
Aalto University

School of Science

Master’s Programme in Systems and Operations Research

Severi Saastamoinen

A Deep Learning Model for Filtering
Unusable Visual Data

Master’s Thesis
Espoo, December 30, 2022

Supervisors: Professor Ahti Salo
Advisor: Mikko Havimo M.Sc. (Tech.)

Aalto University
School of Science
Master’s Programme in Systems and Operations Research

ABSTRACT OF
MASTER’S THESIS

Author: Severi Saastamoinen

Title:
A Deep Learning Model for Filtering Unusable Visual Data

Date: December 30, 2022 Pages: 42

Major: Systems and Operations Research Code: SCI3055

Supervisors: Professor Ahti Salo

Advisor: Mikko Havimo M.Sc. (Tech.)

In this Master’s Thesis, we study the creation of a classification model using
deep learning neural networks for visual data. The purpose of the Thesis was to
automatically filter out unusable pictures in defect recognition at a steel plant in
order to streamline daily operations.

The model was created as a classification model which tags entire pictures into
three categories: “DimPictures”, “ReflectionPictures” and “GoodQualityPic-
tures”. The data was downloaded from company databases and tagged manually
to belong into one of the categories. Thus it was possible to create the model as
a supervised machine learning model.

The model performs well against the testing data with a 96% accuracy and per-
forms fast enough to handle incoming datastreams on a batch-by-batch basis
without getting overwhelmed. The more layers the underlying neural network
had, the faster the model became. It is questionable whether the original train-
ing data is enough to account for all real-world pictures, but this can be improved
by adding manually misclassified pictures as training data for the model.

This implies that the model performs adequately in handling incoming data on a
batch-by-batch basis. The model could benefit from further tweaks to its neural
network making it have a more complex layered structure. The model could also
use more training data to prevent it from having a potential over-fit indicated by
the discrepancy between the training and testing loss functions. However, more
training data will become available from running the model on production data
and this should address the over-fit issue.

Keywords: classification model, deep learning, machine vision, digitaliza-
tion, neural networks, supervised machine learning, sample
quality

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Systeemi- ja operaatiotutkimuksen maisteriohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Severi Saastamoinen

Työn nimi:
Syväoppimismalli käyttökelvottoman kuvadatan suodattamiseksi

Päiväys: 30. joulukuuta 2022 Sivumäärä: 42

Pääaine: Systeemi- ja operaatiotutkimus Koodi: SCI3055

Valvojat: Professori Ahti Salo

Ohjaaja: Diplomi-insinööri Mikko Havimo

Tässä diplomityössä luodaan luokittelumalli kuvien lajitteluun. Malli luotiin
käyttäen apuna syväoppimisneuroverkkoja. Työn tavoitteena oli kehittää malli,
joka automaattisesti seuloo käyttökelvottomia kuvia käyttökelpoisten joukosta
työajan säästämiseksi terästehtaalla.

Malli rakennettiin luokittelumallina, joka lajittelee kokonaisia kuvia kolmeen ka-
tegoriaan: ”DimPictures”, ”ReflectionPictures”ja ”GoodQualityPictures”. Kou-
lutukseen käytetty data ladattiin yhtiön tietokannoista ja lajiteltiin manuaalisesti
kuva kerrallaan yhteen näistä kolmesta tietokannasta. Täten datan pohjalta oli
mahdollista kehittää valvottu koneoppimismalli.

Malli suoriutui hyvin testausdatasta 96%:n tarkkuudella. Se käsittelee dataa
riittävän nopeasti selviytyäkseen tuotannon päivittäisestä datavirrasta satseittain
käsitellen dataa nopeammin kuin mitä sitä tulee. Mitä enemmän kerroksia neu-
roverkossa oli, sitä nopeammaksi laskenta muuttui. On kyseenalaista, riittääkö
alkuperäinen koulutusdata ottamaan huomioon todellisen tuotantoympäristön
vaihtelun kuvien välillä. Tämä tulee kuitenkin parantumaan, kun mallin väärin
luokittelemia kuvia tullaan lisäämään mallin koulutusdataan mallia ajettaessa.

Kaikesta päätellen malli kykenee käsittelemään sille tulevaa dataa riittävän hy-
vin. Mallia voitaisiin kehittää hyödyntämällä monimutkaisempaa neuroverkon ra-
kennetta ja suurempaa määrää koulutusdataa, joka estäisi mahdollista ylisovitus-
ta, johon ero koulutuksen ja testauksen tappio-funktioiden välillä vihjaa. Koulu-
tusdataa tullaan kuitenkin saamaan lisää mallia ajettaessa, jonka pitäisi ratkaista
ylisovitusongelmat.

Asiasanat: luokittelumalli, syväoppiminen, konenäkö, digitalisointi, neu-
roverkot, valvottu koneoppiminen, otoksen laatu

Kieli: Englanti

3

Acknowledgements

I wish to thank the staff and students of Aalto University, my brother, sister
and everyone else who supported me through my studies.
Thank you!

Helsinki, December 30, 2022

Severi Saastamoinen

4

Contents

1 Introduction 6
1.1 Problem statement . 7
1.2 Structure of the Thesis . 8

2 Background and Environment 9
2.1 Use case . 9
2.2 Cold rolling mill . 10
2.3 Software development and deployment environment 13
2.4 The accuracy of classification results 13

3 Methods 15
3.1 Data augmentation . 17

4 Implementation 22
4.1 Hyper-parameters and structure 23
4.2 Training data . 24
4.3 Model without data augmentation 25
4.4 Model with data augmentation 26
4.5 Model speed and performance 27

5 Evaluation 32

6 Discussion 33

7 Conclusions 35

A Additional pictures 39

5

Chapter 1

Introduction

This Thesis is focused on creating a classification model for pictures at a
production line. The purpose of the model is to filter out pictures that are
too dim or have too strong reflections, so that a machine vision model after
it can further classify errors in the intelligible pictures of the products.

Figure 1.1: The flow of image data.

Figure 1.1 shows the flow of the image data. The pictures are taken
at the production line, the bad quality ones are filtered out by the model
described in this Thesis. Finally an object detection model which already
exists recognizes various defects out of the images.

6

CHAPTER 1. INTRODUCTION 7

The model was created in Python using deep learning libraries from Ten-
sorflow. Tensorflow is a deep learning library which contains a wide variety of
tools that can be used in developing models (Pang et al., 2020). The model
is a product of supervised machine learning where the pictures used to train
and test the model were taken from former quality control pictures of the
production line in the company’s databases, after which they were classified
manually and taught to the model. The model is to be run on a batch-by-
batch basis, where the pictures recognized as good quality pictures are sent
forward in a folder to an already existing object detection model for further
examination. If the model is spotted classifying pictures incorrectly, those
pictures will be labeled and added to the model’s training data in order to
correct the error.

1.1 Problem statement

The company has had an object detection model in use which automati-
cally recognizes defects in the products on the line. The performance of this
model is inhibited by bad quality pictures which are either too dim or have
reflections from surrounding lighting on the product which makes the prod-
uct unrecognizable. The amount of bad quality pictures also increases the
workload of employees, as they have to go through them manually to see, if
there are legitimate defects in these pictures.

The reasons for taking pictures from coils range from immediate quality
control to longer term analysis of defects, their origins and what could be
done to mitigate them. This requires the defects to be detected in the first
case and this is most efficient to do with an automated system. Furthermore,
in order to decide which research and development projects are worth the
time, money and effort, it is important to learn what the potential benefit of
reducing a specific defect is. Understanding the quantities of various defects
and their inflicted losses on the business is therefore important (Breyfogle,
2003, pp. 116-117).

To solve this problem, another model was created to evaluate and filter
the pictures before offering the good quality pictures to the object detection
model. This should reduce employee workload and ensure that only useful
data is stored in the databases.

The solution must also be able to run on other hardware than the one
it is created on and be modifiable and understandable by employees with
minimal on-boarding.

CHAPTER 1. INTRODUCTION 8

1.2 Structure of the Thesis

The thesis begins with a description of the problem and research environ-
ment. This is followed by a discussion on the methods and implementation
of the solution. Finally, the effectiveness of the solution, conclusions and
discussion of the Thesis are presented.

Finally, the appendix covers material from the project giving additional
context.

Chapter 2

Background and Environment

The production takes place at a steel plant where analyzing data is used as a
tool for future business decision making. The steel plant produces stainless
steel from recycled steel which is melted for raw materials. The products of
the plant are shipped either directly to customers or to further production
steps at other sites. There are cameras both at the hot rolling mill and
cold rolling mill which collect image data for analysis. The work is set in
a cloud-environment where machine learning-models are used extensively on
data collected from historical production in order to provide better analytics
for the decision making of the company. Data collection, model development
and usage are carried on a global scale. The model which classifies defects,
recognizes the defects from within pictures through machine vision. The
model developed adjacent to this Thesis instead classifies pictures in their
entirety based on their characteristics. Deep learning is a relatively niche
field but there are some libraries for Python that are available.

2.1 Use case

There are cameras at the end of several production lines monitoring the
quality of steel. The pictures taken by the cameras are then processed by an
object detection model which is already operating on two cold rolling process
routes. Many of the pictures, however, do not show the steel surface correctly
mostly due to inadequate or excessive lighting.

The pictures affected adversely by unsuitable lighting distract the object
detection model during defect recognition and must be taken out of the data
set which demands manual work if there is no automatic model to filter the
pictures.

9

CHAPTER 2. BACKGROUND AND ENVIRONMENT 10

2.2 Cold rolling mill

Figure 2.1: Defectless coil.

The physical production line from which the pictures are taken has long
coils of steel being run through it as straight bands, where pictures are taken
regularly to inspect the surface quality. A machine vision model then inter-
prets these pictures and keeps count of various defect types to track devel-
opments in overall steel quality and sends notifications to those concerned,
when something severe is spotted. Figure 2.1 shows an example of a product
without defects as pictured by the camera system. The pictures are taken in
various sizes and from various parts of each coil, but before being given to
the model each of the pictures is resized to 180x180. The coils in the pictures
are typically two kilometers long, 1.5 meters wide and 2mm thick, although
the dimensions can vary for each individual coil.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 11

Figure 2.2: An excessively dim picture.

The picture in Figure 2.2 is too dark to be used for recognizing defects. It
is not currently known why this is. This could be due to light being reflected
away from the camera as the coil shakes slightly during its course through
the line.

Figure 2.3: A picture which has been burnt through by reflected light.

Figure 2.3 shows a picture which has been burnt through by too much
light. Such pictures need to be filtered out from the rest of the pictures going

CHAPTER 2. BACKGROUND AND ENVIRONMENT 12

onward to defect recognition.
The production line itself where the data is collected from is a unified

rolling, annealing and pickling line with annealing, pickling and cold rolling
combined into a single structure, where the production line runs for the
length of over a kilometer uninterrupted. The line is very modern and almost
completely automated, requiring only a small crew on a normal work day.
During annealing the product is treated with high temperatures to reduce
hardness to make it more malleable and to increase ductility (Wu and Fan,
2020, p. 14). Pickling is treatment with acid which removes carbon layers
from the surface of the steel after heat treatment (Eagleson, 1994, p. 834).
In cold rolling, the product is thinned down to its target thickness while its
total length increases. Unlike hot rolling, this is done without the need to
heat the coil to high temperatures (Degarmo et al., 2003, pp. 384-408).

The quantities of steel flowing through the line are in the hundreds of
tons daily. The models have to be fast enough to process approximately one
million pictures daily. The line is stopped only for maintenance purposes.
Therefore, it is easy to find training material for the model. However, when
looking for specific types of pictures, it is possible that there are only few
examples to be found. This may not be a problem because, by definition,
they are not a large part of the material flow, do not affect the accuracy of
the model to a large degree and thus are not a priority.

The camera is located above and below the coil as it runs through the
line and the setting is illuminated by lights above the coil on its sides. The
quality of the picture depends on the camera receiving a correct amount of
light. If the light is reflected badly, the resulting picture can be either too
dim or burnt through by the brightness.

Figure 2.4 shows the setting in which the pictures are taken at the end
of the line. The lights on the sides illuminate the coil in order to enable
the camera above to take pictures of the coils as the steel runs through.
Problems with lighting can be caused by the coil shaking during its run
through the line and reflections can occur, if camera lights hit the surface
in a bad angle. Other causes for reflections or dimness could be the varying
amount of ambient light around the facility during different times of day or
different steel grades reacting differently to the same amount of light.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 13

Figure 2.4: A schematic diagram of the setting where the pictures are taken.

2.3 Software development and deployment en-

vironment

The cloud environment in which the analytics is run is a collection of third
party applications which run on Python. The models are developed in a
separate environment before being deployed into the production environment.
Developed models are containerized and adjacent folders are mounted to
enable their usage reliably outside of the the hardware on the premises or
virtual machines where they were originally developed and tested. Once a
model has been developed, its performance if supervised and corrected by
adding additional training data if necessary. Using cloud computing services
introduces costs to the company which makes it necessary to plan ahead how
the model is trained and run.

2.4 The accuracy of classification results

A classification model will inevitably lead to false positives and false neg-
atives. Overall, their existence will not be critical for the operation of the
model as long as they remain rare exceptions.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 14

The model is supposed to filter out unusable pictures from the usable ones
so that a false positive would be the model removing a usable good quality
picture. The effects of this depend highly on the picture. For example,
if the picture depicts normal non-defective steel, the consequences of the
error would be practically irrelevant, since there is nothing to classify in the
picture. If instead the picture depicts holes in the steel, the holes would
remain undetected. The consequences of this might mean defective material
being treated in the next phases of development or the defects even reaching
customers. Both of which would cause unnecessary costs for the company.

False negatives would cause bad quality pictures to make it through to
error recognition. At worst this causes false positives to be raised and at best
the bad quality pictures accumulate into the company’s databases without
raising errors forcing human researchers to shift through them to get the
usable material.

As long as the amount of both types of errors stays low (e.g. under 5%
of classifications being wrong), the problems caused by the errors remain
negligible (Adams and Essex, 2014, pp. 435-446). An individual error is
unlikely to have severe ramifications in terms of used working hours or direct
financial cost.

There is also an option of enabling manual inspection and classification
for artificial intelligence classifications with a low confidence rating. This,
however, would require substantially more working hours from employees
and thus cause additional costs for the company. Also, the time needed to
provide such functionality in a user-friendly fashion would be a significant
bottleneck in time allocation.

Chapter 3

Methods

The methods used to solve the problem are to implement a deep learning
model in Python. Deep learning seeks to imitate the activity of the human
nervous system by building its own virtual neural network which seeks to
imitate human learning (Marblestone et al., 2016). When building a deep
learning model, one does not build the model directly but instead the neu-
ral network. The model trains itself within the network based on training
data through trial and error. During the creation of the neural network
for the model Tensorflow and Keras will be used. Tensorflow and Keras
are libraries which contain useful functions when programming deep learn-
ing models (Nandy and Biswas, 2018, p. 129). The model is a classification
model created via supervised learning. It was most practical to complete
the project as a classification model classifying entire pictures, because the
ultimate goal was not to recognize individual features and objects within
pictures, but classify the pictures themselves for further use.

Supervised learning requires there to be ready categories with tagged
examples of each category (Mohri et al., 2012). The model receives the
pictures and learns from the similarities in each category, instead of letting
the model itself determine from incoming data those pictures that are similar
to each other, as is the case in unsupervised machine learning (Hinton and
Sejnowski, 1999).

The solution in this Thesis is a deep learning model, because the tech-
nology enables the creation of machine vision models in a straightforward
manner. The model uses supervised instead of unsupervised learning, be-
cause it is possible to tag sufficient amounts of training and testing data and
there are also specific categories that are desired for the data, “good” and
“bad” quality.

In addition to classification models, there are clustering and regression
models. Clustering models are unsupervised machine learning models in

15

CHAPTER 3. METHODS 16

which the observations are grouped into clusters based on their properties.
No previous labels are utilized and the label of each observation is the cluster
it is assigned to. The closer two observations are, the more similar they
are. This can be applied to pictures by splitting the picture into segments
and clustering them (Bewley and Upcroft, 2013, pp. 1-2). This is not very
useful, because there is historical data which can be tagged to different labels
manually. In addition, the properties that the pictures should be tagged
according to are fairly specific. For example, the model is not supposed to
classify the pictures based on whether or not they contain holes.

Regression models attempt to establish relationships between different
data characteristics in order to predict a label. This form of supervised
machine learning is used mostly to determine the dependency of a property
of the data in relation to others. It would be impractical to try to use it for
image classification (Cook and Weisberg, 1982, pp. 313-361).

Hyperparameters are parameters which govern the creation of the model.
Because the parameters of the model are created within the neural network
without human interference, hyperparameters are a method to fine-tune the
parameters of the model indirectly. The learning rate measures how much
the model corrects itself during training to minimize its loss function. A
higher learning rate means that the model will approach an optimal solution
faster with less training, but will find it difficult to arrive at the best possible
solution due to an inability to fine-tune parameters near the optimal values.
A low learning rate, on the other hand, means that it will likely take a longer
training for the model to provide good results increasing computing costs,
but the ultimate result will be of better quality unless the algorithm gets
stuck in the loss functions local minima (Buduma and Locascio, 2017, p. 21).

The batch size determines how many pictures are taken into a single
training step, between which the weights of the parameters are updated. A
smaller batch size can result in a slower training, whereas larger batch sizes
are limited by the computer graphics processing unit the training is done on.

An epoch is a series of steps that train through the entire dataset. The
number of epochs used during training is not fixed in this Thesis and thus
choosing the correct number of epochs is at the data scientist’s discretion. A
large number of epochs can make the training needlessly long. The improve-
ments made to the model usually stall after a certain amount of training
depending on e.g. the shape of the neural network, hyperparameters and
dataset quality.

As hyperparameters, the model will use a batch size of 64 which is rec-
ommended in literature alongside with the size of 32 (Kandel and Castelli,
2020). The number of epochs used for training will be determined empiri-
cally during model development based on how many epochs it takes for the

CHAPTER 3. METHODS 17

model’s training loss to stop decreasing and the accuracy of the model to
stop improving. This is because there is no definite way of determining the
best number of epochs outside of empirical tests (Sinha et al., 2010). It
would be possible to let the code determine this with a conditional stop for
model training when the training loss has not decreased in several consecu-
tive epochs, but it should not be necessary for training an individual model,
as it is possible to let the model train for several excess epoch to be certain of
optimal training results. This leads to higher computing costs, but ensures
the development of a slightly better model.

3.1 Data augmentation

The validation data has the issue that it is taken from the same few coils
that the training data was taken from. Thus, taking into account how most
pictures of the same coil look very similar and the bad quality pictures tend
to concentrate on specific coils, there is a danger of overfitting the data for
only specific coils or steel grades (Shorten and Khoshgoftaar, 2019).

To solve this, it is possible to use data augmentation. In Figure 3.1,
there are examples of pictures generated by data augmentation from a single
picture.

Data augmentation modifies a picture by modifying different parameters
of a picture to create variation within the data set. The goal is to compensate
for small sample sizes and take in to account slightly different angles and
varying degrees of brightness in the real world.

This can be done by shifting the picture upwards or sideways within the
frame, flipping the picture around its horizontal or vertical axis, rotating the
picture around its center, zooming in or out of it to make the object look
larger or smaller, modifying the brightness of the picture or doing a shear
transformation to the picture in which one edge of the picture is moved
up while the other one is moved down. These variations can be done with
commands from Keras.

Out of these possibilities rotation seems to be of limited use, because
practically speaking all pictures will have the steel coil running in the same
angle.

Figure 3.2 shows an example of how the Randomflip function can be used
to augment the dataset. It flips a picture around to make the dataset more
robust.

CHAPTER 3. METHODS 18

Figure 3.1: Pictures generated by data augmentation from the data to pre-
vent overfitting.

Figure 3.3 is an example of how the Randomrotation function can be
used to augment the dataset. It rotates the pictures randomly within given
parameters This is not very useful in the project, however, because all pic-
tures in the data display the coil moving vertically in relation to the camera.
Therefore, Randomrotation will not be used in training.

CHAPTER 3. METHODS 19

Figure 3.2: An example of the use of Randomflip.

Figure 3.3: An example of the use of Randomrotation.

CHAPTER 3. METHODS 20

Figure 3.4: Pictures zoomed with Randomzoom.

The pictures in Figure 3.4 are created by zooming into original pictures
within the training data set. The usefulness of these pictures in training the
model to recognize new data varies, but many of them are similar to real
pictures taken at different parts of the coil.

Figure 3.5 shows cropped pictures which look similar but offer slight vari-
ation and are thus useful for the augmentation.

Ultimately, the functions Randomzoom, Randomflip, Randomcrop were
chosen to be used in augmenting the data. When several of these functions
are added together, it is possible to combine them in the same generated
picture, thus further increasing the amount of pictures available.

CHAPTER 3. METHODS 21

Figure 3.5: Randomly cropped pictures.

Chapter 4

Implementation

The project was successfully completed as a sequential Keras model. The
largest change to the initial plans was to divide the bad quality pictures into
two separate categories. This was done to avoid confusion while training the
model. Since dim and reflective pictures are hard to distinguish from each
other, it makes sense to create two separate tags for bad quality pictures,
one for pictures which are too dim and the other for pictures with severe
reflections. This makes it easier for the model to tell these very different
looking pictures apart from each other, making the overall classification pro-
cess more reliable. It is worth noting that the model’s ability to distinguish
between reflective and dim pictures was not relevant to the main purpose of
the model which was to keep both of these groups separate from the good
quality pictures.

The hyper-parameters of the model were not experimented with to a large
degree. However, this did not seem necessary, as the model performed suffi-
ciently with minimal adjustments. It would be a worthwhile topic of further
research to explore and document how various hyper-parameters affect the
accuracy and speed of the model. This could be fine-tuned by having an-
other artificial intelligence tool to tune the hyper-parameters. However, this
would add an additional layer of computing and time required to complete
the Thesis would have increase significantly. Also, the costs caused by using
3rd party cloud computing services would have multiplied beyond acceptable
levels.

22

CHAPTER 4. IMPLEMENTATION 23

4.1 Hyper-parameters and structure

Layer (type)
Output
Shape

rescaling1
(Rescaling)

(None,
180, 180,
3)

conv2d
(Conv2D)

(None,
180, 180,
16)

maxpooling2d
(MaxPool-
ing2D)

(None, 90,
90, 16)

conv2d1
(Conv2D)

(None, 90,
90, 32)

maxpooling2d1
(MaxPool-
ing2D)

(None, 45,
45, 32)

conv2d2
(Conv2D)

(None, 45,
45, 64)

maxpooling2d2
(MaxPool-
ing2D)

(None, 22,
22, 64)

flatten (Flatten)
(None,
30976)

dense (Dense)
(None,
128)

dense1 (Dense) (None, 3)
Table 4.1: The structure of the neural network.

Table 4.1 outlines the shape of the neural network. The first row shows
the input layer with its dimensions, each row below that is subsequent hid-
den layer until the last row which is the output layer. The structure of the
neural network was made with the hidden layers expanding in size towards
the center and contracting again towards the output layer. This is a sim-
ple structure which enables the model to separate the picture into smaller
sections, recognize them and combine them towards a greater whole. The
model trains itself several times through the neural network during training.
At the end of each run through the network, the model changes itself based
on whether it improved or not.

CHAPTER 4. IMPLEMENTATION 24

The model was trained with a batch size of 64 and 50 epochs. The learning
rate was set to 0.001. The number of epochs was determined empirically by
training the model with more epochs until training progress visibly stopped.
For all test runs there was a drop off in accuracy gain and loss function
minimization slightly before the 50th epoch. The learning rate of 0.001 was
found sufficiently small to provide a confidence of over 95%. Decreasing
the learning rate runs the risk of increasing time required for retraining to
unacceptable amounts.

4.2 Training data

The training data consisted of real-world pictures taken from coils at the
end of the rolling, annealing and pickling line with digital cameras. The
data was found by manually browsing databases, finding a coil which had
either reflections or dim photos taken from it. All pictures of the found coil
were then downloaded to a laptop and sorted manually into “GoodQuali-
tyPictures”, “DimPictures” and “ReflectionPictures”. This process was also
repeated to coils that were found to only have good quality pictures taken
from them and picture folders of coils chosen at random. The goal was to
have a dataset which would not be biased towards a specific type of product
type or coil, since by the nature of the database, it was easier to take all
pictures representing one coil at once.

It was also important to balance each tag with roughly equally many
pictures in the data, because if one tag would have magnitudes more training
data, it would cause issues due to over-fitting. The balancing was done after
the data was collected by deleting pictures. This made it possible to avoid
overfitting while having a representative sample of data to train the model.
The exact volume of data required for training a classification model is hard
to determine. For this purpose, there is no strict rule, but classification
models often start working properly with hundreds of data pieces per tag.

The amount of data was increased as long as there was a tangible improve-
ment in model performance. Ultimately, there were 1038 Pictures tagged
with “DimPictures”, 722 tagged “GoodQualityPictures” and 296 tagged “Re-
flectionPictures”. The imbalance between the tags is still acceptable, al-
though there are clearly fewer “ReflectionPictures” than other tags. The
imbalance is due to how rare it is to have reflections in the pictures that
make them unintelligible.

There is a degree of subjectivity involved in tagging pictures, because it
is up to the tagger to decide which picture belongs to which tag. This can
make judging close calls problematic, because the opinion of the tagger can

CHAPTER 4. IMPLEMENTATION 25

differ from what defect classification software is able to understand. This
problem can be mitigated by consulting senior staff about the software’s
capabilities and having a single individual do all the tagging, so that the
results are consistent and should average out within a larger dataset towards
an acceptable interpretation of the tags.

It is not known why some pictures are burned through by reflections. This
may be due to certain steel grades having more reflective surfaces or possibly
thinner coils shaking more, causing light to reflect towards the camera. The
latter explanation seems plausible, because pictures depicting folded coils
often had reflections on them also. This indicates that the angle the steel af-
fects the picture quality and since the coils angle towards the camera changes
if the coil shakes significantly, there may be a direct relation between the two.

Figure 4.1: Examples of tagging data for training.

Figure 4.1 shows examples of pictures and tagging them. The tag reads
above each picture.

4.3 Model without data augmentation

The initial attempt at creating the model involved composing and training
the model directly from the data. A share of 80% of the data was used for
training and the remaining 20% for validation.

CHAPTER 4. IMPLEMENTATION 26

Figure 4.2: Performance of the model with training and testing data.

Figure 4.2 displays the development of the models accuracy and loss func-
tion. Validation is the most interesting aspect, because it shows how the
model would perform in a setting with completely new data it has not been
trained with.

The validation of the model resulted in an accuracy of 96.1%. The accu-
racy is based on using the validation data on the model and calculating how
many of the pictures the model classified correctly regardless of class. The
results are satisfactory, as the model performs well against the testing data.
The quality of the data is concerning however, because there is a danger of
the model being overfitted. This hypothesis is also supported by the fact,
that the validation loss curve performs slightly worse that the training loss
curve. Ideally these two should be aligned, but the discrepancy indicates
that additional data could be useful in training.

4.4 Model with data augmentation

With the model augmented it is marginally more accurate that before at
96.5%. There is still a minor but consistent difference between the training
and validation loss curves which persists despite adding more training data
and augmenting the data for overfitting. The training has enough epochs to
provide all improvements to model accuracy that are expected to manifest
themselves realistically. In addition, with data augmentation, the validation
loss function starts to worsen after about 30 epochs. This may be due to
the model getting overfitted for augmented data that does not correspond to
reality.

CHAPTER 4. IMPLEMENTATION 27

Figure 4.3: Performance of the model after data augmentation.

Figure 4.3 displays the performance of the model after augmenting the
training data. The model does not experience significant changes to its accu-
racy from the amount of epoch it is trained through. Regardless, the models
validation accuracy is marginally better than it was without data augmen-
tation.

4.5 Model speed and performance

The model’s performance averages out at roughly 26ms per measured picture.
The speed should be clearly under 10ms per picture for the model to perform
effectively against the incoming flow of data. This is unlikely to be a problem,
however, because model development was done on a virtual machine without
graphics processing unit or an efficient central processing unit in order to cut
costs. The virtual machine had 4 processor cores and 28GB random access
memory. The servers in which the model will be ultimately run will have
more powerful hardware to handle the classification.

CHAPTER 4. IMPLEMENTATION 28

Figure 4.4: An example of a dim picture used as testing data.

The picture in Figure 4.4 is too dim to be used. It is impossible recognize
if there are defects on the coil or not, thus the model was trained with
different examples of dim pictures such as this for it to be able to recognize
them.

Figure 4.5: An example of a good picture with pigment used as testing data.

There is dark pigment on the coil in figure 4.5. This can easily be confused
as poor lighting. Therefore it is important to have representation of such

CHAPTER 4. IMPLEMENTATION 29

cases also in the training data.

Figure 4.6: An example of a good picture with inconsequential reflections
used as testing data.

Figure 4.6 shows actual reflections on the coil, but they do not prevent
one from seeing whether or not the coil has defects. Therefore, it is better
to classify this type of picture as good quality.

CHAPTER 4. IMPLEMENTATION 30

Figure 4.7: An example of a mild reflection used as testing data.

Figure 4.7 shows a picture which could arguably be classified as good
quality or as a reflection picture. Here the picture is classified as a reflection
picture with a low confidence of 51.57%. The model evidently had difficulty
deciding, should the picture belong to “ReflectionPictures” or “GoodQuali-
tyPictures”. The end result depends on human interpretations during clas-
sification of the training data. If a specific type of error is overwhelmingly
less preferred than the other, it is possible to set a condition in the code to
count pictures in specific classes only if the confidence supersedes a certain
confidence.

The reflection in Figure 4.8 is an example of a picture rendered the coil
and its defects unrecognizable. The picture is thus unusable for the purposes
of defect recognition and classification.

Ultimately, the folders containing the model’s data were mounted in order
for them to be referred to in code outside of the workspace the model was
created on. The model was containerized and sent to a cloud storage, where
it could be used further. The containerization had to be done with another
virtual machine which supported using a graphics processing unit. After
this, the model will be retrained with pictures it has failed to recognize and
adapted to meet changing needs.

CHAPTER 4. IMPLEMENTATION 31

Figure 4.8: An example of a picture made useless by reflections used as
testing data.

Chapter 5

Evaluation

The development of the model succeeded in that the model provides the re-
sults it is supposed to with a good confidence. The model was containerized,
sent to cloud data storage and is ready to be used on any hardware required.
The speed of the model was lacking, but this is likely due to the hardware it
was trained and tested on.

The model has some confusion in borderline cases between classes. This is
due to human interpretation while classifying the data. There are also some
anomalies between the “DimPictures” and “ReflectionPictures” classes, as
many pictures have a very dark lighting with reflections in the middle. This
is not a very serious problem, however, because the primary concern of the
model is to separate the “GoodQualityPictures” class from the others. If the
other two classes mix together, it should not interfere with the performance
of the model.

The loss function of the testing remained higher than that of the training
function. This indicates that the model could use more training data. How-
ever, appropriate training data for reflections specifically is hard to come by
and the model seems to perform sufficiently regardless of the lack of training
data. The issue with data can be mended over time by adding pictures the
model has misidentified to the training data correctly tagged. This of course
would require a manual review of the data regularly, which would increase
the required working hours.

It would have been interesting to further explore and test various hyper-
parameters and structures for the neural network used in training the model.
However, the time used to retrain the model with increasingly complex neural
networks would have been lost and it is uncertain if this would have resulted
in sufficient improvements in the model to justify the time allocation beyond
the initial experimentation and study.

32

Chapter 6

Discussion

It would have been possible to have an option to manually review classifica-
tions made by the model with a lower confidence (e.g. < 70%). However,
this would require working hours from staff to be able to understand the
environment the artificial intelligence is built in. This time could be used for
other projects elsewhere and thus a manual solution with large amounts of
data could prove expensive due to its opportunity cost. Manual inspection
will still be carried out so that once an error in classification is spotted fur-
ther on in the pipeline, the pictures can be tagged and added to the training
data of the model.

It was surprising how relatively straightforward it is to create a deep learn-
ing model with a self constructed neural network. There are many vendors
offering similar services to companies, but it seems possible to circumvent
many expensive fees by creating the software by yourself. Having these ca-
pabilities in-house makes it also possible to maintain and adapt software
without fear of vendor lock-in or accumulating costs, once the infrastructure
has been built in the first place.

It would have been interesting to experiment how a classification model
changes its behaviour when the underlying neural network is modified by
adding more layers or nodes to existing layers, for instance. It would be
interesting to find out especially how the performance in terms of speed is
affected by a more detailed neural network and which features specifically
have the most significant effect.

While this is interesting, time constraints forced this experimentation
to be minimal in this Thesis. This would be interesting and feasible to
research, when there is a ready-made working model provided at the start of
the project and the sole goal is to conduct experiments to it by modifying its
hyper-parameters and neural network structure, running it and comparing
results between runs.

33

CHAPTER 6. DISCUSSION 34

In the literature review for this Thesis, no clear cut rule was found on
what the size of the training dataset should be for each class. The closest
to this was to have the datasets for each class within the same scale of
magnitude and that the identification of some classes functions well with
a few hundred samples while others require more. This knowledge comes
mostly from anecdotes from experienced data scientists instead of rigorous
scientific research and is in stark contrast to, e.g., linear regression, where
a 1 : 10 ratio is widely considered ideal between the number of explanatory
variables and training data (Hair et al., 2010, pp. 573-574). Having a baseline
amount of required data would simplify the initial steps of the development
process significantly.

It would be interesting to examine data from other parts of the production
process in order to identify which factors cause the quality of the pictures
to deteriorate. Possible causes are the surfaces of certain product types re-
flecting light differently and thinner coils possibly shaking more while moving
through the line. This would be interesting, because knowing this would help
focus the development efforts on mitigating unacceptable quality among the
most susceptible pictures.

Chapter 7

Conclusions

The purpose of this Thesis was to create a classification model to sort out
entire pictures in different classes between usable and unusable ones for defect
recognition. The project environment was a cloud service handling data from
a steel plant, where an already existing artificial intelligence classifies defects
in the pictures into further categories. The project was successful and the
model provides accurate classifications in a reasonably short amount of time.

The model was based in a deep learning artificial intelligence environ-
ment which was developed with Python using Tensorflow and Keras libraries.
Augmented data was added to the training data which was a collection of
modified pictures based on the real data in order to reduce overfitting. This
provided a small increase in overall model accuracy and resulted in there
being smaller differences in model performance throughout different training
epochs.

When the underlying structure of the neural network used to train the
model was modified to contain more layers, the model became faster as a
general trend. This was unexpected and quite interesting. It would be an
interesting topic of further study to explore how the shape of the neural
network affects the resulting model in more detail.

The model may make erroneous classifications, but this can be improved
over time by adding pictures that were manually noticed to be wrongly classi-
fied into the training data of the model and retraining the model to recognize
the new type of pictures.

The main difficulty in developing the model was in finding a good repre-
sentative data set to train the model with, because most pictures containing
reflections precisely come from a limited number of specific coils. As a re-
sult, the training data is biased towards the features of these specific coils,
such as surface characteristics caused by steel grades, the specific parts of
the coil the pictures are taken from and coil width. This casts some doubts

35

CHAPTER 7. CONCLUSIONS 36

on the validation accuracy. The problem might not be that relevant though,
as certain coils have more of a tendency to have reflections and if these coils
are represented in a proportionate manner, the results should reflect reality,
because the over represented coils stem from the majority of coils that have
reflections in the first place.

Bibliography

R. Adams and C. Essex. Calculus A Complete Course, 8th edition. Pearson,
Toronto, 2014.

A. Bewley and B. Upcroft. Advantages of Exploiting Projection Structure for
Segmenting Dense 3D Point Clouds. Queensland University of Technology,
Brisbane, Australia, 2013.

F. Breyfogle. Implementing Six Sigma: Smarter Solutions Using Statistical
Methods, 2nd Edition. Wiley, Austin, Texas, 2003.

N. Buduma and N. Locascio. Fundamentals of Deep Learning : Designing
Next-Generation Machine Intelligence Algorithms. O’Reilly, Sebastopol,
California, 2017.

R. Cook and S. Weisberg. Criticism and influence analysis in regression.
Sociological Methodology, 13:313–361, 1982.

E. Degarmo, J. Black, and R. Kohser. Materials and Processes in Manufac-
turing, 9th edition. Wiley, Austin, Texas, 2003.

M. Eagleson. Concise Encyclopedia Chemistry. De Gruyter, Berlin, 1994.

J. Hair, W. Black, B. Babin, and R. Anderson. Multivariate Data Analysis
7th Edition. Pearson, Hoboken, New Jersey, 2010.

G. Hinton and T. Sejnowski. Unsupervised Learning: Foundations of Neural
Computation. MIT Press, Cambridge, Massachusetts, USA, 1999.

I. Kandel and M. Castelli. The effect of batch size on the generalizability
of the convolutional neural networks on a histopathology dataset. ICT
Express, 6:312–315, 2020.

A. Marblestone, G. Wayne, and K. Kording. Toward an integration of deep
learning and neuroscience. Frontiers in Computational Neuroscience, 10:
94, 2016.

37

BIBLIOGRAPHY 38

M. Mohri, A Rostamizadeh, and A. Talwalkar. Foundations of Machine
Learning. MIT Press, Cambridge, Massachusetts, USA, 2012.

A. Nandy and M. Biswas. Reinforcement Learning: With Open AI, Tensor-
Flow and Keras Using Python. Apress, 2018.

B. Pang, E. Nijkamp, and Y.N. Wu. Deep learning with tensorflow: A review.
Journal of Education and Behavioral Statistics, 45(2):227–248, 2020.

C. Shorten and T. Khoshgoftaar. A survey on image data augmentation for
deep learning. Journal of Big Data, 6(60):1–48, 2019.

S. Sinha, T. Singh, V. Singh, and A. Verma. Epoch determination for neural
network by self-organized map (SOM). Computational Geosciences, 14:
199–206, 2010.

H. Wu and G. Fan. An overview of tailoring strain delocalization for strength-
ductility synergy. Progress in Materials Science, 113:100675, 2020.

Appendix A

Additional pictures

Below are further examples of the data used to train the model and the
types of pictures that the model is expected to handle. The white rectangles
indicate tagged defects which are supposed to be identified from the pictures
determined to be of sufficient quality by software outside the scope of this
project. These pictures are meant to provide additional context to the project
and its environment.

Figure A.1: A coil with a fleck and a hole on it.

The coil in Figure A.1 has a fleck and a hole in it. The severity of various
defects depends on the product. A fleck might not be serious if the product

39

APPENDIX A. ADDITIONAL PICTURES 40

is intended to be in the internal side of machinery, for instance, where it
cannot be spotted. The hole, however, is always a severe defect which causes
the specific part of the coil to be taken off and scrapped.

Figure A.2: A coil with a fold on it.

The coil in Figure A.2 has folds on its left side. This could be due to the
coil hitting something during transportation. The lighting of the coil gets
dimmer near the fold due to light not being reflected from the sloped surface
properly.

APPENDIX A. ADDITIONAL PICTURES 41

Figure A.3: A coil with holes and scratches.

In Figure A.3 there is a hole and light scratches at the right edge of the
coil. Such scratches are very common and often the edges of coils are cut
and the planned material for the saleable products is taken from the center.

The scratches in Figure A.4 can be caused by rollers during cold rolling
when the roller comes into direct contact with the coil. The resulting traces
are largely aesthetic, but can cause issues if the material was supposed to
end up e.g. on the outer surface of a car.

APPENDIX A. ADDITIONAL PICTURES 42

Figure A.4: A coil with stain scratches.

	Cover page
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Structure of the Thesis

	2 Background and Environment
	2.1 Use case
	2.2 Cold rolling mill
	2.3 Software development and deployment environment
	2.4 The accuracy of classification results

	3 Methods
	3.1 Data augmentation

	4 Implementation
	4.1 Hyper-parameters and structure
	4.2 Training data
	4.3 Model without data augmentation
	4.4 Model with data augmentation
	4.5 Model speed and performance

	5 Evaluation
	6 Discussion
	7 Conclusions
	A Additional pictures

