
Master’s programme in Mathematics and Operations Research

Modelling Compute Express Link
Performance in Multiprocessor Architectures

Juha Ponkkonen

Master’s Thesis
2024

© 2024

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Author Juha Ponkkonen
Title Modelling Compute Express Link Performance in Multiprocessor Architectures
Degree programme Mathematics and Operations Research
Major Systems and Operations Research
Supervisor D.Sc. (Tech.) Harri Hakula
Advisors Jari Karppinen, Bela Berde
Collaborative partner Nokia
Date 30 July 2024 Number of pages 59 Language English

Abstract
This thesis examines the performance of Compute Express Link (CXL) within
multiprocessor systems, taking an in-depth look into understanding its operational
mechanics and its influence on system efficiency. CXL technology, a recent innovation
in high-speed interconnects, is pivotal in addressing the bandwidth and latency chal-
lenges prevalent in multiprocessor environments. The research focuses on modelling
the integration of CXL across different processor architecture setups to assess its
effectiveness in enhancing memory related performance and minimizing latency.

Through simulations using MATLAB and SIMULINK, this thesis models the
interaction between CXL-equipped systems and standard processing units, illustrating
the potential enhancements in data transfers and system throughput. Key findings
indicate that CXL significantly improves the efficiency of data-intensive operations
by facilitating faster communication between CPUs and peripheral devices, thereby
optimizing memory coherence and access times.

The thesis also explores the scalability of CXL implementations and their potential
to streamline resource allocation, which is critical for achieving higher operational
efficiencies in cloud computing and enterprise data centers. By simulating various
configurations and workload scenarios, this research substantiates the role of CXL
in advancing the capabilities of modern computing infrastructure, proposing that it
can serve as a fundamental component in the next generation of high-performance
computing systems.

Keywords CXL, Compute Express Link, NUMA, memory, modelling, Simulink

Tekijä Juha Ponkkonen
Työn nimi Compute Express Linkin suorituskyvyn mallintaminen

moniprosessorisissa arkkitehtuureissa
Koulutusohjelma Mathematics and Operations Research
Pääaine Systems and Operations Research
Työn valvoja TkT Harri Hakula
Työn ohjaajat Jari Karppinen, Bela Berde
Yhteistyötaho Nokia
Päivämäärä 30 heinäkuu 2024 Sivumäärä 59 Kieli englanti

Tiivistelmä
Tämä diplomityö tutkii Compute Express Linkin (CXL) suorituskykyä moniprosesso-
rĳärjestelmissä, keskittyen perusteellisesti sen toimintamekanismeihin ja vaikutukseen
järjestelmän tehokkuudessa. CXL-teknologia, joka on ajankohtainen innovaatio no-
peiden liitäntöjen kentällä, on keskeisessä asemassa ratkaisemassa moniprosessorĳär-
jestelmissä yleisiä kaista- ja viivehaasteita. Tutkimus keskittyy mallintamaan CXL:n
integrointia erilaisiin prosessoriarkkitehtuureihin sen tehokkuuden arvioimiseksi
muistiin liittyvän suorituskyvyn parantamisessa ja viiveiden minimoimisessa.

MATLAB- ja SIMULINK-simulaatioiden avulla työssä mallinnetaan CXL-
varustettujen järjestelmien ja tavallisten prosessointiyksiköiden vuorovaikutusta,
havainnollistaen potentiaalisia parannuksia tietojen siirrossa ja järjestelmän suoritus-
tehossa. Keskeiset havainnot osoittavat, että CXL parantaa merkittävästi tietointensii-
visten operaatioiden tehokkuutta nopeuttamalla viestintää suoritin- ja oheislaitteiden
välillä, mikä optimoi muistikoherenssia ja -käsittelyaikoja.

Diplomityössä tarkastellaan myös CXL-toteutusten skaalautuvuutta ja niiden
potentiaalia resurssien jakamisen tehostamisessa, mikä on kriittistä korkeamman
operatiivisen tehokkuuden saavuttamiseksi pilvipalveluissa ja datakeskuksissa. Simu-
loimalla erilaisia konfiguraatioita ja kuormitusskenaarioita tutkimus tukee näkemystä,
että CXL voi toimia keskeisenä osana seuraavan sukupolven suorituskykyisiä tieto-
jenkäsittelyjärjestelmiä.

Avainsanat CXL, Compute Express Link, NUMA, memory, modelling, Simulink

Contents
Abstract 3

Abstract (in Finnish) 4

Contents 5

Abbreviations 7

1 Introduction 8
1.1 Main results and implementation contributions 9
1.2 Structure of the thesis . 10

2 Literature review 11
2.1 Chip Multiprocessors . 11
2.2 Non-Uniform Memory Access Architecture 12
2.3 Bottlenecks of Multiprocessor systems 14

2.3.1 Performance-memory performance gap 14
2.3.2 Interconnect Bottlenecks 15
2.3.3 Scalability . 15

3 CXL 16
3.1 CXL.io . 16
3.2 CXL.cache . 16
3.3 CXL.mem . 17
3.4 CXL devices . 18
3.5 CXL technology . 18
3.6 CXL 2.0 Protocol Enhancements 21
3.7 CXL 3.0 Protocol Enhancements 21
3.8 CXL Microarchitecture Latencies and Bandwidth 22
3.9 Understanding Flits in CXL Architecture 22

3.9.1 CXL Flit Structures and Bandwidth Calculations 23
3.9.2 Bandwidth and Latency Specifications 23
3.9.3 Traffic Mix and Efficiency Calculations 23

4 CXL Studies 25
4.1 CXL Study 1 . 25
4.2 CXL Study 2 . 26
4.3 CXL study 3 . 26

5 Modelling 28
5.1 Motivation . 28
5.2 Structure of the model . 28
5.3 Components . 28
5.4 Baseline model . 31

5

5.5 Baseline results . 37
5.6 CXL model . 38
5.7 CXL model results . 38
5.8 Extended Baseline model . 42
5.9 Extended Baseline model results 42
5.10 Extended CXL model . 46
5.11 Extended CXL model results . 46

6 Conclusions and Implications of CXL Integration in Multiprocessor
Systems 51

7 Further Development of the model 52

A Appendix 57

6

Abbreviations
CXL Compute Express Link
GPU Graphics Processing Unit
NUMA Non-uniform memory access
CMP chip multiprocessor
CPU Central Processing Unit
DRAM Dynamic Random Access Memory
VM Virtual Machine
MESI Modified, Exclusive, Shared, Invalid coherence protocol
PCI Express Peripheral Component Interconnect Express
LLC Last layer cache
FPGA Field-programmable gate array
NIC Network Interface Controller
DIMM Dual In-line Memory Module
PBR Port Based Routing
SNC sub-NUMA clustering
FIFO First In, First Out

7

1 Introduction
In the rapidly evolving landscape of computing technology, the demands for higher
data throughput and reduced latency in data centers and high-performance computing
environments are continually escalating. As applications grow increasingly complex
and data-intensive, traditional multiprocessor systems frequently encounter significant
performance bottlenecks. Among these, main challenges are memory bandwidth
limitations, interconnect inefficiencies and cache coherency, significantly impacting
system performance and efficiency. Addressing these challenges is crucial for the
advancement of computing technologies.

Compute Express Link (CXL) emerges as a pivotal innovation in this context.
Introduced as a high-speed interconnect aimed at improving the performance of servers
by allowing high-bandwidth, low-latency communication between CPUs and devices
such as memory expanders and GPUs, CXL represents a significant shift in data center
architecture. This thesis focuses on the role of CXL in mitigating traditional bottle-
necks in multiprocessor systems, particularly examining its effectiveness in enhancing
memory accessibility, reducing latency, and increasing overall system throughput. As
the adoption of Compute Express Link gains momentum across various sectors of
technology, particularly in data centers and high-performance computing, it becomes
imperative to thoroughly understand and predict its impacts on system performance.
CXL introduces a novel approach to handling data coherency and memory sharing
across high-speed interconnects, which changes the dynamics of processor-memory
interactions and communication. Given the complex nature of these interactions and
the novel integration of hardware components required by CXL, traditional analytical
methods or simple experimental procedures may not suffice to capture the full spectrum
of its performance implications.

Simulation and modelling play a pivotal role in translating theoretical specifi-
cations of CXL into practical, actionable insights. By creating detailed models of
CXL-enabled systems, researchers and engineers can estimate the performance impact
and inefficiencies in the architecture before moving into real-world deployments. Mod-
elling allows testing various scenarios and what-if analyses to understand how different
setups and workloads will perform with CXL. Results of modelling can provide design
and deployment strategies, helping businesses and technology providers maximize
their investments in CXL technology. Moreover, modelling provides a foundation for
academic and industry researchers to collaboratively explore the potential of CXL,
fostering innovation and leading to advancements in computing technology that might
not be possible through experimental methodologies alone due to cost, scalability, or
feasibility constraints.

There are multiple challenges in estimating the benefits of CXL. CXL’s operation
involves intricate interdependencies between the CPU, memory modules, and I/O
devices. These relationships are not only complex but are also significantly different
from those in traditional architectures. Modelling allows for detailed exploration of

these interdependencies in a controlled environment, enabling a better understanding
of how changes in one component affect others. The benefits of CXL can vary widely
depending on the specific system configurations, such as the type of CPUs used, the
number of devices connected via CXL, and the nature of the workload. Through
modelling, various configurations can be simulated and analyzed to understand the
best use cases and configurations for CXL. In addition the rapid pace of development
in CXL technologies and standards means that new features and capabilities are
continually being added. Modelling these changes before they are fully implemented
in hardware can provide valuable insights into their potential impacts, guiding future
developments and helping manufacturers make informed decisions. Also as systems
scale, the impact of architectural changes can become more pronounced. Modelling
helps predict how CXL might perform as systems grows in complexity, ensuring that
the technology is scalable and future-proof.

The primary aim of this thesis is to model the performance of CXL in a variety
of multiprocessor architectures, providing a comprehensive analysis of its potential
to benefits for the system. Through detailed simulation and performance evaluation,
this thesis seeks to quantify the improvements CXL offers and explore the optimal
configurations and scenarios where CXL can be most beneficial. This exploration is
critical, not only for validating the theoretical benefits of CXL but also for identifying
practical challenges and considerations in its implementation. By delving into the
capabilities and impact of Compute Express Link, this thesis contributes to a deeper
understanding of modern solutions to age-old problems in computer architecture,
paving the way for more efficient, powerful, and scalable multiprocessor systems.

In this thesis two different type of discrete event based models are created with
Simulink modelling software. The different models are dual processor system and
the extended model that is a four processor system. Both models include baseline
version and CXL version that are compared to each other. Baseline models are tuned
with actual parameters from AMD processor system study. Models are created with
subsystem components connected to each other. Task system releases different types
of tasks into the system, and performance is examined through various metrics related
to these tasks. Multiple different scenarios based on different cache hit rates, CXL
device utilization and other parameters are studied with the models.

1.1 Main results and implementation contributions
The CXL models presented performance improvement over baseline versions for both
dual and extended models. Improvement was present with all different task types
examined. CXL device improved systems performance in poorly optimized systems,
where cache hit ratios are low. Performance was also boosted in highly optimized
systems with high cache hit rates.

The created models are parameterized and have modular structure, which allows
to examine performance in complex processor systems. The models can be further

9

developed to for example examine even more larger processor systems, or study
performance with specific memory placement algorithms.

1.2 Structure of the thesis
This thesis is structured as follows: Literature Review, which consists of a presentation
of a Chip Multiprocessors and NUMA architecture followed by a review of the existing
research on multiprocessor system bottlenecks. Following this, CXL technology is
explained through its protocols and technical information. Continuing to Modelling
and Results, which includes description of the modelling techniques and simulation
tools used to evaluate the performance of CXL in multiprocessor systems. Presentation
and discussion of the results from the performance simulations, providing insights into
how CXL impacts the system. Analysis of the implications of the findings, considering
both the enhancements and the limitations observed in the CXL implementation.
Final section consists of conclusion and future work. Summarization of the thesis’
contributions to the field of computing technology, along with recommendations for
future research directions based on the findings.

10

2 Literature review
In this chapter Chip Multiprocessors and NUMA architecture are introduced as context
for modelling. At the end of the chapter bottlenecks of multiprocessor systems are
discussed. These bottlenecks are the primary problems that CXL technology aims to
fix.

2.1 Chip Multiprocessors
Chip Multiprocessors (CMPs) represent a notable evolution in processor technology
and architecture. CMP is a single chip consisting of group of uniprocessors. Design
motivation is enhanced computational efficiency and performance, which is gained with
multiple cores. From architectural perspective CMPs consists of multiple processor
cores that share a single integrated circuit. These cores usually share resources such
as caches and memory controller, while independent execution units are maintained
for each core. This design makes it possible to execute several instruction streams
concurrently with the architecture. This is a notable performance gain compared to the
single-core processors. In Chip multiprocessors cores have methods of communication
between each other. This is established through shared caches and interconnects.
Important aspect for the architecture is for all of the cores to have the correct view of
the shared memory, which is ensured by mechanisms for cache coherency and memory
consistency [1].

Basis of CMPs working mechanism comes from parallel processing. Each
core operates independently and can run separate threads or parts of a program
simultaneously. Parallelism excels best with applications designed to take advantage of
multi-threading and multi-tasking environments, providing improvements in processing
speed and efficiency [1]. Ability to execute multiple concurrent threads significantly
boosts system performance. However this efficiency introduces complexities in memory
management, specially when the number of cores increase. Critical component for
improving efficiency of CMPs is interconnect technology. Interconnect in CMP
systems can be concluded to be a major component in memory hierarchy and overall
performance. Main bottleneck in terms of interconnect performance comes from
latency [2]. Considering the scaling of core counts in CMPs, the traditional assumption
of equal access times becomes less effective, which leads to a importance of advanced
memory access architectures.

11

2.2 Non-Uniform Memory Access Architecture
Non-Uniform Memory Access (NUMA) is a suggested solution to the scaling chal-
lenges related to multiprocessor computer systems. In the thesis, models are based on
NUMA architecture. NUMA architectures provide a modular approach to memory
access. Each processor or group of processors is attached to its own memory, forming a
’node’. Key aspect in this system is fast access to local memory that is within the same
node. Accessing other node’s memory, the remote memory, is slower. This design
inherently reduces the contention for memory access and aims to scale up processor
count without significant performance degradation. NUMA system typically consists
of several nodes. Each of the nodes comprises of one or more processors (CPUs)
with their own local memory and a memory controller. The memory within the node
is local to the CPU’s inside that node, and are accessible much faster compared to
other nodes. Connections inside a single node is operated through an interconnect
network. The network’s design is general point considering performance of the overall
system. Topology choice affects many factors such as bandwidth, latency and fault
tolerance. Coherency in NUMA systems is handled with cache protocols such as
MESI (Modified, Exclusive, Shared, Invalid). Coherency protocols in NUMA systems
are important to maintain most recent data for processors, even if it has been modified
by another processor on a different node [3].

Cache system plays a crucial role specially in modern NUMA multi-core pro-
cessors, which typically feature a three-tier cache structure including a shared Last
Level Caches (LLC). Specifically, L1 and L2 caches are dedicated to individual cores,
while the L3 cache (LLC) is shared across all cores within a single NUMA node.
As a result, L1 and L2 caches are faster to data-access than the L3, that is in turn
faster for retrieving data from the main memory. The capacity of each layer varies
and is a important factor in system performance. A cache with limited capacity might
frequently evict working sets, increasing reliance on slower memory access. At the top
of the hierarchy is the NUMA node. The programs access NUMA node via integrated
memory controller that is owned by the node. Memory latency is defined by which
core accesses which memory. NUMA nodes are interlinked by connection pathways
and to access memory outside the local node (remote memory), interconnects must be
navigated, potentially causing higher latency and causing congestion at the memory
controllers. All cores within the same NUMA node usually share resources such as
the memory controller, LLC and interconnect links. NUMA architecture necessitates
careful consideration of cache-line placement strategies to optimize overall system
performance and reduce coherence traffic [3].

Since these systems have difference in access times for local and remote memory,
operating system plays a critical role in memory allocation, process scheduling and
balancing memory access across the system to minimise the performance impact
on memory access. Advanced operating systems include NUMA-aware schedulers.
These schedulers keep track of memory usage patters and try to optimise memory
accesses by allocating processes to nodes where the required data is already present or

12

nearby.

Usually NUMA systems performance is evaluated by specific benchmarks focusing
on memory latency, bandwidth and processor interconnects. Remote-to-local access
ratio, cache hit/miss rates and note level memory utilisation are commonly analysed
metrics [4, 5]. Optimizing NUMA can be done either on software- or hardware-level.
Software level techniques involve setting process/thread affinity and explicit memory
allocation policies. Hardware-level approaches focus on improving inter-node com-
munication channels to increase bandwidth and reduce latency.

Considering NUMA performance one of the important aspects is data locality.
Computations should ideally occur close to where the data resides so access speeds are
maximized and latency is minimized. This phenomenon affects directly to performance
as local memory accesses are faster than remote ones. Other influential factor is
memory access patterns. Memory access patterns are able to enhance performance
of NUMA system, if local access is favoured. Local accesses reduce the reliance on
slower interconnects used for accessing remote memory. Efficient shared resources
management affects NUMA system performance. When multiple processors or cores
try to access simultaneously shared resources, such as caches or memory controllers,
performance degradation can occur. Other important factors related to performance
are scheduling algorithms for NUMA systems. Algorithm for orchestrating memory
that takes account for data locality and cache contention is important for achieving
high performance. Other than NUMA optimizations, interconnect efficiency is crucial
for NUMA systems, since data transfers between processors and memory banks must
be handled [6].

13

2.3 Bottlenecks of Multiprocessor systems
In this chapter the bottlenecks of multiprocessor systems that are relevant to the CXL
technology are discussed. Performance-memory related performance gap, interconnect
bottlenecks and scalability are the chosen bottlenecks for further examination. All of
these bottlenecks can be seen as a motivation for the need of CXL technology.

2.3.1 Performance-memory performance gap

One of the main bottlenecks in the multiprocessor systems lies in the bandwidth.
Reasoning for this comes from well known Von-Neumann bottleneck problem. Von-
Neumann presented computer architecture that is based on Central Processing Unit
(CPU), which is formed by Control Unit and the Arithmetic Logic Unit (ALU).
CPU operates with an input/output (I/O) subsystem and memory executing computer
programs which are a stream of instructions. Computer programs performs I/O
operations and process the data stored in memory. Key idea of the architecture is
that memory content is defined entirely by how it is interpreted, meaning data and
instructions are stored in the memory system the same way. Von Neumann architecture
led to knowledge of Memory Access bottleneck which is still relevant to date when
examining modern multiprocessor systems. Separation of CPU and memory has led
to performance limitations in foundational level. CPU development has increased
potential performance at much faster rate than performance in memory has evolved
[7].

The overall system performance is limited by system’s slowest component, meaning
that this developmental imbalance between CPUs and memory presents a bottleneck.
Primary reasons for this bottleneck is the requirement to supply the CPU with data
from the memory, which leads to lower performance and higher energy. Today, the
disparity between CPU speeds and memory access capabilities has become increasingly
pronounced. Over recent decades, CPU speeds have approximately doubled every
two years, in line with Moore’s Law, whereas the improvements in memory access
times and bandwidth have lagged significantly behind. This growing gap highlights a
critical and intensifying bottleneck in computing system performance. This is referred
sometimes as the memory wall [8]. On top of this most of the energy goes to the
memory access and data transfer in modern computers compared to the processing
operations in CPU [9]. DRAM technology plays a pivotal role in the architecture of
main memory systems in computers. This is primary due to its cost-effectiveness
and high storage density. Over the previous decades, the capacity of DRAM has
consistently doubled approximately every two to three years. Resulting from this, there
was a time when off-chip main memory was capable of providing the processor with
data at sufficient rate. However, in contemporary settings, as processor performance
enhances by roughly ten times more annually than memory latency, it now requires
dozens of cycles for data to move between the processor and main memory [10].

14

2.3.2 Interconnect Bottlenecks

Interconnects are critical component in multiprocessor systems forproviding performance-
efficient data transfer between many system components. Interconnects are applied to
systems between components such as CPUs, memory and input/output devices. Current
state of art interconnect are for example PCI Express and Compute Express Link that
is in the process [11, 12]. Interconnect performance affects system performance by
bandwidth, latency and the ability to handle concurrent data transfers. High bandwidth
and low latency are essential factors for achieving optimal performance, specially with
the need to be able to handle large volumes of data. Recent advancements in technology
and increased demands on system bandwidth have exposed significant bottlenecks
in these interconnects. This bottleneck arises since the adoption of high-bandwidth
access links, which increase data transfer rates notably, but matching similar advances
have not emerged for interconnect technologies. This leads to interconnect congestion
in host interconnects [13].

2.3.3 Scalability

Increasing demand formemory capacity andbandwidth forexample in High-Performance
Computing leads to need for more scaled out systems. However, increased amount of
processing units and memory devices in the system is not scalable solution since it is
expensive and inefficient in terms of resources. Additionally, problem of a resource
imbalance rises since memory devices are dedicated to a processor in standard systems
[14, 15]. Scaling the system with more memory devices presents a performance
problem, since system needs to maintain coherency. Coherency protocols in scaled
multiprocessor systems impact overall system performance by latency [16]. Need for
coherence protocols in the scaled multiprocessor systems lead to being a bottleneck
when the protocols are not optimized for maximal efficiency. Performance is affected
by increased latency and also increased energy consumption [17].

15

3 CXL
Compute Express Link (CXL) is industry open standard dynamic multi-protocol
technology. It is designed to provide support for memory devices and accelerators.
Benefit of CXL is low-latency and high-bandwidth connectivity between host and
processor, accelerators and memory expansion devices. This standard is running
on the PCI express (PCIe) 5.0 physical layer infrastructure [18]. CXL has three
protocols: CXL.io, CXL.cache and CXL.mem introduced in CXL 1.0. Three types of
CXL devices are defined. Type 1 devices are devices with cache. These devices are
accelerators, usually referred as SmartNIC, that use CXL.io and CXL.cache protocols.
Type 1 devices have coherent cache that enables accelerator to implement unlimited
number of atomic operations and to implement any chosen ordering model. Type 2
devices use all three protocols. These devices are accelerators with memory attached
to the device. Type 2 performance benefits come from huge bandwidth between
memory and accelerator. CXL device used in this work is Type 2. Type 3 devices use
CXL.io and CXL.mem protocols and are referred as memory expanders. Benefit with
Type 3 device is usage of device-attached memory as host attached memory [19].

3.1 CXL.io
CXL.io protocols base functionality handles basic device related operations such
as configuration, discovery and initialization. Protocol is built on top of the PCIe
architecture and utilizes non-coherent load/store semantics for general I/O operations.
CXL.io uses a split-transaction approach that requests and their completions are handled
asynchronously and independently. Transactions are packaged into a Transaction
Layer Packet (TLP). This packet is not dependent on other transactions, allowing
asynchronous transaction processing. Transactions use credit-based system, where each
transaction has buffer requirement based "credits". Consuming credits in transactions
helps manage the flow of data and prevents system from becoming over flooded from
too many requests. Quality of service is addressed in CXL.io by incorporating two
virtual channels to manage different types of traffic in the system. As example latency
sensitive traffic can be separated from big load data transfers. Additionally traffic from
different memory access types can be separated to these different channels [20].

3.2 CXL.cache
CXL.cache is the caching protocol in CXL technology designed to enhance capabilities
of devices connected to a host system. It takes advantage of MESI (Modified,
Exclusive, Shared, Invalid) coherence protocol. CXL.cache allows the host to manage
all coherence activities. The CXL device does not need to directly interact with
other caches, which simplifies device operations and design. The host ensures that
all connected devices are in synchronization and keeps track of coherence status of
data. Protocol operates with three different channels in two directions. Channels
are for Requests, Responses and Data, operating. Directions are Host-to-Device and
Device-to-Host. This structure optimizes performance by allowing information to flow

16

smoothly and independently between the host and the devices. To maintain coherency
in the system CXL.cache uses Snoop Messages. A Snoop Message ensures that any
changes in data are recognized by all devices that might access this data. Additionally,
protocol uses Global Observation Messages. These messages indicate the coherence
state of data at particular cache line. They ensure that device in the system knows the
current state of the data it accesses. This is important for achieving system stability
and optimal performance. CXL.cache supports devices operating with the usage of
virtual addresses by using Address Translation Services (ATS) of PCIe. ATS manages
virtual to physical address translations. This method makes sure that multiple virtual
machines or containers can operate independently on the same hardware without data
interference. Overall, the protocol enhances the efficiency and reliability of the system
by managing caching and synchronization in multiple devices. CXL.cache supports
quality of service by allowing separation of different traffic types [20].

3.3 CXL.mem
The CXL.mem protocol is designed to allow direct memory access by connected
devices. It supports the management of Host-managed Device Memory (HDM).
HDM allows the host to access and control device memory as if it were directly
connected to system memory. Host-Managed Device Memory, being the key func-
tionality of protocol, supports multiple types of memory media by translating host
physical addresses into the device’s specific memory addresses. CXL.mem has two
communication channels, Master-to-Subordinate (M2S) and Subordinate-to-Master
(S2M). M2S direction includes a Request channel and Request-with-Data (RwD)
channel establishing direct memory operation requests from the host to the device.
S2M direction features a Data-Response channel and Non-Data-Response channel.
These channels allow devices to send data and responses back to the host. HDM-H and
HDM-D (Host-only Coherent and Device-managed Coherent) are coherency protocols
inside CXL.mem. HDM-H expands the host’s memory without additional coherence
management and HDM-D includes cache management features that let the device to
manage and track the host’s caching. It supports cache state management and snooping
to support data integrity. CXL.mem has a feature called Bias Flip flow, where devices
can change the cache state at the host. This feature ensures that device and the host are
synchronized in terms of cache management and data coherency [20].

17

3.4 CXL devices
CXL devices are classified generally in 3 seperate groups: Type 1, Type 2 and Type
3. This classification is based on the protocols used in the devices. Type 1 Device
uses CXL.io and CXL.cache protocols. Type 1 devices work as a accelerators without
memory. Advantage that Type 1 device brings with CXL.cache is cache coherency. It
is possible for this accelerator to implement any ordering model chosen and implement
an unlimited number of atomic operations. Size of cache used in the device depends
on the host’s snoop filtering capacity. Main use cases for these type of devices are
PGAS, NIC or NIC atomics [20].

Type 2 devices are Accelerators with memory. These are accelerators equipped
with their own local memory, for example FPGAs and GPUs. These devices can
directly map part of this memory to the systems cacheable memory. Due to this, type
2 devices can perform complex processing tasks efficiently. Type 2 devices apply
all of the protocols. The full utilization of protocols allow the device to integrate
deeply with the systems memory architecture. Example applications for the Type
2 device include machine learning, video processing and high-speed data-analysis.
Type 3 devices are memory expanders. This type of device focuses on expanding the
capacity and memory bandwidth of the system. They support a wide range of different
memory types and memory tiers. Protocols applied to Type 3 devices include CXL.io
and CXL.mem. First protocol is used for general device management and second
for managing attached memory as cacheable, which enhances the overall memory
resources available to the host system. Example application for Type 3 device are
providing extended memory resources for data-intensive applications [20].

3.5 CXL technology
CXL defines interconnect protocols between CPUs and devices. Protocols consists
of mixture of hardware and software techniques. General key component of CXL
devices is PCIe serial interface. Idea behind creating CXL system is to overcome
common challenges that exist in modern computing systems. One major challenge
arises from coherent access to device and system memory. This happens when mixing
traditional DDR-connected system memory and PCIe device memory. Historically
in the architecture of these systems works in a way that CPU cache hierarchy can
cache the system memory accessed through DDR, while the PCIe devices have to
resort to non-coherent reads/writes when accessing the system memory. Generally
this means that PCIe devices lack the capability to exploit the temporal or spatial
locality benefits that are offered by the caching. Interactions of these sort of devices
with the system memory are routed through the host’s root complex, ensuring that
PCIe consistency is maintained with the prevalent CPU caching semantics. More in
depth, the following scenario is similary constrained: when the host accesses memory
connected to a PCIe device, it does so non-coherently, with the responsibility of each
access squarely on the shoulders of the PCIe device. This prevents mapping device
memory to the cachable system address space, creating an inherent asymmetry in

18

access mechanisms. Non-coherent memory accesses of these types are handled with
streaming I/O functions like storage or network operations, which are necessary for
a liner data flow. Common model regarding accelerators is to reallocate entire data
constructs for the system memory to the accelerator for dedicated operations and
then back to the main memory. Software-level solutions are employed to prevent any
concurrent access between the CPU and the accelerators and to ensure data integrity.
This challenge presents limitation for emerging applications such as AI, ML and
NICs. In these scenarios the ideal would be to allow devices to concurently access
fragmented data structures alongside the CPU. This would leverage device-local
caches following elimination the need for the extensive data transfers. The challenge
is also related to the burgeoning domain of processing-in-memory which emphasizes
computation proximity to data storage. Non-existance of standardised mechanism
for PIM devices to coherently accessing data potentially stored in the CPU cache
hierarchy forces developers to use intricate programming models. Such complexities
increase developmental overheads [20, 19].

The second challenge comes from memory scalability conundrum. The increase
in computational demands mandates a proportional rise in bandwidth and memory
capacity. This exponential correlation describes well the needs of modern computing
paradigms. While being widely recognised issue, there exists a mismatch between this
demand and the supply capabilities of DDR memory, causing a bottleneck in memory
bandwidth available per CPU. Predominant factor for this issue arises from the inherent
pin-inefficiency associated with the parallel DDR interface. Solving this issue by
augmenting the number of DDR channels concurrently introduces complex singnal
integrity predicaments and increases system overall costs. PCIe, as seemingly ideal
alternative, deliver enhanced memory bandwidth per pin efficiency. As comparison
example DDR5-6400 yields 50 GB/s bandwidth at the cost of aprrox. 200 signal pins.
PCie port x16 Gen5 can potentially offer bandwidth of 256 GB/s, utilising only 64
signal pins. PCIe’s also offer extended reach, enabling memory components to be set
greater distances from CPUs. In theory this flexibility could allow using more power
than 15W of power per DIMM, resulting in improved performance. However, PCIe
comes with key limitation: lack of coherency support. Inability to map device-attached
memory to a coherent memory domain exists [20, 19].

One key challenge is resource stranding. Resource stranding is a common cause of
inefficiencies that present-day data centers are struggling with. Generally resource
is referred to be stranded when there exists an under-utilisation of a particular re-
source, such as memory, even as another corresponding resource, like compute, is
saturated to its capacity. This results to each server needing to be over-provisioned
with accelerators and memory to handle peak capacity demanding workloads. For
example, if a server hosting an application that occasionally experiences spikes in
memory or accelerator requirements beyond its provisioned capacity is considered,
it is not possible to leverage idle memory or accelerators from another less-strained
server within the same infrastructure. The result is a performance degradation marked
by page misses. Oppositely, in scenarios where all computational cores of a server

19

are actively engaged, there often exists a surplus of memory not utilised. Resource
stranding inflicts negative effects wide perspective. Addition to performance penalties,
resource stranding causes negative effects to power consumption, sustainability metrics
and financial overheads. These inefficiencies are common in the industry [20, 19].

The final challenge is navigating fine-grained data sharing in distributed ecosystems.
Essential attribute of contemporary distributed systems is their reliance on fine-grained
synchronisation. Such synchronisation is characterised by frequent yet short and
latency-sensitive updates, a scenario where tasks are invariably contingent on prompt
updates. Many of web-scale applications incorporate this model. In these ecosystems
amount of updates related to queries often doesn’t exceed 2kB, what is typical with
individual search results. Many examples can be seen in distributed databases, where
system leans heavily to kB-sized pages and distributed consensus mechanisms that
hinge on even more granular updates. Data sharing paradigm brings forth an inherent
challenge. Considering the size of updates, communication latency to standard data
center networks becomes major factor determining the wait time for updates. Inte-
gration of a coherent shared-memory architecture presents a promising avenue [20, 19].

The emergence of the Compute Express Link displays a conscious effort to confront
challenges presented. Since the launch of CXL’s specification, three distinct gener-
ations exists of the technology. Each generation retains backward compability and
introduces new aspects on the CXL protocols. CXL 1.0 is based on layering coherency
and memory semantics on top of existing PCIe framework. Motivation of CXL 1.0 is
to confront coherency challenge and memory scaling. It further establishes a coherent
interface, paving the way for mainstream adoption of PIM systems and their associated
programming paradigms. Notably, CPUs gain the ability to cache device memory,
addressing the intricacies of fine-grained data sharing in the realm of heterogeneous
computing. The memory connected to a CXL device can now be seamlessly mapped
onto the system’s cacheable memory arena, enforcing heterogeneous computation and
bettering the constraints of memory bandwidth and capacity. More in-depth CXL 1.0
persists in endorsing the non-coherent producer-consumer semantics inherent to PCIe
[20, 19].

With CXL 2.0 Focus shifts to overcoming resource stranding challenge by facili-
tating resource pooling to multiple hosts. This pooling mechanism acts as an fix to
resource stranding and fragmentation, allowing dynamic reallocation of resources
such as memory across distinct hosts over temporal intervals without need of system
reboot. Reallocation is made possible by the introduction of CXL switches, creating
a compact network interlinking hosts and memory devices. CXL 3.0 focus is on
addressing resouce stranding at expansive scale through the incorporation of multi-
tiered CXL switching, enabling creation of dynamically configurable systems at rack
level. Simutainiously challenge arising from data sharing is addressed by sanctioning
fine-grained memory sharing across the confines of host peripheries [20, 19].

20

3.6 CXL 2.0 Protocol Enhancements
Compute Express Link 2.0 introduces multiple enhancements over the base 1.0
version of CXL protocol. CXL 2.0 incorporates PCIe hot-plug mechanisms, that
allows addition or removal of CXL resources dynamically. This is possible even
when the platform is booted. Hot-plug mechanisms benefit by enabling dynamic
resource management and reduction in system downtime. Single-Level switching is
introduced to simplify the address decoding process for CXL.mem address regions.
This enables routing and switching without requiring full decode by host or any switch.
Benefits from the Single-Level switching come from possibility to create multi-host
connections, which enable simple device pooling and system designs. With CXL
2.0 memory and device pooling is possible. Dynamic assignment of memory and
device resources to different hosts in CXL network enhances resource utilization and
flexibility. As one of the key features of 2.0 protocol Multi-Logical Device (MLD)
support is presented. It enables a single physical device’s memory to be segmented
into multiple logical devices, which can be separately assigned to different hosts. By
allowing each host to view and managing only the devices and memory segments
allocated to it, management efficiency and security is improved [20].

3.7 CXL 3.0 Protocol Enhancements
CXL 3.0 protocol is the most significant evolution in CXL standard, addressing the
challenges of data sharing and resource management. The version expands the 2.0
version by enhancing scalability, improving bandwidth and reducing latency. Protocol
supports multi-level switching and extends protocol support for up to 4096 end devices.
Devices include for example memory units, hosts and accelerators. This benefits the
system significantly enhancing power efficiency and reducing total cost of ownership
by allowing the creation of dynamically composable systems. CXL 3.0 introduces
fabric topology and enhanced bandwidth. Fabric topology support permits multiple
paths between any source and destination pair, which reduces latency and congestion
while boosting the bandwidth efficiency by direct peer-to-peer access between devices
[21, 20].

Improvements in the protocol are made also to shared coherent memory and
message passing. Shared coherent memory is made possible across multiple hosts
which allows multiple systems to share data structures and perform synchronization
with low latency. Unordered I/O (UIO) and Back-Invalidate (BI) fabric support
features are introduced to enable more efficient memory access patterns in distributed
system. UIO allows unordered read/write operations which enhances throughput and
BI supports direct memory access by devices, leading to better data coherency. One
main improvement of CXL 3.0 is Port Based Routing (PBR). PBR simplifies the
message routing process by using a 12-bit identifier for each port. The simplification
allows more scalable routing mechanism that relies less on the physical and virtual
hierarchy of the network. Simplification leads to reduced latency and overheads
in hierarchical routing methods. PBR establishes a flat network topology which is

21

managed locally at each switch. This leads to possibility to scale the network for
theoretically thousands of endpoints, since routing load is distributed across multiple
switches that can independently manage their connections and traffic. PBR provides
efficient multi-path routing. Messages can be dynamically routed through multiple
paths in the device network, depending on networks status and traffics attributes. This
capability optimizes bandwidth utilization and increases overall system reliability.
Example of CXL 3.0 device pool is presented in Figure 1. Figure resembles system
architecture that is possible to be created with CXL pooling [21, 20].

CPU CPU CPU CPU

Switch SwitchSwitch

PCIe or CXL
Device

PCIe or CXL
Device

PCIe or CXL
Device

PCIe or CXL
Device

MLD
LD#0
LD#1

Figure 1: Pooling example by using CXL Switches [21]. Multiple CPUs can be
connected to same CXL devices through switches, forming a pooled system.

3.8 CXL Microarchitecture Latencies and Bandwidth
CXL.mem and CXL.cache latencies have been estimated in multiple different system
setups. For CPU to Type 3 Single Logical Device connecting to DDR memory
latency is estimated to be 170ns. CPU to pooled or shared memory on a direct attach
multi-headed Type 3 device for DDR memory latency consists from <100ns CPU side
load to use, 50ns stack round trip, 10ns flight time and 10ns Retimer round trip, if
applied. Same latency is for device access to direct connect memory on host processor
across a CXL link with CXL.cache. For CPU to Type-3 memory through a CXL
switch latency is estimated to be 250ns. Device caching latency to a Type-3 memory
connected through CPU latency consists of <100ns, 70ns CXL switch with link flight
times and latency of 80ns for CXL Type 3 device. Message to a peer CPU or Device
on local Shared Memory Controller or through a CXL switch is estimated to have a
latency of 220ns. For a message to a peer Device or CPU on remote Shared Memory
Controller latency is estimated to be 270ns. Same is estimated for similar message
through 2 CXL switches [20].

3.9 Understanding Flits in CXL Architecture
Flits, or flow control digits, are fundamental units of data used in the transport layer of
the Compute Express Link (CXL) architecture. In CXL, flits are used to encapsulate
data along with necessary control information which facilitates the efficient movement

22

of data across the CXL fabric. Flits enable the high-speed transfer of data between the
CPU and devices such as memory expanders, accelerators, and other I/O devices [20].

3.9.1 CXL Flit Structures and Bandwidth Calculations

For CXL 1.0, 1.1, and 2.0, the standard flit size is configured as 68 bytes, which
is composed of a 64-byte payload, a 2-byte protocol-ID, and a 2-byte CRC (cyclic
redundancy check). The protocol-ID is crucial as it is processed by the logical
physical layer to identify the flit type. The payload typically contains four 16-byte
slots, accommodating either headers or data, referred to as G-slots. In contrast, CXL
3.0 proposes two flit sizes optimized for different needs: a 256-byte flit for capacity
optimization and a 128-byte flit tailored for reduced latency [20].

3.9.2 Bandwidth and Latency Specifications

Table 1: Effective Bandwidth and Latency Specifications for Various CXL Configu-
rations [20].

Configuration Effective Link Efficiency (Link_eff)
CPU to Type-3 device with DDR mem-
ory (68-byte flit)

0.924 (Sync HDR on), 0.939 (Sync
HDR off)

CPU to pooled/shared memory on
MLD Type-3 device via SMC (256-
byte flit)

0.938 (15 of 16 slots used for data)

CXL.io overhead (DLLP estimated at
2%)

0.906 (Sync HDR on), 0.92 (Sync HDR
off)

In Table 1 the link efficiency (Link_eff) calculations factor in various overheads
such as synchronization headers (Sync HDR), skip ordered sets (SKP), and the basic
flit overhead. Notably, these efficiencies highlight how CXL accommodates the
protocol overhead to ensure robust data integrity and synchronization across complex
multi-device environments [20].

3.9.3 Traffic Mix and Efficiency Calculations

For varied traffic mixes in CXL.io, such as READ, WRITE, and a 50-50 mix, the
bandwidth efficiency (B_eff) is influenced by the proportion of data payload per
transaction layer packet (D) and the associated overhead:

• READ transactions use the formula:

𝐵𝑒 𝑓 𝑓 = 𝐿𝑖𝑛𝑘𝐸 𝑓 𝑓 ×
𝐷

𝐷 + 3 + 𝐹𝑇_𝐶𝑅𝐶
(READ)

• WRITE transactions apply:

𝐵𝑒 𝑓 𝑓 = 𝐿𝑖𝑛𝑘𝐸 𝑓 𝑓 ×
𝐷

𝐷 + 4 + 𝐹𝑇_𝐶𝑅𝐶
(WRITE)

23

• For a balanced READ and WRITE mix:

𝐵𝑒 𝑓 𝑓 = 𝐿𝑖𝑛𝑘𝐸 𝑓 𝑓 ×
𝐷

𝐷 + 8 + 2 × 𝐹𝑇_𝐶𝑅𝐶
(50-50)

Each calculation takes into account the specifics of CXL protocol operations,
reflecting the critical role of flit structure and overhead management in achieving high
efficiency and low latency in CXL networks [20].

24

4 CXL Studies
In this chapter three applicable studies are presented. In all of the studies different
implementation of CXL prototype is created and examined. These studies provide
valuable insight on actual CXL performance. The results of the three presented studies
are compared later to the results of modelling in this thesis.

4.1 CXL Study 1
The study by Sun et al. revealed multiple important aspects of the CXL enabled
systems. One major aspect found is following: CXL controller design and/or mem-
ory technologies lead to true CXL memory device give a wide range of memory
access latency and bandwidth values. CXL memory device can generally outperform
emulated CXL devices by up to 26% in terms of latency and 3-66% in bandwidth
efficiency. This enhanced performance is largely due to the architectural design of true
CXL memory, which does not incorporate caches or CPU cores that modify caches,
although it is recognized as a NUMA node. To operate this, the CPU uses an on-chip
hardware structure designed to quickly check cache coherence for accesses to CXL
memory. These distinctions are crucial as they can significantly alter the conclusions
drawn from previous studies regarding the performance attributes of CXL memory
and, by extension, the effectiveness of system-level proposals [22].

Additionally, the sub-NUMA clustering (SNC) mode isolates the Last Level Cache
(LLC) among SNC nodes by ensuring that CPU cores within an SNC node exclusively
evict their L2 cache lines to LLC slices within the same node. However, this LLC
isolation is disrupted when CPU cores access CXL memory, as L2 cache lines from
CXL memory may be evicted to LLC slices in any SNC node. As a result, accessing
CXL memory potentially allows applications to benefit from an effectively 2–4 times
larger LLC capacity compared to accessing local DDR memory. This compensates
significantly for the longer latency typically associated with accessing CXL memory,
particularly in applications that frequently utilize the cache. Conversely, for complex
applications such as social network microservices exhibiting millisecond-scale latency,
the latency increments when using CXL memory were marginal. This suggests that
the inherent delay associated with CXL memory does not significantly affect the
overall end-to-end latency for such applications, pointing to the application-specific
sensitivity to CXL’s memory latency [22].

The research highlighted importance of CXL system optimization. Just allocating
half of the memory pages to CXL memory, as per default operating system policies,
actually lowered throughput. This was despite the theoretical increase in total band-
width achieved by integrating DDR and CXL memory, indicating that mere access to
increased bandwidth does not automatically translate to improved performance.

25

4.2 CXL Study 2
In Gouk et al. study CXL system implementation is presented where system per-
formance is enhanced by facilitating direct memory access to pooled resources via
CXL.mem protocol, effectively overcoming the limitations observed in traditional
RDMA-based memory pooling systems. In the study developed prototype DirectCXL
is examined and important findings are found. It is revealed that DirectCXL offers
a performance output approximately seven times superior to that of conventional
RDMA-based systems across multiple real-world workloads. This is achieved primary
by the reduction of redundant memory copies and the direct memory access provided
by CXL, which substantially reduces access latency [23] .

The prototype system consists of CXL host processors, CXL switch and CXL
devices. Four compute hosts are connected to four CXL devices through a CXL
switch. Each of the CXL devices are prototypes built on customized CXL mem-
ory blade which uses 16-nm FPGA and eight DDR4 DRAM modules. Prototype
demonstrates disaggregated memory with set of network infrastructure components to
make disaggregated memory connected to the host in a scalable manner. Benefits for
the prototype come from the aspect that it does not require any data copies between
the remote and host memory. This leads to exposition of the true performance of
disaggregated systems [23].

The findings from the DIRECTCXL study highlight CXL’s potential to alleviate
traditional bottlenecks in multiprocessor systems. The study affirms that CXL can
significantly mitigate latency and enhance bandwidth efficiency. This capability is vital
for applications that demand rapid memory access, such as large-scale data processing
and real-time analytics. The efficiency of the DIRECTCXL approach in memory
utilization and pooling mirrors the improved performance observed in this thesis’ CXL
simulations, where tasks that required extensive memory bandwidth demonstrated
enhanced throughput and reduced latency.

4.3 CXL study 3
In Li et. al study memory pooling system Pond is proposed. Pond applies CXL in to
the cloud systems. Pond is created based on extended memory controller (EMC) that
offers CXL ports to connected devices. EMC implements the pool by multiple DDR5
channels accessed through a collection of CXL ports with PCIe 5 speeds. Memory
pool is NUMA-friendly design and pool memory is visible by zNUMA node for VMs
that use both local and pool memory. Pond uses machine learning based scheduler for
VMs resource scheduler. Predictions for workloads are based on latency sensitivity
and untouchability of memory. Prediction models are formed as an optimization
problem which balances the prediction model by taking account of target rate of false
positive latency intensive workloads, untouched memory, target rate of overpredictions
and performance degradation margin [24].

26

Pond introduces a practical CXL-based memory pooling system designed to
optimize DRAM utilization in cloud platforms. By analyzing production traces from
Azure, the study highlights that memory stranding—where unused memory remains
while CPU resources are fully allocated—can be mitigated through effective memory
pooling strategies. This system not only reduces the hardware costs associated with
DRAM but also enhances the overall efficiency of resource usage. One of the most
significant findings of this study is that Pond can maintain performance within 1-5%
of traditional same-NUMA-node memory allocations for virtual machines (VMs).
This is achieved through strategic pooling across 8-16 sockets, minimizing the la-
tency impacts commonly associated with larger pool sizes. Pond leverages the CXL
interconnect standard to enable cacheable load/store accesses to pooled memory,
which dramatically reduces the latency typically associated with memory accesses in
disaggregated systems. This feature is pivotal in maintaining the high performance of
cloud services despite the physical separation of memory resources [24].

The insights from the Pond study are particularly relevant to the focus of this thesis
on CXL performance modelling in multiprocessor architectures. The ability of Pond
to closely approximate same-NUMA-node performance using CXL-based memory
pooling provides a compelling case study of CXL’s potential to overcome traditional
memory architecture limitations. It also validates the thesis hypothesis that CXL can
effectively address interconnect bottlenecks and enhance memory access efficiency
in complex systems. A critical aspect of Pond’s success lies in its use of machine
learning models to predict optimal memory allocation for VMs, ensuring efficient
use of pooled resources. This approach aligns with the methodologies discussed in
this thesis, where predictive modelling plays a crucial role in anticipating system
performance and optimizing CXL configurations [24].

27

5 Modelling
In this section the modelling of the CXL performance is presented. Starting from
explaining the motivation of the modelling, following an in-depth presentation of the
modelling methods, components and functionalities. After the models are introduced,
results are displayed and discussed.

5.1 Motivation
Goal of the model is the ability to examine performance of multiprocessor systems
including CXL device based on hardware features such as component latencies,
bandwidth and architecture structure. Key goal of model presented in this work is
modularity and wide range of parametrization of the system. At current time actual
CXL 3.0/3.1 devices do not yet exist and processor offer limited compability for these
devices. CXL specification is public and estimated latencies exists, which makes it
possible to study and predict CXL’s system-wide effects [20]. Importance of modelling
rises from the findings of the study by Sun et al. [22]. Emulated CXL performance
differed in wide range compared to the actual created device. At the moment CXL is
being researched and developed at a fast pace, so the need for parametrized models
is evident. There is a need to be able to investigate performance impacts of new
technology in efficient way.

5.2 Structure of the model
Model is created with MATLAB Simulink, Simevents package. Model is discrete-event
based model that represents multiprocessor systems with different setups. Models’
structure is based on implementation created in study by Brandberg and Di Natale [25].
In the study a model was created representing multicore architecture with Simevents
using three different components: Task system, Cores and Memories. This structure
was used as a basis for NUMA and CXL models in this work. Components are changed
to represent NUMA system. Previous work focused on verification of memory access
delays. Model presented in this work focuses on modelling performance of the
architectures based on different system setups. Performance modelling is based on
task throughput of the system. Task entities are unit of flow in the system, that include
various variables for time measuring purposes. Components are built by using entity
servers that process task entities based on service time parameters.

5.3 Components
Model components are created by Simevents blocks presented in Figure 2. The Entity
generator block generates entities, that are discrete items of interest that are defined
in a discrete-event simulation. These entities carry scalar data. In the model entities
represent memory requests, defined by different task attributes. Release gate has
simple functionality as gating entities. Release gate can be opened through a message

28

to the block. Entity queue stores entities based on order of arrival. Each element at the
head of the queue departs when the downstream block is ready to accept it. Queues
in the model are first-in-first out FIFO queues. The Entity Server block functions by
holding onto entities for a specified duration known as the service time. While an
entity is in the server, it is considered to be in the process of being served. The server
has the capability to handle several entities at once and sends each one out through its
output port once service is complete. However, the release of entities can be delayed
if the output port is currently unavailable or blocked. Server blocks have ability to
implement service time as MATLAB function. Other basic components used in the
model include entity input and output switches and go-to tags to create the system.
Components as nodes, processors and memory devices are created inside a subsystem
block for implementation reasons. MATLAB function blocks are used for a need to
apply MATLAB script based functionalities.

Figure 2: Functional SimEvents components used in MATLAB model.

Tasks represent memory requests in computer systems. Task system consists of
three subsystems which represent different types of tasks examined in the model.
Different task types are Memory intensive, Processor intensive and mix of previous
two, called 50/50. Difference in these task types are created with memory latency and
processing latency parameters. Along with these parameters Task entity has memory
page dependency. Modelled as memory requests, task entities want to access certain
randomly generated memory page. Task generation subsystem consists of entity
generator followed by queue, release gate and server. Entity generator generates task
entity units. Queue is used to determine initial generation amount of tasks and also the
limit of active tasks in the system. Server generates memory page dependency for task
entity. Release gate allows to generate new task entity when previous is completed.
Task entities include different helper parameters for functionality, for example task
entities include data on which node task has flown through.

NUMA nodes are created based on Brandberg’s [26] core component. Node
subsystem is presented in Figure 3. Nodes generally process the task entities. Func-
tionality of node includes forwarding task to the memory devices, executing and

29

Fi
gu

re
3:

V
ie

w
of

th
e

no
de

su
bs

ys
te

m
.T

as
k

en
tit

ie
sfl

ow
fro

m
le

ft
to

rig
ht

.R
ig

ht
sid

e
of

th
e

no
de

su
bs

ys
te

m
ha

si
np

ut
an

d
ex

it
po

rt
fo

r
ta

sk
en

tit
ie

st
o

m
ov

e
in

to
m

em
or

y
su

bs
ys

te
m

s,
an

d
to

re
ce

iv
e

ta
sk

sb
ac

k
fr

om
th

e
m

em
or

y
su

bs
ys

te
m

.

30

terminating a task. Structure of the node component includes queue, release gate,
and servers. Queues in node component represent processing queue and execution
queue. Servers are separated to add parametrized latency for node memory routing
and node processing overhead. Release gate frees node for new tasks when task is
executed. Basic functionality of node is following: Task entity enters node, where
it is forwarded to the memory devices. After flowing through memory devices, task
returns to node for execution. After execution task is terminated and Task system is
informed about termination of task.

Memory components in the model include layer two and three caches and deep
memory modelled as local memory devices. Deep memory has local memory device
for each node. For example Node 1 has local memory device 0. Other nodes sees
memory device 0 as shared memory, so the NUMA architecture is represented. These
deep memory components consists of servers and two separate queues for local and
shared memory. Memory devices omit a certain memory range for each device. Tasks
are given a random memory page dependency in task generation. Based on the memory
page, tasks have a designated memory device based on memory devices ranges. Deep
memory devices will process tasks based on task’s memory time parameter. After
deep memory device, task is routed back to the node it arrived from.

Between nodes and deep memory exists layer two and three caches. Layer two
caches, referred as L2, are local caches for each node. Functionality of L2 caches
include hit rate, based on percentage of nodes local memory devices memory range.
L2 caches consists of servers. First server handles hit-rate functionality, following
different paths for cache hit and miss. If cache hit occurs in L2 cache, task entity
returns to the node it arrived from. In case of cache miss, task entity goes to layer
3 cache, referred as L3 cache. L3 cache is shared cache for nodes in the proces-
sor system. L3 cache inputs task traffic from all the nodes in the processor and
also socket traffic. L3 cache has hit and miss functionality. Task entities will be
forwarded to the deep memory if cache miss occurs, otherwise they return back to
the initial node. L3 cache consists of server and different path for hit and miss. L3
hit operations server is separated outside the L3 cache for implementation practicalities.

If task entity’s memory page is not found on the processor system that entity is
processed in, it is forwarded to other processor system through socket system. After
L3 miss, Deep Memory operations server passes task entity to other processor, if task
entity’s destination exists there. When task entity arrives other processor system, it
enters socket operations server. Socket operations server has functionality of adding
bandwidth timing effect. After this task entities flow to the L3 cache in the current
processor system.

5.4 Baseline model
Baseline model represents two AMD EPYC Rome processors as presented in Velten
et al’s study [27]. Study provides specific parameters for the baseline model and

31

examines memory hierarchies of two leading server processor architectures. The study
is driven by the need to understand underlying hardware differences that do beyond
superficial specifications, taking a closer look on complexity of processor architectures
that have profound implications on performance. Figure 4 shows the top layer of the
baseline model. Task subsystem, two processor subsystems and helper functions can
be seen in the figure.

Focus on the research is to compare and analyze the memory performance char-
acteristics of AMD’s EPYC Rome and Intel’s Cascade Lake SP processors. These
architectures are scrutinized for memory access latencies, bandwidth capabilities and
the effects of cache coherence protocols. The examination of the systems includes
testing and benchmarking to measure and compare memory access patterns, latencies
and bandwidth across different cache levels and main memory, providing a detailed
view of how architecture performs [27].

Main interest regarding the model is the AMD EPYC Rome architecture, that the
baseline model represents. In the study general concept of architecture is presented:
AMD EPYC Rome processors utilize a combination of Core Complex Dies (CCD)
and an I/O die, interconnected through AMD’s Infinity Fabric. This design supports
up to eight CCDs, with each CCD hosting up to eight Zen 2 cores, enabling up to
64 cores per processor. The I/O die facilitates communication between CCDs and
external components, such as PCIe lanes and memory. Each CCD contains two Core
Complexes (CCX), each with up to four Zen 2 cores. L1 and L2 caches are dedicated
to each core, while a shared 16 MiB L3 cache is available for all cores within a CCX [27].

Rome processors feature up to four NUMA nodes, configurable through BIOS
settings, which can impact data access latencies and bandwidth. Each core within a
CCX holds a slice of the L3 cache, managing transfers and cache coherency between
L2 caches within the CCX. Rome cores use three Address Generation Units (AGUs) to
support up to two 256-bit loads and one 256-bit store per cycle. Hardware prefetchers
are utilized for L1, L2, and L3 caches to minimize cache misses [27].

Figure 5 presents the processor subsystem. In the top left in the figure we have
task distributor function, connected to four NUMA node subsystems. NUMA nodes
are connected to L2 caches, which are then connected to L3 shared cache. L3 cache
leads to Local Memory subsystems that can be seen in the right on the Figure 5. In the
bottom left corner is the socket connection for the processor.

Velten et al’s research [27] provides detailed parameters to tune created model.
Socket-socket RAM-latencies as presented in Appendix, Table 6. Models parameters
are identical in both socket systems, but are set separately. In the model these parame-
ters are defined as mem_deep_X_Y where X represents row and Y represents column
of the RAM-latencies matrix form [27]. These variables set service time to the shared
memory path server in memory devices. Parameter for local memory access times for
deep memory is mem_X_local_t where X represents number of the memory device.

32

Fi
gu

re
4:

V
ie

w
of

th
e

ba
se

lin
e

m
od

el
str

uc
tu

re
.T

as
ks

ar
e

cr
ea

te
d

in
th

e
ta

sk
ge

ne
ra

to
rs

ub
sy

ste
m

,w
hi

ch
is

in
th

e
m

id
dl

e
of

th
e

vi
ew

,
flo

w
in

g
to

th
e

pr
oc

es
so

rs
ub

sy
ste

m
si

n
th

e
rig

ht
sid

e
of

th
e

m
od

el
.A

fte
rt

as
ks

ar
e

te
rm

in
at

ed
fro

m
th

e
sim

ul
at

io
n,

te
rm

in
at

io
n

sig
na

ls
ar

e
re

ce
iv

ed
fro

m
th

e
le

ft
sid

e
of

th
e

m
od

el
,b

ac
k

to
th

e
ta

sk
ge

ne
ra

to
rs

ub
sy

ste
m

.A
tt

he
to

p
an

d
bo

tto
m

of
th

e
ba

se
lin

e
m

od
el

vi
ew

ar
e

he
lp

er
fu

nc
tio

ns
of

th
e

si
m

ul
at

io
n.

33

Fi
gu

re
5:

V
ie

w
of

th
e

pr
oc

es
so

rs
ub

sy
ste

m
in

ba
se

lin
e

m
od

el
.T

as
ks

ar
e

re
ce

iv
ed

fr
om

th
e

to
p

le
ft

co
rn

er
of

th
e

su
bs

ys
te

m
vi

ew
,w

he
re

th
ey

ar
e

fo
rw

ar
de

d
to

th
e

no
de

su
bs

ys
te

m
s.

A
fte

rn
od

e
sy

ste
m

st
as

ks
flo

w
in

to
L2

ca
ch

es
an

d
sh

ar
ed

L3
ca

ch
e,

lo
ca

te
d

in
th

e
m

id
dl

e
of

th
e

vi
ew

.R
ig

ht
si

de
of

th
e

pr
oc

es
so

rh
as

th
e

de
ep

m
em

or
y

su
bs

ys
te

m
s.

So
ck

et
co

nn
ec

tio
n

to
ot

he
rp

ro
ce

ss
or

si
sl

oc
at

ed
at

bo
tto

m
of

th
e

su
bs

ys
te

m
,i

np
ut

co
nn

ec
tio

n
in

bo
tto

m
le

ft,
an

d
ou

tp
ut

co
nn

ec
tio

n
in

bo
tto

m
rig

ht
.

34

These parameters define service time in the local memory path server in memory
devices.

Caching parameters for L2 and L3 caches are the hit rate L2_hitrate and
L3_hitrate. L2 hitrate takes percentile of local memory devices memory range to
represent memory in cache. L3 hit rate decides hits and misses based on probability.
Cache hit memory latency is defined for L2 devices per device and for L3 cache.
These variables are L2_X_hit_t, where X represents number of L2 cache device and
L3_hit_X where X represents cache hit memory latency, depending on the node that
task entity is coming from. L2 hit time parameters set the service time inside L2 cache
subsystem hit route’s server. L3 hit time parameter sets service time in L3 hit server
inside processor subsystem.

Node parameters include node processing overhead defined as pro_X_overhead,
where X represents node number. Node overhead sets service time inside node subsys-
tem. Other Processor related parameter is pro_X_queue_exe_n which defines nodes
processing queue’s capacity. This is set inside node subsystem’s execution path queue
block. Parameter to set "process scheduling" is defined as task_dist_t, which sets
task distributor server’s service time. Socket to Socket traffics bandwidth is defined as
parameter soc_bw. This parameter is percentage value which calculates entity’s mem-
ory time times bandwidth for implementation reason. Tuning and setting parameters
feature is accomplished by creating masks for sub subsystems and linking these into
processor subsystem. This way all of the components parameters can be set in one place.

As in the study, baseline model consists of two modelled representations of AMD
EPYC Rome processors connected with AMD’s Infinity Fabric. Each Processor has 4
NUMA nodes, 4 local L2 caches, shared L3 cache and 4 deep memory devices.
In the model process scheduling is out of the scope of the work and is represented as
simplified version. Task entities alternate in order to each socket, and populate NUMA
nodes in order. Since same process scheduling is used in all of the models, results can
focus on hardware features. Caching mechanism is based on random generation and
probability and advanced caching systems are out of the scope of this work.

1 0

3 2

Processor 1

6 7

4 5

Processor 2

Figure 6: Illustration of node placement in the model.

Figure 6 represents NUMA-node placements in the processors. Placement is
recreation of researched system in Velten et al. work [27]. The placement affects node
to node latencies based on distance. Node latency is smaller when node distance is
small and vice versa. Node latencies for nodes inside same processor are set to fixed

35

value, that is higher than latency between processor 1 and 2, but smaller than the node
latency when accessing same memory.

Model has a feature to track utilization of the nodes, and example utilizations can
be seen in Figure 7. Task system is configured to have 16 active tasks in both dual
and extended model. That way it is possible to compare also the baseline models to
each other. Utilization levels with 16 active tasks reach 50% in average on the dual
processor model.

(a) Subfigure 7a: The first 1000 simulation seconds illustrate 16 active tasks
populating the nodes in the beginning of the simulation run. Utilization
varies between 80% to 40% in the nodes.

(b) Subfigure 7b: Utilization view for the full simulation run. Node
utilization becomes stabilized in the system at estimated 50% in all nodes.
The system is well capable of handling 16 active tasks and in the full run
the nodes process the tasks faster than new nodes enter. This results in node
utilization to stabilize at full simulation time.

Figure 7: Result view of node utilization in dual processor baseline model for cache
hit rates at (L2 = 0.5 , L3 = 0.75). Ran with 16 active tasks in the system.

36

5.5 Baseline results
Baseline simulations were ran on 200 000 simulation seconds. To find out effects of
different tuneable variables, simulation was ran on different cache hit rates. Results
presented in Table 2 are based on different cache hit rate settings. In top of the table
cache hit rates are represented as (X,Y), where X is L2 cache hit rate as percentile and
Y is L3 hit rate. Processor related parameters are socket-to socket traffic related to
each processor, total socket traffic and amount of tasks processed. Number of different
task types processed in the simulation is also shown in Table 2. Reason for multiple
simulation runs with different hit rates is to show wide-range effects of CXL device
when proceeding with comparison model. Key parameters to observe are total tasks
and amount of different task types processed.

Table 2: Result output parameters measured with different cache hit rates by (L2 hit
rate, L3 hit rate).

Parameter (0,0) (0.25,0.25) (0.5,0.5) (0.25,0.75) (0.5,0.75) (1,1)

Pro_1_traffic 2593 2354 1959 1225 1194 0
Pro_2_traffic 2587 2332 1965 1221 1183 0
Total_traffic 5180 4686 3924 2446 2377 0
Pro_1_tasks 5097 6263 7700 9767 9800 12841
Pro_2_tasks 5091 6269 7700 9765 9802 12833
Total_tasks 10188 12532 15400 19532 19602 25674
Task_1_n 3331 4282 5460 7438 7484 10601
Task_2_n 3108 3638 4251 4970 5003 5897
Task_3_n 3749 4612 5689 7124 7115 9176

In the results functionality of model is apparent, as when hit rates reach 100
percent, socket-to socket traffic goes to zero. Since all of the memory request’s
memory locations can be found in cache, requests return to node after cache hit.
Second observation from the Table 2 can be made about total amount of tasks processed.
Lowest amount of tasks processed occur when there is no cache hits and socket traffic
is highest. Reason for previous lies in deep memory latencies and socket latencies.
Having to access deep memory is much more latency heavy compared to memory
roundtrip from caching devices. Socket latency is also higher compared to task having
only access local memory. Amount of total tasks processed in the system increases
when cache hit rates increase. Difference comparing zero cache hits to 100% hit rate
is about 15000 tasks. Looking in depth on amount of different task types, it can be
noticed that major increase of processed tasks happen with task type 1 and 3. Task 2
increases only slightly when total amount of tasks processed increases. This happens
because type 2 task is processing time dependent, and other tasks depend on memory
time. Amount of tasks processed is same for processor system 1 and 2, because work
balancing distribution is set as 50% for two different processors. Simulations were run

37

in 200 000 simulation seconds, to have enough variance between different settings.
Reasoning for this is to clearly see system wide effects of different components and in
following to see how CXL device makes a difference to the system in various aspects.

5.6 CXL model
CXL model introduces type 2 CXL device to the model. Addition of CXL device to
the system can be seen in the Figure 8 at the right. Device works as shared memory
with caching capabilities. Device includes cache and 2 modelled memories. Cache
functionality includes hit-rate based on probability. CXL devices workload is defined
by a set memory range, which defines percentage of memory requests that will use
CXL memory. Variable cxl_range defines amount of memory requests processed
by the CXL device. Memory processing time is defined as parameter ddr_t. Main
CXL parameters are cxl_load_to_use and cxl_protocol_t which first defines
latency occurring from devices load to use and second defines protocol latency. Type 2
CXL device functions as fast, shared memory between processors. In current state of
real life CXL implementations, device is technically seen as CPU-less NUMA node.
Similarly to the model, device is initialized with some memory range it serves. In
NUMA system CXL device works as a complimentary element with Infinity Fabric.
Figure 9 presents a view inside CXL device subsystem.

5.7 CXL model results
The introduction of CXL shows a substantial improvement in the number of tasks
completed compared to the non-CXL setup under similar cache hit scenarios, as
seen in Table 3. Notably, as cache performance improves, the difference in task
completion between the CXL and non-CXL setups also increases, underscoring
CXL’s effectiveness in optimizing task handling in a cache-efficient environment.
The percentage improvement ranges from about 4.3% to 13.7% as cache efficiency
varies. Best improvement occurs at zero cache hit rates, and the least improvement at
(0.5, 0.75). The tasks assigned to the CXL device (cxl_n) show that CXL is actively
handling a significant portion of computational or data management tasks, contributing
directly to the increased task completion rates observed in the CXL-enabled system.
This reflects that CXL effectively offloads certain operations from the processors,
enabling them to handle other tasks more efficiently and to manage increased loads.

As for traffic, data indicates the volume of data exchanged between processors and
memory. Generally, both setups show decreased traffic as cache efficiency improves,
which is expected as better cache hits reduce the need for external memory accesses.
The CXL model consistently shows lower traffic than the non-CXL model for similar
cache hit scenarios, suggesting that CXL’s enhanced memory access capabilities allow
for more efficient data handling and reduced reliance on inter-processor communica-
tions.

38

Fi
gu

re
8:

V
ie

w
of

th
e

CX
L

m
od

el
.C

X
L

co
m

po
ne

nt
is

lo
ca

te
d

in
th

e
le

ft
sid

e
of

th
e

m
od

el
,a

nd
is

co
nn

ec
te

d
to

th
e

pr
oc

es
so

rs
ub

sy
ste

m
s.

39

Fi
gu

re
9:

Re
pr

es
en

ta
tio

n
of

C
X

L
de

vi
ce

su
bs

ys
te

m
.T

as
ks

flo
w

fr
om

le
ft

to
th

e
C

X
L

ca
ch

e
co

m
po

ne
nt

.A
fte

rc
ac

he
,t

he
re

is
tw

o
de

ep
m

em
or

y
co

m
po

ne
nt

sr
ep

re
se

nt
ed

w
ith

m
em

or
y

qu
eu

es
an

d
se

rv
er

bl
oc

ks
.T

as
ks

ex
it

th
e

C
X

L
de

vi
ce

fr
om

th
e

rig
ht

si
de

of
th

e
vi

ew
.

40

Table 3: Result output parameters for CXL model measured with different cache hit
rates by (L2 hit rate, L3 hit rate)

Parameter (0,0) (0.25,0.25) (0.5,0.5) (0.25,0.75) (0.5,0.75) (1,1)

Pro_1_traffic 2169 1926 1545 957 944 x
Pro_2_traffic 2147 1941 3969 963 933 x
Total_traffic 4316 3867 3091 1920 1877 x
Pro_1_tasks 5793 6900 8344 10287 10215 x
Pro_2_tasks 5794 6903 8353 10291 10223 x
Total_tasks 11587 13803 16697 20578 20438 x
Task_1_n 3914 4835 6037 7972 7945 x
Task_2_n 3457 3868 4531 5136 5081 x
Task_3_n 4216 5100 6129 7470 7412 x
cxl_n 2909 2606 2113 1286 1318 x

41

5.8 Extended Baseline model
Extended model consists of four processors connected to each other, as seen in Figure
10, forming a 16 NUMA-node system. Task routing system increases to 16 paths,
which are seen in the left on the figure. Model has same task system as baseline model
with same parameters. Figure 11 demonstrates node placement on multiprocessor
system. Node latencies are based on the study by Velten et al. [27]. Latencies are
mirrored from original values from Processor 1 and 2 to represent related latencies
for rest of the nodes. Extended model uses 256 different latency variables. Node
interaction latencies within the same processor are set to fixed point latency. These
node-to node interaction latencies are inputted in the model in form of matrix.

Additions in the processor subsystem, as visible in Figure 12, come from task
routing system, since there needs to be a connection to all of the system’s nodes. Also
socket system is extended to three way connection, so that all of the processors can
communicate with each other.

5.9 Extended Baseline model results

Table 4: Result output parameters for extended baseline model measured with different
cache hit rates by (L2 hit rate, L3 hit rate).

Parameter (0,0) (0.25,0.25) (0.5,0.5) (0.25,0.75) (0.75,0.75) (1,1)

Pro_1_traffic 3247 2863 2314 1445 1553 0
Pro_2_traffic 3162 2876 2372 1518 1543 0
Pro_3_traffic 3107 2804 2369 1552 1440 0
Pro_4_traffic 3456 3130 2552 1667 1601 0
Total_traffic 12972 11673 9607 6182 6137 0
Pro_1_tasks 4646 5543 6844 8719 8717 11898
Pro_2_tasks 4640 5545 6844 8717 8715 11896
Pro_3_tasks 4643 5545 6843 8717 8714 11896
Pro_4_tasks 4643 5545 6847 8720 8714 1896
Total_tasks 18572 22178 27378 34873 34860 47584
Task_1_n 5065 6687 9071 13102 13265 21069
Task_2_n 5383 5992 6707 7449 7432 8322
Task_3_n 8124 9499 11600 14322 14163 18193

Performance metrics of the Extended baseline model can be seen at Table 4. The
analysis between both the standard and extended baseline models reveal a distinct
pattern of efficiency as cache hit rates improve. Initially the extended model shows
higher traffic, caused by increased inter-processor communication. However, as cache

42

Fi
gu

re
10

:R
ep

re
se

nt
at

io
n

of
Ex

te
nd

ed
ba

se
lin

e
m

od
el

.T
he

vi
ew

is
of

th
e

ou
te

rm
os

tl
ay

er
.F

ou
rp

ro
ce

ss
or

su
bs

ys
te

m
sa

re
vi

sib
le

at
th

e
rig

ht
si

de
of

th
e

vi
ew

.T
he

le
ft

si
de

sh
ow

s1
6

di
ffe

re
nt

ta
sk

te
rm

in
at

io
n

si
gn

al
pa

th
sfl

ow
in

g
in

to
th

e
ta

sk
ge

ne
ra

to
rs

ub
sy

ste
m

.

43

1 0

3 2

6 7

4 5

9 8

11 10

12 13

14 15

Processor 1 Processor 2

Processor 3 Processor 4

Figure 11: Node Placement Illustration for Extended Baseline model

efficiency increases both models are able to reduce their inter-processor traffic signifi-
cantly, with the extended model maintaining a consistent performance enhancement
over the standard model. This demonstrates efficiency for handling higher loads for
four processor system.

The extended baseline model shows superior task handling capabilities in all of the
scenarios, substantially outperforming the standard model in the total number of tasks
completed. Total tasks completed increases over 50% in all of the examined cases with
the Extended baseline model compared to the Dual processor baseline model. This
performance gap widens as the cache efficiency improves, emphasising the advantages
of additional processors in managing larger volumes of tasks simultaneously. The
increase in task completion not only underscores the benefits of scaling processor
numbers in multiprocessor systems but also illustrates the effective parallel processing
that becomes possible with more computational resources. Examining the different
task types the extended model’s performance advantage is apparent. It handles all
types of tasks with greater efficiency. The ability to maintain high performance across
various task types is key representation of a well-rounded multiprocessor system
capable of adapting to different computational demands.

Both models are created to represent multiprocessor architectures that have perfor-
mance properties of modern high performance systems. Both of the models show good
scaling properties as they reduce traffic and increase task completions with higher
cache efficiencies. The extended model with its additional processor outperforms the
standard baseline model in terms of examined performance metrics, demonstrating
near-linear scalability in performance. This indicated that the modelling purpose
of extended baseline model is fulfilled. The architecture of the model demonstrates
increased processing power maintaining high efficiency under expanded operational
demands.

44

Fi
gu

re
12

:
Ex

te
nd

ed
ba

se
lin

e
m

od
el

Pr
oc

es
so

rs
ub

sy
st

em
.D

iff
er

en
ce

to
th

e
du

al
m

od
el

is
16

in
pu

ta
nd

ou
tp

ut
si

gn
al

s
fo

rt
he

ta
sk

s.
So

ck
et

co
nn

ec
tio

n
is

fo
rm

ed
to

al
lt

hr
ee

ot
he

rp
ro

ce
ss

or
su

bs
ys

te
m

s,
as

se
en

in
th

e
bo

tto
m

of
th

e
m

od
el

.

45

5.10 Extended CXL model
Extended CXL model consists of the Extended baseline model with CXL device
included. CXL device is applied to the multiprocessor system by being connected to
all processors. Device co-exists with Infinity Fabric processor to processor connection.
System performance is studied with same parameters as the extended baseline model.
Model is presented in Figure 13. Added CXL device subsystem is in the left of the
model.

5.11 Extended CXL model results
Table 5 show performance results for extended CXL model. Both models show
increased task completions as cache efficiencies improve, yet the CXL model con-
sistently reports higher numbers of tasks completed in all scenarios. CXL model
performs better even in highly optimized system configuration, completing 38247
tasks, when cache hit rates are high (0.75, 0.75). Task completion performance
is increased by 9.28% and 9.72% in highly optimized systems, compared to the
baseline model. At low cache efficiencies (0,0) and (0.25,0.25) CXL model shows
notable advantage in competing tasks and managing traffic. Extended CXL model
completes 22820 and 26415 tasks, over performing the Baseline models 18572 and
22178 completed tasks in low optimized setups. Task completion performance in-
crease is 22.87% and 19.1% for low optimized setup. Results indicate enhanced
capability to handle operations even under suboptimal cache conditions. Results
for low hit rates imply that CXL reduces dependency on cache hits by streamlin-
ing data transfer directly through its high-speed interconnect, thereby minimizing
the typical performance penalties of cache misses. Total traffic decreases 60% in
average for both low optimized systems and highly optimized system. Performance
at high cache hit rates is improved regarding task completion and inter-processor traffic.

Results suggest that substantial enhancements at high cache efficiencies demonstrate
CXL’s capability to leverage optimal cache conditions to maximize system throughput
and efficiency. CXL model not only sustains performance but also amplifies it, taking
full advantage of reduced latency and increased bandwidth. In both models memory-
heavy tasks (Task 1) show the largest increase in completions when cache efficiency
improves. However CXL model handles these tasks more effectively. Processor-heavy
tasks (Task 2) and 50/50 task (Task 3) also exhibit better completions in the CXL model.

Next comparisons of CXL range in low optimized systems and highly optimized
systems is examined. Low optimized multiprocessor system is defined as 25% hit
rate for both L2 and L3 cache. For Highly optimized system hit rate values of 75% is
used. These different system settings are examined to study effects of CXL device
in relation to applied CXL handling range. CXL range represents percentage value
on how much of the systems workload is allocated to the CXL device. Ranges are
examined up to 75%, but main focus is from 30-50%, since it is more realistic amount
for CXL system level utilization. If CXL range is set at 50% it would mean that CXL

46

Fi
gu

re
13

:V
ie

w
of

th
e

ou
te

rm
os

tl
ay

er
of

Ex
te

nd
ed

C
X

L
m

od
el

.C
X

L
co

m
po

ne
nt

is
lo

ca
te

d
at

th
e

rig
ht

si
de

,c
on

ne
ct

ed
to

th
e

fo
ur

pr
oc

es
so

rs
ub

sy
ste

m
s.

47

Table 5: Result output parameters for extended CXL model measured with different
cache hit rates by (L2 hit rate, L3 hit rate).

Parameter (0,0) (0.25,0.25) (0.5,0.5) (0.25,0.75) (0.75,0.75) (1,1)

Pro_1_traffic 1957 1682 1383 819 847 x
Pro_2_traffic 1910 1709 1357 855 807 x
Pro_3_traffic 1945 1728 1347 841 871 x
Pro_4_traffic 2218 1829 1488 915 873 x
Total_traffic 8030 6948 5575 3430 3398 x
Pro_1_tasks 5705 6604 770 9525 9562 x
Pro_2_tasks 5704 6601 7768 9528 9563 x
Pro_3_tasks 5704 6605 7768 9527 9560 x
Pro_4_tasks 5707 6605 7767 9529 9562 x
Total_tasks 22820 26415 31073 38109 38247 x
Task_1_n 7032 8800 11137 15095 15109 x
Task_2_n 6025 6493 7085 7678 7710 x
Task_3_n 9763 11122 12851 15336 15428 x
cxl_n 10648 9361 7342 4423 4396 x

device handles half of the memory requests in the system.

Figure 14 showcases the number of tasks completed in both system configurations
across the extended CXL ranges. In both the highly and low optimized systems increase
of the CXL range leads to higher amount of tasks completed. The highly optimized
system consistently outperforms the low optimized system in terms of tasks completed
across all CXL ranges. This suggests that the optimizations involving enhanced
cache hit rates, and better utilization of CXL capabilities contribute significantly
to the performance gains. Low optimized system gains more improvement in Task
completion than highly optimized system when CXL range is increased. Reasoning
for this lies in higher actual CXL device utilization when applied in systems with
low cache hit rates. Device gains more memory request traffic in Low optimized
system. In both cases systems performance increases when CXL is allocated with
more workload. The increase in tasks completed correlates with the theoretical
benefits of CXL in reducing memory latency and improving bandwidth. This supports
the assertion that CXL can significantly enhance the performance of multiproces-
sor systems by providing more efficient memory access and usage. Also the trend
highlights the importance of system optimization in conjunction with CXL technol-
ogy to maximize performance gains, especially in systems with high memory demands.

Figure 15 shows processor-to-processor and CXL memory request traffic in relation
to CXL range. In both systems, socket traffic decreases as the CXL range increases,

48

Figure 14: Number of tasks completed across extended CXL ranges. Evidently, the
increase in CXL range leads to higher amount of tasks completed. Low optimized
system can be seen benefiting more from the CXL range increase than the highly
optimized system regarding task completion.

reflecting a reduction in the need for inter-processor communication via traditional
system interconnects. This is a positive outcome, as reduced socket traffic typically
correlates with fewer bottlenecks in data transfers between processors and memory.
CXL traffic increases with the CXL range, especially noticeable in the low optimized
system. This indicates that more data transfer is occurring through the CXL interface,
which is designed to handle high-speed, efficient communication between the host
processor and devices like memory expanders. The reduction in socket traffic while
CXL traffic increases suggests that CXL is effectively offloading traffic from traditional
interconnects. This shift is a crucial aspect of CXL’s role in enhancing system
performance by managing data flows more efficiently. Results for traffic imply the
disparity in CXL traffic between the low and highly optimized systems could indicate
different levels of reliance on CXL for performance improvements. The low optimized
system’s higher increase in CXL traffic could reflect a more significant offloading of
tasks to CXL to compensate for less effective internal optimizations.

49

Figure 15: The comparison of socket and CXL traffic across extended CXL ranges.
Increase in CXL range reduces socket traffic with both systems. Greater impact can be
seen with the low optimized system, where socket traffic is notably lower in higher
CXL ranges.

50

6 Conclusions and Implications of CXL Integration
in Multiprocessor Systems

This thesis has extensively examined the performance dynamics of multiprocessor
systems enhanced with Compute Express Link (CXL) technology. By using com-
parative analyses between standard and extended baseline models with and without
CXL device, significant insights have been gathered regarding the operational effi-
ciencies, task handling capabilities and overall system performance. Key findings
about performance enhancement across model reveal that both the baseline CXL
model and the extended CXL model demonstrated superior performance over their
non-CXL counterparts, particularly in terms of increased task completions and re-
duced inter-processor traffic. The CXL models showed marked improvements in
handling memory-intensive, processor-heavy and balanced tasks, with the extended
CXL model exhibiting the most significant gains due to its additional processors. As
for traffic management, a consistent reduction in traffic across all CXL models can
be noticed as cache hit rates improved. The CXL technology notably minimized the
system’s reliance on traditional interconnects, facilitating more efficient and faster data
transfers. In general the integration of CXL led to a substantial increase in the number
of tasks completed, highlighting devices effectiveness in improving computational
throughput. Task completion increase was evident also in already highly optimized
system configurations. Considering the CXL workload range, benefits of the CXL
increase the more device is utilized in the system. The more task workload is allocated
to CXL device, the more benefits are gained in terms of performance, because CXL
devices latency and bandwidth benefits.

The CXL model consistently shows improved performance across all cache hit
rate scenarios. The percentage improvement ranges from about 4.3% to 13.7% in
dual processor models and 9.3% to 22.9% in Extended model as cache efficiency
varies, suggesting that CXL’s benefits are more pronounced when cache efficiency
is lower. The enhanced memory access capabilities provided by CXL (in real life
systems, through memory pooling and efficient memory access mechanisms) likely
contribute to these improvements. By reducing the need for frequent memory fetches
from remote nodes and minimizing data traffic, CXL allows the processors to execute
tasks more efficiently. Even in scenarios with higher cache hit rates, where the inherent
system efficiency is already improved, CXL adds a noticeable boost in performance.
This indicates that CXL not only helps in managing memory traffic but also optimizes
how tasks are distributed and handled in the system.

The empirical evidence provided by the Gouk et al. study [23] substantiates the
theoretical framework of this thesis, asserting that CXL technology is effective in
resolving critical challenges faced by multiprocessor systems, especially in managing
memory bandwidth and reducing access latency. The study not only underscores
the practical benefits of CXL but also illustrates a viable implementation that could
be considered for future architectural designs and optimizations in multiprocessor

51

environments. This real-world application of CXL as demonstrated in the study serves
as a model for potential system enhancements and further technological advancements.

Regarding scalability and system design, the findings affirm that CXL integration
is crucial for scaling up multiprocessor systems to handle more complex and larger
workloads efficiently. System designers and architects are encouraged to consider
CXL in early stages of the system development to achieve increased scalability and
performance. In optimization strategies perspective, findings suggest that optimal
CXL performance is achieved when device is introduced to highly optimized cache
system. Future systems should integrate advanced cache optimization techniques
with CXL technology to maximize performance benefits. This is supported by CXL
study 1 which highlighted importance of CXL system optimization, and showed that
best results are not achieved just by simply using default system settings with CXL
device. The study 1 provides empirical evidence on the challenges and opportunities
presented by CXL memory in multiprocessor architectures. The nuanced performance
impacts highlighted by this study underscore the necessity for sophisticated memory
management techniques in fully capitalizing on CXL technology. This supports the
argument that while CXL offers significant advantages in terms of memory bandwidth
and latency reduction, its successful integration into system architectures requires
careful consideration of application-specific memory access patterns and advanced
management policies. The demonstrated benefits of CXL in the model suggest that
CXL technology is well-suited to scaling up in more complex or larger multiprocessor
environments, potentially addressing some of the critical bottlenecks associated with
traditional multiprocessor NUMA systems.

7 Further Development of the model
To further examine performance effects of the CXL devices in multiprocessor ar-
chitectures, scheduler functions could be implemented to the model. Realistic task
scheduler, for example based on existing AutoNUMA, could be integrated in to the
task distribution server block. CXL-aware scheduler would be possible to implement
in logical level. Dynamic task scheduler would create more in-depth results. Cache
protocols are possible to develop to the model to achieve more realistic model. For
example simplified version of MESI (Modified, Exclusive, Shared, Independent)
protocol that CXL takes advantage of could be implemented into the model. Since
the system is based on subsystem blocks connected to each other, scaling the system
include more processors is possible. Large multiprocessor systems are possible to be
created and studied with the model’s blocks. The model has potential to be applied
to test and develop CXL operational algorithms in terms of logic, since operational
functions could be integrated in the Simulink’s blocks. Models can be used on the
performance estimations on these algorithms. Since subsystem structure of the model
is scalable, model could be extended to represent large CXL based memory pool
system. Performance and the bottlenecks of this sort of system would be possible to
examine. Models are possible to be further developed to have actual task functionalities

52

in the system. For example tasks could complete mathematical calculations, and
performance effects of these calculations could be studied.

53

References
[1] O. A. Olukotun, L. Hammond, and J. P. Laudon, Chip multiprocessor architec-

ture: techniques to improve throughput and latency, vol. 3. Morgan & Claypool
Publishers, 2007.

[2] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis, “An analysis of on-chip in-
terconnection networks for large-scale chip multiprocessors,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 7, no. 1, pp. 1–28, 2010.

[3] Z. Yi, F. Chen, and Y. Yao, “A barrier optimization framework for NUMA
multi-core system,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 5, p. e5527, 2020.

[4] L. Bergstrom, “Measuring NUMA effects with the STREAM benchmark,” arXiv
preprint arXiv:1103.3225, 2011.

[5] M. Liu and T. Li, “Optimizing virtual machine consolidation performance on
NUMA server architecture for cloud workloads,” ACM SIGARCH Computer
Architecture News, vol. 42, no. 3, pp. 325–336, 2014.

[6] Z. Majo and T. R. Gross, “Memory management in numa multicore systems:
trapped between cache contention and interconnect overhead,” in Proceedings of
the international symposium on Memory management, pp. 11–20, 2011.

[7] I. Arikpo, F. Ogban, and I. Eteng, “Von Neumann architecture and modern
computers,” Global Journal of Mathematical Sciences, vol. 6, no. 2, pp. 97–103,
2007.

[8] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the
obvious,” ACM SIGARCH computer architecture news, vol. 23, no. 1, pp. 20–24,
1995.

[9] R. B. Hur and S. Kvatinsky, “Memory processing unit for in-memory process-
ing,” in 2016 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), pp. 171–172, IEEE, 2016.

[10] D. Efnusheva, A. Cholakoska, and A. Tentov, “A survey of different approaches for
overcoming the processor-memory bottleneck,” AIRCC’s International Journal
of Computer Science and Information Technology, pp. 151–163, 2017.

[11] D. D. Sharma, “PCI Express 6.0 specification: A low-latency, high-bandwidth,
high-reliability, and cost-effective interconnect with 64.0 gt/s PAM-4 signaling,”
IEEE Micro, vol. 41, no. 1, pp. 23–29, 2020.

[12] D. D. Sharma, “Compute express link,” CXL Consortium White Paper, 2019.

54

[13] S. Agarwal, R. Agarwal, B. Montazeri, M. Moshref, K. Elmeleegy, L. Rizzo,
M. A. de Kruĳf, G. Kumar, S. Ratnasamy, D. Culler, et al., “Understanding
host interconnect congestion,” in Proceedings of the 21st ACM Workshop on Hot
Topics in Networks, pp. 198–204, 2022.

[14] J. Sim, S. Ahn, T. Ahn, S. Lee, M. Rhee, J. Kim, K. Shin, D. Moon, E. Kim,
and K. Park, “Computational CXL-memory solution for accelerating memory-
intensive applications,” IEEE Computer Architecture Letters, vol. 22, no. 1,
pp. 5–8, 2022.

[15] S. Ryu, S. Kim, J. Jun, D. Moon, K. Lee, J. Choi, S. Kim, H. Kim, L. Kim, W. H.
Choi, et al., “System optimization of data analytics platforms using compute
express link (CXL) memory,” in 2023 IEEE International Conference on Big
Data and Smart Computing (BigComp), pp. 9–12, IEEE, 2023.

[16] P. Caheny, L. Alvarez, S. Derradji, M. Valero, M. Moretó, and M. Casas,
“Reducing cache coherence traffic with a numa-aware runtime approach,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 5, pp. 1174–1187,
2017.

[17] C. Fensch, N. Barrow-Williams, R. D. Mullins, and S. Moore, “Designing
a physical locality aware coherence protocol for chip-multiprocessors,” IEEE
Transactions on Computers, vol. 62, no. 5, pp. 914–928, 2012.

[18] D. D. Sharma, “Compute express link®: An open industry-standard interconnect
enabling heterogeneous data-centric computing,” in 2022 IEEE Symposium on
High-Performance Interconnects (HOTI), pp. 5–12, IEEE, 2022.

[19] C. E. L. Consortium, “Compute Express Link Specification - Revision 3.0,
Version 1.0.” https://www.computeexpresslink.org/download-the-s
pecification, 2022 (accessed June, 2023).

[20] D. D. Sharma, R. Blankenship, and D. S. Berger, “An introduction to the
compute express link (CXL) interconnect,” arXiv preprint arXiv:2306.11227,
2023.

[21] C. E. L. Consortium, “Compute express link specification - revision 3.1, version
1.0.” https://www.computeexpresslink.org/download-the-specifi
cation, 2023 (accessed March, 2024).

[22] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, C. Song, J. Huang, H. Ji, S. Agarwal, J. Lou,
I. Jeong, et al., “Demystifying cxl memory with genuine CXL-ready systems and
devices,” in Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 105–121, 2023.

[23] M. Ha, J. Ryu, J. Choi, K. Ko, S. Kim, S. Hyun, D. Moon, B. Koh, H. Lee,
M. Kim, et al., “Dynamic capacity service for improving CXL pooled memory
efficiency,” IEEE Micro, 2023.

55

https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification

[24] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic, M. Shah,
S. Rajadnya, S. Lee, I. Agarwal, et al., “Pond: CXL-based memory pooling
systems for cloud platforms,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2, pp. 574–587, 2023.

[25] C. Brandberg and M. Di Natale, “A Simevents model for the analysis of scheduling
and memory access delays in multicores,” in 2018 IEEE 13th International
Symposium on Industrial Embedded Systems (SIES), pp. 1–10, IEEE, 2018.

[26] Caroline Brandberg (2024). Analysis of Scheduling and Memory Access Delays
in Multicores (https://www.mathworks.com/matlabcentral/fileexchange/66173-
analysis-of-scheduling-and-memory-access-delays-in-multicores), MATLAB
Central File Exchange. Retrieved May 13, 2024.

[27] M. Velten, R. Schöne, T. Ilsche, and D. Hackenberg, “Memory performance
of AMD EPYC Rome and Intel Cascade Lake SP server processors,” in Pro-
ceedings of the 2022 ACM/SPEC on International Conference on Performance
Engineering, pp. 165–175, 2022.

56

A Appendix

Table 6: Variable values for baseline model

Variable Value Description
𝑚𝑒𝑚0_𝑙𝑜𝑐𝑎𝑙_𝑡 11.0 Node related local memory latency
𝑚𝑒𝑚0_𝑙𝑜𝑐𝑎𝑙_𝑡 11.0
𝑚𝑒𝑚1_𝑙𝑜𝑐𝑎𝑙_𝑡 11.5
𝑚𝑒𝑚2_𝑙𝑜𝑐𝑎𝑙_𝑡 14.4
𝑚𝑒𝑚3_𝑙𝑜𝑐𝑎𝑙_𝑡 12.75
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_0_4 20.9 Node to Deep memory latency
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_0_5 21.1
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_0_6 20.4
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_0_7 20.6
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_1_4 21.2
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_1_5 21.7
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_1_6 21.0
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_1_7 21.2
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_2_4 20.3
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_2_5 20.5
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_2_6 20.7
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_2_7 21.0
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_3_4 21.0
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_3_5 21.1
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_3_6 21.3
𝑚𝑒𝑚_𝑑𝑒𝑒𝑝_3_7 21.8
𝑜𝑡ℎ𝑒𝑟_𝑛𝑜𝑑𝑒_𝑡 15.0
𝐿2_1_ℎ𝑖𝑡_𝑡 12.65 L2 cache hit latency
𝐿2_2_ℎ𝑖𝑡_𝑡 13.15
𝐿2_3_ℎ𝑖𝑡_𝑡 14.55
𝐿2_4_ℎ𝑖𝑡_𝑡 15.2
𝐿3_ℎ𝑖𝑡_1 12.05 L3 cache hit latency
𝐿3_ℎ𝑖𝑡_2 12.55
𝐿3_ℎ𝑖𝑡_3 14.0
𝐿3_ℎ𝑖𝑡_4 14.6

𝑝𝑟𝑜_1 − 4_𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 5 Processor overhead
𝑝𝑟𝑜_1 − 4_𝑞𝑢𝑒𝑢𝑒_𝑒𝑥𝑒_𝑛 25 Processor execution queue capacity

𝑠𝑜𝑐𝑘𝑒𝑡_𝑏𝑤 1.0 Socket bandwidth multiplier
𝐿3_ℎ𝑖𝑡_𝑜𝑡ℎ𝑒𝑟 15 L3 hit latency for other than local nodes
𝑡𝑎𝑠𝑘_𝑑𝑖𝑠𝑡_𝑡 1.0 Task distribution latency

57

Table 7: Variable values for CXL component

Variable Value Description
𝑐𝑥𝑙_ℎ𝑖𝑡𝑟𝑎𝑡𝑒 0.3 CXL cache hitrate
𝑐𝑥𝑙_ℎ𝑖𝑡_𝑡 7.0 CXL hit latency

𝑐𝑥𝑙_𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙_𝑡 8.0 CXL protocol latency
𝑑𝑑𝑟_𝑡 8.0 DDR memory latency

𝑐𝑥𝑙_𝑙𝑜𝑎𝑑_𝑡𝑜_𝑢𝑠𝑒 5.0 CXL load-to-use latency
𝑐𝑥𝑙_𝑏𝑤 0.364 CXL bandwidth multiplier

𝑐𝑥𝑙_𝑟𝑎𝑛𝑔𝑒 varies CXL memory range

58

	Abstract
	Abstract (in Finnish)
	Contents
	Abbreviations
	1 Introduction
	1.1 Main results and implementation contributions
	1.2 Structure of the thesis

	2 Literature review
	2.1 Chip Multiprocessors
	2.2 Non-Uniform Memory Access Architecture
	2.3 Bottlenecks of Multiprocessor systems
	2.3.1 Performance-memory performance gap
	2.3.2 Interconnect Bottlenecks
	2.3.3 Scalability

	3 CXL
	3.1 CXL.io
	3.2 CXL.cache
	3.3 CXL.mem
	3.4 CXL devices
	3.5 CXL technology
	3.6 CXL 2.0 Protocol Enhancements
	3.7 CXL 3.0 Protocol Enhancements
	3.8 CXL Microarchitecture Latencies and Bandwidth
	3.9 Understanding Flits in CXL Architecture
	3.9.1 CXL Flit Structures and Bandwidth Calculations
	3.9.2 Bandwidth and Latency Specifications
	3.9.3 Traffic Mix and Efficiency Calculations

	4 CXL Studies
	4.1 CXL Study 1
	4.2 CXL Study 2
	4.3 CXL study 3

	5 Modelling
	5.1 Motivation
	5.2 Structure of the model
	5.3 Components
	5.4 Baseline model
	5.5 Baseline results
	5.6 CXL model
	5.7 CXL model results
	5.8 Extended Baseline model
	5.9 Extended Baseline model results
	5.10 Extended CXL model
	5.11 Extended CXL model results

	6 Conclusions and Implications of CXL Integration in Multiprocessor Systems
	7 Further Development of the model
	A Appendix

