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Abstract
Three-dimensional point clouds acquired with light detection and ranging scanners
are used in various applications within forest inventory and plant ecology, such as
classification of individual tree species and estimation of tree stem attributes and
above-ground biomass. However, a majority of these applications require the semantic
segmentation of the data into wood and foliage points, also known as leaf–wood
separation. Traditionally, this has been achieved with geometry- and radiometry-based
unsupervised algorithms, whose performance is heavily dependent on the density
of the point clouds, and tends to be poor on sparser data. By contrast, more recent
machine and deep learning-based leaf–wood separation approaches achieve great
performance even on sparse point clouds but require manually annotated training data,
which is laborious and time-consuming to produce.

To address the limitations of traditional leaf–wood separation algorithms on
sparser point clouds while simultaneously not utilizing any manually labeled data, this
thesis explores utilizing unsupervised deep learning for the semantic segmentation of
multispectral forest point clouds. To this end, the GrowSP-ForMS model is proposed.
The model has been adapted from the recent GrowSP architecture by introducing
changes specifically designed to improve the accuracy of leaf–wood separation. To
assess the accuracy of GrowSP-ForMS, a novel multispectral aerial laser scanning
data set captured in boreal forest environment is introduced. A subsection of the
data set is manually labeled into foliage and wood and subsequently divided into
training and test data. GrowSP-ForMS is compared to two unsupervised algorithms
and three fully-supervised neural network architectures. The results demonstrate
that GrowSP-ForMS significantly outperforms unsupervised methods and performs
comparably to an older supervised model, but is outclassed by more recent supervised
approaches. Finally, two ablation studies demonstrate that the proposed changes
significantly increase the accuracy of GrowSP-ForMS in comparison to the original
GrowSP model and that utilizing multispectral data improves model performance from
the monospectral case.

Keywords unsupervised deep learning, point cloud, multispectral LiDAR, semantic
segmentation, leaf–wood separation, airborne laser scanning
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Tiivistelmä
Laserkeilaimella kerättyjä kolmiulotteisia pistepilviä käytetään erilaisissa metsäin-
ventointiin ja kasviekologiaan liittyvissä sovelluksissa, kuten yksittäisten puulajien
luokittelussa, sekä puiden runkoattribuuttien ja maanpäällisen biomassan arvioinnissa.
Suurin osa näistä sovelluksista edellyttää datan semanttista segmentointia puu- ja
lehvästöpisteisiin, jota kutsutaan myös lehti–puu-erotteluksi. Perinteisesti tämä on
toteutettu geometriaan ja radiometriaan perustuvilla valvomattomilla algoritmeilla,
joiden suorituskyky riippuu suuresti pistepilvien tiheydestä ja on yleensä heikkolaa-
tuinen harvemmalle datalle. Uudemmat kone- ja syväoppimispohjaiset menetelmät
taas ovat erittäin tarkkoja myös harvoilla pistepilvillä, mutta vaativat manuaalisesti
luokiteltua koulutusdataa, jonka tuottaminen on työlästä ja aikaa vievää.

Tässä työssä tutkititaan valvomattoman syväoppimisen hyödyntämistä multispekt-
rimetsäpistepilvien semanttiseen segmentointiin. Työn tavoitteena on ratkaista perin-
teisten lehti–puu-erottelualgoritmien rajoitukset harvemmissa pistepilvissä, ilman että
samalla hyödynnetään manuaalisesti luokiteltua koulutusdataa. Tähän tarkoitukseen
käytetään GrowSP-ForMS-mallia, joka on muokattu tuoreesta GrowSP-arkkitehtuurista
lisäämällä lehvästö- ja puupisteiden erottelun tarkkuuden parantamiseen suunniteltuja
parannuksia. GrowSP-ForMS:n tarkkuuden määrittelemiseen hyödynnetään uutta
pohjoisessa metsäympäristössä multispektrilaserkeilaimella kerättyä datajoukkoa. Osa
datasta luokitellaan manuaalisesti lehvästö- ja puupisteisiin, minkä jälkeen se jaetaan
koulutus- ja testijoukkoihin. GrowSP-ForMS:ia verrataan kahteen valvomattomaan
algoritmiin ja kolmeen valvottuun neuroverkkoarkkitehtuuriin. Tulokset osoittavat,
että GrowSP-ForMS on tarkkuudeltaan huomattavasti valvomattomia menetelmiä
parempi ja verrattavissa vanhempaan valvottuun malliin, mutta kaukana uudemmista
valvotuista arkkitehtuureista. Lopuksi kaksi ablaatiotutkimusta osoittavat, että ehdote-
tut muutokset kasvattavat GrowSP-ForMS:n tarkkuutta merkittävästi alkuperäiseen
GrowSP-malliin verrattuna ja että multispektridatan hyödyntäminen parantaa mallin
suorituskykyä monospektriseen verrattuna.

Avainsanat valvomaton syväoppiminen, pistepilvi, multispektrinen LiDAR,
semanttinen segmentointi, lehti–puu-erottelu, ilmalaserkeilaus



Preface

Kiitos perheenjäsenilleni, ystävilleni ja kaikille muillekin, jotka ovat olleet (enemmän
tai vähemmän) tukenani tämän diplomityön työstämisessä ja ylipäätään opintojeni
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neuvoista. Lopuksi vielä kiitos koko FGI:n AMAD tutkimusryhmälle ja sen johdolle.
Arvostan sitä, että “luotitte visiooni”, vaikka oli alkuun epävarmaa saisiko tästä
aiheesta aikaiseksi yhtään mitään julkaisukelpoista. Niin kuin joku joskus sanoi: “Ei
se oo niin vakavaa.”

If you happen to be actually interested in the scientific contents of this thesis, I
recommend reading the paper “Unsupervised deep learning for semantic segmentation
of multispectral LiDAR forest point clouds” instead. The paper contains the same
information presented much more concisely and all experiments were conducted
again on better hardware and a larger data set. The preprint is available at: https:

//doi.org/10.48550/arXiv.2502.06227

Otaniemi, 24.02.2025

Lassi Ruoppa
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1 Introduction

Three-dimensional (3D) point clouds acquired with light detection and ranging
(LiDAR) scanners have a wide variety of applications within forest inventory and
plant ecology, including estimation of tree stem attributes, leaf angle distribution and
above-ground biomass (AGB) [1]. However, a majority of these applications require
accurately classifying each point into either wood or foliage as a preprocessing step.
This semantic segmentation task is often referred to as leaf–wood separation.

Traditionally leaf–wood separation has been achieved with unsupervised algorithms
that utilize either geometric or radiometric properties of the point cloud, but following
the recent major advancements in deep learning (DL) the amount of research on
DL-based approaches has exploded [2, 3, 4, 5, 6]. Although the DL-based methods
achieve extremely high segmentation accuracies, unlike unsupervised leaf–wood
separation algorithms they require large amounts of manually generated training
data with point-wise semantic annotations, which is extremely time-consuming and
challenging to produce. In fact, a recent review of deep learning applications for forest
inventory and planning found that acquiring sufficient amounts of representative and
labelled training data remains one of the main challenges in the field [7].

Unsupervised leaf–wood separation algorithms are generally designed for point
clouds captured with stationary terrestrial laser scanning (TLS) systems. While TLS is
able to capture tree-structures with millimeter level details, aerial laser scanning (ALS)
allows surveying larger areas spanning multiple square kilometers much more time
efficiently at the cost of reduced point density and geometric details. Consequently,
conventional unsupervised algorithms often struggle with ALS data due to heavy
reliance on point cloud geometry.

Since generating semantic annotations for point cloud data is extremely laborious,
weakly-supervised approaches to semantic segmentation that minimize the amount
of required ground truth data have long been a research focus. Multiple works have
demonstrated that segmentation accuracies comparable to many fully-supervised
architectures can be achieved with as little as 0.01% of the ground truth labels [8, 9].
More recently, Zhang et al. [10] introduced the first semantic segmentation model
based on unsupervised deep learning, which achieved competitive results on multiple
benchmark data sets depicting indoor scenes and urban environments.

LiDAR scanners typically only capture intensity information from one wavelength.
However, more recently multispectral (MS) laser scanning systems that operate on
multiple distinct wavelengths have emerged as a promising new alternative [11].
MS point clouds have been shown to improve accuracy in tasks such as tree species
classification [12] and land cover classification [13]. Li et al. [14] hypothesized
that MS data could also improve the accuracy of leaf–wood separation due to the
distinctive difference between leaf and wood reflectance on certain wavelengths. As
such, the additional intensity information provided by multispectral scanners may help
improve the accuracy of unsupervised deep learning models in the task of leaf–wood
separation.
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1.1 Research Objectives

The objective of this thesis is two answer the following research questions:

1. Can unsupervised DL be utilized to alleviate the issue of reduced point density in
ALS data, which causes the performance of conventional leaf–wood separation
algorithms designed for TLS point clouds to deteriorate? In other words, does an
approach based on unsupervised deep learning outperform traditional algorithms
when it comes to ALS data?

2. How does the performance of an unsupervised DL model compare to fully-
supervised approaches in the task of leaf–wood separation on multispectral ALS
data.

3. Does utilizing multispectral LiDAR with intensity information from multiple
wavelengths improve the semantic segmentation performance of unsupervised
DL models for forest data?

To answer these questions, we adapt the recent GrowSP [10] model for unsupervised
semantic segmentation of point clouds to ALS forest data by introducing modifications
specifically designed to improve leaf–wood separation accuracy. The adapted model is
then trained on a novel multispectral forest data set and compared to existing leaf–wood
separation approaches.

1.2 Contributions

The contributions presented in this thesis are as follows:

1. We propose the world’s first multispectral point cloud data set with manual
point-level annotations captured with an aerial laser scanning system in a boreal
forest environment. The data set is comprised of more than 8 million individual
points, each of which has been manually labeled into either wood or foliage.

2. We present a modified version of the recent GrowSP [10] deep learning ar-
chitecture designed specifically for unsupervised semantic segmentation of
multispectral forest point clouds, named GrowSP-ForMS (GrowSP for Forest
area multispectral point clouds).

3. We present an extensive performance comparison between GrowSP-ForMS, two
state-of-the-art unsupervised algorithms and three popular fully-supervised deep
learning models on the leaf–wood separation task on our proposed multispectral
forest environment data set. The comparison demonstrates that GrowSP-
ForMS achieves performance that is state-of-the-art in unsupervised leaf–wood
separation and comparable to fully-supervised PointNet [15]. All models are
compared both qualitatively and quantitatively.

4. We perform an ablation study where the effect of our proposed changes to
GrowSP is assessed. By comparing the performance of ablated models we
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demonstrate that all of our proposed modifications are beneficial in terms of
leaf–wood separation accuracy.

5. The performance of GrowSP-ForMS is assessed on monospectral LiDAR point
clouds from multiple distinct wavelengths as well as multispectral data. Our
results suggest that using intensity information from multiple wavelengths
considerably improves the accuracy of our unsupervised semantic segmentation
model when used correctly.

1.3 Structure

This thesis begins with a brief overview of point cloud data and publicly available data
sets, basic principles of artificial neural networks, deep learning-based point cloud
semantic segmentation and finally various leaf–wood separation methods in Section 2.
In Section 3, we describe our manually annotated multispectral forest data set and the
data preprocessing pipeline. We begin Section 4 with a detailed description of the
GrowSP architecture, our proposed modifications and each of our fully-supervised
and unsupervised baseline methods, followed by details of the experimental setup and
evaluation metrics, including the procedures used for training the deep learning models
and optimizing the hyperparameters of the unsupervised baselines. Subsequently, in
Section 5 we present the results of our experiments comprised of a quantitative and
qualitative performance comparison between our model and the baseline architectures
as well as an ablation study. Finally, Section 6 discusses the results and limitations of
this work along with possible directions for future research, followed by the conclusions
of the thesis in Section 7.
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2 Background

We begin by introducing the concept of point clouds and subsequently showcase
some publicly available point cloud data sets in Section 2.1, focusing specifically
on the most widely used semantic segmentation benchmark data sets and data sets
collected in forest environments. Section 2.2 provides an overview of deep learning,
neural networks and their architectural elements, followed by an overview of their
training procedures in Section 2.3. In Section 2.4 we give a brief introduction to
deep learning-based semantic segmentation of point clouds, highlighting some of the
most notable works in the field, grouped by the degree of supervision in training.
Finally, in Section 2.5, we discuss the more specific semantic segmentation task of
leaf–wood separation in point clouds, including both machine learning (ML) and deep
learning-based approaches as well as more traditional geometry and radiometry-based
algorithms.

2.1 Point Cloud Data Sets

2.1.1 Point Cloud Data

A three-dimensional point cloud is a collection of points set in a 3D space, which
represent the surface of either an individual object or a larger scene [16]. In general the
number of points in a point cloud is relatively large, usually at least tens to hundreds
of thousands of points, but larger scans depicting e.g. urban environments may
contain tens of millions or even billions of points. Each point consists of at least
the 𝑥𝑦𝑧-coordinates, which define its unique location in the 3D space. In addition,
other information such as RGB color or surface reflectance may be stored depending
on the method of capture. In contrast to two-dimensional images or voxel-based
3D models, the 𝑥𝑦𝑧-coordinates of point clouds can not be represented as a discrete
grid-like structure. Rather, they are an inherently unorganized collection of points,
which presents an unique set of challenges when it comes to effectively processing
point cloud data [16].

A wide variety of point cloud data sets are publicly available for the purposes of
benchmarking model performance on various tasks, such as instance segmentation,
semantic segmentation, 3D object classification, parts segmentation and 3D recon-
struction. Point cloud datasets can broadly be divided into two categories: synthetically
created point clouds and point clouds captured in the real world. Synthetic data sets
are typically created by sampling points from computer generated 3D models and their
main advantage over real world data is that the manual labelling process is considerably
less laborious and sometimes even completely unnecessary. Popular examples of
synthetic point cloud data sets include ModelNet [17], comprised of 151,128 3D
models across 660 common object categories, and ShapeNet [18], which contains
roughly 3,000,000 models, 220,000 of which are classified into 3,135 categories. For
both ModelNet and ShapeNet, a smaller subset of the full data set is typically used for
benchmarking point cloud classification. These data sets are known as ModelNet40
and ShapeNetCore and contain 12,311 models across 40 classes and 51,300 across 55
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classes respectively [17, 18].
Point clouds acquired from real world can be further divided into separate classes

based on the type of sensor used. Popular methods include photogrammetric point
clouds, RGB-D camera based point clouds and finally, point clouds captured using
LiDAR sensors. The former two are somewhat similar: a photogrammetric point cloud
is constructed by triangulating three-dimensional shape from multiple overlapping
images [19]. On the other hand RGB-D cameras capture the depth in images or video
using an additional sensor. One such method for capturing depth is time-of-flight
(ToF), where the distance of an object from the camera is computed from the travel
time of light emitted by a separate illumination unit [20]. We note that ToF based
depth measurement is in fact LiDAR based, thus many RGB-D cameras are effectively
a fusion between photogrammetry and LiDAR. Both photogrammetric methods and
RGB-D cameras initially provide a 3D mesh, which can then be transformed into a
point cloud by subsampling points along the surface.

LiDAR Data: LiDAR sensors have two main advantages over most other range sensing
solutions. Firstly, they are exceptionally accurate in comparison to sensors such radars
or cameras [21], achieving millimeter level accuracy at close ranges and maintaining a
centimeter level accuracy even at long distances [22]. Secondly, LiDAR performance
is not affected by the ambient lighting conditions, since the range sensing is based
on active illumination with a laser. This is in contrast to systems relying on passive
illumination, such as cameras, for which change of illumination can have a considerable
impact on performance [21].

A LiDAR sensor consists of a transmitter and a receiver. The transmitter contains
a laser, which sends a light beam with specific spectral properties toward the target.
In addition, the transmitter will often contain a beam expander, which is applied on
the beam to reduce its divergence. Within the receiver the backscattered photons are
collected using a telescope, followed by an optical analyzing system which selects
specific wavelengths from the collected light. Finally, the selected radiation is directed
onto a detector and subsequently converted from an optical signal into an electrical
signal [23]. The principle setup of a LiDAR system is visualized in Figure 1.

LiDAR systems can be divided into two general categories based on the method of
obtaining the location of the target: pulsed LiDAR and continuous wave (CW) LiDAR
[24]. Pulse-based LiDARs send a short light pulses with lengths ranging from few
to several hundred nanoseconds [23] and estimate the distance of the target based on
the time of flight from the sensor to the target and back [24]. On the other hand, CW
LiDAR systems emit a constant signal while simultaneously maintaining a reference
signal, also known as a local oscillator [24]. The distance of the target is then derived
by modulating the amplitude or the frequency of the signal and comparing it to the
local oscillator [24].

In addition to the spatial location of the target, LiDAR sensors capture the
amplitude information of the returning signal, from which reflectance of the target can
be estimated. In fact, some of more advanced LiDAR systems automatically deliver
calibrated amplitude and reflectance information. Furthermore, the systems usually
collect the return number of each pulse, since there can be several target returns when
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Figure 1: Principle setup of a LiDAR system. The figure has been reproduced based
on [23].

a laser beam hits more than one target. This can happen for example in situations when
a pulse penetrates vegetation. Finally, some LiDAR sensors are capable of collecting
secondary data, such as the echo deviation of the pulse [25].

Although the reflectance values across different wavelengths may contain useful
information [25], LiDAR sensors generally only capture information from a single
wavelength, typically within the range [250 nm, 11 µm] [23]. A LiDAR system
capable of recording data at multiple wavelengths is known as multispectral LiDAR
[25]. It is important to note that multispectral specifically refers to two or more
distinct wavelengths, which are usually considerably separated. This is contrast to
hyperspectral LiDAR sensors, which cover a certain wavelength range with multitude
of, usually equally spaced, channels [25]. Multispectral LiDAR data is currently still
somewhat rare, although in recent years sensors, such as the Optech Titan1, capable of
operating at multiple wavelengths have become commercially available.

LiDAR data can be divided into three main categories based on the method of
collection, namely aerial laser scanning (ALS), mobile laser scanning (MLS) and
terrestrial laser scanning (TLS) [22], each of which comes with its inherent advantages
and challenges. ALS is based on conducting LiDAR measurements from an aircraft,
where the exact location and orientation of the sensor is collected simultaneously
using a navigation system, generally comprised of a global navigation satellite system
(GNSS) receiver and an inertial measurement unit (IMU) [22]. Mobile laser scanning
utilizes the same method for georeferencing, and while ALS and MLS data are both
also collected from a LiDAR sensor on a moving platform, the crucial difference is
that mobile laser scanners operate at ground level and are usually attached to a motor
vehicle or e.g. a backpack [26]. Conversely, terrestrial laser scanning is quite different
from the other two methods, since the sensor remains stationary. Consequently, TLS
is considerably more accurate than both ALS and TLS [22].

1https://www.geo3d.hr/3d-laser-scanners/teledyne-optech/optech-titan
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The choice of the collection method naturally depends on the use case of the
LiDAR point clouds. ALS is convenient for covering broad regions relatively quickly
and is the most cost-effective for areas larger than 50 km2 [22]. However, due to the
distance of the sensor, the point density of ALS data is generally lower, although this
can be controlled to a certain degree by altering the flight altitude. Furthermore, due
to the distance, the point clouds are less accurate as the footprint of the laser is wider
[26]. On the other hand, MLS data provides more accurate and denser point clouds,
but the density can suffer from relatively high variation [22] due to e.g. inconsistent
movement speed during collection. Furthermore, at the ground level, GNSS coverage
can be poor in certain conditions [26], such as under the canopy of a dense forest,
which complicates the georeferencing of MLS point clouds at times. Finally, TLS
provides the most accurate and dense point clouds, but at the cost of considerably
smaller range [22]. If a larger area is to be covered using TLS, the LiDAR system has
to be relocated manually.

2.1.2 Semantic Segmentation Benchmark Data Sets

Semantic segmentation refers to the task of separating an object or a scene into
semantic classes, which are simply regions that are similar according to some criterion.
In the context of point clouds, semantic segmentation entails assigning a class for
each individual point. In contrast to instance segmentation, which is concerned with
separating distinct objects from the point cloud, two points belonging to different
entities of the same class should have the same semantic label. Furthermore, an object
instance may contain multiple semantic classes. For example, we might classify the
roofs and walls of buildings into distinct classes.

In order to compare the performance of semantic segmentation models designed
for point clouds as objectively as possible, various benchmark data sets have been
proposed over the years. These benchmark data sets are generally either indoor
environments collected using some type of RGB-D camera, or outdoor MLS data
[27]. The former are typically slightly easier to segment as indoor environments are
inherently more structured. Furthermore, the point density in indoor environments is
quite consistent, while the varying point density of outdoor LiDAR data presents an
additional challenge [28].

While benchmark data sets are excellent for comparing the performance of various
semantic segmentation approaches, they have some noteworthy limitations:

1. Most of the popular benchmarks seemingly concentrate on a very restricted
set of data sources, specifically indoor scenes and urban environments. Such
benchmarks are not suitable for assessing e.g. leaf–wood separation performance.

2. The benchmark data sets are generally captured with generic commercially
available systems. As such, if research focus is on investigating the potential of
more novel data capturing methods, for example multispectral LiDAR, semantic
segmentation benchmarks are often not a feasible choice.

Nevertheless, a basic understanding of widely utilized benchmarks is quite beneficial
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Figure 2: Section of a point cloud from the S3DIS data set [30]. (a) Point cloud of
a conference room collected with an RGB-D camera. (b) Manual class annotations
superimposed on the point cloud.

e.g. when it comes to choosing which semantic segmentation architecture to utilize
for one’s own data.

Here we provide a short overview of some of the most popular semantic segmen-
tation benchmark data sets. For a more comprehensive survey of existing data sets,
the reader is referred to [27, 28].

Indoor Data Sets: SUN RGB-D was one of the first large-scale indoor 3D data sets to
achieve a scale comparable to modern image recognition data sets. Captured using
four different RGB-D sensors, SUN RGB-D is comprised of 10,335 manually labeled
RGB-D images across 800 object categories. The images contain both 2D and 3D
semantic and instance annotations. However, the 3D labels are based on bounding
boxes and thus contain some inherent imperfections. Furthermore, the point clouds in
SUN RGB-D are based on RGB-D images, that is, they have been captured from one
direction only and thus contain occluded regions [29].

At present, S3DIS [30] and ScanNet [31] are by far the two most popular indoor
benchmarking data sets. Both data sets are widely utilized not only for comparing the
performance of semantic segmentation models, but also other tasks such as instance
segmentation and object detection. The former data set consists of high density RGB-D
camera based point clouds from 271 rooms across 6 large indoor areas S3DIS [30].
Each point has been manually assigned into one of 13 semantic classes, such as ceiling,
floor, window or chair [30]. An example of the semantic annotations is shown in
Figure 2.

ScanNet is quite similar to S3DIS, although slightly larger. Consisting of 1,513
RGB-D camera scans across 707 distinct indoor spaces, ScanNet contains manual
semantic annotations for 20 classes as well as instance level annotations for each object.
In contrast to S3DIS however, the scans in ScanNet are provided as reconstructed 3D
surfaces rather than point clouds [31].
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Outdoor Data Sets: A large majority of publicly available outdoor data sets are
designed for autonomous driving applications. Such data sets are generally captured
in urban areas with a car-mounted MLS system, thus the principal differences between
distinct data sets come from the utilized LiDAR system and the amount of annotated
data. One of the first semantic segmentation benchmarks for autonomous driving was
the Oakland 3D data set [32]. Collected with a SICK LMS scanner in Pittsburgh,
USA, Oakland 3D is comprised of 1.3 million points that have been hand-labeled
into 44 distinct classes, 5 of which are used for benchmarking [32]. Other notable
examples of MLS data sets include Sydney Urban Objects [33], Paris-rue-Madame
[34] and Paris-Lille-3D [35].

At present, the most widely utilized outdoor semantic segmentation benchmark is
the SemanticKITTI [36] data set. Based on the KITTI [37] data set, SemanticKITTI
is comprised of 4.5 billion points that have been manually assigned to 28 semantic
classes, 25 of which are used for benchmarking purposes. At the time of its release,
SemanticKITTI was by far the most extensive MLS benchmarking data set [36], which
is likely a contributing factor in its popularity.

Another noteworthy development in the field of autonomous driving is the intro-
duction of multimodal benchmark data sets, which include data from other sensors
in addition to LiDAR point clouds. One such data set is nuScenes, which includes
RGB images, as well as both LiDAR and radar based point clouds [38]. The scale of
nuScenes is similar to SemanticKITTI, as it contains 1.4 billion manually annotated
points across 32 classes [38]. In contrast to most benchmarks, nuScenes also features
scans from various different weather and illumination conditions [38].

Apart from autonomous driving applications, benchmarking of semantic segmen-
tation models on remote sensing data has a long history within the geospatial data
community, especially the International Society for Photogrammetry and Remote
Sensing (ISPRS) [39]. The point cloud based ISPRS benchmarking efforts are gen-
erally focused on aerial data. Perhaps the most notable example of such data sets is
the Vaihingen 3D benchmark (V3D) [40], which was constructed by adding manual
3D annotations to an earlier data set collected in 2010 using a Leica ALS50 system
[41]. As the point clouds are relatively sparse, V3D consists of around 780,000 points,
manually divided into 7 semantic classes [40].

A more recent example is the Hessingheim 3D benchmark (H3D) [42], which is
multimodal data set comprised of LiDAR point clouds and RGB colored 3D meshes
representing an urban area. H3D was captured from an unmanned aerial vehicle (UAV)
equipped with a RIEGL VUX-1LR scanner and two oblique Sony Alpha 6000 cameras
and contains 73.9 million manually annotated points across 10 semantic classes [42].

In addition to aerial data sets, TLS based semantic segmentation benchmarks
are also available. A prominent example is the Semantic3D.net data set which is
comprised of 30 individual scans of urban scenes captured in Central Europe. In total,
Semantic3D.net contains over 4 billion points, each manually assigned to one of 8
classes. An example of the semantic annotations is shown in Figure 3. The high
point density and large occlusions inherent to TLS data present an unique challenge,
rendering Semantic3D.net an especially interesting benchmark [39].
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Figure 3: A section from one of the 30 TLS point clouds in the Semantic3D.net data
set [39]. (a) TLS point cloud from an outdoor scene. The colors represent reflectance
values. (b) Manual class annotations superimposed on the point cloud.

2.1.3 Forest Environment Data Sets

Although LiDAR-based methods have been a staple in research concerning collecting
and maintaining forest inventories for years now [6, 22], the number of openly available
large-scale data sets with high-quality annotations remains exceedingly low. In fact,
most studies opt to use their own small-scale data sets collected using just one type of
sensor, which is an issue because methods developed on single-sensor data sets of
limited size often generalize poorly for any other type of data [43]. In addition, most
of these data sets are proprietary, which further complicates objectively comparing
the results of different studies [43]. For example, a recent short review concerning
deep learning methods for instance and semantic segmentation of forest point cloud
data found the used data is not publicly available in a majority of the cases [6]. Based
on these observations, Lines et al. [43] suggested that the lack of openly available
curated benchmarking data sets is significantly hindering the development of deep
learning methods for forestry applications, such as instance segmentation of individual
trees, semantic segmentation of forest point clouds and tree species classification.
The most likely explanation for the small number of large-scale forest data sets is that
manually labeling forest point clouds is exceedingly time consuming, as noted by e.g.
[4, 44]. Even 3D point clouds depicting simpler environments such as indoor scenes
are extremely laborious to annotate and the intricate geometry of trees and overlapping
of adjacent tree crowns makes manual segmentation of forest data significantly more
challenging.

The Cameroon individual tree data set [45, 46] was one of the first openly available
TLS forest data sets with semantic annotations, where each point has been manually
labeled as either wood or foliage. The data set consists of 61 individual deciduous
trees across a wide variety of species and was collected in Eastern Cameroon using a
Leica C10 Scanstation [47]. The data set was originally designed for estimating the
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volumes and above-ground biomass (AGB) of the woody parts of tropical trees [47],
but has since been successfully utilized for training a deep semantic segmentation
network [48]. Nevertheless, the authors noted that a more diverse data set is required
in order to develop a robust model for leaf–wood separation [48].

The data set of Kaijaluoto et al. [4] is another notable publicly available forest
environment data set with semantic annotations. Collected with the Finnish Geospatial
Research Institute (FGI) Akhka-R3 backpack laser scanning system and designed
specifically for DL applications, the data set is comprised of 202 million points from
two 32 m by 32 m test sites that have been manually divided into ground, understory
vegetation, tree trunk and foliage. In contrast to the Cameroon individual tree data set,
[4] opts to classify branches as foliage, while the tree trunk is assigned into its own
class.

Publicly available forest point cloud data sets often suffer from either limited
sample size or lack of diversity in environments and utilized sensors. In addition, the
quality or type of the available manual annotations may be unsuitable for most deep
learning applications. For example, the FGI international TLS benchmarking dataset
[49] is a high quality and large-scale data set captured using Leica HDS6100 scanner,
containing thousands of trees across 24 forest plots in Evo, Finland [49]. However,
while manual reference measurements such as the location, height and diameter at
breast height (DBH) of individual trees are included, the TLS point clouds have not
been manually labeled or segmented. As such, the data set cannot be utilized in
training supervised deep learning models for tasks such as instance segmentation of
individual trees or semantic segmentation of forests. On the other hand, some national
agencies publish large annotated LiDAR data sets [42], which often include forested
areas. However the class division and annotations in such data sets are generally quite
coarse [42]. As an example, individual points in the NASA G-LiHT data set are simply
divided into ground points and other points [50]. Similarly, Finnish national laser
scanning data (5 p/m2) contains slightly more refined class labels, such as ground
and low and high vegetation, but the points have been classified with an automated
algorithm, rather than manually [51].

In recent years, multiple large scale individual tree data sets have been introduced,
namely NeonTreeEvaluation [52], LAUTx [53] and the German individual tree point
clouds and measurements [54, 55], which we refer to as GITPCM for the sake of brevity.
However, due to the extremely laborious manual segmentation process required for
producing high quality individual tree point clouds, many of these data sets utilize
some level of automation during the annotation process, which introduces an inherent
bias to the data.

NeonTreeEvaluation [52], by far the largest of the three, is a multi-sensor bench-
marking data set for detecting individual trees collected by the National Ecological
Observation Network, consisting of co-registered RGB and hyperspectral images and
LiDAR point clouds. In total, the data set contains 30,975 individual tree annotations
across 22 sites and a variety of ecosystems. The point clouds contain labels for each
individual tree, and semantic labels for tree points and other points. It is worth noting
that the individual tree annotations were initially 2D bounding boxes created for the
RGB images, which were then draped over the point cloud. As such, some erroneously
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labeled points are to be expected, especially near the edges of the tree crowns [52].
Similar to NeonTreeEvaluation, the GITPCM data set [54, 55] consists of co-

registered forest data from multiple sensors. More specifically, the data set consists
terrestrial, aerial and UAV laser scanning point clouds, collected with RIEGL VZ-400,
RIEGL VQ-780i and RIEGL miniVUX-1UAV scanners respectively. In total the data
set is comprised of 1,491 individual tree point clouds, along with field measurements,
such as DBH, for a majority of the trees. The individual trees were segmented using
an automated algorithm, followed by a manual error correction process. Consequently,
the authors note that some segmentation errors are present in the data.

Finally, while LAUTx [53] is the smallest of the three data sets comprised of only
515 individual trees, it evidently has the highest quality annotations. The point clouds
were collected with a ZEB Horizon handheld laser scanner in Austria and each tree
has been manually segmented with no automated steps.

The recently introduced FOR-Instance data set [44] is currently the most promising
candidate for becoming the gold standard of benchmarking point cloud based forest
inventory methods. FOR-Instance contains a total of 1,130 manually segmented
individual trees across five distinct countries and forest environments. High-quality
semantic annotations are also provided and each point has been classified into one
of five categories: stem, woody branches, live branches (i.e. foliage), low vegetation
or terrain. In addition, a small percentage of points have been left unannotated due
to significant uncertainty between classes. An example of the semantic annotations
in FOR-Instance is shown in Figure 4. In addition to manual point annotations, field
measured DBHs are also provided for each individual tree [44, 56].

Although all point clouds in FOR-instance are ALS-based, varying point densities
and scanners are also represented, as the flight altitude and LiDAR system differbetween
the countries present in the data set. In contrast to most forest LiDAR data sets, FOR-
Instance provides a split between training and test data along with a benchmarking guide,
rendering it machine-learning-ready for a multitude of segmentation, classification
and prediction tasks. The authors note that even though the data annotation was
carried out extremely meticulously over a period of six months, some errors are still
present in the data, since accurately interpreting forest point cloud scenes remains
rather challenging. Notable error sources include separation of wood and foliage as
well as ground and low vegetation [44].

2.2 Artificial Neural Networks

Artificial neural networks or simply neural networks (NNs) are a broad class of machine
learning models that are capable of approximating highly non-linear functions. In
recent years, machine learning research has been predominantly focused on deep
NN-based models, as they have shown remarkable performance in tasks such as image
recognition, natural language processing, autonomous driving and a wide variety of
other applications [57].

The performance of traditional ML models is highly dependent on which repre-
sentation is used for the input data [58]. That is, simply providing the raw input data
will usually not yield great results. However, it is often difficult to know what kind
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Figure 4: Sample from a plot in the FOR-Instance data set [56] showing the semantic
annotations.

of features should be extracted from the data in order to produce the best results. As
an example, image descriptors such as SIFT [59] and GLOH [60] are quite intricate
and the result of a meticulous design process. On the other hand, conventional ML
algorithms can not handle large amounts of high-dimensional data effectively, and their
performance will often deteriorate as a result [57]. This issue is especially prominent
nowadays, since large datasets data sets with quality labels have become increasingly
available to the public [57].

Large enough artificial neural networks can evidently overcome many of the issues
of traditional ML mentioned above: firstly, they are able to gradually extract high-level
features from raw input data, effectively eliminating the need for complex handcrafted
features [57]. Secondly, by utilizing the recent advancements in parallel computing
and hardware such as graphics processing units (GPUs), NNs can efficiently handle
immense amounts of high-dimensional data in comparison to conventional ML models
[57]. In fact, NNs possess the theoretical capabilities to approximate any function
mapping: Cybenko [61] showed that a feed-forward network with a single hidden layer
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containing a finite number of neurons can approximate any well behaved function with
any given accuracy.

While multiple distinct types of neural networks exist, feedforward networks are
perhaps the most integral class of models, encompassing a variety of fundamental
architectures, such as multilayer percepetrons (MLPs) and convolutional neural
networks (CNNs). The term feedforward refers to how the networks process data: an
input x flows sequentially through the layers that comprise the network. Recurrent
neural networks (RNNs) are another type of network, characterized by the inclusion
of feedback connections, which pass model outputs back into itself at various points.
RNN-based long short-term memory architectures [62] have been quite successful in
e.g. natural language processing tasks.

Artificial neural networks are named as they are because they were initially loosely
inspired by neuroscience [58]. They can be though of as a collection of nodes and
edges that connect them, analogous to the neurons and synapses in the brain. The
network input then produces an activation signal that travels from node to node, until
the output node produces a result corresponding to the function mapping the network
approximates. The nodes in neural networks are known as artificial neurons and each
one performs a transformation on the input signal using a distinctive set of parameters
and some function mapping. The inherent challenge with neural networks is finding
a set of parameters that produces the desired output. This process of optimizing the
parameters of a neural network is referred to as training or learning, and involves
iteratively updating the model parameters based on the model output and some cost
function, generally using a gradient-based optimization method. Section 2.3 covers
the process of training neural networks in more detail.

On the other hand, neural networks can be though of as a collection of functions
𝑓𝑖 (·) consisting of multiple artificial neurons, also known as layers, that are sequentially
applied on the input x. As an example, the output of a network with three layers would
then be 𝑓3( 𝑓2( 𝑓1(x))). The final layer in a neural network is referred to as the output
layer, while the intermediate layers after the input are known as hidden layers, aptly
named so, since they do not produce the final output and are thus hidden within the
network. The depth of a network is the number of layers in it, while width refers to the
number of neurons in a particular layer [58].

Deep learning is a term that is often used synonymously with artificial neural
networks. The word deep simply refers to the multiple layers in most present-day
artificial neural networks. The exact number of layers that constitutes a deep model is
not widely agreed upon, although most researchers consider any model with two or
more hidden layers to be deep [57]. While the architecture of a deep learning model
certainly plays an important part in its performance, empirical evidence often suggests
that deeper models with more layers and parameters tend to produce better results in a
variety of tasks in comparison to their shallower counterparts [63]. It is however worth
noting this is not always the case after a certain critical number of layers is reached
[63]. As an example, Generative Pre-trained Transformer 3 (GPT-3), the predecessor
to the GPT-3.5 and GPT-4 models behind the famous ChatGPT chatbot, has around
175 billion trainable parameters across 96 layers [64], while GPT-4 is estimated to
contain around a 1,000 times more parameters [65]. Similarly, the top performing
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Figure 5: Diagram showing the structure of a typical artificial neuron. The values in
the input feature vector 𝑥𝑖 are multiplied by their respective trainable weights 𝑤𝑖 and
summed together with the bias term 𝑏. A non-linear activation function 𝑔(·) is then
applied on the result to produce the final output ℎ.

deep learning architectures [66] for point cloud semantic segmentation benchmark
datasets such as S3DIS [30] and SemanticKITTI [36] are consistently both relatively
deep and structurally complex [67, 68, 69, 70, 71, 72].

Finally, it should be noted that although deep neural networks solve many of the
problems in traditional machine learning and can achieve remarkably impressive
results in various tasks, they are not without their issues. A prominent issue is the data
hungriness of deep learning models. That is, training of the best performing models
requires massive amounts of, often manually labeled, data [73]. In addition, due to
the sheer number of parameters, deep learning models are often uninterpretable to
humans. Although some efforts have been made in visualizing the contributions of
single neurons, the networks still generally remain black box models [73].

In the following subsections we present the fundamental architectural elements
required for constructing artificial neural networks, with a specific focus on components
that are most crucial for semantic segmentation of point clouds using deep learning.

2.2.1 Artificial Neuron

Artificial neurons are the most elementary building blocks of neural networks and
each hidden layer will generally contain multiple, although the configuration of the
neurons varies between different layer types. In modern day applications, an artificial
neuron typically consists of two main components: Firstly, trainable parameters, which
include both a weight vector w ∈ R𝑛 and a bias term 𝑏 ∈ R and secondly a non-linear
activation function, which we denote with 𝑔(·). The role and desired properties of the
function are discussed in more detail in Section 2.2.2.

For an input feature vector x ∈ R𝑛, where 𝑛 is the number of input features, the
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output ℎ of an artificial neuron is given by:

ℎ = 𝑔(
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏) = 𝑔(w⊤x + 𝑏). (1)

More specifically, the neuron first computes an affine transformation of the input vector
using the trainable weights w and the bias 𝑏, and subsequently applies a non-linear
transformation 𝑔(·) on the result, as shown in Figure 5. The intermediate result
𝑧 = w⊤x + 𝑏 is often referred to as the linear activation.

2.2.2 Activation Function

The output of a feedforward network with no non-linear activation functions is
always equivalent to simply computing an affine transformation of the input data with
appropriate parameters, regardless of the number of hidden layers and artificial neurons
(see Section 2.2.3 for a short proof). That is to say, without activation functions, a deep
learning model is only able to learn linear functions, which is a significant constraint.

Perhaps most famously, linear models are not able to represent the exclusive or
(XOR) function. Given two binary values 𝑥1, 𝑥2 ∈ {0, 1}, the XOR function should
return 1 if and only if exactly one of the two values is 1 and 0 otherwise. Formally we
can define the XOR function for example as follows:

XOR(𝑥1, 𝑥2) = 1(𝑥1 = 1) · 1(𝑥2 = 0) + 1(𝑥1 = 0) · 1(𝑥2 = 1), (2)

where 1(·) is the indicator function. With an appropriate non-linear activation function,
however, we can construct a feedforward network that is capable of learning the XOR
function.

The non-linear activation functions within the artificial neurons are the fundamental
source behind the flexibility of neural networks, that enables them to approximate
highly non-linear functions. In addition, activation functions are also frequently used
for scaling the output of a neural network to a specific range. For example, the output
may be scaled to a range specific to some real world variable or the interval [0, 1] to
denote a probability.

Since a deep learning model will generally contain a large number of artificial
neurons, a single neuron is not required to be able to represent highly complicated
functions. Instead, the versatility of deep learning models is a result of all the neurons
working as collective. Consequently, the choice of activation function is mostly
dependent on differentiability and computational efficiency as opposed to expressive
power. More specifically, a non-linear activation function should preferably possess at
least the following three qualities:

1. The activation function should be at least piecewise differentiable throughout
its domain, since the optimization methods used in the learning process are
generally based on computing gradients.

2. Evaluating the activation function and the corresponding partial derivatives
should be computationally efficient. This becomes increasingly important as
the number of artificial neurons and hidden layers increases.
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Figure 6: Visualization of some commonly used activation functions for the interval
𝑥 ∈ [−4, 4]. (a) Rectified linear unit (ReLU). (b) Sigmoid function. (c) Hyperbolic
tangent (tanh). (d) Leaky rectified linear unit (LeakyReLU) with the negative slope
parameter 𝛼 = 0.1. We note that 𝛼 has been fixed to an atypically high value in order
to better illustrate the difference in comparison to the standard rectified linear unit.

3. The value of the gradient of the activation function should be within a reasonable
range across the entire range of possible input values. The phenomenon where
the gradients become either excessively small or large, also referred to as
vanishing and exploding gradients, may significantly hinder the training process.
Exploding gradients can make the learning unstable, as the network parameters
may be updated to values far from the optimal range due to the large gradients.
Conversely, vanishing gradients slow the training significantly and may even
prevent it from converging at all [58].

In the subsequent sections we discuss some of the more popular activation functions
that fulfill the above requirements in more detail.

Rectified Linear Unit: The rectified linear unit (ReLU) is currently the most widely
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used non-linear activation function [74], and the default recommended choice for most
feed-forward networks [58]. The activation of rectified linear unit is given by:

ReLU : R → R+
0 (3)

ReLU(𝑧) = max(0, 𝑧).

Owing to its piecewise linear structure (see Figure 6 (a)), ReLUs are easy to
optimize. In fact, the only difference between a linear unit and a ReLU is that the latter
outputs 0 across half its domain. As such, the gradients through a rectified linear unit
remain large and consistent whenever the unit is active, that is, the input is positive.
Furthermore, the first derivative of the ReLU activation is 1 for all positive inputs and
the second derivative is 0 almost everywhere within its domain. Consequently, the
gradient is more useful for optimization when compared to activation functions that
introduce second-order effects, such as the sigmoid function [58].

The rectified linear unit is differentiable across the entire set of real numbers,
except for 𝑧 = 0. While this might suggest that ReLU is incompatible with gradient
based learning algorithms, this is not the case in practice, and gradient descent
performs at an acceptable level, enabling the use of ReLU in deep learning models.
This is largely because the learning algorithms are generally not expected to actually
reach a local minima, i.e. a point where the gradient is a zero vector, which permits
minima that correspond to points with undefined gradients. Software applications will
typically simply use either the left derivative ReLU′

−(0) = 0 or the right derivative
ReLU′

+(0) = 1 when 𝑧 = 0 [58].

Sigmoid: In addition to ReLU, another common activation function is the sigmoid
function, often denoted 𝜎(·) and defined as follows:

𝜎 : R → [0, 1] (4)

𝜎(𝑧) = 1
1 + 𝑒−𝑧 .

The sigmoid function is an increasing function that maps real values to the interval
[0, 1], which are properties that make it a popular choice when the output is used for
denoting probabilities.

The sigmoid function has a tendency to saturate when the linear activations are
either very large negative numbers or very large positive numbers, which is relatively
common in the context of hidden layers of deep learning models. Here saturation
refers to the function output being very close to either one or zero. As a result, the
gradient is practically zero when 𝜎(·) is in a saturated state, which can significantly
complicate or even halt the training process [58]. As can be seen in Figure 6 (b), when
the linear activation 𝑧 is not near zero, 𝜎(·) is nearly flat and thus insensitive to small
changes in input.

Other Activation Functions: Besides the sigmoid and ReLU, a multitude of other
activation functions see frequent use in deep neural networks. Here we briefly
discuss two examples, the hyperbolic tangent (tanh) and leaky rectified linear unit
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(LeakyReLU), which are effectively variations of the sigmoid function and rectified
linear unit respectively.

The hyperbolic tangent is a variation of the sigmoid function. That is, much like the
standard 𝜎(·), tanh depicts the S-shape that is characteristic of sigmoidal functions, as
can be seen in Figure 6 (b)–(c). Unlike the sigmoid function however, the hyperbolic
tangent maps inputs from the real axis to the interval [−1, 1]:

tanh : R → [−1, 1] (5)

tanh(𝑧) = 𝑒𝑧 − 𝑒−𝑧
𝑒𝑧 + 𝑒−𝑧 .

In applications where a sigmoidal activation function is required, tanh typically
performs better than 𝜎(·). This performance advantage results from tanh resembling
the identity function 𝑖(𝑧) = 𝑧 near 𝑧 = 0 more closely than the sigmoid function.
Specifically, 𝑖(0) = tanh(0) = 0, while 𝜎(0) = 1

2 . It follows that training a deep neural
network with tanh activation functions is somewhat comparable to training a linear
model, assuming that the linear activations of the network remain small, i.e. near
zero, during training. Consequently, training a neural network with tanh activation
functions tends to be easier when compared to sigmoid activation functions [58].

Much like the sigmoid function, tanh suffers from the problem of saturation of
units. As such, with the exception of output units, the use of sigmoidal activation
functions is discouraged in the context of feedforward networks. In spite of these
drawbacks, sigmoidal activation functions remain an appealing choice when it comes
to network architectures that present additional requirements that rule out choices like
ReLU. Examples of such architectures include recurrent neural networks and some
autoencoders [58].

While the rectified linear unit may seem like an ideal activation function, it is not
without its flaws. Perhaps the most notable shortcoming of ReLU is the dying ReLU
problem, which is a type of vanishing gradient problem. The problem occurs when the
linear activation 𝑧 = w⊤x + 𝑏 of some neuron is nonpositive for all training samples,
in which case the output of the neuron is zero regardless of input. Consequently, the
gradient of the neuron will also be zero for all training samples, that is, the neuron
”dies” as the parameters can no longer be updated due to the zero gradient. In fact, in
the worst case scenario where all neurons die, the network output becomes constant
[75].

To solve the dying ReLU problem, there exists a variety of generalizations of the
rectified linear unit, that all guarantee a nonzero gradient regardless of the input [58].
One such generalization is the leaky rectified linear unit, where the negative inputs are
given a fixed slope:

LeakyReLU : R → R (6)
LeakyReLU(𝑥) = max(0, 𝑥) + 𝛼 · min(0, 𝑥),

where 𝛼 ∈ R+ is the slope hyperparameter, typically set close to zero [76]. Choosing
an optimal value for 𝛼 can however be difficult and requires careful hyperparameter
optimization. To this end, [77] proposed the parametric ReLU (PReLU), a further
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generalization of LeakyReLU, where the slope parameter 𝛼 is made trainable instead
of constant. PReLU was shown to significantly increase model performance in the
task of image classification with negligible increase in computational cost [77].

2.2.3 Fully Connected Layer

Fully connected layers are perhaps the most common architectural elements of neural
networks and the building blocks behind the quintessential deep feedforward network
multilayer perceptron [58]. As the name suggests, a fully connected layer is a collection
of artificial neurons, each of which has a connection to all neurons in the subsequent
layer. Formally, a fully connected layer can be described as follows:

h = 𝑔(Wx + b), (7)

where h ∈ R𝑚 is the output of the layer, W ∈ R𝑚×𝑛 is the layer weight matrix
and x ∈ R𝑛 is the layer input, which is generally the output of the previous layer.
Furthermore, b ∈ R𝑚 is the learnable bias vector and 𝑔(·) is the non-linear activation
function which is typically applied element-wise, that is, individually for each artificial
neuron. The dimensionality variables 𝑛 and 𝑚 denote the number of artificial neurons
in the previous and current layers respectively. Finally, we note that the weight matrix
W is simply composed of the weight vectors of the neurons in the layer stacked
together, such that the 𝑖th row corresponds to the weight vector w of the 𝑖th neuron.

An MLP can be visualized by displaying all of the artificial neurons within each
layer and the connections between them, but it is often more convenient to disregard the
individual neurons and connections and only visualize the layers. The aforementioned
observation also holds true for most other types of neural network layers. An example
of both visualization approaches is shown in Figure 7.

A fully connected layer with no non-linear activation functions is known as a linear
layer. In order to emphasize the importance of non-linear activation functions in deep
learning models, we show that a stack of linear layers has the same representational
capabilities as a single linear layer.

Theorem 2.1. The output of any two linear layers can be represented by one linear
layer with appropriately chosen weight matrix and bias vector.

Proof. Let h1 = W1x + b1 be the output of the first linear layer. If we then provide it
as an input to another linear layer, we get:

h2 = W2h1 + b2 (8)
= W2(W1x + b1) + b2

= (W2W1)x + (W2b1 + b2)
= W3x + b3.

That is, the exact same transformation can be represented with a single hidden layer
with the weight matrix W3 = W2W1 and bias b3 = W2b1 + b2. The proof can be
generalized for an arbitrary number of linear layers using proof by induction, which
we omit here for the sake of brevity. □
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(a) (b)

Figure 7: Structure of the same simple feed-forward network with two fully connected
hidden layers expressed in two different ways. (a) A schematic showing all neurons
within the hidden layers, and the connections between them. (b) A simplified schematic
where only each layer and its output is displayed.

An inherent limiting factor of fully connected layers is their scalability. As the
input dimensionality or the size and number of the hidden layers increases, so does
the number of trainable parameters. In fact, due to each neuron in subsequent layers
being connected, the number of parameters can quickly increase to a point where
training the network becomes extremely challenging due to the amount of required
computational resources, an issue which calls for more intricate layer architectures
when it comes to complex input data.

2.2.4 Convolutional Layer

While theoretical results show that a network consisting of fully connected layers is
able to approximate any given function, computational resources are often a limiting
factor in practical applications. In fact, even processing 2D images quickly becomes
computationally infeasible as the number of pixels increases due to the massive
number of parameters required for handling each pixel as a separate input. Another
shortcoming of fully connected networks is that they disregard the spatial structure of
the input.

Convolutional layers, first proposed by [78], are designed to overcome some of
the limitations of fully connected networks. Conversely to fully connected layers,
convolutional layers utilize shared parameters such that the same set of learnable
weights is used for every spatial location. Consequently, the number of trainable
parameters and by extension the amount of required computational resources remains
manageable. A key assumption made by convolutional layers is that the input features
are spatially invariant. That is, similar collections of features within an input should
result in similar outputs regardless of their location in the input. Neural networks
composed of convolutional layers are referred to as convolutional neural networks.
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A noteworthy limitation of convolutional layers is that a clear grid-structured
topology is required from the input data [58]. For pixel based 2D images this is
already the case, but 3D point clouds pose a problem, as the point coordinates are
generally real numbers, especially in the case of real world LiDAR data. As such, point
cloud data has to be discretized to enable using conventional convolutional layers.
Currently this is often achieved by downsampling the point cloud into sparse voxel
representations [79, 80, 81, 82], while earlier implementations have opted for dense
voxelizations [83] or 2D projections, such as images [84, 85] or spherical grids [86].
In addition, multiple architectures based on modified convolutions exist, which are
discussed in more detail in Section 2.4.

Analogously to fully connected layers, the output tensor h of a convolutional layer
is obtained by applying an appropriate non-linear activation function 𝑔(·) on a linear
activation z. For convolutional layers, the linear activation is the convolution operation,
which comprises a combination of tensor multiplication and summation detailed later
in this section. In order to compute the convolution operation, a tensor of trainable
weights called convolution kernel is slid across the input tensor. The size of the kernel
is an user defined hyperparameter.

The number of input channels 𝑁in and the number of output channels 𝑁out are two
other important hyperparameters in the convolutional layer. The former is effectively
the dimension of the input vectors, while the latter can be chosen based on model
requirements. As an example, each pixel in a 2D image can contain a 3-dimensional
color feature vector, where the three values represent the values of the red, green and
blue channels. For such input tensors the number of input channels in a convolutional
layer would then be 𝑁in = 3.

The total number of trainable parameters in the kernel is dependent on both the
dimension 𝐷 of the convolution and the number of input and output channels. Let us
consider a 2D convolution with a kernel of height 𝐾ℎ and width 𝐾𝑤 . The convolutional
layer then contains 𝑁out kernels of size 𝐾ℎ ×𝐾𝑤 × 𝑁in, that is, the number of learnable
parameters in the layer is

𝐾ℎ · 𝐾𝑤 · 𝑁in · 𝑁out + 𝑁out, (9)

where the latter term accounts for the bias vector. The size of the kernel is often some
small odd integer, such as 3 or 5. Furthermore, while the convolutional kernel can
have a different size in every dimension, it is common practice in the field to employ
hypercubical kernels and refer to the kernel size with a single parameter 𝐾 .

Let us now give a formal mathematical definition for the𝐷-dimensional convolution
with 𝑁in input channels and 𝑁out output channels. Let xu ∈ R𝑁in be an 𝑁in-dimensional
input feature vector at index u ∈ Z𝐷 of a tensor in a 𝐷-dimensional space. Furthermore,
let the trainable weight tensor and bias of the convolutional kernel be W ∈ R𝐾

𝐷×𝑁out×𝑁in

and b ∈ R𝑁out respectively, where 𝐾𝐷 = 𝐾 × 𝐾 × . . . × 𝐾⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝐷

denotes the dimensions of

the kernel. We then denote the 𝑁out × 𝑁in matrix at index i ∈ Z𝐾
𝐷 of the weight tensor

by Wi. Using the notation of [80], for an arbitrary output coordinate u ∈ Z𝐷 , the
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Figure 8: A visualization of a 2-dimensional convolution with a single input and
output channel using a 3× 3 kernel, stride and dilation one and no padding. The figure
highlights how a single output value is formed from the input matrix and learnable
kernel weights.

linear activation of the convolutional layer is then given by:

zu =
∑︁

i∈V𝐷 (𝐾)

Wixu+i + b, (10)

where V𝐷 (𝐾) is the list of offsets in a 𝐷-dimensional hypercube of size 𝐾 centered
at the origin. That is, V𝐷 (𝐾) denotes the list of offsets that form the kernel. As an
example, the offsets corresponding to a 2-dimensional kernel of size 𝐾 = 3 are as
follows:

V2(3) = {(−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (0, 1), (−1, 1), (0, 1), (1, 1)}.
(11)

An example of the convolution operation using the same kernel is shown in Figure 8.
In contrast to fully connected layers, the output of a single artificial neuron in a

convolutional layer only depends a small area of the input tensor. This area is known
as the receptive field, and its size is limited by the kernel size 𝐾. Since any element
outside the receptive field of a neuron has no influence on its output, controlling the
size of the receptive field to ensure it covers the entire relevant input region is crucial
when it comes to training convolutional neural networks. The size of the theoretical
receptive field can be increased by stacking multiple convolutional layers, which many
popular deep learning architectures utilize [87].

Besides the kernel size and number of output channels, a convolution is param-
eterized by its stride, dilation rate and padding. The stride of a convolutional layer
determines how many elements are skipped when the kernel is slid across the input
tensor. In a standard convolution the default stride is one, which means that the kernel
simply moves forward one element at a time. Similarly, for an arbitrary stride 𝑠, the
kernel skips 𝑠 elements each time it slides forward. Increasing the stride will decrease
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the spatial dimensions of the output tensor, which is an effective way of reducing the
amount of required computations. In practice adjacent elements of an input tensor
often contain similar information and consequently, skipping some elements within
the convolutional layer can be a reasonable approach for decreasing the size of the
output with no significant loss of information.

Dilation rate is a hyperparameter that controls the distance between the kernel
weights, which can be used for increasing the size of the receptive field in a convolutional
layer, without increasing the numberof trainable parameters. This is an especially useful
property when the kernel size 𝐾 is not sufficiently large, while limited computational
resources simultaneously prevent increasing it. With a dilation rate 𝑟, the kernel
weights are placed in a sparse configuration at every 𝑟th element. In practice, this
is achieved by adjusting the offsets of the kernel weights V𝐷

𝑟 (𝐾). For example, in
contrast to Equation 11 where 𝑟 = 1, when the dilation rate is increased to 𝑟 = 2, the
offsets corresponding to a 2-dimensional kernel of size 𝐾 = 3 are:

V2
2(3) = {(−2,−2), (0,−2), (2,−2), (−2, 0), (0, 0), (0, 2), (−2, 2), (0, 2), (2, 2)}.

(12)
The resulting kernel now covers a 5 × 5 area, while crucially the number of learnable
parameters remains unchanged. Unlike a 5 × 5 kernel with 𝑟 = 1, however, the dilated
3 × 3 kernel has a one element gap between each weight.

For any kernel such that 𝐾 > 1, the convolutional layer will reduce the spatial
dimensions of the output tensor in comparison to the input. This is a direct consequence
of the fact that the convolution can not be computed for any location where the kernel
is not completely within the boundaries of the input tensor. Padding refers to the
process of introducing additional elements, most commonly zeros, along the edges of
the input tensor, which enables computing the convolution for such locations and by
extension decreases the amount of reduction in spatial dimensions. This is especially
beneficial in deep networks, where decreasing the output size on every layer would
quickly accumulate. As an example, for an arbitrary 2-dimensional input matrix and
a square kernel of size 𝐾, introducing a padding of 𝐾−1

2 will result in an output that
completely preserves the spatial dimensions of the input tensor, assuming that the
stride and dilation rate are both one.

In addition to preserving the spatial dimensions of the input, padding increases
the influence elements close to the edges have on the output: assuming 𝐾 > 1, with
no padding each element along the edges will have an effect on notably fewer output
values in comparison to elements toward the center of the input tensor, which simply
fall within the kernel more often.

Sparse Convolutional Layer: Although CNNs are quite efficient for one and two-
dimensional (2D) data, increasing the number of dimensions to three will often result
in an unreasonably high computational complexity for any slightly larger input [88].
On the other hand, increasing input dimensionality will frequently result in not only
a significantly larger number of input elements, but also an increased number of
zero-valued, or empty, elements [88]. For example, a majority of the voxels in a
voxelized 3D point cloud representing a real world scene will generally contain no
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points at all. Consequently, increasing the dimensions will increase both the amount of
memory used by redundant input elements and the number of redundant computations
performed when applying the convolution operation. In order to reduce the memory
footprint, such sparsely populated data can be transformed into sparse tensor format,
which is a generalization of sparse matrices. A sparse matrix is simply a matrix where
most of the elements are zeros [89]. In the context of sparse tensors, conventional
tensors are often referred to as dense.

Sparse tensors are usually stored in a format that only contains the non-zero
elements. This is achieved by representing the tensor as two separate matrices,
coordinates C and features F, which contain the coordinates and values of the non-zero
elements respectively:

C =

⎡⎢⎢⎢⎢⎢⎣
𝑢1

1 𝑢2
1 · · · 𝑢𝐷1

...
...

. . .
...

𝑢1
𝑁

𝑢2
𝑁

· · · 𝑢𝐷
𝑁

⎤⎥⎥⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎢⎢⎣
x⊤1
...

x⊤
𝑁

⎤⎥⎥⎥⎥⎥⎦ , (13)

where C ∈ Z𝑁×𝐷 and F ∈ R𝑁×𝑁𝐹 . The sparse tensor T is then defined as follows:

T [u𝑖] =
{︄

F𝑖, if u𝑖 ∈ C
0, otherwise,

(14)

where u𝑖 and F𝑖 denote the 𝑖th rows of C and F respectively.
While sparse tensors can be significantly more memory efficient in comparison to

dense tensors when the data is sparse, they are not functional as input for conventional
convolutional layers. To this end [90] proposed sparse convolutional layers for 2D
data, which were later generalized to 3D [79, 88, 91] and 4D [80] data. At its core, a
sparse convolutional layer performs the exact same convolution operation as a dense
one. However, sparse convolutions are able to achieve significant performance gains
by exploiting prior knowledge about the structure of the input data, which enables
efficiently computing the convolution operation for sparse high dimensional data.
Namely, a sparse convolution simply computes the linear activation using only the
non-zero elements and disregarding all other input coordinates, which reduces the
computational load significantly, as a majority of the coordinates in a sparse input
space are empty. Figure 9 shows a comparison between a dense and sparse convolution
performed on a sparse matrix.

Employing the same notation as in Equation 10, the linear activation of a sparse
convolution for any u ∈ Cout is given by:

zu =
∑︁

i∈N𝐷 (u,𝐾,Cin)

Wixu+i, (15)

where Cin and Cout are the coordinate matrices corresponding to the sparse input
and output tensors respectively and N

𝐷 (u, 𝐾,Cin) = {i|u + i ∈ Cin, i ∈ V𝐷 (𝐾)}.
That is, N𝐷 (u, 𝐾,Cin) is a subset of elements in V𝐷 (𝐾) such that the corresponding
coordinates exist in the sparse input tensor.
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Figure 9: Comparison of a dense convolution and a sparse convolution performed on
a sparse matrix using a 3 × 3 kernel, stride and dilation one and no padding. (a) A
dense convolution applied on a sparse matrix. Note how most of the computations
are redundant, as a majority of the input features are zerote. (b) A sparse convolution
applied on the same sparse matrix. Only non-zero elements in the input matrix
are considered, which significantly reduces the number of required computations in
comparison to the dense convolution.

In practice, leveraging the computational advantages of sparse tensors and con-
volutions demands certain additional data structures. Performing operations such as
convolution and pooling (see Section 2.2.5) on sparse tensors requires an efficient
approach for finding neighbors between the non-zero elements and a method for
generating the set of output coordinates. To this end, sparse convolution libraries,
such as Minkowski Engine [80], typically implement a coordinate manager. Each
sparse tensor is then associated with a distinct coordinate manager that handles all
coordinate-related operations.

In order to perform a convolution operation on a sparse tensor, the coordinate
manager must find which coordinate of the output tensor each element in the input
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tensor is mapped to. This mapping is known as the kernel map and it is comprised
of two integer lists: the in map I ∈ Z and the out map O ∈ Z. Each element 𝑖 ∈ I
indicates a row index of the coordinate matrix C or the feature matrix F of a sparse
input tensor T, while each 𝑜 ∈ O represents a row index of the coordinate matrix
corresponding to the output tensor of the sparse convolution. The in and out maps are
ordered such that the 𝑘th element of I and O correspond to each other. A single kernel
map only encompasses the mappings for a single cell in the convolutional kernel, thus
the number of kernel maps required for computing the sparse convolution is equal to
the number of cells in the convolutional kernel. To further reduce the computational
load, both the coordinates and kernel maps are cached by the coordinate manager, as
both are reused very frequently.

2.2.5 Pooling Layer

Convolutional neural networks often utilize pooling layers between convolutional
layers for aggregating output features. In essence, a pooling layer constructs a mapping
that downsamples the input in an efficient manner, that is, the dimensionality of
the feature map is reduced without introducing additional trainable parameters. In
addition, pooling makes the network output approximately invariant to minor spatial
transformations of the input [58] and by extension controls overfitting [92]. Invariance
to spatial transformations is an especially advantageous property when information
about the occurrence of specific features is more important than their exact location
[58].

Much like a convolution, a pooling operation is performed by sliding a kernel of
size 𝐾 across the input tensor in increments determined by the stride. A pooling layer
with the kernel size set equal to the input dimensions is known as a global pooling
layer [92]. Global pooling can be useful as an output layer, as it returns just one
value for each input channel. In contrast to convolutional layers, pooling layers do
not perform a convolution operation on the data and the kernel generally contains no
learnable weights. Instead, they utilize some aggregate function to compute a single
statistic that represents the input values within the kernel. The motivation behind
pooling is similar to that of increasing the stride of a convolutional layer: adjacent
input locations often contain similar features, thus aggregating them to reduce input
dimensionality is reasonable.

Perhaps the most popular pooling operations are average pooling [93] and max
pooling [94]. The former, visualized in Figure 10, outputs the mean of the input
elements, while the latter returns the largest value within the kernel. Other popular
choices include mixed pooling, which is simply a randomized choice between max
and average pooling [95], and 𝐿𝑝 pooling, which adopts the form of 𝐿𝑝-norm as the
aggregate function [96]. That is, using the previously defined notation, the result of an
𝐿𝑝 pooling operation at an arbitrary output coordinate u is given by:

zu =
⎛⎜⎝ 1
|V𝐷 (𝐾) |

∑︁
i∈V𝐷 (𝐾)

x𝑝u+i
⎞⎟⎠

1/𝑝

. (16)
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Figure 10: A visualization of average pooling applied on a 2D matrix using a 2 × 2
kernel, stride one and no padding.

In addition to the methods discussed here, a variety of more novel pooling strategies
have been suggested in the literature, some even including learnable parameters [97].
While such methods may offer better performance, the increased complexity will
naturally also result in increased computational overhead, which is often not desirable.

2.2.6 Batch Normalization Layer

Modern neural networks are typically trained by dividing the data into small subsets
known as minibatches (see Section 2.3.2). While normalizing the inputs of a neural
network has long been known to be helpful for the training process [98], batch
normalization extends this concept by adding intermediate layers that normalize the
outputs of layers within deep neural networks [99]. Crucially, batch normalization is
applied within minibatches instead of the entire input data set in order to further reduce
the computational load. Although a rather recent innovation, batch normalization has
been successfully adopted across all fields of deep learning, as it both accelerates the
training process and enables using higher learning rates, while also improving the
generalization of models [100].

Let H be the activations of some layer for a minibatch of inputs B and let 𝑚 be
the number of features in H. A batch normalization layer then normalizes its input H
such that each feature has zero mean and unit variance:

H
′
=

H − 𝝁B

𝝈B

, (17)

where 𝝁B,𝝈B ∈ R𝑚 are vectors containing the feature-wise sample mean and sample
standard deviation of the current minibatch respectively. Note that the normalization
is applied independently for each feature in the input. In order to enable evaluating a
trained network for singular inputs instead of entire minibatches, a batch normalization
layer will typically cache the running averages of 𝝁B and 𝝈B during training [58].
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Ioffe and Szegedy [99] noted that simply normalizing the inputs of a layer to have
zero mean and unit variance may change the codomain of its outputs and consequently
its representative power. To this end, they adopted the additional learnable parameters
𝜸, 𝜷 ∈ R𝑚, which scale and shift the normalized value:˜︂H = 𝜸H′ + 𝜷. (18)

This ensures that the transformation applied by the batch normalization layer can
represent the identity transform. Indeed, setting 𝜸 = 𝝈B and 𝜷 = 𝝁B yields the original
unnormalized activations H [99]. While H and ˜︂H can both represent the same family
of functions of the input B, the learning dynamics between the two differ significantly.
Namely, the mean of H is determined by a complex combination of parameters in the
previous layers of the network, while the mean of the normalized activations ˜︂H is
fully determined by 𝜷. Consequently, the learning process is considerably easier for˜︂H [58].

A large driving factor in the recent success of deep learning has been the increasing
number of layers in the models. Ioffe and Szegedy [99] noted that this also introduces
an issue known as internal covariate shift, where the distributions of activations in
intermediate layers change considerably depending on the input, since small differences
in input accumulate into major ones due the large number of layers. This phenomenon
then hinders the training process, as the subsequent layers have to learn to accommodate
the constants changes in distribution. They further suggested that batch normalization
layers effectively eliminate this problem by fixing the input distribution. Later works
experimentally showed that the benefits of batch normalization are mainly a result of
the larger learning rates it enables, and questioned the role of internal covariate shift.
They further argued that these larger learning rates increase the implicit regularization
of stochastic gradient descent (see Section 2.3.2) and by extension improve model
generalization [100].

2.2.7 Residual Connection

Yet another issue facedby deep learning models is a phenomenon known as degradation,
where increasing the number of layers causes the model accuracy to first saturate
and then start decreasing [101]. Perhaps surprisingly however, degradation is not a
result of model overfitting, and the training accuracy of a well performing model may
decrease when more layers are added, as experimentally shown by [101, 102, 103].
As an example, consider a well performing deep learning model M. We should then
be able to construct a deeper model M′ that has the same training error by simply
copying the parameters from M and having the additional layers perform an identity
mapping. It follows that M′ should be able to achieve at least the same training
accuracy as M and the fact that this is not always the case implies that the optimizer
simply fails to find an adequate solution [101].

He et al. [101] proposed deep residual networks (ResNets) as a solution to model
degradation. ResNets utilize residual connections, which are formally defined as
follows: let H (x) denote the desired non-linear function mapping learned by a stack
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ReLU

Layer

Residual
connection

Figure 11: An example of a typical residual connection in a block of two neural
network layers. The residual connection performs an identity mapping for the original
input x, which is then added to the output of the layers.

of few layers, where x is the input vector passed to the first layer in the stack. We then
let the stack of layers learn another mapping:

H
′(x) = H (x) − x, (19)

from which the desired mapping can be retrieved simply by adding the original input:

H (x) = H
′(x) + x. (20)

The residual mapping H
′(x) is a more straightforward problem in terms of optimization

when compared to the original mapping with no residuals [101], as evidenced by
the undeniable success of deep residual networks in multiple fields, such as object
classification, object detection and segmentation [101, 104]. Residual connections are
also utilized in transformer-based language models, such as BERT [105] and GPT
[106].

In practice, residual connections can be implemented by utilizing shortcut con-
nections, which are often also referred to as skip connections. A shortcut connection,
is a connection that skips one or more layers in a neural network [101]. In a residual
connection, the shortcut connection only applies an identity mapping and the input is
subsequently added to the output of the skipped stack of layers, as shown in Figure 11.
Although using an identity mapping in the residual connection may seem overly
simple, especially considering that earlier works utilizing skip connections employed
function mappings such as gating [103], this is not the case in practice. In fact, [107]
empirically showed that using an identity mapping yields both a more accurate model
and a shorter training time in comparison to more complicated mappings, such as
scaling or gating.
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2.3 Training Neural Networks

Deep neural networks are highly complex and non-convex functions, with the purpose
of approximating the true distribution of some underlying data set. In order to achieve
the desired function mapping, the network parameters 𝚯 must be optimized by fitting
the model to a training data set that adequately represents the distribution of the data.
This process is often referred to as training or learning.

Training a neural network constitutes optimizing a loss function, which usually
measures how well the model outputs match some target, by updating the model
parameters according to an optimization scheme. The loss function should be chosen
such that it represents the objective adequately while simultaneously being relatively
straightforward to optimize. We provide examples of loss functions designed for
classification tasks in Section 2.3.1.

Optimization methods used in training neural networks are generally gradient-
based and work by iteratively updating the model parameters 𝚯 based on the gradient
of the loss function ∇𝚯L(·) with respect to the parameters themselves. Gradient-based
optimization strategies, which are essentially variants of gradient descent, are discussed
further in Section 2.3.2. Computing the gradients is a non-trivial task in itself, which
is handled by the back-propagation algorithm in current deep learning applications.
The principles behind back-propagation are briefly explained in Section 2.3.3.

There are a few key differences between optimization in the context of training
neural networks and traditional optimization. Firstly, the employed loss function is
often a proxy for the actual objective function, which may be infeasible to optimize
efficiently. As such, minimizing the loss does not necessarily minimize the true
objective. Secondly, training algorithms generally do not halt at a local or global
minimum, but rather based on some other criterion that is designed to prevent
overfitting. Consequently, the derivatives of the loss may still be relatively large when
training stops, which is in contrast to traditional optimization where the algorithm is
considered to have converged when the gradient becomes very small.

A persisting problem within the field of machine learning is generalizing the
performance of a model to new input data outside of the training set. Strategies
explicitly designed for preventing models from overfitting and by extension improving
generalization, often at the expense of increased training error, are collectively known
as regularization [58]. Now, since present day deep neural networks may contain
millions or even billions of learnable parameters, they can be quite prone to overfitting.
Consequently, development of more effective regularization strategies has been a
central research topic in the field [58]. Section 2.3.4 discusses various regularization
strategies proposed for preventing the network parameters from overfitting during
training.

2.3.1 Loss Function

This discussion focuses specifically on loss functions utilized for classification tasks,
as regression is not relevant to semantic segmentation. In this context, the loss function
acts a proxy for the objective of maximizing the number of correctly classified data
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points across the training set [58]. The loss, denoted L(·), is a measure of how well
the neural network has classified the inputs in comparison to some target, which in the
supervised learning setting is simply the ground truth class.

One of the most simple loss functions is computing the mean squared error between
the ground truth vector y and the predicted labels ŷ:

LMSE(y, ŷ) =
1
𝑁

𝑁∑︁
𝑛=1

(𝑦𝑛 − �̂�𝑛)2. (21)

At present, mean squared error has largely been replaced by functions within the
cross-entropy family of loss functions [58] and most current DL classification models
rely on minimizing the cross-entropy loss [108]. Consequently, cross-entropy loss
has been widely utilized by DL methods designed for point cloud classification tasks,
including point-wise classification, i.e. semantic segmentation.

In order to define the conventional cross-entropy loss, let x𝑖 ∈ R|𝐶 | denote the
unnormalized output vector of a model corresponding to the 𝑖th input point, often also
referred to as logits, and let x𝑐

𝑖
denote the value of x𝑖 corresponding to class 𝑐 ∈ 𝐶.

Further, let 𝑦𝑖 ∈ 𝐶 be the corresponding target. The cross-entropy loss can then be
computed using the following formula:

LCE(x𝑖, 𝑦𝑖) = − log
exp(x𝑦𝑖

𝑖
)∑︁

𝑐∈𝐶 exp(x𝑐
𝑖
) , (22)

where log(·) is the natural logarithm. Note that Equation 22 is for computing the
loss of a singular data point, while in practice the model input will be a minibatch
containing multiple data points. The set of losses computed for the individual data
points can be reduced into a single value for example by computing the sum or mean of
the losses. Let X 𝑗 ∈ R𝑁×|𝐶 | be a matrix of output vectors corresponding to a minibatch
B 𝑗 with 𝑁 data points and let y 𝑗 ∈ R𝑁 be the targets of each data point. Using mean
as the reduction operation, the cross-entropy loss of the entire minibatch can then be
computed as follows:

LCE(X 𝑗 , y 𝑗 ) =
1
𝑁

𝑁∑︁
𝑛=1

LCE(x𝑛, 𝑦𝑛), (23)

where x𝑛 and 𝑦𝑛 denote the 𝑛th element of X 𝑗 and y 𝑗 respectively.
Considerable imbalance between ground truth classes is a common problem in DL

data sets including those based on real-world LiDAR data. Focal loss [109] attempts
to address this problem by modifying the standard cross-entropy loss such that effect
of well-classified samples is weighted down. Here well-classified refers to data points
that have a high probability of belonging to a certain class. Consequently, optimizing
the focal loss will focus training on the sparse set of hard to classify data points,
preventing the more prevalent classes from overwhelming the network parameters
during training. Formally, focal loss is defined as follows:

LF(x𝑖, 𝑦𝑖) = (1 − exp(−LCE(x𝑖, 𝑦𝑖)))𝛾 · LCE(x𝑖, 𝑦𝑖) (24)
= −(1 − p𝑦𝑖

𝑖
)𝛾 · log(p𝑦𝑖

𝑖
), (25)
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where 𝛾 ≥ 0 is the user defined focusing parameter. Equation 25 takes advantage of
the following equality:

exp(−LCE(x𝑖, 𝑦𝑖)) = p𝑦𝑖
𝑖
, (26)

where p𝑦𝑖
𝑖

denotes the predicted probability that the data point x𝑖 corresponds to is
part of class 𝑦𝑖 ∈ 𝐶. Analogously to Equation 23, the focal loss of minibatch B 𝑗 can
then be computed by taking the mean of the individual losses:

LF(X 𝑗 , y 𝑗 ) =
1
𝑁

𝑁∑︁
𝑛=1

LF(x𝑛, 𝑦𝑛). (27)

Besides cross-entropy loss and focal loss, a wide variety of other loss functions
have been proposed in the literature. In fact, essentially any differentiable function
can be used as a loss function. Many loss functions are significantly more complex,
although simultaneously more descriptive, while some include multiple objectives
or are highly specialized for some task. As an example, the PointInfoNCE [82] loss
function designed for contrastive pretraining on point cloud data is computed by
comparing the values of extracted point-level features across a set of matched points
from two views. Increasing the complexity of the loss function will naturally also
increase the complexity of computing the gradients and by extension slow down the
training. Furthermore, a more complex loss function will not necessarily always
improve model performance in any way. As such, choosing the loss function effectively
involves choosing the correct balance between descriptive power and computational
simplicity.

2.3.2 Optimization

Gradient descent is an algorithm for minimizing an objective function and the basis of
most modern optimizers utilized in DL. The algorithm works by iteratively updating
the parameters in the opposite direction of the gradient. For an arbitrary neural
network, the update step is formally defined as follows:

𝚯𝑡+1 = 𝚯𝑡 − 𝜂∇𝚯L(𝚯𝑡), (28)

where𝚯𝑡 are the model parameters at step 𝑡 and 𝜂 is the learning rate, which determines
the size of the step taken along the gradient. In conventional gradient descent, the
gradient is computed for the entire data set and the algorithm is guaranteed to converge
to the global minimum for convex surfaces and to a local minimum for non-convex
surfaces [110].

In practice the training data sets used by modern DL models are generally so
large that computing the gradient across the entire data set is infeasible. To overcome
this limitation, stochastic gradient descent (SGD) only utilizes a minibatch of inputs
B 𝑗 , |B 𝑗 | > 1 for each update step. Using the notation from the previous sections, the
update step of SGD is:

𝚯𝑡+1 = 𝚯𝑡 − 𝜂∇𝚯L(𝚯𝑡 ; X 𝑗 , y 𝑗 ), (29)
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where the gradient is computed as follows:

∇𝚯L(𝚯𝑡 ; X 𝑗 , y 𝑗 ) =
1

|B 𝑗 |
∑︁
𝑛∈B 𝑗

𝜕

𝜕𝚯
L(𝚯𝑡 ; x𝑛, 𝑦𝑛). (30)

Although convergence is not guaranteed, it has been shown that when the learning
rate is slowly decreased, SGD shows the same convergence behaviour as conventional
gradient descent. The process of adjusting the learning rate during training is known
as scheduling [110].

While the standard SGD algorithm is quite effective, it is not without its problems.
Challenges to overcome include choosing a proper learning rate and schedule or
getting trapped in suboptimal local minima [110]. To this end, a wide variety of more
complex optimization schemes have been proposed for training DL models. Below,
we present a few examples.

Areas where the surface curves significantly more steeply in one dimension
compared to others cause SGD to oscillate and decelerate its convergence. Momentum
is a method designed to alleviate this problem. This is achieved by adding a fraction
of the previous update step to the current update:

v𝑡+1 = 𝛾v𝑡 + 𝜂∇𝚯L(𝚯𝑡) (31)
𝚯𝑡+1 = 𝚯𝒕 − v𝑡+1, (32)

where 𝛾 is the momentum term, usually set close to 0.9. In essence, the momentum
term increases the updates for dimensions whose gradients point in the same direction
during consecutive steps, while simultaneously decreasing the updates for dimensions
whose gradients change direction [110].

Adaptive moment estimation (Adam) [111] is another extremely popular optimizer,
that can be seen as an extension of SGD. Adam computes individual adaptive learning
rates for each parameter using estimates of first and second moments of the gradients,
denoted m𝑡 and v𝑡 respectively:

m𝑡 = 𝛽1m𝑡−1 + (1 − 𝛽1)∇𝚯L(𝚯𝑡) (33)
v𝑡 = 𝛽2v𝑡−1 + (1 − 𝛽2)∇𝚯L(𝚯𝑡)2, (34)

where 𝛽1 and 𝛽2 are user defined decay rates. Both m𝑡 and v𝑡 are initialized with zeros,
resulting in them being biased towards zero. As such, Adam applies a bias correction:

m̂𝑡 =
m𝑡

1 − 𝛽𝑡1
(35)

v̂𝑡 =
v𝑡

1 − 𝛽𝑡2
. (36)

The Adam update rule then utilizes the bias-corrected moment estimates:

𝚯𝑡+1 = 𝚯𝑡 −
𝜂

√
v̂𝑡 + 𝜖

m̂𝑡 , (37)
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where 𝜖 is a small term commonly set to 10−8.
By combining the advantages of previously proposed optimizers, Adam is able to

deal with both sparse gradients and non-stationary objectives, which make it a versatile
optimizer that is robust and well-suited to a wide range of non-convex optimization
problems [111].

2.3.3 Back-propagation

In order to update the network parameters, the optimization methods presented in
Section 2.3.2 require computing the gradient of the loss function with respect to the
model parameters ∇𝚯L(·). In modern neural networks this is achieved with the back-
propagation algorithm, which is effectively an efficient application of the chain rule of
derivatives. Starting from the output of the neural network, the gradient is computed
iteratively for each layer by propagating a signal backwards through the network. First
published in 1970 as a tool for estimating the effects of arithmetic rounding errors on
the results of complex expressions [112] and discovered even earlier in the context
of certain process models in chemical engineering [113], back-propagation was first
applied for training MLPs in the manner that is currently standard by Werbos [114]
and later popularized by Rumelhart et al. [115].

In order to illustrate the main principle behind back-propagation, let us consider a
neural network with 𝑙 hidden layers that outputs a 𝑁-dimensional vector y ∈ R𝑁 . Let
h𝑙 ∈ R𝐾𝑙 then denote the input of the 𝑙th hidden layer (i.e. the output of the (𝑙 − 1)th
hidden layer) and 𝜽 𝑙 the corresponding parameters. Layer 𝑙 is represented by the
function y = 𝑓𝑙 (h𝑙 , 𝜽 𝑙), while layer 𝑙 − 1 is equivalent to h𝑙 = 𝑓𝑙−1(h𝑙−1, 𝜽 𝑙−1) and so
on.

Starting from the network output, we first compute 𝜕L
𝜕𝑦𝑛

∀𝑛 ∈ {1, . . . , 𝑁}. Using
these values and by applying the chain rule, the gradients of the loss function w.r.t. to
the parameters and inputs of layer 𝑙 can be computed as follows:

𝜕L

𝜕𝜃𝑙
𝑗

=

𝑁∑︁
𝑛=1

𝜕L

𝜕𝑦𝑛

𝜕𝑦𝑛

𝜕𝜃𝑙
𝑗

(38)

𝜕L

𝜕ℎ𝑙
𝑘

=

𝑁∑︁
𝑛=1

𝜕L

𝜕𝑦𝑛

𝜕𝑦𝑛

𝜕ℎ𝑙
𝑘

(39)

As the functions representing the layers 𝑓𝑙 (·) are all differentiable, the partial
derivatives w.r.t. the layer parameters and inputs that appear in Equation 38 and
Equation 39 ( 𝜕𝑦𝑛

𝜕𝜃𝑙
𝑗

and 𝜕𝑦𝑛

𝜕ℎ𝑙
𝑘

) are quite straightforward to compute. The signals from layer
𝑙 can then be used to compute the derivatives required for updating the parameters of
the previous layer:

𝜕L

𝜕𝜃𝑙−1
𝑗

=

𝐾𝑙∑︁
𝑘=1

𝜕L

𝜕ℎ𝑙
𝑘

𝜕ℎ𝑙
𝑘

𝜕𝜃𝑙−1
𝑗

. (40)

In fact, from Equation 40 it follows that the gradients required for updating the
parameters of an arbitrary layer 𝑖 can be computed by utilizing the signals 𝜕L

𝜕ℎ𝑖+1
𝑘
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from the subsequent layer. This is exactly where the efficiency of back-propagation
lies: computing the gradients in terms of signal from the subsequent layer avoids
a considerable amount of computations in the chain rule that would be required
otherwise. These savings in computational overhead are made possible by iterating
through the network backward, rather than forward.

Deep learning libraries such as PyTorch [116] and TensorFlow [117] implement
back-propagation by constructing a computational graph alongside the neural network.
The nodes in the graph contain the necessary computations for both the forward and
backward-passes [58].

2.3.4 Regularization

Although deep neural networks can approximate highly complicated and non-linear
functions, the chosen family of neural networks does not necessarily include the
true distribution of the data, that is, the data generating process. In fact, since the
domains DL models are applied to are generally very complex, the true distribution is
effectively guaranteed to be outside the model family in most cases. Consequently,
controlling model complexity is not simply a matter of finding an appropriately sized
model with the correct number of parameters. In practice, the model that minimizes
the generalization error is almost always a large model with appropriate regularization
[58]. In other words, regularization is a crucial part of training DL models. Below, we
provide a few examples of popular regularization strategies utilized in deep learning.

Data augmentation: One of the most effective ways of preventing overfitting and
improving the generalization of deep learning models is to increase the amount of
training data [58]. However, this is often not possible and the amount of available data
always has some limit. One way to alleviate this problem is constructing additional
artificial inputs based on the available data, a process also known as data augmentation
[58]. In practice, creating additional training data is easiest for classification tasks,
where a new data point can be created by applying some transformation on any input
[58]. In fact, most DL-based point cloud semantic segmentation models utilize data
augmentation as well (see e.g. [15, 82]). Essentially the goal of data augmentation
is to make the model invariant to a wide variety of transformations, which is an
advantageous property when if comes to model generalization [58].

Early stopping: When a neural network begins to overfit, one can generally observe
that the training error continues to decrease, while the validation error begins to
increase over time. Consequently, in such situations returning the model from the
training epoch where the validation error was the lowest will yield a model with a
lower validation error than the model parameters at the end of the training. Often the
model that minimizes the validation error will also perform better on the test set [58].

This regularization strategy known as early stopping is extremely simple, yet
effective. During training, the model parameters are stored whenever the validation
error improves. Once the validation error has not improved for some user-defined
number of iterations, the training terminates. At this stage, rather returning the
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parameter values at the end of the training, we return model with the best performance
on the validation set. In essence, early stopping acts as a regularizer by restricting the
optimization procedure to a comparatively small parameter space in the neighborhood
of the initial parameter values [58].

In addition to being very simple to implement, early stopping does not incur a
significant computational cost, as it only requires storing the parameters of the best
model. A more significant drawback is the requirement for an additional validation
data set, which can be a limitation if the training set is small to begin with [58].

Dropout: Assuming an unlimited amount of computational resources, the most
effective way to regularize a fixed-sized model is computing an average of the
predictions across all possible parameter combinations, such that each combination is
weighted by its posterior probability given the training data [118]. More generally,
the process of training several models and averaging their predictions in an effort to
reduce the generalization error is referred to as bagging. The reason bagging works is
that distinct models generally do not make the exact same mistakes on the test set [58].

In the context of neural networks, training multiple models is often not practical,
especially given that combining models is most effective when they have either differing
architectures or training data. Optimizing the hyperparameters and training each
model would be extremely laborious and require significant computational resources.
Moreover, the amount of available training data is often quite limited. Dropout is
a regularization strategy designed to address both of the aforementioned issues. In
practice, dropout consists of randomly dropping out units and all associated connections
by temporarily removing them from the network [118].

Given a neural network with 𝑛 units, dropout is comparable to sampling thinned
network from the 2𝑛 networks that can be formed by dropping one or more units.
Here thinned network refers to the network that is formed by the retained units after
applying dropout. As all of the thinned networks share weights, the total number of
parameters remains the same. During training, a new thinned network is sampled for
each input. As such, training a neural network with dropout regularizaton is similar to
training a collection of 2𝑛 distinct networks with extensive weight sharing [118].

Since explicitly computing the average of all thinned networks is not feasible at test
time, dropout computes an approximation by scaling the trained parameter of each unit
by the corresponding dropout probability 𝑝. This way, the 2𝑛 networks with shared
weights can efficiently be combined into a single model. Dropout has been shown to
significantly reduce overfitting and improve generalization of neural networks in tasks
such as classification [118].

The most straightforward practical implementation of dropout retains each unit
with probability 𝑝 independently of other units during training. At test time, the effect
of averaging the predictions over multiple thinned networks is then approximated by
using a single unthinned network with smaller weights [118].

[118].
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2.4 Point Cloud Semantic Segmentation

In the following subsections, we provide an overview of deep learning-based approaches
for semantic segmentation of point clouds. The methods have been grouped by the
level of supervision used in the training into fully-supervised, weakly supervised and
unsupervised approaches. In the case of unsupervised methods, traditional algorithms
are briefly discussed as well due to the limited amount of research on DL-based models.
For a more comprehensive overview of deep learning-based semantic segmentation
of point clouds, the interested reader is referred to [27, 28, 119, 120] in the case of
supervised methods and [121] for weakly supervised methods.

2.4.1 Supervised Methods

Point cloud semantic segmentation methods can be roughly divided into two categories
based on how they handle the input cloud: rule-based and point-based methods.
Methods in the former category first transform the point cloud into some structured
data format, such as 2D image or voxel image, while point-based methods process
the input clouds directly [119]. Below we provide a brief introduction to some of the
most notable neural network architectures in both categories.

Rule-Based Methods: Some of the first rule-based DL methods for semantic segmen-
tation of point clouds were based on generating two-dimensional representations of
the 3D points and applying existing neural network architectures designed for image
data. Multiple projection strategies have been proposed, all of which have their own
drawbacks caused by the information loss inherent to projecting from three to two
dimensions [27].

Multi-view projections, which are comprised of multiple images generated by
projecting the point cloud onto a plane from several virtual camera perspectives, are one
method for generating two-dimensional representations of point clouds. Multi-view
projections were first used for semantic segmentation by MVCNN [122], which first
extracts features from each projection using a conventional 2D CNN and subsequently
aggregates them in a pooling layer. Finally, the obtained 2D labels are projected back
to the original point cloud [122]. Similar to MVCNN, SnapNet [123] generates both
RGB and depth composite images of the input point cloud from multiple random
views. In order to leverage the complementarity of the depth and color information, the
images are utilized for training two parallel CNNs after which the predictions are fused
and projected back on the point cloud [123]. Later on, SnapNet-R [124] improved
upon the performance of SnapNet by introducing 3D-consistent view generation and a
CNN capable of handling the generated RGB and depth images simultaneously.

Since any multi-view projection is an approximate abstraction of the 3D scene,
semantic segmentation methods utilizing multi-view projections are prone to occlusions
and defects in the point cloud [119] and their performance can be quite sensitive to
the chosen virtual camera perspectives [120]. Furthermore, the projection itself leads
to a significant loss of geometric information, which further affects the segmentation
accuracy [120].
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Spherical projections, where the points are projected onto the surface of a sphere
and then rasterized, present another popular alternative for 3D to 2D transformation.
Spherical projections were first utilized for semantic segmentation by SqueezeSeg
[86], where a 2D CNN is used for producing a point-wise label map of the transformed
input cloud, which is further refined by a conditional random field (CRF). Later,
SqueezeSegV2 [125] introduced a novel context aggregation module which improved
SqueezeSeg’s previous results by reducing its sensitivity to dropout noise, that is,
missing points in the input LiDAR point cloud. Furthermore, issues caused by class
imbalance were addressed by opting for focal loss instead of cross entropy loss during
training [125].

To solve problems such as discretization errors and blurry 2D CNN outputs caused
by the use of spherical projections as intermediate representations of the 3D point
cloud, RangeNet++ [126] introduced a post-processing algorithm based on 𝑘-nearest
neighbors (𝑘-NN). Another issue presented by spherical projections of LiDAR data is
that in comparison to regular RGB images, the feature distribution of LiDAR images
varies drastically based on location, decreasing the segmentation performance of
standard convolutional layers. To address this, SqueezeSegV3 [127] proposed using
spatially-adaptive convolutions, which alter the filter based on location within the
LiDAR image.

While DL methods utilizing spherical projections have proved more effective
for semantic segmentation than multi-view projection-based methods, the issue of
occlusions caused by the projection remains. Furthermore, the projection step may
cause distortions at the edges of the image [27].

Moving away from two-dimensional projections, voxelization is an effective way
of transforming point clouds into structured format that does not cause occlusions.
In a regular voxelization, the point cloud is first divided into a 3D grid, after which
a voxel-level representations are derived from the points within each grid cell [27].
Voxelized point clouds can be processed using conventional convolutional neural
networks that have been generalized to three dimensions. An early example of this is
VoxNet [83], which used 3D CNNs for object detection from point clouds transformed
into occupancy grids. A 3D CNN designed specifically for semantic segmentation
was first proposed by Huang and You [128]. However, their implementation does not
produce a dense labeling of the point cloud, as the predicted class of each voxel is
only assigned to points near its center during label inference [128].

Obtaining dense labelings presents a problem in the context of applying standard
3D CNNs to voxelized point clouds. If the voxels are large, assigning the predicted label
to each point within the voxel produces excessively coarse results, while decreasing the
size of voxels increases the memory footprint of the convolutions cubically, quickly
rendering the use of 3D convolutional layers computationally infeasible. In order
to obtain dense labeling while keeping the computational requirements reasonable,
SegCloud introduced a pipeline, where coarse voxel predictions from a 3D CNN
are transferred back to the point cloud via trilinear interpolation after which a fully-
connected CRF is applied to enforce spatial consistency of the labels [129]. Similarly,
to better preserve local geometry of the point cloud, PointGrid [130] proposed using
3D CNNs in combination with a novel 3D grid structure, where a constant number of
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points 𝐾 > 1 is sampled from within each cell.
When a point cloud is voxelized, a significant portion of the voxels contain no

points at all. As such, a sparse tensor that only contains information about the
occupied grid cells is generally a more efficient data structure for processing voxelized
point clouds. To this end, Graham [88] adapted sparse convolutional layers for
point cloud data, achieving significant performance gains in 3D classification. Later
on, sparse convolutional neural networks (SCNNs) were also utilized for efficient
object detection from LiDAR point clouds by Engelcke et al. [91]. A noteworthy
drawback of sparse convolutions is that they dilate the sparse inputs by applying
conventional full convolutional operations. That is, the number of non-empty voxels
increases substantially with each consecutive convolutional layer. Consequently, as
the feature sparsity decreases, so do the computational advantages provided by sparse
convolutions, which limits the number of layers in a sparse convolutional neural
network in practice. To circumvent this, Graham et al. [79] proposed submanifold
sparse convolutions (SSCs), which restrict the output of a convolution to the set of
active input points. The computational cost of SSCs is around 50% less than that
of standard sparse convolutions, which enabled implementing and training deeper
convolutional networks such as ResNets [101] and DenseNets [131] for point cloud
data [79]. As a result, SSC-based methods achieved at the time state-of-the-art
performance on semantic segmentation of point clouds [79]. Choy et al. [80] later
generalized submanifold sparse convolutions for generic input and output coordinates
as well as arbitrary kernel shapes and succesfully utilized the generalized SSCs for
semantic segmentation of spatio-temporal point cloud data.

Hybrid methods which combine rule-based and point-based architectures present
another interesting research direction. A recent example of a hybrid approach intended
for semantic segmentation is PCSCNet [132], which extracts point-wise features from
the raw point cloud using an MLP and then aggregates them into voxel-level features
by applying a point convolution within each voxel. The extracted voxel-wise features
are subsequently provided as input for a 3D SCNN, which outputs global voxel-level
features. Finally, the local point-level features and global voxel-level features are
concatenated and passed into an MLP, which outputs a classification for each point
[132].

Besides voxelization, a variety of alternative discretization methods that exploit
the inherent sparsity of point clouds have been proposed in the context of DL-based
semantic segmentation. OctNet [133] hierarchically partitions the voxelized point cloud
into a set of unbalanced octrees, each of which divides the 3D space in accordance
to the density of the data. The authors then present efficient implementations of
standard CNN operations for their octree-based data structure, which dynamically
focus computational resources [133]. OctNet achieves a significant decrease in required
computational resources, which enables using higher resolutions than conventional
voxels [133]. Similarly, O-CNN [134] utilizes a novel octree structure, where the
average normal vectors of the point cloud sampled in the finest leaf octants are used as
input features for a octree compatible 3D CNN. Unlike OctNet, O-CNN limits the
convolutional operations to the octants of the 3D shape boundaries, which further
reduces the computational load [134].
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SPLATNet [135] proposed discretizing point clouds into high-dimensional lattices.
The network utilizes sparse bilateral convolutional layers, which interpolate input
features onto a permutohedral lattice, then apply a convolutional operation and
finally map the output back to the input points via barycentric interpolation [135].
Later on, Rosu et al. [136] proposed LatticeNet, a hybrid method which combines
sparse permutohedral lattices with the point-based network PointNet [15]. LatticeNet
distributes the input point features onto a lattice, extracts local features with a PointNet
and subsequently uses them as input for a 3D CNN. Finally, the model applies a novel
learned data-dependent interpolation, DeformSlice, for projecting lattice features back
onto the point cloud. LatticeNet was shown to be especially efficient at semantic
segmentation tasks [136].

Point-Based Methods: While rule-based semantic segmentation methods achieve
great performance and are often more computationally efficient, the process of
transforming the input point cloud into a structured data format inherently incurs a
loss of geometric information. To circumvent this, point-based semantic segmentation
neural networks process point clouds directly, distinguishing them from rule-based
methods that discretize the input [27].

PointNet [15] was the first neural network designed to process raw point clouds
directly. A pioneering work in the field of point-based deep learning methods, PointNet
first extracts point level features using shared MLPs, where the same MLP is applied
to each individual point. The learned features are then aggregated into a global
feature vector using a symmetrical pooling layer, specifically global max pooling.
Since semantic segmentation cannot be performed based on global features alone, the
segmentation network of PointNet combines the global features with local point-wise
features [15]. The architecture of PointNet is discussed in more detail in Section 4.2.1.

A notable shortcoming of PointNet is its inability to capture local geometric
information. This significantly limits PointNet’s ability to learn fine-grained patterns,
which is especially a problem in the context of semantic segmentation. To solve this
problem, the authors proposed an improved hierarchical architecture called PointNet++,
which first partitions the input point cloud into overlapping local regions. In a process
reminiscent of CNNs, it then uses PointNets for extracting local features from the small
neighborhoods, which are subsequently grouped to larger units and used for extracting
higher level features. The process is repeated until the network has obtained features
for the entire input cloud. In addition, PointNet++ introduces novel set abstraction
layers which adaptively aggregate features according to local point densities [137].

Most early point-based semantic segmentation DL models relied on expensive
sampling techniques or computationally heavy pre- and postprocessing steps, which
limited their use to small-scale data. In order to achieve efficient semantic segmentation
of large-scale point clouds, Hu et al. [138] proposed RandLA-Net, which uses shared
MLPs in combination with random downsampling. Since random sampling alone
would result in crucial features being dropped, RandLA-Net introduced a local feature
aggregation module that progressively increases the receptive field of each point
[138]. A more thorough description of the RandLA-Net architecture is provided in
Section 4.2.1.

51



Motivated by the success of convolutional neural networks in rule-based semantic
segmentation, various strategies for point-wise convolutions have been proposed.
PointCNN [139] generalizes CNNs to leverage spatially-local correlation from un-
structured point cloud data. The main innovation of PointCNN is the 𝝌-convolution
operation, which first weights and permutes the input points and features using a shared
MLP and subsequently applies a conventional convolution on the output. Unlike a
regular convolution that uses a 𝐾 × 𝐾 kernel on a grid, a 𝝌-convolution considers the
𝐾 neighboring points of each point [139].

While the representative power of PointCNN is considerable, using shared MLPs
within the 𝝌-convolutions makes the operator quite complex and convergence of
the network more difficult. As such, Thomas et al. [140] proposed kernel point
convolutions (KPConv), which use a set of kernel points to determine where each
kernel weight is applied. That is, both the kernel weights and features are carried
by points and their area of influence is defined by a correlation function. Rather
then using a fixed number of nearest neighboring points, KPConv utilizes spherical
neighborhoods with a user defined radius. The kernel points are chosen by maximizing
the distance between them within a sphere and their number can selected based on the
desired resolution [140].

PointSIFT [141] augmented the architecture of PointNet++ with novel PointSIFT
modules, which significantly improved its performance. A PointSIFT module first
passes the input through a stack of orientation-encoding (OE) units, which are
point-wise local feature descriptors that encode information of eight orientations.
Subsequently, the module concatenates the outputs from each OE unit and applies
a point-wise convolution, producing a 𝑑-dimensional multi-scale feature for each
individual point [141].

Graph convolutional neural networks (GCNN), which operate directly on graph
structures consisting of edges and nodes, are frequently employed in the context
of computer vision [27] as well as knowledge graphs and recommendation systems
[119]. Since an unstructured point cloud can easily be transformed into a graph
representation where nodes correspond to individual points and edges capture local
geometric information and relationships between adjacent points, several GCNN
architectures have been proposed for point-based semantic segmentation of point
clouds.

Since GCNNs can be computationally very demanding, Landrieu and Simonovsky
[142] proposed superpoint graph (SPG), which first partitions the input point cloud
into superpoints using an unsupervised algorithm. The superpoints are then used for
constructing a graph representation of the point cloud, which is orders of magnitude
smaller than any graph built using the original points. Such a representation enables
applying DL models on large-scale point clouds without major sacrifice in fine details.
As the superpoints are not necessarily of the same size, SPG first embeds each node in
the superpoint graph into a fixed size feature vector with a PointNet. The embeddings
are then used as input for training a GCNN to classify the superpoints [142].

Wang et al. [143] introduced DGCNN, which uses novel edge convolutions
(EdgeConv) that capture local geometric structures while maintaining permutation
invariance. An EdgeConv operation consists of extracting edge features from the

52



𝑘-nearest neighbor graph of a point cloud with a shared MLP, and subsequently
applying a channel-wise symmetric aggregation function, e.g. max. In contrast to
conventional GCNNs, DGCNN dynamically updates the graph by recomputing the
𝑘-nearest neighbors after each layer in the output feature-space. The authors found this
improved performance of the network as with dynamic graphs the receptive field is as
large as the diameter of the point cloud, while simultaneously remaining sparse [143].

Lei et al. [144] proposed another novel convolutional operator, spherical convo-
lution (SPH3D), and combined it with an encoder-decoder GCNN similar to U-Net
[145]. In a SPH3D, the convolution is applied on all points within a certain radius
of the kernel center. The kernel itself is spherical and divided into grid cells that are
uniform along the azimuth and elevation dimensions and non-uniform along the radial
dimension. As a result, the grid cells located close to the center of the kernel are more
fine-grained and can encode detailed local geometric information of the points. By
contrast, the grid cells in a conventional convolutional kernel are of uniform size.
As such, traditional convolutional layers rely on increased resolution to capture finer
details, which limits their scalability in comparison to SPH3Ds [144].

Inspired by the recent success of transformer-based architectures in natural language
processing (e.g. BERT [105] and GPT [106]) and computer vision (e.g. ViT [146]),
a number of works have proposed transformers adapted for processing point cloud
data [119]. A transformer is a decoder–encoder network comprised of three main
modules: input embedding, positional encoding, and self-attention, all of which
contain only order-independent operations. Consequently, transformers are inherently
order invariant, rendering them suitable for processing unstructured point cloud data
[147]

Point cloud transformer (PCT) [147] was among the first works to successfully adapt
the transformer-architecture for point cloud data. PCT introduced several adjustments
to transformers designed specifically for point clouds, including coordinate-based input
embedding, optimized offset-attention and neighbor embedding. The offset-attention
replaces the attention feature with the offset between the input of self-attention module
and attention feature, which they found was more suitable for point cloud learning
[147].

While PCT achieved at the time state-of-the-art results across a variety of point
cloud understanding tasks, its performance was limited by memory consumption
and computational complexity due to its use of global attention applied directly
on the point cloud [148]. On the other hand, Point Transformer v1 (PTv1) [149],
another pioneering work in transformer-based point cloud understanding networks, is
comprised of novel point transformer layers, which are based on vector self-attention.
The vector attention only applies self-attention in the local neighborhood of the query
point, which alleviates the memory problems with global self-attention [149].

In order to increase the size of the receptive field in comparison to previous
transformer-based models, Stratified Transformer [150] proposed using a window-
based self-attention in combination with a stratified key-sampling strategy, where
distant points are sampled as keys in a sparser way. This strategy enabled capturing
long-range contexts effectively, while incurring negligible extra computations.

A notable shortcoming of the vector attention used by PTv1 is that a deeper
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network increases the number of parameters drastically, which restricts the efficiency
and generalization ability of the model. PTv2 [148] addressed these limitations
by replacing the vector attention with grouped vector attention, where the input
channels are grouped evenly into 𝑔 groups with shared vector attention weights. In
addition, PTv2 introduced improved positional encoding and partition-based pooling,
achieving state-of-the-art performance on various semantic segmentation benchmarks
[148]. Later, focusing on simplicity and performance, PTv3 [67] shifted to using
serialized neighborhoods and a simpler attention mechanism tailored for serialized
point clouds. Furthermore, PTv3 eliminated the reliance on relative positional encoding
by introducing a novel conditional positional encoding based on sparse convolutions.
These improvements enabled significant scaling, expanding the receptive field from
16 to 1024 points, while simultaneously providing a 3× increase in processing speed
and a 10× improvement in memory efficiency in comparison to PTv2 [67].

Similarly to PTv3, Superpoint Transformer (SPT) [151] was designed specifically
for efficient semantic segmentation of large point clouds. Using a novel algorithm, the
input clouds are first transformed into hierarchical superpoint partitions comprised
of superpoint-graphs of increasing coarseness. The hierarchical partitions are then
used as input for the SPT network, which utilizes a self-attention scheme based
on graph-attention networks to learn relationships between superpoints at multiple
scales. SPT leverages the hierarchical graph structure effectively, achieving close
to state-of-the-art performance while remaining very compact and resource efficient
[151].

2.4.2 Weakly Supervised Methods

While fully-supervised deep learning can provide excellent performance, the large
amounts of manually annotated data required is extremely time consuming and often
also expensive to produce. On the other hand, although unsupervised DL requires no
ground truth data at all, the performance of unsupervised models is often far below
that of supervised methods. Weakly supervised deep learning attempts to bridge the
gap between the two ends of the supervision spectrum by training models with a very
limited amount of ground truth data. The main principle is simple: a small amount
of data can often be labeled in a reasonable amount of time, yet it provides helpful
supervision that improves model performance and makes the training process more
straightforward than in the unsupervised case.

Inspired by the success of weakly supervised methods in the field of semantic
segmentation of 2D images, a growing number of works have applied weak supervision
to point cloud data. Weakly supervised point cloud semantic segmentation methods
can be further divided into three categories based the type of ground truth labels they
utilize: 2D labels, limited labels and pseudo labels [121].

2D Labels: Manually annotating 3D point clouds is significantly more laborious
than 2D images, partly because the amount of data in a 3D representation of a scene
or an object is substantially higher than any corresponding 2D representation. As
such, utilizing only 2D ground truth labels for 3D deep learning applications is a
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form of weak supervision. Wang et al. [152] proposed an architecture where a
graph-based pyramid feature network is trained for 3D semantic segmentation with
only 2D labels utilizing a combination of a novel 2D reprojection method and 2D-3D
joint optimizer. Their method achieved performance close to that of PointNet++ on the
S3DIS benchmark data set with just 16.7% of the labels [152]. Similarly, Kweon and
Yoon [153] introduced a joint 2D-3D framework, which simultaneously extracts 3D
features from a point cloud and 2D features from a corresponding image. The extracted
features are then used as input for a multi-objective loss, comprised of a 3D-to-2D loss
and 2D-to-3D loss, computed using a correlation matrix and projected class activation
map respectively. Using only 1% of all available frames, their approach achieved an
mIoU of 47.4 on the test set of ScanNetV2 [153].

Limited Labels: Moving on from 2D label-based approaches, a more commonly
utilized method of weak supervision is using a limited amount of ground truth labels,
such that only a small minority of all available data is labeled. The principle behind
this strategy is that training such a model would only require manually annotating
a few data points. For benchmark data sets, weak supervision with limited labels is
usually achieved by randomly sampling a certain percentage of all ground truth labels
for training.

Xu and Lee [154] introduced a framework that combines a DGCNN [143] backbone
with a 4-part loss function and label propagation at inference stage. In addition to
standard segmentation loss, their loss incorporates inexact supervision, self-supervision
and spatial and color smoothness constraints. A pioneering work in the field of weakly
supervised semantic segmentation of point clouds, their method achieved a performance
comparable to that of supervised baselines with only 10% of the labels.

Zhang et al. [155] introduced perturbed self-distillation (PSD) for weakly su-
pervised semantic segmentation of large-scale point clouds. PSD introduces a novel
perturbed self-distillation framework, which passes the original point cloud and a
randomly transformed point cloud through the same backbone network and a GCNN
and subsequently utilizes a self-distillation loss to ensure consistency among the
extracted features. To further refine the results, an optional context-aware module can
be added to introduce a constraint for point-wise feature affinity. The performance of
PSD is comparable to the fully-supervised RandLA-Net with 1% of the point labels
[155].

Focusing similarly on large-scale point clouds, semantic query network (SQN)
[156] managed to further reduce the required level of supervision. SQN uses the
encoder network of RandLA-Net [138] to extract hierarchical point-wise features
from the input cloud and subsequently uses them as input for a point feature query
network. Given a single query point, the point feature query network aggregates
features from its neighboring points into a single vector, which is used for infering
the points semantic class. This effectively enables back-propagating training signals
from a few sparsely annotated points to a much wider spatial context. Using just 0.1%
of ground truth labels, the performance of SQN is close to supervised baselines on
multiple benchmark data sets [156].

Owing to their recent popularity, transformer architectures have been proposed
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for weakly supervised semantic segmentation as well. The MIL-Transformer of Yang
et al. [157] adopts the multiple instance learning paradigm and combines it with a
simple transformer network. In practice, given an input cloud P and an additional
anchor cloud P

′, for each semantic class 𝑐 in P
′ the transformer outputs a positive

bag if the class if also present in P and a negative bag otherwise. The bag values are
then used as input for a multiple instance learning loss function [157].

Finally, contrastive scene contexts [158] introduces a slightly different approach:
the model is first pretrained using an unsupervised contrastive learning framework
that accounts for both point-level correspondences and spatial contexts in a scene.
The learned weights are then transferred to a semantic segmentation network that
can be trained in a weakly supervised manner. Additionally, the authors propose a
novel active labeling strategy to further improve model performance: for each scene,
a human annotator is given 𝑘 points to label based on the features extracted by the
pretrained network. The points are chosen as the centroids of clusters created by
applying 𝑘-means on the features [158].

Pseudo Labels: Pseudo label-based weakly supervised methods and approaches based
on limited labels generally utilize the exact same kind of ground truth labels. The key
difference between the two is that methods in the former class also assign an artificial
label to some or all unlabeled data points during training, while the latter do not.

Following SPG [142], SSPC-Net [8] divides the input cloud into superpoints
using an unsupervised algorithm and subsequently constructs a superpoint graph to
be used as input for a GCNN. To facilitate weak supervision, SSPC-net introduces a
dynamic superpoint label propagation method which accurately infers pseudo labels
of superpoints and a superpoint dropout strategy to filter out pseudo labels of low
quality [8]. By combining this pseudo labeling strategy with a novel coupled attention
module, SSPC-Net delivers competitive results on multiple benchmark data sets using
only 0.01% of all labels.

Li et al. [159] proposed HybridCR, a framework that leverages both point
consistency and contrastive regularization with pseudo labeling based on the backbone
network predictions. The network implements a multi-objective loss, comprised of
segmentation loss for the labeled points, consistency loss for the extracted features
from the original and augmented point cloud as well as local and global contrastive
losses. The contrastive losses regularize the extracted features to be more consistent
within point neighborhoods and pseudo label groups [159].

Label-efficient semantic segmentation (LESS) [9] presented a straightforward
preprocessing pipeline to create sparsely annotated data for weakly supervised semantic
segmentation of point clouds:

1. Detect ground points with a RANSAC-based [160] algorithm.

2. Construct a graph from the remaining points and divide it into connected
components.

3. For each component, a human annotator manually labels one point from every
class present in the component. The labels are then propagated to all unlabeled
points in the component, creating pseudo labels.
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LESS divides the labels created during the preprocessing into three distinct classes,
sparse, weak and propagated, corresponding to human labeled single points, pseudo
labels of points from components that contain multiple classes and pseudo labels of
points from pure components that only contain one class respectively. The labels are
then used for training a Cylinder3D [161] backbone network with a novel loss function
comprised of three separate contrastive losses, one for each of the label types [9].

2.4.3 Unsupervised Methods

As the name implies, unsupervised learning is the exact opposite of fully-supervised
learning. That is, the main principle of unsupervised methods is to learn using
raw data that contains no manual annotations. Eliminating the need for ground
truth labels is undoubtedly extremely advantageous, especially for data that is highly
laborious to annotate manually such as point clouds. This is of course provided that
the unsupervised approach can produce results that are at least comparable to the
supervised methods, which is often not the case.

The application of unsupervised deep learning for semantic segmentation of point
clouds remains relatively unexplored to this date. In fact, to the best of our knowledge,
the first deep learning-based models for unsupervised semantic segmentation of
point clouds were proposed just last year. Conversely, traditional algorithms for
unsupervised semantic segmentation of point clouds are an extensively researched
topic and high-performance algorithms have been proposed for a wide variety of
applications, including power lines [162] as well as railway [163, 164], forest [165, 166]
and indoor environments [167]. Moreover, such algorithms have frequently achieved
accuracies that are comparable to some fully-supervised approaches. As an example,
the voxel and geometry-based algorithm of Poux and Billen [167] achieved performance
approaching that of PointNet on the S3DIS benchmark data set, while Tian and Li
[166] reported a higher accuracy than a fully-supervised random-forest classifier with
their graph-based algorithm in the task of leaf–wood separation.

However, while traditional unsupervised algorithms can achieve very impressive
results in the task they are designed for, they generally suffer from two major drawbacks:

1. The unsupervised semantic segmentation algorithms are extremely task specific.
That is, an algorithm designed for certain type of point cloud data does not
work for data from any other environment, since the number of classes and their
attributes are usually hardcoded into the method. For example, an algorithm
designed for semantic segmentation of power lines cannot be utilized for semantic
segmentation of indoor environments.

2. In order to achieve adequate performance, the hyperparameters have to be
optimized separately for each point cloud data set. Traditional unsupervised
semantic segmentation algorithms often rely on a set of fixed thresholds, which
can vary significantly depending on e.g. point density. Furthermore, the number
of hyperparameters generally increases as a function of the number of ground
truth classes. For example, the algorithm of Lamas et al. [164] for unsupervised
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semantic segmentation of railway environments into 10 classes has more than
30 user defined parameters.

By contrast, an unsupervised deep learning model designed for semantic segmentation
of point clouds can theoretically be applied to any type of point cloud data and the
number of hyperparameters to optimize generally remains reasonable regardless of
the number of classes in the ground truth.

Recent developments in fully-supervised and semi-supervised deep learning for
point clouds, including the introduction of powerful yet lightweight DL architectures
suitable for point cloud feature extraction, and the introduction of large-scale benchmark
data sets, have paved the way for unsupervised DL approaches for point cloud data.
Consequently, first steps toward DL-based fully-unsupervised semantic segmentation
of point clouds were made very recently, with the introduction of GrowSP [10], U3DS3

[168] and PointDC [169] architectures.
To the best of our knowledge, GrowSP [10] was the first unsupervised deep

learning-based model for semantic segmentation of point clouds. Comprised of three
main modules, a feature extractor, a superpoint constructor and a semantic primitive
clustering module, GrowSP models the task of unsupervised point cloud semantic
segmentation as a joint feature learning and clustering task. As a preprocessing step,
GrowSP utilizes the superpoint constructor to divide each input cloud into superpoints
using a combination of voxel cloud connectivity segmentation (VCCS) [170] and region
growing [171]. The model then passes each input point cloud through a SCNN feature
extractor and subsequently constructs superpoint level features by computing the mean
of point-wise features within each superpoint. The superpoint representations are then
clustered into 𝑆 > |𝐶 | categories with 𝑘-means by the semantic primitive clustering
module, where 𝐶 denotes the set of ground truth classes and | · | its cardinality. The
cluster assignments are used as pseudo labels for optimizing the feature extractor, while
cluster centroids are utilized as a classifier for obtaining semantic primitive labels
corresponding to extracted point-level features during training. Similar superpoints
are iteratively merged with 𝑘-means as the training progresses, while simultaneously
updating the semantic primitives [10]. A more in depth description of the operating
principles and architecture of GrowSP is given in Section 4.1.1.

U3DS3 [168] is another recently proposed architecture for unsupervised semantic
segmentation. Proposed shortly after GrowSP, the training process, especially the
formation of pseudo labels, relies on many of the same principles. U3DS3 processes
point clouds in blocks of constant size, which are first voxelized and subsequently
passed as input to a neural network feature extractor, which is a simple yet effective
8-layer 3D CNN. Similar to GrowSP, U3DS3 then utilizes 𝑘-means for clustering the
extracted features with VCCS-based superpoints of the input point cloud as guidance.
The cluster assignments are used as pseudo labels to train the neural network backbone,
while the cluster centroids form a classifier for obtaining label predictions for any
extracted feature [168].

In order to improve the robustness of the extracted features, U3DS3 features two
separate pathways which produce two distinct feature representations for the same
input block. The first pathway applies both a color transformation and a geometric
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transformation on the input prior to extracting features, while the second pathway only
performs a color transformation. The two different feature representations are then
clustered separately, producing two groups of cluster centroids and pseudo labels.
During training, U3DS3 optimizes a two-part loss function which encourages the
extracted features to match both the pseudo labels from the same pathway and the
labels produced by the different pathway [168].

The third and final unsupervised DL model for semantic segmentation of point
clouds, PointDC [169], utilizes cross-modal distillation (CMD) as an initialization
step prior to clustering extracted point-level features. In CMD, an input point cloud
is first converted into images from multiple viewpoints. PointDC then utilizes a
pretrained 2D feature extractor, specifically STEGO [172], for obtaining initial feature
representations for the images. The 2D-features are projected back into the input cloud
and used as supervision for a sparse 3D U-Net [79] feature extractor.

Outside of CMD, the training process of PointDC is based on the same principles
as GrowSP and U3DS3. Extracted features are clustered with 𝑘-means and cluster
centroids are used as a classifier for obtaining pseudo labels, which are then iteratively
updated as the training progresses. During the clustering, PointDC handles the input
clouds as supervoxels, rather than superpoints like GrowSP and U3DS3. That is, the
input point clouds are first voxelized and then segmented into semantically consistent
groups of voxels. PointDC simply utilizes the mean of the voxel-wise features to
construct supervoxel-level feature representations [169].

GrowSP and U3DS3 perform similarly on the popular benchmark data sets S3DIS,
ScanNet and SemanticKITTI, with segmentation accuracies on par with the fully-
supervised PointNet, while PointDC yields slightly worse, albeit competitive, results.
However, all existing unsupervised DL models are naturally far away from achieving
performance comparable to state-of-the-art fully-supervised and semi-supervised
approaches, which is to be expected considering the limited amount of research on the
field [10, 168, 169].

2.5 Leaf–wood Separation

The task of leaf–wood separation involves separating the hard wooden components and
foliage from each other in point clouds depicting both individual trees and broader forest
environments. The problem has been widely studied in the context of remote sensing
of forests, since accurate leaf–wood separation has a wide variety of applications in
both forest inventory and plant ecology [1]. In forest inventory, the separated wooden
components can be used for estimating attributes of tree stems, such as position, DBH
and stem curve [1], which yield information about the maturity of wood and the share
of structural timber [173]. Conversely, the applications of leaf–wood information
in plant ecology are concerned with estimating physiological properties of trees,
including leaf angle distribution, gap fraction, canopy radiation and above-ground
biomass [1].

This section provides a brief overview of the wide variety of methods proposed
for leaf–wood separation. Section 2.5.1 discusses heuristic unsupervised algorithms
that require no labeled training data, while approaches based on supervised machine

59



learning and deep learning are covered in Section 2.5.2 and Section 2.5.3 respectively.

2.5.1 Unsupervised Algorithms

Traditional leaf–wood separation algorithms can broadly be divided into two classes,
radiometric and geometric, based on how the classification is performed [165]. The
former class of algorithms bases the classification on radiometric properties of the
points, such as reflectance, while the latter focuses on local and global geometry of the
point cloud. Unlike supervised ML or DL methods, traditional leaf–wood separation
approaches do not require any prior knowledge about the classes of individual points.
Rather, the algorithms detect wood points based on heuristic assumptions about their
geometric or radiometric properties as well as the overall structure of trees.

Essentially all existing geometry and/or radiometry based algorithms are specifically
designed for TLS point clouds. While the performance for TLS data can be extremely
good, the algorithm may fail almost catastrophically when applied to ALS data (as
later observed in Section 5.2.1). This is likely due to the fact that the TLS aimed
methods rely heavily on either the density of the point cloud or accuracy of the intensity
characteristics. On significantly sparser data, e.g. ALS point clouds, the geometric
descriptors become less pronounced and the reliability of radiometric properties is
simultaneously reduced.

Another shortcoming that many traditional leaf–wood separation algorithms suffer
from is that they rely on the input clouds being individual trees (see e.g. [166, 174, 175]).
As such, if the point cloud contains an entire forest scene, heavy preprocessing may
be required prior to performing leaf–wood separation. Furthermore, producing
sufficiently accurate individual tree segments may even require time-consuming
manual segmentation, especially in the case of more complex forests.

Radiometry-based Algorithms: Most leaf–wood separation methods that are based
on radiometric characteristics have been proposed in the context of 3D reconstruction
of trees and forest from point clouds [174, 176, 177] or in research where the main
concern is removing the wooden components from the point cloud [178]. In such
works the focus is often on some application for which the leaf–wood separation
is simply a preprocessing step. Consequently, the point-level the accuracy of the
leaf–wood separation is rarely addressed and classifications can be quite coarse.

Côté et al. [174] extracted wood points from TLS scans based on two manually
chosen threshold values 𝑡𝑤 > 𝑡 𝑓 such that points with an intensity greater than 𝑡𝑤 were
assigned to the wood class and points with an intensity below 𝑡 𝑓 were considered
foliage. Points with an intensity between the two threshold values were simply
removed. Similarly, Béland et al. [178] performed the leaf–wood classification using
two fixed thresholds, which were determined through a careful analysis of different
reflectance distributions, including scans from both leaf-on and leaf-off conditions as
well as scans containing multiple returns per pulse.

Radiometry-based leaf–wood separation methods have also been proposed for
more novel LiDAR data. Wu et al. [176] extracted wood points from simulated full
waveform LiDAR using a single intensity threshold. They determined the optimal
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threshold by applying the density-based spatial clustering of applications with noise
(DBSCAN) [179] algorithm to leaf-off point clouds for a range of different thresholds
and chose the value that maximized the number of clusters [176]. On the other hand,
Yang et al. [177] detected wood points from full waveform TLS scans with a single
intensity threshold, which was determined based on the distribution of the ratios
between reflectance values and pulse widths.

Li et al. [14] merged data from near-infrared shortwave-infrared scanners and
demonstrated that multispectral LiDAR may improve radiometry-based classification
of wood and foliage points. In their work they show that there is a distinctive difference
between leaf and wood reflectance in the two wavelengths, which enables effective
discrimination between two classes [14].

Although most early leaf–wood separation methods were radiometry-based, the
approach has fallen out of favor in more recent research due to a multitude of reasons.
Firstly, the methods operate on the assumption that the optical properties of leaf
and wood points differ significantly at the operating wavelength of the laser scanner.
However, factors such as distance, a partial laser hit and its incidence angle can
heavily influence such properties [165]. Secondly, the wavelength and power vary
between different LiDAR systems, which necessitates calibrating the intensity threshold
separately for each distinct instrument. Furthermore, the reflectance characteristics
also vary between different tree species even to the degree that the intensity threshold
approach is not applicable at all for some species [175].

Geometry-based Algorithms: Much like most radiometry-based algorithms, pre-
decessors to modern geometry-based leaf–wood separation algorithms were mostly
designed for 3D reconstruction of trees. Xu et al. [180] introduced an algorithm
which first forms a graph by connecting neighboring points and subsequently extracts
the wood points starting from a pre-defined root points using Djikstra’s shortest path
algorithm [181]. Notably, since the algorithm was designed for generating meshes from
tree point clouds, its accuracy was not assessed and it featured a phase where additional
branches are synthesized. Livny et al. [182] proposed a similar approach, where initial
branch structure graphs are extracted using multi-root Dijkstra’s algorithm.

On the other hand, Raumonen et al. [183] introduced a local approach for
constructing precision tree models from TLS scans, in which the point cloud is first
covered with small connected surface patches referred to as cover sets. Utilizing the
geometrical properties and neighborhood relations of the cover sets, their method
iteratively reconstructs the wooden components of the entire tree. The point cloud
and the cover sets are segmented into the trunk and branches, which are subsequently
modeled as collections of cylinders [183].

As a part of their framework for volumetric analysis, Belton et al. [184] performed
leaf–wood separation on TLS scans of individual trees by applying Gaussian mixture
model (GMM) [185] clustering on geometric point cloud descriptors. The geometric
features were computed for multiple neighborhood radii sizes after which the size of
the feature space was reduced with principal component analysis (PCA) [186]. The
points were initially clustered into six distinct classes, which was followed by a manual
examination to separate the clusters representing trunk and branches from the foliage
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[184].
Tao et al. [175] presented one of the first geometry-based algorithms designed

exclusively for leaf–wood separation from TLS point clouds depicting individual
trees. Their approach first slices the point cloud horizontally into multiple bins and
subsequently detects circles and lines in each bin. Wood components are then detected
by thresholding and a skeleton of wood points is formed with Djikstra’s shortest
path algorithm. Having formed the wood point skeleton, the algorithm classifies the
remaining points with a range search [175].

Wang et al. [187] developed an algorithm suitable for entire forest scenes, where
the point cloud is first divided into superpoints based on similarity of the 𝑧-components
of normal vectors within spherical neighborhoods. They then apply dynamic segment
merging similar to region growing, where the geometric superpoint descriptors are
updated after each merge. Finally, segments comprised of wood points are identified
based on a linearity threshold.

A significant number of modern leaf–wood separation algorithms are based
on graph-representations of the point cloud. LeWoS [165] first oversegments the
point cloud graph into connected components based on density and verticality and
subsequently estimates the wood probability of each component based on linearity
and size thresholds. Class regularization is then applied to extract the final leaf–wood
split. Later, Wang [1] extended the method with additional geometric features for the
connected component-based superpoints and superpoint-graph optimization after the
initial wood probability estimation.

Somewhat similarly, given a point cloud depicting a single tree, graph-based
leaf–wood separation (GBS) [166] first constructs a graph and subsequently finds the
shortest paths from all points to the root point. The point cloud is then segmented
into homogeneous clusters at multiple scales and initial wood points are identified
based on cylindrical and linear characteristics of said clusters. The final leaf–wood
classification is formed by applying region growing with the initial wood clusters as
seed points [166].

Vicari et al. [188] presented an approach that combines clustering and graph-based
leaf–wood separation methods. Their algorithm utilizes four separate classification
branches: two based on GMM clustering of geometric features and two based on
shortest path analysis applied on a neighborhood graph representation of the tree.
Each branch is followed by an optional filtering step after which the predictions are
combined into a single leaf–wood classification [188].

Outside of graph-based approaches, a wide variety of other strategies have been
proposed for geometric leaf–wood separation. Wan et al. [189] introduced a method
where a point cloud is first decomposed into three parts based on local curvature. The
two parts with smaller curvature are then voxelized and segmented into connected
components, each of which is classified as either wood or foliage based on estimated
significance of difference between geometric features. Finally, detected wood segments
are merged and all remaining points are classified as foliage [189]. On the other hand,
Shcherbcheva et al. [190] proposed a statistical approach, which first fits a GMM with
two components to each of six geometric point cloud descriptors and subsequently
detects infliction points between the centroids of the resulting clusters. The infliction
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points are then used as flexible thresholds for discerning between leaf and wood points
followed by a postprocessing and denoising step [190].

2.5.2 Machine Learning-based Methods

Various machine learning-based approaches have been proposed for leaf–wood sepa-
ration, utilizing both geometric and radiometric point cloud information. The main
advantage of ML-based methods is that they usually require considerably less hyper-
parameter optimization in comparison to unsupervised algorithms, where the number
of parameters that require careful tuning can be quite high.

However, the drawback of utilizing supervised machine learning is that the training
process requires manually generated point-wise ground truth labels, which are generally
very time-consuming to produce. On the other hand, in contrast to many traditional
algorithms, ML-based leaf–wood separation methods do not necessarily require the
input clouds to be represent individual trees, provided that the separation is based on
performing a point-wise classification. Considering that manually producing individual
tree segments can be quite laborious in itself, this can be a notable advantage.

Given manually labeled training data of ground, foliage and wood points, geometric-
based automatic forest point classification (GAFPC) [191] trains a separate GMM
for each of the three classes using the point-wise geometric features. The GMMs
are then utilized for predicting the probability of a point belonging in each class and
classification is realized by assigning each point the class with the highest probability.
The initial classification is followed by a postprocessing steps comprised of six
consecutive filters designed to correct misclassified points and remove noise [191].

Later research on ML for leaf–wood separation generally opts for using existing
ML classifiers and focuses on feature engineering and post-processing. Furthermore,
in an effort to develop approaches that generalize better to data from multiple sensors,
such approaches often disregard radiometric features choosing instead to only utilize
geometric features. Much like in the case of unsupervised algorithms, research on
ML-based leaf–wood separation appears to mainly focus on TLS data, most likely due
to the heavy reliance on point cloud geometric features.

Yun et al. [192] used geometric features and estimated surface normals to train a
support vector machine (SVM) [193] to separate wood and foliage in TLS scans of
individual deciduous trees, achieving an overall accuracy over 90% for most species.
On the other hand, to asses the feasibility of ML-based leaf–wood separation, Wang
et al. [194] compared the performance of four machine learning methods, SVM,
naive Bayes classifier [195], GMM [185] and random forest [196] on TLS scans of
individual trees from two different species. Utilizing a total of 26 geometric features
the best performance was achieved with random forest, although most approaches
reached an overall accuracy of at least 95%.

Zhou et al. [197] proposed a multi-scale strategy, where geometric features are
computed for several neighborhood sizes. They found that the multi-scale features
improved the performance of random forest classifier on TLS scans of individual
trees in comparison to utilizing only one optimal neighborhood size. Using similar
multi-scale features, Krishna Moorthy et al. [198] compared the performance of
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random forest, XGBoost [199] and LightGBM [200] on leaf–wood separation from
full forest point clouds. Similar to earlier work, they found that random forest yielded
the best performance, although the other tested models performed comparably [198].

In contrast to the ML methods based solely on point cloud geometry, Zhu et al.
[201] used adaptive radius near-neighbor search for obtaining optimal geometric and
radiometric features and subsequently trained a random forest model for classifying
points into foliage, wood and ground from RGB colorized TLS forest point clouds.
They found that the addition of radiometric features significantly improved the models
performance in comparison to only using geometric features [201].

2.5.3 Deep Learning-based Methods

Following the explosive growth of deep learning, recent research in leaf–wood
separation has mainly centered on DL-based methods, often focusing on the more
general task of semantic segmentation in forest environments, which usually includes
additional classes such as ground or understory vegetation. While the difficulty
of acquiring ground truth labels remains a problem, DL-based approaches appear
to achieve a better performance in comparison to traditional machine learning and
unsupervised algorithms (see e.g. [48, 202]). Consequently, the expensive manual
labeling step may be considered justified, provided that the performance improvements
are significant enough.

Deep learning approaches for leaf–wood separation are generally based on some
generic architecture for semantic segmentation of point clouds with additional modifi-
cations designed to improve performance on forest data. To the best of our knowledge
all published methods utilize fully-supervised learning. In other words, neither weakly
supervised learning nor unsupervised learning has been applied to the task of leaf–wood
separation.

In one of the first works to apply deep learning to the task of leaf–wood separation,
Xi et al. [2] trained a 3D fully convolutional neural network to classify each point in
TLS point clouds as either foliage, stem or branch. Their network processed the input
clouds in 128 × 128 × 128 blocks of uniform 5 cm voxels, with occupancy, average
intensity and average 𝑧-coordinate used as input feature representations of each voxel
[2].

Windrim and Bryson [203] proposed a pipeline where individual trees are first
extracted from raster images of an ALS point cloud using Faster R-CNN [204] and
subsequently segmented into three classes, foliage, upper stem and lower stem, using
a VoxNet [83] inspired encoder-decoder 3D CNN. In a later work [205], the authors
improved the performance of their pipeline by including LiDAR intensity as one of
the input features for the semantic segmentation network, now opting to classify stem
points into just one class. In addition, they tested a PointNet [15] based semantic
segmentation network, which performed slightly worse then the 3D CNN [205].

Morel et al. [202] combined geometric leaf–wood separation algorithms with deep
learning. Their approach first partitions the point clouds into overlapping batches of
uniform size, which are then used as input for a modified PointNet++ [137]. Both point
coordinates and geometric descriptors are used as input features, and final classification
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of points in overlapping regions of two batches is decided such that the overlap is
classified as wood if either batch is classified as wood. The model was trained using
simulated TLS point clouds of individual trees, but demonstrated great performance
on real TLS data as well [202].

Somewhat similarly, Shen et al. [206] introduced a pipeline where TLS point clouds
are first partitioned into geometrically consistent regions using energy segmentation.
Their novel geometric feature balance module then balances the amount of partitions
representing different dominant geometric features by creating additional samples of
underrepresented features through data augmentation. Finally, the balanced data is
used for training a PointCNN [139] model to classify points into one of four classes,
ground, foliage, stem and others, representing points not in any of the former three
classes [206].

Kim et al. [207] and Wielgosz et al. [5] both utilized PointNet++ for semantic
segmentation of TLS forest point clouds, with the former assigning each point to one
of foliage, stem and branch, while the latter opted to leave out the branch class in
favor of ground. Additionally, Wielgosz et al. [5] investigated using the semantic
segmentation results for delineating individual trees with graph-based algorithm and
proposed a Bayesian strategy for hyperparameter optimization.

A persistent problem with leaf–wood separation methods is that they are often
designed with an individual scanning method in mind, e.g. TLS or ALS, which
limits their transferability to data captured with other sensors [3]. This is especially a
problem in the context of deep learning, where training a model may take multiple
days and requires manually labeled data which is laborious to produce. To this end,
Krisanski et al. [3] proposed a sensor agnostic semantic segmentation model designed
to simultaneously handle point clouds from multiple sources. This was achieved by
training a modified PointNet++ model on a diverse data set comprised of TLS, MLS,
ALS and UAV ALS point clouds [3].

Kaijaluoto et al. [4] semantically segmented MLS forest point clouds using raw
(non-georeferenced) 2D laser scanner measurements in 2D raster format. With their
2D CNN based on U-Net [145] using only range, reflectance and echo deviation as
input features, they achieved performance on par with RandLA-Net [138]. Their novel
approach to LiDAR semantic segmentation requires much less contextual information
for classifying each point and is fast enough for real-time applications [4].

Although most DL-based leaf–wood separation methods opt for using modified
versions of existing point cloud semantic segmentation architectures and focus most
research efforts on data preprocessing and feature engineering, some more novel
semantic segmentation networks have also been proposed.

LWSNet [48] augmented a standard 3D U-Net [145] with local contextual feature
enhancement via a rearrangement attention mechanism and residual connection
optimization during the upsampling stage, both designed specifically for improving
leaf–wood separation performance. On the other hand, MDC-Net [208] introduced a
novel multi-directional collaborative convolutional module designed for extracting
discriminative features for leaf–wood separation. Based on their proposed module,
they designed a multiscale CNN which utilizes the down- and up-sampling modules
of PointNet++. When trained on TLS point clouds depicting individual trees, both
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LWSNet and MDC-Net outperformed multiple popular semantic segmentation methods
in the task of leaf–wood separation [208].

While many works have proposed forest point cloud processing frameworks
comprised of both semantic and instance segmentation (see e.g. [5, 203, 205]), all of
them have performed the process sequentially with one segmentation before the other.
However, Xiang et al. [6] recently introduced ForAINet for panoptic segmentation, i.e.
simultaneous semantic and instance segmentation, of forest data. ForAINet utilizes a
3D SCNN based on U-Net for feature extraction followed by three separate branches
for semantic prediction, center-offset prediction and feature embedding. The input
features include both LiDAR information such as intensity and return number as
well as geometric descriptors. ForAINet achieves state-of-the-art performance on the
FOR-Instance [44] benchmark data set comprised of high definition ALS point clouds.
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3 Research Material

Since the objective of our research is investigating unsupervised semantic segmentation
of multispectral ALS forest data, no existing benchmark data set is suitable for our
purposes. To this end, we create a novel point cloud data set depicting boreal forest
environment with more than eight million points that have been manually labeled
as either wood or foliage. This section describes the acquisition, preprocessing and
annotating of our proposed multispectral data set.

3.1 Data Acquisition

Essentially all of the models designed for unsupervised semantic segmentation of
point clouds presented in Section 2.4.3 utilize RGB color information whenever it
is available [10, 168, 169], and while LiDAR sensors are not capable of capturing
color information, they can capture reflectance values. Studies have shown that the
reflectance characteristics of objects can vary significantly depending on both the
material of the object and the wavelength of the LiDAR [25]. As such, reflectance
values can be utilized in manner similar to color information.

Multispectral LiDAR data has been shown to improve performance across a variety
of remote sensing tasks. Hakula et al. [12], Yu et al. [209] and Kukkonen et al. [210]
all found that using MS point clouds improved the species classification accuracy
of individual trees in boreal forests in comparison to monospectral data. Similarly,
utilizing intensity information from multiple wavelengths improved the accuracy of
land cover classification, a type of semantic segmentation task, for both machine
learning [211, 212], and deep learning [13] based classifiers. As such, utilizing LiDAR
reflectance values from multiple different wavelengths should, in theory, also lead to
performance improvements when it comes to the task of leaf–wood separation.

Our dataset was captured with FGI’s in-house developed laser scanner system
HeliALS-TW, which consists of a total of three different Riegl LiDAR scanners
(Riegl GmbH, Austria), specifically VUX-1HA, miniVUX-3UAV, and VQ-840-G,
which we refer to as scanners 1, 2 and 3 respectively. The respective wavelengths
of the three scanners are 1,550 nm, 905 nm, and 532 nm. Other scanner specific
characteristics are summarized in Table 1. In order to accurately track its position
and orientation, HeliALS-TW is also equipped with a positioning system consisting
of a NovAtel ISA-100C IMU, a NovAtel PwrPak7 GNSS receiver, and a NovAtel
GNSS-850 antenna [12].

The HeliALS-TW system was mounted to a helicopter and MS point clouds were
collected in the summer of 2021 from multiple test sites, five of which were used
in this study. The helicopter was flown over each test site from two perpendicular
directions at an approximate altitude of 80 m above ground level. In order to increase
the number of trunk returns, the scan planes were set at an angle of 15◦ forwards with
respect to the 𝑥𝑧-plane [12].

Subsequent to data collection, the trajectory of the HeliALS-TW system was
computed using both Waypoint Intertial Explorer [213] and a single virtual GNSS
base station from Trimnet service (RINEX 3.04), which was positioned approximately
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Table 1: The specifications of the three individual LiDAR scanners in the multispectral
HeliALS-TW system. Since the beam of scanner 2 is elliptical, the beam divergence
and diameter are expressed as two values. The maximum scanning angle of scanner 3
is expressed as angle in flight direction × the angle perpendicular to flight direction.
Note that the approximate point density is higher than the number of sent pulses as
there are often multiple returns from a single pulse in forested areas. The table is
reproduced based on [12], where the same system was used.

Scanner 1 2 3

Model VUX-1HA miniVUX-3UAV VQ-840-G
Wavelength (nm) 1,550 905 532
Flight altitude (m) 80 80 80
Approximate point density (points/m2) 1,400 500 1,600
Number of returns 12 5 15
Maximum scanning angle (◦) 360 120 28 × 40
Laser beam divergence (mrad) 0.5 0.5 × 1.6 1
Laser beam diameter at ground level (cm) 4 4 × 12.8 8
Pulse repetition rate (kHz) 1,017 300 200

at the center of each test site. The raw individual scans were then georeferenced
utilizing the GNSS and IMU data in the Riegl RiPROCESS software, resulting in
dense georeferenced point clouds from all three scanners [12].

The georeferenced monospectral data from scanners 1, 2 and 3 were combined into
a multispectral point cloud using 𝑘-nearest neighbors interpolation with 𝑘 = 1. For
each point, the nearest neighbors were retrieved from each of the three point clouds
corresponding to the three different scanners. Subsequently, the reflectances of the
nearest neighbors were concatenated, resulting in a multispectral cloud with three
reflectance values for each point. For points that had no neighbors from one or more
scanners within a threshold distance of 0.25 m, the fields corresponding to the missing
scanners were left empty. Finally, the predefined circular test sites with a diameter of
55 m were cut from the preprocessed MS point cloud. The final MS point cloud of
one such test site is visualized in Figure 14 (a) on page 72.

3.2 Point Cloud Normalization and Ground Removal

Having constructed the MS point cloud, we normalized it by subtracting the ground
elevation from the 𝑧-coordinates. The ground elevation was estimated using a digital
terrain model (DTM). In order to construct the DTM, the point cloud was first divided
into a rectangular grid along the 𝑥𝑦-plane. Subsequently, we applied the method of
Hyyppä et al. [214] without Gaussian smoothing to obtain the lowest point within
each cell in the grid. The lowest points were then utilized for extracting smooth
surfaces from the point cloud with the ground extraction algorithm of Lehtomäki et al.
[215] and the DTM was reconstructed from the obtained surface patches. Finally, the
detected ground points were removed from the normalized point cloud. A comparison
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of one original test site point cloud and the normalized point cloud with the ground
removed can be seen in Figures 14 (a)–(b).

3.3 Manual Annotation of Data

Although training an unsupervised model requires no manually annotated data,
incorporating some labeled data is nevertheless essential for quantitatively evaluating
model performance and objectively comparing various configurations. Furthermore,
while the entire training data set does not need to have class annotations, the labeled
portion should be representative of the overall data set in order for the performance
measures to be accurate. It follows that for our forest data, the annotated sections
should contain forest of different densities and all major tree species present in the
data, namely Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H.
Karst), Downy birch (Betula pubescens Ehrh.) and Silver birch (Betula pendula Roth).
To this end, we chose to add class annotations for two of the five circular plots with
55 m diameter. The remaining three plots are left unlabeled and can only be used
as training data by our unsupervised model. The first of the two plots is relatively
sparse and consists of almost exclusively pine trees. Conversely, the second plot is
quite dense, consisting primarily of birches and spruces.

The two plots were manually annotated using the point cloud processing tool
CloudCompare [216] and a workflow similar to [5]. That is, the annotation consisted
of two separate steps: during the first step, we performed instance segmentation of
individual trees by separating each section of the point cloud that could reasonably
be identified as a tree. Only trees with approximately 50% or more of their points
located within the test plots were segmented. The minimum height for a tree was
set to be around three meters and any object lower than that was simply considered
understory vegetation and ignored during the instance segmentation. The branches
of adjacent trees with intertwined crowns were separated to the degree that it was
practically possible. In the second step, we carried out semantic annotation on each
tree instance segmented during the first step. The individual points were classified
into one of two classes, wood, which comprises the stem and branches, and foliage,
which consists of everything else, such as leaves and needles. All points that were not
considered part of a tree instance in the first step, i.e. points that were part of either
understory vegetation or partial trees with less than 50% visible, were classified as
foliage, unless they were clearly part of a standalone branch or stem, in which case
they were classified as wood.

The choice of ground truth classes in the context of leaf–wood separation and
semantic segmentation of forest data is somewhat ambiguous. In fact, based on
our review of the literature, three distinct approaches for defining the ground truth
classes see consistent use, the most popular of which appears to be splitting trees into
wooden components and foliage. The aforementioned split has been widely used in
the context of machine learning [194, 197], deep learning [3, 48, 202, 206, 208] as
well as geometry and radiometry based algorithms [1, 165, 166, 187]. Some more
recent works have opted to further separate the wood component into two classes,
stem and branch [44, 207]. The third ground truth definition divides the point cloud
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Figure 12: Class distribution of the two manually annotated plots separately and
as a combined data set. The notable imbalance between classes displayed in the
distribution is a problem that is commonly experienced with real world data.

into stem and foliage, that is, branches are considered a part of the foliage. This type
of ground truth has mostly seen use in deep learning models [4, 5, 205].

Motivated by the popularity of the wood and foliage split for ground truth, we
elected to use it as well. It is worth noting that dividing the points into stem and
foliage appears to mostly occur in the context of deep learning applications. The split
appears slightly artificial, since branches are intuitively considerably more similar to
stems than leaves or needles. In fact, Kaijaluoto et al. [4] noted a tendency for deep
learning based methods to misclassify some branches, especially larger ones, as stem
when branches were considered foliage. They conjectured this was a result of the
surface texture and reflective properties of branches being quite similar to the stem.
The aforementioned observation is further evidence that considering the stem and
branches as part of the same class is the more reasonable choice.

In total, the entire annotation process lasted around 270 hours and was carried out
by a single annotator. As is often the case when manually annotating point clouds,
some number of erroneously labeled points are to be expected (see e.g. [4, 42, 44]). In
other words, the manual annotations are by no means perfect, since discerning between
classes is practically impossible in some cases even for a human annotator. This is
especially true when it comes to forest data, since it is often impossible to say where a
tree trunk or a branch ends and foliage starts as there’s no clear difference between the
two. Kaijaluoto et al. [4] noted similar problems in the context of manually annotating
MLS forest data, and the considerably sparser ALS data that we use may further
amplify the issue.

Altogether, 356 individual trees were segmented from the two plots, 89 and 267
from plots #1 and #2 respectively. The constructed data set, containing both the
individual trees and the remaining points from both plots, comprised over 8 million
manually annotated points, with around 400,000 wood points and over 7.6 million
foliage points. The exact class distributions are shown in Figure 12, both for the entire
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Figure 13: Sample of the manually annotated point cloud of plot #2. (a) Instance
segmentation of trees. Each individual tree has been colored with a distinct color.
Points colored gray are not part of any segmented tree instance. Note that some of
the visualized trees are missing parts, since only a section of the full point cloud is
displayed. (b) Semantic annotations for each individual point. The colors red and
green represent wood and foliage points respectively. (c) Part of an individual tree
showing the finer details of the semantic annotation.

data set and the two annotated plots separately. Figure 12 effectively demonstrates the
imbalanced number of points between the classes in our data, a problem frequently
experienced with data sets captured in natural environments, including many popular
point cloud data sets [36]. An example of the instance and semantic annotations for a
section of plot #2 is shown in Figure 13.

3.4 Training and Test Data

The cylindrical test plots of diameter 55 m contain around 2–10 million points on
average. Storing the test plot point clouds on the graphics processing unit (GPU)
would require a very large amount of memory, which prevents us form using the full
test plots as input data for training neural networks on our hardware. As such, the raw
data was further divided into smaller cylindrical neighborhoods. The number of points
in each neighborhood varied between 50 and 410,000 points across the entire data set,
with 135,000 points being the average. Figure 14 summarizes the preprocessing steps
conducted to produce the training data.

There are a multitude ways of defining the local neighborhood of points when
dividing a point cloud into smaller sections, for example cubic boxes, spheres and
cylinders are popular choices in the literature [217]. We opted to use cylindrical
neighborhoods following Xiang et al. [217], who utilized them for the task of panoptic
segmentation of point clouds representing urban street areas and forests. Since panoptic
segmentation is simply simultaneous instance and semantic segmentation, cylindrical
neighborhoods are a reasonable choice for our present semantic segmentation problem.

71



Figure 14: Visualization of the data preprocessing steps for plot #2. Note that the
colors used for points in this image are pseudo colors created by using scaled reflectance
values from scanners 1, 2 and 3 for the red, green and blue channels respectively. (a)
Original multispectral point cloud of the forest plot. (b) Normalized point cloud from
which the ground points and elevation have been removed. (c) Outlines of the smaller
cylindrical neighborhoods of radius 𝑟𝑐 = 4.2 m used as training data superimposed
on the normalized point cloud in the 𝑥𝑦-plane. (d) Example of a smaller cylindrical
neighborhood that has been cut out from the normalized point cloud.

[217] found that cylindrical neighborhoods have two advantages over other methods:
firstly, they avoid cutting objects, including trees, along the vertical axis. Secondly,
they ensure computational efficiency, since cylindrical neighborhoods are compliant
with many efficient neighborhood search algorithms, including fast radius search.

The problem of dividing the cylindrical test sites into smaller cylindrical neigh-
borhoods can be simplified to covering a circle with multiple smaller circles in the
𝑥𝑦-plane. However, excluding trivial solutions, a circle can not be covered by circles
without a degree of overlap between some of them. This overlap, however, should be
minimized. Firstly, because large overlaps can adversely affect how well the model
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generalizes to test data, since the model is trained on the same data points multiple
times. Secondly, minimizing the overlap simultaneously minimizes the amount of
computational resources that are wasted on predicting labels for the same data points
on multiple instances at evaluation time. In order to optimize the overlap, we choose
the distance 𝑑𝑐 between the centers of adjacent overlapping circles according to the
following equation:

𝑑𝑐 =
√

3𝑟𝑐, (41)

where 𝑟𝑐 is the radius of the circle. This will result in a hexagonal lattice arrangement
(see Figure 14 (c)), which has been shown to be the most optimal method of covering
a plane with circles in terms of minimizing the area of overlap [218].

The radius of the cylinders was set to 𝑟𝑐 = 4.2 m in order to achieve a number
of points within cylinders that can feasibly be processed during training, while
maintaining a large enough radius that the cylinders contain primarily complete trees.
Furthermore, the chosen radius practically minimizes the amount of empty space in
the cylinders around the perimeter of the test sites.

Finally, we center the coordinates within each cylinder by subtracting the cor-
responding means from the 𝑥- and 𝑦-coordinates and the minimum value from the
𝑧-coordinates. In addition, we normalize the reflectance features from each of the
three laser scanners. The normalization is conducted separately for each channel in
our multispectral data. As the reflectance values may contains outliers, for example
when a point is missing the reflectance data from one or more channels, we choose
to apply a normalization scheme that is robust to outliers. We begin by computing
the interquartile difference (IQR), that is, the difference between the 75th and 25th
percentile:

IQR 𝑗 = 𝑄75(x 𝑗reflectance) −𝑄25(x 𝑗reflectance), (42)

where 𝑄𝑖 (·) is the 𝑖th sample percentile and x 𝑗reflectance denotes the reflectance values
of channel 𝑗 ∈ {1, 2, 3}. Subsequently, we subtract the median and divide the result
by IQR 𝑗 :

x̃ 𝑗reflectance =
x 𝑗reflectance −𝑄50(x 𝑗reflectance)

IQR
.

The final normalized reflectance vector x̄ 𝑗reflectance is then computed by subtracting the
minimum:

x̄ 𝑗reflectance = x̃ 𝑗reflectance − min(x̃ 𝑗reflectance). (43)

From each of the two annotated plots, we selected a continuous section of 12
cylinders as a test set, which is around 20% of the full data set. The other ∼ 80% of
the data was used for training. Although unsupervised DL does not necessarily require
any labeled training data, an annotated training split was nevertheless required for
training our fully-supervised baselines. Due to the relatively small amount of labeled
data, we opted to not further split the training data into separate validation and training
sets. The exact split is shown in Figure 15.
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Figure 15: Visualization of the split between training and testing data for our manually
labeled data set. (a) Train-test split for plot #1. (b) Train-test split for plot #2.

3.5 Data Augmentation

We adopt the three data augmentation techniques utilized by the original GrowSP
model [10], namely rotation, scaling and translation, all of which are standard
data augmentation methods in the field [82]. Furthermore, we opt to use the same
hyperparameters as GrowSP for each of the augmentation methods. All augmentations
are applied randomly on-the-fly during training. The employed augmentation methods
and their hyperparameters are described in more detail below.

Rotation: As the name suggests, this augmentation method entails rotating the point
cloud around the coordinate axes and is often parameterized by the maximum permitted
amount of rotation around each of the axes. In our case, the maximum rotation in
radians is bound to the interval [− 𝜋

32 ,
𝜋
32 ] for the 𝑥- and 𝑦-axes, while the full range

[−𝜋, 𝜋] is allowed around the 𝑧-axis. The amount of rotation is sampled separately for
each axis from a uniform distribution parameterized by the corresponding rotation
bounds.

Scaling: The point cloud 𝑥𝑦𝑧-coordinates are randomly scaled by multiplying them
with a scaling coefficient sampled from the uniform distribution U(0.9, 1.1). The
same scaling coefficient is used for all axes.

Translation: In the context of point clouds, translation refers to a simple additive shift
applied on the 𝑥𝑦𝑧-coordinates. By default, the translation is randomly sampled from
the uniform distribution U(0, 50) (meters) separately for each of the three coordinate
axes.
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3.6 Populating Missing Reflectance Values

As mentioned in Section 3.1, all points in the multispectral point cloud do not contain
reflectance values from all three scanners. This poses a problem, especially in the
unsupervised learning context, since a missing reflectance value is theoretically quite
a notable semantic characteristic. However, in practice two points that are missing a
reflectance value are not necessarily semantically similar at all, as the missing values
are most often due to occlusions. As such, there is a risk that the model simply groups
all points with missing reflectance values into one class, regardless of whether the
point is wood or foliage.

In an attempt to minimize the effect of missing reflectance values, we propose
a simple strategy for populating the empty reflectance fields based on superpoints.
Once the initial superpoints have been constructed using the algorithm detailed in
Section 4.1.2, we simply replace all missing reflectance values with the mean of the
available values within each superpoint. In the rare case that none of the points within
a superpoint contain data for some reflectance channel, the mean reflectance value of
the closest superpoint with reflectance data available is used instead. The populating
is handled separately for each of the three reflectance channels.
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4 Research Methods

This section presents the methodology utilized in this thesis. First, Section 4.1 details
the original GrowSP architecture and our modified version, GrowSP-ForMS. Next,
Section 4.2 describes three supervised and two unsupervised leaf–wood separation
methods, which are used as performance baselines for GrowSP-ForMS, followed by a
list of the experiments and evaluation metrics used for assessing the performance of
GrowSP-ForMS in Section 4.3. Finally, Section 4.4 describes the process of training
the neural networks and optimizing the hyperparameters of the unsupervised baselines.

4.1 Neural Network Architecture

In this section we present our proposed neural network architecture for unsupervised
semantic segmentation of multispectral forest point clouds, which has been adapted
from the GrowSP architecture [10]. We first give a detailed description of the original
GrowSP architecture in Section 4.1.1 and then present our proposed modifications to
the base architecture in Section 4.1.2.

4.1.1 GrowSP Architecture

We choose to utilize GrowSP [10] over the two other existing neural network archi-
tectures desgined for unsupervised semantic segmentation of point clouds, PointDC
[169] and U3DS3 [168], for two reasons. Firstly, as mentioned in Section 2.4.3,
GrowSP and U3DS3 perform similarly on popular benchmark datasets in terms of
segmentation accuracy, while both clearly outperform PointDC. Secondly, the source
code of GrowSP has been made publicly available by the original authors2, which is
not the case for U3DS3. Utilizing an official implementation of the base architecture
ensures that performance is not hindered by an incorrectly implemented model, which
is a considerable risk if we were to program the entire model from scratch.

GrowSP approaches unsupervised semantic segmentation of point clouds as a joint
problem of point cloud feature extraction and clustering. A majority of the architecture
consists of three main modules, a superpoint constructor, a neural network feature
extractor and a semantic primitive clustering module.

Let us have a training data set composed of 𝐻 ∈ Z+ three-dimensional point
clouds {P1, . . . , P𝐻}, where each point cloud contains the 𝑥, 𝑦 and 𝑧 coordinates
for each point, and optionally color. Each point cloud in the data set represents an
individual training input. Then, given an individual point cloud P𝑖 with 𝑁 points,
the feature extractor returns a feature vector for each individual point F𝑖 ∈ R𝑁×𝐾 ,
where 𝐾 ∈ Z+ is a user defined embedding length, e.g. 𝐾 = 128. The extracted
features F𝑖 and the input point cloud P𝑖 are then given as input for the superpoint
constructor, which will progressively generate larger and fewer superpoints as the
training epoch increases. Finally, the superpoints are passed as input for the semantic
primitive clustering module, which generates a pseudo label for each superpoint. We

2https://github.com/vLAR-group/GrowSP
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Figure 16: Overview of the generic GrowSP model architecture. The learning
framework is comprised of three main modules: a superpoint constructor, a neural
network feature extractor and a semantic primitive clustering module.

then use these pseudo labels in place of the ground truth labels in the loss function
to optimize the parameters of the feature extractor network. The architecture of the
generic GrowSP network is summarized in Figure 16 and below we discuss the most
fundamental parts in more detail.

Initial Superpoints: Superpoints are larger sections of the original point cloud, such
that each point within the same superpoint is ideally a part of the same semantic
category. The authors of GrowSP argue that a superpoint is more likely to have
geometric meaning in comparison to a single point, which simplifies the process of
extracting high-level semantic information.

During early stages of training GrowSP, the features extracted from the point cloud
are effectively random. As such, leveraging some existing algorithm is a more reliable
method for constructing the initial superpoints. GrowSP adopts a combination of
VCCS [170] and region growing [171]. VCCS first divides the input point cloud into a
voxel grid with a user defined resolution 𝑅vox. Subsequently, it distributes a set of seed
points evenly on the voxel grid and incrementally expands them into superpoints. To
further reduce the number of superpoints, a region growing algorithm is then applied
on the original point cloud. If a majority of points within a VCCS superpoint are part
of the same region, the entire superpoint is merged to the region in question. VCCS
and region growing both account for spatial distances as well as distances between
surface normals and normalized RGB values. We denote the set of initial superpoints
of an input point cloud P𝑖 by {s1

𝑖
, . . . , s𝑀0

𝑖
}, where 𝑀0 is the number of superpoints

in P𝑖. It is worth noting that the number of initial superpoints 𝑀0 generally differs
between distinct point clouds.

Feature Extractor: In principle, any neural network capable of extracting 𝐾-
dimensional features for each point of a point cloud P𝑖 could be used as a feature
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Figure 17: Architecture of the ResNet16FPN neural network used as a feature
extractor in GrowSP. The hyperparameters 𝐾, 𝑆 and 𝐶 are kernel size, stride and
number of output channels respectively.

extractor in GrowSP. The authors opt to use Sparse Convolutional Neural Networks,
specifically Minkowski convolutional neural networks [80], which generalize the 3D
sparse convolutions proposed by [79] for generic input and output coordinates in
addition to arbitrary kernel shapes.

The architecture of the chosen feature extractor consists of an encoder and a
decoder. The former is a residual neural network [101], particularly ResNet16, while
the latter is a feature pyramid network (FPN) -type [219] architecture, where outputs
from each stage of the ResNet are utilized. To be exact, the decoder consists of 4
MLPs which produce 128-dimensional features from the output of the ResNet16 at
different levels. The outputs of the MLPs are then interpolated and added together to
produce the final per-point 128-dimensional features. The entire architecture of the
feature extractor, which we refer to as ResNet16FPN, is illustrated in Figure 17.

Progressively Growing Superpoints: Once the feature extractor has been trained
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Figure 18: Illustration of progressively growing superpoints. Each dot represents a
neural embedding of a single three-dimensional point. (a) Initial superpoints. Each
red ellipse represents one superpoint. (b) Larger superpoints after initial superpoints
are merged based on the extracted features. The turquoise ellipses represent the new
superpoints. Note how all superpoints are not necessarily merged in every iteration.

for a sufficient number of epochs, the extracted features are expected to become
increasingly more informative. As such, once the pretraining phase has concluded,
GrowSP begins merging the initial superpoints into larger ones based primarily on the
extracted neural features. Figure 18 illustrates the principle of growing the superpoints
iteratively, where spatially neighboring superpoints with similar feature representations
are merged into larger superpoints.

In order to merge the initial superpoints, GrowSP first constructs superpoint level
representations based on the point level neural features. For each input point cloud P𝑖,
we have the features extracted by the backbone neural network F𝑖 ∈ R𝑁×𝐾 and the set
of initial superpoints {s1

𝑖
. . . s𝑀0

𝑖
}. GrowSP then constructs a feature representation for

each superpoint s 𝑗
𝑖
⊂ P𝑖, 𝑗 ∈ {1, . . . , 𝑀0} by computing the mean of the individual
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features corresponding to points in s 𝑗
𝑖
:

f̄ 𝑗𝑖 =
1
|s 𝑗
𝑖
|

∑︁
𝑝∈s 𝑗

𝑖

f𝑝
𝑖
, (44)

where f𝑝
𝑖
∈ R1×𝐾 is the feature vector retrieved from F𝑖 corresponding to the individual

point 𝑝 ∈ s 𝑗
𝑖
.

In addition to the neural features, GrowSP utilizes superpoint coordinates p̄ 𝑗
𝑖
∈

R1×3, colors c̄ 𝑗
𝑖
∈ R1×3 and estimated surface normals n̄ 𝑗

𝑖
∈ R1×3 when merging

superpoints. The superpoint level representations are computed in the exact same
manner as the neural feature representations f̄ 𝑗𝑖 , that is, by averaging over the relevant
features within the superpoint. All superpoint level features are then concatenated into
a single vector:

f̃ 𝑗𝑖 = f̄ 𝑗𝑖 ⊕ 𝑤xyz · p̄ 𝑗
𝑖
⊕ 𝑤rgb · c̄ 𝑗

𝑖
⊕ 𝑤norm · n̄ 𝑗

𝑖
, (45)

where 𝑤xyz, 𝑤rgb, 𝑤xyz ∈ R+ are scalar weights for the coordinates, colors and surface
normals respectively and ⊕ denotes concatenation.

Having these initial superpoint features {f̃0
𝑖 , . . . f̃

𝑀0

𝑖 }, GrowSP merges the𝑀0 initial
superpoints into 𝑀1 < 𝑀0 larger superpoints with the 𝑘-means clustering algorithm
[220]. The superpoint growing is conducted independently for each point cloud P𝑖

and every time ˆ︁𝐸 ∈ Z+ epochs have passed, where ˆ︁𝐸 is some predefined number.
Assuming the superpoints grow a total of 𝑇 times, the final number of superpoints 𝑀𝑇

is also a predefined value such that 𝑀0 < 𝑀1 < . . . < 𝑀𝑇 . Subsequent to growing,
the superpoints are passed as input for the semantic primitive clustering module.

Semantic Primitive Clustering: Each of the 𝐻 point clouds P𝑖 in the data set contain
some number 𝑀𝑖 of superpoints, where the number of superpoint varies by epoch.
In essence, all of these superpoints together can be viewed as a large set of primitive
semantic elements, which should somehow be grouped together in order to discover
the actual semantic classes in the data. Zhang et al. [10] empirically find that simply
clustering all superpoints into |𝐶 | categories is excessively aggressive and greatly
hinders the model performance. This is a result of the fact that superpoints belonging
to different classes are often quite similar. If they are then erroneously assigned into
the same category in early stages of training, GrowSP generally fails to correct this
error over time. As such, the authors opt to group the superpoints into a relatively
large number of semantic primitives at all stages of training the network.

The method used for grouping superpoints into semantic primitives is very similar
to that which was used for merging the initial superpoints and GrowSP utilizes the exact
same strategy for constructing the superpoint level neural embeddings f̄ 𝑗𝑖 . However,
since pseudo labels are required from the beginning of the training, the feature extractor
cannot be pretrained prior to clustering the superpoints for the first time, which was
the case with growing superpoints. A problem arises: during early stages of training
the model, the extracted features are basically meaningless. As such, clustering the
superpoints into semantic primitives based on only the extracted neural features is not

80



a reliable option. To this end, GrowSP utilizes point feature histograms (PFH) [221],
which are widely used geometric features based on estimated surface normals of the
point cloud. PFHs can be computed for multiple dimensions and thus the authors
opt to use 10-dimensional PFHs in GrowSP, which we denote by f 𝑗

𝑖
. In addition,

superpoint level color information c̄ 𝑗
𝑖

is also utilized if available. As was the case with
progressively growing superpoints, the neural embeddings are simply concatenated
with the other feature vectors:

f̂ 𝑗𝑖 = f̄ 𝑗𝑖 ⊕ 𝑤pfh · f 𝑗
𝑖
⊕ 𝑤rgb · c̄ 𝑗

𝑖
, (46)

where 𝑤pfh, 𝑤rgb ∈ R+ are scalar weights for the corresponding feature vectors. The
resulting features {f̂0

𝑖 , . . . , f̂
𝑀0

𝑖 } from each point cloud P𝑖 are then clustered into
𝑆 semantic primitives using the 𝑘-means algorithm. In contrast to the superpoint
constructor, all superpoints across all point clouds in the data set {P1, . . . , P𝐻} are
clustered simultaneously, instead of processing each point cloud independently.

Having formed the semantic primitives, the semantic primitive labels of each
superpoint are saved as 𝑆-dimensional one-hot pseudo labels. Subsequently, we
construct a linear classifier from the 𝑆 estimated centroids from the 𝑘-means algorithm.
The centroid of each primitive 𝑖 ∈ {1, . . . , 𝑆} is computed by averaging over the
neural features of the superpoints that were assigned to it. The PFHs and colors
are discarded prior to the centroid computation. The classifier can then be used to
obtain 𝑆-dimensional logits for each individual point in a given neural embedding F𝑖.
Identically to the progressive growing of superpoints, semantic primitive clustering is
conducted once every ˆ︁𝐸 epochs.

Training and Evaluating: As discussed in Section 2.4.3, GrowSP is based on
progressively growing superpoints. However, in actuality the training consists of two
phases: a pretraining phase, during which only the initial superpoints are used, and a
growing phase, during which the size of superpoints is increased iteratively.

During training, we first pass a batch of point clouds B through the feature
extractor, and subsequently pass the extracted features F𝑖 to the semantic primitive
classifier to obtain 𝑆-dimensional logits for each point. Standard cross-entropy loss
is then applied between the logits and the previously saved pseudo labels, which
we utilize as a replacement for ground truth labels. GrowSP uses a SGD optimizer
with a polynomial learning rate scheduler to optimize the network parameters. The
pretraining and growing phases use a separate optimizer and scheduler, although the
hyperparameters are exactly the same for both.

To evaluate the network, that is, to obtain actual semantic class predictions, the 𝑆
centroids of the semantic primitive classifier are simply clustered into |𝐶 | classes using
the 𝑘-means algorithm, where 𝐶 is the set of ground truth classes. The obtained |𝐶 |
centroids are then used as a classifier to make predictions. Notably, the classifier only
requires the per-point neural embeddings from the feature extractor network to predict
the semantic class, that is, initial superpoints are no longer needed once GrowSP has
been trained. Another advantage of GrowSP is that since only semantic primitives
are learnt during training, the number of classes |𝐶 | does not necessarily need to be
defined prior to training the model.
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Matching Predicted Labels to Ground Truth: The only information about the
ground truth labels provided to GrowSP during training is the number of classes |𝐶 |.
As such, assuming labeled data for assessing the predictive performance of the model
is available, the numeric values of the predicted labels do not necessarily match the
ground truth. For example, the predicted label signifying class 𝑖 can be “class 5”,
while the corresponding class in the ground truth is “class 0”.

In order to match predicted class labels to the ground truth classes when evaluating
model accuracy with labeled data, GrowSP adopts the same approach as Cho et al.
[222], where the problem is modeled as a linear assignment problem: Let us denote
the unmatched and matched predicted labels of point 𝑛 by �̃�𝑛 and �̂�𝑛 respectively.
Similarly, let 𝑦𝑛 denote the ground truth label of the 𝑛th point. Finally, let us denote
the set of predicted classes by ˜︁𝐶 and the 𝑖th element in a set by 𝐶𝑖. The goal is to find
a bijective mapping from ˜︁𝐶 to 𝐶, such that the overlaps between the labels in each
class 𝑖 ∈ ˜︁𝐶 and the corresponding class 𝑗 ∈ 𝐶 are maximized.

We begin by constructing a confusion matrix A, in which the element on the 𝑖th
row and 𝑗 th column, A𝑖 𝑗 , is the number of existing pairs ( �̃�𝑛, 𝑦𝑛) such that �̃�𝑛 = ˜︁𝐶𝑖
and 𝑦𝑛 = 𝐶 𝑗 . Let Amax then be the maximum element in A and let X denote the
mapping matrix. The linear assignment problem for finding a mapping from ˜︁𝐶 to 𝐶 is
formulated as follows:

min
X
.

|˜︁𝐶 |∑︁
𝑖=1

|𝐶 |∑︁
𝑗=1

(︁
Amax − A𝑖 𝑗

)︁
X𝑖 𝑗 (47)

s.t.:
|˜︁𝐶 |∑︁
𝑖=1

X𝑖 𝑗 = 1, ∀ 𝑗 ∈ {1, . . . , |𝐶 |} (48)

|𝐶 |∑︁
𝑗=1

X𝑖 𝑗 = 1, ∀𝑖 ∈ {1, . . . , |˜︁𝐶 |} (49)

X𝑖 𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ {1, . . . , |˜︁𝐶 |} × {1, . . . , |𝐶 |}. (50)

The optimal result X∗ is a mapping from the predicted class labels to the ground
truth labels such that if X∗

𝑖 𝑗 = 1, then ˜︁𝐶𝑖 is mapped to 𝐶 𝑗 . GrowSP then utilizes the
Hungarian method [223] to solve the linear assignment problem and forms the actual
predicted labels �̂�𝑛 based on the result.

4.1.2 Proposed Modifications to GrowSP

While the generic GrowSP model can be utilized for semantic segmentation of
multispectral forest point clouds to some success based on our experiments, we found
that its performance can be drastically improved with a few relatively straightforward
changes to the model architecture. In this section we present our proposed modifications
which constitute GrowSP for forest area multispectral point clouds, referred to as
GrowSP-ForMS from here on out.
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Geometric Point Cloud Descriptors: The generic GrowSP model utilizes 10-
dimensional point feature histograms as geometric point cloud descriptors to improve
semantic primitive clustering in the early stages of training, where the extracted neural
features are essentially random. The PFHs are computed at superpoint level based
on estimated surface normals of the point cloud. However, we found that the surface
normals within complex forest canopy structures can be quite heterogeneous, that is,
the normals frequently vary highly even within small geometrically consistent areas.
As such, while PFHs are a reasonable choice when it comes to segmenting point
clouds with simpler geometry, such as indoor scenes, they are not necessarily suitable
for forest environments. To this end, we adopt another set of geometric point cloud
descriptors as specified by Hackel et al. [224], which are based on the eigenvalues of
point neighborhood covariance tensors.

Given a point cloud P 𝑗 ∈ R𝑁×3, the covariance tensor of a point 𝑝𝑖 ∈ R3 is
computed as follows:

Σ𝑖 =
1
𝐾

∑︁
𝑝𝑘∈P𝑖

(𝑝𝑘 − �̄�) (𝑝𝑘 − �̄�)⊤, (51)

where P𝑖 = {𝑝1
𝑖
, . . . , 𝑝𝐾

𝑖
} is a set comprised of the 𝐾 nearest neighbors of 𝑝𝑖 and

�̄� = med𝑝𝑘∈P𝑖
(𝑝𝑘 ) is its medoid. Multiple distinct geometric descriptors can then

computed based on the eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0 and eigenvectors e1, e2, e3
of the covariance tensor Σ𝑖 [224]. We choose to use linearity, planarity, sphericity,
verticality and the first principal component (PCA1), which are formally defined as
follows for each point 𝑝𝑖 ∈ P 𝑗 :

Linearity(𝑝𝑖) =
𝜆1 − 𝜆2
𝜆1

(52)

Planarity(𝑝𝑖) =
𝜆2 − 𝜆3
𝜆1

(53)

Sphericity(𝑝𝑖) =
𝜆3
𝜆1

(54)

Verticality(𝑝𝑖) = 1 − |ẑ⊤e3 | (55)

PCA1(𝑝𝑖) =
𝜆1

𝜆1 + 𝜆2 + 𝜆3
, (56)

where ẑ = [0, 0, 1] [224]. The linearity, planarity and shpericity features provide
information about the presence of linear 1D structures, planar 2D structures and
volumetric 3D structures respectively [225]. On the other hand, verticality describes
the prevalence of linear structures specifically along the 𝑧-axis. Notably, the values of
the presented eigenvalue-based geometric descriptors are always within the interval
[0, 1], which is a convenient property in the context of deep learning, as the features
will generally not require further normalization.

In addition to the features described above, various other geometric descriptors can
be computed using the eigenvalues of the covariance matrix, including features such
as anisotropy and eigenentropy [225], which aim to describe the point distribution
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within a given neighborhood in a more general sense. The five features described
above were chosen specifically with leaf–wood separation in mind, and in fact
most have been previously utilized in the task by both deep learning models and
traditional algorithms. As an example, Shen et al. [206] proposed a geometric feature
balance model utilizing linearity, planarity, sphericity and verticality, which enhanced
the performance of PointCNN [139] in semantic segmentation of TLS forest data.
Similarly, multiple unsupervised algorithms have successfully utilized linearity and
verticality [1, 165, 166] as well as sphericity and PCA1 [190] for leaf–wood separation.
Finally, in addition to the previous success of the chosen features, extensive visual
analysis on our proposed multispectral data set revealed all of the chosen descriptors
distinguish certain subsets of the wood points quite effectively, while the disregarded
features seemingly exhibit no such properties.

Figure 19 shows a comparison between our chosen geometric features and the
first point feature histogram descriptor from 10-dimensional PFHs. As can be seen
in the figure, the geometric features appear much more effective when it comes to
distinguishing wood points from foliage. For example, linearity (a) highlights small
branches, while the verticality (d) of the stem is notably higher in comparison to
the surrounding points. By contrast, the first PFH (f) does not appear to highlight
any specific region of the tree, rather, the feature values are seemingly random. The
situation is similar for the other nine PFHs, which were left out from the visualization
for the sake of brevity.

The definition of the neighborhood P𝑖 in Equation 51 is an important factor when
it comes to computing the covariance tensor Σ𝑖, as it can significantly effect the
feature relevance in the context point cloud semantic segmentation [226]. Weinmann
et al. [226] found that cylindrical neighborhoods are less suitable for the task, while
spherical neighborhoods parameterized by either a radius or the number of nearest
neighbors proved more applicable. We adopt a combination of the two strategies,
where all points within a spherical neighborhood of radius 𝑟𝑛 up to the 𝐾 nearest
neighbors are used for computing the covariance tensor. This way the distance to the
furthest points remains reasonable in low density regions of the point cloud, while
simultaneously the number of neighbors is kept reasonable when point density is high.
Following Shcherbcheva et al. [190], the radius was set to 𝑟𝑛 = 0.35 m.

Inspired by the eigenentropy-based adaptive neighborhood selection used by Wein-
mann et al. [227], we adopt a multiscale strategy for computing our geometric descrip-
tors. First, the geometric features were computed for each𝐾 ∈ K = {20, 50, 100, 150}.
Subsequently, for each of our five geometric descriptors, the four vectors corresponding
to the different neighborhood sizes were compiled into a single feature by computing
the point-wise mean:

Fmean(P𝑖) =
1
|K |

∑︁
𝐾∈K

F𝐾 (P𝑖), (57)

where F𝐾 (·) is some geometric feature computed for point cloud P𝑖 using a maximum
of 𝐾 nearest neighbors within the spherical neighborhood. The goal of our approach
is to minimize the variance of feature values within geometrically consistent regions
caused by varying point densities. While simple, our method appears quite effective at
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Figure 19: Comparison between geometric features and point feature histogram
descriptors for one cylinder from plot #1. The geometric features have been computed
for the entire plot prior to dividing it into smaller cylinders. (a) Linearity. (b) Planarity.
(c) Sphericity. (d) Verticality. (e) First principal component. (d) First point feature
histogram descriptor from 10-dimensional PFHs. Note that the values have been
scaled to the range [0,1] for visualization purposes.

smoothing out the geometric descriptors of forest data based on our experiments.

Graph-based Superpoint Constructor: In an ideal situation each initial superpoint
would contain labels from only one class, but this is generally never the case in practice.
As such, assessing the accuracy of the utilized superpoint constructor is important,
since superpoints comprised of multiple semantic classes will generally have an adverse
effect on the performance of GrowSP. The accuracy of a superpoint constructor can be
assessed based on a simple majority vote, such that for each superpoint, all of its points
are assigned the most common ground truth label within that particular superpoint.
Subsequently, the accuracy is computed by comparing the superpoint-based labels to
the ground truth.
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Based on our experiments, while the VCCS and region-growing-based superpoint
constructor utilized by the generic GrowSP model functions well for geometrically
simple indoor and outdoor areas, it is unsuitable for the complex structures present
within forest canopy. That is, when applied to our MS forest data, a significant number
of wood points are assigned into superpoints where foliage points are the majority.
This effectively means that it is extremely difficult for the model to classify most
wood points correctly, since the majority class within each superpoint will generally
dominate the mean of the semantic information extracted from the superpoint. To this
end, we propose an improved superpoint constructor designed specifically for point
clouds depicting forest environments. Much like the original VCCS-based superpoint
constructor, ours is comprised of two steps: we first construct initial superpoints using
the graph-based method of Landrieu and Simonovsky [142] and subsequently merge
small superpoints into similar larger ones based on distance and geometric point cloud
descriptors.

The superpoint constructor of Landrieu and Simonovsky [142] groups point
neighborhoods into superpoints based on geometric descriptors, rather than color
and surface normals, which makes it more suitable for forest LiDAR data. In fact,
Shen et al. [206] used the same method for segmenting artificially planted forest
point clouds into geometrically similar regions in their PointCNN-based semantic
segmentation model. Given a point cloud P𝑖, the algorithm first computes a set
of 𝑑𝑔 geometric descriptors 𝑓 𝑗 ∈ R𝑑𝑔 for each point 𝑝 𝑗 ∈ P𝑖 [142]. Subsequently,
the algorithm constructs a 10-nearest neighbor adjacency graph 𝐺 = (𝑉, 𝐸) of P𝑖,
where the neighbors are determined with respect to the Euclidean distance between
𝑥𝑦𝑧-coordinates [142]. The set of initial superpoints is then defined as the constant
connected components of the solution to the following optimization problem:

argmin
{𝑔𝑖}∈R𝑑𝑔

∑︁
𝑖∈𝑉

| |𝑔𝑖 − 𝑓𝑖 | |2 + 𝜆
∑︁

(𝑖, 𝑗)∈𝐸
𝑤𝑖 𝑗 [𝑔𝑖 − 𝑔 𝑗 ≠ 0], (58)

where 𝑤ij denotes the edge weight, defined as the inverse of the distance between
points 𝑝𝑖 and 𝑝 𝑗 , 𝜆 is the user defined regularization strength and [·] is the Iverson
bracket. We then utilize the ℓ0-cut pursuit algorithm of Landrieu and Obozinski
[228] to find an approximate solution for Equation 58 and subsequently extract the
superpoints by finding the constant connected components of the solution [142].

Landrieu and Simonovsky [142] utilized linearity, verticality, planarity, sphericity
and elevation, defined as the 𝑧-coordinate of each point normalized over the entire
input point cloud, as the geometric neighborhood descriptors 𝑓 𝑗 . On the other hand,
Shen et al. [206] opted for the same geometric descriptors, but dropped the elevation
feature. For our data set, we found that while linearity and verticality were clearly
the most crucial features, the performance of the superpoint constructor was quite
insensitive to the choice of any additional geometric descriptors. Ultimately we opted
to use the same features as Shen et al. [206], as the combination yielded slightly better
performance than other tested feature combinations. The geometric features 𝑓 𝑗 where
further weighted by 𝑤 𝑓 𝑗 = 10 and the regularization strength was set to 𝜆 = 0.1. We
note that since the additional weighing by 𝑤 𝑓 𝑗 = 10 cannot be formulated concisely, it
was omitted from Equation 58.
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Although the superpoint constructor of Landrieu and Simonovsky [142] yields a
high accuracy on forest data, the number of superpoints per each input point cloud is
notably higher than when using VCCS and region growing. Furthermore, many of
the superpoints are comprised of just 2 to 5 points, or even only one point in some
cases. This poses a problem, since if the number of superpoints in each input point
cloud grows too large, both computing the superpoint level features and clustering the
superpoints into semantic primitives becomes computationally extremely demanding
to the point of being infeasible. Furthermore, very small superpoints are unlikely
to contain a sufficient amount of semantic information. As such, some method for
further merging small superpoints to similar adjacent ones is required. To this end, we
propose a method based on nearest neighbors and geometric descriptors that utilizes
an adaptive threshold for the minimum superpoint size. For a point cloud P𝑖 and the
corresponding initial ℓ0-cut pursuit-based superpoints, the merging process is carried
out as follows:

1. Define the maximum number of superpoints permitted within one input point
cloud SPmax. For our data set we opt for SPmax = 2, 200, which offers a great
middle ground between accuracy and performance.

2. Determine the minimum number of points each superpoint must contain PTSmin.
The threshold is adaptive, such that starting from an initial value of PTS0

min = 5,
the value is increased iteratively by one, until removing all superpoints with less
than PTSmin points yields at most SPmax superpoints. All superpoints with at
least PTSmin points are then considered admissible.

3. Identify singular superpoints within the group of non-admissible superpoints.
Here singular refers to superpoints comprised of two or less points.

4. Cluster singular superpoints into larger ones with DBSCAN [179]. For our
data, the neighborhood radius and core point threshold were set to 𝜖 = 0.2
and min_samples = 5 respectively. Besides point 𝑥𝑦𝑧-coordinates, the input
matrix is augmented with the geometric descriptors that are seemingly the most
effective at distinguishing stems and branches, namely verticality, linearity and
PCA1. All resulting clusters with more than one point are then considered
superpoints. We note that the VCCS-based superpoint constructor in the original
GrowSP handles singular superpoints in a similar manner.

5. Merge each of the remaining non-admissible superpoints and the clustered
singular superpoints into the closest admissible superpoint. Given a small
superpoint, for each of its points we find the nearest point in P𝑖 that is part of an
admissible superpoint. The closest admissible superpoint is then the superpoint
that most commonly occurs among the nearest points.

The initial superpoints generated by our graph-based superpoint constructor were
also used for populating missing reflectance values when preprocessing the data (see
Section 3.6).
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Oversegmentation of Predicted Labels: We empirically observe that oversegmenting
the semantic primitives at prediction time significantly improves model accuracy.
Here oversegmentation refers to setting the number of clusters 𝑘 to a value that is
higher than the number of ground truth classes |𝐶 |, which yields a result where foliage
and wood points have been further divided into multiple classes. Once the wooden
components have been separated from the foliage, the oversegmented classes can
easily be assigned to either wood or foliage based geometric properties of the point
cloud, since a subset of a point cloud consisting of mostly wood points differs quite
significantly from a subset comprised of foliage points in terms of descriptors such as
linearity and verticality.

In practice, prediciting the classes using oversegmentation is implemented as
follows: instead of using the actual set of ground truth classes 𝐶, we define a new set
𝐶over with additional classes, such that |𝐶over | > |𝐶 |, which is used for oversegmenting
the point cloud. Subsequently, we compute the average linearity of each oversegmented
class and assign them to either wood or foliage based on a user defined linearity
threshold 𝐿min. In theory the oversegmentation could separate stem and branches into
different classes as well, in which case introducing an additional verticality threshold
may be necessary. However, in practice we find that the number of wood classes is
always only one for our data set. For our multispectral data set, utilizing |𝐶over | = 6
classes and a linearity threshold of 𝐿min = 0.55 yields the best performance.

Notably, since the training of GrowSP is entirely based on the semantic primitive
labels, which are then clustered into |𝐶 | classes at prediction time, neither the choice
of |𝐶over | nor 𝐿min has any effect on the training. Consequently, both hyperparameters
can be optimized once the model has already been trained. That is, having trained the
model, the user can simply iterate over the set of reasonable values for |𝐶over | and 𝐿min
and pick the combination that yields the best overall performance. This is a notable
advantage, as our oversegmentation strategy effectively provides a significant increase
in segmentation accuracy with no additional computational overhead during training.

We conjecture that this phenomenon stems from certain sections of the foliage
being semantically more similar to the wooden components than other foliage in
an unsupervised setting. Consequently, clustering the semantic primitives into two
classes directly yields a worse result than performing an oversegmentation followed
by detecting the wood components based on geometric properties. It is also intuitively
reasonable that lower sections of the foliage that are constantly in shade would be
semantically different from e.g. the tree crown. On the other hand, one might expect
the foliage of a deciduous tree to be in a different class from trees with needles, as
the two differ from each other quite significantly. At least the former hypothesis is
seemingly confirmed by our experiments, where lower sections of the trees and tree
tops are frequently assigned into a different class.

Oinonen et al. [229] observed a similar phenomenon while utilizing GrowSP
for unsupervised semantic segmentation of multispectral LiDAR data depicting built
environments, where oversegmenting significantly improved the semantic segmentation
accuracy of numerous classes. However, in the absence of ground truth labels,
automatically matching each oversegmented class into one of the classes in 𝐶 is
extremely difficult, if not impossible, as the cityscape data contains a large number
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of classes, many of which are geometrically quite similar. By contrast, in the case of
leaf–wood separation, effectively leveraging this property of GrowSP is remarkably
straightforward, since the only two existing classes are easily distinguished from each
other by geometric descriptors once separated.

Decaying Clustering Weights: Since extracted neural features are initially meaning-
less, GrowSP leverages traditional features, such as color, intensity information and
geometric descriptors, as supervision for the semantic primitive clustering. As the
training progresses, the extracted features are expected to become more meaningful,
while simultaneously the traditional features become less important for the clustering.
In fact, since the extracted features are initially essentially random, the traditional
features should be weighted quite heavily in early stages of training. On the other hand,
if the traditional features are favored excessively, the extracted features do not influence
the semantic primitive clustering at all and the model fails to learn any meaningful
features. To this end, we propose utilizing decaying weights for the traditional features
during semantic primitive clustering in the pretraining stage, such that the longer the
model has been trained for, the less weight such features are given.

We adopt a simple strategy, where the clustering weights decay linearly as a
function of the current epoch, until a certain minimum weight 𝑤∗

coef ≥ 0 is reached.
We empirically found that 20% of the full clustering weight, i.e. 𝑤∗

coef = 0.2, is
a reasonable value for the minimum. The linear weight decay is then achieved by
multiplying the constant clustering weights with a weight coefficient:

𝑤coef = max
(︃
1 − 𝐸

𝐸max
, 𝑤∗

coef

)︃
, (59)

where 𝐸 is the current epoch and 𝐸max is the maximum epoch where decay is allowed.
In our case, we set 𝐸max = 100. This way the pretraining stage has a stabilization
period during which the weights remain constant prior to the phase of the training
where the superpoints begin growing. Formally, the augmented feature vectors used
for clustering semantic primitives are then defined as follows:

f̂ 𝑗𝑖 = f̄ 𝑗𝑖 ⊕ 𝑤coef · 𝑤geof · f 𝑗
𝑖
⊕ 𝑤coef · 𝑤rgb · c̄ 𝑗

𝑖
, (60)

where f now denotes the geometric descriptors instead of the 10-dimensional PFHs
and 𝑤geof ∈ R+ is the corresponding weight.

Other Changes: Since the scale of the extracted features and input features such as
coordinates and color can differ quite significantly, GrowSP applies a point-wise 𝐿2
normalization on each augmented feature tensor both while merging superpoints and
when clustering semantic primitives. However, we empirically found that applying
the normalization feature-wise yielded a more stable training procedure and better
performance when using LiDAR-based forest data. It should be noted that the 𝐿2
normalization is not explicitly mentioned in the original article, but is present in the
source code of the official GrowSP implementation.

While merging superpoints, we opt to replace the 𝐿2 normalization with feature-
wise min-max normalization, which we found to be slightly more effective. In addition,

89



the surface normals are replaced with the geometric descriptors, and none of the
features are weighted.

4.2 Baseline Methods

In an effort to assess the performance of our proposed model in comparison to existing
leaf–wood separation methods, we test three popular fully-supervised deep learning
methods and two unsupervised geometry-based algorithms on our multispectral data
set. While all of these methods were mentioned in our literature review (see Section 2.4
and Section 2.5), this section provides a more detailed description of each of our
baseline architectures.

4.2.1 Supervised Baselines

Rather than opting for supervised DL models that are specifically designed for
leaf–wood separation, we choose three classic point cloud semantic segmentation
architectures as our supervised baselines, namely PointNet [15], RandLA-Net [138]
and ResNet16FPN [79]. There are two fundamental reasons behind this choice:
Firstly, most state-of-the-art leaf–wood separation models have no publicly available
implementations and implementing the architecture from scratch poses a considerable
risk of programming mistakes. Additionally, the model architecture descriptions
frequently omit crucial details, which further complicates the process. On the other
hand, supervised leaf–wood separation models are generally optimized for some
specific data set, thus there is no guarantee the model would work for our data
without significant modifications. As such, opting for popular point cloud semantic
segmentation models with open source implementations available that contain no data
specific optimizations is the more reasonable choice in our case.

Secondly, considering that our proposed model is the first unsupervised deep
learning based leaf–wood separation model, the performance is expected to be well
below the state-of-the-art fully-supervised architectures. By contrast, comparing the
performance to more straightforward supervised models provides interesting insight
into how close unsupervised models are to achieving performance that is comparable
to some of the most popular fully-supervised architectures.

Below we give an overview of the architectures of our three chosen supervised
baselines.

PointNet: PointNet [15] was the first deep learning model to take unordered point
clouds directly as input and remains quite popular to this day. In fact, many DL
based leaf–wood separation models are heavily inspired by or based on PointNet
and its successor PointNet++ (see e.g. [3, 202]). As such, PointNet is a natural
choice as one of our fully-supervised baselines and we adopt an open source PyTorch
implementation3 for our experiments. The architecture of PointNet is summarized in
Figure 20 and below we describe its most notable features in more detail.

3https://github.com/yanx27/Pointnet_Pointnet2_pytorch
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Figure 20: Schematic of the PointNet architecture, where 𝑛 is the number of points in
the input point cloud, 𝑘 is the number of classes in the classification network and 𝑚 is
the number of classes in the segmentation network. Furthermore, Matmul denotes the
standard matrix multiplication, while MLP represents a shared multilayer perceptron,
with the subsequent numbers in brackets specifying the size of its layers. Batch
normalization is applied on all layers that use the rectified linear unit as an activation
and the last MLP in the classification network includes dropout layers. The figure is
reproduced based on [15].

At its core, PointNet is a multilayer perceptron, with certain clever additions
inspired by the following structural characteristics of point clouds:

1. Point clouds are unordered. In contrast to pixel based images or voxel based 3D
objects, the individual points in a point cloud have no specified ordering. That
is, the a set of 𝑁 points can represent the exact same input point cloud in a total
of 𝑁! distinct orders, which the network needs to be invariant to.

2. Adjacent points are not isolated, rather, neighboring points frequently form
meaningful subsets. As such, the network should be able to capture local
structures as well as the interactions between these structures.

3. Point clouds are invariant under certain transformations. For example rotating
or translating a point cloud does not alter what it represents, which the network
should account for.

PointNet first extracts point level features using a collection of shared MLPs. That
is, the same MLP is applied to each individual point in the input. Subsequently, the
features are aggregated into a 1024-dimensional global feature vector using a global
max pooling layer, which simultaneously makes the output permutation invariant.

While the global feature vector is well suited for tasks such as classification,
point level segmentation requires both global and local information. To this end,
the classification network is augmented with a segmentation network. The 1024-
dimensional global feature vector of the input point cloud is concatenated with the
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64-dimensional point-wise features, forming a 1088-dimensional feature for each
individual point, comprised of both local and global information. Subsequently, the
combined features are passed as input for the segmentation network, which extracts new
per point features based on the aggregated information. This allows the segmentation
network to predict point-wise characteristics that are reliant on both local geometry
and global semantics, such as semantic classes [15].

PointNet achieves transformation invariance by predicting an affine transformation
matrix using a small NN referred to as T-Net and subsequently applying the trans-
formation on the input point cloud. Moreover, PointNet extends the transformation
invariance to the feature space as well by applying the same process to the local
point-wise features. However, in this case the transformation matrix is restricted
to being close to orthogonal due to its high dimension. The architecture of T-Net
closely resembles that of the classification network in Figure 20, being comprised of
point-wise feature extraction, max pooling and fully connected layers.

RandLA-Net: Much like PointNet, RandLA-Net [138] is also a point based DL
model that does not require discretizing the input point cloud. However, RandLA-Net
includes some architectural choices designed specifically for efficient yet effective
semantic segmentation of large-scale 3D point clouds, making it a great option for
processing ALS forest environment data. Furthermore, RandLA-Net has previously
been successfully utilized for semantic segmentation of MLS forest data [4]. In our
experiments, we opt to use an open source PyTorch implementation of RandLA-Net4,
which is based on the official TensorFlow implementation.

In order to effectively reduce point density, RandLA-Net progressively downsam-
ples the input point cloud on each neural layer. However, while the random sampling
used by RandLA-Net is extremely efficient in comparison to other downsampling
strategies, it can randomly discard crucial features. To prevent this, RandLA-Net
introduces the local feature aggregation (LFA) module, which is applied in tandem
with the downsampling. An LFA module, shown in Figure 21, retains prominent
features by aggregating information within point neighborhoods. Each LFA module is
comprised of local spatial encoding (LocSE) units and attentive pooling layers within
a dilated residual block and is applied on every point in the input cloud in parallel
[138].

Let P 𝑗 be an input point cloud with 𝑑-dimensional input features. Furthermore, let
us denote the 𝑥𝑦𝑧-coordinates of the 𝑖th point in P 𝑗 by 𝑝𝑖 ∈ R3 and the corresponding
feature vector by f𝑖 ∈ R𝑑 . The LocSE block then first gathers the 𝐻 nearest neighboring
points of 𝑝𝑖 using a simple 𝑘-NN search and subsequently applies a relative point
position encoding on each of the 𝐻 points {𝑝1

𝑖
, . . . , 𝑝𝑘

𝑖
, . . . , 𝑝𝐻

𝑖
} as follows:

r𝑘𝑖 = MLP
(︂
𝑝𝑖 ⊕ 𝑝𝑘𝑖 ⊕ (𝑝𝑖 − 𝑝𝑘𝑖 ) ⊕ ||𝑝𝑖 − 𝑝𝑘𝑖 | |

)︂
, (61)

where | | · | | is the Euclidean norm. Finally, the encoded relative point positions r𝑘
𝑖

are
concatenated with the corresponding feature vectors f𝑘

𝑖
. The output of a LocSE unit for

4https://github.com/matthiasverstraete/3d_recognizer/tree/main/randlanet
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an arbitrary point 𝑝𝑖 is then a set of 𝐻 augmented feature vectors F̂𝑖 = {f̂1
𝑖 , . . . , f̂

𝐻

𝑖 },
such that [138]:

f̂𝑘𝑖 = r𝑘𝑖 ⊕ f𝑘𝑖 . (62)

The purpose of the attentive pooling layer is to aggregate the set of neighboring
point features F̂𝑖 by automatically learning the most important local features. The layer
first computes attention scores for each feature using a shared function 𝑔(·), which is
comprised of a shared MLP and a softmax function:

s𝑘𝑖 = 𝑔(f̂𝑘𝑖 ,W), (63)

where W is the learnable weight tensor of the shared MLP. The learned attention
scores s𝑘

𝑖
are then utilized as a soft mask for weighting feature importance:

f̃𝑖 =
𝐾∑︁
𝑘=1

f̂𝑘𝑖 · s𝑘𝑖 . (64)

In summary, given a point 𝑝𝑖 ∈ P 𝑗 , the combination of LocSE and attentive pooling
units learn a corresponding feature vector f̃𝑖 that aggregates geometric information
and feature vectors of its 𝐻 nearest neighboring points [138].

In order to minimize the loss of geometric details caused by the substantial
downsampling of the input point cloud, the RandLA-Net architecture significantly
increases the receptive field of each individual point. This is achieved by stacking
multiple LocSE blocks and attentive pooling layers combined with a residual connection
into a dilated residual block. As shown in Figure 21, the dilated residual blocks in the
local feature aggregation module are comprised of two stacks of LocSE and attentive
pooling units, which offers a great balance between computational efficiency and
effectiveness [138]. We note that similar to standard convolutional layers, receptive
field refers to the area of the input that affects a particular value within the output
vector. In contrast to convolutional layers, however, the receptive field is comprised of
individual points within some neighborhood rather than spatial locations within an
tensor.

ResNet16FPN: Following the original GrowSP article [10], we opt to use the feature
extractor of GrowSP as one of our supervised baselines. The only required modification
is adjusting the neural embedding dimension 𝐾 = 128 to the number of classes in the
ground truth, which in our case is 𝐾 = 2. For a more detailed overview of the network
architecture, the reader is referred to the feature extractor description in Section 4.1.1.

In contrast to PointNet and RandLA-Net, ResNet16FPN is not a point based DL
model, rather, it requires a sparse voxel representation of the point cloud as an input.
As such, each point in the input cloud is assigned to a voxel within a uniform voxel
grid. Following [10], we set the size of the voxels to 0.05 m. At prediction time each
point is then assigned the label of the corresponding voxel.
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Figure 21: Schematic of the local feature aggregation module in the RandLA-Net
neural network architecture. The two top panels show the local spatial encoding block,
which extracts features from the input data, and the attentive pooling layer that assigns
importance weights to the features based on local context and geometry. RPPE in the
LocSE block denotes relative point position encoding. The middle panel illustrates
how LocSE blocks and attentive pooling layers are stacked within a residual block
in order to increase the size of the receptive field, while the bottom panel includes
descriptions of the various elements in the schematic. The figure is reproduced based
on [138].

4.2.2 Unsupervised Baselines

LeWoS: LeWoS [165] is a rather recent unsupervised algorithm for leaf–wood
separation, based on point cloud connectivity and geometric descriptors. While the
algorithm was originally designed for TLS data of individual tropical trees, based on
their experiments the authors established it is applicable for complete point clouds
from various forest environments [165]. What makes LeWoS an especially attractive
choice for leaf–wood separation is that it only requires one user defined parameter,
namely the feature similarity threshold 𝑁z_thres. Furthermore, the authors found that
the performance of LeWoS is in fact quite insensitive to the value of 𝑁z_thres [165],
which simplifies the process of parameter optimization. For the aforementioned
reasons and the fact that the official MATLAB implementation of the algorithm is
openly available5, LeWoS was chosen as our first unsupervised baseline for leaf–wood
separation.

The semantic segmentation process of LeWoS is comprised of three fundamental
steps: recursive graph segmentation, class probability estimation and class regular-
ization. In the recursive segmentation steps, LeWoS constructs an undirected graph
𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣1, . . . , 𝑣𝑛} is a set of nodes, each corresponding to a point
in the input point cloud, and 𝐸 is a set of edges, where each element 𝑒𝑖 𝑗 ∈ 𝐸 represents

5https://github.com/dwang520/LeWoS
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an edge between neighboring points. The graph construction is based on point cloud
density as well as geometric features, specifically verticality, which we denote by 𝑁z
[165].

The recursive graph segmentation begins by constructing an initial graph with
an edge between each point 𝑝𝑖 and its 10 nearest neighbors P𝑖 = {𝑝1

𝑖
, . . . , 𝑝10

𝑖
}.

Subsequently, each edge 𝑒𝑖 𝑗 between 𝑝𝑖 and its neighbor 𝑝 𝑗
𝑖

is pruned as follows:

𝑒𝑖 𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Keep, if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|𝑁z𝑖 − 𝑁z 𝑗 | < 𝑁z_thres,

𝑑𝑖 𝑗 < 𝑑𝑖 𝑗 + 𝜎𝑑𝑖 𝑗 ,
𝑑𝑖 𝑗 < max(𝑑𝑖 𝑗 ) + 𝜎max (𝑑𝑖 𝑗 )

Prune, otherwise,

(65)

where 𝑁z_thres is the user defined feature similarity threshold, 𝑑𝑖 𝑗 = | |𝑝𝑖 − 𝑝 𝑗𝑖 | | and
𝑑𝑖 𝑗 and 𝜎𝑑𝑖 𝑗 are the mean and standard deviation of 𝑑𝑖 𝑗 within the neighborhood P𝑖
respectively. Similarly, max(𝑑𝑖 𝑗 ) denotes the maximum value of 𝑑𝑖 𝑗 within P𝑖. As
such, the first condition ensures that the feature values 𝑁z within a neighborhood are
similar, while the second condition controls local point cloud density connectivity.
The third condition, while similar to the second, controls global density connectivity,
as the mean and standard deviation are computed for the maximum neighborhood
distances across the entire point cloud [165].

The final pruned graph can then be segmented into clusters of spatially adjacent
points with similar features by finding the connected components. LeWoS recursively
applies the graph segmentation method on the resulting clusters, such that geometric
point features and neighborhoods are updated after each iteration [165]. The graph
segmentation is applied recursively until no more clusters can be further segmented
but for a maximum of 10 iterations [165]. Finally, in order to increase the prominence
of the geometric linearity feature in branch clusters, the small cover set-based method
of [183] is applied for splitting large branch clusters.

Subsequent to performing the recursive point cloud segmentation, LeWoS estimates
a class probability for each cluster. The class of each segment is predicted based on
both size, i.e. number of points, and the linearity of the segment, such that the segment
is considered wood if it meets certain thresholds for both conditions. However, instead
of directly assigning a class for each cluster based on some constant threshold, LeWoS
tests a wide range of possible threshold values. More specifically, the threshold values
used by LeWoS are {0.7, . . . + 0.02 . . . , 0.94} and {10, . . . + 2 . . . , 50} for linearity
and size respectively, where +𝑑 denotes multiple consecutive elements with a repeated
difference of 𝑑. The class probabilities are then given by the relative frequency of
each class prediction across the set of all predictions [165].

The estimated class probabilities form a so called soft labeling set 𝑆, where each
point is represented by two probability values denoting the confidence that the point
belongs in the wood and foliage classes respectively. Now, for reasons such as heavy
data occlusion or abnormal growth angles, the wood probability of some branches
may at times be insignificant. Consequently, directly classifying each point to the
class with the highest probability is not necessarily the optimal choice, as it can yield
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a labeling with high variance even within small consistent neighborhoods, where
a spatially smooth result would be preferable. To this end, LeWoS applies a class
regularization on 𝑆, which aims to find a more spatially consistent labeling set 𝑆′, while
simultanously remaining as close as possible to the original labeling 𝑆. Formally, the
class regularization problem can be modeled as follows:

𝑆′ = argmin
0∈Ω𝑉

(Φ(𝑆, 𝑆′) + 𝛾Ψ(𝑆′)) , (66)

where Φ(·) is a linear fidelity term, Ψ(·) is a regularizer that favours spatially smooth
solutions, 𝛾 > 0 is the user defined regularization strength and Ω is the solution search
space. Equation 66 is then solved using the 𝛼-expansion algorithm, which yields the
set of improved and spatially smoothed leaf–wood labels 𝑆′, that is, the final semantic
classification [165]. 𝑆′ is a vector of zeros and ones, corresponding to foliage and
wood classes respectively.

GBS: We chose the graph-based leaf–wood separation (GBS) of Tian and Li [166] as
our other unsupervised baseline. Similar to LeWoS, GBS only utilizes point cloud
geometry, that is 𝑥𝑦𝑧-coordinates, in the segmentation process, disregarding any
radiometric information. However, in contrast to LeWoS, GBS fully utilizes shortest
path-based graph features in the task of leaf–wood separation. This makes GBS
compact, yet efficient and the authors show its performance is invariant to tree species
and size as well as sufficiently robust to data subsampling. When comparing the
performance of GBS to existing methods, the authors found that GBS outperforms
LeWoS for most tree species and is able to detect small branches more consistently.
As such, GBS makes for an interesting unsupervised baseline alongside LeWoS. In
our experiments we utilize an official implementation of the GBS algorithm, which
the authors provide as an open source Python package [230].

Much like LeWoS, GBS begins by constructing an initial graph 𝐺 = (𝑉, 𝐸) from
the input point cloud, where the nodes are individual points 𝑝𝑖. However, instead of
simply connecting the 𝑘 nearest neighbors, GBS adopts a novel graph construction
algorithm from the open-source Python library TLSeparation [231], which enables
constructing a connected graph with fewer edges under the condition of occlusion
[166]. Subsequent to creating the initial graph, GBS finds the shortest paths from all
points to the root point using Djikstra’s shortest path algorithm [166]. We denote the
shortest path from the root point 𝑝𝑟 to 𝑝𝑖 by sp(𝑝𝑖) = (𝑝𝑟 , . . . , 𝑝𝑖) and its length by
|sp(𝑝𝑖) | = 𝑙𝑖.

In the second step, GBS performs a multiscale point cloud segmentation based
on the initial graph 𝐺. Firstly, the initial graph is pruned in order to remove falsely
connected long edges and part edges between leaf and wood points. Formally, each
edge 𝑒𝑖 𝑗 ∈ 𝐸 is subjected to the following conditions

𝑒𝑖 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Keep, if

{︄
𝑑𝑖 𝑗 ≤ 2 · min

(︁
𝑙𝑖 − 𝑙pre(𝑖) , 𝑙 𝑗 − 𝑙pre( 𝑗)

)︁
𝜑(𝑝pre(𝑖) 𝑝𝑖, 𝑝pre( 𝑗) 𝑝 𝑗 ) ≤ 𝜃

Prune, otherwise,
(67)
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where 𝑑𝑖 𝑗 = | |𝑝𝑖 − 𝑝 𝑗𝑖 | |, pre(𝑖) denotes the index of the precursor of point 𝑝𝑖 on sp(𝑝𝑖),
𝜑(·) is the angle between two spatial vectors and 𝜃 is a user defined direction difference
threshold. Secondly, the point cloud is segmented into equal interval layer bins based
on the shortest path length. Each bin is then clustered by finding the connected
components of the pruned graph 𝐺′. In an effort to improve the generalization of GBS
across different tree species, it utilizes a multiscale strategy for segmenting. That is,
the segmentation is performed using multiple distinct interval sizes, each of which
corresponds to a single-scale segmentation result. The set of intervals 𝐼 is a user
defined parameter [166].

Following the multiscale point cloud segmentation, GBS performs an initial wood
point extraction separately for each single-scale segmentation result. The wood point
extraction is based on both the geometry and size of the clusters within the single-scale
segmentation. Firstly, clusters that are either too large or too small are classified as
foliage using a threshold that depends on the current interval size. Secondly, GBS
utilizes cylindrical fitting to detect trunks and large branches. A cluster is labeled wood
if the fitting error is under a user defined threshold 𝐸 . Similarly, principal component
analysis in combination with a linearity threshold 𝐿 is used for recognizing small
branches that exhibit linear properties. Finally, any remaining clusters are considered
foliage [166].

Having extracted the initial wood points, GBS applies a label correction procedure
that modifies the labels of misclassified wood clusters into foliage. The correction
is heuristic in nature, being based on the observation that as the order of a branch
increases, so does its linearity, while simultaneously the radius decreases. In order to
improve the effects of the correction, it is generally applied for a total of three times
[166].

Lastly, the final wood points are extracted by applying a region growth algorithm
[171] on the pruned graph 𝐺′, where the initial wood points from the previous step are
used as seed points. The purpose of the final step is identifying wood points within
irregular clusters, for example broken, curved or bifurcated branches, that could not
be extracted based on cylindricity or linearity conditions [166].

4.3 Experiments and Evaluation Metrics

In order to gain a versatile understanding of the accuracy and capabilities of GrowSP-
ForMS, we designed a collection of experiments that sought to answer the following
questions:

1. Does multispectral LiDAR data provide an advantage over monospectral data
when it comes to unsupervised deep learning-based leaf–wood separation?

2. What effect does each of our suggested changes have on the performance of the
original GrowSP architecture individually?

3. Is our proposed graph-based superpoint constructor better suited for forest point
cloud data than the VCCS-based superpoint constructor used by the generic
GrowSP model?
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4. How does the deep learning based GrowSP-ForMS architecture perform in
the task of leaf–wood separation in comparison to traditional non-learning
unsupervised algorithms LeWoS [165] and GBS [166]?

5. How well does the unsupervised GrowSP-ForMS architecture perform in com-
parison to popular fully-supervised architectures PointNet [15], RandLA-Net
[138] and ResNet16FPN [79] in the task of leaf–wood separation?

These questions serve as an extension of the research objectives and questions presented
in Section 1.1.

To conclusively answer question 1, we trained GrowSP-ForMS separately for each
available intensity channel, all two-channel combinations and finally all three channels.
Similarly, in order to answer question 2, we performed an ablation study, where
starting with the generic GrowSP model we iteratively added each of our proposed
improvements one by one, assessing the effects of each addition in the process. In the
case of question 3, we simply generated the initial superpoints for our multispectral
forest data set using both the original VCCS-based superpoint constructor and our new
graph-based superpoint constructor. Their performance was then compared in terms
of both accuracy and number of superpoints. Finally, for questions 4 and 5, we simply
trained and evaluated our unsupervised and fully-supervised baselines on the same
multispectral data set that GrowSP-ForMS was trained on and subsequently compared
their performance to our best model.

The task of comparing the quantitative performance of different semantic segmen-
tation models and assessing the effects of suggested changes to GrowSP calls for an
objective measure of performance. To this end, we adopt the evaluation metrics most
frequently used in literature concerning point cloud semantic segmentation: overall
accuracy (oAcc), mean accuracy (mAcc), intersection over union (IoU) and mean
intersection over union (mIoU).

Overall accuracy is defined as simply the proportion of correctly classified points
across the set of all points. Using the previously introduced notation, overall accuracy
can be calculated as follows:

oAcc =
1
𝑁

𝑁∑︁
𝑖=1

1(𝑦𝑖 = �̂�𝑖). (68)

However, overall accuracy alone is not an adequate metric for measuring model
performance, as it tends to give an overly optimistic score in comparison to the true
model performance, especially when there is a notable class imbalance. As an example,
classifying each point in our EvoMS data set as foliage would yield an overall accuracy
of nearly 95%.

Mean accuracy attempts to alleviate the problem of class imbalances by measuring
how accurately distinct classes are identified on average. To compute the metric we
first calculate the proportion of correctly classified points in each class 𝑐 ∈ 𝐶 and then
calculate the mean of accuracies across all classes:

mAcc =
1
|𝐶 |

∑︁
𝑐∈𝐶

(︄
1
𝑁𝑐

𝑁∑︁
𝑖=1

1(𝑦𝑖 = 𝑐) · 1(𝑦𝑖 = �̂�𝑖)
)︄
, (69)
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where 𝑁𝑐 is the number of points in class 𝑐 ∈ 𝐶.
An even more powerful measure of model performance is intersection over union,

often also referred to as the Jaccard index [232]. For class 𝑐 ∈ 𝐶, IoU is defined as the
ratio between the number of points correctly classified as class 𝑐 and the number of
points either classified or actually belonging to class 𝑐:

IoU𝑐 =

∑︁𝑁
𝑖=1 1(𝑦𝑖 = 𝑐) · 1(𝑦𝑖 = �̂�𝑖)∑︁𝑁

𝑖=1 1(𝑦𝑖 = 𝑐) + 1( �̂�𝑖 = 𝑐) − 1(𝑦𝑖 = 𝑐) · 1(𝑦𝑖 = �̂�𝑖)
. (70)

The advantage intersection over union has in comparison to mean accuracy is that IoU
penalizes both false positives and false negatives, while mAcc explicitly only accounts
for the latter.

In order to combine the class-wise IoUs into a single measure of model performance,
we can calculate the mean intersection over union by averaging the IoUs across all
classes as follows:

mIoU =
1
|𝐶 |

∑︁
𝑐∈𝐶

IoU𝑐 . (71)

Since quantitative performance metrics can occasionally be misleading, regardless
of how robust they are designed to be, we additionally evaluate the results qualitatively.
This is carried out by simple visual inspection of the predicted classes of each semantic
segmentation model and a manual comparison to the ground truth.

4.4 Training and Parameter Optimization

For all baselines we utilized open source implementations available online. All
experimentation, parameter optimization and training of DL models was carried out
on the same system. Specifications of the most essential hardware and software are
listed in Table 2.

4.4.1 Supervised Deep Learning Models

In order to achieve comparable results for all fully-supervised baselines, we aimed
to keep the training procedure as similar as possible between the distinct models. In
practice this means that we used the cylinders of radius 𝑟𝑐 = 4.2 m as input data and
utilized the same data augmentation techniques (see Section 3.5) and optimization
backend for all models. Besides 𝑥𝑦𝑧-coordinates, the three available intensity channels
were used as input features for all three fully-supervised baselines. Similar to GrowSP-
ForMS, we used the point cloud data where missing reflectance values had been
populated using superpoints as described in Section 3.6. It should be noted that the
original data with missing reflectance values was also experimented with, but initial
results suggested that the populated data provided a slightly better performance. As
such, all further testing was restricted to the data with populated reflectance values.

Following [4], who used the same configuration for semantic segmentation of MLS
forest data, we utilize the Adam optimizer with the cyclical learning rate scheduler
of [233]. Furthermore, we adopted the same scheduling policy, namely triangular2,
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Table 2: Hardware and software specifications of the system used for training the
deep learning models and all other experiments.

Device Specifications

CPU Intel® Core™ i7-10750H 5.0 GHz
GPU NVIDIA® Quadro RTX™ 4000 Mobile 8 GB GDDR6
Memory 2 × 32 GB DDR4 3200 MHz
Software

Ubuntu (OS) 22.04.3 LTS
GPU Driver 535.154.05
CUDA 11.3.1
Python 3.8.12
Conda 23.5.2
pip 21.2.4
PyTorch 1.10.2
Torchvision 0.11.3
Minkowski Engine 0.5.4
MATLAB 9.14.0.2337262 (R2023a) Update 5

Table 3: Base and maximum learning rates used for the supervised deep learning
baselines. The values were determined using the learning rate test proposed by [233].

Model Base learning rate Maximum learning rate

PointNet [15] 0.001 0.0011
RandLA-Net [138] 0.002 0.0060
ResNet16FPN [79] 0.006 0.0090

where the learning rate alternates linearly between a set base and a maximum value,
such that the maximum is halved each time it is reached. The length of one cycle was
set to 10 epochs in all experiments. The values of the base and maximum learning
rates are listed in Table 3 and were determined separately for each model using the
learning rate test proposed by [233]. Finally, in contrast to [4], due to the considerable
class imbalance in our training data, we minimize the focal loss with 𝛾 = 2 instead of
the standard cross-entropy loss.

Both the different model architectures and available computational resources
presented certain limitations on the input data format. Therefore the cylinders of radius
𝑟𝑐 = 4.2 m had to be further preprocessed to enable training some of our supervised
baselines. In addition, GPU memory limitations necessitated tuning the batch size and
number of training epochs separately for each model. On the other hand, since we
opted to not have separate validation data due to relatively small amount of manually
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annotated points, we could not follow the common practice of using validation loss
and accuracy to asses when training should be concluded. As such, each model was
trained until the training loss and mIoU had seemingly stabilized. The model specific
additional data preprocessing steps and other hyperparameters are presented below.

PointNet: Due to the comparatively high memory usage of PointNet and limited
computational resources, we could not train the model using the cylinders of radius
𝑟𝑐 = 4.2 m as input. Inspired by the semantic segmentation pipeline in the original
PointNet article [15], we divided the cylinders into 2.8 m × 2.8 m blocks. To enable
using a batch sizes larger than |B | = 1, PointNet requires the input clouds to have
an uniform number of points. As such, we randomly sampled 10,000 points from
each block during training, while at prediction time all points were provided as an
input. The number of points during training was set to 10,000 as it was close to
the maximum number of points across all blocks. This way any significant loss of
geometric information due to downsampling was prevented.

We found the simple centering and IQR based normalization used for 𝑥𝑦𝑧-
coordinates and reflectance respectively was not an adequate normalization strategy
for training PointNet, as the loss did not converge. Therefore, following the semantic
segmentation configuration in the original PointNet article [15], we normalized all
input vectors to have values within the range [0, 1]. Consequently, in order to keep the
coordinate values reasonable following data augmentation, the distribution used for
sampling the random translations was changed to U(0, 0.1).

The batch size used during training PointNet was |B | = 8. Multiple different batch
sizes were experimented with and |B | = 8 provided the most accurate results and
improved training stability. It should however be noted that the maximum batch size
permitted by available GPU memory was |B | = 12. The model was trained for a total
of 320 epochs.

RandLA-Net: While the efficiency of RandLA-Net enables using the original cylinders
as input without further preprocessing, much like PointNet, RandLA-Net requires an
uniform number of points in each input during training. To this end, we randomly
sampled 80,000 points from each input cloud while training the model. The reasoning
for setting the number of points to 80,000 was effectively the same as with PointNet.
Moreover, following the same reasoning as with PointNet, we chose to utilize [0, 1]
normalization for the RandLA-Net input data.

In accordance with the original article [138], the number of neighbors used in the
𝑘-NN search performed by the LocSE units was set to 𝑘 = 16. The batch size was set
to |B | = 2, which, due to GPU memory limitations, was also the maximum feasible
batch size and the model was trained for 165 epochs.

ResNet16FPN: The batch size was set to |B | = 8 empirically and the model was trained
for 520 epochs. No further data preprocessing or downsampling was required and
unlike PointNet and RandLA-Net, we utilized the same data normalization procedure
as with GrowSP-ForMS for training ResNet16FPN.
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4.4.2 Unsupervised Deep Learning Models

For training GrowSP-ForMS, we mostly adopted the configuration utilized in the
original article [10]: the voxel size of the SCNN feature extractor was set to 0.05 m and
cross-entropy loss was used as the cost function. Furthermore, the loss was minimized
using an SGD optimizer and a polynomial learning rate scheduler with an initial
learning rate and momentum of 0.1 and 0.9 respectively. The batch size during training
was set to |B | = 4, as it was the maximum permitted by the available GPU memory.
For the same reason, the number of semantic primitives and extracted features were set
to 𝑆 = 150 and 𝐾 = 64 respectively, as opposed to the values 𝑆 = 300 and 𝐾 = 128
utilized in the original article [10] (see Section 4.1.1). Finally, the weights given to
reflectance features and geometric descriptors during semantic primitive clustering
were 𝑤rgb = 1 and 𝑤geof = 2 respectively (see Equation 60).

The model was trained for 𝐸pretrain = 150 epochs during the pretraining stage and
𝐸grow = 60 epochs during the growth stage, decreasing the number of superpoints
from 𝑀1 = 1500 to 𝑀𝑇 = 1200. It should be noted that although this is notably
lower than the number of epochs GrowSP was trained for (𝐸pretrain + 𝐸grow ≈ 1000),
we observed that training GrowSP-ForMS for a larger number of epochs yielded no
additional performance gains and the training loss stabilizes quite early on our MS
forest data set.

The number of superpoints in the initial merging 𝑀1 = 1500 was proportional to
that used by GrowSP (𝑀1 = 80) when considering that the number of initial superpoints
is considerably higher for our forest environment data than benchmark data sets such
as S3DIS and ScanNet. On the other hand, while the original GrowSP decreased the
number of superpoints by around 75% (𝑀1 = 80 → 𝑀𝑇 = 20), the corresponding
ratio for GrowSP-ForMS is only around 20%. However, through extensive testing we
established that proceeding with the merging until a smaller number of superpoints
consistently reduced model accuracy. As such, we opted for a significantly shorter and
less aggressive growth stage during training.

In an effort to save computational resources during training, the geometric point
cloud descriptors and surface normals were precomputed for the input data. Further-
more, the features were computed prior to dividing the test site point clouds into
cylinders of radius 𝑟𝑐 = 4.2 m as described in Section 3.4, in order to avoid the loss of
geometric information that comes with dividing the point cloud into smaller segments.

Finally, since the unsupervised GrowSP-ForMS does not require ground truth
labels for training, we augmented the labeled training split with the three available
unlabeled test plots in an effort to improve model generalization.

4.4.3 Traditional Algorithms

A significant limitation many of the traditional geometry or radiometry-based leaf–
wood separation algorithms have is that they require the input point clouds to represent
individual trees. This is also the case for GBS, one of our two unsupervised baselines.
As such, the training and test data sets were altered slightly, since the cylinders of
radius 𝑟𝑐 = 4.2 m generally contain both multiple trees and understory vegetation.

102



Furthermore, the cylinders often contain partial trees, as the individual trees are
frequently located at the intersection of multiple cylinders. To form the train-test split
for individual trees, each tree was simply assigned to the training or test set based on
the cylinder that contained the majority of its points while points that were not part of
any individual tree were simply discarded.

Although LeWoS was originally tested on individual tropical trees, it is noted that
the method is fully applicable to plot-wide data of various forest environments and
tests have shown equal effectiveness on such data [165]. Nevertheless, we chose to
evaluate LeWoS for both individual trees and the full cylinders in an effort to provide
a fair assessment of its effectiveness.

In addition to requiring slightly different input data format in comparison to the
DL models, both LeWoS and GBS have parameters that should be adjusted for the
data at hand in order to achieve the best possible results. Below we detail how the
parameter optimization was conducted for each of the two algorithms.

LeWoS: Algorithms designed for unsupervised leaf–wood separation often require
the user to specify multiple parameter values (see e.g. [166, 188, 189]). By contrast,
LeWoS only requires one user defined parameter, namely the feature difference
threshold 𝑁z_thres, which is quite a significant advantage. Furthermore, the parameter
was shown to be rather insensitive, that is, the performance of LeWoS is unaffected by
small changes in 𝑁z_thres [165].

Wang et al. [165] noted that generally 𝑁z_thres is within the range [0.1,0.2] and
recommended the value 0.15. However, since the value of 𝑁z_thres was optimized
using TLS data in contrast to our ALS data, we opted for testing all values 𝑁z_thres ∈
{0.1, . . . + 0.025 . . . , 0.4}, where +𝑑 indicates several elements with a repeated
difference of 𝑑. Subsequently, the 𝑁z_thres that generated the highest mIoU on the
training set was chosen. Since LeWoS was evaluated for both the cylindrical point
clouds and individual trees, the parameter optimization was conducted separately for
the two cases.

GBS: In order to achieve optimal results on our data set, we defined a set of reasonable
parameter values based on the suggestions in the article where GBS was proposed
[166] and subsequently performed a grid search on the training set. The parameter
combination that yielded the highest mIoU on the training split was then used for
comparing performance on the test set.

The GBS algorithm has four essential adjustable parameters, precursor direction dif-
ference threshold 𝜃, interval length set 𝐼 and linearity and cylindricity thresholds 𝐿 and
𝐸 [166] (see Equation 67). The authors suggest using the set 𝐼 = {0.1, 0.2, 0.3, 0.5, 1}
for trees with a height in the range [2 m, 60 m], which we opt to use since all
individual trees in our data set are within the range. Similarly, the authors propose
using 𝜃 ∈ [0.1𝜋, 0.2𝜋] in cases where the woody components are surrounded by leaves
or when leave groups exhibit linear shapes, while 𝜃 ∈ [0.2𝜋, 0.3𝜋] is recommended if
leaves are distributed at the ends of branches [166]. As such, we defined the set of
reasonable parameter values as 𝜃 ∈ {0.1𝜋, 0.2𝜋, 0.3𝜋}.

In the original article, the values of 𝐿 and 𝐸 were empirically optimized to 0.9
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and 0.2 respectively [166]. Since the density of our data differs quite significantly
from the TLS data used for determining the parameter values, we chose to inspect
the effects of altering the parameter values slightly. The sets of reasonable values
were chosen as 𝐿 ∈ {0.85, 0.9, 0.95} and 𝐸 ∈ {0.15, 0.2, 0.25}. In total the set of
reasonable parameter values is comprised of 27 distinct parameter combinations,
which, while laborious, is still a feasible number to process.
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5 Results

In this section we report the results of our experiments on the multispectral forest
environment data set detailed in Section 3. Section 5.1 discusses the performance of
our proposed graph-based superpoint constructor and compares its performance to
the VCCS-based constructor used by standard GrowSP. Similarly, the performance
of GrowSP-ForMS in the task of leaf–wood separation is discussed in Section 5.2.
The results feature an extensive performance comparison between existing methods
and GrowSP-ForMS as well as an ablation study that assesses the effects of both the
proposed changes to GrowSP and the usage of multispectral LiDAR.

5.1 Graph-Based Superpoint Constructor

Table 4 shows a comparison of our proposed graph-based superpoint constructor and
the VCCS-based superpoint constructor used by the generic GrowSP model. The
accuracy metrics have been computed using the majority vote strategy described
in Section 4.1.2. In addition to the overall accuracy, mean accuracy and mean
intersection over union, we list the intersection over union for the foliage and wood
classes separately. A visual example of the superpoints constructed by each method
is shown in Figure 22. VCCS was tested both with the suggested voxel size of 0.05
meters and with an increased voxel size of 0.1 meters. It should be noted that although
the original GrowSP article states the voxel size used for superpoint construction is
0.5 m, the official source code reveals the size is in fact 0.05 m.

Besides the accuracy of the initial superpoints, the number of superpoints per
input point cloud is another crucial metric for measuring superpoint constructor
performance. Since the semantic primitive clustering module of GrowSP clusters all
superpoint level representations, a lower number of superpoints is always preferable

Table 4: Comparison of the default VCCS-based superpoint constructor used in the
generic GrowSP model and our proposed graph-based constructor. Accuracy metrics
were computed by assigning each point the majority ground truth label within the
respective superpoint. 𝑀0 denotes the mean number of superpoints across all input
point clouds. For the VCCS-based superpoint constructors, the number in parentheses
denotes the voxel size in meters.

Constructor Data 𝑀0 OA (%) mAcc (%) mIoU (%) Foliage (%) Wood (%)

VCCS (0.05) Training 18 641 98.6 96.2 85.4 98.5 72.2
Test 22 299 98.6 95.7 86.5 98.6 74.5
All 19 361 98.6 96.1 85.6 98.5 72.8

VCCS (0.1) Training 1441 97.5 91.3 76.0 97.5 54.5
Test 1182 97.3 91.5 75.0 97.3 52.6
All 1390 97.5 91.3 75.7 97.4 54.0

Graph-based Training 1347 98.1 92.4 81.3 98.0 64.6
Test 1438 98.0 92.1 81.1 97.9 64.3
All 1365 98.0 92.4 81.3 98.0 64.5

105



Figure 22: Qualitative comparison of the different superpoint constructors for a
sample cylinder from plot #2 of our multispectral data set. (a) Input point cloud. 𝑁
denotes the number of points in the cloud. (b) Superpoints from the VCCS-based
superpoint constructor when voxel size is 0.05 meters. (c) Superpoints from the
VCCS-based superpoint constructor when voxel size is 0.1 meters. (d) Superpoints
from our proposed graph-based superpoint constructor. For figures (b)–(d), 𝑀0 denotes
the number of superpoints in the result.

considering the computational complexity of the clustering. In fact, increasing the
number of superpoints beyond a certain threshold will essentially make training
GrowSP infeasible, as simply the semantic primitive clustering would take multiple
hours or even days. For reference, with around 1,400 initial superpoints per input point
cloud the clustering process takes around 10 minutes on our hardware.

With the original voxel size of 0.05 meters, the VCCS-based superpoint constructor
yields almost 20,000 superpoints per input point cloud on average, which effectively
makes training GrowSP infeasible. Increasing the voxel size to 0.1 meters brings
the average number of superpoints per input cloud down to around 1,400, which,
based on our experiments, is around the upper bound of reasonable number of initial
superpoints. However, as can bee seen from Table 4, this also results in a significant
decrease in the mIoU (–9.9 percentage points (pp)) and IoU of wood points (–18.8 pp).
As previously mentioned, a reasonably high accuracy is requirement for achieving
great performance with GrowSP, since discerning wood points from foliage becomes
increasingly difficult if a significant number of wood points are within superpoints
that are comprised of mostly foliage points.

The graph-based superpoint constructor produces an average of around 1,400
superpoints per input cloud, which is identical to the corresponding metric of the
VCCS-based constructor, while also providing a significant increase in mIoU (+5.6
pp) and IoU of wood points (+10.5 pp) across the entire data set. These results suggest
that the proposed graph-based superpoint constructor is more suitable for processing
forest data than the VCCS-based constructor. The effects the more accurate initial
superpoints have on the performance of GrowSP are assessed in Section 5.2.2.
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5.2 Leaf–wood Separation

5.2.1 Model Performance and Comparison

Quantitative performance metrics of fully-supervised and unsupervised baselines as
well as the best performing configuration of GrowSP-ForMS for the training and test
split of our MS data set are listed in Tables 5 and 6 respectively. We note that the
performance metrics of models that required individual trees as input (denoted by ∗)
are not strictly comparable to the models that accepted entire forest scenes as input.
This is due to the fact that the training and test splits differ slightly between the two
(see Section 4.4.3). For the class-wise segmentation accuracies, the interested reader
is referred to Appendix B.

For all fully-supervised deep learning models, the reported performance was
achieved by training the corresponding model on the training split using the configu-
ration described in Section 4.4.1. Similarly, GrowSP-ForMS was trained using the
pipeline presented in Section 4.4.2. However, instead of only training GrowSP-ForMS
with one predefined set of input features, we experimented with a wide variety of
feature combinations and chose the best one as our final model. Perhaps interestingly,
by far the best performing setup only utilized reflectance from scanner 1 as the input
feature but all three channels for the semantic primitive clustering and superpoint
merging. Finally, the reported accuracies for the unsupervised traditional algorithms
are from the best performing hyperparameters based on a grid search across the
training split.

For LeWoS, the variation in segmentation accuracy between the tested parameter
values was minor, as the mIoU was within the range 50±2% for all configurations.
This serves as further empirical evidence of LeWoS being quite insensitive to the
value of 𝑁z_thres, as asserted in the original paper [165]. The best performance in terms

Table 5: Quantitative results of different approaches on the training split of our
proposed multispectral data set. The best results in each category have been highlighted.
(∗) Results when the inputs are individual trees. These accuracy metrics are not strictly
comparable to others due to the different data format.

Model OA (%) mAcc (%) mIoU (%) Foliage (%) Wood (%)

Supervised methods

PointNet [15] 96.0 79.6 67.2 95.9 38.4
RandLA-Net [138] 97.4 89.1 75.1 97.3 53.0
ResNet16FPN [79] 97.9 89.7 80.4 97.8 63.0

Unsupervised methods

LeWoS [165] 93.8 60.6 51.8 93.8 9.8
LeWoS∗ [165] 94.6 68.7 53.4 94.6 12.1

GBS∗ [166] 94.0 67.9 57.9 93.9 22.0
GrowSP-ForMS (Ours) 96.2 81.2 67.4 96.1 38.8
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of training set mIoU was achieved with 𝑁z_thres = 0.2 when inputs were entire forest
scenes and 𝑁z_thres = 0.35 when individual trees were provided as input. On the other
hand, the segmentation performance of GBS varied quite significantly between the
tested parameter combinations. The highest accuracy was achieved when precursor
direction difference threshold was set to 𝜃 = 0.1𝜋, and the linearity and cylindricity
thresholds were set to 𝐿 = 0.9 and 𝐸 = 0.15 respectively.

Based on the quantitative accuracy metrics, LeWoS fails almost completely at
leaf–wood separation both on the training and test splits, with the mIoU around 51% for
both configurations. Although LeWoS performed slightly better when individual trees
were used as input, the accuracy improvement was essentially negligible, especially
considering that the subset of points that do not belong to any individual tree are not
accounted for in the accuracy computations. GBS performs notably better, reaching
an mIoU of 60.2% on the test set. Nevertheless, GrowSP-ForMS outperforms GBS by
a large margin on the test split, both in terms of mAcc (+11.8 pp) and mIoU (+8.4 pp).
Consequently, the performance of GrowSP-ForMS is state-of-the-art in the task of
unsupervised leaf–wood separation of multispectral ALS point clouds.

In case of the supervised baselines, the models ranked as expected, with more
recent architectures performing better. The best model, ResNet16FPN achieved test
set mAcc and mIoU of 89.4% and 78.4% respectively, being clearly more accurate
than older PointNet (–14,1 pp and –15,2 pp in mAcc and mIoU respectively). Notably,
all supervised baselines outperformed the best unsupervised baseline GBS in terms of
all quantitative performance metrics.

When compared to the fully-supervised baseline architectures, the performance
of GrowSP-ForMS is comparable to PointNet. On the other hand GrowSP-ForMS is
severely outmatched by both RandLA-Net and ResNet16FPN in terms of test split
mIoU (–9.8 pp and –5.8 pp respectively). Such performance differences however were
expected, as similar metrics were reported on multiple benchmark data sets in the

Table 6: Quantitative results of different approaches on the test split of our proposed
multispectral data set. The best results in each category have been highlighted. (∗)
Results when the inputs are individual trees. These accuracy metrics are not strictly
comparable to others due to the different data format.

Model OA (%) mAcc (%) mIoU (%) Foliage (%) Wood (%)

Supervised methods

PointNet [15] 95.2 75.3 63.2 95.1 31.3
RandLA-Net [138] 97.2 89.3 74.4 97.1 51.7
ResNet16FPN [79] 97.6 89.4 78.4 97.5 59.2

Unsupervised methods

LeWoS [165] 93.3 58.3 50.7 93.3 8.0
LeWoS∗ [165] 93.7 63.4 51.7 93.7 9.7

GBS∗ [166] 94.4 72.4 60.2 94.3 26.1
GrowSP-ForMS (Ours) 96.4 84.2 68.6 96.3 40.8
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Figure 23: Qualitative results of the unsupervised baseline methods and GrowSP-
ForMS on a subsection of the test split of plot #1 in our multispectral data set. The
top row shows the full segmentation results and the row below contains only points
classified as wood. (∗) Results when the inputs are individual trees. Points colored
grey are not part of any individual tree and were thus not classified by the algorithm.

original GrowSP paper [10].
Figures 23 and 24 show a visual comparison of segmentation results on a subsection

of the test split of plot #1. Equivalent visual comparisons for a subsection of plot
#2 are shown in Figures 25 and 26. A visual inspection of the results seemingly
confirms what the quantitative performance metrics suggested: LeWoS fails quite
badly for our data set, as most points are classified foliage. It appears that only highly
linear sections of the trunk and branches with minimal occlusions are successfully
detected. Conversely, while the segmentation results of GBS appear qualitatively
excellent at first glance, the quantitative accuracy metrics do not reflect this at all.
A closer inspection and comparison the ground truth labels reveal this is because
GBS has a tendency of detecting non-existent branches within the tree crown, while
simultaneously often failing to detect clearly visible branches in lower sections of the
tree. Furthermore, GBS appears to detect only the very center section of the trunk and
usually misclassifies around half of the trunk as foliage. We conjecture that these are
consequences of the varying point density, which GBS is heavily reliant on: lower
sections with a low point density cause issues even if the branch is clearly visible,
while some dense continuous sections within the tree crown are mistaken for branches.

In comparison to the unsupervised baselines, the segmentation results of GrowSP-
ForMS are visually more consistent. Majority of the trunk as well as lower branches
are usually correctly detected, although especially within branches the predictions
are often overly smooth in the sense that they are quite noisy since many nearby
foliage points are erroneously classified as wood. The other main source of error
appears to be upper sections of the trunk, which GrowSP-ForMS consistently fails to
detect. However, considering that even the best supervised baselines RandLA-Net and
ResNet16FPN seemingly struggle with the same sections, we conclude that the upper
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Figure 24: Qualitative results of the supervised baseline methods and GrowSP-ForMS
on a subsection of the test split of plot #1 in our multispectral data set. The top row
shows the full segmentation results and the row below contains only points classified
as wood.

Figure 25: Qualitative results of the unsupervised baseline methods and GrowSP-
ForMS on a subsection of the test split of plot #2 in our multispectral data set. The
top row shows the full segmentation results and the row below contains only points
classified as wood. (∗) Results when the inputs are individual trees. Points colored
grey are not part of any individual tree and were thus not classified by the algorithm.

trunk is overall rather difficult to classify correctly.
Another notable observation when comparing the results between Figures 23 and

25 is that GrowSP-ForMS performs notably worse on test plot #2. There are at least
two possible explanations for this: firstly, test plot #2 is denser and therefore more
challenging to segment. Secondly, the trees on plot #2 are mostly birches and spruce,
while plot #1 is predominantly pine, which may be easier to segment semantically.
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Figure 26: Qualitative results of the supervised baseline methods and GrowSP-ForMS
on a subsection of the test split of plot #2 in our multispectral data set. The top row
shows the full segmentation results and the row below contains only points classified
as wood.

Shifting the visual comparison to the supervised baselines, the results of PointNet
are visually strikingly similar to GrowSP-ForMS, espcially on plot #1. The segmenta-
tion results of PointNet are also somewhat noisy and upper sections of the trunk are
seldom successfully detected. On the other hand, RandLA-Net and ResNet16FPN
outperform GrowSP-ForMS quite clearly, as was also the case in the quantitative
performance. ResNet16FPN yields visually slightly better results than RandLA-Net,
mainly thanks to detecting a few more branches and some of the upper regions of the
trunks. Overall both models yield comparable results which appear to be quite close
to the ground truth.

Additional visual comparisons of semantic segmentation results for previously
unseen unlabeled data that was not part of the training or test set can be found in
Appendix A.1.

5.2.2 Ablation Study

In order to accurately assess the usefulness of our proposed changes to GrowSP and
the benefits of using multispectral data for unsupervised leaf–wood separation, we
conducted two separate ablation studies. In the first study, starting with the generic
GrowSP architecture, we iteratively augmented the model with our improvements one
by one, training and evaluating again each time. Similarly, in the second study we
trained the full GrowSP-ForMS model for each intensity channel separately, as well
as all two-channel combinations. The performance metrics of the ablated models on
the test split of our data set are listed in Tables 7 and 8 for ablation studies 1 and 2
respectively.

For the ablation study on proposed modifications to GrowSP, we utilized the input
feature combination that yielded the best segmentation performance for the full model.
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Table 7: Ablation study on our proposed modifications to the original GrowSP
architecture. We note that in experiments where geometric features were not utilized,
10-dimensional point feature histograms were used instead. The reported accuracies
were achieved on the test split of our multispectral data set. The overall highest
accuracy metrics have been highlighted.

Oversegmentation
of Predicted Labels

New
Superpoints

Geometric
Features

Decaying
Clustering
Weights

oAcc (%) mAcc (%) mIoU (%) Foliage (%) Wood (%)

70.6 51.7 38.3 69.9 6.8
✓ 91.8 58.6 52.0 91.7 12.3
✓ ✓ 95.7 82.4 60.5 95.6 25.3
✓ ✓ ✓ 93.1 68.8 62.9 92.9 32.9
✓ ✓ ✓ 88.6 55.2 49.4 88.5 10.2
✓ ✓ ✓ ✓ 96.4 84.2 68.6 96.3 40.8

Table 8: Ablation study on the effects of using mono- and multispectral data. The
reported accuracies were achieved on the test split of our multispectral data set.
The overall highest accuracy metrics have been highlighted. (∗) Verticality threshold
𝑉min = 0.55 used for identifying the wood classes instead of the linearity threshold.

Scanner 1 Scanner 2 Scanner 3 oAcc (%) mAcc (%) mIoU (%) Foliage (%) Wood (%)

✓ 94.7 72.4 62.0 94.6 29.3
✓ 78.3∗ 55.3∗ 44.9∗ 77.6∗ 12.1∗

✓ 91.6∗ 63.2∗ 56.6∗ 91.4∗ 21.8∗
✓ ✓ 93.4 66.6 58.5 93.2 23.8
✓ ✓ 93.5 68.4 61.1 93.3 28.9

✓ ✓ 89.9∗ 55.6∗ 49.9∗ 89.8∗ 10.0∗
✓ ✓ ✓ 95.4 77.9 61.4 95.4 27.5

That is, only reflectance from scanner 1 was used as input feature, while all channels
were exploited in semantic primitive clustering and superpoint merging. Conversely,
when assessing the benefits of multispectral data, the listed channels were used both
as input features and for clustering and merging of superpoints. In ablation study
1, experiments without the new initial superpoints utilized superpoints generated by
the VCCS-based constructor with voxel size 0.1 m. Similarly, experiments without
geometric features used the 10-dimensional PFHs following the original GrowSP
architecture.

The first ablation study emperically proves that all of our proposed modifications
to GrowSP are beneficial in the context of leaf–wood separation from MS ALS point
clouds. That is, each change individually improves model performance in terms of
test set mIoU in comparison to the baseline. The most significant improvements in
segmentation accuracy were provided by oversegmentation of predicted labels (+13.7
pp in mIoU), which is admittedly more of a postprocessing heuristic, and the new
graph-based superpoint constructor (+8.5 pp in mIoU). Interestingly, the decaying
clustering weights cause a significant decrease in performance when PFHs are used
(–13.5 pp in mIoU), but work exceedingly well when using geometric features (+5.7
pp in mIoU).

The results of ablation study 2 were not as straightforward. The two best performing
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models were the one that only utilizes scanner 1 and the model that utilizes all three
scanners, with the former achieving a slightly higher mIoU and the latter a higher
oAcc and mAcc. Although it might seem that these results suggest there is no notable
difference between mono- and multispectral data, this is not the case in practice, since
our best performing GrowSP-ForMS configuration utilizes multispectral information
for semantic primitive clustering and superpoint merging and outperforms the best
monospectral model by a considerable margin (+6.6 pp in test set mIoU).

Overall, the performance of the two best ablated models was essentially comparable.
This is especially interesting considering that none of the one- or two-channel setups
managed to outperform the scanner 1 single-channel model in terms of any performance
metrics. The results suggest that the 1550 nm wavelength is by far the most useful for
leaf–wood separation, although the 905 and 532 nm wavelengths are also demonstrably
beneficial, especially for improving the accuracy of the foliage class.

In some experiments of the second ablation study where the wood class was not
separated adequately, the mean linearity was not high enough to distinguish the wood
class based on the linearity threshold 𝐿min = 0.55. In such cases (denoted by ∗ in
Table 8), the wood classes were detected based on mean verticality instead. The
threshold value for mean verticality was set to 𝑉min = 0.55. This simultaneously
highlights a shortcoming and an advantage of the oversegmentation heuristic. If
segmentation accuracy is poor, the wood class may not be automatically detected.
However, changing the either threshold or metric such that the wood detection functions
correctly is fast and does not require training the model again. Nevertheless, manual
calibration is needed from the user in such cases, which is obviously a disadvantage.

A visual comparison of the segmentation results for ablated models can be found
in Appendix A.2.
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6 Discussion

Through achieving state-of-the-art performance on our data set, we demonstrated that
unsupervised deep learning is a viable approach for leaf–wood separation from multi-
spectral ALS point clouds. In fact, the accuracy of GrowSP-ForMS was comparable
to the slightly older fully-supervised semantic segmentation model PointNet even
though unsupervised DL has previously not been applied to leaf–wood separation.
Consequently, considering that the size of the data set was also fairly limited, we
believe future work will improve on the baseline set by us.

In addition to achieving state-of-the-art performance, GrowSP-ForMS is relatively
lightweight in terms of computational requirements. On a GPU with just 8 GB of
VRAM, a circular forest plot with a 55 m diameter can be processed in around 10
seconds when divided into cylinders with a radius of 4.2 m. This is comparable to the
tested unsupervised algorithms and significantly faster than PointNet.

Our results indicate that multispectral LiDAR data can improve the accuracy of
unsupervised leaf–wood separation. However, utilizing the multispectral information
effectively was not a matter of simply providing the reflectance information of all
channels as input features for the feature extractor. Rather, it demanded careful experi-
mentation with different input feature combinations and training setups. Somewhat
counter-intuitively, when reflectance features from all three channels were used as
input, the performance of the model was comparable to a model that only utilizes
reflectance information from one scanner operating at a wavelength of 1550 nm.
We conjecture that while reflectance information in MS point clouds is beneficial
for semantic segmentation tasks, utilizing the data in a manner that improves model
performance is not always as straightforward as e.g. with RGB color, at least within
our framework. While comparing leaf–wood separation accuracy of monospectral and
multispectral data under a fully-supervised setting was outside the scope of this thesis,
it would be interesting to investigate whether a similar phenomenon occurs. At least
in the context of land-cover classification using MS point clouds, Zhang et al. [234]
did not observe such behavior.

The initial superpoint constructor is one of the most crucial parts of GrowSP, since
superpoint accuracy is equivalent to a soft upper bound for general model accuracy.
Although predicted labels are not assigned on a superpoint level at test time, the
backbone will generally learn similar features for all points within the same superpoint.
As such, it is rare to correctly classify a wood point that is within a superpoint comprised
mainly foliage points or vice versa. Our ablation study empirically demonstrated
that the improved superpoint constructor was one of the most beneficial individual
changes to GrowSP in terms of test set mIoU, which further highlights the importance
of accurate initial superpoints.

It is crucial to note that unsupervised leaf–wood separation algorithms are generally
designed for TLS data. As such, unsatisfactory performance on ALS data is to be
expected due to heavy reliance on geometric point cloud characteristics that are
significantly weaker in sparser data. In fact, many works have noted that the accuracy
of unsupervised algorithms quickly begins to deteriorate when the point density
decreases. For example, Tian and Li [166] observed a significantly lower segmentation
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accuracy for both LeWoS and GBS when a subsampled version of the same point
cloud was used. Vicari et al. [188] reported a similar phenomenon for their leaf–wood
separation algorithm. Consequently, while GrowSP-ForMS achieves state-of-the-art
performance in unsupervised leaf–wood separation for ALS data, no conclusions
should be drawn about accuracy on point clouds captured with other types of LiDAR
systems. Nevertheless, our results demonstrate that when it comes to ALS data,
unsupervised DL is the more viable option for leaf–wood separation in comparison to
geometry-based algorithms.

Based on the qualitative performance comparison GrowSP-ForMS performs
distinctly worse on test plot #2, which is mainly comprised of deciduous birches. This
may be due to the inherently more complex structure of deciduous trees, which results
in them being more difficult to segment accurately, as observed in Xiang et al. [6]
where notably lower panoptic segmentation accuracy was reported for plots with more
complex branch structures. Another possible explanation is the imbalanced training
data set. As previously mentioned, since GrowSP-ForMS does not require ground
truth labels during training, the training split was augmented with three unlabeled
plots in an attempt to improve model generalization. However, due to lack of data from
forest plots dominated by birch or other deciduous species, a large majority of trees
within the extra training data were either pine or spruce. As such, GrowSP-ForMS
may have learned to distinguish the wooden components within pine and spruce more
effectively due to the imbalance.

Our study has several noteworthy limitations, which are further discussed in
Section 6.1. Furthermore, while the segmentation accuracy of GrowSP-ForMS is
state-of-the-art in unsupervised leaf–wood separation, the performance is far below
modern fully-supervised architectures. As such, even if not requiring any manually
annotated data is a considerable advantage, further performance improvements are
required in order to reach an accuracy that is adequate for operative purposes.
Thankfully, since this study is the first published leaf–wood separation model based
on unsupervised DL, there are multiple promising directions for future research which
we summarize briefly in Section 6.2.

6.1 Limitations

The limited amount of computational resources, specifically GPU VRAM, set certain
restrictions on training the DL models. Firstly, test plots had to be divided into smaller
cylinders in order to fit the data into GPU memory. This may have an impact on
performance, since e.g. Xiang et al. [217] observed that a larger context within forest
scenes improved the accuracy of panoptic segmentation. Secondly, minibatches had
to be restricted to relatively few data points due to memory limitations. Similarly, lack
of GPU VRAM prevented testing certain hyperparameter combinations and e.g. the
number of semantic primitives and extracted features in GrowSP had to be halved.

In comparison to benchmark data sets such as FOR-Instance [44], our proposed
multispectral data set is relatively limited in size for deep learning purposes. As such,
the risk of overfitting is relatively high and the reported quantitative performance
metrics on the test split may not reflect model generalization adequately. Furthermore,
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due to the limited amount of manually annotated data available, we chose to not have
a separate validation split. Consequently, most hyperparameter values were chosen
either based on the literature or empirically and are not necessarily perfectly optimal
for our use case.

It should be acknowledged that the procedure used for training the fully-supervised
deep learning baselines left some things to be desired. Firstly, the training set was
relatively limited in size, which is known to hinder the process of training deep
learning models and can increase the risk of overfitting. Secondly, due to very
limited computational resources, the input data format, batch size and number of
training epochs was not necessarily optimal for every model. However, this was
only a limiting factor for PointNet and RandLA-Net, as the memory efficiency of
ResNet16FPN allowed choosing the hyperparameters relatively freely. For PointNet,
the input cylinders had to be divided into smaller sections due to memory limitations.
Consequently, a certain amount of local and global geometric information was lost,
which undoubtedly hindered the model’s performance. Similarly, the performance of
RandLA-Net would most likely have benefited from a larger batch size and a higher
number of neighbors in training.

Finally, the lack of a validation set made it slightly more difficult to accurately
asses when training should be concluded. As such, the accuracy metrics on the test set
are lower than the corresponding values on the training set for all three supervised
baselines, which is generally a sign that the models may be overfitting slightly.
However, considering that the performance on the test split was nevertheless quite
close to that achieved on the training split, we conclude that any possible overfitting is
not very severe. This is further supported by visual assessment of predicted labels
for unlabeled data that was not used in training, where the quality of predictions
remains qualitatively great and similar to that observed on the training and test sets. If
the models were overfitting egregiously, we would expect the prediction quality to
decrease significantly on such data, which is not the case.

Considering the factors above, we stress that the presented accuracy metrics
should not be considered the best possible performance that can be attained using the
respective models. Rather, the performance serves as a baseline of what is achievable
with a relatively simple training arrangement and a limited amount of training data and
computational resources. For this study such metrics are sufficient, as the objective of
the supervised baselines was to asses the performance of simple semantic segmentation
DL models in comparison to the first ever unsupervised DL based leaf–wood separation
model, which was expected to perform far below the state-of-the-art supervised models.

Finally, it is worth noting that a sparse convolution-based supervised panoptic
segmentation network presented in a recent study correctly detected 55.3% and 68.4%
of stem and wooden branch points respectively on the test split of the FOR-Instance
benchmark data set [6]. This is notable for the following reasons:

1. Our SCNN supervised baseline ResNet16FPN succesfully detected 80.5% of
all wood points (see Appendix B), which is comparable to the metrics presented
above achieved by the state-of-the-art model of [6].

2. FOR-Instance is very similar to our data set, as both are comprised of ALS forest
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point clouds with comparable point densities. Furthermore, the data in FOR-
Instance was captured using Riegl VUX-1UAV and MiniVUX-1UAV scanners,
which are relatively similar to the scanners included in HeliALS-TW. The only
notable differences between FOR-Instance and our data are that the former is
monospectral and contains a wider variety of distinct forest environments. As
such, we would expect a well trained SCNN to achieve a similar or slightly better
performance on our data set in comparison to [6], which ResNet16FPN does.

3. Earlier studies comparing the performance of PointNet, RandLA-Net and SCNNs
on popular semantic segmentation benchmarks have observed performance
differences between the three models that are comparable those observed by us
(see e.g. [10, 80, 138]).

Based on these observations, we conclude that although the presented performance of
the supervised baselines is not necessarily optimal, it is most likely relatively close.

Besides being limited in size, our proposed data set only contains scans from
boreal forests. As such, the reported results do not reflect on the performance of
GrowSP-ForMS across forests in general since e.g. temperate and tropical forests are
structurally very different. Further, since the training and test splits are from the same
forest plots, albeit different areas, the test set is not necessarily optimal for measuring
the generalization ability of the models. Nevertheless, we attempted to select the test
data set such that it has representations of all the different types of forest environments
present in the data.

6.2 Possible Directions for Future Research

While the results of our study are promising, the difference in leaf–wood separation
accuracy between GrowSP-ForMS and state-of-the-art supervised methods remains
large. Fortunately, since unsupervised DL for semantic segmentation of point clouds
remains relatively unexplored, especially in the context of forest data, there are
numerous prospects for future research that could help bridge the gap. In this section
we suggest some possible directions future research could take.

Firstly, our experiments should be reconducted on a system with significantly more
computational power, specifically a GPU with more VRAM or even multiple GPUs.
This would alleviate many of the limitations discussed in Section 6.1 by enabling e.g.
larger batch sizes during training and utilizing the original number of neural features
and semantic primitives in GrowSP.

Secondly, more MS forest point clouds should be manually labelled for a validation
set to make the training process more reliable. Even if additional labeled data is not
available, significantly increasing the amount of unlabeled training data could improve
model performance and generalization, as is often the case with unsupervised DL.
In fact, in our case more MS point clouds depicting circular forest test plots would
have been available, but hardware limitations prevented us from utilizing them during
training. It should be noted that since increasing the amount of training data may
result in prohibitively long computation times during semantic primitive clustering,
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adopting a more efficient clustering algorithm such as minibatch 𝑘-means [235] could
be necessary.

Aside from hardware and data related improvements, future research should
consider utilizing other neural networks as the feature extractor. We opted to use
the same backbone network as the generic GrowSP, but there is no guarantee that
ResNet16FPN is the optimal choice for forest data. A more recent transformer-based
architecture such as PTv3 [67] may provide more descriptive features and by extension
improve model performance. Similarly, different optimizers, learning rate schedulers
and loss functions should also be experimented with. As an example, due to the
considerable class imbalance in forest data, a contrastive loss function such as focal loss
could improve the accuracy of leaf–wood separation. The addition of geometric input
features for the feature extractor should also be considered, since multiple previous
studies have found them useful for DL-based leaf–wood separation [6, 48, 208]. It
is worth noting that many of the aforementioned changes are dependent on more
computational resources being available.

As demonstrated in Section 5.2.2, improving the accuracy of superpoints provided
one of the most significant increases in segmentation performance. As such, we believe
that further improving the superpoint constructor should be one of the main focuses of
future work. Increasing the accuracy of the initial superpoints and decreasing their
number would both be beneficial. The former from the perspective of model accuracy
and the latter when it comes to preserving computational resources. Furthermore,
decreasing the number of superpoints inherently results in them being larger, which
could also help improve model accuracy as larger superpoints may contain more
semantic information. For example, a more deliberate strategy for merging the initial
graph-based superpoints should be researched. Another possibility is classifying the
point clouds using some existing unsupervised leaf–wood separation algorithm or
DL model trained on another data set and subsequently utilizing the predictions for
constructing initial superpoints. The latter would be possible, as pretrained weights
for various forest semantic segmentation models, such as ForAINet [6], have been
made publicly available6.

On the other hand, one of the significant shortcomings of GrowSP-ForMS is that
the superpoint growing phase has to be halted quite early as model performance
quickly starts to deteriorate if too many superpoints are merged. Some other clustering
algorithm, possibly one that considers connectivity of the superpoints, could be
more suitable and enable growing the superpoints further without decreasing model
accuracy.

Finally, utilizing unsupervised contrastive pretraining as proposed by e.g. [82, 158]
should also be investigated. The generic GrowSP architecture utilizes geometric
features for semantic primitive clustering, since extracted neural features are effectively
random during early stages of training [10]. The addition of a contrastive pretraining
stage prior to training GrowSP-ForMS might eliminate the need for geometric point
cloud features entirely, provided that the learned features are descriptive enough. This
would help make the model more data-driven and less reliant on heuristic geometric

6https://github.com/bxiang233/ForAINet
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descriptors.
In addition to the possible improvements to GrowSP-ForMS discussed above, we

strongly recommend experimenting with different types of LiDAR forest data in future
work. Although GrowSP-ForMS was specifically designed for semantic segmentation
of multispectral forest point clouds, it can also be trained using monospectral data,
albeit this does hinder its accuracy as evidenced by the ablation study in Section 5.2.2.
Since multispectral LiDAR systems remain relatively rare to this day, efforts should be
made to improve the performance of GrowSP-ForMS on monospectral point clouds.
Simply optimizing the model hyperparameters with monospectral training data may
yield some improvements. Such changes would also enable assessing the performance
of our method on monospectral benchmark forest data sets, such as FOR-Instance [44].

Similarly, while GrowSP-ForMS achieves state-of-the-art performance on unsu-
pervised semantic segmentation of ALS forest point clouds, the comparison to existing
leaf–wood separation algorithms is not completely fair, considering that such methods
are typically designed for TLS data which is both considerably denser and contains
less occlusions. As such, in the future, GrowSP-ForMS should also be trained using
TLS data. We conjecture that when it comes to TLS point clouds, the difference
in performance between GrowSP-ForMS and existing geometric leaf–wood separa-
tion algorithms may be negligible and many may even outperform GrowSP-ForMS.
However, due to the lack of existing MS TLS systems, the previously mentioned
performance improvements for monospectral data are crucial.

119



7 Conclusions

In this thesis, we created a multispectral point cloud data set depicting a boreal
forest environment with more than eight million individual points, each of which has
been manually labeled into either wood or foliage. Captured with FGI’s in-house
developed aerial laser scanner system HeliALS-TW, our data set is the world’s first
MS LiDAR-based data set for semantic segmentation of forests.

Furthermore, we presented and implemented a modified version of the GrowSP
architecture, GrowSP-ForMS, designed specifically for unsupervised semantic seg-
mentation of forest data. Subsquently, we trained GrowSP-ForMS on our multispectral
ALS forest data set and compared its performance to two unsupervised leaf–wood
separation algorithms and three fully-supervised neural networks. Based on this
comparison, we concluded that GrowSP-ForMS achieves state-of-the-art performance
in unsupervised leaf–wood separation of multispectral ALS point clouds. Furthermore,
while the two more recent supervised models outperformed GrowSP-ForMS by a
considerable margin, its performance was comparable to the slightly older PointNet.

In order to assess the effectiveness of our proposed modifications to GrowSP,
we performed an ablation study where the generic GrowSP model was iteratively
augmented with each of our improvements one by one. The results indicated that
all of our proposed changes improved model performance in terms of test set mIoU.
However, somewhat counter-intuitively decaying clustering weights only increased
segmentation accuracy when used in combination with the other modifications.

Finally, by comparing the performance of GrowSP-ForMS on mono- and multi-
spectral versions of our data set, we demonstrated that using multispectral LiDAR
improves leaf–wood separation accuracy in an unsupervised DL setting. However,
since our best performing model only utilized multispectral information in certain parts
of the segmentation pipeline, we concluded that utilizing MS information effectively
requires carefully choosing the optimal combination of input features, at least within
the GrowSP framework.

The results of this thesis conclusively answer all of the research questions. Firstly, by
comparing the performance of GrowSP-ForMS to two conventional unsupervised leaf–
wood separation algorithms, we demonstrated that utilizing unsupervised deep learning
can alleviate the problems caused by reduced point density in ALS data. Secondly,
GrowSP-ForMS was compared to three fully-supervised semantic segmentation
architectures, which showed that its leaf–wood separation accuracy is on par with
the older PointNet but far from more recent architectures. Lastly, multispectral data
was shown to improve the semantic segmentation performance of our unsupervised
DL-based leaf–wood separation model.

Although the performance of GrowSP-ForMS is not on par with the best fully-
supervised architectures and further improvements are needed to reach accuracies
required at operational level, it nevertheless demonstrates that unsupervised deep
learning is a viable option for semantic segmentation of forest point clouds. The
fact that our model performs comparably to an earlier fully-supervised architecture is
very promising and there are various prospects for future research that could further
improve segmentation accuracy.
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A Additional Qualitative Performance Comparisons

This section contains additional visual comparisons of segmentation results.

A.1 Qualitative Performance Comparison on Unlabeled Data

Figure A1 shows a performance comparison between GrowSP-ForMS and our fully-
supervised baselines on a subsection of an unlabeled forest plot that was not part of
the training or test set. Furthermore, the data in question was not used as auxiliary
unlabeled data when training GrowSP-ForMS. That is, the input data is previously
unseen for all models presented in the figure.

Conversely, the PointNet model performs notably worse on the unlabeled data from
a previously unseen plot, which suggest that the model does not generalize well. This
is most likely a result of the limited data set used during training, which appears to
affect the performance of PointNet more severely than RandLA-Net or ResNet16FPN.

We note that although the segmentation results displayed in the figure appear to
be of high quality, the lack of ground truth labels makes assessing the true quality of
the predictions challenging. Finally, it should be noted that since no individual tree
segments were available for the unlabeled data, the comparison could not be performed
for the unsupervised baseline methods, since some of the algorithms require individual
tree point clouds as input.

Figure A1: Qualitative results of GrowSP-ForMS and our supervised baseline methods
on a subsection of an unlabeled plot that was not used when training any of the models.
The top row shows the full segmentation results and the row below contains only points
classified as wood. Note the absence of ground truth data, which makes assessing the
true quality of the predictions challenging.
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A.2 Qualitative Performance Comparison of Ablated Models

Figure A2 shows a visual comparison of the segmentation results from each model in
the ablation study discussed in Section 5.2.2. The different ablation setups in the figure
are described in Table A1. The qualitative results are consistent with quantitative
results listed in Table 7 (see Section 5.2.2) in the sense that the segmentation results
appear visually better for setups that achieved a higher accuracy. Furthermore, the
visualization shows that our proposed changes to the GrowSP model also improve its
qualitative performance.

The segmentation results of GrowSP-ForMS for each reflectance channel separately,
as well as all two- and three-channel combinations are displayed in Figure A3. In the
figures, scanners 1, 2 and 3 operate on the wavelengths 1,550 nm, 905 nm and 532 nm
respectively. A more detailed description of the multispectral HeliALS-TW system can
be found in Table 1 in Section 3.1. Similarly to the first ablation study, the qualitative
results reflect the quantitative results listed in Table 8 (see Section 5.2.2). That is,
scanner combinations that achieved a higher quantitative segmentation accuracy also
provide visually better results. Additionally, the best performing GrowSP-ForMS

Figure A2: Qualitative results of each ablated GrowSP-ForMS model on a subsection
of the test split of plot #1 in our multispectral data set. The top row shows the full
segmentation results and the row below contains only points classified as wood. The
different setups are described in Table A1.

Table A1: Description of each setup in the visual comparison of ablated models. We
note that in experiments where geometric features were not utilized, 10-dimensional
point feature histograms were used instead.

Setup Oversegmentation of
Predicted Labels

New Superpoints Geometric
Features

Decaying
Clustering
Weights

1
2 ✓
3 ✓ ✓
4 ✓ ✓ ✓
5 ✓ ✓ ✓
6 ✓ ✓ ✓ ✓
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Figure A3: Qualitative results of GrowSP-ForMS for each scanner and all possible
2 and 3 scanner combinations on a subsection of the test split of plot #1 in our
multispectral data set. The top row shows the full segmentation results and the row
below contains only points classified as wood. In (b)–(h) the titles list which scanners
were used to achieve the segmentation results. (i) Segmentation results for the best
parameter combination, which uses reflectance features from scanner 1 as input for the
feature extractor and all three scanners for semantic primitive clustering and superpoint
merging.

model in terms of test set mIoU also generates visually the highest quality segmentation
results when compared to other scanner combinations.
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B Additional Quantitative Performance Comparisons

In this section we list the class specific accuracies of each of the best leaf–wood
separation models presented in Section 5.2.1 in the form of confusion matrices.
Figures B1 and B2 show the confusion matrices of the supervised baselines on the
training and test split of our proposed multispectral data set respectively. Similarly,
Figures B3 and B4 show the corresponding metrics for our unsupervised baselines
and GrowSP-ForMS on the two splits. The class-level accuracies are consistent with
the IoUs listed in Tables 5 and 6. That is, the confusion matrices do not provide
much additional information, since lower class-level accuracies correspond with lower
class-level intersection over union values and vice versa. Nevertheless, the metrics
effectively demonstrate that the high amount of wood points misclassified as foliage is
the most significant contributor to the low IoU values each model achieved with the
wood class.

Figure B1: Confusion matrices of the best supervised models on the training split
of our proposed multispectral data set. (a) PointNet [15]. (b) RandLA-Net [138]. (c)
ResNet16FPN [79].

Figure B2: Confusion matrices of the best supervised models on the test split of
our proposed multispectral data set. (a) PointNet [15]. (b) RandLA-Net [138]. (c)
ResNet16FPN [79].
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Figure B3: Confusion matrices of the best unsupervised models on the training split
of our proposed multispectral data set. (a) LeWoS. (b) LeWoS when individual trees
are used as input. (c) GBS. (d) GrowSP-ForMS. (∗) Results when the inputs are
individual trees. These accuracy metrics are not strictly comparable to others due to
the different data format.
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Figure B4: Confusion matrices of the best unsupervised models on the test split of
our proposed multispectral data set. (a) LeWoS. (b) LeWoS when individual trees are
used as input. (c) GBS. (d) GrowSP-ForMS. (∗) Results when the inputs are individual
trees. These accuracy metrics are not strictly comparable to others due to the different
data format.
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