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Abstract
In this thesis we conduct an exploratory analysis of risk propagation on a network of
vital sectors to a National Emergency Supply Agency. The objective of the National
Emergency Supply Agency is to secure continuity of production and infrastructure
vital to the Finnish society. Mitigating the risk of disruptions and their further
propagation in the network can significantly improve the outcomes for vulnerable
sectors and for the network as a whole.

The analysis of this thesis is based on a survey conducted on behalf of the National
Emergency Supply Agency, in which almost two hundred participants from various
sectors estimated their dependence on other sectors. We use the answers from the
survey to fit continuous distributions of risk propagation for each sector pairs and
simulate the behaviour of the network formed by the sectors in case of disruptions.
Moreover, we discuss the survey itself, and propose improvements to similar future
surveys to facilitate more comprehensive risk assessments of the sector network.

Our results reveal the sectors that are more prone to propagating disruptions and
affect the network the most. Furthermore, we show which disrupted sectors constitute
the greatest risks for specific sectors and give examples on how to analyse the riskiest
chain of disruptive events. In addition, we demonstrate the importance of sectors to
focus their risk prevention strategies also on the least risky sources of propagating
disruptions.
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Tässä työssä tutkimme häiriöiden etenemistä Huoltovarmuusorganisaatiossa, joka
sisältää elinkeinoelämän eri sektoreita. Huoltovarmuuskeskuksen tehtävä on taata yh-
teiskunnalle tärkeiden palveluiden ja infrastruktuurin toimivuus vaikeinakin aikoina.
Tätä tehtävää varten se muun muassa ohjaa ja fasilitoi Huoltovarmuusorganisaatiota,
joka koostuu eri talouden toimialojen kriittisistä yrityksistä. Kun erilaisten häiriöi-
den etenemisestä tässä verkostossa tiedetään enemmän, haitallisia tapahtumia on
helpompi ennaltaehkäistä.

Työn pohjana toimii Huoltovarmuuskeskuksen toimesta teetätetty kysely, johon
osallistui lähes 200 eri alojen asiantuntijaa. Kyselyssä kartoitettiin Huoltovarmuusor-
ganisaation eri sektorien riippuvuussuhteita normaalioloissa ja häiriötilanteissa. Vas-
tausten pohjalta sovitimme jokaiselle sektorien välisille riippuvuussuhteelle todennä-
köisyysjakauman, jonka jälkeen simuloimme toimitusverkostoa eri häiriötilanteissa.

Tulosten avulla voidaan arvioida, millä sektoreilla tapahtuvista häiriöistä voi olla
kokonaistasolla eniten haittaa ottaen huomioon myös sen, mistä häiriö saa alkunsa.
Lisäksi arvioimme, miten yksittäisillä sektoreilla tapahtuvat häiriöt vaikuttavat
toisiin sektoreihin ja ehdotamme parannuksia Huoltovarmuuskeskuksen kyselyyn,
jotta vastaavia analyysejä voidaan tehdä jatkossa kattavammin.

Avainsanat Toimitusverkosto, häiriön eteneminen, simulaatio
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1 Introduction

Peterson Institute for International Economics defined globalization as “the growing

interdependence of the world’s economies, cultures, and populations” (Kolb, 2018).

From 1950, the value of global exports have grown more than thirty-fold as the

volume of trade and number of participating countries have skyrocketed (Ortiz-Ospina

and Beltekian, 2018). The financial crisis across the banking sector that started in

the United States caused a $4.6 billion bailout for Iceland’s government (O’Brien,

2015). The US local labor markets rising exposure to Chinese competition from

1990 to 2007 lead to higher unemployment and lowered wages in the US (Autor

et al., 2013). Both one-way dependencies and two-way interactions occur in the

social-ecological systems as well. Rocha et al. (2018) showed, that on 30 large scale

regime shifts in our ecosystems, 45% of the pairwise regime shift combinations present

at least one plausible structural interdependence. Thus, the world has become more

interconnected than ever before.

A collection of dependencies of a system form a network. Identifying which factors

link to dependencies to form the network can be a challenge. For example, the

uprisings in Arab Spring were accelerated by a complex network of drivers, including
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the extent of non-tax hydrocarbon rents, the nature of the ruling elite and whether

the incumbent had inherited power (Brownlee et al., 2015). However, not all complex

networks are the size of Northern Africa or the Middle East. For example, nuclear

power plants and aircrafts have been modeled as a network of components (Celeux

et al. (2006), Lee et al. (2015), Banghart et al. (2017)).

In a system which consists of multiple components, component failures can cause

distress in other components in the system or even a total system failure. For

example, in 2000, a fire destroyed an electronics manufacturer’s factory in New

Mexico (Latour, 2001). Two European mobile phone giants, Nokia and Ericsson,

relied on this supplier for its crucial components. While Nokia had hedged the risk

of such an event, Ericsson’s lack of preparation cost the company eventually over

$400M in lost sales. As a result of this disaster Ericsson had to quit the mobile phone

business, leaving Nokia to cement its place as European market leader. Studies show

that, on average, if a publicly held company experiences a moderate or higher risk

event, it can expect a 7− 10% reduction in shareholder value (Schlegel and Trent,

2015).

Identifying the risks in a network before any harmful events occur can be crucial

to the functionality of the system, as exemplified by the Nokia & Ericsson case. A

common set of risk importance measures have been established to describe the risk

of components in a network. Birnbaum’s importance measures the risk in terms of

the differences between probabilities of system states where given component either

functions or not (Birnbaum, 1968). Fussell-Vesely measures the overall contribution

of the risk caused by the component to the total risk of the system (Fussell, 1975).

Risk achievement worth (RAW) is the ratio of the conditional system unreliability

if a specific component is known to fail to the actual system reliability, while risk

reduction worth (RRW) is the ratio of the actual system unreliability to the system

reliability if a specific component is known to work (Aven, 2008).

At present, companies are facing tougher competition and less loyal customers. Price

wars keep the profit margins low, and operating costs are often already cut to the
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minimum. As a result, companies are looking to outsource their manufacturing

instead of producing components in-house. These external suppliers may have

outsourced part of their manufacturing, creating a chain of suppliers for the end

product. Supply chains have become an integral part of many business, since a well

managed supply chain can give companies the edge over competitors. Multiple supply

chains create a web of relationships called supply network, which incorporates indirect

relationships and subsidiary organisations in addition to core members (Braziotis

et al., 2013). Furthermore, there is a rich scientific literature on the study of risks in

supply chain management, which can be applied to other types of networks, e.g., ones

formed by sectors. The literature review in Section 2, covers common qualitative

and quantitative risk management methods on supply chains and networks, as well

as, focuses on literature written on disruption analysis.

In this thesis, we analyze collected data from a cross-sector survey to 1) construct a

network formed by sectors, 2) identify the components with highest risk of disruption

propagation in the network and 3) recognize how disruptions propagate in the

network. It is an exploratory analysis, and the research goal is to present which

industries are responsible for the majority of the overall systemic risk, as well as,

to specific individual industries. Contrary to the original survey analysis, we will

include variance in the answers to model risk propagation in the system. In addition,

we discuss the survey itself and propose modifications to the survey so that it can

better serve this kind of analyses in the future.

The thesis is structured as follows: first we discuss literature on sector risks and

supply chain risk management, second we describe the survey data that was used in

the analysis. In Section 4, we explain how survey answers can be used to approximate

continuous distributions for the simulation. Next, we introduce the simulation model

used for the computations, which is followed by the presentation of simulation results.

Finally, Section 8 discusses improvements for similar surveys in the future.
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2 Literature review

2.1 Sector risks

The well-being of citizens depends on the infrastructure and services that are provided

by the nation. Each sector, with its infrastructure and services, have differing roles for

our safety, security and economies, but also depend on other sectors to function and

prosper. The consequences caused by a disruption are greater for some infrastructure,

depending whether the discomfort caused by disruptions are measured in terms of

ecology, economy, national security, among others.

In 2005, the European Union drew attention to the fact the infrastructure of several

sectors were significant for today’s society, and that failures of these critical infras-

tructure could have serious impact on national security, the economy and basic vital

functions of member states (Rehak et al., 2016). In 2008, European Union issued

a directive (of European Union, 2008) that requires member state’s to identify the

European Critical Infrastructure Elements (EPCIP). Klaver et al. (2008) discussed

the results of European Risk Assessment Methodology program, whose objectives

were to identify elements for a EU methodology for general risk assessment on a single

organization level and for a common methodology for analysis of interdependencies
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on sector level. A key point of results was that interdependencies should be analyzed

bottom-up, meaning that the analysis should start at organisation level, and end at

cross-organisation, cross-sector or cross-border level.

Risk management of critical infrastructure across multiple sectors has its own unique

problems. Each sector operates in its own way, has its own organizations and

may be hesitant to share information to competitors or other external parties, even

though sharing information to dependant parties can help others mitigate risks.

Schaberreiter et al. (2011) presented an approach to model critical infrastructure,

which was divided into three steps: an off-line risk assessment, a measurement

aggregation and an on-line monitoring step. In the off-line risk assessment, base

measures of the observable entities in the infrastructure were identified. These base

measures can be associated with one or more services that the infrastructure provides.

Next, the base measures were aggregated to a five step scale for comparability. Finally,

in the on-line monitoring step, operators of critical infrastructures receive the base

measures of dependant infrastructures to manage the risks they are facing.

Difference in the environments that the sectors operate in, or the different customers

and competitors they have, can lead to situations where methods used to assess risks

within one sector may not be applicable in another. However, when managing risks of

a broader system with cross-sector dependencies, the sector’s own abilities to mitigate

and control risks are important so that in a event of a disruption inside a sector, the

disruption does not propagate to other dependant sectors. For example, the national

economy of Australia is largely dependent upon maritime trade, and relies upon the

Navy to control the maritime domain and border (Cordner, 2008). Mitigation of

the risks in maritime sector serves the greater good for Australia, and decrease the

risk facing other dependent sectors of Australia. In the context of maritime sector,

Stergiopoulos et al. (2018) proposed a risk-based interdependency analysis method,

based on graph theory, which is capable of detecting large-scale traffic congestions

between interconnected ports and ship routes in the maritime network and provide

suggestions to improve flow. The authors were able to identify that shipping routes
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or ports that were prone to delays, greatly affect the overall maritime network and

got affected the most by delays in previous route legs.

The literature on sector dependencies and cross-sector risk management is not as

expansive as the vast body of research on supply chains. Like networks, supply

chain is a system which consists of service providers and their dependencies, but the

system is acyclic. However, it is worthwhile to discuss the methodologies used to

model supply chain risks, because of the similarities that supply chains and system

networks share.

2.2 Supply chain risk management

Concept of risk has many interpretations, and thus, different measurements, depend-

ing on the field of research (Jemison, 1987). For example, in the field of finance, risk

is often described as fluctuations around the expected value, and therefore has both

upside and downside. Wagner and Bode (2008) studied risk in supply chains, and

described risk as a purely negative event, hence excluded "positive surprises" and

situations where supply chain managers intentionally took deliberate risks. This

notion of risk is suitable when studying unexpected events in supply chains, such as

disruptions. The authors further divided risk into four categories - demand side risk,

supply side risk, catastrophic risk and regulatory, legal & bureaucratic risk.

Demand side risks can be caused by discrepancies between company’s projections

on demand and the actual demand from the customers. Risks arising from product

delivery to end-customers, i.e., distribution risks are included on the demand side

risk. The demand side risk can have two consequences. First, if the company fails to

meet the consumer demand and there is a shortage on a product, consumers cannot

purchase this product from the company. Moreover, consumers may purchase this

product from a competitor, thus the company loses the sale, and in the worst case,

the customer. Second, if the company overestimates the consumer demand, excess

inventory may lead to expired and outdated inventory, especially in industries, where

customer habits may change quickly. Based on the these two consequences, Sodhi
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(2009) proposed two metrics to capture the demand side risk - inventory-at-risk and

demand-at-risk, to quantify the unsold excess product on inventory side and the

unmet demand on customer side, respectively.

To continue on the four categories of supply chain risks, proposed by Wagner and

Bode (2008), supply side risks arise from operations upstream in the supply chain.

The key risks that exists with inbound supply are business risk, supplier capacity

constrains, quality risk, technological changes and product design changes (Zsidisin

et al., 2000). Business risks emerge from the (un)stability of the supplier, both in

the financial and management context, while supplier capacity constrains refer to

suppliers limited equipment and workforce to produce certain amount of products.

Limitations to modify existing products due to changes in the end-product design

are considered as an separate risk by Zsidisin et al. (2000).

Over the decades, researches have adopted various methodologies to study supply

chain risks. Quantitative, qualitative and mixed methods have all been used to

measure risk in many ways. The most adopted approach by researchers is case

study, which is mostly used for dealing with problems at strategic management

level (Ghadge et al., 2012). Case studies have been made on various industries,

including automotive (Salehi et al. (2018), Hudin et al. (2019), Vanalle et al. (2020)),

healthcare (Zepeda et al. (2016), Lawrence et al. (2020)) and maritime (Aljabhan

(2016), Jeong et al. (2020)), to name a few. Finch (2004) used case studies to

determine if large companies increase their exposure to risk by having small- and

medium-size enterprises as partners in business critical positions in the supply chain,

and to make recommendations concerning best practice. Khan et al. (2008) addressed

the impact of product design on supply chain risk management in an era of global

supply arrangements. The authors presented empirical evidence providing practical

examples of the impact of product design on risk, and argued that design-led risk

management offers a novel approach to mitigating supply chain risk.

In addition to case studies, conceptual theory is an another popular methodology in

the context of qualitative methods. Conceptual theory is a research methodology
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describing fundamental concepts on supply chain risk management (Vanany et al.,

2009). Ghadge et al. (2012) highlights that for such an constantly evolving field,

conceptual theory or framework development are frequently attempted by many

supply chain risk management (SCRM) researchers. Shenoi et al. (2016) identified

three critical dimensions in SCRM and introduced a framework to understand the

relationship between risk and performance measures of manufacturers. The three

conceptual dimensions they proposed were risk sources and management commitment,

mitigation strategies and risk management processes and performance measures. The

framework could be utilised by practising managers to more effectively implement

SCRM strategies. However, as the authors point out, researches could validate this

framework model empirically. In addition, the framework supposes that the entities

in supply chain need to share information transparently across the supply chain.

This may not be the case in real life, and many entities in supply chain (SC) have

to manage their operations on partial or non-existing information. Schlüter et al.

(2017) presented a first approach establishing Smart Supply Chain Risk Management

(SSCRM) as sub-research field of SCRM by proposing a specific research framework.

SSCRM refers to real data driven SCRM as a result of digitalization of supply chains

and Industry 4.0. The authors argue that in the era of Big Data, digitalization and

autonomisation, technologies, such as blockchain, will allow more proactive SCRM

and create more transparent supply chains.

On the quantitative side, operations research (OR) modeling and simulation are

common for assessing supply chain risks (Ghadge et al., 2012). Kırılmaz and Erol

(2017) used linear programming in the risk mitigation phase of the supply chain risk

management processes. In their model, the first stage in proposed procedure was

to minimize the costs, and in the second phase the objective was to maximize the

product flow from a risky supplier to a relatively less risky supplier. Another widely

used methodology to model supply chain risks is game theory. Qazi et al. (2014)

proposed a game theoretic analysis to capture uncertainty of the Tier-1 suppliers

about the cost functions of each other and to demonstrate that any uncertainty of

information in a supply chain can adversely affect the intended outcome.
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Chen et al. (2013) presented various Agent-based modeling and Simulation (ABMS)

researches in the field of SCRM. The authors pointed out that even though advances

in ABMS and supply chain related topics have been made, a smaller volume of papers

have focused in ABMS for supply chain risk management. Colicchia et al. (2011)

used Monte Carlo simulation to evaluate the expected impact of supply lead time to

compare different SCRM strategies. The simulation-based framework the authors

presented was validated with two real-life case studies. Guller et al. (2015) provided

a simulation-based decision support framework for assessing supply chain resilience

and evaluating the cost and resilience trade-off with different mitigation strategies in

an uncertain environment. Their decision framework incorporates the supply chain

resilience metrics and argues their relationship to the impacts of those disruptions

on the performance and to the time required for recovery. Schlüter et al. (2017)

presented a simulation-based approach for evaluating digitalization scenarios prior

to realization, whose applicability was demonstrated in a case study of a German

steel producer.

According to a recent literature review by Fan and Stevenson (2018), the most domi-

nant research perspective in SCRM, is that of the buyer’s. Fan and Stevenson (2018)

pointed out that to understand SCRM more broader, research should also focus on

SCRM from other perspectives, especially from suppliers. Within the few researches

made from suppliers perspective, Ojala and Hallikas (2006) studied partnership

relationships in investment decision-making within supply networks with empirical

evidence from electronic and metal industries. They found out that risks associated

in partnership relationships were mainly related to increasing responsibilities for

suppliers and reliability of information. In addition, some proposed future research

directions in SCRM include cost-benefit analyses of SCRM, benchmarking of SCRM

strategies and implementation of theories (Fan and Stevenson, 2018).
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2.3 Disruptions and resilience in supply network

Disruptions are sudden events, which cause total or partial failure to the supply

chain. The historical data show that the total number of disasters (both natural and

those caused by people) have increased vastly over the last decades, and that the

average costs of these disasters have increased 10 fold from the 1960s (Tang, 2006).

The theoretical fundamentals of risk assesment of supply chains, in terms of disruptions

and resilience, have been built over the last few decades (Sheffi and Rice (2005),

Craighead et al. (2007)). Sheffi and Rice (2005) describe different stages of disruptions

in supply chains and give high-level recommendations on how to increase supply chain

flexibility, to make supply chains more resilient. The authors argue that potential

disruptions should be categorized as a function of likelihood and consequences, instead

of a single metric. Craighead et al. (2007) derived six propositions relating the severity

of supply chain disruptions to the complexity, density and node critically of the SC.

Today number of suppliers in a single supply chain can be vast, and suppliers may

be dependant of one another. This calls for a methodology, where inter-dependencies

between entities can be represented as straightforward as possible. Bayesian networks

(BNs) have been extensively studied in other domains of research, but in the field

of SCRM it is relatively new (Hosseini and Ivanov, 2020). Bayesian networks were

first introduces by Pearl and Kim (1983), and they are directed acyclic graphs,

where conditional influences are represented. BNs are built on the fundamentals

of Bayes’ theorem and conditional probability theory, and have been acknowledged

as an appropriate methodology for quantification of risks, uncertainty modeling

and decision-making (Fenton and Neil, 2012). Use of Bayesian networks have been

researched within ’data rich’ fields, such as telecommunications (Ezawa and Norton

(1996), Hood and Ji (1997)) and finance (Shenoy et al. (1999), Alexander (2000)),

but also in fields where nowadays machine learning methods may not be appropriate

because of the amount of training data needed, like nuclear power-plants (Kang,

1999). The ability to perform inference makes the BNs especially great for analyzing

SC risks and resilience problems, and they work well with partial information and
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limited data availabilty (Hosseini and Ivanov, 2020).

Ojha et al. (2018) studied risk propagation within a multi-level network. The authors

used four echelons (suppliers, manufacturer, distributors and retailer) to construct

a BN model for an automotive SC. Different risks were modeled as nodes for

stakeholders in the network and disruptions were measured using metrics like service

level, fragility, inventory costs and lost sales. The paper further studies the ripple

effect of disruptions between echelons, and lays important groundwork for quantitative

approaches to measuring supply chain disruptions. Garvey et al. (2015) built risks

graphs from supply networks to measure how much disruptions would spread relatively

to local losses, the contribution of specific risk in total losses, et cetera. Hosseini

and Barker (2016) built BN model for resilience-based supplier selection, accounting

for operational and disruption risks that suppliers possess. Their model outputs a

probability statement about whether a specific supplier should be selected, based

on primary, green and resilience risks. The findings indicate that incorporating and

modeling the probability of a disruption is a key issue in resilient supplier selection.

They also point out that the benefits of Bayesian network approach are flexibility

of different types of variables, capability of inference analysis and accounting for

uncertainty. However, BN approach may require extensive resources to build the

model, especially if the network is complex.

Käki et al. (2015) used BNs to assess disruption risks of a car manufacturer’s SC.

The authors introduced an index that measures the change in total risk at disruptions

in different entities in the SC. However, the methology was built for BN models,

which can only have two system states: fully operational or dysfunctional. Si et al.

(2010) developed an importance measure for multi-state Bayesian network systems.

This importance measure is more complex than one for binary-state systems, and has

not yet been tested on supply chain network. Qazi et al. (2018) combined BNs and

expected utility theory to manage supply chain risk. The benefit of having expected

utility part of the BN is to be able to take into account different risk appetites of SC

managers. Risk acceptance levels vary depending on the managers, ergo should risk
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mitigation strategies.

Bayesian network comes with its limitations, one of them which is lack of stochastic

properties. Dynamic Bayesian Networks (Dagum et al., 1992) and hybrid BN

approaches have tried to address the time-dependency limitation. Kao et al. (2005)

introduced a dynamic Bayesian network model to represent the cause-and-effect

relationship in an industrial supply chain. The authors extended the static Bayesian

network to a dynamic Bayesian network by creating relevant temporal dependencies

between representations of the static network at different time steps. Hosseini and

Ivanov (2019) came up with a model, which combines discrete-time Markov chain

and dynamic Bayesian network to model the ripple effect of a supply chain disruption,

i.e., the effect that a disruption is not localized and spreads downstream in the supply

chain. The authors used Markov chain to model behaviour of the supplier after a

disruption, while dynamic bayesian was used to predict the behaviour of the supplier

and to model how disruption propagates through the supplier at different time steps.

Hybrid BN approaches have been also used in other ways. Qazi et al. (2014) proposed

an approach, where BN captures interdependency between risk factors of SC and

game theory is utilized to assess risks with conflicting incentives of stakeholders

within a SC.

The number of machine learning and artificial intelligence related research in supply

chain risk management have risen in the last decade (Baryannis et al., 2019). Many

of the BN models use expert knowledge to determine the structure of BNs and

estimate conditional probabilities for each entity. The drawback of using experts is

that probability estimations are not often precise, because the numbers are very small

and do not correspond to events that people can reasonably contemplate (Koller

and Friedman (2009), Constantinou et al. (2016)). Moreover, experts views can be

biased Johnson et al. (2010)). Accordingly, machine learning techniques can be used

to estimate system parameters and learn BN structures. Chen and Chao (2020)

used machine learning techniques to learn system-relevant parameters in a inventory

control problem. Koller and Friedman (2009) have extensively gone through different
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algorithms to construct BN structures. Hosseini and Ivanov (2020) proposed a

generic framework which integrates BN with machine learning to model SC risks.

The framework consists of five steps and uses machine learning techniques to learn

conditional probabilities and BN structures. However, especially with parameter

estimation, machine learning techniques require high amount of data. In context of

supply chains, disruptions are rare events, and therefore there is often not enough

data to train ML models.
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3 Data

The data used in this thesis was collected via a survey, which was done in 2020. 280

participants from 25 different sectors were asked on their relationship with other

sectors. Each participant were asked two questions per sector X with the following

possible answers:

1. How much does your sector interact with the sector X in general (in normal

situation)?

(a) Not at all

(b) A little

(c) Some

(d) A lot

(e) Very much

2. Will the disruptions in the sector X affect the operations of your sector now or

possibly in the next 3 months?

(a) No effect at all
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(b) Affects a bit

(c) Moderate effect

(d) Affects a lot

(e) Prevents operations almost completely

From this point on, questions 1 and 2 are referred as Interaction Question and Impact

Question, respectively. Answers for Interaction Question and Impact Question were

quantified on an ordinal scale from 0 to 4, 0 representing answers “Not at all”/“No

effect at all”, and 4 representing answers “Very much”/“Prevents operations almost

completely”.

In total, 198 participants from 23 different sectors answered the survey. Moreover,

Interaction Question was answered 3925 times and Impact Question was answered

3438 times. Participants were also asked to identify themselves in one of the following

expertise categories: Finance and management (Fin), Technology / Infrastructure

(Tech), Supply chains (SC), Production (Prod), Security (Sec), Legislation (Leg),

Politics (Pol) and Other. Tables 1 and 2 show summary statistics for both question.

Finance and management represented the largest area of expertise in the survey,

while politics and legislation the smallest. On average, participants from political

background estimated the impact of propagating disruption to be much lower than

other participants (0.17 vs total of 0.72). Participants from legislation background

estimated the risks to be higher than rest of the participants.
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Table 1: Summary for Interaction Question.

Expertise # of answers Average Stdev.
Fin 1199 1.33 1.22
Tech 688 1.50 1.20
Sec 626 1.33 1.19
Prod 626 1.64 1.27
SC 494 1.72 1.29
Pol 48 0.73 1.05
Leg 25 1.48 0.82
Other 219 1.11 1.01
Total 3925 1.44 1.23

Table 2: Summary for Impact Question.

Expertise # of answers Average Stdev.
Fin 999 1.17 0.38
Tech 644 0.68 1.02
Sec 546 0.93 1.06
Prod 528 0.73 1.02
SC 442 0.8 1.12
Pol 48 0.17 0.38
Leg 24 1.17 0.82
Other 207 0.79 0.97
Total 3438 0.72 1.06

To conduct a sanity check of the answers, we looked at the distribution of how

participants answered to both question (Table 3). In general, if a participant estimated

that the interaction between their and the correspondent sector was low (Interaction

Question), then the impact of propagating disruption (Interaction Question) should

be low as well, because without interaction between the sectors, the disruption should

not be able to propagate directly.

From Table 3 that the survey answers are in line with our assumption about the

relationship between Interaction and Impact Questions. The share of answers do

almost always decrease when going downwards column-wise. Less than 1% of the

answers estimated the propagating disruption would prevent operations almost
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completely, even though they also estimated that there were no interaction between

their and the other sector. In those cases, the participants may have considered

indirect risks, i.e., disruptions propagating from another sectors than the one which

the Impact Question poses it did.

Table 3: Share of answers (%) per questions.

↓ Impact, Interaction → Not at all A little Some A lot Very much Total
No effect at all 20.8 16.4 13.9 4.6 2.3 58.0
Affects a bit 1.4 8.2 8.2 3.4 2.3 23.5
Moderate effect 0.5 1.1 4.5 2.4 1.0 9.5
Affects a lot 0.3 0.7 1.5 3.0 1.3 6.8
Prevents operations a/m completely 0.1 0.2 0.2 0.4 1.2 2.2
Total 23.1 26.6 28.4 13.8 8.1 100.0

It is important to discuss what the survey data does not tell us, in order to clarify

what needs to be assumed for later analysis. The data does not tell us marginal

or conditional probabilities of disruptions. Premise for Impact Question is that a

disruption has already happened, and the formulation of the question does not ask

the participant to estimate the probability of the disruption propagating; it only

asks participant to estimate the impact of a propagating disruption. Additionally,

the survey data does not tell us the resilience of a sector. It is also important to

notice that answers for Impact Question are time relevant - the question requests

participants to estimate the impact of disruption at the time of the survey and for the

next three months. For later use of the data, answers may not be relevant anymore.

Moreover, the three-month time frame makes the modeling harder, because we do

not know if the propagating disruption affects the sector immediately or sometime

in the next three months.
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4 Approximating survey answers with beta

distributions

Uncertainty in surveys is a results of multiple factors, e.g., the varying comprehension

of the wording, personal attitudes, the heterogeneous expertise of the participants

and the fact that no one has the definitive answer, which is one of the basis of

conducting a survey in the first place. Analyzing the exact answers distributions

possess multiple problems. First, in case of few answers, idiosyncratic uncertainty of

individual responses is high. Considering one expert’s answer as the sole truth, and

ignoring other possibilities of the network dependencies can exclude some important

scenarios out of the analysis. Second, to conclude that an event has no probability

of happening, even in the presence of multiple answers, can lead to restricted results,

when severe low-probability events can have devastating effects on the network.

Conceptually, it is better to approach the survey answers as approximations of the

network dependencies. Therefore, we need to model the survey answers as probability

distributions, where the mean and variance of answers is taken into account.

The beta distribution is a family of continuous probability distributions with finite



19

support in [0, 1], although it can be extended to support [a, b]. For parameters

α, β > 0, the beta distribution is

fX(x) = 1
B(α, β)xα−1(1− x)β−1, (1)

where B is the normalizing constant

B(α, β) = Γ(α)Γ(β)
Γ(α + β) . (2)

The beta probability distribution is widely used in simulation studies to model the

behaviour of an input that is subject to random variation or that is simply not know

with certainty (AbouRizk et al. (1994)). The great value in using beta distribution is

that it can generate many shapes with only two parameters, α and β (Touran et al.

(2004)). Indeed, it is this reason why we have chosen beta distribution to model

distributions of Impact Question.

4.1 Methods of fitting a beta distribution

Various statistical methods have been studies to fit beta distributions on observed

data points. By fitting we mean that parameters α and β, which control the shape

of the beta probability distribution, are statistically estimated to represent the

underlying distribution from which the observed data points come from. Next, we

introduce two parameter estimation methods - Maximum likelihood approach and

Method of Moments - and go on and show how they can be applied when fitting a

beta distribution.

Suppose we have have a collection of n i.i.d. samples X1, ..., Xn from a population

following a pdf f(x|θ). Because the samples are i.i.d, we define the likelihood function

as

L(θ|x1, ..., xn) =
n∏︂

i=1
f(xi, θ). (3)

The Maximum likelihood estimator (MLE) is the parameter θ̂, which maximizes the
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function L, i.e., the likelihood that X1, ..., Xn is from f(x|θ̂). In case where we want

to fit a beta distribution (1) to the sample, the likelihood function L becomes

L(α, β|X) =
n∏︂

i=1

1
B(α, β)xα−1

i (1− xi)β−1

= 1
B(α, β)n

n∏︂
i=1

xα−1
i

n∏︂
i=1

(1− xi)β−1. (4)

In many cases, such as this, it is easier to express (4) as a log likelihood function:

log L(α, β|X) = −n log B(α, β) + (α− 1)
n∑︂

i=1
log xi + (β − 1)

n∑︂
i=1

log(1− xi). (5)

Maximizing the log likelihood function leads to the same optimal solution as maxi-

mizing likelihood function, because the logarithmic function is an increasing function.

To solve the problem and obtain MLEs α and β, partial derivatives with respect to

α and β are set to equal zero. Unfortunately, no closed form solutions is possible

to obtain to the system of equations. However, there are many solvers available to

solve the problem.

Another method of fitting a beta distribution is Method of Moments (MoM). This

estimation technique is based on the law of large numbers:

Theorem 4.1. Let X1, X2, ... be independent random variables from the same com-

mon distribution with a mean µX . Then the sample means converge to the distribution

mean as the number of observations increase.

lim
n→∞

1
n

n∑︂
i=1

Xi = µX .

Therefore, if number of observations n is large, the sample mean X should be a

good approximate for the distributional mean. However, beta distribution has two

parameters, which requires us to calculate the two first moments, mean and variance.
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A beta distributions has mean µX and variance σ2
X of

µX = α

α + β
(6)

σ2
X = αβ

(α + β)2(α + β + 1) . (7)

From (6) and (7) we can solve for α and β as a function of µX and σ2
X . In MoMs,

we use approximate the distribution mean and variance as the sample mean and

variance, calculated from X1, ..., Xn.

As Theorem 4.1 indicates, small number of observations do not necessary produce

good results in the approximations of the distribution mean and variance. Therefore in

thesis we are going to use MLE to estimate our parameters for the beta distributions.

4.2 Fitting a beta distribution on discrete-valued observa-

tions with MLE

As the answers in the survey in hand are on ordinal discrete scale [0, 4] and the support

of a beta distribution is [0, 1], we need first to scale the answers to [0, 1]. Second,

rather than treating the survey answers as continuous variables and estimating MLE

α and β for a beta distribution, we are going to use MLE on a discrete probability

distribution, which is composed from two cumulative beta probability distributions

(CDF). A beta CDF is formulated as follows:

FX(x) = 1
B(α, β)

∫︂ x

0
tα−1(1− t)b−1dt. (8)

The discrete probability distributions we are going to use in the parameter estimation

is

PX(x|α, β) = FX(x + δ)− FX(x− δ) = 1
B

∫︂ x+δ

x−δ
tα−1(1− t)b−1dt, (9)

where δ is a step size of 1/(2 · 4) = 0.125. Simply put, we are binning the discrete

survey answers, and then calculating the probability with beta CDF within that
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range.

The intuition in this approach comes from the nature of survey. As participants are

given five choices to choose from in the questions, their range of answers reduced to

five points in that range. For example, given two participants that answered 1 to

the question, one may have pondered over possibilities of answering 0 or 1, while

the other one may have had the problem with answering 1 or 2. If both were in the

middle, i.e., wanting to give 0.5 and 1.5, respectively, then the difference in their

opinion is exactly one answer step away from each other. However, quantifying the

answers in bins, as we are doing, takes into account this reduction of information, as

answering 1 can be interpreted as answering "between 0.5 and 1.5".

We assume that the survey answers X = (x1, ..., xn) are i.i.d. The likelihood function

of (9) is

LP (α, β|X) =
n∏︂

i=1
P (xi|α, β)

=
n∏︂

i=1

1
B(α, β)

∫︂ xi+δ

xi−δ
tα−1(1− t)β−1dt,

which yields a log likelihood function of

log LP (α, β|X) = −n log B(α, β) +
n∑︂

i=1
log

∫︂ xi+δ

xi−δ
tα−1(1− t)β−1dt. (10)

One important constraint for upper and lower bounds in the integral in (10) is that

they have to be between zero and one, because the support of beta CDF is [0, 1].

Therefore, for upper and lower bounds we set

xi + δ ← min{xi + δ, 1}

xi − δ ← max{xi − δ, 0}.

We acknowledge that this modification on the integral bounds affects the parameter

estimation. The extreme values, 0 and 4 (0 and 1 when scaled), have a stronger
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impact on the shape of the beta pdf, because the bin range is twice as small. However,

this is completely acceptable, because it reflects the survey answer behaviour. For

example, if participant answered 0, this is interpreted as an estimation between

[0, 0.5], not [−0.5, 0.5].

Another aspect of parameter estimation that needs to be addressed is the number of

answers per ordered sector pairs. Some ordered sector pairs have only one answer,

which leads to beta distributions where random variables drawn from those distribu-

tions are only within the bin of the single answer. Solution for this problem is to use

a prior distribution. As beta distribution has no closed-form conjugate prior and we

are using MLE approach, the prior is expressed as padded data. Thus, the MLE are

estimated from the union of padding data and the observations.

When choosing the padding data, two things have to be taken into consideration:

1) the frequency of values and 2) the size of the padding data. Reflecting back

to the Impact Question, the padded data represents our estimation of the impact

from propagating disruption if we had no survey answers. In the context of the

subject, an uniform distribution, i.e., every outcome would have the same probability,

is too pessimistic. Another approach would be to estimate the prior with the

mean and variance from all the answers. However, this approach assumes that

sector relationships are in some sense comparable. In general, if the sector-to-sector

relationship got only few answers, one could argue that relationship is not relative

important. Therefore, the padding data should be emphasized on the small values,

i.e., creating a prior distribution where small values are more likely than large values.

The size of the padded data has also an impact on the estimated parameters. The

more padding values we have, the smaller impact the actual answers will have in

the estimation. As the median number of answers per ordered sector pair is X, the

number of padding values should in no case be more than that.

Figures 1, 2 and 3 show how different padding vectors affect the fitted PDFs when

values 0, 2 and 4, respectively, are observed. From the figures we see that padding

vector (0, 1, 2) is best for our model, because the size of the vector is less than the
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median and the padding vector emphasizes smaller values. Moreover, it also assigns

non-zero probabilities for higher values, even when observed data is skewed towards

smaller values.

Figure 1: Pdfs of fitted beta distributions with different padding vectors when value
0 is observed.
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Figure 2: Pdfs of fitted beta distributions with different padding vectors when value
2 is observed.
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Figure 3: Pdfs of fitted beta distributions with different padding vectors when value
4 is observed.
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5 Sector network

5.1 Directed network graph

The sector network is presented as a directed network graph

G = (V, E), (11)

which consists of set of nodes V = {vi, ..., vn} and edges E ⊆ {(vi, vj) | (vi, vj) ∈

V 2 ∧ vi ̸= vj}. From this point on, network refers to this directed network graph.

The set of nodes represent the sectors that were part of the survey and each sector is

connected to every other sector in the network by an edge. 25 sectors participated in

the survey, resulting in 25× 24 = 600 edges.

The state of node i at time t is represented as si,t ∈ [0, 1]. The state of a node

is a measure of sector performance loss, where a value of zero indicates that the

sector is fully operational, and correspondingly a value of one indicates that the

sector is fully disrupted. The performance loss at time t is presented as vector

st = (s1,t, ..., s|V |,t), where |V | is the number of nodes in the graph, i.e., number of

sectors in the network. We denote aggregated performance losses as the sum of st. It
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is important to remember that the performance loss are closely related to the Impact

Question (Section 3), and due to the subjectivity of the question, performance loss

may have different interpretations across sectors.

5.2 Ripple effect

The propagation of a disruption in a supply chain and its associated impact on the

network is called ripple effect (Ivanov et al. (2019)), and the same definition holds in

the context of supply networks. In this thesis, we incorporate similar principles and

the ripple effect is modeled based on the survey data (Section 3). For every edge

between ordered sector pair (vi, vj), a ripple coefficient rij ∈ [0, 1] is calculated, based

on the fitted beta distribution on Impact Question. The purpose of rij is to control

the magnitude of propagated disruption, and can be interpreted as the edge weight

from sector i to sector j in the graph. The ripple coefficients can be represented as

matrix R

R =

⎡⎢⎢⎢⎢⎢⎣
r11 · · · r1|V |
... . . . ...

r|V |1 · · · r|V ||V |

⎤⎥⎥⎥⎥⎥⎦ . (12)

If the sector j only has one parent sector i, i.e., only one parent node in the graph,

the propagating disruption is equal to the sector performance loss times the specific

ripple coefficient. If there exists multiple parent sectors, simply by summing the

product of sector performance losses and ripple coefficients can lead to propagating

disruption greater than one, which is unacceptable. Therefore, it is necessary to the

aggregate the propagating disruptions with an aggregate function g, that maps to

propagating disruptions from parent sector into a single value. Next let’s take a look

what properties g has to have.

Property 1. If a disruption is to be fully propagated, the aggregated disruption has

to be one, i.e., ∃ vi : rij = 1 ∧ pi,t = 1 −→ g(r, s) = 1.

Property 2. If either sector performance loss or ripple coefficient is zero for all parent
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nodes, the aggregated disruption has to be zero, i.e., ∀ vi : rij = 0 ∨ si,t =

0 −→ g(r, s) = 0.

Property 3. Increasing the number of parent nodes cannot decrease the aggregated

disruption.

The choice of g impacts the network dynamics greatly, because it dictates how much

of the propagating disruptions affects the sector in total, and therefore, must be

chosen with care. Equally important is to reflect the interpretation of g in the real

world.

We have chosen g for sector j at time t as follows:

g(r, s, j, t) = 1−
∏︂

i

(1− si,t × rij). (13)

Equation 13 satisfies all properties g has to have. Moreover, it takes into account

every propagating disruption in an increasing manner, but does not assume that

propagating disruptions can be summed. It also has a probabilistic interpretation:

if si,tri,j is interpreted as the probability that a disrupted sector i disrupts sector j

in the next time step, and that all probabilities in g are independent, then g is the

probability that sector j is disrupted in the next time step.

Another possible formulation of g is

g(r, s, j, t) = max(s1,t × r1j, ..., s|V |,t × r|V |j). (14)

In Equation 14, every required property of g is fulfilled, but only the single maximum

incoming disruption is taken into account. Conceptually, it assumes that only the

most devastating disruption affects a sector, which in many cases is false. Furthermore,

g could also be presented as

g(r, s, j, t) = max
(︄∑︂

i

si,t × rij, 1
)︄

. (15)
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Again, Equation 15 satisfies all three required properties, but assumes that propagat-

ing disruptions can be summed. In case where the number of sectors in the network

is large, even small disruptions can quickly lead to very high propagating disruptions,

which may not reflect the real world, because, in general, sectors can have resilience

to absorb small scale disruptions.

The disruption in sector i that carries out to the next time step is defined as

si,t+1 = 1−
∏︂
j

(1− sj,t × rj,i)− hsi,t, (16)

where h is the recovery rate. Recovery rate is the rate at which the sector is able

to recover from the disruption with respect to a time step. Instead of assigning ri,i

to be the recovery rate for sector i, we want the recovery to only depend on the

previous sector performance loss si,t. By choosing the recovery to happen this way,

we have to assign ri,i = 1, i = 1, ..., 25 in Equation 16.

5.3 Bi-sectoral resilience

In reality, entities within sector can take measures to reduce their dependence from

other sectors. These can take form of stockpiling critical supplies or increasing the

in-house production. Because disruptions can be propagate from different sectors

and affect different parts of sector operations, we define resilience on sector-to-sector

level, i.e., what is the ability for sector i to prevent disruptions from sector j to

propagate into sector i operations.

As the ripple coefficient rij is interpreted as the amount of disruption which propagates

from sector i to sector j, we define bi-sectoral resilience cij as the factor which rij

is decreased with. This means that with given cij, the new ripple coefficient is

formulated as

r∗
ij ←

rij

cij

. (17)

The survey itself does not provide any distinct information about sector resilience,

but we assume that resilience has been taken into account in the question answers
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given by participants. Moreover, with the resilience approach we introduced, further

analysis can be done on how different sectors should allocate their resources to

minimize risks of propagating disruptions in the network. In this thesis, we are

going to take an opposite approach, and demonstrate how only focusing on the most

important sectors can lead to devastating results.

5.4 Network performance preferences

Depending on the observer, not all sectors are equally important, and some sectors

have more critical roles in the functionality of the network. For example importance

to society is one way to measure if sector is more critical than other. If some sectors

are more preferred to work, utility functions can be used to transform the aggregated

performance loss st to take into account specified preferences:

U(st) =
(︂
U1(s1,t), ..., U|V |(s|V |,t)

)︂
, (18)

where Ui is the utility function of sector i.

If there exists a threshold τ , that the sector performance loss cannot exceed, and

values below the threshold are equally preferred, the utility function is as follows:

Ui(si) =

⎧⎪⎪⎨⎪⎪⎩
1, if s ≥ τ

0, otherwise
. (19)

Another utility function is an exponential utility function, with parameter a:

Ui(si) = asi − 1
a− 1 . (20)

The parameter a ̸= 1 controls the concavity of the utility function; if a < 1,

smaller disruption values decrease production capabilities relatively more than large

disruption values. The smaller the parameter a is, the greater this effect is. On

the other hand, if a > 1, smaller disruption values decrease production capabilities
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relatively less.
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6 Simulation

6.1 Simulation setup

The simulations consist of K iterations, where each iteration consists of T discrete

time steps. For every iteration and time steps, we estimate the ripple coefficients

ri,j for all ordered sector pairs based on the answers to the Impact Question. The

Impact Question asked participants to estimate how a disruption in other sectors

would affect the operations in their sector. Given the five ordinal answer options,

which were quantified on a scale from 0 to 4 (0 representing no impact in case of

disruption in other sector), we fit a beta distribution for each ordered sector pair.

At each time step in each iteration, we draw a random variable from each 600 beta

distributions to create a ripple coefficient matrix R:

R =

⎡⎢⎢⎢⎢⎢⎣
r1,1 · · · r1,25
... . . . ...

r25,1 · · · r25,25

⎤⎥⎥⎥⎥⎥⎦ .

Note that R is 25-by-25 matrix with total of 625 elements. The diagonal entries,
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i.e., ri,i, i = 1, ..., 25 are set to 1. The beta random variables are generated with

MATLABs betarnd function.

Each iteration starts with a predetermined initial performance loss vector s1 =

(s1,1, ..., s25,1), which is the same for each iteration in the simulation. For our analysis,

we are interested in individual sectors and their imposed risk to the network. Therefore,

we will run through 25 simulations, in which the initial performance loss vector

represents the situation where one sector is fully disrupted and others operate at

their normal performance level. Simulations where multiple sectors are disrupted and

the magnitude of disruption at start (e.g., 0.5 vs 1) are topics for further research.

After the first time step, the disruption starts to propagate through the network. At

the end of each iteration we will have T sectors performance losses from each of the

25 sectors in network.

6.2 Simulation risk measures

After obtaining K performance loss vectors for each time step t ∈ T from 25 simula-

tions each, we analyse the simulation results from network and sector perspective.

The insights that are derived assess which sectors poses the greatest risk to the

network in whole and on sector-to-sector level. Different risk measures detailed in

the following subsections examine the results in different ways, some taking into

account the dynamic nature of the risk propagation and others the performance loss

of network and sectors. Measurements about the overall performance loss (average

and median) and that consider only the extreme events, e.g., 10th vs 90th percentile,

are all incorporated in the assessment of the simulation results.

6.2.1 Risk achievement worth

Risk achievement worth (RAW) is one of the most widely used risk importance

measures (Borgonovo and Smith (2012)). RAW measures how the total risk in

a system would increase if given component’s failure probability was 1, i.e., for
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component xi in system y

RAWxi
= P(y|xi = 1)

P(y) , (21)

where P(y) is the probability of system failure. In contrast, risk reduction worth

(RRW) measures the amount of decreasing total risk when a component is fully

functional:

RRWxi
= P(y)

P(y|xi = 0) . (22)

In this thesis, we believe that because the network is fully connected, the RAW

measure is not going to differ from sector to sector significantly. However, RRW

measure on the other hand can show if excluding some sectors from the network did

or did not decrease the performance loss of the network.

We measure the risk reduction worth as the ratio between aggregates performance

loss when sector is excluded from the simulation and when the sector is included

in the simulation. We consider excluding sector from simulation to represent the

situation where a sector is immune to propagating disruption, as well as immune to

propagate any disruption it may face. Risk reduction worth is calculated for each

sector at each time step, which makes it a dynamic risk measure.

The higher the RRW is, the smaller the aggregated performance loss is when a

sector is immune to disruption propagation. This means that smaller RRW measures

indicate that the sector does not contribute much in presence of a propagating

disruption. A RRW measure of 1 implies that the network is going to face the same

amount of performance loss, independent of whether the sector is immune or not.

6.2.2 Bi-sectoral resilience strategies

In addition to the propagating disruption we calculate with the ripple coefficients

estimated from beta distributions, we also run the simulations with different invest-

ments made into sector-on-sector resilience (see Section 5.3). To demonstrate the

importance of bi-sectoral resilience, we analyse on how the network functions when
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some ripple coefficients are reduced and some not. We start by reducing every ripple

coefficient by a factor of 25, which is the number of sectors in the network. This is

our baseline case, to which all other scenarios are compared to. Following we give

details on the different scenarios we are conduction.

Based on the average answers on the Impact Question, we calculate the ordered sector

pairs, to which the participants estimated the impact of propagating disruption to

be the smallest. In the first scenario, the ripple coefficient of the least risky ordered

sector pair for each sector stays the same as in the original simulations, and all other

ripple coefficients rij for sector j are divided by 25. The second scenario is similar to

the first, but instead of keeping only one ripple coefficient per sector at the original

value, five of the least risky ripple coefficients are kept at their original values. In

the next two scenarios we keep the ripple coefficients of the 75 and 125 least risky

ordered sector pairs in the whole at their original value. Compared to the baseline

case, each scenario can be thought of as lack of preparation, from the sector and the

network in whole.
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7 Results

In this section we first show the fitted beta distributions, and then present the

simulations results. Simulation results are divided into two subcategories. First

we discuss the network risks in whole, and then dive into sector relationships and

show the effect of different scenarios where resilience of some sectors is not fully

operational. The simulation parameters used is presented in Table 4. The number of

simulations is 25, one for each sector, where the disruption starts. The number of

iterations within the simulation was chosen to be 1000, so that we get enough data

points to construct reliable distributions of performance losses. Initial disruption

was set to 1, to model a fully disrupted sector at start of the simulation.

Table 4: Simulation parameters used.

Parameter Value
# of simulations 25
# of iterations per simulation 1000
# of time stemps per iteration 4
Recovery ratio 0.75
Initial disruption 1.0
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7.1 Sector relationships

In the simulation, the ripple coefficients were drawn from fitted beta distributions.

The goodness of the estimated parameters for the distributions were visually verified.

Figure 4 shows the pdf of fitted beta distributions and survey answer densities for

four randomly selected ordered sector pairs. From the figure we can see that the

beta distributions do model the survey answers well. For example, comparing upper

right and lower right subfigures, the larger ripple coefficient values are more likely to

be drawn from upper right than from the lower right beta distribution. Moreover,

in the lower left subfigure, some participants estimated the impact of disruption

from sector 22 to prevent operations almost completely, which is why the lower left

distribution is skewed more to right than distributions on the right side.

Figure 4: Pdf of fitted beta distribution and survey answer densities for four randomly
selected ordered sector pairs.
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In addition to visual verification of the beta distributions, we plotted the variance as

a function of mean for all 600 fitted beta distributions to check if any distribution

showed indication of failed parameter estimation (Figure 5). From the figure, we

see that the maximum mean for the distributions was 0.45, that is in line with our

expectations, because even though some average scaled survey answers would had

been higher, the use of padding values skewed the distribution away from the high

averages. The smalles mean is 0.045, which again, is aligned with our expectations.

Figure 5 shows that with lower expected ripple coefficients, the variances also smaller.

With larger expected the variance seems to be high where as well. This indicates

that the participants tend to agree on a sector having low impact on their operations,

but disagree more on sectors where there are higher potential risks.

Figure 5: The mean and variance for all 600 fitted beta distributions.
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7.2 Impacts on network performance

We start our analysis of simulation results by examining the aggregated performance

losses, i.e., the sum of sector performance losses. Figure 6 shows the distributions

of the aggregated performance losses w.r.t. time. On each box, the central mark

indicates the median, and the bottom and top edges of the box indicate the 25th

and 75th percentiles, respectively. The whiskers extend to the most extreme data

points, which are 1.5 times the interquartile range away from the 25th and 75th

percentiles. Data points outside these boundaries are considered outliers, and are

plotted individually using the ’+’ symbol. Approximately 5% of the data points were

outliers.

From the plot we can see that the aggregated performance losses increases each time

step. The largest increase happens between time steps 2 and 3, where the increase

in median aggregated performance losses is ≈ 7.9. The smallest increase in happens

between time steps 3 and 4, where the increase is ≈ 1.4. Moreover, the deviation of

aggregated performance losses are similar within time steps 2 and 3. However, the

deviation in aggregated performance losses at time step 4 is a lot smaller than for

the previous two time steps.

Figure 7 shows the average share of disrupted sectors with respect to the threshold

in performance losses for which a sector is considered disrupted. For time step 2,

the steepest tangent of the curve is at the beginning, compared to time steps 3

and 4, where the tangent of the curve is the steepest at 0.5 and 0.55, respectively.

Furthermore, curves for time steps 3 and 4 intercept at 0.66 threshold. This means

that on average there is equally many sectors with greater performance loss than

0.66 for both time steps.
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Figure 6: Aggregated performance losses with respect to time.



42

Figure 7: The average share of disrupted sectors in the network with respect to
threshold for a disrupted sector.

Figure 8 represents distributions of the aggregated performance losses for each

disrupted sector. The interquartile range is more or less the same size for each

sector and time step. When the disruption started from sectors 7 or 22, aggregated

performance losses were the highest with median above 6.0. This means that the

sectors propagated disruption to other sectors the most. These two sectors showed

the highest aggregated performance losses for time step 3 as well. However, at time

step 4, sectors that had previously caused relative small aggregated performance

losses now had the highest losses.
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Figure 8: Aggregated performance losses per initially disrupted sector.

Figure 9 shows the risk reduction worth (RRW) values for each sector and time

step. RRW values close to 1 indicate that removing the sector from the network

had no impact on the overall aggregated performance losses. Including outliers, the

RRW values ranged from 1.0 to 1.4. At time step 2, the largest RRW and largest

deviation in RRW is associated with sector 18. At time steps 3 and 4, the deviation

of RRW decreases for all sectors. The smallest RRW values for at each time step were

associated with sectors 2 and 14. Disruptions which started from sectors 4, 7 and 22
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were most harmful to the network on short term, but disruptions which started from

sectors 1, 15, 18 and 23 at least equally harmful in the long run. Removing sector

18, i.e., making sure that no disruption can propagate in or out of the sector, would

achieve the greatest risk reduction for the whole network, in terms of risk reduction

worth.

Figure 9: RRW for each sector and time step.

7.3 Sector specific risk and bi-sectoral resilience strategies

Next we analyse the sector performance losses. Table 5 shows the 5th, 25th, 50th,

75th and 95th percentiles of the cumulative performance losses, as well as, the

variance of the performance losses. From the table we see that overall sector 18
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performance losses were the highest, and sector 14 the lowest. Moreover, the

maximum performance losses for each sector were approximately the same. The

largest deviation in cumulative performance losses were within sectors 6 and 14.

To analyse sectoral risks in more detail, we plot the average performance loss with

respect to the initially disrupted sector for each sector (Figure 10). In the figure, rows

indicate the initially disrupted sector and column the sector from which average is

calculated, e.g., 7th row and 3rd column is the average of performance loss of sector

3 when the disruption started from sector 7. From Figure 10 several observations

can be made: 1) performance loss in sector 18 is relatively high when the disruption

starts from sectors 7, 8, 9, 12 or 13, 2) disruption in sector 7 causes high performance

losses in sectors 3, 6, 188, 21, 23 and 25 and 3) disruptions in sectors 18, 23, 24, and

25 causes the aggregated performance losses to increase only after third time step.

Figure 10: Average performance loss for each sector w.r.t. initially disrupted sector.
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Table 5: Minimum, maximum, nth percentiles and variances of the performance
losses for each sector.

Sector Min 5th 25th 50th 75th 95th Max Var
1 0.83 1.08 1.18 1.27 1.42 1.78 2.43 0.07
2 0.54 0.98 1.09 1.18 1.33 1.92 2.43 0.08
3 0.73 1.07 1.16 1.26 1.45 1.97 2.44 0.09
4 0.60 0.91 1.04 1.12 1.25 1.84 2.44 0.09
5 0.56 0.93 1.05 1.14 1.27 1.87 2.41 0.08
6 0.62 1.02 1.12 1.20 1.39 2.02 2.43 0.10
7 0.71 0.99 1.10 1.18 1.30 1.76 2.43 0.08
8 0.74 1.05 1.15 1.23 1.37 1.73 2.43 0.07
9 0.88 1.16 1.25 1.33 1.45 1.74 2.44 0.06
10 0.67 1.01 1.11 1.19 1.33 1.71 2.43 0.07
11 0.56 1.00 1.11 1.20 1.35 1.90 2.43 0.08
12 0.61 1.01 1.11 1.20 1.36 1.98 2.43 0.09
13 0.83 1.06 1.16 1.25 1.37 1.70 2.42 0.06
14 0.33 0.84 0.99 1.08 1.22 1.93 2.44 0.10
15 0.78 1.02 1.12 1.21 1.35 1.81 2.43 0.07
16 0.74 1.04 1.14 1.23 1.34 1.65 2.41 0.06
17 0.92 1.14 1.23 1.32 1.45 1.74 2.43 0.06
18 1.01 1.21 1.30 1.44 1.66 2.05 2.44 0.08
19 0.65 0.97 1.08 1.16 1.28 1.63 2.41 0.07
20 0.92 1.14 1.23 1.32 1.44 1.74 2.43 0.06
21 0.84 1.11 1.20 1.31 1.52 2.02 2.44 0.09
22 0.70 0.98 1.09 1.18 1.31 1.77 2.43 0.08
23 0.70 1.08 1.18 1.27 1.46 2.00 2.43 0.08
24 0.51 0.87 1.01 1.10 1.23 1.69 2.39 0.08
25 0.93 1.16 1.25 1.36 1.52 1.89 2.44 0.07

We choose sector 14 for closer examination because of the high deviation in cumulative

performance losses (Table 5). First we calculate two subsets of simulations results:

one with simulation iterations where the final performance loss at sector 14 was

higher than the 90th percentile (worst case) and another where the final performance

loss at sector 14 was lower than the 10th percentile (best case). Figure 11 shows

the averages performance losses at time step 2 for both best case iterations (left)

and worst case iterations (right). Some properties in worst case iterations are high

performance losses in sector 14, 15 and 18 at time step 2. Moreover, some other

characteristics in worst case iterations are 1) high performance losses at sector 6
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when disruption started from sectors 3, 12 and 16 and 2) high performance losses in

sector 21 when disruption started from sector 25.

Figure 11: Average performance losses for sector 14 best cases and worst cases at
time step 2.

From Figure 12 we see the distributions of cumulative aggregated performance losses

for each bi-sectoral resilience strategy (See sub-Section 5.3 and 6.2.2). When each

sector focused only on the 23 or 19 most risky bi-sector relationships, the cumulative

aggregated performance losses were tremendously higher, compared to strategy where

all bi-sector relationships were in focus. The same applied to strategies were the

network collectively focused on the 475 and 525 most risky bi-sector relationships.

Figure 12: Average performance losses for sector 14 best cases and worst cases at
time step 2.
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8 Improvements for future surveys

We have shown examples on how network disruption propagation can be analysed

with one survey question. To assess the network risks with a more sophisticated

model, the survey needs to address more than the impact of propagating disruption.

First, rather than using subjective answer options, e.g., "Disruption at sector X would

affect our operations a bit", giving participants only quantifiable objective answer

options standardizes the answers. New answer options could relate to monetary losses,

decreasing production or cuts in labor force. The aspect of the answer options should

be comparable to all sectors in the network and in best case in equal importance to

all sectors as a performance indicator.

Sticking with the Impact Question, the question could also ask the participant

to estimate the impact of the disruption for the institution or company that the

participant represents, rather than asking to estimate the impact to the whole sector.

The rational behind this is that in general participants have better understanding

of their representative institutions or companies rather than of the whole sector.

Furthermore, phrasing the question this way eliminates the bias of intra-sector

differences. For example, a propagating disruption from sector X may have opposite
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effects on production for two different institutions within the same sector. One could

argue that these opposite effects can affect the way participants estimate the impact

for the sector in whole. Phrasing the Impact Question this way requires additional

information about the importance of individual institutions and companies intra-

sector. In the best case, the relevance would be quantified on the same objective scale

as the Impact Question, so that each participants relevance to the whole network

could be measured.

In our simulations, the rate at which sectors were able to recover from propagating

disruptions was constant. One way to improve the survey could be to address the

recovery rate for each sector. The question could be phrased as the time it takes for

a sector to fully recover from a disruption. A quantifiable scale, e.g., weeks, would

be necessary to make the recovery rates comparable across the network.

Reducing the risk of propagating disruptions is as important as identifying the most

riskiest sectors for the network and for specific sectors. Considering the network

performance, risk of propagating disruption can be reduced by increasing the number

of entities inside a sector. This way, if one of the sector entities become disrupted,

other entities can still upkeep the sector performance. In case of a sector wide

disruption, it is important to have measures in place which limit the amount of

disruption being propagated to other sectors. As seen in simulation, when the

number of sectors in the network is 25, even the disruptions happening in sectors

which are regarded as less risky, the propagating disruption can cause significant

loss of performance. In many cases the network is even larger, which highlights the

importance of stopping the disruption from propagating further.
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9 Conclusions

The goal of this thesis was to conduct an exploratory analysis on a sector network

which was characterized by survey answers. Based on the survey answers, we fitted

600 beta distributions to model all the connections in the network of 25 sectors.

Furthermore, we simulated the network with different initial disrupted sectors and

measured the propagating disruption for several time steps.

Our results reveal the sectors that are more prone to propagating disruptions and

affect the network the most. Furthermore, we show which disrupted sectors constitute

the greatest risks for specific sectors and give examples on how to analyse the most

risky chain of disruptive events for sectors. In addition, we exhibit the importance

of sectors to focus their risk prevention strategies also on the least risky sources of

propagating disruptions.

In our research, we did not analyse the speed of the propagation. In reality, some

sectors may propagate the disruption faster, which is something to consider in future

research. On one hand, sectors which propagate disruptions faster are more riskier to

the sector network, because the amount of propagating disruption is higher within a

time frame. On the other hand, sectors which propagate disruptions slower may get
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overlooked because no immediate propagating disruption can be seen. Furthermore,

the behaviour of the propagating disruption under different recovery ratios and initial

disruptions, both in terms of the amount and number of sectors that are disrupted,

was left outside of this thesis.

We also propose improvements for a more through survey (see Section 8), which opens

up potential for a more broader analysis on this topic. Moreover, limiting the scope to

a specific sector allows for a more detailed analysis of risk propagation. Furthermore,

instead of having sector performance losses being represented by a scalar variable,

modeling those performance losses as distributions expands the robustness of the

analysis. As an optimization problem, finding the optimal allocation for risk reducing

strategies would be beneficiary for the sector entities and the institution responsible

for the network.
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