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Abstract
The accurate estimation of Loss Given Default (LGD), or the share of exposure that
will be lost in case of a default, is crucial for the profitability and financial stability
of banks and other financial institutions. Modelling LGD is challenging due to the
complex nature of LGD as a phenomenon, as well as its unusually shaped bimodal
distribution. LGD modelling is thus an active field of research and development.

In this thesis, we study how the performance of three different multi-stage LGD
model structures changes compared to that of a simple OLS model depending on the
shape of the LGD distribution, the proportion of cure, partial recovery and write-off
cases, and the predictiveness of explanatory variables for the different components
of the multi-stage models. To generate data for the study, we devise a simulation
approach that generates LGD data suitable for different types of multi-stage models by
combining existing LGD simulation approaches found in the literature.

We show that a multi-stage model performs the best compared to OLS or a simpler
multi-stage model when there are variables available that can accurately predict the
probabilities related to the component splits of the specific multi-stage structure, when
there are enough cases in each component to justify the additional complexity of each
split, and when the loss distributions are heterogenous between the components and
homogenous within the components.

However, we also show that the average performance differences between the
models are small compared to between-dataset variation even within similar data sets,
and that the studied multi-stage models do not produce a predicted LGD distribution
in the characteristic bimodal shape even when their discriminatory power between the
components is strong.

This thesis and its results provide a starting point for LGD model structure choice
for modellers, as well as for future research on the behavior of multi-stage models.

Keywords Loss given default, credit risk modelling, multi-stage models, regression,
simulation, risk management
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Tiivistelmä
Tarkka tappio-osuuden (LGD), eli maksukyvyttömyyden sattuessa menetetyn vastuun
osuuden maksukyvyttömyyshetken kokonaisvastuusta, ennustaminen on elintärkeää
pankkien ja muiden rahoituslaitosten tuottavuuden ja vakauden kannalta. Tappio-
osuuden ennustaminen on haastavaa sen monimutkaisen luonteen sekä epätavallisen
kaksihuippuisen jakauman vuoksi. Tappio-osuusmallit ovat siksi jatkuva tutkimuksen
ja kehityksen kohde.

Tässä diplomityössä tutkitaan, miten kolmen eri monivaiheisen mallirakenteen
ennustuskyky muuttuu verrattuna yksinkertaiseen lineaariseen regressiomalliin riip-
puen tappio-osuusjakauman muodosta, maksukyvyttömyydestä parantuvien tapausten,
osittaisten palautusten ja luottotappiokirjaus-tapausten osuuksista, sekä ennustamiseen
käytettävien muuttujien ennustavuudesta eri mallikomponenteille. Datan tuottami-
seksi työssä kehitetään erilaisille monivaiheisille tappio-osuusmalleille soveltuvaa
dataa tuottava simulointimenetelmä yhdistelemällä tappio-osuusmallikirjallisuudesta
löytyviä simulointimenetelmiä.

Työn tulokset osoittavat, että monivaiheinen tappio-osuusmalli toimii parhaiten
verrattuna lineaariseen regressioon silloin kun käytössä olevien muuttujien avulla
voidaan ennustaa tarkasti mallien komponenttĳakoon liityviä todennäköisyyksiä; kun
jokaiseen mallikomponenttiin kuuluu tarpeeksi tapauksia, jotta komponenttĳakojen
lisäämä kompleksisuus on perusteltua; ja kun tappio-osuusjakaumat ovat heterogeenisiä
mallikomponenttien välillä sekä homogeenisiä niiden sisällä. Tulokset osoittavat
kuitenkin myös, että keskimääräiset erot mallien suorituskyvyssä ovat pieniä verrattuna
vaihteluun datasettien välillä jopa silloin, kun datasettien erot ovat pieniä; ja että
tutkitut monivaiheiset mallit eivät tuota ennusteille tappio-osuusjakaumalle tyypillistä
kaksihuippuista muotoa edes silloin, kun mallien erottelukyky komponenttien välillä
on korkea.

Tämä diplomityö ja sen tulokset antavat lähtökohdan mallintajille tappio-osuus-
mallirakenteen valintaan, sekä monivaiheisten tappio-osuusmallien käyttäytymisen
jatkotutkimuksiin.

Avainsanat Tappio-osuus, luottoriskimallinnus, monivaiheiset mallit, regressio,
simulaatio, riskienhallinta
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Symbols and Abbreviations
A-IRB advanced internal ratings-based approach
AUC area under the receiver operating characteristic curve
BCBS Basel Committee on Banking Supervision
𝐶 cure
CPW Cure-Partial-recovery-Write-off multi-stage model
Δ difference
EAD exposure at default
EC economic capital
ECL expected credit loss
EL expected losses
F-IRB foundation internal ratings-based approach
gAUC generalised area under the receiver operating characteristic curve
𝐼𝐶 cure indicator
𝐼𝑃 partial recovery indicator
𝐼𝑊 write-off indicator
IRB internal ratings-based approach
LGC loss given cure
LGD loss given default
LGD𝐶 loss given default within cure cases
LGD𝑃 loss given default within partial recovery cases
LGD𝑊 loss given default within write-off cases
LGD0 zero LGD
LGD1 one LGD
LGNW loss given no write-off
LGP loss given partial recovery
LGW loss given write-off
OLS ordinary least squares regression
𝑃 partial recovery
PD probability of default
𝑅2 coefficient of determination
ROC receiver operating characteristic curve
RWA risk-weighted assets
𝑠 default end status
UL unexpected losses
𝑊 write-off
WNW Write-off-Non-Write-off multi-stage model
ZFO Zero-Fractional-One multi-stage model
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1 Introduction
Loss given default (LGD) is a critical parameter used in credit risk modelling and
risk management. It describes the proportion of exposure at the moment of default
that is lost when a borrower defaults. Accurate modelling of LGD and credit risk in
general is crucial for the profitability and financial stability of banks and other financial
institutions (McNeil et al., 2015).

Predicting LGD accurately is difficult. LGD is the outcome of a highly variable
default and workout process, and the typical LGD distribution of a portfolio is bimodal
or even U-shaped, with lots of very low and very high losses (Schuermann, 2004).
Due to the complex nature of LGD and its unusual distribution, there is no single
correct model for LGD, and instead, LGD modelling techniques vary greatly.

Most commonly used LGD models can be categorised roughly into two types:
single-stage models and multi-stage models. Single-stage models predict LGD in
one step using techniques varying from simple linear models to complex machine
learning techniques. Multi-stage models divide the LGD prediction into multiple
steps or components, that typically utilise relatively simple modelling techniques,
such as linear regression, within the components. The benefit of multi-stage models is
that they allow for more detailed modelling of LGD than simple single-stage models,
while simultaneously keeping the models easier to interpret than advanced single-stage
models. However, developing a multi-stage model often requires considerably more
work than developing a single-stage model, since a multi-stage model is essentially a
combination of multiple single-stage models. Therefore, a more complex multi-stage
model structure is justified only if it significantly improves the performance over a
simpler model structure.

Various LGD model comparison studies have been performed. However, most
studies focus only on single-stage models or include just one type of multi-stage model
in the comparison. Furthermore, we found no studies on how the properties of the
LGD and explanatory variable data affect the relative performance of different models.
The best study we found in this regard is by Loterman et al. (2012), who include in
their comparison two multi-stage model structures and perform the comparison using
six different data sets. However, they do not analyse the factors that make one model
or model structure perform better for one data set and worse for another.

The aim of this thesis is to fill this gap in the literature for multi-stage models by
answering the following two related research questions:

1. What factors affect the performance of different multi-stage model structures
relative to a simple single-stage model?

2. For what kind of data can one expect better performance from different multi-
stage models than from a simple single-stage model?

To answer the questions, we first simulate a collection of varying LGD data sets
following the simulation practices in the LGD literature. Then, using the simulated
data, we analyse the relationships between data describing summary statistics and the
performance differences of three distinct multi-stage model structures compared to a



simple single-stage model, as well as the performance levels of the different model
structures over different value ranges of the summary statistics.

The structure of this thesis is as follows. In section 2, we give background on
credit risk, risk management, LGD, LGD modelling and LGD data set simulation
based on literature. In section 3, we describe the methodology used in simulating our
data sets and in the model analysis, including the models themselves. In section 4, we
present and analyse the results. Finally, section 5 concludes the thesis.
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2 Background

2.1 Credit Risk and Risk Management
By its broadest definition, credit risk is the financial risk associated with any kind of
credit-linked event (Bielecki and Rutkowski, 2013). It includes default risk, which is
the risk arising from a borrower’s failure to meet their contractual obligations such
as loan repayments or bond obligations, as well as the risk of reductions in market
value caused by changes in credit quality or ratings and variations in credit spreads
(Bielecki and Rutkowski, 2013; Duffie and Singleton, 2003). In this thesis, we focus
on the default risk in bank loans.

Credit risk quantification is based on three main parameters: probability of default
(PD), exposure at default (EAD) and loss given default (LGD). PD, measured as a
decimal between 0 and 1, is the probability that the counterparty will default within a
specified time period. EAD, measured as currency, is the outstanding exposure at the
time of the default event. Loss given default, measured as a decimal, is the proportion
of the exposure at default which the bank is unable to recover after the default and will
be lost. Expected credit loss (ECL) can be calculated as the product of these three
parameters:

𝐸𝐶𝐿 = 𝑃𝐷 · 𝐸𝐴𝐷 · 𝐿𝐺𝐷. (1)

Quantifying credit risk serves multiple purposes. It is a critical concern for financial
institutions, as it directly affects their profitability and financial stability. By measuring
and predicting credit risk accurately, banks are able to tune their loan granting and
pricing processes to gain a competitive edge and increase profits while maintaining
risk levels accepted by stakeholders, investors and regulation (McNeil et al., 2015).

Effective credit risk management is also important for the society at large, as it
relies on functioning and stable banking systems (McNeil et al., 2015). As such,
credit risk management is regulated not only by local regulations and laws, but also by
international regulation frameworks, such as the Basel Accords.

2.1.1 The Basel Accords

The Basel Accords are an evolving set of standards meant to ensure the capital adequacy
of banks, set by the Basel Committee on Banking Supervision (BCBS). BCBS has no
official juristical power, but instead it expects that members implement and apply the
standards in their own jurisdictions (McNeil et al., 2015).

The first Basel Capital Accord (Basel I, 1988) was motivated by the Latin American
debt crisis of the early 1980s and rising concerns of inadequate capital reserves of
major international banks (Bank for International Settlements, 2018). It set out to
strengthen and unify the international banking system by introducing a minimum
standard for capital adequacy with a minimum required ratio of capital to risk-weighted
assets (Bank for International Settlements, 2018). However, risk measurement was
crude, with claims being divided into only three categories based on the type of
counterparty; governments, regulated banks and others, with no differentiation in
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risk between different corporate borrowers based on, for example, their credit rating
(McNeil et al., 2015).

To address the shortcomings of Basel I, the second Basel Accord (Basel II) was
released in 2004. It is a framework of three pillars. The first pillar sets new minimum
capital requirements and improved the quantification of required capital, allowing
banks to use internal models or external credit-rating systems to achieve better risk
differentiation (McNeil et al., 2015). The second pillar requires supervisory review
of an institution’s capital adequacy and internal assessment process, and the third
pillar sets disclosure requirements with the aim of strengthening market discipline and
encourage sound banking practices (Bank for International Settlements, 2018).

After the financial crisis of 2007-2009, the third Basel Accord (Basel III) was
released in 2010. It revises and extends the three pillars of Basel II by increasing the
quality and quantity of required capital, adding countercyclical buffers, leverage and
liquidity requirements and stricter requirements for systematically important banks.
Since its first release, several revisions to Basel III have been made to further improve
capital requirement calculations, with the latest major revision being from 2017, as of
May 2025 (Bank for International Settlements, 2018).

2.1.2 Regulatory Capital

The Basel Accords require banks to hold sufficient capital reserves to offset potential
losses. This capital is referred to as regulatory capital. The amount of required capital
is defined using three quality categories of capital, and risk-weighted assets (RWA).
The highest quality capital is Common Equity Tier 1 (CET1) capital, and it is defined as
the sum of common shares and stock surplus, retained earnings, other comprehensive
income, qualifying minority interest and regulatory adjustments. The second highest
quality capital, Additional Tier 1 (AT1) capital, is the sum of capital instruments
meeting criteria for Tier 1 and related surplus, additional qualifying minority interest
and regulatory adjustments. The lowest quality regulatory capital, Tier 2 capital, is
defined similarly as AT1 capital but with the addition of qualifying loan loss provisions,
and with lower criteria for qualifying capital instruments. At all times, CET1 capital
must be at least 4.5 % of RWA, Tier 1 capital (the sum of CET1 and AT1 capital) must
be at least 6 % of RWA, and total capital (the sum of Tier 1 and Tier 2 capital) must be
at least 8.0 % of RWA (Basel Committee on Banking Supervision, 2019).

Banks can choose between two approaches to calculate their RWA for bank loans.
In the standardized approach, standardized risk weights are assigned to different
exposure classes, and RWA is calculated as the product of the standardized risk weights
and the exposure amount. With the approval of a bank’s supervisor, it can also opt
for the internal ratings-based (IRB) approach, where the RWA is calculated based on
internal models and assessment (Basel Committee on Banking Supervision, 2019).

In IRB, the RWA-based capital requirements are meant to cover unexpected losses
(UL), while expected losses (EL) are to be covered by provisions. EL for an exposure is
calculated as the product of PD and LGD, while RWA is calculated using set functions
for different asset classes based on PD, EAD and LGD, and sometimes effective
maturity of the exposure. Depending on the capabilities of the bank, it may apply for
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the foundation IRB (F-IRB) approach, where it can estimate only PD internally, or for
the advanced IRB (A-IRB) approach, where all of the parameters can be estimated
internally (Basel Committee on Banking Supervision, 2019).

While the standardized approach is more common for small banks, most large
banks opt for the IRB-approach, as it provides more flexibility in comparison and they
have the resources to satisfy the heavy regulatory and supervisory requirements of the
IRB approach. However, even the A-IRB approach does not allow for fully internal
RWA quantification, but only the internal estimation of the input parameters PD, EAD
and LGD (McNeil et al., 2015).

2.1.3 Economic Capital

In addition to regulatory capital, banks calculate economic capital (EC). It is the
bank’s own realistic view of the capital required to cover unexpected losses with a high
confidence. It is used to assess the bank’s own risk position and to allocate capital in
the most efficient way according to the bank’s strategy by providing a common way to
measure risk between different asset classes (Burns, 2004). In contrast to regulatory
capital, EC can be quantified using fully internal models.

2.2 Loss Given Default
Loss given default (LGD) is one of the three main parameters used to measure credit
risk. It is the proportion of the exposure at default which the bank is unable to recover
after the default and will be lost.

The typical LGD distribution of a portfolio is bimodal, with large concentrations
near 0 (no loss) and 1 (full loss) (Schuermann, 2004). While LGD is usually between
0 and 1, it can also be greater than 1 in case the whole exposure is lost and there are
additional costs related to the recovery process or legal fees. It can also be negative,
meaning that a profit was made on the default, due to large collateral recoveries and
collected late fees (Salko and D’Ecclesia, 2022). Extreme LGD values (both positive
and negative) are more likely to be present when the exposure is small, because it is
defined as a ratio of the loss to exposure, and because the relative effect of additional
costs and fees is greater than for large exposures.

When a default happens, roughly three scenarios can follow. First, the borrower
can resolve the issues that lead to the default, return to the normal payment schedule
and cure. This is the best case scenario, where usually only little to no losses incur.
Second, the loan can enter collection, where possible collateral is liquidated and other
legal measures are taken to recover the exposure. The collection process can lead to a
broad range of loss outcomes. Liquidating the collateral and other recoveries might be
enough to cover the whole exposure, or, in the third, worst case scenario; a portion of
the exposure can not be recovered and has to be written off, leading to high losses.

The most influential factors that affect the loss outcome are the seniority of the
loan and the amount of attached collateral Schuermann (2004). Senior debt is repaid
first, so a bank is more likely to get good recoveries on a senior loan rather than on
a subordinated junior loan. In case the default enters collection, an unsecured loan
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is likely to incur high losses, while a fully collateralised loan might get repaid fully.
However, even fully collateralised loans may cause losses due to lower-than-expected
realisation prices or a prolonged realisation process. The ease and price of realisation
are heavily affected by the type of collateral and its location, as well as macroeconomic
factors. For example, an apartment in a capital city is easier to liquidate than a house
in a demographically regressing rural town, or some highly specialized industrial
machinery. Thus, accurate collateral valuation on the bank’s part is also a key factor
affecting the losses it sees.

Other key factors affecting LGD are the type of customer (e.g., large corporates
behave differently than households), nature and severity of the default (e.g., bankruptcy
or just late payments), financial situation of the borrower (e.g. employment status,
salary, turnover, profit, liquidity) and industry of the borrower (Salko and D’Ecclesia,
2022). In addition to collateral liquidation, macroeconomic factors can also affect
different industries differently, and have an overall effect on the borrower’s financials
and thus LGD.

2.3 Modelling Loss Given Default
The goal in LGD modelling is twofold: risk differentiation and risk quantification
(European Central Bank, 2024). Although not completely separate concepts, the
difference between the two can be illustrated as follows. Quantifying the level of risk
of a portfolio is crucial to ensuring capital adequacy. However, even a simple average
model can accurately predict the level of risk at the portfolio level, while providing no
insight to where the risk is actually coming from. Only by accurately differentiating
high-risk and low-risk customers are banks able to truly manage the risk, through, for
example, loan granting decisions, pricing, and targeted preventive action.

To satisfy the two goals, the LGD modelling process is typically divided into two
parts:

1. A scoring model, which predicts a raw LGD score with a focus on high
differentiation ability or discriminatory power, and does not yet necessarily
provide accurate estimates of expected loss levels.

2. A calibration step, where the raw LGD scores are adjusted to match, depending
on the use-case of the model, long-run average or downturn loss levels, or to
reflect the economical conditions at a certain point in time.

In this thesis, we focus only on the scoring model, which we will refer to as the LGD
model.

A major challenge in LGD modelling is the bimodal distribution of LGD values.
In theory, models such as linear regression should not be used for this kind of data
(Li et al., 2016), because the predictions will be concentrated near the portfolio
mean, where in reality the observation concentration is the most scarce. However,
as Li et al. (2016) find, even transformations and models designed specifically to fit
the bimodal LGD distribution often fail at the task and produce predictions that are
more concentrated at the portfolio mean. Thus, in practice, as will be presented in
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section 2.3.1, OLS and its variants continue to be used for LGD modelling due to
their performance being on a good level despite the theoretical issues, and due to their
simplicity and transparency.

Another complicating factor is the complex nature of LGD itself - it is not a single
event, but a cumulative final result of a default and a workout process, which are
both affected by factors that can not be accurately accounted for on an obligor level.
Payment ability, for example, can be measured using financial ratios, employment
status, salary or other similar measures, but in reality the individual situation of each
obligor can not be fully captured by any number of variables. In addition, the situation
of each obligor and the economy as a whole can change unexpectedly before or during
the default due to any number of external factors, causing additional uncertainty in the
models.

Due to the aforementioned issues, LGD modelling is inherently difficult. The
difficulty is reflected in statistical performance, which, for LGD models, is generally
quite low (Bellotti and Crook, 2012; Loterman et al., 2012).

Additional biases in LGD models can be caused by the way modelling samples are
formed. Realised LGD data is only available from customers or contracts that have
defaulted. Yet, most of the bank’s portfolio, for which LGD is predicted by the model,
will never go into default (e.g., European Investment Bank (2024) report worldwide
average annual default rates of 3.56% and 2.59% between 1994 and 2023 for private
and public lending, respectively). This causes a representativeness issue, where the
historical data does not necessarily represent accurately the overall portfolio. It may
miss patterns that are only present in the non-defaulted parts of historical portfolios
and that would only materialise, for example, under certain economic conditions.
To minimise this bias, banks are required to ensure the representativeness of the
modelling data to the overall portfolio in terms of the available risk drivers and other
characteristics (Basel Committee on Banking Supervision, 2019).

Gürtler and Hibbeln (2011) also note that a finite observation period of the
modelling sample will cause an underestimation of LGDs unless properly accounted
for. Modelling data typically consist of only defaults for which the workout process
has been fully completed (otherwise some expected recoveries would still be missing,
which would in turn overestimate LGDs). This means that long defaults, which have
started before the observation period or would end after the observation period, will
be excluded from the data, and that the beginning and the end of the observation
period will contain only short defaults that fit fully inside the period. Therefore,
long defaults, which have on average higher LGDs (Gürtler and Hibbeln, 2011), are
underrepresented in the data. Thus, the model will underestimate average LGDs and
possibly not capture some patterns present only in the long defaults.

To avoid this issue, Gürtler and Hibbeln (2011) propose restricting the observation
period further, such that, based on some observed maximum workout process length
𝑇𝑚𝑎𝑥 , after which most of the defaults could already be considered resolved, only the
defaults that have started at the latest 𝑇𝑚𝑎𝑥 before the end of the observation period,
and ended at the earliest 𝑇𝑚𝑎𝑥 after the start of the observation period, will be included
in the modelling data. This way, all of the defaults in the data set would have the
possibility to last for at least the duration of the maximum workout process 𝑇𝑚𝑎𝑥 , and
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the underrepresentation issue of the long defaults would be solved. The downside of
this approach is that some data is excluded, which can be problematic if the data set is
small to begin with.

Finally, bias can be caused by the business processes from which the LGD data
originates. If, for example, loan granting criteria are stricter for a certain type of
business due to its inherent riskiness, then the loan data for these businesses will
be comprised of better customers, which may result in lower-than-expected realised
LGD levels. This can cause a discrepancy between business expectations and a purely
data-based model, especially if the type of business is used as a risk driver in the
model. In these situations, the model needs to include relevant risk drivers that capture
the fact that these are better customers and explain the lower LGD. Otherwise, the
model may work unintuitively by explaining the lower LGD based on the type of
business. In general, LGD modellers must be aware of such data issues instead of
blindly trusting the data.

To overcome the challenges in LGD modelling, models of varying complexity and
structures are used. Section 2.3.1 introduces examples of typical single-stage models
and their performance, while section 2.3.2 does the same for multi-stage models, which
divide the LGD score prediction into multiple steps or components. Finally, section
2.3.3 discusses different model selection criteria and the model selection process as a
whole.

2.3.1 Single-stage Models

The simplest structure for an LGD model is a single-stage structure, where the LGD
score is predicted directly in one step. The complexity of the actual model used in
single-stage structure can vary greatly, from statistical regression models and decision
trees to complex machine learning models (Loterman et al., 2012). In practice,
however, financial institutions mainly use statistical models as the final model due
to regulation and the need for transparency and business intuition, while machine
learning models are for now primarily used for benchmarking and in academic contexts
(Bücker et al., 2020).

Loterman et al. (2012) perform a comprehensive benchmark study on the per-
formance of the most common LGD models. For single-stage models, they include
ordinary least squares regression (OLS), beta-transformed OLS (B-OLS), beta re-
gression (BR), Box-Cox transformed OLS (BC-OLS), ridge regression (RiR), robust
regression (RoR), regression trees (RT), multivariate adaptive regression splines
(MARS), least squares support vector machines (LSSVM) and multilayer percep-
trons (MLP) in the study. Using six real-world datasets of different loan portfolios
and eight diverse performance metrics, they find that the machine learning models
LSSVM and MLP outperform the rest of the single-stage models and that also MARS
and RT outperform the linear and transformed linear models. Between the purely
linear models, OLS, RiR and RoR, they find no consistent performance differences,
while they find OLS to outperform the transformed linear models, B-OLS, BR and
BC-OLS. They attribute the worse performance of the transformed linear models to
the transformations which cannot deal with the high concentration peaks near 0 and
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1 in the LGD distribution and the additional inefficiency or bias the transformations
introduce. Loterman et al. (2012) note that the better performance of the non-linear
models indicates the presence of non-linearity in the relationship between LGD and
the independent variables, proving the potential of using non-linear techniques in LGD
modelling. However, in the case of LSSVM and MLP, the increased performance
comes with the cost of reduced transparency.

Bellotti and Crook (2012) find similar results regarding linear models in their study
of LGD models for credit cards - they find that OLS outperforms beta-, fractional
logit- and probit-transformed OLS models. Additionally, in their comparison they
include a least absolute deviation regression model and a Tobit model, in which a linear
regression model is censored between 0 and 1, and is fit using maximum likelihood
estimation considering separately the probabilities that LGD is 0, 1, or in between.
These models, too, are outperformed by OLS.

Numerous other single-stage model formulations are proposed in various studies.
However, the main conclusion is that in terms of statistical performance measures,
non-parametric models, such as regression trees or machine learning methods, tend to
perform better than parametric models, while for parametric models, such as regression
models, more complex methods do not necessarily perform better than simple ones
(Li et al., 2016, 2018).

2.3.2 Multi-stage Models

Multi-stage models divide the LGD prediction process into more than one steps or
components in order to better capture either the nature of the LGD distribution or the
different possible outcome states of a default. The idea is to be able to specify the
different model components more accurately for certain types of outcomes without
being affected by other outcomes that behave differently, and in order to achieve better
overall predictions. In multi-stage models, the final LGD score prediction is obtained
as a combination of the predictions of the different components. In each component,
the same modelling techniques can be utilised as in the single-stage models.

In their benchmark study, Loterman et al. (2012) include two multi-stage model
structures. The first is a combination logistic regression and another regression
technique, where in the first stage logistic regression is used to predict the probability
that the LGD is exactly 0, and in the second stage a model built using only observations
where LGD > 0 is used to predict the LGD in the case it is greater than 0. The final
prediction is the probability weighted average of 0 and the second stage prediction. The
authors report a slight trend where in the case of linear second stages, the performance
is slightly increased compared to the corresponding single-stage linear model, and in
the case of non-linear second stages, the performance is slightly decreased.

The authors also note that this model structure could possibly be improved by using
an ordinal logistic regression instead of binary logistic regression to also distinguish the
LGD = 1 peak from the rest. In fact, Bellotti and Crook (2012) compare a multi-stage
model with the same idea, where the probabilities of LGD = 1 and LGD = 0 are
determined using two chained logistic regression models. They motivate the model by
the large number of 0 and 1 LGD cases which make the division natural, and by the
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assumption that there are special conditions which cause the full and no loss outcomes.
However, they find that this model performs worse than OLS.

The second multi-stage model structure included in the study by Loterman et al.
(2012) is the combination of a first stage OLS model and a non-linear second stage model
that is built on the residuals of the first stage model. The final prediction is the sum of
the first and second stage predictions. For these models, the performance is reported to
be better than for OLS, and very near the performance of the corresponding single-stage
non-linear models. Despite the added complexity in model structure, Loterman et al.
(2012) state the advantage in this model structure is the comprehensibility of the
linear regression component combined with the good performance of the non-linear
technique.

In their working paper, Gürtler and Hibbeln (2011) use a similar decision tree
-like structure as Loterman et al. (2012) and Bellotti and Crook (2012), but instead
of forming the model components based on the LGD outcome (LGD = 0, LGD = 1
and 0 < LGD < 1 cases), they base the components on the end state of the default -
write-off or non-write-off. Their model consists of a first stage logistic regression model
predicting the probability of write-off, and a second stage of separate linear models for
write-off cases and non-write-off cases. The final prediction is the probability-weighted
average of the two second stage predictions. Gürtler and Hibbeln (2011) motivate
the usage of default outcome instead of LGD outcome by the different characteristics
that affect LGD between write-offs and non-write-offs (e.g., collateral value has a
high impact in write-off cases where collateral is liquidated, but if collateral is not
liquidated, it has no effect on LGD), the fact that losses from non-write-off cases are
not always zero, despite often being low, and by a lack of characteristics that separate
LGD = 1 cases from other high-loss cases. Using a simulation study, they find the
write-off-non-write-off multi-stage model to clearly outperform single-stage OLS.

Tanoue et al. (2017) present a multi-stage model, which is a combination of the
LGD-based and default outcome -based multi-stage models. In the first stage, they
use logistic regression to estimate the probability of a cure (they call it recovery, but
we rename it for consistency with the other models), which they assume to cause no
loss. In the second stage, they use another logistic regression model to estimate the
probability that the loss is greater than zero for the non-cured cases. In the third stage,
they use a logit-transformed OLS model to estimate the greater-than-zero losses. The
final prediction is thus the product of the probability that the default does not cure, the
probability that the loss is greater than zero, and the loss estimate of the third stage
model. Tanoue et al. (2017) find that the multi-stage model has superior predictive
accuracy compared to OLS, Tobit, and an inflated beta regression model, where
the continuous beta distribution is supplemented with discrete probability masses at
exactly 0 and 1 (Ospina and Ferrari, 2010).

Starosta (2021) further expands the multi-stage structure by considering separately
cure, partial recovery, and write-off cases. First, the probability of cure is estimated,
followed by the probability of write-off given no cure. Finally, the losses are estimated
for each of the three cases. They estimate the full model in two ways - in the first, the
probabilities are estimated using logistic regression and the losses using OLS, and in
the second, the probabilities are estimated using decision tree classifiers and the losses
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using regression trees. Starosta (2021) compares the performance of these models to
that of OLS and another multi-stage model with the same structure as used by Bellotti
and Crook (2012), which separates 0 and 1 losses from the fractional losses. Starosta
(2021) uses least squares support vector classifiers to estimate the probabilities and
OLS to estimate the losses in this model. They find that the expanded multi-stage
model using classification and regression trees performs the best, followed by the
expanded model using logistic regression and OLS. Similar to Bellotti and Crook
(2012), they also find that the other multi-stage model performs worse than simply
using OLS.

2.3.3 Model Selection

Statistical performance is perhaps the most obvious model selection criterion. Loterman
et al. (2012) measure performance using a set of eight common performance metrics,
which they divide into two types - root mean squared error (RMSE), mean absolute
error (MAE), area above the regression error characteristic curve (AOC) and 𝑅2

measure calibration, while area under the receiver operating characteristic curve
(AUC), Pearson’s 𝑟, Spearman’s 𝜌 and Kendall’s 𝜏 measure discrimination. Most
other studies also use (a subset of) these same performance metrics.

However, measuring statistical performance in LGD modelling is complicated by
the bimodal nature of the LGD distribution - the mean-focused performance metrics
give an incomplete picture of the true performance. Li et al. (2018) note that the shape
of the predicted distribution is important, for example, for stress testing and conservative
LGD adjustments that are often required by regulation due to data limitations, and
should therefore also be investigated as part of the model performance analysis. In
addition to visual distribution inspection, they use the Kolmogorov–Smirnov (KS) test
to quantify the similarity of the predicted distribution to the true one.

In practice, however, model selection does not depend solely on statistical perfor-
mance, but instead is a balancing act between statistical performance, interpretability,
and intuitiveness. Because LGD models are also used in business decision-making,
such as loan granting and pricing, they must be intuitive from the business perspective.
This means that the modeller must be able to explain why and how each selected
variable affects the LGD predictions. For example, adding collateral to a contract
must not increase the predicted LGD.

When the complexity of the model structure grows, it becomes increasingly difficult
to ensure that such rules hold in all possible scenarios. Especially if the model structure
or loan portfolio is segmented (by, for example, a decision tree -like structure), it
becomes imperative to ensure there are no unintuitive discontinuities in the LGD
predictions when switching from one segment or branch to another. This also holds
true for complex modelling techniques, such as machine learning models, where it
might be impossible to interpret the effect of each variable.

A complex model structure consisting of multiple components (such as in multi-
stage models) has also practical consequences in terms of model development,
maintenance and monitoring costs - they are essentially multiplied by the number of
components in the model, since the performance and validity of each component must
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be ensured separately.
Consequently, provided that adequate statistical performance is achieved, simple

models are preferred. This motivates us to compare different model structures with
different LGD distributions in order to gain insight on when more complex model
structures are worthwhile.

2.4 Simulating Data Sets for LGD Estimation
A challenge restricting LGD studies is the poor availability of empirical data. Banks and
other financial institutions will generally not publish details of their data distributions,
let alone complete data sets, due to privacy reasons and to avoid revealing useful
information to competitors. In order to compare the performance of the different LGD
model structures on diverse data, we turn to simulation to generate the data sets. In
this section, we explore LGD simulation approaches found in the literature.

Hlawatsch and Ostrowski (2011) propose a simulation approach that is based on
the bimodality of LGD. They use a mixture of a right-skewed and a left-skewed
beta distribution to capture the bimodal shape of the LGD distribution. To get a
variety of data sets, for each mixture distribution, they randomly draw the expected
values and variances, as well as a weight parameter, for the two beta distributions
from set intervals that ensure a suitable shape for the mixture distribution. From each
mixture distribution, 10000 realisations are drawn, an independent identically normal
distributed error term is added to each, and the result is limited between 0 and 1 to
form the final LGD data.

As explanatory variables, Hlawatsch and Ostrowski (2011) create a beta-distributed
ratio with a positive causal relation with LGD, and a normally distributed ratio, a
binary distributed indicator, and a beta-distributed ratio with negative causal relations
with LGD. The first is assumed to be independent of the other explanatory variables
and is drawn directly from the beta-distribution. The relationship for the other three
explanatory variables is assumed to be positive. To achieve this dependency structure,
Hlawatsch and Ostrowski (2011) use a Gaussian copula (with a randomly sampled
correlation matrix for variety between the data sets) to generate observations from
dependent uniform distributions, which are then used to generate the final observations
from the normal, binary and beta-distributions. We describe copulas and this variable
generation approach in more detail in sections 3.1.2 and 3.1.3, respectively.

To combine the explanatory variables and LGD into a complete data set, Hlawatsch
and Ostrowski (2011) first sort the simulated LGD, the first explanatory variable
independent from others, and the three dependent explanatory variables (based on
their copula values to preserve the dependency structure) into quintiles. Then, they
randomly match one of the explanatory variable quintiles to each LGD realisation
based on its quintile and a 5 × 5 matrix, which gives the probabilities of matching
each explanatory variable quintile to each LGD quintile. Finally, a random realisation
of the explanatory variable from the chosen quintile is matched with the LGD. This
matching is done separately for the independent explanatory variable and the three
dependent variables as one group. By adjusting the matching probability matrix,
Hlawatsch and Ostrowski (2011) are able to determine how predictive the explanatory
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variables will be.
Gürtler and Hibbeln (2011) use a slightly simplified simulation approach in their

comparison of an OLS model and a two-stage model. As explanatory variables,
they use five independent standard normally distributed variables, two of which are
assumed unobservable and are reserved only for generating the "true" LGD data. Using
a Gaussian copula, they transform the first unobservable variable into a uniformly
distributed variable on (0, 1), which is correlated with the first two observable (mutually
independent) variables. If the value exceeds 0.8, the observation is classified as a
write-off case. Then, using another Gaussian copula, they transform the second
unobservable variable similarly, but such that it is correlated with the first and third
observable (mutually independent) variables. This value is set as the LGD for the
write-off cases. For recoveries, LGD is set to zero. This procedure generates a data
set with the LGD, a write-off indicator, and three independent standard normally
distributed explanatory variables - the first has a causal relationship with the write-off
indicator and LGD, the second has a causal relationship with only the write-off
indicator, and the third has a causal relationship only with LGD. The second variable,
however, also correlates with the final LGD, because the write-off indicator enables
LGD to be greater than zero. This enables single-stage models, such as OLS, to
also find predictive power from the second variable, even though they do not model
write-off probability explicitly.

Li et al. (2018) use another simulation approach, which is based on the inflated beta
distribution (Ospina and Ferrari, 2010). Their set of explanatory variables includes
a constant, a macroeconomic factor which is based on real data, and nine normally
distributed explanatory variables, which, using a copula, are set to have a positive
correlation with the macroeconomic factor. For each LGD observation, they set a
separate true zero-and-one inflated beta distribution, the parameters of which are
determined by the explanatory variable realisations of the same observation through
deterministic equations. From this true LGD distribution, the actual true LGD values
are drawn. Li et al. (2018) add additional noise to the simulation either by omitting
some of the true explanatory variables from the final data set used for model fitting, or
by adding normally distributed error terms to the parameters of the true inflated beta
distributions.
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3 Methods

3.1 Data Set Simulation
3.1.1 Simulating LGD

To simulate LGDs, we follow a slightly modified version of the approach proposed
by Hlawatsch and Ostrowski (2011), because it can be readily extended to consider
separately cure, partial recovery, and write-off cases. Knowing the end status of the
simulated defaults is required to be able to fit some of the multi-stage models.

We assume that the true distributions for the LGDs of cure, partial recovery, and
write-off cases are three distinct beta distributions. Their probability density functions
are therefore

𝑓𝑠 (𝐿𝐺𝐷 |𝛼𝑠, 𝛽𝑠) =
1

𝐵(𝛼𝑠, 𝛽𝑠)
𝐿𝐺𝐷𝛼𝑠−1(1 − 𝐿𝐺𝐷)𝛽𝑠−1 ∀ 𝑠 ∈ {𝐶, 𝑃,𝑊}, (2)

where
𝐵(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽) , (3)

Γ(𝑥) is the Gamma function, and the possible default end statuses 𝑠 are denoted by 𝐶

for cure, 𝑃 for partial recovery, and 𝑊 for write-off. To produce the LGD values for
one data set, we draw in total 1000 realisations from these distributions, that is, 𝑃𝐶

cured cases from 𝑓𝐶 , 𝑃𝑊 write-off cases from 𝑓𝑊 , and 𝑃𝑃 = 1000 − 𝑃𝐶 − 𝑃𝑊 partial
recovery cases from 𝑓𝑃. Here 𝑃𝐶 , 𝑃𝑃 and 𝑃𝑊 can be interpreted as the probabilities
of sampling from the respective distributions, and in fact, this approach is statistically
equivalent to sampling directly from a mixture of the beta distributions similar to
Hlawatsch and Ostrowski (2011), with the added benefit of simultaneously classifying
each default by the end status. The classification is included explicitly in the data set
using separate binary indicators for cure, partial recovery and write-off, 𝐼𝐶 , 𝐼𝑃 and 𝐼𝑊 ,
respectively.

In total, we simulate 5000 data sets. For diversity between the data sets, we
randomly sample the number of sampled cure and write-off observations, 𝑃𝐶 and 𝑃𝑊 ,
as well as the beta distribution parameters 𝛼𝑠 and 𝛽𝑠 for each data set. The number of
cure and write-off observations are sampled from the intervals 𝑃𝐶 ∈ [100, 500] and
𝑃𝑊 ∈ [100, 250], which means that 𝑃𝑃 ∈ [250, 800].

To follow the observation that losses for cures should be mainly very low and that
a wide range of loss outcomes should be possible for partial recoveries and write-offs
with losses concentrating more at the low end for the former and at the high end for
the latter (Salko and D’Ecclesia, 2022), and to generate the characteristic bimodal
shape for the combined distributions, we choose the possible parameter values for
the beta distributions such that the loss distribution will be right-skewed for cures,
symmetrical to right-skewed for partial recoveries, and left-skewed for write-offs. The
direction of the skew is enforced by the inequalities 𝛼𝐶 ≤ 𝛽𝐶 , 𝛼𝑃 ≤ 𝛽𝑃 and 𝛼𝑊 ≥ 𝛽𝑊 .
To avoid modes greater than 0 and lower than 1 for the right-skewed and left skewed
distributions, respectively, we set 𝛼𝐶 ≤ 1, 𝛼𝑃 ≤ 1 and 𝛽𝑊 ≤ 1. Additionally, to
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enforce unimodality of the distribution of cures, we also set 𝛽𝐶 ≥ 1. However, for
partial recoveries and write-offs, we allow also bimodal distributions where 𝛼𝑃 < 1
and 𝛽𝑃 < 1, and 𝛼𝑊 < 1 and 𝛽𝑊 < 1.

Moreover, we choose the intervals of possible mean and variance values for our
simulated distributions by loosely representing empirical LGD means and variances
for cures, partial recoveries and write-offs reported by Salko and D’Ecclesia (2022).
Their statistics are based on 8755 European real-estate backed loans. To accommodate
more variety in our simulated data, we allow values from wide intervals around the
reported values. We assume that the real-estate secured loans are low-risk compared
to, for example, any unsecured loans, and thus we place the reported mean values at the
lower ends of the allowed intervals. We present the statistics by Salko and D’Ecclesia
(2022) and our allowed LGD mean and variance value intervals in table 1.

Table 1: Empirical LGD means and variances in a data set comprised of 8755
European real-estate backed loans by Salko and D’Ecclesia (2022), and allowed mean
and variance intervals for the simulated distributions.

Statistic Mean Allowed mean interval Variance Allowed variance interval
(Overall) (0.1993) (0.1069)

Cures 0.0063 [0.005, 0.05] 0.0003 [0.0001, 0.0025]
Partial Recoveries 0.1472 [0.10, 0.50] 0.0876 [0.04, 0.16]

Write-offs 0.5153 [0.50, 0.995] 0.1180 [0.0001, 0.2025]

For each beta distribution, the 𝛼 and 𝛽 parameter values are generated in a two-step
process. First, the mean value for the distribution is uniformly sampled from the
allowed interval. Then, the variance is sampled uniformly from its allowed interval,
taking into account also the possible range of values given the sampled mean value
- 𝛼 and 𝛽 are always greater than zero, and not all mean-variance combinations are
possible.

Given a mean 𝜇, the final allowed sampling interval for the variance 𝜎2 for cures,
partial recoveries and write-offs are

𝜎2
𝐶 ∈

[︄
max(

𝜇2
𝐶
(1 − 𝜇𝐶)
1 + 𝜇𝐶

, 0.0001), min( 𝜇𝐶 (1 − 𝜇𝐶)2

2 − 𝜇𝐶
, 0.0025)

]︄
, (4)

𝜎2
𝑃 ∈

[︄
max(

𝜇2
𝑃
(1 − 𝜇𝑃)
1 + 𝜇𝑃

, 0.04), min(𝜇𝑃 (1 − 𝜇𝑃), 0.16)
)︄

(5)

and
𝜎2
𝑊 ∈

[︃
max( 𝜇𝑊 (1 − 𝜇𝑊 )2

2 − 𝜇𝑊
, 0.0001), min(𝜇𝑊 (1 − 𝜇𝑊 ), 0.2025)

)︃
, (6)

respectively. We derive the mean-dependent parts of the intervals in appendix A
following a similar derivation of Hlawatsch and Ostrowski (2011).

Once the mean and variance values are sampled, the parameters 𝛼 and 𝛽 are
computed using the equations

𝛼 = 𝜇( 𝜇(1 − 𝜇)
𝜎2 − 1) (7)
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and

𝛽 = (1 − 𝜇) ( 𝜇(1 − 𝜇)
𝜎2 − 1), (8)

which are derived in appendix B.
The LGD values simulated from the beta distributions are in the open interval

(0, 1). To achieve another characteristic feature of LGD distributions, the large
observation concentrations at exactly 0 and 1, and to accommodate multi-stage models
which differentiate the exactly 0 or 1 loss cases from others, we first scale each LGD
value to the interval (−0.01, 1.01), and then clip the values back to the closed interval
[0, 1]. Due to the original LGD values being between 0 and 1, the values can be
conveniently scaled to any interval [𝑎, 𝑏] bỹ︄𝐿𝐺𝐷 = 𝑎 + (𝑏 − 𝑎) · 𝐿𝐺𝐷, (9)

giving us the final capped LGD values as

𝐿𝐺𝐷 = min(max(̃︄𝐿𝐺𝐷, 0), 1). (10)

3.1.2 Copulas

Copulas are functions that can be used to combine univariate distribution functions in
order to represent a multivariate joint distribution with some dependency structure.
They are widely used in finance and risk management (Haugh, 2016).

Formally, a 𝑑-dimensional copula, 𝐶 : [0, 1]𝑑 :→ [0, 1] is a cumulative distribu-
tion function (CDF) with uniform marginals (Haugh, 2016). Crucially, a foundational
result in copula theory, Sklar’s theorem, states that for any multivariate joint distri-
bution 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑑) with continuous marginal distributions 𝐹1, 𝐹2, . . . , 𝐹𝑑 , there
exists a copula 𝐶 such that

𝐹 (𝑥1, . . . , 𝑥𝑑) = 𝐶 (𝐹1(𝑥1), . . . , 𝐹𝑑 (𝑥𝑑)). (11)

In essence, Sklar’s theorem states that for any continuous marginal distributions, we
can use a copula to introduce a dependence structure to form a joint multivariate
distribution. We will use this result when generating the explanatory variables for our
data sets in section 3.1.3.

Specifically, we will utilise a Gaussian copula, which is derived from the multi-
variate normal distribution. For a 𝑑-dimensional multivariate normal distribution with
a correlation matrix 𝑃, the corresponding Gaussian copula is defined as

𝐶𝐺𝑎𝑢𝑠𝑠
𝑃 (𝑢1, . . . , 𝑢𝑑) = Φ𝑑

𝑃 (Φ
−1(𝑢1), . . . ,Φ−1(𝑢𝑑)), (12)

where Φ𝑑
𝑃

is the joint multivariate CDF and Φ is the standard univariate normal CDF
(Haugh, 2016).

Because the normal distribution has light tails, the Gaussian copula can underesti-
mate extreme tail behavior and should therefore be used with caution in risk modelling
(Haugh, 2016). However, we deal with mainly normal distributions and strong tail
dependence is not needed, so Gaussian copulas are suitable for this thesis.
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3.1.3 Simulating Explanatory Variables

As explanatory variables, we use eight artificial standard normally distributed variables,
A-H. Standard normal distributions are chosen instead of a variety of other possibly
more realistic distributions in order to isolate any differences in the shape of predicted
LGD distributions to be caused by the model structures themselves instead of different
variable distributions being available in some components.

The number of explanatory variables and their correlation structures with the
target variables are chosen so that they enable predictive single-stage and multi-stage
models. A and B have positive correlations with the cure indicator (𝐼𝐶), while C and
D are positively correlated with the write-off indicator (𝐼𝑊 ). These variables represent
features which have a causal relationship with - and are commonly used to predict - the
end status of the default, such as financial ratios, payment behavior, or collateral type.
E has a positive correlation with LGD regardless of the end status, and it represents a
general financial feature.

F, G and H are end status -specific predictors. F has a positive correlation with
LGD, but only within cured cases (LGD𝐶). It represents variables, such as the type
of loan, which explain losses incurred despite the cure, due to, for example, delayed
payments and administrative costs. G and H are designed to explain the larger losses
that occur during a collection process and possible collateral liquidation, such as
the loan-to-value ratio, and loan seniority. They are set to have positive correlations
with LGD within the partial recovery (LGD𝑃) and write-off (LGD𝑊 ) cases such that
the correlation within partial recovery cases is independent of the correlation within
write-off cases. The correlation between LGD and F, LGD and G, and LGD and H are
set to zero within the other end statuses where they are not meant to be predictive. The
correlations between A and B, C and D, and G and H are set to be slightly positive for
added realism. The correlations between the other variables are not explicitly set.

The actual correlation values are sampled independently for each data set. The
intervals from which the correlation values are sampled for each explicitly set variable
pair are presented in tables 2 and 3.

Table 2: Correlation intervals between the cure andwrite-off indicators andexplanatory
variables A-D.

Variable 𝐼𝐶 𝐼𝑊 A B C D
𝐼𝐶 1 [0.0, 0.5] [0.0, 0.5]
𝐼𝑊 1 [0.0, 0.5] [0.0, 0.5]

A [0.0, 0.5] 1 [0.0, 0.2]
B [0.0, 0.5] [0.0, 0.2] 1
C [0.0, 0.5] 1 [0.0, 0.2]
D [0.0, 0.5] [0.0, 0.2] 1

Following the example of Hlawatsch and Ostrowski (2011), Gürtler and Hibbeln
(2011) and Li et al. (2018), we use Gaussian copulas to introduce the specified
dependency structures between the explanatory variables. However, we also use the
same copulas to introduce the dependency between the explanatory variables and the
target variables.

The variable generation procedure is explained in detail below using variables
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Table 3: Correlation intervals between LGD in the overall scope and in end status
specific scopes and explanatory variables E-H.

Variable LGD LGD𝐶 LGD𝑃 LGD𝑊 E F G H
LGD 1 1 1 1 [0.0, 0.5]

LGD𝐶 1 1 [0.0, 0.5] 0 0
LGD𝑃 1 1 0 [0.0, 0.5] [0.0, 0.5]
LGD𝑊 1 1 0 [0.0, 0.5] [0.0, 0.5]

E [0.0, 0.5] 1
F [0.0, 0.5] 0 0 1
G 0 [0.0, 0.5] [0.0, 0.5] 1 [0.0, 0.2]
H 0 [0.0, 0.5] [0.0, 0.5] [0.0, 0.2] 1

A and B and the cure indicator 𝐼𝐶 as an example, but it is identical for all groups of
explanatory variables and target. For variables E and F, which have no set correlation
with other explanatory variables, the third variable from the example is simply removed.
For variables F, G and H, the generation process is performed separately for each
of the end status scopes to set the end status -specific correlations with the target.
However, the correlations between the explanatory variable pairs are global within
each data set, so the same sampled correlation values are used in each scope.

We start by sampling the correlation values 𝑟 from uniform distributions within
the specified intervals and building the correlation matrix:

𝑅𝐼𝐶 ,𝐴,𝐵 =

⎡⎢⎢⎢⎢⎣
1 𝑟𝐼𝐶 ,𝐴 𝑟𝐼𝐶 ,𝐵

𝑟𝐼𝐶 ,𝐴 1 𝑟𝐴,𝐵
𝑟𝐼𝐶 ,𝐵 𝑟𝐴,𝐵 1

⎤⎥⎥⎥⎥⎦ , (13)

where 𝑟𝐼𝐶 ,𝐴 ∈ [0.0, 0.5], 𝑟𝐼𝐶 ,𝐵 ∈ [0.0, 0.5] and 𝑟𝐴,𝐵 ∈ [0.0, 0.2].
Then, we sample the required number 𝑁 of observations 𝑧𝑖 𝑗 , 𝑖 ∈ {1, . . . , 𝑁}, 𝑗 ∈

{1, 2, 3} from three independent standard normal distributions, and use the Cholesky
decomposition of the correlation matrix to transform the independent observations into
dependent standard normally distributed observations 𝑥𝑖 𝑗 with our specified correlation
structure (Hlawatsch and Ostrowski, 2011):

𝑥𝑖,1 = 𝑧𝑖,1 ∀ 𝑖 ∈ {1, . . . , 𝑁}, (14)

𝑥𝑖,2 = 𝑟𝐼𝐶 ,𝐴 · 𝑧𝑖,1 +
√︃

1 − 𝑟2
𝐼𝐶 ,𝐴

· 𝑧𝑖,2 ∀ 𝑖 ∈ {1, . . . , 𝑁}, (15)

𝑥𝑖,3 = 𝑟𝐼𝐶 ,𝐵 · 𝑧𝑖,1 +
𝑟𝐴,𝐵 − 𝑟𝐼𝐶 ,𝐴 · 𝑟𝐼𝐶 ,𝐵√︃

1 − 𝑟2
𝐼𝐶 ,𝐴

· 𝑧𝑖,2 (16)

+
√︃

1 − 𝑟2
𝐼𝐶 ,𝐵

− (𝑟𝐴,𝐵 − 𝑟𝐼𝐶 ,𝐴 · 𝑟𝐼𝐶 ,𝐵)2 · 𝑧𝑖,3 ∀ 𝑖 ∈ {1, . . . , 𝑁}. (17)

Because standard normal distributions are the final (variable) distributions in the
analysis, the variable generation process is complete. To combine the explanatory
variables with the previously generated target variables (LGD and end status indicators),
we first shuffle the target observations into a random order, then sort the targets by 𝐼𝐶,𝑖
and the explanatory variables by 𝑥𝑖,1 in ascending order. The shuffling and sorting is
always done so that the different target variables or explanatory variables are treated
as one observation and their relative order remains unchanged. Finally, we join the
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corresponding target and explanatory variable observations after sorting such that
𝐴𝑖 = 𝑥𝑖,2 and 𝐵𝑖 = 𝑥𝑖,3. The shuffling before sorting prevents accidentally introducing
unwanted correlations with a different target variable, i.e. LGD in this example, if
the targets are already sorted by the different target variable after generating other
explanatory variables.

Should we want to use different distributions than the standard normal for the
explanatory variables, we could additionally input the standard normally distributed
𝑥𝑖,2 and 𝑥𝑖,3 into the standard normal CDF in order to transform them into correlated
uniformly distributed variables, and then input the uniformly distributed variables into
the inverse CDFs of the desired marginal distributions to generate the final observations
from those marginal distributions Hlawatsch and Ostrowski (2011).

3.2 Models
3.2.1 Ordinary Least Squares Regression

The simplest model in our analysis is the ordinary least squares regression (OLS). It
assumes a linear relationship between a target 𝑦𝑖 and explanatory variables 𝑥𝑖 𝑗 , such
that

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + . . . + 𝛽𝑘𝑥𝑖𝑘 + 𝜖𝑖, (18)

where 𝛽 𝑗 are unknown regression coefficients and 𝜖𝑖 is a random error, which is
assumed to be normally distributed with a zero mean and an unknown but constant
variance (Yan and Su, 2009).

The estimates of a fitted OLS model are given by

𝑦𝑖̂ = 𝛽0̂ + 𝛽1̂𝑥𝑖1 + . . . + 𝛽𝑘̂𝑥𝑖𝑘 , (19)

where 𝛽 𝑗
ˆ are the fitted regression coefficients. The coefficients are fitted by minimising

the sum of squared errors 𝑆𝑆𝐸 (giving the model its name), i.e. the sum of squared
differences between the observed values 𝑦𝑖 and the estimated values 𝑦𝑖̂ (Yan and Su,
2009):

𝑆𝑆𝐸 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖̂)2 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝛽0̂ −
𝑘∑︁
𝑗=1

𝛽 𝑗
ˆ 𝑥𝑖 𝑗 )2. (20)

The closed-form solution for the regression coefficients that minimise the sum of
squared errors is

𝜷̂ = (X⊤X)−1X⊤y, (21)

where 𝜷̂ are the estimated regression coefficients in vector form, X is a matrix
containing the explanatory variable observations and y is a vector containing the
observed target values (Yan and Su, 2009). However, the matrix calculations required
by the closed-form solution are often computationally expensive, so in practice the
regression coefficients are usually computed using other numerical methods (Yan and
Su, 2009).

We include OLS in the comparison both on its own as a single-stage model, which
directly predicts LGD, as well as a part of the multi-stage models.
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3.2.2 Logistic Regression

Logistic regression is the most common regression model to use when the target
variable is binary (Hosmer Jr et al., 2013). The predictions given by the model are
bounded between zero and one, and represent the probability that the target variable
has the value one given the explanatory variable values. The predictions are given by:

𝜋(𝑥𝑖) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥𝑖1+...+𝛽𝑘𝑥𝑖𝑘)
. (22)

An important feature of the model is that when transformed using the logit transfor-
mation to represent log-odds, the model is linear (Hosmer Jr et al., 2013):

𝑔(𝑥𝑖) = ln( 𝜋(𝑥𝑖)
1 − 𝜋(𝑥𝑖)

) = 𝛽0 + 𝛽1𝑥𝑖1 + . . . + 𝛽𝑘𝑥𝑖𝑘 . (23)

The regression coefficients are estimated by maximum likelihood estimation, i.e.
by finding the coefficient values that maximise the probability of observing the given
the data. The likelihood function to be maximised is (Hosmer Jr et al., 2013):

𝑙 (𝛽) =
𝑛∏︂
𝑖=1

𝜋(𝑥𝑖)𝑦𝑖 (1 − 𝜋(𝑥𝑖))1−𝑦𝑖 . (24)

Unlike for OLS, no closed-form solution exists for this maximisation problem, and the
solution must be found using numerical methods (Hosmer Jr et al., 2013).

We use the logistic regression model to estimate probabilities of cure, partial
recovery, write-off, zero-loss or full-loss in the multi-stage models.

3.2.3 Zero-Fractional-One Multi-stage Model

The Zero-Fractional-One (ZFO) model, based on Loterman et al. (2012) and Bellotti
and Crook (2012), divides the LGD prediction into three stages. In the first stage, it
predicts the probability that LGD is exactly zero using a logistic regression model that
is trained on all observations regardless of LGD. In the second stage, it predicts the
probability that LGD is exactly one given that it is greater than zero, using a logistic
regression model that is trained only on observations where LGD is greater than zero.
In the final stage, it predicts the fractional LGD given it is neither zero nor one using an
OLS model that is trained only on observations where LGD is between zero and one.
The final LGD prediction is the probability-weighted average of the three outcomes:

𝐿𝐺𝐷𝑍𝐹𝑂 = 𝑃0 · 0 + (1 − 𝑃0) · 𝑃1 · 1 + (1 − 𝑃0) · (1 − 𝑃1) · 𝐿𝐺𝐷𝑂𝐿𝑆 (25)
= (1 − 𝑃0) (𝑃1 + (1 − 𝑃1) · 𝐿𝐺𝐷𝑂𝐿𝑆), (26)

where 𝑃0 = 𝑃(𝐿𝐺𝐷 = 0) is the prediction of the first logistic regression model,
𝑃1 = 𝑃(𝐿𝐺𝐷 = 1|𝐿𝐺𝐷 > 0) is the prediction of the second logistic regression model
and 𝐿𝐺𝐷𝑂𝐿𝑆 is the LGD prediction of the third-stage OLS model. The structure of
the model is illustrated in figure 1.
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Figure 1: Structure of the Zero-Fractional-One (ZFO) model.

3.2.4 Write-off-Non-Write-off Multi-stage Model

The Write-off-Non-Write-off (WNW) model, proposed by Gürtler and Hibbeln (2011),
divides the LGD prediction into two stages. In the first stage, it predicts the probability
of Write-off using a logistic regression model, and in the second stage two separate
OLS models are used to predict write-off losses and non-write-off losses. The write-off
OLS model is trained only on write-off observations (write-off indicator 𝐼𝑊 = 1) and
the non-write-off OLS model is trained only on non-write-off observations (𝐼𝑊 = 0).
The final LGD prediction is the probability-weighted average of the two outcomes:

𝐿𝐺𝐷𝑊𝑁𝑊 = 𝑃𝑊 · 𝐿𝐺𝑊 + (1 − 𝑃𝑊 ) · 𝐿𝐺𝑁𝑊, (27)

where 𝑃𝑊 is the probability of write-off predicted by the logistic regression model,
𝐿𝐺𝑊 (loss given write-off) is the LGD prediction of the OLS model for the write-off
cases and 𝐿𝐺𝑁𝑊 (loss given no write-off) is the LGD prediction of the OLS model
for the non-write-off cases. The structure of the model is illustrated in figure 2.
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Figure 2: Structure of Write-off-Non-Write-off (WNW) model.

3.2.5 Cure-Partial-recovery-Write-off Multi-stage Model

The Cure-Partial-recovery-Write-off (CPW) model, proposed by Starosta (2021),
expands on the WNW model by considering cures, partial recoveries and write-offs
separately istead of just write-offs and non-write-offs. First, a logistic regression model
is used to predict the probability of cure, after which a second logistic regression
model, trained only on non-cured observations, is used to predict the probability of
write-off given no cure. Finally, three separate OLS models are used to predict the
LGD for the cured, partial recovery, and write-off cases. The OLS models are trained
only on observations of the corresponding end status. The final LGD prediction is the
probability-weighted average of the three outcomes:

𝐿𝐺𝐷𝐶𝑃𝑊 = 𝑃𝐶 · 𝐿𝐺𝐶 + (1 − 𝑃𝐶) · (𝑃𝑊 · 𝐿𝐺𝑊 + (1 − 𝑃𝑊 ) · 𝐿𝐺𝑃), (28)

where 𝑃𝐶 is the probability of cure predicted by the first logistic regression model,
𝑃𝑊 = 𝑃(𝐼𝑊 = 1|𝐼𝐶 = 0), is the probability of write-off given no cure predicted by the
second logistic regression model, 𝐿𝐺𝐶 (loss given cure) is the LGD prediction of the
OLS model for the cured cases, 𝐿𝐺𝑊 (loss given write-off) is the LGD prediction of
the OLS model for the write-off cases, and 𝐿𝐺𝑃 (loss given partial recovery) is the
LGD prediction of the OLS model for the partial recovery cases. The structure of the
model is illustrated in figure 3.
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Figure 3: Structure of the Cure-Partial-recovery-Write-off (CPW) model.

3.3 Performance Metrics
3.3.1 Coefficient of Determination 𝑅2

𝑅2, or the coefficient of determination, is a common measure of model fit and
performance. It is defined as (Yan and Su, 2009):

𝑅2 = 1 − 𝑆𝑆𝐸

𝑆𝑆𝑇
, (29)

where 𝑆𝑆𝐸 =
∑︁𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖̂)2 is the sum of squared prediction errors, and 𝑆𝑆𝑇 =∑︁𝑛
𝑖=1(𝑦𝑖 − 𝑦̄)2 is the total sum of squares, i.e. the sum of squared differences between

the target values and the target mean. Intuitively, it can be interpreted as the proportion
of the total variation in the data that is explained by the model (Yan and Su, 2009). The
best possible 𝑅2 value, 1, is obtained when the errors are zero and all of the variation
is explained by the model. A model which explains no variation, such as one that
always predicts the mean, gets an 𝑅2 value of 0. 𝑅2 can also be negative if the model
predicts worse than the mean model.

In the context of LGD, 𝑅2 is used as a measure of calibration, i.e. how close the
predicted losses are to the observed losses (Loterman et al., 2012). The advantage
of 𝑅2 compared to, for example, raw 𝑆𝑆𝐸 as a measure of calibration is that it is
normalised by the total variation in the data, 𝑆𝑆𝑇 , making 𝑅2 comparable between
different data sets (Loterman et al., 2012).

To follow common practice in the LGD literature, we use 𝑅2 to measure the
explanatory power and calibration of the models. We also use 𝑅2 to describe the
simulated data sets when analysing how the predictiveness of different explanatory
variables in terms of LGD affects the performance of the models.
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3.3.2 Area Under the Curve

In binary classification problems, prediction performance can be evaluated using,
among others, the measures sensitivity (ratio of correct positive predictions to all
positive observations), specificity (ratio of correct negative predictions to all negative
observations), false positive rate (ratio of false positive predictions to all negative
observations, equal to 1 - specificity) and false negative rate (ratio of false negative
predictions to all positive observations, equal to 1 - sensitivity) (Nahm, 2022). These
measures, however, depend on a classification threshold (e.g. in logistic regression, a
threshold for the predicted probability, such that if the predicted probability is higher
than the threshold, the observation is classified as 1, and 0 otherwise). Typically, when
the threshold is changed such that sensitivity increases, the model also predicts more
false positives, and the specificity decreases (Nahm, 2022).

The receiver operating characteristic (ROC) curve plots sensitivity against 1 -
specificity, and can be used to assess how this dynamic plays out for a model. For a
perfect model, sensitivity is 1 regardless of specificity, and the curve goes from (0,0)
to (0,1) and then to (1,1). A random model forms a curve on the diagonal, from (0,0)
to (1,1). For a typical model, the curve is somewhere between these two extremes
(Nahm, 2022). Figure 4 illustrates ROC curves for a random model, perfect model
and an example model.

Figure 4: Receiver operating characteristic curves and corresponding AUCs for a
random model, perfect model and an example model.

To summarise the performance of a model further, the area under the (receiver
operating characteristic) curve (AUC) gives a measure of the model’s discriminatory
power, which can be interpreted as the probability that the predicted probability of a
positive classification is higher for a random positive observation than for a random
negative observation (Irwin and Irwin, 2013). The best possible AUC value is 1,
while the AUC for a random model is 0.5. Figure 4 includes the AUC values for the
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corresponding ROC curves.
AUC is independent of a set classification threshold or the distribution of the

classes in the data, which makes model comparisons using the measure meaningful
also between different data sets (Irwin and Irwin, 2013). As such, we use AUC
in variable selection for the logistic regression models, as well as to describe the
simulated data sets in terms of how predictive the different explanatory variables are
in terms of the cure and write-off indicators.

3.3.3 Generalised Area Under the Curve

As part of their instructions for reporting the validation results of internal models,
European Central Bank (2019) introduced a measure of discriminatory power for
continuous and multi-class targets. This measure is the generalised AUC (gAUC),
which is based on Somers’ 𝐷, a common measure of ordinal association:

𝑔𝐴𝑈𝐶 =
𝐷 + 1

2
. (30)

To calculate Somers’ 𝐷 for gAUC, the predicted and observed LGD values are
first discretised. If the predictions are continuous (such as in our case) or based on
more than 20 unique LGD values, the values are discretised into 12 bins based on
the following split points: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 (lower
boundary inclusive). Otherwise, if the predicted LGD is already discrete with 20
or less unique values, the unique predicted LGD values are used as split points for
the discretisation of the observed LGD values such that the bins are upper boundary
inclusive (European Central Bank, 2019).

Then, a contingency table of the frequency of discretised LGD predictions and
corresponding discretised observed values is formed. With predicted LGD bins as rows
and observed LGD bins as columns in the contingency table, 𝑎𝑖 𝑗 denotes the frequency
of cases where the predicted LGD falls into bin 𝑖 and the observed LGD falls into bin
𝑗 . From the contingency table, the number of agreements 𝐴𝑖 𝑗 and disagreements 𝐷𝑖 𝑗

are calculated for each table cell (𝑖, 𝑗), such that agreements are the total frequency of
cases where both the predicted and observed bin indices are greater or smaller than
𝑖 and 𝑗 , respectively, and disagreements are the total frequency of cases where the
predicted bin index is greater than 𝑖 but the observed bin index is smaller than 𝑗 , or
vice versa (European Central Bank, 2019):

𝐴𝑖 𝑗 =
∑︁
𝑘<𝑖

∑︁
𝑙< 𝑗

𝑎𝑘𝑙 +
∑︁
𝑘>𝑖

∑︁
𝑙> 𝑗

𝑎𝑘𝑙 , (31)

𝐷𝑖 𝑗 =
∑︁
𝑘>𝑖

∑︁
𝑙< 𝑗

𝑎𝑘𝑙 +
∑︁
𝑘<𝑖

∑︁
𝑙> 𝑗

𝑎𝑘𝑙 . (32)

The calculation of 𝐴𝑖 𝑗 and 𝐷𝑖 𝑗 is illustrated in figure 5.
Finally, Somers’ D is calculated as (European Central Bank, 2019):

𝐷 =
𝑃 −𝑄

𝑤𝑟

, (33)
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Figure 5: Contingency table for the frequency of binned predicted and observed LGD
pairs, which is used to calculate agreements 𝐴𝑖 𝑗 and disagreements 𝐷𝑖 𝑗 for Somers’ 𝐷
and gAUC. 𝐴7,7 is the sum of the green elements in the table, while 𝐷7,7 is the sum of
the red elements.

where 𝑃 =
∑︁

𝑖

∑︁
𝑗 𝑎𝑖 𝑗 𝐴𝑖 𝑗 , 𝑄 =

∑︁
𝑖

∑︁
𝑗 𝑎𝑖 𝑗𝐷𝑖 𝑗 and 𝑤𝑟 = (∑︁𝑖

∑︁
𝑗 𝑎𝑖 𝑗 )2 − ∑︁

𝑖 (
∑︁

𝑗 𝑎𝑖 𝑗 )2,
that is, the total frequency squared minus the sum of the squared row frequencies.

Similar to AUC, the perfect predictor will get a gAUC value of 1, while a random
predictor will get a gAUC value of 0.5. If the target variable is binary, gAUC reduces
to ordinary AUC (Newson, 2002).

We use gAUC to measure the discriminatory power of the models and in variable
selection for the linear regression models.

3.4 Model Fitting
To fit the models to the data, each data set is first randomly divided into a training set
and a test set using a 70-30 split. The models are fitted on the training sets, and their
performance is measured and reported on the test set.

Variable selection for the single-stage model and each model component in the
multi-stage models is performed using the following forward selection algorithm:
starting from a model with only a constant, each variable is added to the model one
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at a time, and the gAUC of the resulting model is estimated on the training set. The
variable which improves the gAUC the most is added to the model, as long as all
variables in the model remain significant after the addition (p-value < 0.05). This
procedure is repeated until no variable improves the gAUC such that all of the variables
in the model remain significant or until all variables are already added to the model.

While crude, the forward selection algorithm is sufficient for this thesis because
our simulated data is very clean compared to real world data and does not contain
complex dependencies where a variable is only predictive when paired with some
other variable. We choose gAUC as the main criterion in the selection algorithm
instead of 𝑅2, since, as described in chapter 2.3, high discriminatory power is the main
focus of a LGD scoring model.

3.5 Model Analysis Setup and Model Estimation
The goal of the model analysis is to gain insight into how different data factors
affect the performance of different multi-stage model structures compared to a simple
single-stage model, and to determine what kind of data is beneficial for using more
complex multi-stage models instead of single-stage models.

To answer these questions, we assess the relationships between various data
summary statistics and the performance difference of the three multi-stage models
(ZFO, WNW and CPW) compared to OLS using OLS fits on the gAUC and 𝑅2

difference and summary statistic value pairs of all data sets. Furthermore, we group
the data sets based on quantiles of the summary statistics and calculate the average
gAUC and 𝑅2 differences compared to OLS and their 95% confidence intervals for
each model for a more robust comparison on the performance levels for different
summary statistic values. The analysis is combined with a visual assessment on how
the shape and composition of the LGD distribution is related to different data set
summary statistic values.

In the analysis, we use the three sets of summary statistics in table 4. The first set of
statistics describes the shape of the LGD distribution, and the second set describes the
end status composition of the data. These two sets of statistics are easily available for
any LGD data set, and their effect is studied to get early insights into model structure
choice based only on the LGD distribution, without any analysis of the explanatory
variables or model fitting. This is useful, because a modeller may not be able to start
the modelling process with a complete data set that includes all imaginable explanatory
variables, making it necessary to start while data work is still ongoing.

The third set of statistics describes the predictiveness of the available variables.
Their purpose is to provide additional information on suitable model structures for a
data set based on light analysis of the explanatory variables.

In addition to analysing the model performance by the summary statistics, we
analyse the overall performance of the models through gAUC and 𝑅2 statistics over all
of the simulated data sets. We also examine visually the shape of the predicted LGD
distributions.
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Table 4: Summary statistics used to describe the data sets in the model performance
analysis.

Statistic Description
LGD mean Mean of the LGD distribution.

LGD variance Variance of the LGD distribution.
Zero rate The proportion of cases for which LGD is zero.
One rate The proportion of cases for which LGD is one.

Zero-one rate The proportion of cases for which LGD is zero or one.
Cure rate The proportion of cure cases.

Partial recovery rate The proportion of partial recovery cases.
Write-off rate The proportion of write-off cases.

AB-cure AUC AUC of a probability of cure logistic regression model using variables A
and B. Describes the predictiveness of the explanatory variables for the
probability of cure.

CD-write-off AUC AUC of a probability of write-off logistic regression model using variables
C and D. Describes the predictiveness of the explanatory variables for
the probability of write-off.

E-LGD 𝑅2 𝑅2 of an LGD OLS model using variable E. Describes the predictiveness
of the end status -independent explanatory variables for LGD.

F-LGD𝐶 𝑅2 𝑅2 of an LGD𝐶 OLS model using variable F. Describes the predictiveness
of the explanatory variables for LGD within cure cases.

GH-LGD𝑃 𝑅2 𝑅2 of an LGD𝑃 OLS model using variables G and H. Describes
the predictiveness of the explanatory variables for LGD within partial
recovery cases.

GH-LGD𝑊 𝑅2 𝑅2 of an LGD𝑊 OLS model using variables G and H. Describes the
predictiveness of the explanatory variables for LGD within write-off
cases.
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4 Results

4.1 Simulated Data
Figure 6 contains a combined histogram of all of the 5000 simulated LGD distributions
and table 5 contains summary statistics for the simulated data sets. The table includes
the statistics that are used in model performance analysis as well as the correlations
and end status -specific LGD statistics that were used to simulate the data sets. For all
correlation pairs, see appendix F, and for a visual representation of how the summary
statistics manifest in the data sets, see appendix C, which contains histograms of
the LGD data by quantiles of the summary statistics which are used in the model
performance analysis.

Figure 6: Combined histogram of all 5000 simulated LGD data sets.

The realised LGD mean and variance intervals correspond well to the allowed
intervals in table 1. The slight differences are due to randomness in sampling and the
scaling and capping that are performed to extend the LGD distributions to exactly 0
and 1. Similarly, the cure rate, partial recovery rate and write-off rate correspond well
to the specified sampling intervals.

The distributions for the realised correlation values between the explanatory
variables and targets where higher than zero correlation is expected are shifted slightly
downward compared to the specified sampling intervals. The difference is caused by
the data generation mechanism. Strictly speaking, the specified correlations hold only
between the explanatory variables and the latent variable in the copula, which is used
to join the explanatory variables to the target values, and not between the explanatory
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variables and targets themselves. This is because we join the explanatory variables
to the existing target values by rank, instead of freshly sampling the target values
from their respective distributions using the latent variable, which would preserve the
exact correlation structure. Additionally, because the target distributions are binary in
the case of the end status indicators and capped at 0 and 1 in the case of LGD, the
relationship of a higher explanatory variable value leading to a higher target value is
broken, leading to lower correlation values compared to the continuous latent variable.

Table 5: Summary and correlation statistics for the simulated data sets. The statistics
that are used in model performance analysis are bolded.

Statistic Mean Min Max 0.1 quantile median 0.9 quantile
LGD mean 0.2961 0.1151 0.5370 0.1976 0.2892 0.4062

LGD𝐶 mean 0.0221 0.0002 0.0516 0.0074 0.0215 0.0380
LGD𝑃 mean 0.3002 0.0845 0.5420 0.1416 0.2984 0.4596
LGD𝑊 mean 0.7518 0.4303 1.0000 0.5487 0.7548 0.9529

LGD variance 0.1370 0.0559 0.2150 0.1008 0.1379 0.1720
LGD𝐶 variance 0.0016 0.0000 0.0106 0.0006 0.0016 0.0025
LGD𝑃 variance 0.1062 0.0329 0.1791 0.0602 0.1062 0.1512
LGD𝑊 variance 0.0984 0.0000 0.2238 0.0174 0.0980 0.1804

Zero rate 0.3114 0.0350 0.7840 0.1260 0.2900 0.5340
One rate 0.0922 0.0000 0.3150 0.0220 0.0840 0.1760

Zero-one rate 0.4035 0.0640 0.9610 0.1949 0.3835 0.6470
Cure rate 0.2985 0.1000 0.5000 0.1380 0.2970 0.4570

Partial recovery rate 0.5265 0.2590 0.7970 0.3610 0.5260 0.6890
Write-off rate 0.1749 0.1000 0.2500 0.1140 0.1750 0.2350

A-𝐼𝐶 correlation 0.1826 -0.0693 0.4488 0.0354 0.1809 0.3334
B-𝐼𝐶 correlation 0.1848 -0.0851 0.4481 0.0357 0.1840 0.3334
C-𝐼𝑊 correlation 0.1664 -0.0851 0.4195 0.0314 0.1650 0.3043
D-𝐼𝑊 correlation 0.1678 -0.0655 0.4183 0.0327 0.1665 0.3034

E-LGD correlation 0.2127 -0.0738 0.5336 0.0427 0.2095 0.3858
F-LGD𝐶 correlation 0.1854 -0.2630 0.5435 0.0176 0.1783 0.3636
F-LGD𝑃 correlation 0.0002 -0.1877 0.1939 -0.0557 0.0001 0.0569
F-LGD𝑊 correlation 0.0018 -0.3011 0.3095 -0.1001 0.0014 0.1023
G-LGD𝐶 correlation -0.0003 -0.2766 0.2783 -0.0793 0.0004 0.0766
G-LGD𝑃 correlation 0.2194 -0.1278 0.5468 0.0372 0.2169 0.4041
G-LGD𝑊 correlation 0.2017 -0.2166 0.6122 0.0190 0.1956 0.3997
H-LGD𝐶 correlation 0.0010 -0.2663 0.2639 -0.0778 0.0003 0.0778
H-LGD𝑃 correlation 0.2183 -0.1274 0.5417 0.0406 0.2170 0.3996
H-LGD𝑊 correlation 0.2014 -0.2120 0.5934 0.0156 0.1974 0.3918

A-B correlation 0.1010 -0.0851 0.2720 0.0137 0.1031 0.1850
C-D correlation 0.0993 -0.1051 0.2862 0.0119 0.0989 0.1865
G-H correlation 0.0988 -0.0932 0.3008 0.0118 0.0989 0.1859
AB-cure AUC 0.6791 0.4985 0.8878 0.5828 0.6858 0.7627

CD-write-off AUC 0.6886 0.5003 0.8828 0.5875 0.6955 0.7757
E-LGD 𝑅2 0.0617 0.0000 0.2847 0.0019 0.0439 0.1488

F-LGD𝐶 𝑅2 0.0515 0.0000 0.2954 0.0011 0.0319 0.1322
GH-LGD𝑃 𝑅2 0.1239 0.0000 0.4654 0.0231 0.1121 0.2372
GH-LGD𝑊 𝑅2 0.1150 0.0000 0.4943 0.0171 0.0981 0.2358

For the explanatory variable and target pairs where the intended correlation is 0,
the realised correlation distributions are as expected, with mean and median at 0, but
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with some variation due to the randomness in sampling. Similarly, for the correlations
between the explanatory variables, the realised intervals align with the specified ones,
with the mean and median at the center of the interval and typical variation inside the
interval.

4.2 Overall Model Performance
Table 6 shows the overall performance metric statistics for the models, and table
7 presents differences in performance between the models and the corresponding
confidence intervals. On average, the Cure-Partial-recovery-Write-off (CPW) model
has a higher gAUC and 𝑅2 than the other models, and the differences are statistically
significant using a 95% confidence level. The Write-off-Non-write-off (WNW) model
performs the second best, with gAUC and 𝑅2 improvements over the Zero-Fractional-
One (ZFO) and OLS models also being statistically significant. In terms of 𝑅2, the
ZFO model has a statistically significant improvement over OLS, but in terms of
gAUC, we do not find a statistically significant difference compared to OLS.

However, it should be noted that the variation in the performance metrics is large
between the different data sets, and the relative improvements from one model to the
next are low. Especially for gAUC the differences are very low, which is somewhat
expected, as the sensitivity of gAUC to small changes in predictions is low due to the
binning involved in calculating gAUC.

Table 6: Model gAUC and 𝑅2 statistics over all 5000 simulated data sets.

Model gAUC mean gAUC std gAUC 2.5% gAUC median gAUC 97.5%
OLS 0.6423 0.0481 0.5471 0.6432 0.7312
ZFO 0.6423 0.0489 0.5443 0.6429 0.7342

WNW 0.6450 0.0479 0.5513 0.6461 0.7348
CPW 0.6480 0.0476 0.5527 0.6492 0.7385

Model 𝑅2 mean 𝑅2 std 𝑅2 2.5% 𝑅2 median 𝑅2 97.5%
OLS 0.1149 0.0700 -0.0013 0.1083 0.2654
ZFO 0.1205 0.0724 0.0015 0.1121 0.2793

WNW 0.1235 0.0719 0.0033 0.1163 0.2789
CPW 0.1289 0.0727 0.0086 0.1218 0.2848

Overall, the results correspond to expectations based on the structure of our
simulated data. CPW is the most granular model, and all of the simulated variables
serve a purpose within the model components by design, leading to the best performance
on average. Similarly, WLW is able to utilise most of the explanatory variables, with
C, D, E, G and H aligning directly with the model design. However, for ZFO, none of
the explanatory variables are designed to directly explain the probability of zero or
one loss, and the induced discriminatory power from the other variables is not enough
to justify the more complex model structure compared to OLS on average.

Due to the alignment of the simulated data and the model structures, one should
not make strong conclusions about the models in terms of their performance in the
general case based on the ranking order shown here. With explanatory variables that
support the ZFO model structure, ZFO can perform better than OLS, WNW and CPW,

38



as shown in section 4.5. This should be kept in mind also when interpreting the results
by the shape and end status composition of the LGD distribution in sections 4.3 and
4.4.

Table 7: Mean gAUC and 𝑅2 differences between models over all 5000 simulated
data sets.

Comparison ΔgAUC mean ΔgAUC mean
95% CI

Δ𝑅2 mean Δ𝑅2 mean 95% CI

CPW-OLS 0.0057 [0.0053, 0.0061] 0.0140 [0.0135, 0.0145]
WNW-OLS 0.0027 [0.0023, 0.0031] 0.0086 [0.0081, 0.009]

ZFO-OLS -0.0000 [-0.0004, 0.0003] 0.0055 [0.0051, 0.006]
CPW-WNW 0.0030 [0.0027, 0.0033] 0.0054 [0.0051, 0.0058]

CPW-ZFO 0.0057 [0.0054, 0.0061] 0.0085 [0.008, 0.0089]
WNW-ZFO 0.0027 [0.0023, 0.0031] 0.0030 [0.0026, 0.0035]

4.3 Model Performance by LGD Distribution Shape
We analyse the effect of the LGD distribution shape on model performance through
LGD mean and variance, and zero rate, one rate and zero-or-one rate. Table 8 contains
regression slopes for the effect of the shape statistics on model performance compared
to OLS. For illustration, figure 7 shows how mean LGD affects the average shape of
the LGD distribution, and figure 8 shows gAUC and 𝑅2 differences compared to OLS
for the multi-stage models by mean LGD quantiles and the regression slopes fitted
on individual data set performances and mean LGD. The full set of figures for all
statistics can be found in appendices C and D.

Figure 7: Combined histograms of the LGD data by mean LGD quantiles.

The 𝑅2 difference compared to OLS has statistically significant negative relation-
ships with LGD mean and variance, and statistically significant positive relationships
with zero rate and zero-or-one rate for all models. For one rate, the relationship is
positive and statistically significant for ZFO and WNW, but for CPW, the relationship
is negative but not statistically significant. All of the multi-stage models improve over
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Table 8: Regression slopes for gAUC and 𝑅2 differences compared to OLS by statistics
that describe the shape of the LGD distribution. Statistically significant slopes are
bolded.

Statistic Model ΔgAUC slope ΔgAUC slope
p-value

Δ𝑅2 slope Δ𝑅2 slope
p-value

LGD mean
ZFO 0.0020 0.4130 -0.0217 7.9 × 10−13

WNW -0.0010 0.6963 -0.0254 1.4 × 10−15

CPW -0.0036 0.1666 -0.0276 2.2 × 10−16

LGD variance
ZFO 0.0042 0.5570 -0.0239 0.0064

WNW 0.0211 0.0030 -0.0205 0.0259
CPW -0.0009 0.9022 -0.0474 1.1 × 10−06

Zero rate
ZFO 0.0007 0.5799 0.0111 5.5 × 10−13

WNW 0.0031 0.0129 0.0087 9.1 × 10−08

CPW 0.0015 0.2554 0.0063 0.0003

One rate
ZFO 0.0114 0.0006 0.0083 0.0413

WNW 0.0142 1.8 × 10−05 0.0126 0.0032
CPW 0.0062 0.0811 -0.0041 0.3617

Zero-or-one rate
ZFO 0.0019 0.0959 0.0100 6.3 × 10−13

WNW 0.0042 0.0002 0.0085 5.7 × 10−09

CPW 0.0020 0.1051 0.0046 0.0029

OLS for the full range of values for all of the statistics, with CPW performing the best,
followed by WNW and lastly ZFO.

The common explaining factor for the effect of the shape statistics on 𝑅2 difference
compared to OLS is the amount of probability mass in the middle of the LGD
distribution, or, conversely, since the distributions are right-skewed, how concentrated
the distribution is at zero loss. For highly concentrated distributions, the large mass
at zero dominates the fit for OLS, leading to underestimated relationships and low
explained variation for the rest of the distribution. The multi-stage models are affected
less by the mass concentration, as the ZFO model separates the zero-loss cases by
design, and the WNW and CPW models find separation through the end status splits,
leading to better performance in relation to OLS.

A high concentration at zero coincides with a low mean LGD, low variance, high
zero rate, high zero-or-one rate, and paradoxically, high one rate. Due to the way our
data is simulated, when one rate increases, the number of write-off cases increases,
and their distribution becomes heavily left-skewed. Simultaneously, the number of
partial recovery cases decreases, and their distribution changes from right-skewed to
slightly U-shaped for more one-loss cases. As a result, also the number of zero-loss
cases increases, and the number of medium losses decreases. This effect is illustrated
in figure 9.

This change in the partial recovery distribution also explains why an increasing one
rate does not improve CPW 𝑅2 compared to OLS. Specifically, the partial recovery
loss distribution starts to resemble the cure loss distribution more closely, so the model
loses the benefit of being able to distinguish between cure and partial recovery cases.
As a result, the performances of WNW and CPW become more similar as the one rate
increases.
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Figure 8: Differences of models’ gAUC and 𝑅2 compared to OLS by mean LGD. The
lines show regression trends fitted on individual dataset results with a 95% confidence
interval. The points show quantile-binned means with a 95% confidence interval. The
bin boundaries are indicated by vertical ticks on the x-axis.

Figure 9: Combined histograms of the LGD data by one rate quantiles.

For gAUC difference compared to OLS, we do not observe a similar significant
effect for the distribution shape statistics as for the 𝑅2 difference. This is because
small differences in predicted LGD do not affect gAUC due to the binning involved in
calculating it, and at the same time additional variation in the predictions does not
improve gAUC if binned rank ordering is not affected.

Instead, we observe statistically significant positive relationships for the gAUC
difference and LGD variance, zero rate, one rate and zero-or-one rate for WNW, and
one-rate for ZFO, that are caused by a greater difference between the loss distribution
of write-off cases and others, and the ability of the multi-stage models to separate
the different cases. A high variance, zero rate, one rate and zero-or-one rate make
the write-off and partial recovery distributions less alike, directly benefitting WNW.
Additionally, a higher one rate concentrates the write-off distribution so heavily
towards one, that any explanatory variables that are predictive for write-off also
become predictive for one loss. This explains the trend for one rate for ZFO.
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The trends are, however, not statistically significant for CPW. This is due to the
fact that when the partial recovery distribution becomes less similar to the write-off
distribution, it becomes more similar to the cure distribution, partially cancelling the
effect of improved distinction between partial recovery and write-off cases. Despite
this, CPW performs the best out of all of the models in terms of gAUC for the full
range of all of the shape statistics, followed by WNW. WNW outperforms OLS for
the full range of all of the shape statistics except for one rate, where the improvement
is not statistically significant for low one rate values. Unlike in 𝑅2, ZFO does not
improve over OLS in gAUC for any shape statistic value.

4.4 Model Performance by End Status Composition
Although cure, partial recovery, or write-off rates do not affect the shape of the end
status -specific loss distributions in our setup, they do affect the shape of the combined
distribution. Naturally, a high cure rate means a high number of low losses, a high
partial recovery rate means a high number of low and medium losses, and a high
write-off rate means a high number of medium and high losses. The way we simulate
the cure, partial recovery, and write-off rates means that a high cure or write-off rate
cause a low partial recovery rate, but the cure rate and write-off rate are not dependent
on each other. The effect of cure rate on the distribution is illustrated in figure 10.

Figure 10: Combined histograms of the LGD data by cure rate quantiles.

Table 9 contains regression slopes for the effect of the end status composition of
the LGD data set on model performance compared to OLS. Additionally, figure 8
shows gAUC and 𝑅2 differences compared to OLS for the multi-stage models by cure
rate quantiles and the regression slopes fitted on individual data set performances and
cure rate.

There are statistically significant positive relationships between 𝑅2 difference
to OLS and the cure rate for WNW and CPW, statistically significant negative
relationships between the difference and the partial recovery rate for WNW and
CPW, and a statistically significant negative relationship and a statistically significant
positive relationship between the difference and the write-off rate for ZFO and WNW,
respectively. For gAUC difference to OLS, there are statistically significant negative
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Figure 11: Differences of models’ gAUC and 𝑅2 compared to OLS by cure rate. The
lines show regression trends fitted on individual dataset results with a 95% confidence
interval. The points show quantile-binned means with a 95% confidence interval. The
bin boundaries are indicated by vertical ticks on the x-axis.

relationships between the difference and cure rate for ZFO and WNW, and statistically
significant positive relationships between the difference and partial recovery rate for
ZFO, and write-off rate for WNW.

Table 9: Regression slopes for gAUC and 𝑅2 differences compared to OLS by ends
status rates. Statistically significant slopes are bolded.

Statistic Model ΔgAUC slope ΔgAUC slope
p-value

Δ𝑅2 slope Δ𝑅2 slope
p-value

Cure rate
ZFO -0.0033 0.0463 0.0036 0.0806

WNW -0.0043 0.0097 0.0081 0.0002
CPW 0.0007 0.6998 0.0163 7.3 × 10−13

Partial recovery rate
ZFO 0.0040 0.0118 -0.0003 0.8946

WNW 0.0027 0.0835 -0.0086 2.1 × 10−05

CPW -0.0011 0.5074 -0.0136 2.0 × 10−10

Write-off rate
ZFO -0.0082 0.0659 -0.0234 1.8 × 10−05

WNW 0.0088 0.0473 0.0115 0.0442
CPW 0.0040 0.3927 -0.0064 0.2943

The gAUC relationships (and lack thereof) are mainly explained by the end status
composition within each of the multi-stage model component scopes. Since CPW
can distinguish between all three end statuses, we find no statistically significant
relationships for gAUC difference for it.

For WNW, a lower cure rate increases the gAUC difference, because the non-
write-off component fits better to the stronger relationships of mostly partial recoveries
compared to a mix of cures and partial recoveries. Conversely, a higher write-off rate
increases the gAUC difference for WNW, because it benefits more from being able to
separate the write-off cases from others when there are more of them. Since a higher
partial recovery rate lowers, on average, both the cure rate and the write-off rate, we
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find no statistically significant relationship between the gAUC difference and partial
recovery rate for WNW, although the trend appears to be positive.

For ZFO, the gAUC difference compared to OLS is driven by the relative share
of cure, partial recovery and write-off cases within the fractional loss cases. When
the partial recovery rate is high, or, conversely, the cure rate and write-off rate is low,
the fractional loss OLS component fit is less disturbed by the tails of the cure and
write-off distributions, leading to increased performance compared to OLS.

The 𝑅2 relationships, however, are explained both by the end status composition
within the model component scopes, as well as the shape of the combined LGD distri-
bution. As described in section 4.3, fewer medium losses and a higher concentration
at zero losses improve the 𝑅2 of the multi-stage models compared to OLS. Cure
rate and partial recovery rate have a significant impact on the shape of the combined
distribution, which explains the relationships for CPW and WNW. However, for ZFO,
the combined effect of the shape of the distribution and the end status composition is
such that the relationship between 𝑅2 difference and cure rate or partial recovery rate
is not statistically significant.

The effect of write-off rate on the combined distribution shape is relatively low,
because the medium losses and, to some extent, even the low losses of the partial
recovery cases are replaced by write-off losses of similar magnitude, when the write-off
rate is increased. The relationships between the 𝑅2 differences and write-off rate
are therefore similar and driven by the same factors as for the gAUC differences and
write-off rate.

In absolute terms, CPW offers the largest average improvement in gAUC and 𝑅2

over OLS for all cure rate, partial recovery rate and write-off rate values, followed by
WNW. ZFO also improves over OLS in terms of 𝑅2 for all end status compositions,
but in terms of gAUC, we do not find statistically significant differences to OLS.

4.5 Model Performance by Predictiveness of Explanatory Vari-
ables

While the parameters for the correlation structure of the explanatory variables are
sampled independently of the LGD distributions, the resulting predictive power of the
explanatory variables is not completely independent of the LGD distribution shape.
This is because the resulting correlation structure is affected by the capping and
flooring of the LGD distributions and the rank joining of the explanatory variables to
the targets, as explained in section 4.1. For illustration, figure 12 shows the relationship
between E-LGD 𝑅2 and the shape and composition of the LGD distribution.

Table 10 contains regression slopes for the effect of the predictive power of the
explanatory variables on model performance compared to OLS. Additionally, figure
13 shows gAUC and 𝑅2 differences compared to OLS for the multi-stage models
by AB-cure AUC quantiles and the regression slopes fitted on individual data set
performances and AB-cure AUC.

AB-cure AUC has statistically significant positive relationships with gAUC differ-
ence compared to OLS for ZFO and CPW, and with 𝑅2 difference compared to OLS
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Figure 12: Combined histograms of the LGD data by E-LGD 𝑅2 quantiles.

Figure 13: Differences of models’ gAUC and 𝑅2 compared to OLS by AB-cure
AUC. The lines show regression trends fitted on individual dataset results with a 95%
confidence interval. The points show quantile-binned means with a 95% confidence
interval. The bin boundaries are indicated by vertical ticks on the x-axis.

for CPW. The relationships for CPW are strong, which can be expected, because a
higher AB-cure AUC directly means a better probability of cure component. For ZFO,
probability of cure acts as a proxy for the probability of zero loss and one loss, which
explains its gAUC relationship and its more gradual slope compared to the slopes for
CPW.

CD-write-off AUC has statistically significant positive relationships with gAUC
and 𝑅2 difference compared to OLS for all of the models. The relationships are
the strongest for WNW, since it relies heavily on the separation of write-off and
non-write-off cases. CPW also separates between cured cases and partial recovery
cases, so the discriminatory power of the probability of write-off component is not as
critical for it. For ZFO, probability of write-off acts as a proxy for the probability of
zero loss and one loss, leading to statistically significant positive relationships but the
most gradual slopes.

E-LGD 𝑅2 has a statistically significant positive relationship with gAUC difference

45



Table 10: Regression slopes for gAUC and 𝑅2 differences compared to OLS by
explanatory variable predictive power. Statistically significant slopes are bolded.

Metric Model ΔgAUC slope ΔgAUC slope
p-value

Δ𝑅2 slope Δ𝑅2 slope
p-value

AB-cure AUC
ZFO 0.0063 0.0273 0.0054 0.1221

WNW -0.0016 0.5653 0.0025 0.5011
CPW 0.0238 2.7 × 10−15 0.0362 7.6 × 10−21

CD-write-off AUC
ZFO 0.0061 0.0244 0.0292 1.7 × 10−18

WNW 0.0157 7.7 × 10−09 0.0502 1.8 × 10−47

CPW 0.0087 0.0028 0.0453 1.1 × 10−34

E-LGD 𝑅2
ZFO 0.0160 2.1 × 10−06 0.0543 5.8 × 10−40

WNW -0.0065 0.0538 0.0266 9.4 × 10−10

CPW -0.0134 0.0002 0.0427 1.4 × 10−20

F-LGD𝐶 𝑅2
ZFO 0.0011 0.7675 -0.0101 0.0204

WNW -0.0033 0.3521 0.0030 0.5152
CPW -0.0004 0.9225 0.0014 0.7733

GH-LGD𝑃 𝑅2
ZFO 0.0002 0.9178 0.0007 0.8065

WNW -0.0031 0.1874 -0.0088 0.0033
CPW -0.0003 0.9045 0.0043 0.1762

GH-LGD𝑊 𝑅2
ZFO -0.0038 0.0935 0.0001 0.9840

WNW -0.0055 0.0142 0.0053 0.0704
CPW -0.0038 0.1087 0.0090 0.0035

compared to OLS for ZFO, and a statistically significant negative relationship for
CPW. For WNW it shows a slightly weaker negative trend, which is not statistically
significant. For the 𝑅2 difference compared to OLS, the relationships are positive and
statistically significant for all of the multi-stage models.

For CPW and WNW, the gain in gAUC from E-LGD 𝑅2 is smaller than for OLS,
because they already discriminate well based on the end status splits. In terms of
𝑅2, CPW and WNW gain more than OLS because of the stronger fits in the more
homogenous end status components. The positive relationship of E-LGD 𝑅2 and gAUC
difference for ZFO, and the strongest positive relationship for the 𝑅2 difference for
ZFO, are due to the fact that in addition to the greater discriminatory and explanatory
power within the fractional loss component, a greater E-LGD 𝑅2 also increases the
potential of using E to predict the probabilities of zero and one loss.

Interestingly, the end status -specific 𝑅2 values of the explanatory variables have
little effect on the relative performance of the models. For F-LGD𝐶 𝑅2, only the
negative relationship with 𝑅2 difference to OLS for ZFO is statistically significant,
and it is caused by the slight change in the shape of the LGD distribution of cures,
not by the increased 𝑅2 itself. When F-LGD𝐶 𝑅2 gets higher, the peak at zero LGD
shrinks, which means that more cured cases fall into the scope of the fractional loss
model component, which in turn complicates the relationships within the component,
causing the 𝑅2 difference compared to OLS to decrease.

Similarly, GH-LGD𝑃 has a statistically significant relationship only with the 𝑅2

difference compared to OLS for WNW. An increase in GH-LGD𝑃 𝑅2 decreases the
zero-LGD peak of the partial recovery cases, making the distribution differ more from
the cured distribution and increasing the mean LGD of the combined non-write-off
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cases slightly closer to that of the write-off cases. This reduces the benefit of the
write-off and non-write-off split.

GH-LGD𝑊 𝑅2 shows negative trends for gAUC difference compared to OLS
for all of the models, and positive trends for 𝑅2 difference for WNW and CPW,
although only the gAUC trend for WNW and the 𝑅2 trend for CPW are statistically
significant. Similarly to how an increase in F-LGD𝐶 𝑅2 and an increase in GH-LGD𝑃

𝑅2 decrease the zero-LGD peak of the cure and partial recovery LGD distributions,
respectively, an increase in GH-LGD𝑊 𝑅2 decreases the one-LGD peak of the write-off
LGD distribution and makes it flatter. This makes the write-off distribution more
similar to the partial recovery distribution, decreasing the possible discriminatory
power gains from separating the write-off cases from others, and causing the negative
gAUC relationships for CPW and WNW. At the same time, the correlation between
write-off and one-LGD decreases, which causes the negative gAUC relationship for
ZFO. However, CPW and WNW are able to fully utilise the increase in GH-LGD𝑊

𝑅2 in their write-off component, which explains the positive relationships between
GH-LGD𝑊 𝑅2 and their 𝑅2 difference compared to OLS.

In general, the predictive power of the explanatory variable does not affect the
ranking order of the models in terms of gAUC or 𝑅2 performance within the studied
range of values. In almost all cases, CPW improves the most over OLS in terms of
gAUC and 𝑅2, followed by WNW. ZFO improves the least over OLS in terms of
𝑅2, and in terms of gAUC there is no statistically significant difference between the
performance of ZFO and OLS.

However, for very low AB-cure AUC values, the gAUC and 𝑅2 improvements of
CPW fall to the same level and even below those of WNW. Similarly, for very low
CD-write-off AUC values, the gAUC and 𝑅2 improvements of WNW over OLS and
ZFO fall to zero, and conversely, high E-LGD 𝑅2 values make the gAUC improvement
of ZFO over OLS statistically significant and even higher than for WNW and CPW, and
the 𝑅2 improvements higher than for WNW. This indicates that the better performance
of the multi-stage models is dependent on the presence of variables, which are
predictive for the splits into the different components, while the presence of variables
which offer additional predictive power within the components is not as important.

4.6 Shape of Predicted LGD Distributions
Figure 14 illustrates the predicted LGD distributions of the models for all simulated
data sets combined, and appendix E contains predicted LGD distribution plots by
summary statistic quantiles. All of the multi-stage models are somewhat more sensitive
to the size of the zero-LGD peak, and are able to produce slightly more right-skewed
predicted distributions than OLS. However, overall the predicted distributions are very
similar and close to normal for all models, and the summary statistics and explanatory
variable predictiveness metrics have little effect on the difference between the shapes of
the predicted LGD distributions of the models. Even with highly predictive variables
for the component splits, the multi-stage models are unable to produce the characteristic
bimodal shape of the LGD distribution from normal explanatory variables.
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Figure 14: Predicted LGD distributions of all models for all data sets combined.
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5 Conclusions
In this thesis, we have devised an approach to simulating LGD data sets that sup-
port various types of multi-stage models by combining several existing simulation
approaches found in the LGD literature - to generate an LGD data set, we draw
realisations from three distinct beta distributions based on three possible end status
outcomes of a default: cure, partial recovery, and write-off. Using Gaussian copulas,
we then generate normally distributed explanatory variables for the probability of
cure, probability of write-off and LGD, with set correlation structures within the cure,
partial recovery and write-off cases.

Using this simulation approach, we generated 5000 data sets with varying proper-
ties. For the generated data, we studied the relationships between the performance
differences of three multi-stage models compared to a single-stage OLS model and the
shape of the LGD distribution, the proportion of cure, partial recovery and write-off
cases, and the predictiveness of the explanatory variables. We then compared the
relative performance of the models for LGD data of different types in these dimensions.

We found that the most critical factor that makes multi-stage models perform better
than single-stage OLS is the presence of variables which are predictive for the specific
component splits of the model, while the within-component predictive power is not
as important. If there are no such variables available, a simpler multi-stage model or
OLS will perform similarly and will be preferred due to its simplicity.

In terms of the shape of the LGD distribution, high zero-LGD peaks and a light
mass in the center of the distribution, and a larger difference between the shapes of
the LGD distributions of the components they separate improve the performance of
multi-stage models compared to OLS. Additionally, we found that the end status
composition of the LGD distribution affects the performance of the models through the
shape of the LGD distribution as well as through the homogeneity of the cases within
the components. If the end status composition of the data is such that a multi-stage
model component consists mainly of cases of one end status, the model performs
better. At the same time, there must be sufficiently many cases in each component to
justify each component split.

In terms of the shape of the predicted LGD distribution, we found little difference
between the models. We also found that the shape and end status composition of the
LGD data and the explanatory variable predictiveness had little effect on the difference
between the shapes of the predicted distributions of the different models. While the
multi-stage models were able to produce slightly more right-skewed distributions, the
studied multi-stage model structures did not transform the predicted distribution into
the characteristic bimodal LGD shape.

Despite the model performance relationships found, the average performance
improvements between the models were found to be small compared to the variation
in performance between the data sets. Thus, a thorough performance analysis of
candidate model structures for the specific data set in use remains crucial for the final
choice of model structure. Nevertheless, this thesis fills a gap in the LGD literature by
formally analysing the relationships between model performance and the nature of the
data, and gives LGD modellers a starting point and direction for the choice of model
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structure based on the data they have.
The limitations of this thesis and its results relate to data and models alike. To get

more comparable results for the different model structures, we only used normally
distributed explanatory variables instead of allowing different distributions to be
available for some model components and not for others. However, a first extension to
this thesis would be to study how the distributions shapes of the explanatory variables
affect the performance of the different model structures.

A further improvement to strengthen the validity of the results would be to use
real data instead of simulated data. LGD data sets are not widely available, so using
simulated data allowed us to perform the analysis in the first place. However, the
simulated data does not contain the complex relationships and noise that a real data set
would, so a similar analysis to this thesis could be performed with real data to confirm
that the relationships that were established are not just a product of the simulation
approach and also to possibly find new relationships that are not present in the simple
simulated data.

Another direction of further research would be to extend the model comparison
to include nonlinear techniques in single-stage models and as components of the
multi-stage models. This would be especially important when using real-world data
with more nuanced nonlinear relationships.
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A Derivation of Variance Intervals
The mean 𝜇 and variance 𝜎2 of the beta distribution are

𝜇 =
𝛼

𝛼 + 𝛽
(A1)

and

𝜎2 =
𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
, (A2)

respectively. By rearranging A1 for 𝛽 and 𝛼, we get

𝛽 =
𝛼

𝜇
− 𝛼 (A3)

and

𝛼 =
𝛽𝜇

(1 − 𝜇) . (A4)

By substituting A3 into A2, the variance in terms of 𝛼 and 𝜇 is

𝜎2 =
𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
(A5)

=
𝛼( 𝛼

𝜇
− 𝛼)

(𝛼 + ( 𝛼
𝜇
− 𝛼))2(𝛼 + ( 𝛼

𝜇
− 𝛼) + 1)

(A6)

=
𝛼2( 1

𝜇
− 1)

𝛼2

𝜇2 ( 𝛼𝜇 + 1)
=

𝜇2( 1
𝜇
− 1)

𝛼
𝜇
+ 1

=
𝜇3( 1

𝜇
− 1)

𝛼 + 𝜇
(A7)

=
𝜇2(1 − 𝜇)
𝛼 + 𝜇

(A8)

and by substituting A4 into A8, we can express it in terms of 𝛽 and 𝜇 as

𝜎2 =
𝜇2(1 − 𝜇)
𝛼 + 𝜇

=
𝜇2(1 − 𝜇)

𝛽𝜇

(1−𝜇) + 𝜇
=

𝜇(1 − 𝜇)
𝛽

(1−𝜇) + 1
(A9)

=
𝜇(1 − 𝜇)2

𝛽 + 1 − 𝜇
. (A10)

Now, for cures, where 𝛼𝐶 > 0, 𝛽𝐶 ≥ 1 and 0 < 𝜇𝐶 < 1, we get an upper bound for the
variance by using

𝛼𝐶 =
𝛽𝐶𝜇𝐶

(1 − 𝜇𝐶)
≥ 𝜇𝐶

(1 − 𝜇𝐶)
> 0 (A11)

⇒ 𝜎2
𝐶 =

𝜇2
𝐶
(1 − 𝜇𝐶)

𝛼𝐶 + 𝜇𝐶
(A12)

≤
𝜇2
𝐶
(1 − 𝜇𝐶)

𝜇𝐶
(1−𝜇𝐶 ) + 𝜇𝐶

(A13)

=
𝜇𝐶 (1 − 𝜇𝐶)2

1 + 1 − 𝜇𝐶
=

𝜇𝐶 (1 − 𝜇𝐶)2

2 − 𝜇𝐶
. (A14)
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Since 𝛼𝐶 ≤ 1, we get the lower bound

𝜎2
𝐶 =

𝜇2
𝐶
(1 − 𝜇𝐶)

𝛼𝐶 + 𝜇𝐶
≥

𝜇2
𝐶
(1 − 𝜇𝐶)
1 + 𝜇𝐶

. (A15)

For partial recoveries, with 0 < 𝛼𝑃 ≤ 1, we get the upper bound

𝜎2
𝑃 =

𝜇2
𝑃
(1 − 𝜇𝑃)
𝛼𝑃 + 𝜇𝑃

(A16)

<
𝜇2
𝑃
(1 − 𝜇𝑃)
𝜇𝑃

= 𝜇𝑃 (1 − 𝜇𝑃) (A17)

and the lower bound

𝜎2
𝑃 =

𝜇2
𝑃
(1 − 𝜇𝑃)
𝛼𝑃 + 𝜇𝑃

≥
𝜇2
𝑃
(1 − 𝜇𝑃)
1 + 𝜇𝑃

. (A18)

Similarly for write-offs, where 0 < 𝛽𝑊 ≤ 1, we get the upper bound

𝜎2
𝑊 =

𝜇𝑊 (1 − 𝜇𝑊 )2

𝛽𝑊 + 1 − 𝜇𝑊
<

𝜇𝑊 (1 − 𝜇𝑊 )2

1 − 𝜇𝑊
= 𝜇𝑊 (1 − 𝜇𝑊 ) (A19)

and the lower bound

𝜎2
𝑊 =

𝜇𝑊 (1 − 𝜇𝑊 )2

𝛽𝑊 + 1 − 𝜇𝑊
≥ 𝜇𝑊 (1 − 𝜇𝑊 )2

2 − 𝜇𝑊
. (A20)

B Solving Beta Distribution Parameters
From A1-A10 we have

𝜎2 =
𝜇2(1 − 𝜇)
𝛼 + 𝜇

(B1)

⇒ 𝛼𝜎2 + 𝜇𝜎2 = 𝜇2(1 − 𝜇) (B2)

⇒ 𝛼 =
𝜇2(1 − 𝜇) − 𝜇𝜎2

𝜎2 = 𝜇( 𝜇(1 − 𝜇)
𝜎2 − 1) (B3)

and

𝜎2 =
𝜇(1 − 𝜇)2

𝛽 + 1 − 𝜇
(B4)

⇒ 𝛽𝜎2 + 𝜎2 − 𝜇𝜎2 = 𝜇(1 − 𝜇)2 (B5)

⇒ 𝛽 =
𝜇(1 − 𝜇)2 − 𝜎2 + 𝜇𝜎2

𝜎2 = (1 − 𝜇) ( 𝜇(1 − 𝜇)
𝜎2 − 1). (B6)
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C Simulated LGD Distributions by Summary Statistic
Quantiles

Figure C1: Combined histograms of the LGD data by mean LGD quantiles.

Figure C2: Combined histograms of the LGD data by LGD variance quantiles.

Figure C3: Combined histograms of the LGD data by zero rate quantiles.
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Figure C4: Combined histograms of the LGD data by one rate quantiles.

Figure C5: Combined histograms of the LGD data by zero-one rate quantiles.

Figure C6: Combined histograms of the LGD data by cure rate quantiles.
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Figure C7: Combined histograms of the LGD data by partial recovery rate quantiles.

Figure C8: Combined histograms of the LGD data by write-off rate quantiles.

Figure C9: Combined histograms of the LGD data by AB-cure AUC quantiles.
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Figure C10: Combined histograms of the LGD data by CD-write-off AUC quantiles.

Figure C11: Combined histograms of the LGD data by E-LGD 𝑅2 quantiles.

Figure C12: Combined histograms of the LGD data by F-LGD𝐶 𝑅2 quantiles.
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Figure C13: Combined histograms of the LGD data by GH-LGD𝑃 𝑅2 quantiles.

Figure C14: Combined histograms of the LGD data by GH-LGD𝑊 𝑅2 quantiles.
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D Model Performance Figures

(a) Differences of models’ gAUC and 𝑅2 compared to OLS by mean LGD.

(b) Differences of models’ gAUC and 𝑅2 compared to OLS by LGD variance.

Figure D1: Differences of models’ gAUC and 𝑅2 compared to OLS by LGD mean
and variance. The lines show regression trends fitted on individual dataset results
with a 95% confidence interval. The points show quantile-binned means with a 95%
confidence interval. The bin boundaries are indicated by vertical ticks on the x-axis.
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(a) Differences of models’ gAUC and 𝑅2 compared to OLS by zero rate.

(b) Differences of models’ gAUC and 𝑅2 compared to OLS by one rate.

(c) Differences of models’ gAUC and 𝑅2 compared to OLS by zero-one rate.

Figure D2: Differences of models’ gAUC and 𝑅2 compared to OLS by zero, one and
zero-one rates. The lines show regression trends fitted on individual dataset results
with a 95% confidence interval. The points show quantile-binned means with a 95%
confidence interval. The bin boundaries are indicated by vertical ticks on the x-axis.
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(a) Differences of models’ gAUC and 𝑅2 compared to OLS by cure rate.

(b) Differences of models’ gAUC and 𝑅2 compared to OLS by partial recovery rate.

(c) Differences of models’ gAUC and 𝑅2 compared to OLS by write-off rate.

Figure D3: Differences of models’ gAUC and 𝑅2 compared to OLS by end status
rates. The lines show regression trends fitted on individual dataset results with a 95%
confidence interval. The points show quantile-binned means with a 95% confidence
interval. The bin boundaries are indicated by vertical ticks on the x-axis.
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(a) Differences of models’ gAUC and 𝑅2 compared to OLS by AB-cure AUC.

(b) Differences of models’ gAUC and 𝑅2 compared to OLS by CD-write-off AUC.

(c) Differences of models’ gAUC and 𝑅2 compared to OLS by E-LGD 𝑅2.

Figure D4: Differences of models’ gAUC and 𝑅2 compared to OLS by AB-cure
AUC, CD-write-off AUC and E-LGD 𝑅2. The lines show regression trends fitted on
individual dataset results with a 95% confidence interval. The points show quantile-
binned means with a 95% confidence interval. The bin boundaries are indicated by
vertical ticks on the x-axis. 63



(a) Differences of models’ gAUC and 𝑅2 compared to OLS by F-LGD𝐶 𝑅2.

(b) Differences of models’ gAUC and 𝑅2 compared to OLS by GH-LGD𝑃 𝑅2.

(c) Differences of models’ gAUC and 𝑅2 compared to OLS by GH-LGD𝑊 𝑅2.

Figure D5: Differences of models’ gAUC and 𝑅2 compared to OLS by F-LGD𝐶 𝑅2,
GH-LGD𝑃 𝑅2 and GH-LGD𝑊 𝑅2. The lines show regression trends fitted on individual
dataset results with a 95% confidence interval. The points show quantile-binned means
with a 95% confidence interval. The bin boundaries are indicated by vertical ticks on
the x-axis. 64



E Predicted LGD Distributions by Summary Statistic
Quantiles

Figure E1: Predicted LGD distributions by mean LGD quantiles.

Figure E2: Predicted LGD distributions by LGD variance quantiles.

Figure E3: Predicted LGD distributions by zero rate quantiles.
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Figure E4: Predicted LGD distributions by one rate quantiles.

Figure E5: Predicted LGD distributions by zero-one rate quantiles.

Figure E6: Predicted LGD distributions by cure rate quantiles.
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Figure E7: Predicted LGD distributions by partial recovery rate quantiles.

Figure E8: Predicted LGD distributions by write-off rate quantiles.

Figure E9: Predicted LGD distributions by AB-cure AUC quantiles.
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Figure E10: Predicted LGD distributions by CD-write-off AUC quantiles.

Figure E11: Predicted LGD distributions by E-LGD 𝑅2 quantiles.

Figure E12: Predicted LGD distributions by F-LGD𝐶 𝑅2 quantiles.
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Figure E13: Predicted LGD distributions by GH-LGD𝑃 𝑅2 quantiles.

Figure E14: Predicted LGD distributions by GH-LGD𝑊 𝑅2 quantiles.
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F Data Correlations

Table F1: Full correlation statistics for the simulated data sets. The correlation pairs
that were explicitly specified in simulation are bolded.

Correlation pair Mean Min Max 0.1 quantile median 0.9 quantile
A-𝐼𝐶 0.1826 -0.0693 0.4488 0.0354 0.1809 0.3334
B-𝐼𝐶 0.1848 -0.0851 0.4481 0.0357 0.1840 0.3334
C-𝐼𝐶 -0.0503 -0.2679 0.1005 -0.1134 -0.0469 0.0086
D-𝐼𝐶 -0.0511 -0.2311 0.0961 -0.1151 -0.0481 0.0080
E-𝐼𝐶 -0.1040 -0.4058 0.1058 -0.2328 -0.0877 0.0002
F-𝐼𝐶 0.0002 -0.1090 0.1207 -0.0391 0.0001 0.0398
G-𝐼𝐶 0.0007 -0.1163 0.1567 -0.0407 0.0003 0.0425
H-𝐼𝐶 0.0007 -0.1112 0.1285 -0.0396 0.0008 0.0419

LGD-𝐼𝐶 -0.4704 -0.8267 -0.1419 -0.6474 -0.4717 -0.2896
LGD0-𝐼𝐶 0.2756 -0.5473 0.9581 -0.1218 0.2739 0.6791
LGD1-𝐼𝐶 -0.1982 -0.5532 -0.0131 -0.3296 -0.1843 -0.0866

A-𝐼𝑃 -0.1228 -0.3580 0.0827 -0.2310 -0.1207 -0.0188
B-𝐼𝑃 -0.1244 -0.3599 0.0941 -0.2332 -0.1202 -0.0196
C-𝐼𝑃 -0.0832 -0.3234 0.0940 -0.1653 -0.0788 -0.0068
D-𝐼𝑃 -0.0835 -0.3210 0.1144 -0.1683 -0.0788 -0.0059
E-𝐼𝑃 0.0022 -0.2753 0.3201 -0.0893 0.0033 0.0915
F-𝐼𝑃 -0.0004 -0.1322 0.1126 -0.0416 -0.0002 0.0409
G-𝐼𝑃 -0.0001 -0.1183 0.1100 -0.0409 -0.0005 0.0418
H-𝐼𝑃 -0.0006 -0.1020 0.1141 -0.0411 -0.0009 0.0399

LGD-𝐼𝑃 -0.0033 -0.6381 0.5505 -0.2654 -0.0011 0.2603
LGD0-𝐼𝑃 -0.0525 -0.7617 0.7698 -0.4371 -0.0877 0.3941
LGD1-𝐼𝑃 -0.1865 -0.7679 0.3405 -0.4199 -0.1871 0.0488

A-𝐼𝑊 -0.0564 -0.2648 0.0985 -0.1246 -0.0514 0.0060
B-𝐼𝑊 -0.0569 -0.2372 0.0970 -0.1255 -0.0523 0.0061
C-𝐼𝑊 0.1664 -0.0851 0.4195 0.0314 0.1650 0.3043
D-𝐼𝑊 0.1678 -0.0655 0.4183 0.0327 0.1665 0.3034
E-𝐼𝑊 0.1199 -0.1026 0.3861 0.0150 0.1112 0.2407
F-𝐼𝑊 0.0004 -0.1104 0.1263 -0.0404 0.0007 0.0408
G-𝐼𝑊 -0.0008 -0.1092 0.1182 -0.0420 -0.0008 0.0407
H-𝐼𝑊 0.0000 -0.1249 0.1210 -0.0404 -0.0002 0.0405

LGD-𝐼𝑊 0.5615 0.0741 0.9367 0.3371 0.5734 0.7725
LGD0-𝐼𝑊 -0.2549 -0.8347 0.3036 -0.4490 -0.2443 -0.0823
LGD1-𝐼𝑊 0.4774 -0.1414 1.0000 0.1072 0.4824 0.8403

A-LGD -0.0866 -0.3052 0.1025 -0.1788 -0.0806 -0.0042
B-LGD -0.0882 -0.3182 0.0848 -0.1833 -0.0814 -0.0060
C-LGD 0.0931 -0.0765 0.3560 0.0063 0.0850 0.1929
D-LGD 0.0942 -0.1052 0.3314 0.0073 0.0878 0.1912
E-LGD 0.2127 -0.0738 0.5336 0.0427 0.2095 0.3858
F-LGD 0.0066 -0.1086 0.1130 -0.0332 0.0062 0.0475
G-LGD 0.1297 -0.0827 0.4152 0.0327 0.1240 0.2355
H-LGD 0.1300 -0.0782 0.3957 0.0361 0.1231 0.2340

LGD0-LGD -0.5113 -0.9520 -0.2358 -0.6766 -0.5020 -0.3550
LGD1-LGD 0.5639 0.0785 0.9924 0.3198 0.5724 0.7918

A-LGD𝐶 0.0008 -0.2774 0.2824 -0.0788 0.0007 0.0798
B-LGD𝐶 0.0000 -0.2667 0.2683 -0.0824 0.0004 0.0814
C-LGD𝐶 -0.0004 -0.3107 0.3122 -0.0810 -0.0004 0.0808
D-LGD𝐶 0.0009 -0.2942 0.3376 -0.0775 0.0011 0.0785
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Table F1: (continued)

Correlation pair Mean Min Max 0.1 quantile median 0.9 quantile
E-LGD𝐶 0.0933 -0.2735 0.3778 -0.0170 0.0899 0.2115
F-LGD𝐶 0.1854 -0.2630 0.5435 0.0176 0.1783 0.3636
G-LGD𝐶 -0.0003 -0.2766 0.2783 -0.0793 0.0004 0.0766
H-LGD𝐶 0.0010 -0.2663 0.2639 -0.0778 0.0003 0.0778

LGD0-LGD𝐶 -0.5220 -1.0000 -0.3346 -0.6205 -0.5203 -0.4236
LGD1-LGD𝐶 - - - - - -

A-LGD𝑃 0.0002 -0.1817 0.1778 -0.0567 0.0006 0.0578
B-LGD𝑃 -0.0012 -0.1867 0.1554 -0.0587 -0.0009 0.0547
C-LGD𝑃 -0.0011 -0.1600 0.1828 -0.0575 -0.0018 0.0555
D-LGD𝑃 -0.0008 -0.1734 0.1812 -0.0599 -0.0009 0.0563
E-LGD𝑃 0.1790 -0.1314 0.5103 0.0268 0.1738 0.3382
F-LGD𝑃 0.0002 -0.1877 0.1939 -0.0557 0.0001 0.0569

G-LGD𝑃 0.2194 -0.1278 0.5468 0.0372 0.2169 0.4041
H-LGD𝑃 0.2183 -0.1274 0.5417 0.0406 0.2170 0.3996

LGD0-LGD𝑃 -0.4954 -1.0000 -0.0913 -0.7473 -0.4871 -0.2608
LGD1-LGD𝑃 0.3880 0.0704 1.0000 0.1501 0.3582 0.6902

A-LGD𝑊 0.0009 -0.3009 0.3443 -0.0996 0.0019 0.1005
B-LGD𝑊 0.0018 -0.2967 0.3061 -0.0977 0.0028 0.1006
C-LGD𝑊 -0.0008 -0.3224 0.3427 -0.1017 -0.0000 0.1001
D-LGD𝑊 -0.0012 -0.2829 0.3252 -0.1014 -0.0016 0.0965
E-LGD𝑊 0.1653 -0.2443 0.7034 -0.0106 0.1489 0.3699
F-LGD𝑊 0.0018 -0.3011 0.3095 -0.1001 0.0014 0.1023

G-LGD𝑊 0.2017 -0.2166 0.6122 0.0190 0.1956 0.3997
H-LGD𝑊 0.2014 -0.2120 0.5934 0.0156 0.1974 0.3918

LGD0-LGD𝑊 -0.5170 -1.0000 -0.1178 -0.8365 -0.5063 -0.2273
LGD1-LGD𝑊 0.5665 0.0891 1.0000 0.3133 0.5683 0.8197

A-LGD0 0.0500 -0.1822 0.3785 -0.0338 0.0403 0.1516
B-LGD0 0.0506 -0.2187 0.4012 -0.0336 0.0384 0.1539
C-LGD0 -0.0419 -0.2752 0.1147 -0.1069 -0.0371 0.0182
D-LGD0 -0.0427 -0.2802 0.1358 -0.1067 -0.0388 0.0167
E-LGD0 -0.1826 -0.4555 0.0711 -0.3345 -0.1803 -0.0343
F-LGD0 -0.0573 -0.2626 0.0971 -0.1306 -0.0512 0.0075
G-LGD0 -0.0842 -0.3513 0.0957 -0.1791 -0.0753 -0.0047
H-LGD0 -0.0855 -0.3542 0.0882 -0.1788 -0.0761 -0.0058
A-LGD1 -0.0371 -0.2071 0.1015 -0.0927 -0.0341 0.0153
B-LGD1 -0.0371 -0.2325 0.0910 -0.0948 -0.0343 0.0160
C-LGD1 0.0785 -0.1092 0.3611 -0.0071 0.0643 0.1900
D-LGD1 0.0800 -0.0984 0.3624 -0.0058 0.0676 0.1905
E-LGD1 0.1334 -0.1092 0.4023 0.0196 0.1252 0.2629
F-LGD1 0.0004 -0.1238 0.1297 -0.0399 0.0003 0.0400
G-LGD1 0.0796 -0.0718 0.2809 0.0085 0.0759 0.1563
H-LGD1 0.0799 -0.1040 0.3139 0.0102 0.0765 0.1557

A-B 0.1010 -0.0851 0.2720 0.0137 0.1031 0.1850
A-C -0.0099 -0.1191 0.1096 -0.0519 -0.0098 0.0323
A-D -0.0091 -0.1260 0.1247 -0.0512 -0.0090 0.0323
A-E -0.0190 -0.1842 0.1185 -0.0679 -0.0179 0.0277
A-F -0.0003 -0.1058 0.1186 -0.0414 -0.0007 0.0396
A-G -0.0006 -0.1037 0.1162 -0.0407 -0.0009 0.0398
A-H -0.0002 -0.1230 0.1540 -0.0399 -0.0005 0.0399
B-C -0.0099 -0.1377 0.1314 -0.0525 -0.0098 0.0329
B-D -0.0095 -0.1303 0.1007 -0.0509 -0.0094 0.0325
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Table F1: (continued)

Correlation pair Mean Min Max 0.1 quantile median 0.9 quantile
B-E -0.0193 -0.1719 0.1106 -0.0696 -0.0172 0.0276
B-F 0.0002 -0.1095 0.1385 -0.0397 -0.0003 0.0400
B-G 0.0004 -0.1021 0.1085 -0.0396 0.0003 0.0408
B-H -0.0003 -0.1105 0.1065 -0.0407 -0.0001 0.0402
C-D 0.0993 -0.1051 0.2862 0.0119 0.0989 0.1865
C-E 0.0199 -0.1301 0.1669 -0.0269 0.0191 0.0678
C-F -0.0001 -0.1106 0.1066 -0.0410 -0.0006 0.0413
C-G -0.0002 -0.1109 0.1009 -0.0410 -0.0001 0.0401
C-H -0.0003 -0.1184 0.1222 -0.0401 0.0000 0.0407
D-E 0.0209 -0.1114 0.1723 -0.0255 0.0194 0.0689
D-F 0.0004 -0.0993 0.1011 -0.0405 0.0006 0.0405
D-G -0.0003 -0.1036 0.1101 -0.0410 -0.0005 0.0403
D-H 0.0002 -0.1307 0.1164 -0.0396 0.0007 0.0397
E-F 0.0082 -0.1132 0.1196 -0.0335 0.0080 0.0508
E-G 0.0312 -0.0993 0.2114 -0.0199 0.0283 0.0856
E-H 0.0319 -0.0981 0.2035 -0.0197 0.0296 0.0872
F-G -0.0002 -0.1179 0.1058 -0.0402 -0.0006 0.0399
F-H -0.0005 -0.1104 0.1090 -0.0411 -0.0008 0.0401
G-H 0.0988 -0.0932 0.3008 0.0118 0.0989 0.1859
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