
Master’s programme in Mathematics and Operations Research

Graph Neural Network Heuristic for
Timetable Planning in Public Transport

Leevi Rönty

Master’s Thesis
2024

© 2024

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Author Leevi Rönty
Title Graph Neural Network Heuristic for Timetable Planning in Public Transport
Degree programme Mathematics and Operations Research
Major Systems and Operations Research
Supervisor Asst. Prof. Philine Schiewe
Advisor Asst. Prof. Philine Schiewe
Date 17 March 2024 Number of pages 41+1 Language English

Abstract
In public transport planning, timetabling is the process of assigning times for vehicle
departures and arrivals to stops. Timetable optimization is an important step of a typical
public transport planning process. The timetable affects which routes the passengers
choose to take. Yet, the choices of routes also affect which timetables are optimal.
As such, the best solutions to this problem are obtained when both the timetable and
the passenger routes are optimized simultaneously instead of sequentially. However,
this quickly becomes computationally intractable. Instead of finding exact solutions,
as a heuristic approach, we propose to predict the best passenger routes and then to
optimize the timetable using established methods. We propose a graph neural network
model for predicting the aggregated passenger counts on the edges of the event activity
network. Our approach demonstrates occasional improvements against a shortest path
routing baseline. The relationship between the weight prediction loss and the resulting
optimality gap indicates, that training the network with a direct regression task may not
directly result in improvements of the optimality gap, which is our ultimate objective.
Further research in the topic of graph neural networks as a heuristic could explore
other training tasks instead of the direct prediction approach. Generating high-quality
training datasets is also an area that could be improved.

Keywords Public Transportation Planning, Graph Neural Networks, TimPass,
Heuristic

Tekijä Leevi Rönty
Työn nimi Graafineuroverkkoheuristiikka joukkoliikenteen aikataulutukseen
Koulutusohjelma Mathematics and Operations Research
Pääaine Systems and Operations Research
Työn valvoja ja ohjaaja Asst. Prof. Philine Schiewe
Päivämäärä 17.3.2024 Sivumäärä 41+1 Kieli englanti

Tiivistelmä
Aikataulutus joukkoliikennesuunnittelussa on prosessi, jossa määritellään kulkuneu-
vojen lähtö- ja saapumisajat joukkoliikennepysäkeille. Aikataulun optimointi on tärkeä
osa tyypillistä joukkoliikenteen suunnitteluprosessia. Valittu aikataulu vaikuttaa reittei-
hin, joita matkustajat valitsevat pysäkkien välillä, mutta toisaalta matkustajien suosimat
reitit vaikuttavat aikataulun optimointiin. Parhaat ratkaisut aikataulutusongelmaan
saadaankin optimoimalla aikataulu ja matkustajien reittivalinnat samanaikaisesti pe-
rättäisen optimoinnin sĳasta. Tästä tulee kuitenkin nopeasti laskennallisesti haastavaa.
Eksaktien ratkaisujen etsimisen sĳaan työssä esitetään uusi heuristinen ratkaisume-
netelmä, joka ennustaa matkustajien parhaat reititykset ja optimoi sitten pelkästään
kulkuneuvojen aikataulut. Graafineuroverkkolla ennustamme kokonaismatkustajamää-
riä graafin kaarille tapahtuma-aktiviteetti -verkossa. Verrattuna lyhyimmän reitityksen
vertailukohtaan, menetelmämme tuottaa toisinaan parempia ratkaisuja. Opetustehtä-
vähäviön ja optimaalisuuskuilun välinen riippuvuus ei indikoi, että regressiotehtävän
ratkaisu graafineuroverkon opetuksessa kaventaisi suoraan optimaalisuuskuilua, mikä
on varsinaisena tavoitteena. Jatkotutkimuksessa koskien graafineuroverkkojen käyttöä
heuristiikkana voitaisiin perehtyä verkon muihin opetustehtäviin suoran ennustami-
sen sĳasta. Korkealaatuisen koulutusdatan generointi on myös yksi parannettavista
osa-alueista.
Avainsanat Joukkoliikennesuunnittelu, Graafineuroverkot, TimPass, Heuristiikka

Espoo, 17 March 2024

Leevi Rönty

5

Contents
Abstract 3

Abstract (in Finnish) 4

Contents 6

1 Introduction 7
1.1 Literature review . 7

2 Methods 9
2.1 Event activity network data . 9
2.2 Integer programming formulations 10

2.2.1 Periodic event scheduling problem 12
2.2.2 Timetabling and passenger routing problem 15

2.3 Shortest path routing heuristic . 18
2.4 Graph Neural Networks . 19

2.4.1 Positional encodings . 20
2.4.2 Network architecture . 21

2.5 Heuristic evaluation method . 22

3 Experiment setup 24
3.1 Data generation . 24
3.2 Data representation as a heterogenous graph 27
3.3 Training . 29

4 Results 30
4.1 Heuristic performance . 30
4.2 Relation of loss and heuristic optimality gap 33
4.3 Theoretical loss lower bound without preference of solutions 34

5 Discussion 36

6 Summary 38

References 39

A Hyperparameter tuning 42

6

1 Introduction
Public transportation systems play a role in many people’s lives. As such, it is of great
public interest to have transportation systems that are both cost effective to operate
and offer high-quality services. One perspective on quality is the expected travel
time between often-used journey origins and destinations. Typically, the customers of
public transport appreciate getting to their destination faster.

The schedule determines when the vehicles arrive and depart from the stops in
a public transport system. From the passenger’s point of view, an efficient schedule
minimizes the expected travel time. However, optimizing for the travel time is not
easy. The optimal schedule depends on the routes the passengers choose to get to
their destination, but at the same time the chosen routes depend on the schedule. This
means, that to guarantee optimal solutions, we must optimize both the schedule and
the passenger routes at the same time. This is much more challenging than optimizing
the schedule with a pre-determined passenger routing, as the number of routes that
each passenger can choose from can be very large, and in a realistic scenario, we will
have a large number of passengers. In practice, we are not able to solve this problem
optimally for realistically-sized problems.

In this thesis, we develop a heuristic solution method to this integrated optimization
problem by trying to predict the optimal routing before solving for the timetable. Good
predictions allow us to exclude routing from the optimization problem, making the
problem easier to solve. We study if a graph neural network model is able to predict
these routes and how the model’s predictions will fare against previous heuristics with
both small and large public transport networks.

Note, that in this case, we do not differentiate between transportation modes like
busses and trains. In general, a real public transportation system would have multiple
modes of transportation, but we ignore this for now, as the developed heuristic can be
easily extended to a multimodal case.

We begin by reviewing the literature related to the topics of the thesis in Section 1.1.
We continue by covering the theoretical background for the problem in Sections 2.1
and 2.2, some simple previous heuristics (Section 2.3), and graph neural networks
(Section 2.4). Then we describe the data generation and the experiments in Section 3,
after which we conclude by presenting the results (Section 4) and analyzing what we
learned in Section 5.

1.1 Literature review
We study the existing literature from three perspectives. First, we explore the existing
heuristics, methods, and formulations related to the timetabling and passenger routing
problem (TimPass) as seen in [1, 2]. Next, we review the literature for machine
learning (ML) methods in public transport optimization, and lastly, we take a look at
ML methods in combinatorial optimization.

The TimPass problem as presented in [1] can be viewed as an extension to the
periodic event scheduling problem (PESP), originally presented in [3]. In PESP, the
objective is to find a peridic timetable for events that minimises the total travel time,

7

given some fixed routing for the passengers. The TimPass problem extends this by
letting the passenger routing be also optimised at the same time as the timetable.
This formulation is more realistic by taking passenger behaviour into account, as the
passengers typically choose their route based on the timetable and the resulting travel
times.

The TimPass problem can be formulated as a satisfiability problem (SAT) [4]. In
addition, [4] presents methods for modelling time-varying demand between destina-
tions. Due to the formulation, SAT solvers can be used instead of IP solvers, yielding
promising computational results.

The cycle-basis formulation for PESP presented in [5] makes the problem easier
to solve. As TimPass is an extension of PESP, the same cycle-basis formulation can
also be used in TimPass [2].

Moving on to ML method applications in public transport planning, [6] experiment
with predicting the robustness of public transport schedules using multiple statistical
ML methods. They are able to predict the robustness accurately apart from a few edge
cases which are attributed to the lack of similar training data instances.

Going beyond traditional ML, [7] use deep multi-agent reinforcement Q-learning to
optimise the bus timetables in an aperiodic setting. As a case study, they demonstrate
that the proposed method is able to reduce the actual operating cost of Beĳing’s bus
network.

Inspired by reinforcement learning (RL) with transformers for solving routing
problems ([8]), [9] apply the method to the Transit Network Design and Frequency
Setting Problem. They obtain state-of-the-art results for a single benchmark instance.

[10] combine the SAT formulation for PESP with a multi-agent RL scheme, in
which they use the agents to generate heuristics for the SAT solver. The results are
very promising for a subset of the benchmark instances, hinting that the approach
could have more potential if a more complex decision policy was learned.

When it comes to ML heuristics in combinatorial optimization, [11] review the
methods on a high level. The authors highlight the diversity of the possible approaches.
The existing approaches use either imitation learning or experience-based methods
such as RL. However, the algorithmic structure is not tied to only e.g. directly
predicting the optimal solution. Some approaches instead learn to configure the
underlying solver to perform the best for the problem at hand, while other approaches
learn a subroutine that the solvers may use during the solving process, e.g. to learn a
cut.

In [12], the review is focused on methods that the solver uses as a subroutine. Like
in [11], the authors note the diversity of approaches. Both reviews conclude, that the
work on the ML methods in optimization seems promising, but generalisation of the
methods to all kinds of optimization problems is yet to be seen.

Continuing with the combinatorial optimization reviews, [13] notes the popularity
of graph neural networks (GNNs) in learning the heuristics. They also point out their
uses in SAT solvers. In [14], the authors use GNNs to both perform partial assignment
of the variables and to guide the branch and bound process of the SCIP solver. The
method yields outstanding results for the used large-scale real-world datasets, while
also performing well on the MIPLIB benchmark.

8

2 Methods
In this section, we introduce the used methods and their definitions. First, we present
the established mathematical tools used in public transport planning. These include the
mathematical representation of public transport systems and the integer programming
formulations. Next, we present the graph neural network methods used. Finally, we
define how the evaluation scheme ties all these methods together.

2.1 Event activity network data
Before we can define an event activity network, we have to define a few other things.

Definition 1 (Public Transport Network) A public transport network (PTN) is a
simple undirected graph PTN = (𝑆, 𝑅) with a set of stops 𝑆 and a set of direct
connections between the stops 𝑅.

A PTN describes the underlying transportation infrastructure of a public transport
system. We consider the connections to be undirected. This simplifies the modeling,
but one can also have a PTN with directed edges. The PTN can also be non-simple,
but that notation would make a difference only if there were either capacity constraints
per connection or if multiple modalities were used.

Stops and connections are not enough to model the public transport system. We
will use an event activity network (EAN) for that.

Definition 2 (Event Activity Network) The event activity network 𝐸𝐴𝑁 is a directed
graph EAN = (𝐸, 𝐴) with a set of events 𝐸 and a set of activities 𝐴 connecting the
events. The activities and events are defined later.

We will define the set of events 𝐸 and activities 𝐴 a bit later, as we need the notation
of a line concept for that first.

Definition 3 (Periodic timetabling) A period 𝑇 ∈ N defines the time interval at
which various events are repeated.

To contrast with periodic scheduling, in aperiodic scheduling the events do not
repeat, but happen only once at the time indicated by the timetable. We are interested
in the periodic instead of the aperiodic scheduling problem. This period could be
for example 60 minutes, one day, or something else. The appropriate period length
depends on what kind of schedule we aim to optimise.

Definition 4 (Line concept) A line 𝑙 ⊂ 𝑅 is a simple directed path in a PTN. A line
concept is a set of lines 𝐿 with associated frequencies 𝑓𝑙 ∈ N for all 𝑙 ∈ 𝐿. A frequency
determines how often a line is served within the period 𝑇 .

Here, we assume the lines to be directed, meaning that vehicles travel the line only
in one direction. Usually, in real-world lines, the vehicles travel in both directions,

9

but this can also be modeled here by including the reverse direction as a separate line
instance.

From the line concept, we can define the set of events 𝐸 and activities 𝐴 used in the
EAN. For the events, we have the disjoint arrival and departure types: 𝐸 = 𝐸arr∪𝐸dep.
As the names suggest, the sets 𝐸arr and 𝐸dep contain the events describing vehicle
arrivals and departures at the stops. To simplify the notation, we define the set of
available repetition numbers as 𝑅𝑙 = {1, . . . , 𝑓𝑙}. More formally, the sets are defined
as follows:

𝐸arr = {(arr, 𝑢, 𝑙, 𝑟) : 𝑙 ∈ 𝐿, 𝑢 ∈ 𝑙, 𝑟 ∈ 𝑅𝑙}
𝐸dep = {(dep, 𝑢, 𝑙, 𝑟) : 𝑙 ∈ 𝐿, 𝑢 ∈ 𝑙, 𝑟 ∈ 𝑅𝑙}

As seen in the definition, the events consist of the event type, the stop, the line, and
the line repetition number which is used to differentiate between separate repetitions
of the line in the periodic case.

For the activities, we also have multiple distinct types: drive, wait, change, and
sync. Thus, we have that 𝐴 = 𝐴drive ∪ 𝐴wait ∪ 𝐴change ∪ 𝐴sync. The formal definitions
are as follows:

𝐴drive ={((dep, 𝑢, 𝑙, 𝑟), (arr, 𝑣, 𝑙, 𝑟)) : 𝑙 ∈ 𝐿, (𝑢, 𝑣) ∈ 𝑙, 𝑟 ∈ 𝑅𝑙}
𝐴wait ={((arr, 𝑢, 𝑙, 𝑟), (dep, 𝑢, 𝑙, 𝑟)) : 𝑙 ∈ 𝐿, 𝑢 ∈ 𝑙, 𝑟 ∈ 𝑅𝑙}

𝐴change ={((arr, 𝑢, 𝑙1, 𝑟1), (dep, 𝑢, 𝑙2, 𝑟2)) :
(𝑙1, 𝑙2) ∈ 𝐿2, 𝑙1 ≠ 𝑙2, 𝑢 ∈ 𝑙1 ∩ 𝑙2, 𝑟1 ∈ 𝑅𝑙1 , 𝑟2 ∈ 𝑅𝑙2}

𝐴sync ={((𝑡, 𝑢, 𝑙, 𝑟 − 1), (𝑡, 𝑢, 𝑙, 𝑟)) : (𝑡, 𝑢, 𝑙, 𝑟) ∈ 𝐸, 𝑟 ≥ 2}

The drive activities correspond to the driving activity between stops. The activities
connect the line’s departure events to the corresponding arrival events. The wait
activities correspond to the vehicle staying at the station, waiting for the passengers
to board and disembark the vehicle. The wait activities connect arrival events to
departure events. The drive and wait activities are demonstrated in Fig. 1. The change
activities denote the line transfers that the passengers may take. The activities link
the arrivals to departures within the same stop that do not belong to the same line.
The idea of change activities and multiple lines at the same stop is shown in Fig. 2.
The sync activities are slightly different from the other activities, as the passengers
can not travel along those edges. For defining the optimization models, we note the
set of activities usable for passenger routing as 𝐴r = 𝐴 \ 𝐴sync. The purpose of sync
activities is to define constraints on the timetable to have some predefined spacing
among the repetitions of the lines. How sync activities are connected is shown in
Fig. 3. Defining the constraints on all sync activities is not mandatory. In that case,
the sync activities without constraints are redundant.

2.2 Integer programming formulations
Next we define the integer programming formulations used. We start with the periodic
event scheduling problem (PESP) and its cycle basis formulation. Then, we extend the

10

arr,fw dep,fw arr,fw dep,fw

dep,bw arr,bw dep,bw arr,bw

wait drive wait

waitdrivewait

stop 1 stop 2

Figure 1: Demonstration for arrival and departure events, drive and wait activities,
and line directions. The figure depics how a single line passing through stops 1 and 2
is modelled within the EAN. For both line direction fw and bw we have departure and
arrival events at each of the stops. Between the stops, departure events are connected
to corresponding arrival events with a drive activity, and within the stop the arrival
event connects to a departure event with a wait activity.

arr,line 1 dep,line 1 arr,line 1 dep,line 1

arr,line 2 dep,line 2 arr,line 2 dep,line 2

wait drive wait

waitdrivewait

changecha
ng

e changecha
ng

e

stop 1 stop 2

Figure 2: Demonstration for multiple lines at a stop and change activities. We have
two lines, that share the stops 1 and 2. Within one stop, the change activities connect
arrival events to departure events of different lines. We omit the reverse directions of
the lines for clarity in this demonstration.

11

arr,rep 0

arr,rep 1

arr,rep 2

dep,rep 0

dep,rep 1

dep,rep 2

arr,rep 0

arr,rep 1

arr,rep 2

dep,rep 0

dep,rep 1

dep,rep 2

wait drive wait

wait drive wait

wait drive wait

sy
nc

sy
nc

sy
nc

sy
nc

sy
nc

sy
nc

sy
nc

sy
nc

stop 1 stop 2

Figure 3: Demonstration for higher frequency lines and sync activities. We have a
single line passing through stops 1 and 2, but with multiple repetitions per time period.
For eacch repetition, we have a new set of activities and events. For the subsequent
repetitions, the events are connected with sync activities. The sync activities are not
routable, but are used for constraining the spacing of the repetitions.

PESP problem with passenger routing to obtain the timetabling and passenger routing
(TimPass) problem.

2.2.1 Periodic event scheduling problem

The PESP problem is first presented in [3]. We follow the formulation in [2] with
notation adapted to be in line with our definition of the EAN. In periodic scheduling,
we have a periodic schedule 𝜋 defined for the events in the EAN. The event times are
noted as 𝜋𝑖 ∈ {0, . . . , 𝑇 − 1} for all events 𝑖 ∈ 𝐸 . As we are working with a periodic
schedule, all the event occurrence times can be assumed to be lower than the period of
the schedule 𝑇 .

The activities in the EAN are used to define constraints on the upper and lower
bounds for activity durations. For all activities 𝑎 ∈ 𝐴, we have the lower bound
𝐿𝑎 ∈ N and upper bound 𝑈𝑎 ∈ N. For the bounds, we of course must also have
that 0 ≤ 𝐿𝑎 ≤ 𝑈𝑎. The activity duration for activity 𝑎 = (𝑖, 𝑗) itself is calculated as
(𝜋 𝑗 − 𝜋𝑖 − 𝐿𝑎) mod 𝑇 + 𝐿𝑎. The lower bound term outside of the modulo ensures,
that the lower bound is respected. The term inside the modulo is the "slack" time we
have due to the schedule not aligning perfectly with the lower bound. As formulated,
the duration is guaranteed to be greater or equal to the lower bound. For the given
timetable 𝜋 to be feasible, for all activities 𝑎 ∈ 𝐴 we must have that the upper bound
holds: (𝜋 𝑗 − 𝜋𝑖 − 𝐿𝑎) mod 𝑇 + 𝐿𝑎 ≤ 𝑈𝑎.

As the modulo operator does not fit well into linear programming as is, we replace
the modulo with an integer multiple of the period 𝑇 . The multiplier 𝑧𝑎 ∈ Z becomes
a decision variable. The lower bounds terms cancel out and the expression for the
edge duration is now 𝜋 𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 . As the multiplier 𝑧𝑎 can be chosen freely, this is

12

equivalent to the formulation with the modulo.
In addition to the EAN, we need information on the passenger demand between

the stops of the PTN. We note the number of passengers wanting to travel from stop 𝑢

to stop 𝑣 as OD𝑢,𝑣 ∈ N. Not all stop pairs have demand: we express the set of stop
pairs with non-zero demand as OD = {(𝑢, 𝑣) : (𝑢, 𝑣) ∈ 𝑆 × 𝑆,OD𝑢,𝑣 > 0}.

For routing of the passengers, we assume a fixed routing that is given beforehand.
When routing the passengers, each OD pair assumes some path from 𝑢 to 𝑣 through
the EAN, and for the chosen path edges the weight 𝑤𝑎 is incremented by the number of
passengers using that route. We will later return to routing in a subsequent section. For
now, it’s enough to recognize, that we have a weight 𝑤𝑎 ∈ N for all routable activities
𝑎 ∈ 𝐴r of the EAN.

The total travel time given a timetable is expressed as
∑︁

𝑎=(𝑖, 𝑗)∈𝐴r 𝑤𝑎 (𝜋 𝑗 −𝜋𝑖 + 𝑧𝑎𝑇).
In PESP, we try to minimise this by searching for good timetables 𝜋. However, when
routing the passengers given a timetable, the passengers may not always choose the
fastest route, as inconveniences, e.g. transfers, affect the route decision. We model this
by including a penalty 𝑏𝑎 > 0, 𝑎 ∈ 𝐴 that is considered when routing the passengers.
In practice, we use shortest path routing but add the penalty to the transfer activity
duration.

The total penalised travel time is
∑︁

𝑎=(𝑖, 𝑗)∈𝐴r 𝑤𝑎 (𝜋 𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 + 𝑏𝑎). Note, that as
𝑤𝑎 and 𝑏𝑎 do not depend on 𝜋, we can substitute this as the PESP objective without
affecting the optimal timetable. The new objective is equal to the total travel time plus
a constant

∑︁
𝑎∈𝐴r 𝑤𝑎𝑏𝑎. However, we prefer this objective formulation, as it will be

directly comparable with the TimPass model objective defined in Eq. (19).
Note, that the objective only considers the routable activities, but the constraints

take all activities into account.

(PESP) min
∑︁
𝑎∈𝐴r

𝑤𝑎 (𝜋 𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 + 𝑏𝑎) (1)

s.t. 𝐿𝑎 ≤ 𝜋 𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝐴 (2)
𝜋𝑖 ∈ {0, . . . , 𝑇 − 1} 𝑖 ∈ 𝐸 (3)
𝑧𝑎 ∈ Z 𝑎 ∈ 𝐴 (4)

The formulation for the PESP problem using the schedule 𝜋 is correct, but it’s not
the most efficient one available. As presented in [5], instead of explicitly defining
the times for the events, we can instead define just the activity durations directly.
We note the activity duration as 𝑥𝑎 ∈ N. Now the constraint on activity durations is
much simpler: 𝐿𝑎 ≤ 𝑥𝑎 ≤ 𝑈𝑎 ∀𝑎 ∈ 𝐴. This formulation also implicitly reduces the
number of symmetrical solutions: when directly defining the event times by 𝜋 we
would need to fix some event time explicitly to prevent symmetrical solutions from
being considered.

We still need to take the cycles and their feasibility in the EAN into account. In
Fig. 4, we have the activities a, b, c, d, e, and f. For the activity durations to be
consistent, we must have that the difference of duration of the upper path 𝑥𝑎 + 𝑥𝑏 + 𝑥𝑐
and lower path 𝑥 𝑓 + 𝑥𝑒 + 𝑥𝑑 must be an integer multiple of the period 𝑇 . More formally,
𝑥𝑎 + 𝑥𝑏 + 𝑥𝑐 − 𝑥𝑑 − 𝑥𝑒 − 𝑥 𝑓 = 𝑧𝑇 for some 𝑧 ∈ Z. The difference can be a multiple of

13

a b c

f

e

dcycle
direction

Figure 4: Cycle consistency example.

the period as we are dealing with a periodic timetable, otherwise the difference should
be zero.

Definition 5 (Cycles in a directed graph) A list of activities (𝑎1, 𝑎2, . . . , 𝑎𝑛) is a simple
cycle if each activity is unique: 𝑎𝑖 ≠ 𝑎 𝑗 , 𝑖 ≠ 𝑗 for all 𝑖 and 𝑗 in {1, . . . , 𝑛}, adjacent
activities share at least one event: |𝑎𝑖 ∩ 𝑎 𝑗 | ≥ 1 for all 𝑖 = 1, . . . , 𝑛 and 𝑗 = (𝑖 − 1)
mod 𝑛, and the events of the activities are visited exactly once: | ∪𝑖=1,...,𝑛 𝑎𝑖 | = 𝑛.
The cycle activities are divided into a set of positive edges 𝑐+ and negative edges 𝑐−.
The positive edges are defined as 𝑐+ = {𝑎𝑖 = (𝑒1, 𝑒2) : 𝑒1 ∈ 𝑎 𝑗 , 𝑗 = (𝑖 − 1) mod 𝑛}.
Likewise, 𝑐− = {𝑎𝑖 : 𝑎𝑖 ∉ 𝑐+}.

In the cycle basis formulation, we consider cycles regardless of the edge direction,
but the cycle does have a direction. All the edges of a cycle 𝑐 belong either to the
set of "positive edges" 𝑐+ or the set of "negative edges" 𝑐−, based on the direction of
the edges along the cycle. In the example of Fig. 4, we have that 𝑐+ = {𝑎, 𝑏, 𝑐} and
𝑐− = {𝑑, 𝑒, 𝑓 }. In more general terms, for a cycle 𝑐 to be consistent, for some 𝑧 ∈ Z
we must have: ∑︁

𝑎∈𝑐+
𝑥𝑎 −

∑︁
𝑎∈𝑐−

𝑥𝑎 = 𝑧𝑇 (5)

An EAN may have many cycles, but luckily we do not have to check the condition
for all of them. Following [5], we can construct a cycle basis for the EAN and checking
the condition only for the basis is enough. In short, a cycle basis is a subset of the
graph’s cycles that can be used to construct every other cycle in the graph. We denote
the cycle basis as 𝐶. As the cycle inconsistency can be a problem only with activities
with constraints, we calculate the cycle basis for activities that can have constraints,
i.e. the set 𝐴.

Now we may define the cycle basis formulation for the PESP problem. The
formulation is quite similar to the original definition, but now the activity duration
is expressed in a very concise way and we have the additional cycle consistency

14

constraint:

(PESP cycle basis) min
∑︁
𝑎∈𝐴r

𝑤𝑎 (𝑥𝑎 + 𝑏𝑎) (6)

s.t. 𝑧𝑐𝑇 =
∑︁
𝑎∈𝑐+

𝑥𝑎 −
∑︁
𝑎∈𝑐−

𝑥𝑎 𝑐 ∈ 𝐶 (7)

𝐿𝑎 ≤ 𝑥𝑎 ≤ 𝑈𝑎 𝑎 ∈ 𝐴 (8)
𝑧𝑐 ∈ Z 𝑐 ∈ 𝐶 (9)
𝑥𝑎 ∈ Z 𝑎 ∈ 𝐴 (10)

2.2.2 Timetabling and passenger routing problem

In the TimPass problem presented in [1], we are free to choose the route used for each
OD pair in addition to the timetable as we minimise the total perceived travel time. In
PESP, we have fixed passenger counts 𝑤𝑎 per activity. In TimPass, we optimise the
passenger routing and consequently the weights 𝑤𝑎 at the same time as we optimise
the timetable. This yields better solutions, as it takes passenger behaviour into account.
In general, the passengers prefer to use routes with the shortest travel time to get to
their destination.

However, to represent the routes from stop 𝑢 to stop 𝑣 in an EAN, we would
prefer to have a single predefined node representing the start of paths from stop 𝑢 and
likewise a single node representing the end of the path at stop 𝑣. This is contrast to the
path starting from or ending at some node in the set of events belonging to a stop. To
achieve this, we introduce the auxiliary events 𝐸aux and auxiliary activities 𝐴aux.

Definition 6 (Auxiliary events and activities) Each stop 𝑢 ∈ 𝑆 of a PTN is associ-
ated with an auxiliary origin and destination event:

𝐸aux = {(𝑡, 𝑢) : 𝑡 ∈ {orig, dest}, 𝑢 ∈ 𝑆}

Each auxiliary event is connected via auxiliary activities to the corresponding events
in the EAN:

𝐴aux = {((orig, 𝑢), 𝑖) : 𝑖 = (𝑡, 𝑢, 𝑙, 𝑟) ∈ 𝐸, 𝑡 = dep}
∪{(𝑖, (dest, 𝑢)) : 𝑖 = (𝑡, 𝑢, 𝑙, 𝑟) ∈ 𝐸, 𝑡 = arr}

The auxiliary event and activity construction is demonstrated in Fig. 5. Now, when
considering a route from stop 𝑢 to 𝑣, we know that the path starts from (orig, 𝑢) and
ends at (dest, 𝑣).

To denote the set of all routable activities, we note 𝐴+r = 𝐴r ∪ 𝐴aux. Similarly, to
denote all events including the auxiliary events, we note 𝐸+ = 𝐸 ∪ 𝐸aux. Auxiliary
activities are not considered to be actual activities in the sense of not having a duration.
As such, the auxiliary activities are not subject to duration constraints and are not part
of the objective function.

To note if the activity 𝑎 is part of the chosen path between stops 𝑢 and 𝑣, we have
the flow variable 𝑝𝑢𝑣𝑎 ∈ {0, 1}, (𝑎, 𝑢𝑣) ∈ 𝐴+r × OD. This allows us to set up some

15

constraints on what is considered a valid path. For a path from stop 𝑢 to stop 𝑣 to be
valid, it must start at the event (orig, 𝑢) and end at (dest, 𝑣). Additionally, the path
must be connected from the origin all the way to the destination, i.e., for all events
that are not auxiliary events we must have an equal number of ingoing and outgoing
activities that are used in the path. The activity is used to route from 𝑢 to 𝑣 if the
corresponding flow variable is one: 𝑝𝑢𝑣𝑎 = 1.

We can formalise this by introducing a node-arc-incidence matrix M and an
origin-destination vector 𝑞uv = (𝑞uv

𝑖
)𝑖∈𝐸+ . For a origin-destination pair (𝑢, 𝑣) ∈ OD,

the origin-destination vector elements are:

𝑞uv
𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if 𝑖 = (orig, 𝑢)
1 if 𝑖 = (dest, 𝑣)
0 otherwise

(11)

For the node-arc incidence matrix M = (𝑚𝑖,𝑎)(𝑖,𝑎)∈𝐸+×𝐴+r , we have that the element
is minus one if the activity leads away from the event, one if the activity leads to the
event and zero otherwise. Formally:

𝑚𝑖,𝑎 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if 𝑎 = (𝑖, 𝑗) for some 𝑗 ∈ 𝐸+

1 if 𝑎 = (𝑗 , 𝑖) for some 𝑗 ∈ 𝐸+

0 otherwise
(12)

With this notation, we can finally construct the constraint necessary for the set of
active flow variables to constitute a valid path from stop 𝑢 to stop 𝑣:

M(𝑝𝑢𝑣𝑎)𝑎∈𝐴+r = 𝑞uv 𝑢𝑣 ∈ OD (13)

This constraint does not actually prevent the flow variables from creating a cycle, but as
we are minimising the total perceived travel time, those cycles would be non-optimal
and thus they will not occur in optimal solutions.

arr dep arr dep

arr dep arr dep

aux dest aux origin aux dest aux origin
stop 1 stop 2

Figure 5: Demonstration of how auxiliary events are connected to the rest of the
EAN. Note, that some annotations are left out for clarity. Apart from the auxiliary
events and activities, the graph is the same as in Fig. 2.

16

We can express the total perceived travel time as the sum of perceived travel times
over all OD pairs. Thus, we are minimising the following expression:∑︁

𝑢𝑣∈OD
OD𝑢𝑣

∑︁
𝑎∈𝐴r

𝑝𝑢𝑣𝑎 (𝑥𝑎 + 𝑏𝑎) (14)

However, we have a problem as we hope to get a linear integer programming problem.
Now we have 𝑝𝑢𝑣𝑎 𝑥𝑎, which is not linear as both terms are decision variables. Luckily,
as the flow variable 𝑝𝑢𝑣𝑎 can only be either 0 or 1, we can linearise this expression
easily.

We create the linearization decision variable lin𝑢𝑣𝑎 for all 𝑎 ∈ 𝐴r and 𝑢𝑣 ∈ OD. We
aim to always have lin𝑢𝑣𝑎 = 𝑝𝑢𝑣𝑎 (𝑥𝑎 + 𝑏𝑎) without explicitly stating this equality, as
the right-hand side has the non-linear term. We achieve this by constructing suitable
constraints for the linearization term.

Let 𝐵 be some large integer for which 𝐵 ≥ 𝑥𝑎 + 𝑏𝑎 for all 𝑎 ∈ 𝐴r. With this value,
we can come up with the following set of constraints:

lin𝑢𝑣𝑎 ≥ 0 (15)
lin𝑢𝑣𝑎 ≤ 𝑝𝑢𝑣𝑎 𝐵 (16)
lin𝑢𝑣𝑎 ≤ 𝑥𝑎 + 𝑏𝑎 (17)
lin𝑢𝑣𝑎 ≥ 𝑥𝑎 + 𝑏𝑎 − (1 − 𝑝𝑢𝑣𝑎)𝐵 (18)

Now, if 𝑝𝑢𝑣𝑎 = 0, we must have that lin𝑢𝑣𝑎 = 0. If 𝑝𝑢𝑣𝑎 = 1, then lin𝑢𝑣𝑎 = 𝑥𝑎 + 𝑏𝑎.
Now we can finally express the TimPass problem with the cycle basis formula-

tion. We omit the linearization term and constraints for clarity, but in practice, the
linearization must be done for commonly available solvers to function properly.

(TimPass) min
∑︁

uv∈OD
ODuv

∑︁
𝑎∈𝐴r

𝑝uv
𝑎 (𝑥𝑎 + 𝑏𝑎) (19)

s.t. 𝑧𝑐𝑇 =
∑︁
𝑎∈𝑐+

𝑥𝑎 −
∑︁
𝑎∈𝑐−

𝑥𝑎 𝑐 ∈ 𝐶 (20)

𝐿𝑎 ≤ 𝑥𝑎 ≤ 𝑈𝑎 𝑎 ∈ 𝐴 (21)
M(𝑝uv

𝑎)𝑎∈𝐴+r = 𝑞uv uv ∈ OD (22)
𝑥𝑎 ∈ Z 𝑎 ∈ 𝐴 (23)
𝑧𝑐 ∈ Z 𝑐 ∈ 𝐶 (24)
𝑝uv
𝑎 ∈ {0, 1} 𝑎 ∈ 𝐴+r , uv ∈ OD (25)

The given formulation for the TimPass problem works, but we are left with many
flow variables. Luckily, there is a way to reduce the complexity by calculating which
flows can never exist in the optimal solution. This method is first presented in [2].

To formalise the preprocessing, we will need a notation for the shortest paths. In
practice, the shortest paths will be calculated with Dĳkstra’s algorithm.

Definition 7 (Shortest Path) Let 𝐷 be the vector of durations for activities so that
𝐷𝑎 ∈ N. We calculate the length of a path 𝑃 as Len(𝑃, 𝐷) = ∑︁

𝑎∈𝑃 𝐷𝑎. We define the

17

Algorithm 1 Flow variable preprocessing for OD pair (𝑢, 𝑣).
Auxiliary event 𝑖 = (orig, 𝑢)
Auxiliary event 𝑗 = (dest, 𝑣)
Initialise P𝑢𝑣 ← ∅
Calculate 𝛽 := len(SP𝑖, 𝑗 (𝑈𝑏),𝑈𝑏) ⊲ Longest possible route length from 𝑖 to 𝑗 .
for 𝑘 ∈ 𝐸+ do

Calculate 𝛾𝑘 := len(SP𝑖,𝑘 (𝐿𝑏), 𝐿𝑏) ⊲ Shortest possible path length from 𝑖 to 𝑘

Calculate 𝛿𝑘 := len(SP𝑘, 𝑗 (𝐿𝑏), 𝐿𝑏) ⊲ Shortest possible path length from 𝑘 to 𝑗

for 𝑎 = (𝑖, 𝑗) ∈ 𝐴+r do
if 𝛾𝑖 + 𝐿𝑏

𝑎 + 𝛿 𝑗 > 𝛽 then
P𝑢𝑣 ← P𝑢𝑣 ∪ {𝑎} ⊲ The activity can never belong to the shortest path with
any timetable, so we ignore it.

function SP𝑖, 𝑗 (𝐷) to return a shortest path between the events 𝑖 and 𝑗 , i.e.

min
𝑃

Len(𝑃, 𝐷) = Len(SP𝑖, 𝑗 (𝐷), 𝐷) (26)

Where 𝑃 is a valid path between events 𝑖 and 𝑗 .

The upper and lower bounds can be used as the duration in both Len and SP.
However, as in the TimPass problem we are dealing with perceived travel times, we
should include the penalty term in the duration. Thus, let us define 𝐿𝑏 = (𝐿𝑎 + 𝑏𝑎)𝑎∈𝐴
and 𝑈𝑏 = (𝑈𝑎 + 𝑏𝑎)𝑎∈𝐴. Now we can use these to calculate which flow variables 𝑝𝑢𝑣𝑎
can never be active in the optimal solution.

In Algorithm 1, we present the algorithm for calculating which flow variables can
be safely set to zero. We need to run the algorithm for each OD pair for which we want
to reduce the number of flow variables. On a high level, the algorithm first calculates
an upper bound as the longest possible route that can belong to an optimal solution.
The length of that route under the upper bound edge durations is 𝛽. Then, for each
activity, we check if the activity can belong to an optimal solution by checking if
including the activity would increase the lowest possible perceived travel time for the
path above 𝛽. In the end, we obtain a set of activities P𝑢𝑣, for which we can set the
corresponding flow variable to zero. We handle the preprocessing by including the
following constraint in the model:

𝑝𝑢𝑣𝑎 = 0 𝑢𝑣 ∈ OD, 𝑎 ∈ P𝑢𝑣 (27)

2.3 Shortest path routing heuristic
A simple baseline heuristic to the TimPass problem is to route the passengers according
to the lower bound shortest paths and to then solve the timetable with PESP. Formally,
we calculate the weights with Algorithm 2 by using the penalised lower bounds 𝐿𝑏 as
the activity durations. As we do not have capacity constraints on the activities, we can
route each OD pair independently of each other.

18

Algorithm 2 Weight calculation from edge durations
Require: Activity durations 𝐷

𝑤𝑎 = 0 for all 𝑎 ∈ 𝐴.
for (𝑢, 𝑣) ∈ OD do

𝑖 = (orig, 𝑢)
𝑗 = (dest, 𝑣)
for 𝑎 ∈ SP𝑖, 𝑗 (𝐷) do

𝑤𝑎 ← 𝑤𝑎 + ODu,v

We use the obtained weights in the PESP to obtain a timetable. The timetable
evaluation is conducted in the same way as for the newly proposed heuristic. The
evaluation method is described in Section 2.5. Note, that despite the weights used
here representing real passengers, we should still do the rerouting as described in
the evaluation method, as that can improve the objective. We want to ensure fair
evaluation for both the baseline and the proposed heuristic.

2.4 Graph Neural Networks
In general, neural networks are machine learning models with a large number of
learnable parameters. The networks consist of multiple additions and multiplications in
many layers. Even though the individual operations seem simple, surprisingly complex
behaviour can emerge. Graph neural networks (GNNs) are a set of architectures that
operate on graph data. To be specific, we focus here on message-passing architectures
[15], but other methods for processing graph data do exist.

In GNNs, the graph 𝐺 = (𝑉, 𝐸) contains the node-level features 𝑥𝑣, 𝑣 ∈ 𝑉 and
edge-level features 𝑒𝑣𝑤, (𝑣𝑤) ∈ 𝐸 . We note the neighbourhood of node 𝑣 ∈ 𝑉

as 𝑁 (𝑣) = {𝑤 : (𝑣, 𝑤) ∈ 𝐸} ⊆ 𝑉 . The GNN as in [16] is viewed as a function
𝑓 : 𝐺 ×𝑉 → R𝑚 that maps the node 𝑣 ∈ 𝑉 of a graph 𝐺 into 𝑚-dimensional Euclidian
space. Essentially, this generates some R𝑚 representations for the nodes that we can
then use for other downstream tasks, e.g. regression or classification. In [15] the
message-passing framework is introduced as a way to formalise the various variants of
the graph neural networks. In message-passing GNNs (MPGNNs), the neighbourhoods
are used to pass messages between nodes that are used to update the states of the nodes.
This differs from the other large class of GNNs that use the spectral representation of
graphs [17].

The algorithm contains multiple layers of message passing and processing, which
ultimately yields the mapping or embedding of the nodes. We note the number of
layers as 𝑇 . For each layer 𝑡, we learn a message construction function 𝑀𝑡 and a state
updating function𝑈𝑡 . The combination of the functions is used to construct the hidden
states of the nodes ℎ𝑡+1𝑣 for the next layer 𝑡 + 1.

The message construction function 𝑀𝑡 (ℎ𝑡𝑣, ℎ𝑡𝑤, 𝑒𝑣𝑤), 𝑤 ∈ 𝑁 (𝑣) maps the hidden
states and the edge features of the neighbourhood of 𝑣 to messages. These messages
can then be aggregated in some edge ordering agnostic way, e.g. a sum in case of the
messages belonging to some Euclidean space. The requirement for the aggregation to

19

be symmetric is important: otherwise the hidden state update would depend on the
order in which we process the edges, but this is not justified by the structure of the
graph. The messages from the neighbourhood are aggregated to a single aggregated
message 𝑚𝑡

𝑣:

𝑚𝑡
𝑣 =

∑︁
𝑤∈𝑁 (𝑣)

𝑀𝑡 (ℎ𝑡𝑣, ℎ𝑡𝑤, 𝑒𝑣𝑤) (28)

The state update function maps the current hidden state and the obtained aggregated
message to a new hidden state: ℎ𝑡+1𝑣 = 𝑈𝑡 (ℎ𝑡𝑣, 𝑚𝑡

𝑣). This forms a layer together with
the message generation and aggregation functions. The layers are repeated multiple
times, each one with their own trainable parameters.

The obtained node embeddings ℎ𝑇𝑣 of the last layer are used as inputs for the
downstream tasks. For example, in the case of a regression problem, we can have
a single-layer perceptron, mapping ℎ𝑇𝑣 ↦→ �̂� ∈ R. Then, in a supervised setting, we
can calculate the loss ℓ(𝑦, �̂�) ∈ R against the true label 𝑦 and use some optimization
algorithm to update the model parameters to minimise the loss.

Typically, an optimization method for neural networks uses some variation of
the stochastic gradient descent (SGD). In SGD, the gradient of the loss w.r.t. �̂�

is propagated back through the network to obtain the gradient with respect to the
parameters. In standard SGD, the gradients multiplied by a suitable step size is used
as the parameter update. However, it has been noted that this method is susceptible to
getting stuck on local minima. In this thesis, we are be using the Adam optimizer [18],
which can be viewed as an extension of SGD with momentum and step size adaption.

One desirable quality of MPGNNs is that the same model can be used with
networks of varying sizes. This does not limit us to always have the same number of
nodes and edges in the problem.

2.4.1 Positional encodings

One limitation of the message-passing framework is, that if the initial node features
are equal, some non-isomorphic network structures may not be detected [19]. This
can be resolved by injecting some structural information to the features of the nodes.
In this case, we will be using Laplacian eigenvector positional encodings (Laplacian
PE) [20] to allow the model to better differentiate many kinds of structures.

Let 𝐴 be the adjacency matrix of a graph. The elements of the Laplacian matrix 𝐿

are then

𝐿𝑖 𝑗 =

{︄
𝐴𝑖 𝑗 , 𝑖 ≠ 𝑗∑︁

𝑘∈𝑉 𝐴𝑖𝑘 , 𝑖 = 𝑗
(29)

The Laplacian eigenvectors fi are the eigenvectors of the Laplacian matrix. For the
positional encoding, we take the eigenvectors with𝑚 largest corresponding eigenvalues
and inject the resulting vector values to the nodes.

The sign of the eigenvectors can be arbitrary. This is why we choose only top-𝑚
vectors, as when training the model we need to pick a random combination of signs.

20

The model can learn the invariance to the sings symmetries much easier, as we have a
limited number of possible combinations.

A naive way of implementing the positional encoding would be to just use some
random ordering of the nodes. This has the flaw that we would need to train the model
using all possible orderings of the nodes to make the model learn to be invariant to
the actual order, and just use it for positional information. As we typically choose
𝑚 ≪ |𝑉 |, using the Laplacian eigenvectors for positional encoding makes the model
training much easier.

We use the Laplacian PE implementation from [21].

2.4.2 Network architecture

The typical MPGNNs are designed for homogenous graphs, meaning that the nodes
and edges have the same semantic meaning. However, in this thesis, we need to include
also non-homogenous information, as on top of the events and activities we have the
OD demands. This pushes us to use more contemporary methods that allow us to
model heterogeneous graphs. We chose to use the Heterogenous Graph Transformer
(HGT) architecture [22]. The HGT architecture also includes methods for dealing
with "web-scale networks" and temporal graphs, but we will omit those methods, as
the networks we are dealing with are much smaller and do not vary over time.

In heterogenous graphs 𝐺 = (V, E,A,R), the nodes 𝑣 ∈ V and edges 𝑒 ∈ E
are associated to node types A and edge types R by mapping functions 𝜏 : V →
A, 𝑣 ↦→ 𝜏(𝑣) and 𝜙 : E → R, 𝑒 ↦→ 𝜙(𝑒). This allows us to define the meta-relation
⟨𝜏(𝑢), 𝜙(𝑒), 𝜏(𝑣)⟩ of an edge 𝑒 = (𝑢, 𝑣). This meta-relation is the tuple of the origin
and destination node types and the edge relation. Using the meta-relation we can
comprehensively state what kind of interaction an edge expresses. This will be
used later when defining the message-passing methods of the network. Note, that
a node-type pair may have multiple kinds of relations, this is why we need to also
include the type of the edge to the meta-relation.

As in the MPGNN architecture, the HGT also consists of multiple layers that
generate messages and aggregate them over the neighbourhood of a node 𝑣 to generate
the updated hidden state ℎ𝑡𝑣. However, in a heterogeneous setting, the feature
distributions of the nodes of different types are also assumed to be different. This
motivates the use of different message generation and update functions for different
meta-relations and node types. The architecture also uses an attention mechanism
to give more weight to messages coming from nodes that the model estimates to be
important.

We define the set of all edges from node 𝑢 to 𝑣 as 𝐸 (𝑢, 𝑣). Note, that as the node
pair may have multiple relation types, 𝐸 (𝑢, 𝑣) is a set with possibly multiple elements,

At a high level, the HGT layer’s embedding update function 𝑈𝑡 is defined as

ℎ𝑡+1𝑣 = 𝑈𝑡 (ℎ𝑡𝑣, 𝑚𝑡
𝑣) = A-lin𝜏(𝑣) (𝜎(𝑚𝑡

𝑣)) + ℎ𝑡𝑣 (30)

First, the update functions applies a non-linear transformation 𝜎 and then a node-type
dependent linear mapping A-lin. The mapped value is then added to the residual
connection ℎ𝑡𝑣 to obtain the updated state. The non-linear transformation used is the

21

Gaussian Error Linear Unit [23]. All linear mappings *-lin are mappings of form
*-lin(𝑥) = 𝐴𝑥 + 𝑏, 𝑥 ∈ R𝑚 with learnable parameters 𝐴 ∈ R𝑛×𝑚 and 𝑏 ∈ R𝑛.

The HGT architecture uses multi-head attention when aggregating the messages
from various neighbors. Attention is a mechanism that estimates the importance of
various messages. The attention values are used to multiply the messages, essentially
resulting in a weighted sum aggregation. The multi-head part means, that instead
of doing the step above only once, we have multiple attention heads doing the same
message-generation and weighted sums in parallel. This allows the model to better
pay attention to multiple important inputs.

We note the set of outbound edges from node 𝑣 and the corresponding neighbors
as 𝑁𝐸 (𝑣) = {(𝑢, 𝑒) : 𝑢 ∈ 𝑁 (𝑣), 𝑒 ∈ 𝐸 (𝑢, 𝑣)}. To obtain the aggregated message, we
concatenate the weighted sums obtained from the attention heads. The aggregated
message 𝑚𝑡

𝑣 is calculated as:

𝑚𝑡
𝑣 =

∑︁
(𝑢,𝑒)∈NE(𝑣)

∥︁∥︁∥︁𝑛heads

𝑖=1
SoftMax

𝑖,𝑢,𝑒,𝑣
(Att-head𝑖 (𝑢, 𝑒, 𝑣))MSG-head𝑖 (𝑢, 𝑒, 𝑣)

The message heads are defined as:

MSG-head𝑖 (𝑢, 𝑒, 𝑣) = M-Linear𝑖
𝜏(𝑢) (ℎ

𝑡
𝑢)𝑊

msg
𝜙(𝑒)

The message head value is calculated by first calculating a source node type-dependent
linear mapping. This is then projected with an edge-type dependent matrix to form
the message head.

The attention head yields scalar values that are then normalised with the SoftMax
function over the neighbourhood of the node. The attention head is defined as:

Att-head𝑖 (𝑢, 𝑒, 𝑣) = K-linear𝑖
𝜏(𝑢) (ℎ

𝑡
𝑢)𝑊att

𝜙(𝑒) Q-linear𝑖
𝜏(𝑣) (ℎ

𝑡
𝑣)
𝜇𝑢,𝑒,𝑣√

𝑑

The attention head first maps the hidden states to a key and a query vector. Typically
in attention calculation, we would then directly take the dot product of the vectors.
However, this does not take the relation type into consideration. For this reason, we
introduce a relation-dependant projection before the dot product. Finally, we scale the
result based on a learnable scalar and the number of hidden dimensions 𝑑.

2.5 Heuristic evaluation method
The GNN heuristic yields weights for the activities in the EAN and with those weights
we solve the schedule with PESP. However, we cannot directly calculate the TimPass
objective value from the weights and the schedule, as the weights can be arbitrarily
scaled so it does not represent the total number of passengers per activity. We will
solve this by calculating the objective minimising properly scaled weights based on
the obtained schedule. Luckily, this is easy to do, as the shortest path routing based on
the obtained activity durations minimises the objective for the given schedule.

22

We will now show that the shortest path routing minimises the objective for a fixed
schedule. Let 𝑃(𝑢, 𝑣) be a path between stops 𝑢 and 𝑣. The TimPass objective can
formulated equivalently in terms of routes or paths instead of flow variables:

min
𝑃

∑︁
𝑢𝑣∈OD

OD𝑢𝑣

∑︁
𝑎∈𝑃(𝑢,𝑣)

𝑥𝑎 (31)

=min
𝑃

∑︁
𝑢𝑣∈OD

OD𝑢𝑣 Len(𝑃(𝑢, 𝑣), 𝑥) (32)

Remember that we don’t have capacity constraints for the activities. This means,
that the paths are independent of each other. This means, that we can simply minimise
each term of the sum independently. By the definition of the shortest path route
𝑆𝑃𝑢,𝑣 (𝑥), the shortest path routing minimises this objective.

=
∑︁

𝑢𝑣∈OD
OD𝑢𝑣 min

𝑃(𝑢,𝑣)
Len(𝑃(𝑢, 𝑣), 𝑥) (33)

=
∑︁

𝑢𝑣∈OD
OD𝑢𝑣 Len(SP(orig,𝑢),(dest,𝑣) (𝑥), 𝑥) (34)

We calculate the objective value for the heuristic from Eq. (34) by setting 𝑥 to
be the activity durations solved from the PESP. This value can be compared with
both the shortest path heuristic and the TimPass solution’s upper and lower bounds to
determine how well the heuristic is doing.

23

1 2

3 4

5 6

78

Figure 6: The base PTN on which we generate data.

3 Experiment setup

3.1 Data generation
To train the neural network, we generated a large number of EANs and ODs for which
we can solve the TimPass problem to optimality in reasonable time. The problem
typically has multiple solutions, but for reasons explained in Section 4.3 we need to
control which of the optimal solutions we obtain. All problems use the same PTN
with varying lines, duration bounds, frequencies, demands, and penalties. We use a
period 𝑇 of 60 minutes. The PTN is drawn in Fig. 6.

Next we define the notation used for the uniform distribution in the algorithms.
We use sampling of distributions to generate variations in the training data.

Notation 1 (Uniform distributions) ByU{𝑥, 𝑦} we denote the discrete uniform dis-
tribution between 𝑥 ∈ Z and 𝑦 ∈ Z, including endpoints. The continuous counterpart
U[𝑥, 𝑦] is the continuous uniform distribution between 𝑥 ∈ R and 𝑦 ∈ R, excluding 𝑦.
Note that the bracket type differentiates the continuous distribution from the discrete
one.

First, we list all available lines as the set L with at least three stops and filter the
reversed line versions out. To keep the line plan realistic, we later add the reverse
line directions back to the plan. Then, we sample the line plan size |𝐿 | ∼ U{2, 4}.
Knowing the size, we sampled the lines belonging to the plan uniformly without
replacement from the set of lines: 𝐿 ⊂ L. As we want to emulate real EANs, we
check whether the resulting EAN would be connected if the reverse directions for the
lines were also included. If this is not the case, we sample the line concept 𝐿 again.

After the set of lines is determined, we sample the line frequencies 𝑓𝑙 with the
discrete probability mass function 𝑝(𝑓𝑙) = |𝐿 |−1

√︁
𝑓𝑙/4− |𝐿 |−1

√︁
(𝑓𝑙 − 1)/4. The probability

mass function is visualised in Fig. 7. The function is designed to give a larger weight
for the low line frequencies in case we have only a few lines in total. This regulates
the variations in solving times for the generated problems.

As we want the passengers to be able to travel everywhere in the resulting EAN,
we also include the lines in the reverse direction. We define the reverse line 𝑙𝑟 of

24

1 2 3 4

fl

0.0

0.1

0.2

0.3

0.4

0.5

0.6
p(
f l

)
|L| = 2

|L| = 3

|L| = 4

Figure 7: Probability mass functions for the sampling distribution of 𝑓𝑙 with various
sizes |𝐿 |.

a line 𝑙 as 𝑙𝑟 = {(𝑗 , 𝑖) : (𝑖, 𝑗) ∈ 𝑙}. For the EAN, we use the extended line set
𝐿𝑟 = 𝐿 ∪ {𝑙𝑟 : 𝑙 ∈ 𝐿}. We also set the frequency to the reverse direction to be the
same as to the forward direction: 𝑓𝑙𝑟 = 𝑓𝑙 .

From the set of lines and frequencies, we can derive the events and activities of the
EAN. We create all events and activities as defined in Section 2.1. For all activities,
we also define the upper and lower bounds for the duration. We sample the bounds
using Algorithm 3. The algorithm first iterates through lines and relevant stop pairs.
After sampling the bounds, the bounds are then set for all relevant activities.

Algorithm 3 Algorithm for sampling the drive activity duration bounds
for 𝑙 ∈ 𝐿 do

for (𝑢, 𝑣) ∈ 𝑙 do
Sample 𝜆 ∼ U{1, 15} ⊲ The lower bound
Sample 𝜔 ∼ U{0, 5} ⊲ Difference between upper and lower bound
for 𝑟 ∈ 𝑅𝑙 do

𝑎1 = ((dep, 𝑢, 𝑙, 𝑟), (arr, 𝑣, 𝑙, 𝑟)) ⊲ Drive activity of 𝑙
𝑎2 = ((dep, 𝑣, 𝑙𝑟 , 𝑟), (arr, 𝑢, 𝑙𝑟 , 𝑟)) ⊲ Drive activity of 𝑙𝑟
𝐿𝑎1 , 𝐿𝑎2 = 𝜆

𝑈𝑎1 ,𝑈𝑎2 = 𝜆 + 𝜔

The bounds for wait activities are sampled with the same idea of not having the
bounds change between line directions or repetitions. This time we loop over the stops
and skip the iteration if the stop is the start or end of the given line. The method is
described in Algorithm 4

25

Algorithm 4 Algorithm for sampling the wait activity duration bounds
for 𝑙 ∈ 𝐿 do

for 𝑠 ∈ 𝑙 do
if 𝑠 is the start or end of 𝑙 then

Continue
Sample 𝜆 ∼ U{1, 3} ⊲ The lower bound
Sample 𝜔 ∼ U{0, 2} ⊲ Difference between upper and lower bound
for 𝑟 ∈ 𝑅𝑙 do

𝑎1 = ((arr, 𝑢, 𝑙, 𝑟), (dep, 𝑢, 𝑙, 𝑟)) ⊲ Wait activity of 𝑙
𝑎2 = ((arr, 𝑢, 𝑙𝑟 , 𝑟), (dep, 𝑢, 𝑙𝑟 , 𝑟)) ⊲ Wait activity of 𝑙𝑟
𝐿𝑎1 , 𝐿𝑎2 = 𝜆

𝑈𝑎1 ,𝑈𝑎2 = 𝜆 + 𝜔

For the change activities, the sampling process is a bit different. First, we sample
the lower bound 𝜆𝑢 ∼ U{1, 5} for all 𝑢 ∈ 𝑆. Then, 𝐿𝑎 = 𝜆𝑢, 𝑈𝑎 = 𝜆𝑢 + 𝑇 − 1 for all
activities 𝑎 = ((arr, 𝑢, 𝑙1, 𝑟1), (dep, 𝑢, 𝑙2, 𝑟2)) ∈ 𝐴change. In this case, the difference
between the upper and lower bound is always 𝑇 − 1. This ensures, that the change is
always feasible. We have the same bounds for all transfers that happen at the same
stop.

By the definition used here, we can have different penalties for all the change
activities, and nothing limits us to having penalties only for those activities either.
However, to keep things simple and aligned with other datasets, we just sample
𝜌 ∼ U{1, 5} and set 𝑏𝑎 = 𝜌 for all 𝑎 ∈ 𝐴change and 𝑏𝑎 = 0 otherwise.

For sync activities, we don’t sample the bounds. Instead, we simply set

𝐿𝑎,𝑈𝑎 = 𝑇/ 𝑓𝑙 ∀𝑎 = ((𝑡, 𝑢, 𝑙, 𝑟1), (𝑡, 𝑢, 𝑙, 𝑟1)) ∈ 𝐴sync (35)

Note, that 𝐿𝑎,𝑈𝑎 ∈ N as we chose 𝑇 and 𝑓𝑙 sampling to enforce this. This is necessary,
as the TimPass model formulation is defined in terms of integers.

Finally, we must come up with an OD matrix for the problem instance. Only the
stops that belong to a line are present in the EAN. As the lines are randomly chosen,
the set of stops is also random. To both keep the number of OD pairs feasible and to
introduce variations in the data, we limit the number of OD pairs considered. When
|𝑆 | ≥ 7, the problem has at least 7 · 6 = 42 possible pairs. Instead of using them all,
we take a random subset of the possible OD pairs. We sample |OD| ∼ U{30, 40}
and then take the random subset OD ⊂ 𝑆2. If we did not sample |OD|, we just use all
possible OD-pairs. For all OD-pairs we sample the demand as OD𝑢𝑣 ∼ U{1, 20} for
all 𝑢𝑣 ∈ OD.

Now we can define the TimPass problem and attempt to solve it. We try to solve the
obtained problem with Gurobi with a time limit of 20 seconds. If the optimal solution is
not obtained within this limit, we deem the problem difficult to solve and try sampling
the problem again. This happened in approximately 48% of the sampled problem
variations. In Fig. 8 we present the shares of the node set sizes for the attempted
instances and the solved instances. After discarding difficult problem instances, the

26

4 5 6 7 8
|S|

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Sh
ar

e
of

 to
ta

l

Attempted
Solved

Figure 8: The node set sizes of the generated instances before and after of discarding
difficult problems.

smaller problems are more prevalent. This means, that the larger problems were more
often not solved within the time limit.

As stated previously, we need to be able to control which of the multiple solutions
we actually get. This is done by first solving the problem as usual. We denote
the calculated optimal objective value 𝑉∗. To obtain other solutions, we add a new
constraint and change the objective function. The new constraint is that the objective
must be equal to 𝑉∗: ∑︁

uv∈OD
ODuv

∑︁
𝑎∈𝐴r

𝑝uv
𝑎 (𝑥𝑎 + 𝑏𝑎) = 𝑉∗ (36)

The idea for using the previous objective value as a constraint comes from [24].
For the new objective, we change it to be the weighted sum of the flow variables.

The weights are sampled randomly between zero and one:

min
∑︁

𝑢𝑣∈OD

∑︁
𝑎∈𝐴r

𝑤𝑢𝑣
𝑎 𝑝uv

𝑎 (𝑥𝑎 + 𝑏𝑎), 𝑤𝑢𝑣
𝑎 ∼ U[0, 1] (37)

Assuming that we can not sample the same weight for multiple flow variables, this
ensures that the modified problem has only one optimal solution.

With the problem given above, we attempt to generate 10 solutions for each
problem instance. We only keep the unique solutions. Then we write the solutions to
disk to be used later for the neural network training and evaluation.

3.2 Data representation as a heterogenous graph
On top of the EAN data, we have the OD data we need to include as input to the GNN.
We use a heterogenous graph for this, as it allows us to include multiple kinds of nodes

27

event

activity

stop

demand

demand
features

demand-demand

activity
features

activity-activity

line

stop-demand

demand-stop event-activity

activity-event

belongs

belongs

belongsbelongs

Figure 9: The node and relation types of the heterogenous representation after the
line-graph transformation. The node types and relations added by the transformation
are marked in red.

and relations in a graph. The simplified overview of the node types and their relations
is expressed in Fig. 9.

The set of node types is A = {event, stop, line}. As the line and stop ids are
essentially meaningless on their own, we chose to represent the identity of a line and a
stop as a separate node in the graph. This allows us to meaningfully represent which
events belong to which stop and line without needing to e.g. permute the ids when
training the model. The node type defines what kinds of features the node has. The
line and stop type nodes do not have any features. The event-type nodes have one-hot
encoded the event type, either arrival or departure.

The set of edge types is R = {activity, demand, belongs}. The activity-type edges
have the activity type one-hot encoded. The activity duration lower bound 𝐿𝑎, upper
bound 𝑈𝑎, and penalty 𝑏𝑎 are included as a share of the period 𝑇 . The normalised
shortest path routing weight is also included. In the preprocessing step we deduced
that some of the flow variables must be zero. We chose to not encode this information
as is, but as an aggregate of the share of flow variables that were preprocessed. We
controlled for the optimal solution we obtained from the TimPass model with the
preference variables. To keep the regression target disambiguous, the preferences
are also included in the features. The demand edges store the number of customers
wanting to travel between the stops. The value is normalised to have a maximum value
of one across all edges. The belongs edge type does not contain any features.

Unfortunately, the implementation of HGT we are using does not use edge
features directly. Instead, we encode the edge features by connecting the line graph
representation of the edges to the rest of the graph. A similar trick is used in [25]. The
method is visualised in Fig. 10. We applied the line-graph conversion one edge type at
a time for the activity and demand edge types. Other edges were left untouched.

28

1 2 3

4

a b

cd
⇒

conversion to a line graph

a

d c

b

1 2 3

4

a b

c
d

Figure 10: Demonstration of how the line graph trick is used to include edge features
in the graph. The original graph with edge features is top left. The line graph on
top right turns edges into nodes and connects the new nodes that were previously
connected to a same node. The original graph and the line graph are then joined
by connecting the edge nodes to corresponding original nodes, depicted by the blue
edges. The method is described in detail in Algorithm 5.

3.3 Training
We train the GNN model to predict the normalised weights 𝑤 of the optimal passenger
routing. The weights are normalised to have a mean of one, as having a consistent
scale should help the model. The model parameter updates are done to minimise the 𝑙2
loss of the predictions �̂� against the know optimal weights 𝑤∗. The parameter updates
are done using the Adam algorithm [18].

The training process and the model have multiple hyperparameters governing the
model architecture and parameter updates. Typically, the hyperparameter choices
need to be done carefully, as not all hyperparameter choices will yield good results.
Hyperparameter optimization is the process of optimizing the hyperparameters itself
instead of the model parameters, so that the combination of hyperparameters would

Algorithm 5 Line graph extension
Require: Graph 𝐺 = (𝑉, 𝐸)

𝐸line = {(𝑒, 𝑓) : (𝑒, 𝑓) ∈ 𝐸2, 𝑒 ∩ 𝑓 ≠ ∅} ⊲ The edge pairs that share an endpoint
𝐿 (𝐺) = (𝐸, 𝐸line) ⊲ The line graph
𝑉joined = 𝑉 ∪ 𝐸

𝐸joined = 𝐸 ∪ 𝐸line ∪ {(𝑣, (𝑣, 𝑛)) : 𝑣 ∈ 𝑉, 𝑛 ∈ 𝑁 (𝑣)}
Joined graph 𝐽 = (𝑉joined, 𝐸joined)

29

yield good results in the training process. We choose to use a Bayesian search for this
[26]. The hyperparameters we aim to optimize are the learning rate 𝛾, the layer count
𝑇 , the hidden latent dimension 𝑑, and the number of attention heads 𝑛heads.

In Appendix A we present the results for the hyperparameter optimization and the
hardware used. The computations are performed using resources within the Aalto
University School of Science “Science-IT” project.

4 Results

4.1 Heuristic performance
We calculated the performance metrics on a test dataset with over 5000 samples. This
dataset was not used in the training of the GNN heuristic.

For each problem instance, we calculated the GNN heuristic loss (as MSE against
the optimal activity weights) and optimality gap as described in Section 2.5. We also
calculated the metrics for the shortest path (SP) heuristic weights. First, in Fig. 11
we compare the joint distributions of the losses and optimality gaps of the heuristic
against each other.

For the calculated losses in Fig. 11a we can clearly see, that the GNN heuristic
typically achieves lower losses than the SP heuristic. This indicates that the trained
network did at least partially work as intended, as the heuristic was trained to minimise
the loss. The loss is smaller for the GNN in 79% of the problem instances.

However, observing the results in Fig. 11b is more difficult. For the SP heuristic,
the gap is zero in 91% of the cases and for the GNN heuristic in 61%. Notably, the

0.00 0.05 0.10
loss_sp

0.00

0.05

0.10

lo
ss

_g
nn

(a) Shortest path heuristic loss vs GNN loss.

0.00 0.05
gap_trivial

0.00

0.05

ga
p_

gn
n

(b) Shortest path heuristic gap vs GNN gap.

Figure 11: Join distributions for the shortest path heuristic and GNN performance
metrics. Marginal distributions as histograms along the edges. The views are clipped
slightly and the clipped values are collected in the last bins of the histograms.

30

4 5 6 7 8
|S|

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e

Trivial share
Zero GNN gap share

Figure 12: The share of trivial problem instances and zero GNN optimality gaps by
instance size.

SP heuristic finds the optimal solution more often than the GNN heuristic despite
having larger losses. More about that in Section 4.2. However, we now restrict our
comparison to only cases where the SP heuristic optimality gap is nonzero. As we are
interested in improving the found solutions, we limit our focus only to cases where we
know beforehand that improvements are possible. We use the name trivial problem
for the problems where the shortest path heuristic achieves zero optimality gap.

In Fig. 12 we break down the share of trivial problems by the instance size. We
note, that for problems with four or five stops, the instances are almost always (98% of
cases) trivial. This share decreases to only 38% at eight stops. The share of zero GNN
gap instances is always lower than the share of trivial instances.

In Fig. 13 we represent the optimality gap joint distribution without the trivial
problems. Note, how the histograms are no longer concentrated around zero. With this
filtering, the GNN heuristic achieves a better gap in 41% of the problems. Likewise,
the SP heuristic has a better gap for 47% of the problems. When the solutions differ,
the difference is often quite large: if GNN gap is smaller, on average it is only about
31% of the SP heuristic gap. This means, that the proposed heuristic can find solutions
that are vastly better than the baseline shortest path heuristic. However, this is not
consistent.

In Table 1 we present the calculated heuristic performance metrics in tabular form.
We also evaluated the GNN and SP heuristics on selected TimPassLib instances.

31

0.00 0.05 0.10 0.15
gap_sp

0.00

0.05

0.10

0.15

ga
p_

gn
n

Figure 13: Optimality gap joint distribution for SP and GNN heuristics. Excluding
trivial problems.

In Table 2 we present summary statistics comparing the validation dataset instances to
the selected benchmark instances. Note, that the validation instances are drawn from
the same distribution as the training instances. We chose the benchmark instances to
represent a reasonable range of problem sizes. The benchmark instances are much
larger and more diverse than the training problems. This allows us to probe the
generalization ability and scalability of our heuristic approach. We compare the
GNN heuristic results against the SP heuristic and the best published lower and upper

Table 1: Heuristic performance metrics both before and after filtering for trivial
problem instances.

All problems Non-trivial problems
Metric GNN heuristic SP heuristic GNN heuristic SP heuristic
Loss mean 0.018526 0.045599 0.016793 0.032772
Loss median 0.013557 0.034702 0.013480 0.022635
Gap mean 0.011484 0.002880 0.036789 0.034759
Gap median 0.000000 0.000000 0.019865 0.025327
Loss smaller share 0.7851 0.2149 0.7210 0.2790
Gap smaller share 0.0349 0.3532 0.4066 0.4657
Average relative
gap improvement 0.31

32

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Relative optimality gap

toy_2
grid

Erding_NDP_S020

Best solution gap
Shortest path gap
GNN gap

Figure 14: Calculated GNN and SP heuristic optimality gaps against the best published
upper bound for the TimPassLib instance.

Table 2: Counts of stops, lines, events, activities, and OD pairs for the datasets used
in the evaluation. Using averages for the validation data as there are multiple instances
of validation problems.

Dataset Stops Lines Events Activities OD pairs
Validation instances (average) 5.5 2.5 55.6 150.2 24.9
toy_2 8 6 156 1088 46
grid 25 8 382 2382 567
Erding_NDP_S020 51 21 1132 5300 675

bounds. The PESP time limit was set to 6 hours for the evaluation. The evaluation was
performed on a machine with CPU 8 cores and 8 GB of memory. Regarding the PESP
computation time, all the SP heuristic results were obtained in less than 11 seconds,
while the GNN heuristic for toy_2 took 2h 29min, and the grid and Erding_NDP_S020
hit the time limit of 6 hours. The visualised results are represented in Fig. 14. As
observed from the figure, the GNN heuristic yields much greater optimality gaps than
the SP heuristic, regardless of the instance size. This hints, that the new method
does not generalize well, as is a common limitation of many other ML approaches in
combinatorial optimization ([13]).

4.2 Relation of loss and heuristic optimality gap
The chosen GNN heuristic training has the inbuilt assumption, that achieving good
predictions for the optimal weights 𝑤 leads to low optimality gaps. However, after
observing the achieved losses and optimality gaps for both the GNN and the SP
heuristic, this does not seem to be so straightforward.

In Fig. 15 we observe the loss vs optimality gap plots for both heuristics. If the
assumption was correct, we would observe some kind of positive correlation between
the metrics. However, the metrics are virtually independent of each other. Only when
we focus on very small losses as in Fig. 16 we see any dependence. For very small
losses the optimality gaps tend to also be very small.

33

0.00 0.05 0.10 0.15 0.20
gap_sp

0.0

0.1

0.2

0.3

0.4

lo
ss

_s
p

(a) Gap vs loss for the SP heuristic.

0.0 0.1 0.2 0.3 0.4 0.5
gap_gnn

0.00

0.05

0.10

0.15

lo
ss

_g
nn

(b) Gap vs loss for the GNN heuristic.

Figure 15: Relationship between the heuristic loss and the achieved optimality gap.

4.3 Theoretical loss lower bound without preference of solu-
tions

We will next investigate what would be the theoretically lowest obtainable loss if we did
not include the preference information for the flow variables. As observed, for a given
problem instance, we may have multiple optimal solutions to the TimPass problem.
We assume that the optimal solution which we obtain is uniformly random between
all optimal solutions if we do not control for this with the preference mechanism.

The neural network is trained to minimise the expected average squared error of

0.0 0.1 0.2 0.3 0.4 0.5
gap_gnn

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

lo
ss

_g
nn

Figure 16: Zoomed view to Fig. 15b. We observe, that for very low loss values the
gap tends to also be zero.

34

the weight predictions. The loss for an individual problem is defined as ℓ(�̂�, 𝑤) =
1/|𝐴|∑︁𝑎∈𝐴 (�̂�𝑎 − 𝑤𝑎)2. If we don’t consider preference information, then 𝑤 can
be viewed as a random variable. In this case, the optimal predictor would predict
�̂�∗𝑎 = E[𝑤𝑎]. By substituting this back to the loss formula, we get that the lowest
obtainable expected loss is the mean population variance of the weights, with the
population here being the set of optimal solutions for one problem instance and the
average being taken over all problem instances.

We can estimate this lowest obtainable loss by calculating the sample variances for
the weights. With this method, we get that E[ℓ(�̂�∗, 𝑤)] ≈ 0.0091. As this is lower than
the best loss achieved with the preferences, we can deduce that the lack of preference
information would not have limited the performance of the model significantly.

35

5 Discussion
As an overview of the obtained results, the GNN heuristic does not bring a consistent
improvement against the SP heuristic. On non-trivial problems sampled from the same
distribution as the training data, the new method may improve the results, but whether
improvements are possible can not be known beforehand.

The instances in TimPassLib represent a different data distribution than the training
data. By testing the GNN heuristic against the benchmark instances, we found that the
GNN heuristic does not generalise well to distributions outside of the training data.
One of the reasons we chose the GNN architecture for our heuristic was the technical
feasibility of using the same network for problem instances of different sizes. As the
capability to generalise was very weak, we did not manage to observe if the problem
instance size plays a role in performance. The possible performance degradation due
to scaling the instances was masked by the large optimality gaps due to generalisation
issues.

Another area for improvement is the training dataset we used to train the model.
We did have a large number of training instances, but the instances were not very
diverse: most of the instances were trivial in the sense that the SP heuristic was
optimal, and the base PTN was shared between all instances. It is not clear if the model
learns anything useful when introduced to the trivial problems, as the SP heuristic
weights are also included in the training data. Not being introduced to various PTNs
could hinder the generalisation to other datasets. Due to practical concerns regarding
the computational complexity of the TimPass problem, we were forced to limit the
computation time when generating the training samples. This could introduce bias,
as the training examples are very hard to solve by existing methods while generating
heuristics for difficult problems is ultimately our goal.

As we saw in Section 4, at least for the training dataset the SP heuristic was often
very good. On the other hand, when the SP heuristic failed, the GNN heuristic was at
times able to find improvements. Combining these heuristics to a joint heuristic where
the GNN prediction would be used in cases where the SP weights are predicted to be
non-optimal could thus yield solutions that are better than what a singe heuristic can
achieve. One approach to predicting where the SP heuristic may fail is to investigate
the tightness of the bounds for the edge durations. This way we could classify the OD
pairs to two groups by the potential for improvement. Training the GNN heuristic only
on the high-potential OD pairs could in part alleviate the issue of lack of variation in
the training data.

Lastly, as this thesis was focused on investigating the idea of using a GNN heuristic,
we did not invest in incorporating the latest solving methods and tricks for the TimPass
and PESP problems. As noted earlier, the time limitation on the TimPass problem
could introduce some bias. As we are required to solve the PESP problem in the
evaluation phase, introducing the best available solution methods can possibly help us
evaluate the large-scale problems more accurately.

The question remains if predicting the weights is a good idea in the first place.
As we compared the optimality gaps against the 𝑙2 loss on the weight prediction
in Section 4.2, we did not observe any strong correlation between the values. This

36

indicates, that training the model to predict the weight does not necessarily result in a
lower gap against the reference solution. Additionally, as the allowed predictions were
continuous, sometimes the low but non-zero weight values caused the subsequent
PESP solving to be considerably slower than solving the PESP with the SP weights.

To get around these issues, we came up with two ideas for further research into
the topic of using a NN heuristics for the routing part of the TimPass problem. First,
instead of training the model to predict the weights, we could instead try to predict
the routes. This would make sure, that the resulting weights are consistent with the
passenger demands, allowing us to skip the SP rerouting in the evaluation phase.
The second idea is to try to minimise the TimPass objective value itself by means
of reinforcement learning. As improvements in the regression task do not directly
translate to better objective values, we could try to to minimise the objective instead.
However, RL training is much more difficult to get right than the simple supervised
regression task.

Another point of discussion is the suitability of the HGT architecture for this
problem. The family of convolutional graph networks are well-suited for tasks with
local dependencies. This is also reflected in the typical benchmarks, e.g. the Open
Academic Graph link prediction [27], on which the solutions do not depend on
long-range interactions. However, the task of routing the passengers optimally depends
on global interactions: a small difference in the network, e.g. a high lower bound
for an edge, may have large consequences far away, as now it is optimal to route the
passengers with a completely different path to their destination.

GNNs also have some well-known limitations. The message-passing architecture
is susceptible to over-squashing of information, as the nodes become a bottleneck for
the messages [28]. This hinders the architecture’s performance on tasks that depend
on long-range interactions. The attention mechanism does help with this issue.

The mechanism of passing messages within the one-hop neighbourhood acts
as an inductive bias. It guides the model towards discovering short-range patters
and as such, this mechanism may not be well-suited for tasks involving long-range
interactions. Some recent research directions involve omiting this bias by letting the
nodes communicate globally, essentially creating a transformer for graphs [29, 30]. The
resulting models have achieved good results on e.g. the quantum-chemical regression
task on the OGB-LSC PCQM4Mv2 dataset, which depends on global interactions
[31].

37

6 Summary
In this thesis, we study a novel graph neural network-based heuristic for the timetabling
and passenger routing problem (TimPass). Heuristical approaches to the problem are
interesting, as including routing makes the problem more realistic but also much more
challenging to solve optimally. Improvements to solutions for large-scale problems
can be helpful in public transport planning and by extension lower the transportation
costs for everyone involved.

We conduct a literary review focused on recent advances and research directions in
timetabling for public transportation, machine learning applications in public transport
planning, and how neural networks have been used to support solving combinatorial
optimization (CO) problems. We found, that the proposed heuristic has not been
studied before, and that graph neural networks have seen popularity in CO applications.

We present the methodological foundation for the event activity network repre-
sentation, optimization problem formulation, and the heuristic model architecture.
The practical problem representation issues of connecting the novel heuristic to the
established formulation are also discussed and the workarounds are demonstrated. As
the heuristic output by itself is not restricted to correspond to the passenger counts, we
also devise a process for consistently evaluating the weight predictions.

In the results section, we demonstrate how the new heuristic performed with
various problem instance types. First, we examine the performance on the validation
data generated by the same data generation process as for the training data. Second,
we apply the heuristic to larger and more varied benchmark instances and compare the
results to the shortest path heuristic solutions and the published best solutions of the
problem. We observe, that at times the new heuristic is able to yield improvements
over the SP heuristic, but this is mostly limited to the distribution of instances the
model is trained with. With the benchmark instances, the model does not seem to
generalise well to the new distribution. The results on the impact of the instance size
on performance are inconclusive, as no generalization was observed at all.

Finally, we discuss the limitations and caveats related to the new method and the
training process. We identify multiple possible reasons for the poor performance,
starting from the relevance of the regression task itself and ending with contemplation
on the architecture choice and recent advancements in the field of machine learning
with graphs. Lastly, we propose a method of splitting the workload between two
heuristics to possibly get the best of the two approaches in one method.

To conclude, we explored heuristical approaches for the TimPass problem and
investigated the capabilities of the proposed novel heuristic while critically commenting
on the choice of methodology. In the process, we learned a lot about how graph neural
networks could be applied to the problem and proposed multiple promising avenues
for future research. Our first attempt at cracking the problem was not a complete
success, but after all, research is an iterative process.

38

References
[1] M. E. Schmidt et al., Integrating routing decisions in public transportation

problems. Springer, 2014.

[2] P. Schiewe and A. Schöbel, “Periodic timetabling with integrated routing: Toward
applicable approaches,” Transportation Science, vol. 54, no. 6, pp. 1714–1731,
2020.

[3] P. Serafini and W. Ukovich, “A mathematical model for periodic scheduling
problems,” SIAM Journal on Discrete Mathematics, vol. 2, no. 4, pp. 550–581,
1989.

[4] P. Gattermann, P. Großmann, K. Nachtigall, and A. Schöbel, “Integrating
passengers’ routes in periodic timetabling: a sat approach,” in 16th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

[5] L. Peeters and L. Kroon, “A cycle based optimization model for the cyclic
railway timetabling problem,” in Computer-aided scheduling of public transport.
Springer, 2001, pp. 275–296.

[6] M. Müller-Hannemann, R. Rückert, A. Schiewe, and A. Schöbel, “Estimating the
robustness of public transport schedules using machine learning,” Transportation
Research Part C: Emerging Technologies, vol. 137, p. 103566, 2022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0968090X220
00146

[7] H. Yan, Z. Cui, X. Chen, and X. Ma, “Distributed multiagent deep reinforcement
learning for multiline dynamic bus timetable optimization,” IEEE Transactions
on Industrial Informatics, vol. 19, no. 1, pp. 469–479, 2022.

[8] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” arXiv preprint arXiv:1803.08475, 2018.

[9] A. Darwish, M. Khalil, and K. Badawi, “Optimising public bus transit networks
using deep reinforcement learning,” in 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2020, pp. 1–7.

[10] G. P. Matos, L. M. Albino, R. L. Saldanha, and E. M. Morgado, “Solving
periodic timetabling problems with sat and machine learning,” Public Transport,
vol. 13, no. 3, pp. 625–648, 2021.

[11] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial
optimization: A methodological tour d’horizon,” European Journal of
Operational Research, vol. 290, no. 2, pp. 405–421, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221720306895

39

https://www.sciencedirect.com/science/article/pii/S0968090X22000146
https://www.sciencedirect.com/science/article/pii/S0968090X22000146
https://www.sciencedirect.com/science/article/pii/S0377221720306895

[12] J. Zhang, C. Liu, X. Li, H.-L. Zhen, M. Yuan, Y. Li, and J. Yan,
“A survey for solving mixed integer programming via machine learning,”
Neurocomputing, vol. 519, pp. 205–217, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231222014035

[13] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veličković,
“Combinatorial optimization and reasoning with graph neural networks,” Journal
of Machine Learning Research, vol. 24, no. 130, pp. 1–61, 2023.

[14] V. Nair, S. Bartunov, F. Gimeno, I. Von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang et al., “Solving mixed
integer programs using neural networks,” arXiv preprint arXiv:2012.13349,
2020.

[15] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of the
34th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, D. Precup and Y. W. Teh, Eds.,
vol. 70. PMLR, 06–11 Aug 2017, pp. 1263–1272. [Online]. Available:
https://proceedings.mlr.press/v70/gilmer17a.html

[16] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE Transactions on Neural Networks, vol. 20,
no. 1, pp. 61–80, 2009.

[17] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang,
C. Li, and M. Sun, “Graph neural networks: A review of methods and
applications,” AI Open, vol. 1, pp. 57–81, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2666651021000012

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[19] V. Garg, S. Jegelka, and T. Jaakkola, “Generalization and representational limits
of graph neural networks,” in International Conference on Machine Learning.
PMLR, 2020, pp. 3419–3430.

[20] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and
data representation,” Neural Computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[21] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson,
“Benchmarking graph neural networks,” CoRR, vol. abs/2003.00982, 2020.
[Online]. Available: https://arxiv.org/abs/2003.00982

[22] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph transformer,” in
Proceedings of the web conference 2020, 2020, pp. 2704–2710.

[23] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint
arXiv:1606.08415, 2016.

40

https://www.sciencedirect.com/science/article/pii/S0925231222014035
https://proceedings.mlr.press/v70/gilmer17a.html
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://arxiv.org/abs/2003.00982

[24] H. Hankimaa, “Optimising energy and reserve offers in the nordic markets
under uncertainty,” 2023, unpublished MSc thesis. [Online]. Available:
https://urn.fi/URN:NBN:fi:aalto-202308275171

[25] S. Zhu, C. Zhou, S. Pan, X. Zhu, and B. Wang, “Relation structure-aware
heterogeneous graph neural network,” in 2019 IEEE international conference on
data mining (ICDM). IEEE, 2019, pp. 1534–1539.

[26] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization
of machine learning algorithms,” in Advances in Neural Information
Processing Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger,
Eds., vol. 25. Curran Associates, Inc., 2012. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fa
b86956663e1819cd-Paper.pdf

[27] F. Zhang, X. Liu, J. Tang, Y. Dong, P. Yao, J. Zhang, X. Gu, Y. Wang, B. Shao,
R. Li, and K. Wang, “Oag: Toward linking large-scale heterogeneous entity
graphs,” in Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ser. KDD ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 2585–2595. [Online].
Available: https://doi-org.libproxy.aalto.fi/10.1145/3292500.3330785

[28] U. Alon and E. Yahav, “On the bottleneck of graph neural networks and its
practical implications,” arXiv preprint arXiv:2006.05205, 2020.

[29] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu, “Do
transformers really perform bad for graph representation?” 2021.

[30] M. S. Hussain, M. J. Zaki, and D. Subramanian, “Global self-attention as a
replacement for graph convolution,” in Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2022, pp. 655–665.

[31] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec, “Ogb-
lsc: A large-scale challenge for machine learning on graphs,” arXiv preprint
arXiv:2103.09430, 2021.

41

https://urn.fi/URN:NBN:fi:aalto-202308275171
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://doi-org.libproxy.aalto.fi/10.1145/3292500.3330785

A Hyperparameter tuning
The model training and hyperparameter tuning was performed using up to 10 Nvidia
V100 GPUs in parallel. The hyperparameter search domains are listed in Table A1 with
the best hyperparameters highlighted. We used a batch size of 64 problem instances.

Table A1: Hyperparameter search domains with the chosen parameters in bold.

Hyperparameter Search domain
𝛾 {0.0001, 0.0003, 0.001, 0.003}
𝑛head {2, 4, 8, 16}
𝑑 {16, 24, 36, 54, 81, 122}
𝑇 {2, 3, 6, 10, 15, 23, 34, 50, 75}

42

	Abstract
	Abstract (in Finnish)
	Contents
	1 Introduction
	1.1 Literature review

	2 Methods
	2.1 Event activity network data
	2.2 Integer programming formulations
	2.2.1 Periodic event scheduling problem
	2.2.2 Timetabling and passenger routing problem

	2.3 Shortest path routing heuristic
	2.4 Graph Neural Networks
	2.4.1 Positional encodings
	2.4.2 Network architecture

	2.5 Heuristic evaluation method

	3 Experiment setup
	3.1 Data generation
	3.2 Data representation as a heterogenous graph
	3.3 Training

	4 Results
	4.1 Heuristic performance
	4.2 Relation of loss and heuristic optimality gap
	4.3 Theoretical loss lower bound without preference of solutions

	5 Discussion
	6 Summary
	References
	A Hyperparameter tuning

