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Abstract
Simulation can be used as a tool in the design of ship energy systems, but the
computational cost of evaluating simulation models can be high, rendering the
analysis and optimization of simulation-based designs challenging.

In this thesis, a neural network surrogate modeling routine is developed to
facilitate the analysis of ship energy systems simulation models. The routine employs
active learning and space-filling sampling algorithms to decrease the number of
required simulation model evaluations. The routine is designed to be generalizable
and scalable, to enable its use in various settings.

The use of active learning is seen to decrease the number of simulation model
evaluations required to train a robust surrogate model, in comparison to a setting,
where the model is trained using a single batch. Sampling routine selection is also
seen to have an effect on the performance of the surrogate model.
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Simulointimallinnusta voidaan hyödyntää laivojen energiajärjestelmien suunnittelus-
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mien analysoimisen tueksi. Mallin kehittämisessä hyödynnetään aktiivista oppimista
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1 Introduction
Measured by volume, more than 80% of global trade is transported by sea on Trade and
Development [2022], and shipping is responsible for around 3% of global greenhouse
gas emissions, with the figure estimated to rise in the coming decades King [2022].
As of 2023, the International Maritime Organization (IMO), requires the monitoring
of ship energy efficiency for both new and existing ships. The energy efficiency
indices, called EEDI and EEXI for new and existing ships respectively, are used to
monitor compliance with IMO’s energy efficiency standards, which are set to tighten
periodically. Shipowners are thus under increasing pressure to improve the energy
efficiency of both new and existing vessels.

During operation, a ship’s greenhouse gas emissions are mostly created by the
burning of fossil fuels. As such, a considerable share of the research in the field of
marine engineering focuses on alternative fuels and the efficiency of the main fuel
consumers, namely engines. However, optimized energy system design can also yield
significant efficiency improvements. The challenges in the optimization of energy
system design and operation can be attributed to both the complexity of modern
ship energy systems and the dynamic operating conditions and demands of a ship.
Simulation is a commonly utilized tool in the design of such complex systems, but
the computational cost of running a simulation model and the complex structure
of the models can make simulation-based analysis challenging. This thesis aims
to develop a proof-of-concept level surrogate modeling routine to assist in efficient
simulation-based analysis of ship energy system designs.

Section 2 gives a brief overview of ship energy system design and looks at similar
studies. The objectives of the thesis are discussed in Section 3, and an overview of
the developed system is presented. Section 4 looks at the mathematical methods used
in the study and justifies the use of such tools in the process of ship energy system
design. Section 5 describes the implementation and development of the routine using
a case study. Section 6 reviews the implementation and discusses possible future
development. The results of the thesis are summarized in Section 7.
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2 Ship power plant design

2.1 Ships as energy flow systems
From a systems research perspective, a ship can be treated as a set of interconnected
components, which consume and/or produce energy to fulfil their individual duties
in order to help complete the ship’s mission. Two typical missions for a ship are
the transportation of goods, and the transportation of passengers. Ships designed
for such purposes are referred to as cargo ships and cruise ships, respectively. The
composition of a ship’s power plant is heavily influenced by its mission. As ships
typically spend most of their lifespan operating a single route, the demands of the
planned operation dictate the design of the ship and its power plant. The mission of
a ship has a major influence on all of its major characteristics, such as hull size and
shape, operating velocity, and the location and size of the machinery.

The energy flow onboard a ship is generally divided into three types of energy:
mechanical, electrical, and thermal. Mechanical energy is mostly required for propul-
sion, although in many modern ships propulsion is powered by electric motors. In
such a setting, the energy required for propulsion can be viewed as a part of the
electrical energy demand. Electrical energy demand used for purposes other than
propulsion is referred to as the hotel load. The hotel load depends heavily on the
mission of the ship: for cargo ships the hotel load tends to be fairly minor apart
from some cargo moving operations in ports, whereas for cruise ships the electrical
energy used for purposes such as lighting, entertainment, and food preparation can
be equal or larger than the energy used for propulsion. Thermal energy is typically
required for heating the passenger and crew cabins, providing warm water, and fuel
heating. Similarly to electrical energy, thermal energy demand depends heavily on
the type of the ship, typically constituting a larger share of the total energy demand
on a cruise ship. In two case studies, the distribution of energy consumption between
propulsion, electrical power, and heat was determined to be 46-27-27 for a studied
cruise ship Baldi et al. [2018], and 70-16-14 for a chemical tanker Baldi et al. [2015].

2.2 Power plant design methods
In comparison to many other seemingly similar systems, such as the power plant of an
industrial production line, the design of a ship’s power plant is a fairly complicated
task. Several factors complicate the design, and especially the optimization of its
energy efficiency. The operational conditions of a ship are dynamic and difficult to
accurately predict, since sea conditions can have a large influence on the energy
demand of an operating ship. The fairly isolated nature of most ship operations also
means that external power can be difficult or impossible to obtain, meaning that a
ship must contain sufficient power reserves. The energy density of a ship’s power
source, typically a liquid fuel or a combination of fuels, can have a large influence on
the profitability of the operation, especially in the case of passenger ships, since a
large fuel tank can decrease the amount of available cabins.

Because ships are typically designed with a specific mission in mind, the system-
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level optimization of ship power plants has not been a topic of particularly wide
interest. A considerable share of the research regarding marine transportation energy
efficiency has instead been focused on specific components, such as engines, since
they are mass produced and less mission-dependent than the system design. Recently,
the development and analysis of novel energy efficiency and emission reduction
technologies, such as waste heat recovery systems Shu et al. [2013], batteries Lan et al.
[2015], and alternative fuels Al-Enazi et al. [2021], has been a topic of considerable
interest. It has however been estimated that significant efficiency improvements could
be achieved with system-level optimization.

Traditionally the design of a ship’s power plant has been performed using what
is known as the design point approach, in which the power producing system is
designed to optimize the fuel consumption for the most common operating mode of
the ship. For cargo ships, this usually means sailing at open sea with a full cargo
load. While the design point approach leads to an optimized consumption for large
parts of the operation, the resulting design can be far from optimal when considering
the entire life cycle of the ship Frangopoulos [2020]. Including the dynamic nature of
the operating conditions and energy demands in the design problem can be achieved
in two ways. The more commonly used one utilizes the ship’s operational profile.
In the context of this thesis, the operational profile of a ship can be defined as an
estimation of all distinct energy consumption levels and their frequencies during the
ship’s operation. The other way is using data from a reference vessel, although this
approach has been implemented seldomly, according to Baldi [2016].

Baldi [2016] presents a comprehensive analysis of ship energy systems, employing
a systems approach and using tools such as energy and exergy analysis. In this work,
the energy system of a ship is identified as a complex system. Common features of
complex systems are a high number of parts, nonlinear and nontrivial interactions,
and common objectives, which require the involvement of multiple components Yates
[1978]. While there is no consensus regarding a concrete definition of a complex
system Ladyman et al. [2013], the aforementioned features can certainly be identified
in the power plant of a ship. As such, some general ideas concerning the handling
of complex systems can be applied in their design and analysis. A common way of
analyzing and optimizing such systems is using computer simulations. Papanikolaou
[2019] presents a holistic optimization approach for the design of a ship, and includes
several simulation-based design problems. Lappalainen et al. [2019] discusses the
utilization of cloud-based computing in simulation-based optimization of ship energy
systems, noting that such parallelization of simulations can mitigate the challenges
related to the long running times of simulation-based analysis. Trivyza et al. [2018]
presents a simulation-based multi-objective optimization methodology for ship energy
system design, combining environmental and economic objectives. Trivyza et al.
[2019] uses the same methodology to analyze the impact of future carbon pricing
on optimal designs, using a scenario-based method. Baldasso et al. [2019] compares
linear and nonlinear approximations in the optimization of a ship’s power plant layout
and unit scheduling against multiple objectives. Both models use the operational
profile of a ship’s estimated voyage.

On top of the difficulty of efficiently utilizing the operational profile of a ship,
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Figure 1: A ship design spiral Evans [1959]

the design point approach has other limiting factors. The effects of uncertainty are
often accounted for by increasing the engine sizes by a constant factor, such as 10%,
for the final design. While basic stochastic/robust optimization techniques might
be applicable, at least when a closed-form representation of the energy demand is
used, it can be difficult to include multiple sources of uncertainty, as well as perform
proper sensitivity analysis.

In ship design projects, the power plant design needs to fulfil several criteria, and
the requirements can change multiple times during the project. As such, it is rarely
feasible to only optimize one aspect of the power plant, while ignoring other variables,
meaning that the energy system has to be designed holistically. Ship design projects
follow an iterative form and consist of several phases Evans [1959], as well as requiring
the input of several stakeholders. The process is often depicted using a design spiral,
as illustrated in Figure 1. Due to these requirements and the complexity of a ship,
the power plant design process needs to be flexible and have the ability to compare
different designs without the need to change the analysis system.

While simulation has been used in ship energy system design, the analysis of
simulation models remains a challenging task, both in terms of computational burden
and the interpretability of the models. This thesis aims to develop a neural network
surrogate modeling routine to decrease the number of model evaluations required
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for efficient analysis. The benefit of the suggested approach is the scalability of the
solution due to the representative power of neural networks, and the ability to insert
the surrogate model to gradient-based optimization problems, provided the neural
network architecture fulfils certain requirements. The use of the neural network
surrogate model in optimization is expanded upon in Section 5.3.
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3 Project overview
As discussed in the previous section, designing ship energy systems is a complicated
and often unoptimized process. With the emergence of efficient gradient-free opti-
mization algorithms such as NSGA-II Deb et al. [2002], and the wide availability
of cloud computing resources, partially automated routines have been developed to
enable the evaluation of a wide variety of energy system designs using simulation
models. The objective of this project is to develop a routine allowing the analysis and
optimization of power plant simulation models without the need to use gradient-free
algorithms.

Figure 2: Flowchart of the routine

A simplified parametric energy system simulation model using mock operational
data is created and used to model the fuel consumption of a cargo ship on its typical
route. In order to minimize the number of simulations required for model analysis, a
neural network surrogate model is trained to approximate the input/output structure
of the simulation model. As the study is meant as a proof of concept for the design
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of an accurate surrogate model, actual analysis of the simulation model is outside the
scope of this thesis. The realism of the used simulation model is also not evaluated,
and its complexity is kept to a minimum to avoid long computation times. A flowchart
of the routine is shown in Figure 2.

The routine is developed with two important features in mind. Firstly, as the used
simulation model is a simplified one and thus has fairly few parameters, scalability
of the routine is considered to be of vital importance. This enables the use of the
routine and its parts for a considerably larger model. Secondly, assumptions about
the simulation model and its parameter structure are minimized when developing the
routine. This aims to improve the applicability of the results of the study in more
complicated ship energy system design projects, as well as projects in other fields.

To improve generalizability, an attempt is made to implement the routine modu-
larly. This should enable the altering of parts of the routine, such as the simulation
software or the surrogate model type, without the need to remake the entire system.
The use of a surrogate model enables the development and adoption of analysis and
optimization tools that should work with a wide variety of simulation models. The
routine is developed so that the two main parts of it, the surrogate model and the
simulation model, make no assumptions about the structure of each other. This
means that the surrogate model treats the simulation model as a completely black-box
model, only considering it as an input/output structure, and no information about
the model subsystems is included in the surrogate model The same parameter inputs
are used for both the simulation model and the surrogate model, as visualized in
Figure 2.

A substantial part of the thesis focuses on how to select which points to use for
the training of the surrogate model. As one of the main interests in the development
of the routine is the potential to reduce the number of simulations, a significant
bottleneck in simulation-based analysis, being able to construct an accurate surrogate
model using as small of a sample as possible is desirable. While the optimal sampling
routine is dependent on both the simulation model and the surrogate model, as well
as the analysis task, some basic principles can be detected. Sampling is discussed in
Section 5.4, and a test comparing different sampling algorithms is conducted.

Another technique used to reduce the number of simulation model evaluations
required for accurate surrogate performance is active learning. Active learning is
a machine learning approach, in which a labeled sample is used to train a model,
whose performance is then analyzed to select a subset of a larger set of unlabeled
points. These points are then labeled, in this routine by running the simulation
model with the selected inputs, and the labeled points are added to the training set.
This approach is visualized in Figure 2 as the link between the Model evaluation block
and the Design parameters block. Active learning is discussed and an experiment is
conducted as a part of the case study in Section 5.5.



14

4 Methods

4.1 System simulation
Mathematical models can be used to approximate the performance of complex
systems, such as the energy systems of a ship. Models can be roughly divided into
three categories: white-box, black-box, and gray-box models Driscoll et al. [2022].
In a white-box model, all internal interactions and formulas are known, and the
input-output structure of the model can be stated using analytical expressions. A
black-box model is an abstraction where only the input-output structure is available,
and no inner workings are visible. In analyzing a black-box model, information can
only be acquired by evaluating the model at different points of its domain. In reality,
a large portion of models can be classified into the third category: gray-box models.
A gray-box model uses available domain knowledge in subsystems of the model,
while also having parts defined using information derived from data of the modeled
process.

An alternative classification of models into white-box and black-box concerns
the models’ interpretability. This definition, especially prevalent in the context of
artificial intelligence, defines a white-box model as one whose inner logic is explainable
and meaningful, at least to the creators of the model. Such AI models are referred to
as Explainable Artificial Intelligence, or XAI, and have been a topic of great interest
in recent years Došilović et al. [2018]. In contrast, the internal logic of a black-box
model, such as an artificial neural network, cannot be explained even by its creators
Loyola-Gonzalez [2019]. While black-box models tend to achieve better accuracy,
white-box models have the advantage of being interpretable and thus generally easier
to modify. Analysis of white-box models can be easier due to a clearer understanding
of relationship between parameters and subsystems, as well as the possible availability
of model gradients.

Simulation models are a class of mathematical models depicting the dynamics and
behaviour of a real-life system. As simulation models apply domain knowledge, and
often all interactions between subsystems are explicitly defined, they could be classified
as white-box models. However, practical simulation models tend to be complex, and
the effect of model parameters can be nearly impossible to predict without running
the model. Crucially, in the context of systems analysis and optimization, gradient
information regarding a simulation model is often unattainable. Therefore simulation
models can be classified as gray-box models.

There are various ways to classify simulation models, such as dynamic versus
steady-state, stochastic versus deterministic, and discrete-event versus continuous.
In this thesis, only deterministic dynamic models are considered. Such models can
be thought of as mappings S : X → Y. It is presumed that any point x ∈ X can
be evaluated, and that a = b→ S(a) = S(b). The assumption of the models being
dynamic, meaning that time is one of the model variables, does not necessarily have
an impact on the routine. Steady-state models could also be used, as long as an
explicit input-output structure can be defined. While in the case study conducted in
this thesis the duration of the simulation is fixed, time could be added as an input
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parameter without the need to majorly change the structure of the routine.
Computer simulations have the advantage over closed-form models of being

able to model the complex interactions between different subsystems without the
need to simplify these subsystems. As such, the impact of adding or modifying
components can be studied without the need to completely reconstruct the model.
The interactions between different subsystems can also reveal interesting effects not
directly stated in the model definition. This phenomenon is known as emergence
Goldstein [2011], and is observed in a wide variety of scientific fields. The main
downside of simulation-based analysis is the computational cost of evaluating such
models. Unlike closed-form expressions, which can usually be evaluated effectively
instantly, simulation models can take up to weeks to run. Long evaluation times
combined with the unavailability of gradient information make systematic simulation-
based analysis a challenging task. The development of simulation models is also a
laborious process, especially if real-world data needed for model verification is scarce.

While the construction of simulation models is an interesting subject, it is
not covered in detail in this thesis. Instead, the routine is developed with the
assumption of the existence of an accurate model. As such, the focus is on effectively
using the simulation model for analysis. Some guidelines are given by a widely
adopted framework of experiment design known as Design of Experiments (DoE), first
introduced in Fisher [1935]. The application of DoE in simulation-based experiments
is discussed in Law [2017]. As noted in Law [2017], a problem with using the common
approach in DoE known as 2k factorial designs is the curse of dimensionality. 2k

factorial designs are used for analyzing the effects of variables on the output, and
the interactions between variables. It consists of setting two possible values for each
of the k model variables, and running the simulation for each of the resulting 2k

configurations. Clearly for a model with a large number of variables and non-negligible
runtimes, the approach can be infeasible. A more general approach to simulation
experiment planning is provided in Kelton [2000]. Santner et al. [2003] provides a
detailed review of topics relevant for simulation experiment planning, including the
use of space-filling sampling algorithms, a topic which is discussed in Section 5.4 of
this thesis. For a comprehensive outlook of simulation experiments, Banks [1998] is
recommended.

4.2 Surrogate modeling
Evaluation of simulation models can be computationally expensive, rendering an
exhaustive collection of simulation-based data infeasible. One way to analyze such a
model is constructing an easily evaluable approximation. The desired properties of
the approximation model depend on the objectives of the analysis project. Some tasks
require a differentiable representation, whereas others need the model to be simple to
evaluate while still providing an accurate approximation everywhere in the simulation
model’s domain. The process of using one mathematical model to approximate
another one, such as a simulation model, is called surrogate modeling. The function
approximating the other model is called a surrogate model or a metamodel.

The task of finding an optimal surrogate model f̂ for a model f can be formulated
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as an optimization problem:
min.

f̂
L(f, f̂), (1)

with L being a loss function. The selected loss function depends on the task at hand.
Some problems require a good approximation for all possible inputs, whereas others
may emphasize the mean accuracy. For the fist task, the maximum absolute error
loss could be used. For a dataset S, it is defined as:

L∞(f, f̂) := max(|f(x)− f̂(x)|), x ∈ S (2)

For the second task, a loss function based on mean absolute error could be used. For
a dataset S it is defined as:

L1(f, f̂) := 1
|S|

∑︂
S
|f(x)− f̂(x)| (3)

The most commonly used loss function for regression tasks, both due to the easy
calculation of gradients and the tendency to react to outliers, is the mean squared
error, or MSE. For a dataset S it is defined as:

L2(f, f̂) := 1
|S|

∑︂
S

(f(x)− f̂(x))2 (4)

Surrogate modeling is used for many purposes, but in the context of simulation-
based analysis and optimization, the main benefits are the reduction in computing
time and the possible availability of gradient information. The reduction in com-
putation time is highly dependent on both the original process and the selected
surrogate model. Using a surrogate can reduce total computation time, if training it
requires significantly fewer simulations than using the simulation model to gather
the necessary amount of data. The availability of gradient information depends on
the function class of the surrogate model.

Surrogate models range in complexity from simple linear models to massive
deep neural networks. Bhosekar and Ierapetritou [2018] offers an introduction into
frequently used surrogate models for regression problems, as well as a review of recent
advances in surrogate modeling. The use of simple functions, especially polynomials,
has several benefits. They are continuously differentiable, and are easily interpretable.
Polynomials have easily calculable gradients, a desirable quality for optimization
problems. However, the assumptions that justify the use of polynomials can be
difficult to verify, and the quality of predictions can vary considerably within the
domain of the model. High order polynomials have a tendency to overfit, especially if
no regularization is used. While some of the more complicated surrogate models may
achieve a high accuracy, their interpretability can be lower than that of polynomials.

In accordance with the project objectives of generalizability and scalability to more
complex designs, artificial neural networks (ANN) are selected as the function type
of the surrogate model. ANNs are known to be universal approximators, meaning
that they can approximate any continuous bounded function with a finite domain
with arbitrary accuracy Hornik et al. [1989], using as few as one hidden layer. ANNs
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have been succesfully used as surrogate models for agent-based models in Angione
et al. [2022] and Lamperti et al. [2018], achieving a better performance than other
surrogate model types in both studies. Lamperti et al. [2018] also employed an active
learning approach similar to the one used in this routine.

While the use of ANN surrogate models in optimization problems is challenging,
it is not impossible. Mixed-integer programming formulations for ANNs are discussed
in Anderson et al. [2020], and enable the use of ANNs as objective functions in
optimization problems. The use of the ANN surrogate developed in this thesis in an
optimization setting is discussed further in Section 5.3.



18

5 Implementation and case study
This section describes the development of the modeling routine using a case study.
Due to the lack of available real world data, mock data is created. The use of mock
data is not seen as a problem, because the focus of the thesis is on exploring the
development of a surrogate model building routine, not ship energy system analysis.

5.1 Case study

Figure 3: Total power demand of the studied ship

The case study constitutes a simplified ship power plant design problem in the
concept phase of a ship design project. The considered ship is a medium-sized cargo
ship operating on the Baltic Sea. From the power plant design viewpoint, the ship is
defined by its power consumers and power producers. In the simulation model, the
power consumption is represented by a single time series. The power demand is not
split into the three categories discussed in Section 2.1. In fact, all power demand is
represented by a single component in the model. The power demand time series, as
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well as the simulated voyage, has a duration of 30 days and a sampling period of
60 seconds. The series, consisting of a total of 43201 points, is shown in Figure 3.
The series is based an operational profile described in Table 1, where the average
power and white noise are given in megawatts, and the durations in hours. The series
was created by randomly selecting an operating phase, and creating a time series
slice with the duration randomly selected between the corresponding minimum and
maximum durations. The time series values Pm in operation mode m are created
using the following formula:

Pm(t) = µm +
min(tm,30)∑︂

i=1
θiϵt−i + ϵt, (5)

when the process is not transitioning from one operation mode to another. The
mode changes are selected randomly, and transitions between modes are made with
a constant slope, corresponding to a rate of change from stationary to full load in
30 minutes, or the opposite, in the case of decreasing power demand. In Equation
(5), tm refers to the number of time points spent in the current phase, µm is the
phase mean power demand, ϵt is the random perturbation at time point t, drawn
from a normal distribution with variance corresponding to the field white noise in
Table 1. The coefficients θi are defined as θi = 0.002 · (30− i). The formula is that
of a moving-average model, and is used in the time series simulation to replicate a
stationary process with random impulses propagating to future values, as would be
characteristic for an operating ship. While the profile and the resulting time series
are not necessarily realistic, the time series visually resembles real operating data
well enough to be used in a proof of concept study.

Mode Average power White noise Min duration Max duration
Full load 5 0.5 7 60

Partial load 4.5 0.3 7 36
Empty 3 0.2 7 72
Loading 1 0.05 1 4

Stationary 0.4 0.05 1 72

Table 1: Operation modes

Only diesel-electric concepts are considered in the design problem. This justifies
the decision to use a single time series to represent both the energy required for
propulsion and the hotel load, as all energy demand can be treated as electrical
power. The decision also simplifies the parameter space, since all power producers
can be treated equally, instead of having to split them to electric and mechanical
power producers. Thermal energy is not included in the model.

The simulation models are created using SimulationX, a system simulation
software developed by ESI Group. SimulationX models are based on Modelica.
Modelica Fritzson and Engelson [1998], is an object-oriented multidomain physical
simulation modeling language. Modelica-based models are evaluated by solving
differential equations defined by equality declarations in model components and their
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Figure 4: Engine specific fuel consumption curves

connections. Modelica, unlike many other modeling languages, is considered acausal.
Acausal modeling enables relatively simple multidomain simulation, since the models
are not signal based. According to Schweiger et al. [2020], acausal modeling is
considered to be more suitable for the modeling of large physical systems than causal
modeling.

In the case study, the Ship Energy Systems component library of SimulationX
is used. The library components included in models are electrical usage, a varying
number of engines, a fuel tank, and the operating conditions. The electrical usage
component represents the total power demand at each time point, as defined by the
time series in Figure 3, and must be satisfied exactly at each time point.

The engines are a slight modification of the component Generator Set provided
in the Ship Energy Systems library. In this system, an engine is defined by its fuel,
the specific fuel consumption curve, and its maximum continuous rating (MCR).
The specific fuel consumption curve defines the efficiency of the engine in kg

kJ
as

a variable of the engine’s load, the output relative to its MCR. The specific fuel
consumption curves of the available engine types are shown in Figure 4. The MCR
is the maximum power an engine can produce continuously, although in practice
engines are rarely operated at 100% load for engine health and fuel economy reasons.

Parameters of the operating conditions and the fuel tank are fixed between
models, and are only included in the simulation models because SimulationX requires
them to be present. The operating conditions component enables the setting of
ambient conditions such as seawater temperature, air temperature, and air pressure,
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but as thermodynamics are excluded from the model, the conditions do not affect
the model output. The fuel tank component controls the available fuels and their
parameters, such as energy density. In this study, engines use either heavy fuel
oil (HFO) or liquefied natural gas (LNG), with lower heating values of 42700kJ

kg

and 49620kJ
kg

, respectively. No dual-fuel engines are considered, but configurations
including engines running on different fuels are allowed, meaning that the output of
the simulation model, the total fuel consumption, is multidimensional.

Engine Fuel mmin mmax lopt lmax

1 HFO 2.5 4.0 0.85 0.95
2 HFO 0.2 1.0 0.85 0.96
3 LNG 2.5 3.5 0.75 0.95
4 LNG 0.2 1.2 0.70 0.97

Table 2: Engine types

All power production in the model is provided by engines, which are connected
to generators, since all power demand is considered to be electrical. All generators
have an efficiency of 85%, so they do not need to be considered separate components
in terms of the model inputs. The engines are selected from a predefined dataset,
described in Table 2, where mmin and mmax refer to the minimum and maximum
MCR of the engine type, and lopt and lmax to the optimal and maximum allowed
load of the engine type, as a fraction of the engine’s MCR.

A custom-made component called the load splitter is also used. At each time
point, the load splitter reads the power demand and determines the load of each
connected engine. There is no delay and the splitter cannot anticipate future demand.
The load sharing is controlled one engine at a time, so that at any time point only
one engine can be turned on or off. Therefore, the slope of the power demand is
assumed to be constrained in magnitude. The load of engines are set according to
the following rules, where Ptot refers to the total energy demand at the current time
point, and Pi is the power production of engine i ant the time point:

1. If 0 < Pi, Pj = P opt
j ∀ j < i.

2. If Pi < P max
i , Pk = 0 ∀ k > i.

3. If Ptot goes above ∑︁i−1
n=1 Pn +P max

i , set Pi ← P opt
i , and Pi+1 ← Ptot−

∑︁i
n=1 P opt

n .

4. If i > 1 and Ptot goes below ∑︁i−1
n=1 P opt

n , set Pi ← 0 and Pi−1 ← Ptot−
∑︁i−2

n=1 P opt
n

In the last rule, P0 = 0. The values of P max
i and P opt

i are defined by multiplying
pi, the MCR of engine i, with lmax and łopt of the corresponding engine type, using
the values in Table 2. P max

i is the maximum acceptable continuous power output of
engine i, and models the principle of not running an engine at its maximum power
for non-negligible durations. P opt

i is the power at which the specific fuel consumption
of engine i is minimized, and is derived from Figure 4.
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After consulting marine engineering experts, some constraints have seen set for
the design problem. Firstly, the number of engines in a design must be between
two and four. While one engine might be able to provide enough power to fulfil the
power requirements at all times, an additional engine is required in a ship to provide
redundancy in the case of engine failure. The maximum number of engines is set
to limit the size of the modeling problem. Additionally, ships similar to the one
modeled in the case study rarely have more than three engines. Secondly, at most
two different engine types are allowed to be present in a design. This constraint is set
because it simplifies the maintenance of engines onboard a ship, as different engine
types would require different spare parts as well as increasing the amount of training
required for the maintenance crew.

5.2 Model construction
In order to efficiently explore different designs, a parameterization of the models
is defined. Since all power is produced by the engines, and both the operating
logic and energy consumption are not altered between models, the parameterization
only needs to define the engine layout. The layout is defined by the number of
selected engines, the engines’ types, the order of the engines, and their MCR. The
parametrization should be constructed so that the input/output structure of the
model is interpretable, and efficiently readable by the surrogate model training
routine. The selected parameterization consists of a matrix T and a vector p.

T ∈ {0, 1}4×4 is a one-hot matrix describing the selected engine types and their
order. Each column contains at most one non-zero element, with the row of the
non-zero element of column i indicating the type of the ith engine. The matrix must
be filled from left to right, meaning that if column i contains only zeros, so must all
columns j where j > i. As stated in the previous section, at least two engines must
be present in each design, meaning that columns 1 and 2 must always contain one
non-zero element.

p ∈ R4
+ represents the MCRs of the engines. In this system, the value of pi is the

MCR of engine i in megawatts. The value of pi must be between mmin and mmax for
the engine type, as given in Table 2.
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Figure 5: A SimulationX model

Mathematically, the parameter space is set by the following constraints:
4∑︂

i=1
Tij = 1 ∀ j ∈ {1, 2}

4∑︂
i=1

Ti3 ≤ 1

4∑︂
i=1

Ti4 ≤
4∑︂

i=1
Ti3

4∑︂
i=1

[1−
4∏︂

j=1
(1− Tij)] ≤ 2

T Tmmin ≤ p ≤ T Tmmax

6.45 ≤
4∑︂

i=1
pi ≤ 12

T ∈ { 0, 1}4×4, p ∈ R4
+.
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The last constraint ensures that the total power production capacity is larger than
the maximum energy demand of the planned route multiplied by a security factor.
The maximum capacity is also limited, to avoid an overly expensive design.

SimulationX models are constructed algorithmically using the defined parameter-
ization. The models are initialized, ran, and their output recorded with VBScript
files, using SimulationX’s COM interface. In this implementation, the VBScript files
are created using Python. Python scripts are also used to connect the model outputs
to the inputs. A diagram view of a constructed SimulationX model with four engines
in shown in Figure 5.

5.3 Surrogate model

Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 6: ANN architecture

As discussed in Section 4.2, artificial neural networks are used as surrogate models
in the routine. To be exact, the types of models used are fully connected multilayer
perceptrons (MLP), a subclass of feedforward artificial neural networks. A basic
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implementation of an MLP consists of an input layer, one or more hidden layers, and
an output layer. Figure 6 shows an illustration of a fully connected MLP with three
inputs, two hidden layers with four and three neurons respectively, and two outputs.
Each neuron performs a linear transformation on its inputs, followed by a nonlinear
activation function. The output of the activation function, along with the output of all
other neurons in the layer, are then used as the input of the following layer’s neurons.
MLPs generalize and scale well. It is simple to change the number of both input and
output variables, although the model architecture may need to be changed and the
model needs to be retrained for each separate problem. One challenge with using
MLPs in the case study is that they only accept one-dimensional input data, meaning
that the engine type matrix T has to be transformed. In the routine, T is flattened
from a 4 × 4 matrix to a vector of length 16. That vector is then concatenated
with p to form the input vector x of the ANN, with xi ∈ {0, 1}, 1 ≤ i ≤ 16, and
xi ∈ R+, 17 ≤ i ≤ 20. The output of the surrogate model is a vector y ∈ R2

+, whose
elements are the predictions for the total consumption of HFO and LNG, respectively.

There are no universal rules for the design of regression MLP architectures. In the
methodology introduced in Xu and Chen [2008], the optimal number of hidden nodes
is between

√︂
N/(d log N) and N/d, where N is the number of training pairs in the

dataset and d is the dimension of the model input. Others place the number of hidden
nodes between the dimension of inputs and outputs Blum [1992]. Generally, having
considerably more hidden nodes than input variables leads to overfitting, although
in practice large networks are often observed to generalize better than smaller ones
Novak et al. [2018]. Both large and small networks are tested in this study, although
major overfitting is avoided. The regularization techniques implemented in the
model selection process include limiting the model size, L1-regularization, and early
stopping.

Hyperparameter selection

architecture layer 1 layer 2 layer 3 layer 4
1 10
2 22
3 100
4 1000
5 6 4
6 14 8
7 30 10
8 10 10 10 10
9 50 50 50 20

Table 3: Grid search architectures

Before the active learning routine, the architecture of the model must be selected. As
it is difficult to determine the optimal architecture theoretically, several alternatives
are tested and their performance is compared. The variables dictating the model
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architecture are called hyperparameters. In the comparison, the altered hyperparame-
ters are the number of hidden layers and the number of neurons in them, collectively
called the model architecture, and the L1-regularization weight. The candidate
architectures are listed in Table 3. L1-regularization is tested with weight coefficients
10−3, 10−4, 10−5 and 0, with the latter being equivalent to no regularization. L1-
regularization is implemented by adding the L1-norm of the MLP weights multiplied
by the L1-regularization weight coefficient to the model loss. The total loss during
the training procedure for a training batch with n samples and a model with a total
of b weight parameters is then:

L(X, Y, f̂) = 1
2n

n∑︂
i=1

[(yi[1]− f̂(xi)[1])2 + (yi[2]− f̂(xi)[2])2] + λ
b∑︂

j=1
βj (6)

In Equation (6), β are the model weight parameters. L1-regularization, also known
as LASSO, is chosen over L2-regularization, because it has the feature of setting
some parameter values to exactly zero, which facilitates the use of the model in
optimization problems. One way of using a neural network in an optimization model
is through the use of the Python library OMLT Ceccon et al. [2022]. OMLT also
requires the use of ReLU as the activation function, which is why no other activation
functions are tested.

While there are several algorithms for hyperparameter tuning, in this study an
exhaustive hyperparameter space search is performed. This approach is known
as grid search. It is fairly simple to understand in comparison to techniques such
as evolutionary algorithms, and has the benefit of testing each hyperparameter
combination. The downside is that the hyperparameter space must be discrete, and
for a large number of hyperparameters and their values, the procedure can be very
time-consuming.

In machine learning tasks, input and output normalization can help with the
convergence of the model. While the effect of normalization depends on the used
optimizer and the structure of the model, having input values be of similar magnitude
is usually helpful. Scaling the training data outputs, also called labels can also be
useful, since a mapping from small inputs to significantly larger outputs requires large
weights, which can slow down the convergence of the model training, since MLPs
are usually initialized with weights close to zero. In training our model, dividing the
labels y by their maximum values in the validation set lead to faster convergence and
better performance. Every training set is scaled using the validation set values, since
the same validation set is used to evaluate the performance of each model, leading
to a consistent scaling. In some settings, labels are transformed to zero mean and
unit variance at Stanford University [2018]. In the case study, this approach is not
used due to the outputs having a guaranteed value of zero, if no engines using the
respective fuel are present; an important property for the model to learn. A set with
labels on both sides of zero might not support this objective. It is unclear whether
linear scaling is the optimal transformation for data in which labels often have a
value of zero.

Each model is trained in PyTorch using MSE loss, and 1000 epochs. Adam
Kingma and Ba [2014] is used as the optimizer, as it was shown to outperform
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Figure 7: Label distribution

stochastic gradient descent both in terms of convergence time and accuracy. Different
learning rates were tried at first, but a learning rate of 0.001 converged better than
the tested alternatives, and was thus selected for the grid search. As the training sets
are fairly small, the training is conducted without needing to use minibatches. Each
model is evaluated both by the final test loss and the ratio between final training and
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test loss. The test is conducted using a validation set of 445 points, which includes
5 points from all 89 feasible values of T . Some T s are infeasible for all values of
p due to the design problem constraints, namely the one concerning the minimum
and maximum total production capacity. The distribution of the outputs of the
simulations are visualized in Figure 7, with the latter showing the mean consumption
of a single type of fuel. That is, not the total fuel consumption, but roughly half of
the mean total consumption. This is because the used MSE loss is calculated in the
same manner.

Figure 8: Grid search model convergence

Following the grid search, the three models listed in Table 4 are selected. The
models are used in the sampling routine comparison described in the next section.
The architectures are selected based on diversity, test error, and the ratio between test
and training error, the latter of which describes how much the model overfits. Model

Figure 9: Convergence of the selected models in a longer routine
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Model Hidden nodes L1 Regularization weight
1 1× 1000 10−5

2 1× 100 10−4

3 1× 22 10−5

Table 4: Selected architectures

convergence is inspected visually, and is shown in Figure 8. The visualized training
and test errors are calculated using the unscaled labels and predictions, although the
error used in the training is calculated using scaled labels. The best models converge
to an MSE of 108, corresponding to a mean error of around 10 000 kg per prediction
for both fuels. This is an error of roughly 3-4%. Models with a large number of
nodes seem to perform better than those with less than 20 nodes. Interestingly, the
models with the smallest test errors are ones which seemingly overfit the training
data significantly, as exemplified by Model 1. It is unclear whether a less overfitting
model performs better for different sample sizes, which is why both overfitting and
non-overfitting models are selected. Figure 8 shows that none of the architectures has
a problem with growing test errors, indicating that a longer training routine might
improve the models. The three selected models are therefore also trained with 10000
epochs. The results of the longer training routine are shown in Figure 9. The models
with a smaller L1-regularization coefficients seem to achieve optimal performance at
around epochs 3000-4000, whereas the model with tighter regularization still seems
to improve towards the end of the training. Interestingly, the training error of the
smallest model starts to temporarily increase in the middle, suggesting that the use
of an optimizer with an adaptive learning rate, such as Adadelta Zeiler [2012], or
manually changing the learning rate during training, might be reasonable.

5.4 Sampling
In order to construct a surrogate model that performs accurately in the entire domain
of the simulation model, a comprehensive training dataset is required. The size of
the required dataset depends on both the complexity of the modeled process, and the
type of function used as the surrogate model. In studying the relationship between
simulation sample size and population statistics, sampling strategies producing low-
discrepancy sequences have been shown to converge faster than techniques based on
random sampling Burhenne et al. [2011]. While the task of surrogate model training
differs from that of determining population statistics, both tasks require the dataset
to have similar space-filling qualities.

Latin hypercube sampling (LHS) is selected as the space-filling sampling algorithm
McKay et al. [2000]. Deterministic sampling strategies, such as ones based on Sobol’
sequences Sobol’ [1967], could provide samples with lower discrepancy than LHS
sampling. However, LHS is fairly easy to understand, and has the advantage over
Sobol’ sequence-based sampling of having non-uniform distances for the projections
of the samples onto each axis, which might lead to a more robust surrogate model,
although this assumption is not tested. Another commonly cited benefit of Sobol’
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sequence-based sampling, the ability to increase the sample size without the need
to recompute the entire sample, is inconsequential in this routine, since in the
implemented active learning scheme, each new set is sampled in a subspace of the
parameter space, defined by the performance of the surrogate model. The sampling
of these new datasets is described in Section 5.5.

In this project, an optimal sampling strategy is one which enables the construction
of a globally accurate surrogate model with as few simulations as possible. Simulation-
based studies often employ a simulation budget, typically defined as a maximum
number of simulations allowed for either the entire study or a part of it. While no
exact budget is set for this study, the number of simulations is assumed to be limited
so that analysis of the simulation model by conducting an exhaustive search of the
parameter space by evaluating a large number of simulations is infeasible.

In this section, several sampling strategies are compared in terms of scalability,
generalizability, and ANN convergence. Due to the fact that an active learning
scheme is employed, a smaller initial dataset can be used, in contrast with a setting
where no new points can be evaluated. However, a comprehensive validation set is
required to enable the identification of parameter space areas where the surrogate
model performs poorly. If the initial dataset is too sparse, some areas of the parameter
space might be unrepresented, and the surrogate performance cannot be evaluated
well. When using a small sample size, the training set might also be sparse in some
areas, but the possible lacking performance in such areas can be reacted to within
the active learning scheme.

The main challenge in implementing commonly used space-filling sampling strate-
gies is that they tend to assume a constant number of parameters, which take values
from continuous intervals. In such a setting, the sampling can then be formulated as
selecting points from a unit hypercube [0, 1]k, with k being the number of parameters
in the model. After sampling, the sampled values are scaled to their respective value
ranges. In this study, several qualitative variables are present, and the feasible value
ranges for some of the parameters are dependent on the values of other parame-
ters. In such a setting, hypercube-based sampling strategies cannot be implemented
without modifications. In this study, two approaches in dealing with qualitative
parameters, represented by T , are implemented. The first one is to enumerate all
feasible permutations of qualitative variable values, and sample the numeric variables
using a separate sampling strategy. This sampling strategy shall be referred to
as enumerative sampling. The second approach is to parameterize the qualitative
variable values, referred to from now on as configurations. This approach shall be
called parameterized sampling. In the following section the approaches are described
for both the case study and a general power system design, since the goal of the
thesis is to develop a scalable routine.

5.4.1 Enumerative sampling

Basic idea

In the enumerative sampling approach, a list of feasible configurations is enumerated,
and a space-filling sampling strategy is used for the numeric variables. For a model
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with n qualitative variables with each having mi, 1 ≤ i ≤ n levels, this means that
at least ∏︁n

i=1 mi points have to be sampled for a completely representative dataset,
assuming all permutations are feasible. If the number of variables is not constant,
the omission of a variable can be represented as an additional parameter value.

The simplest way to implement enumerative sampling is to list all qualitative
parameter value combinations, and perform a sampling routine for the numeric
parameters separately for each configuration. This method guarantees that each
configuration is represented evenly, and it is easy to interpret. If the sample size
is large compared to the number of configurations, a space-filling routine can be
implemented for each configuration, leading to a very comprehensive dataset. If the
values of the qualitative parameters do not influence the values of numeric parameters,
the latter can be sampled in a single routine, and then assigned randomly to the
enumerated configurations. This ensures that the projections of the parameter space
to both the numeric and qualitative parameters are sampled in a space-filling way. If
the value range of one or more numeric parameters is dependent on the value of the
qualitative parameters, separate sampling routines might have to be implemented
for each configuration. In such a setting a large sample size might be necessary to
capture the relationship between parameters.

Case study implementation

In the case study, the engine type matrix T represents qualitative parameters and
the engine power vector p the numeric ones. For sampling purposes, the one-hot
representation of T can be changed to a vector of integers t̂, each element representing
the row index of the non-zero element of a column. Since the number of engines
varies between two and four, the possible values of the parameters are between one
and four for the first two elements of t̂, and between zero and four for the latter
two elements, with the value zero corresponding to no engines in the respective
engine slot. The possible values of t̂3 depend on the values of t̂1 and t̂2, due to the
constraint dictating that the power system can include at most two different engine
types. The possible values of t̂4 are similarly dependent on the values of the first
three elements, with the additional constraint of non-zero values only being allowed
if t̂3 is also non-zero, since the engine slots must be filled in increasing order. The
number of engine configurations is then as follows:

2 engines, t̂1 = t̂2 : 4
2 engines, t̂1 ̸= t̂2 : 42 − 4 = 12
3 engines, t̂1 = t̂2 : 4 · 4 = 16
3 engines, t̂1 ̸= t̂2 : 12 · 2 = 24
4 engines, t̂1 = t̂2 = t̂3 : 4 · 4 = 16
4 engines, t̂1 ̸= t̂2 or t̂1 ̸= t̂3 : (24 + 12) · 2 = 72.

In total, there are 144 possible configurations for the ship in the case study, although
some of them might not be feasible due to other constraints. In general, the number
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of possible configurations for a with n engines and m distinct engine types is given
by

yn =
(︄

m

2

)︄
· (2n − 2) + m = 2m− 2n−1m−m2 + 2n−1m2, (7)

assuming a maximum of two distinct engine types, a convention which ship designs
typically follow. The binomial coefficient in Equation (7) represents the number of
distinct engine pairs, and the term (2n − 2) is the number of ways each pair can be
used to fill all n engine slots, excluding configurations in which all slots are filled
by the same engine type. The last term, m, represents all configurations which only
include one engine type.

Figure 10: LHS sample and a subset projection

Due to the large number of configurations, it is infeasible to have a sample
size large enough where separately sampling p for each configuration would make
sense. Instead, three LHS samplers are defined, with dimensionalities 2, 3, and
4, corresponding to the number of engines in a configuration. A sample is drawn
from each sampler, with the sample sizes depending on the number of sampled
configurations with the corresponding number of engines. While a four-dimensional
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LHS sampler could be used, with projections of p into two or three dimensions used
for configurations with less than four engines, this approach would not guarantee
that samples corresponding to two- and three-dimensional configurations fill the
parameter space well. Figure 10 illustrates this with a subset of a two-dimensional
LHS sample projected into one dimension. Clearly, the projection does not fill the
space well, although the two-dimensional sample is quite space-filling. Therefore,
unless the subset is selected with a strategy which ensures that the projections to
lower-dimensional spaces are space-filling, it is best to use separate LHS samples
for each configuration group. Separate four-dimensional samples could be drawn for
each group with the space-filling qualities retained, but doing so would offer no clear
benefit over the use of separate samplers.

Problems

Figure 11: Number of configurations as a function of m and n

In the enumerative sampling approach, adding a new qualitative parameter with
mi levels multiplies the size of the dataset required for an even sampling by mi. For
a large model, this approach falls victim to the curse of dimensionality. The problem
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with exponentially growing parameter spaces is that the number of samples required
for training a globally representative surrogate model tends to become infeasibly
large.

The number of configurations for different settings is visualized in Figure 11,
which shows that the total number of configurations grows quickly as a function
of available engine types when the number of engine slots is large, as is typical for
larger ships. The enumerative sampling approach might therefore not scale well for
larger problems.

5.4.2 Parametric sampling

Basic idea

In the parametric sampling approach, instead of treating each qualitative parameter as
individual and non-numeric, some or all of the parameters are described using numeric
hyperparameters. The approach is only applied to sampling, so the structure of the
simulation model and the surrogate model are the same as when using enumerative
sampling. While the values of the qualitative parameters are treated as non-numeric,
the parametric sampling approach can provide the ability to sample a large, partially
qualitative parameter space, in a space-filling manner without the need to include
each configuration in the initial training set. While it is not necessarily sensible to
describe sampling approaches in a partially qualitative parameter space as space-
filling, there are some ways to approximately describe similarity between different
designs. For example, a ship power plant with two engines of type 1 and one engine
of type 2 can be assumed to perform more similarly as a design with three engines
of type 1, than one with four engines of type 4. Clearly the parameterization of
qualitative parameters is very problem-specific, and for some problems it might
not be viable. The approach requires a hyperparameterization which translates the
domain knowledge about the problem well.

Case study implementation

Number of engines Probability
2 1

6
3 2

6
4 3

6

Table 5: Probability distribution for the total number of engines using sampling
parameterization 1

As some of the qualitative parameters of the case study are dependent on the values
of other parameters, a parametric approach might be suitable to be able to sample the
parameter space. The objective of the sampling approach is to form a diverse dataset
for the training of the surrogate model without having to have samples for each
engine configuration. For the case study, the matrix T consists of one-hot column
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vectors describing the selected engine types for each engine slot. The number of
engines can change between two and four, and at most two different engine types can
be selected. The first parameterization uses the types of engines present in a design,
along with the number of both engine types. The order of the engines is the only
information missing from this parameterization of T . The suggested hyperparameters
are a, b, na, and nb, representing the selected engine types and the number of those
engines present, respectively. The parameterization forms a four-dimensional discrete
hyperparameter space, where a ∈ {1, 2, 3, 4}, b ∈ {1, 2, 3, 4}, na ∈ {1, 2, 3}, nb ∈
{1, 2, 3}, and 2 ≤ na + nb ≤ 4.

An alternative parameterization could consist of the engine types, (a, b), the total
number of engines k, and the number of engines of type a, with na ≤ k. The two
parameterizations lead to different distributions in terms of the number of engines,
as the first formulation assigns the number of engines a probability distribution
that is skewed toward designs with more engines, as shown in Table 5, whereas
the second parameterization leads to a uniform probability distribution in terms of
number of engines. It is unclear which parameterization is preferable, as even though
the number of feasible configurations increases when the number of engines in the
configuration increases, the effect of additional engines is presumably smaller than
that of the first two engines, as the usage rate of the engines is dependent on their
position, as discussed in Section 5.1. It might therefore be reasonable to increase the
amount of samples with fewer engines to try and increase the performance of the
surrogate for such designs.

The first parameterization produces configurations with too many engines with a
probability of 1

3 , meaning that more points needs to be sampled to get a sample size
that matches that of the second parameterization. Both parameterizations share the
sampling strategy for the engine types, and have a probability of 1

4 for producing a
configuration with only one engine type present. In reality, such configurations are
common due to maintenance benefits, and it could be worthwhile to increase the
share of such designs. Due to the fact that the first parameterization should lead
to a more even distribution between all possible configurations, it is selected as the
implementation of the parametric sampling approach.

If the engine types could be sorted in a manner which means that engine i is
"more similar" to engine j than to engine k when |j − i| < |k − i|, the parameter
space could be justifiably sampled using a space-filling algorithm. If no such ordering
can be achieved, the parameters (a, b) are essentially sampled randomly, and no
space-filling qualities are guaranteed. In the case study, each engine is defined by its
fuel, fuel consumption curve, maximum continuous load, and MCR range. As such,
there is no clear way to sort the engines. In this case study, the engines are sorted
primarily by their fuel type, and secondarily by their maximum MCR. Their sorting
can then be seen as a grouping, but there is no guarantee that engines i and i + 1 can
be seen as "similar". Still, treating the parameters as numeric does not seem to cause
any harm, so a space-filling algorithm is used. An eight-dimensional LHS sampler
is used for sampling points defining both the hyperparameters and p. Since LHS
produces continuous values, the first four elements of each sample are rounded down,
providing an even distribution for the integer-valued hyperparameters. The order of
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the columns of each engine type matrix T constructed using the parameterization is
random. This means that some configurations might be unrepresented, especially
if a small sample size is used. Since some of the produced samples are infeasible
due to an excessive number of engines, the projection of the parameter space onto
p might not be filled optimally. As only one sampler is used, the risks related to p
being unevenly sampled for two- and three-engine configurations, as described in the
previous section, are present.

5.4.3 Numeric parameter scaling

The numeric parameters in the model are represented by the MCR vector p, whose
size varies between two and four, depending on the number of selected engines.
While the values of p present in the simulation model depend on the engine types
represented by T , for sampling purposes, they can be considered as taking values
from the closed interval [0, 1]. The sampled values can then be shifted and scaled
according to the following equation:

pi = mmin
ji

+ p̂i · (mmax
ji
−mmin

ji
), (8)

where p̂ is the sampled vector, and mmin
ji

and mmax
ji

represent the minimum and
maximum available MCR of the engine type in engine slot i, as listed in Table 2.
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5.4.4 Comparison of sampling approaches

Figure 12: Convergence of sampling test models
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To test how the two sampling approaches perform in the setting of the case study, a
test is performed. In the test, the approaches are used to sample three sets of 100,
200, 600 and 1200 points. The validation set from Section 5.3 is reused. The training
sets are all separately used to train a surrogate model with the three architectures
selected in Section 5.3. The models are evaluated on the validation set, and the
best-performing model is selected. Both the convergence of the training and the
predictive ability are then compared for each sampling technique and sample size.
The time spent on sample construction is not measured, because it is negligible in
comparison to the time spent on simulation.

Sample size Enumerative sample Parametric sample
100 1.5 · 109 2.4 · 109

200 6.8 · 108 1.0·109

600 2.2 · 108 2.5 ·108

1200 8.7 ·107 1.6 ·108

Table 6: Sampling approach mean test errors

The results of the test are shown in Table 6 and Figure 12. The reported errors
are the average of all three corresponding samples. The enumerative sampling
strategy seems to outperform the parametric sampling strategy in all four sample
sizes, although with larger sizes the difference gets smaller. Therefore, enumerative
sampling is selected as the used sampling approach.

5.5 Active learning
In machine learning tasks, large datasets are often necessary for good model per-
formance. As discussed in Section 2, ship design projects are iterative, so a model
may need to be changed and analyzed several times. Therefore, minimizing the time
spent on simulations is of vital importance. Usually, machine learning models are
trained on a fixed set of n labeled samples S = {(xi, yi)|1 ≤ i ≤ n}, attempting to
learn an accurate approximation f̂ of the mapping f : X→ Y, so that f̂(xi) ≈ yi.
In active learning, instead of a single completely labeled set, there are two sets: one
labeled set L = {(xi, yi)|1 ≤ i ≤ n}, and one unlabeled set U = {xi|1 ≤ i ≤ N},
with N ≫ n. The explanatory variables x of both sets are assumed to be subsets of
the same set X . The general idea of active learning is to first teach a model f̂ using
L as the training set, and then use information about f̂ and U to select points in U
to label. That is, to use the process f to determine f(x) for the selected values of x.
A review of active learning is provided in Settles [2009], and a practical guide is given
by Settles [2011]. In this system, the active learning routine is implemented using an
initial labeled set L of size 400, sampled using the enumerative sampling approach
described in Section 5.4. The set of 445 points described in Section 5.3 is used as
the validation set V . The unlabeled set U consists of all feasible parameter values.

There are various ways of selecting the queried points in an active learning setting,
but generally some metric of expected potential improvement is used, or at the very
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Algorithm 1 Active learning algorithm
1: Initialize f̂ and train it using L
2: L(f) := max(||y− f(x)||1, (x, y) ∈ V
3: while L(f̂) > σ do
4: T ∗ ← max

T
(median({||f̂(x)− y||1 | x[1 : 16] = T, (x, y) ∈ V}))

5: Sample a set U∗ of size ⌈0.05 · |L|⌉, where x[1 : 16] = T ∗ ∀ x ∈ U∗

6: Evaluate the simulation model for all points in U∗ to obtain a labeled sample
L∗

7: L ← L ∪ L∗

8: Train f̂ using L
9: end while

10: return f̂

least hypothesized. In the setting of the case study, U is continuous in terms of p
and discrete in T , as any feasible point can be simulated. It might make sense to
develop a distance measure and look at areas where the model performs poorly in
order to achieve greater improvement. However, due to the mixture of qualitative
and numeric parameters, no such metric is used. Instead, a guess is made that the
values of T have a correlation with the model performance. Although this assumption
is not verified, there seems to be configurations for which the prediction error is
significantly larger that the mean error. The entire active learning algorithm used in
the case study is described in Algorithm 1.

Some parts of the Algorithm 1 warrant an explanation. Firstly, in order to comply
with the objective to develop a robust surrogate model, maximum absolute loss is
used to evaluate the performance of the model. The value of σ on line 3 of the
algorithm is set to 10% of the mean value of |y|, meaning that the algorithm is
ran until the surrogate model prediction errors are at most 10% of the average fuel
consumption.

Line 4 consists of calculating the absolute error for each point in the validation set,
and selecting the engine type configuration with the largest median error among those
points. The idea of the approach is to emphasize poorly performing configurations
in the training set L in order to encourage the model to learn to represent those
configurations.

As seen in line 5 of the algorithm, the size of new samples increases during training.
This is due to the fact that as the size of L increases, an addition of constant size
would have less effect on the training.

Lastly, in line 8, the existing model f̂ is trained using the expanded training set
L. During testing, this approach was deemed to produce better performing models
than re-initializing the model each time.
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Figure 13: Active learning max error

The convergence of the model is shown in Figure 13, and shows the progression
of the maximum error in the active learning routine, compared to three benchmark
models trained on samples of size 1200, sampled using the enumerative sampling
method. The final active learning model, which achieves a maximum relative error of
9.8% on the validation set, uses a training set consisting of 650 points. The set started
with a 200-point set sampled using the enumerative sampling method, and a total of
27 new sets were added to it during the training process. When tested on another
445-point set, the maximum relative error is 13.6%. The benchmark models have a
maximum relative test error of 10.1%, 14.4%, and 14.1% on this set, suggesting that
the active learning approach manages to train a relatively robust model requiring
barely half the number of simulations in comparison to the single-batch samples.
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Figure 14: Active learning model convergence

Figure 14 shows the model training and test errors. As expected, the error spikes
after adding samples to the training set, but then decreases rather quickly. Early
stopping was used to avoid overfitting to the new data, which can be seen as a
varying distances between the spikes.
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6 Discussion
Although the approximated simulation model is quite simple, this project has demon-
strated that an active learning approach seems to work well in building a robust
neural network surrogate model for a ship energy systems model. While the surrogate
is not used for analysis, there is no reason to believe that it is not suitable for
such tasks. No sensitivity analysis was performed, but neural networks are smooth
functions, and the performance of the surrogate on the two test sets are comparable,
suggesting a decent robustness.

The usefulness of a routine such as the one developed in this thesis is ultimately
limited by the accuracy of the approximated simulation model. It is therefore
necessary to spend an adequate amount of resources on developing a simulation
modeling framework to ensure the applicability of a surrogate modeling routine in
ship design projects. While the routine was developed with ship power systems
in mind, there is no reason the same approach should not be applicable for other
problems, where there is a process with an input/output structure that can be queried
at will.

The routine is also developed with scalability in mind, meaning that the addition
of new parameters and components should be viable. In terms of energy system
design, these new components could be new power producers or consumers, such
as a battery, a shaft generator, or mechanical engines. Simulating other domains is
also a possibility, for example by using computational fluid dynamics to represent
the effect of the hull design on the power consumption. Models significantly larger
than the one used in the case study could also be used, especially if the simulation
model evaluations can be parallelized. The active learning scheme lends itself well to
parallelization, especially as the time spent on neural network training tends to be
significantly smaller than the time spent on simulating. With proper parallelization,
the time spent on simulations in Section 5.5 after the evaluation of the initial 200
point set could be reduced by a factor of 650−200

27 ≈ 17.
While all parts of the routine could certainly be improved, the major area of

development is the active learning algorithm. Identifying a generalizable method for
finding poorly performing areas, or areas with the largest expected improvement,
would improve the entire routine considerably. The main challenge in selecting a
general method is the combination of qualitative and quantitative variables.

Alternative formulations of the surrogate input data should be investigated. In
the case study, the input vector size could have been reduced from 20 to 16 by
inserting the MCR of each engine into the one-hot representation. The input could
be formulated as

X̂ := Tdiag(p) (9)

The input defined in Equation (9) was not used, as it is not as generalizable as the
approach of flattening and concatenating all inputs. It was also hypothesized that
the effect of p would have been harder to learn for this formulation than for the one
used.

By changing the neural network class, different input structures could be used.
For example, if a convolutional neural network was used, the input matrix would not
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need to be flattened. While convolutional neural networks are most famously used
for image inputs, their ability to take into account the distance between elements
could also be useful when working with one-hot inputs.
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7 Conclusion
In this thesis, the use of surrogate modeling for simulation-based analysis of ship
power system design was explored. The basics of ship power system design were
discussed, and the use of mathematical methods in design projects was reviewed.
A potential for improvement in simulation-based analysis via the use of surrogate
modeling was identified.

The objective of the thesis was to develop a proof-of-concept level implementation
of a surrogate modeling routine to assist simulation-based design analysis. Generaliz-
ability and scalability of the routine were emphasized. A case study using mock data
for an imaginary medium-sized cargo ship was conducted to support the development
of the routine. In order to minimize the number of simulation model evaluations,
space-filling sampling algorithms were examined, and an active learning approach
was implemented. The surrogate modeling was conducted using neural network
surrogates, as they were deemed to provide an accurate and scalable approximator.

Using active learning, a surrogate model trained with a set of 650 points achieved
a similar maximum absolute prediction error as models using training sets of 1200
points. The model achieved a relative maximum error of around 14 %, with a mean
squared error of ≈ 108, with the simulation model mean output being between 2 · 106

and 3 · 106.
The proposed methodology facilitates robust analysis of simulation models, and

should scale well for larger systems, provided adequate computational resources.
Parallelization of the simulations can accelerate the entire routine considerably. The
routine can provide a helpful tool to be used as part of a ship design process, although
ultimately the usefulness of the system is dependent on the accuracy of the used
simulation model.
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