021.

[25] Dominik Scholz. A look at Intel’s dataplane development kit. Network
Architectures and Services, 115, 2014.

[26] Steen Larsen, Parthasarathy Sarangam, Ram Huggahalli, and Siddharth Kulka-
rni. Architectural breakdown of end-to-end latency in a TCP/IP network.
International journal of parallel programming, 37:556–571, 2009.

[27] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. Stackmap:
Low-latency networking with the OS stack and dedicated NICs. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16), pages 43–56, 2016.

[28] Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Sangwon Lee, and My-
oungsoo Jung. Memory pooling with CXL. IEEE Micro, 43(2):48–57,
2023.

[29] Isaac Odun-Ayo, Sanjay Misra, Olusola Abayomi-Alli, and Olasupo Ajayi. Cloud
multi-tenancy: Issues and developments. In Companion Proceedings of the10th
International Conference on utility and cloud computing, pages 209–214, 2017.

[30] Hussain AlJahdali, Abdulaziz Albatli, Peter Garraghan, Paul Townend, Lydia
Lau, and Jie Xu. Multi-tenancy in cloud computing. In 2014 IEEE 8th
international symposium on service oriented system engineering, pages 344–351.
IEEE, 2014.

63

https://kubernetes.io/docs/concepts/services-networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/services-networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/services-networking/#the-kubernetes-network-model

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	1 Introduction
	1.1 Motivation to this thesis
	1.2 Main results and findings
	1.3 Structure of the thesis

	2 Compute Express Link (CXL)
	2.1 Motivation for CXL
	2.2 Generations
	2.2.1 CXL 1.0/1.1
	2.2.2 CXL 2.0
	2.2.3 CXL 3.0
	2.2.4 CXL 3.1

	2.3 Protocol types
	2.3.1 CXL.io
	2.3.2 CXL.cache
	2.3.3 CXL.memory

	2.4 Device types
	2.4.1 Type 1
	2.4.2 Type 2
	2.4.3 Type 3

	3 Literature Review
	3.1 Performance Studies - Microsoft Pond
	3.2 Performance Studies - Intel
	3.3 Cost models
	3.3.1 Power Management in CXL
	3.3.2 Power Consumption in Cloud RAN
	3.3.3 Cost Study - Google
	3.3.4 Cost studies - Yale & ByteDance

	4 Message-based communication in Nokia Cloud-RAN
	4.1 Introduction
	4.2 Problem description: From messaging to data sharing
	4.3 Messaging in communication networking
	4.3.1 Microservices and Messaging
	4.3.2 Container Network Interface
	4.3.3 Kubernetes CNI
	4.3.4 Linux Network messaging
	4.3.5 Kernel by-pass and Dataplane Development Kit

	5 Techno-Economic Analysis
	5.1 Total Cost Model
	5.2 Performance models
	5.2.1 Round-Trip Time (RTT) modeling
	5.2.2 Throughput Model

	5.3 Use Cases
	5.3.1 Memory Pooling
	5.3.2 Multi-Tenancy

	6 Conclusions
	7 Contributions and Future Directions

