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Abstract

Transportation networks, such as railway networks, are critical infrastructure enabling
the transportation of goods and people. Their importance highlights the need to
reinforce them against disruptions caused by the deterioration of their components
or deliberate attacks. Reinforcing the network often comprises of reinforcing its
components, for example, its nodes. Given limited resources allocated to reinforcing,
identifying those collections of reinforcement actions, which have the greatest positive
impact relative to the cost of implementing these actions, is crucial. Such collections
of reinforcement actions are called cost-efficient portfolios.

Large transportation networks often have multiple decision makers responsible for
separate parts of the network. This thesis proposes a hierarchical portfolio optimization
model for computing cost-efficient portfolios of reinforcement actions in partitionable
transportation networks that reflect the real-world management of responsibilities.
The objective is to maximize expected enabled traffic volume while minimizing
reinforcement costs. Only probabilistic node disruptions are considered, and they
are assumed to occur independently of other disruptions. Portfolios consisting of
reinforcement actions, which decrease the disruption probabilities of nodes of the
network, are considered.

The proposed model is illustrated with a case study on a part of the Finnish railway
network comprising ten stations in Northern Savonia. Most of the nodes of the network
represent railway switches and the edges connecting them correspond to railway
tracks. The results indicate that the reinforcement of some switches are included in a
relatively high share of cost-efficient portfolios, suggesting a higher importance of
them in enabling traffic. Conversely, the reinforcement of some switches appear in no
cost-efficient portfolios, suggesting that they have less impact relative to their cost.

Overall, the proposed hierarchical portfolio optimization model is a powerful
framework for supporting decision-making in the reinforcement of critical trans-
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portation networks, and additionally, it may better reflect real-world management of
responsibilities than approaches with a single decision maker. The results help identify
key reinforcement actions and exclude actions that do not appear in any cost-efficient
portfolio.

Keywords Transportation network, hierarchical portfolio optimization, decision
analysis
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Tiivistelmä

Liikenneverkot, kuten rautatieverkot, ovat kriittinen osa infrastruktuuria ja mahdollis-
tavat tavaroiden ja ihmisten kuljetuksen. Niiden tärkeys korostaa niiden vahvistamisen
arvoa häiriöitä vastaan, jotka voivat johtua verkon komponenttien rappeutumisesta
tai tahallisista hyökkäyksistä. Verkon vahvistaminen toteutetaan usein vahvistamalla
sen komponentteja, kuten verkon vaihteita. Vahvistukseen allokoidut rajatut resurssit
tulisi kohdentaa sellaisiin vahvistustoimiin, joilla on suurin positiivinen vaikutus
suhteessa kustannuksiin. Tällaisista vahvistustoimista koostuvia kokoelmia kutsutaan
kustannustehokkaiksi portfolioiksi.

Suurissa liikenneverkoissa on usein useita päätöksentekijöitä vastuussa omasta
osastaan verkkoa. Tässä työssä esitetään hierarkkinen portfolio-optimointimalli kustan-
nustehokkaiden portfolioiden määrittämiseen liikenneverkoissa, jotka ovat jaettavissa
aliverkkoihin. Mallin rakenne vastaa paremmin todellista resurssien jakoa. Tavoitteina
on maksimoida liikenneverkon odotusarvollisesti mahdollistettua liikennöintimäärä ja
minimoida vahvistustoimien kustannukset. Vain solmujen vikaantumisia tarkastellaan
ja niiden oletetaan tapahtuvan riippumattomasti muista vikaantumisista. Vahvistustoi-
met pienentävät solmujen vikaantumistodennäköisyyttä.

Esitettyä mallia havainnollistetaan esimerkkitapauksella, joka on osa Suomen
rataverkkoa ja koostuu kymmenestä asemasta Pohjois-Savossa. Suurin osa verkon
solmuista vastaa rautatievaihteita ja niitä yhdistävät kaaret puolestaan kiskoja. Tulok-
set osoittavat, että joidenkin rautatievaihteiden vahvistaminen kuuluu suhteelliseen
suureen osaan kustannustehokkaista portfolioista, joka viittaa siihen, että näiden
rautatievaihteiden vahvistaminen lisää verkon mahdollistamaa liikennöintimäärää
enemmän. Toisaalta joidenkin rautatievaihteiden vahvistaminen ei kuulu yhteenkään
kustannustehokkaista portfolioista, joten näiden vahvistaminen on vähemmän tärkeää.

Tämä hierarkkinen portfolio-optimointimalli osoittautuu tehokkaaksi työkaluksi
tukemaan päätöksentekoa kriittisten liikenneverkkojen vahvistamisessa. Lisäksi se
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saattaa paremmin vastata hallinnollista vastuunjakoa kuin yhden päätöksentekijän
malleissa. Tulokset mahdollistavat sekä keskeisten vahvistustoimien identifioimisen,
että sellaisten vahvistustoimien poissulkemisen, jotka eivät esiinny missään kustan-
nustehokkaassa portfoliossa.

Avainsanat Liikenneverkko, hierarkkinen portfolio-optimointi, päätösanalyysi
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Symbols

Symbol Description
𝐺 = (𝑉, 𝐸) Transportation network
𝑉 = 𝑉S ∪𝑉T Set of nodes
𝑉S Set of physical nodes
𝑉T Set of terminal nodes
𝑁 Number of physical nodes
𝐸 Set of undirected edges
𝑘 Number of subnetworks
𝐺 𝑗 = (𝑉 𝑗 , 𝐸 𝑗 ) 𝑗 th subnetwork
𝑉S
𝑗

Physical nodes of subnetwork 𝑗

𝑉T
𝑗

Terminal nodes of subnetwork 𝑗

𝑁 𝑗 Number of physical nodes in subnetwork 𝑗

𝑡 Terminal pair
T Set of all terminal pairs in the transportation network
T𝑗 Set of terminal pairs in subnetwork 𝑗

𝜋 Path
P𝑡 Set of paths for a specific terminal pair
𝑓 = ( 𝑓 𝑡)𝑡∈T Vector of traffic volumes for all terminal pairs
𝑓 𝑗 = ( 𝑓 𝑡𝑗 )𝑡∈T𝑗 Vector of traffic volumes for subnetwork 𝑗

𝑂 (𝑣) Operational status of node 𝑣 ∈ 𝑉S

𝑂 (𝜋) Operational status of path 𝜋

𝑂 (𝑡) Operational status of terminal pair 𝑡
𝑞 𝑗 = (𝑞 𝑗 ,𝑣)𝑣∈𝑉S

𝑗
Portfolio for subnetwork 𝑗

𝐶 (𝑞 𝑗 ) Cost of portfolio 𝑞 𝑗

Q 𝑗 Set of all possible portfolios for subnetwork 𝑗

QCE
𝑗

Set of cost-efficient portfolios for subnetwork 𝑗

𝑄 𝑗 = (𝑞1, . . . , 𝑞 𝑗 ) Combined portfolio for first 𝑗 subnetworks
𝑐𝑣 = (𝑐𝑣,1, . . . , 𝑐𝑣,𝑟) Cost vector for reinforcing node 𝑣

𝑟 Number of resource types
𝑏 = (𝑏1, . . . , 𝑏𝑟) Budget vector
≻ Dominance relation between portfolios
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1 Introduction

Modern society relies on the transportation of goods and people, which is supported by
the level of service enabled by the routes of transportation networks. These networks
enable sectors such as energy, public transportation, and the media to function. The
importance of such sectors motivates decision makers (DMs) in, for example, energy
companies or national governments to not just maintain but to improve the level of
service enabled by transportation networks, as discussed in Newman [1].

Disruptions to the components of transportation networks may occur due to factors
such as component deterioration, accidents, or external hazards, including deliberate
attacks. Transportation networks can be reinforced against these disruptions, for
example, by replacing network components to increase their reliability or by adding
new components to enable new routes. Cost-efficient reinforcement may require
identifying the most important components with respect to the reliability of the
network as discussed in Olander et al. [2]. It is meaningful to consider the importance
of combinations of components, because the disruption of a single component may
not cause significant harm to the level of service enabled by the network, but the
disruption of a selected combination of components may do so.

In this thesis, we consider reinforcement actions to reduce the disruption probability
of the nodes of the network. We compute cost-efficient portfolios of reinforcement
actions that maximize the expected enabled traffic volume of the network while
minimizing the cost of implementing these actions. This problem is presented as a
multi-objective optimization problem in Section 3, where the necessary concepts of
reinforcement actions, reliability, and cost-efficiency are also introduced.

Many real-world transportation networks are large, which can pose significant
challenges in terms of computation time due to the complexity of the optimization
problems. We introduce a hierarchical approach, which is based on transportation
networks that can be partitioned into subnetworks, which, for example, represent
railway stations within a railway network. Additionally, this hierarchical approach
may better represent the delegation of responsibilities and associated allocation of
resources in transportation networks. The computation of the cost-efficient portfolios
of reinforcement actions for the entire transportation network is done in two stages:
first, we compute the cost-efficient portfolios of reinforcement actions for all the
subnetworks separately, and then, in the second stage, evaluate the combinations of
those cost-efficient portfolios to compute the cost-efficient portfolios of reinforcement
actions for the entire transportation network.



This thesis has the following structure. Section 2 provides an overview of
the background and earlier approaches to computing cost-efficient portfolios of
reinforcement actions for transportation networks. Section 3 presents the developed
hierarchical portfolio optimization model, which utilizes multicriteria decision analysis
to quantify the reliability of a transportation network for identifying cost-efficient
portfolios of reinforcement actions for large-scale transportation networks. Section 4
presents a case study for the developed hierarchical model on a part of the Finnish
railway network and the reinforcement of its switches in a cost-efficient manner to
improve the level of service enabled by the train routes of the network. Section 5
discusses the content of the thesis and presents some future research directions. Lastly,
Section 6 concludes this thesis.

12



2 Background

2.1 Transportation Networks

Transportation networks enable the transportation of people, goods, and information.
Transportation networks, such as highway systems or railway networks, can be modeled
as graphs, which consist of nodes and edges, as discussed in Newman [1]. Nodes
represent, for example, bus stops or interchanges of a highway system. Edges are the
connections between nodes of the network. They may represent railway tracks or a
road segments between two stops of a bus line. The nodes and edges of a transportation
network may be prone to disruptions to their function due to, for example, mechanical
failures. Such disruptions can be modeled with probabilities, which enables the
analysis of the network using probabilistic measures. Often, it is beneficial to consider
reinforcing the nodes or edges of the transportation network to reduce the probability
of disruption. Reinforcing can have significant costs, and often, limited resources are
available to reinforcing the network.

In addition to nodes and edges, transportation networks may have additional
attributes associated with transportation, such as travel volumes, reliabilities of their
components, or capacities that limit the amount of travel volume that can pass through
the corresponding component. Transportation networks are often partitioned into
separate subnetworks based on administrative responsibilities related to the operation
and preventive maintenance of subnetworks. For example, the railway network of
mainland Europe is partitioned into subnetworks within each country, which can be
further partitioned into networks consisting of a single station.

Cappanera and Scaparra [3] introduce a game-theoretic framework for reinforcing
the edges of networks in a shortest-path transportation network to maximize its
robustness against disruptions, utilizing a multilevel optimization model. Jenelius et al.
[4] investigate methods for measuring the reliability of a transportation network. They
introduce the importance of a component (e.g., a node or an edge) of the network as a
consequence of the disruption of the component and the exposure of the component to
the likelihood of that disruption affecting the traffic that the transportation network
enables.

2.2 Reliability Engineering

Kapur and Pecht [5] present reliability engineering as a field that focuses on assessing,
managing, and preventing failures in critical systems. Reliability engineering of
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transportation networks can focus on the structure and the individual components
of these networks. The components are analyzed and studied from the viewpoint of
their reliability, specifically their ability to function as intended within a given time
frame. This definition of reliability may vary based on the context and preferences of
the DM regarding what constitutes the proper function of a component, as discussed
in Pant et al. [6]. Topological measures like the degree of a node in a network
(see, e.g., Latora and Marchiori [7], Haritha and Anjaneyulu [8]) can be used as
heuristics to guide reliability analysis or one can use probabilistic measures utilizing
methodologies like probabilistic risk assessment (PRA) as in Olander et al. [2]. Henry
and Ramirez-Marquez [9] provide an alternative to reliability with a formal definition
of resilience as a function of time. In contrast, topological metrics do not typically
take time into consideration.

Ip and Wang [10] utilize the concepts of resilience and friability, where they define
resilience as the average number of independent paths that enable transportation in the
network, and they define friability as the average decrease in resilience when one node
is disrupted at a time. In their paper, they consider two types of actions: reinforcing
existing edges and adding new edges to the network. They present an optimization
model for selecting actions to maximize resilience while minimizing the fragility of
a transportation network. This bi-objective optimization problem is solved using a
weighted sum approach and a genetic algorithm. Additionally, the model includes a
constraint on the total cost of the implemented actions.

Olander et al. [2] adapt the concept of terminal pair reliability (see, e.g., Yoo and
Deo [11]) to define a PRA-based importance measure for identifying the nodes of a
transportation network that are more important to its ability to enable transportation.
They apply this importance measure to selecting which railway switches to reinforce
in an illustrative railway station in Finland.

2.3 Multicriteria Decision Analysis

Multicriteria Decision Analysis (MCDA) tackles the challenge of solving decision
problems with multiple criteria (see, e.g., Zionts [12]). MCDA differs from single
criterion decision analysis in that there rarely exists a single optimal solution, but
rather multiple solutions that together form the set of non-dominated solutions. Roy
[13] presents his philosophy in MCDA as supporting decision analysis rather than
optimizing it. Roy argues that the goal of MCDA is not to find a single optimal solution
for the DM, but instead to support their decision-making by presenting them with
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many alternatives to choose from, together with descriptive information about them,
their consequences, and assumptions. For example, Roy [13] pioneered the ELECTRE
family consisting of methods that rank alternatives based on outranking relations.

Multiple criteria can be combined into a single criterion. For example, criteria
weight elicitation aims to determine weights for different criteria, enabling them to be
aggregated into a single criterion, as discussed in Riabacke et al. [14]. Multiattribute
value functions can be utilized for the same task as proposed in Dyer and Sarin
[15], which is further discussed in Keeney and Raiffa [16]. This approach, which
incorporates utility theory, is also explored in the context of MCDA. Morton et al.
[17] present a formal framework utilizing MCDA methods for the task of portfolio
selection. MCDA is widely applied within the transportation sector, as presented in
the state-of-the-art literature review by Yannis et al. [18].

Morton [19] describes a decision analysis process that uses criteria weight elicitation
and presents an illustrative example of its usage. Salo and Hämäläinen [20] present an
approach for eliciting weights using imprecise ratio statements. Their approach enables
robust decision analysis in the absence of complete preference information. Other
approaches for tackling uncertainty in MCDA include the decision rules minimax
regret and maximin (see, e.g., Greco et al. [21]) and uncertainty sets (see, e.g.,
Bertsimas and Brown [22]).

2.4 Portfolio Optimization

Salo et al. [23] outline the history of portfolio optimization in both finance and
operations research. They define portfolios as collections of individual assets or
projects. Portfolios are often associated with costs and benefits (e.g., cash flows or
improving system reliability). Salo et al. define portfolio optimization as the use of
mathematical programming methods to support the selection of a portfolio of assets,
taking into account the preferences of the decision maker and any possible constraints
on the chosen portfolio. When constructing a portfolio, there is often a large number
of assets or projects to choose from; thus, the number of portfolios is also often
large. The basis for modern portfolio theory is the Markowitz model [24], which
identifies efficient portfolios of financial assets by maximizing the expected return of
the portfolio while minimizing the variance of the returns. Efficient portfolios have
since been adapted to various fields evidenced by, for example, Salo et al. [25], Levine
[26], and Salo et al. [23].

Ghasemzadeh et al. [27] formulate project portfolio selection as an optimization
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problem with binary variables that represent the selection of projects or assets in the
portfolio, thereby establishing a link between the Markowitz model and operations
research. It provides a foundation that later work, such as Liesiö et al. [28], has
utilized in their research in portfolio optimization. Liesiö et al. [28] present a MCDA
technique called robust portfolio modelling to handle incomplete information in
portfolio selection. They define information sets to represent incomplete information
and then identify the non-dominated portfolios within the information set to support
robust decision-making. This approach is extended in Liesiö et al. [29] to cases with
possible project interdependencies and in the absence of complete cost information.
They introduce the concept of the core index, which is defined for a project as the
proportion of non-dominated portfolios that contain it. A core index of one identifies a
core project, which is included in all non-dominated portfolios, while an index of zero
identifies an exterior project, which is included in none. They propose that these core
projects can be recommended to a rational DM regardless of their preferences, and
those projects that do not belong to any non-dominated portfolios can be discarded
from the selection. De la Barra et al. [30] use MCDA for portfolio optimization to
select reinforcement actions in infrastructure networks. They also employ core indexes
of reinforcement action to create recommendations to the DM.

De la Barra et al. [31] explore the reinforcement of transportation networks
through cost-efficient portfolios of reinforcement actions, which reduce the disruption
probability of nodes in the network. A general framework for modeling transportation
networks, comparing portfolios, and an algorithm for identifying the set of cost-
efficient portfolios is presented. In their paper, they apply the framework to a case
study on identifying the cost-efficient portfolios for reinforcing the railway switches of
an illustrative Finnish railway station.

2.5 Hierarchical Optimization

Hierarchical optimization can be used to address problems that have multiple levels
of decision makers, as discussed in Anandalingam and Friesz [32]. Additionally,
hierarchical optimization can be useful in complex problems where solving the entire
problem at once is computationally intractable (see, e.g., Sobieszczanski-Sobieski
[33]). These large and complex problems are often partitioned into subproblems,
which are then solved separately and combined into a solution for the whole problem.
A key class of hierarchical optimization is bi-level optimization (see, e.g., Bard [34],
Sinha et al. [35]). There are also more complex hierarchical optimization methods
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such as tri-level optimization and decomposition based approaches (see, e.g., Benders
[36]). Many of these approaches are not guaranteed to yield optimal solutions for all
problems. If an approximate solution is acceptable, hierarchical optimization can still
be suitable for problems that cannot be partitioned into separate subproblems such
that the optimal solutions of the subproblems do not depend on each other.

Bi-level optimization models have been applied to problems related to transportation
networks (see, e.g., Fan and Machemehl [37], Patriksson [38]). Jing et al. [39] introduce
a hierarchical optimization approach to improve path finding in transportation networks
by partitioning a large network into smaller separate networks. Du et al. [40] solve a
dynamic pickup and delivery problem in transportation networks using their proposed
hierarchical optimization framework.
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3 Modelling Transportation Networks

This thesis considers transportation networks that enable the transportation of people
or goods between a set of terminal pairs. Each terminal pair is associated with a traffic
volume. Additionally, these transportation networks are assumed to be partitionable
into 𝑘 ∈ Z+ disjoint parts called subnetworks.

3.1 Transportation Networks

Let the graph 𝐺 = (𝑉, 𝐸) represent a transportation network, where 𝑉 = 𝑉S ∪ 𝑉T

denotes the set of nodes consisting of the physical nodes 𝑉S, which represent, for
example, road intersections or railway switches, and the terminal nodes 𝑉T, which are
used for modelling the start and end points for the traffic of the network. The number of
physical nodes is 𝑁 = |𝑉S |, and the set of undirected edges is 𝐸 ⊆ {(𝑣, 𝑣′) | 𝑣, 𝑣′ ∈ 𝑉},
which represent, for example, roads or railway tracks, between the nodes of the
network.

A terminal pair is a pair of terminal nodes 𝑡 = (𝑣1, 𝑣𝑛) ∈ T , where 𝑣1, 𝑣𝑛 ∈ 𝑉T and
𝑣1 ≠ 𝑣𝑛, for which transportation is to be enabled. We denote with T the set of all such
terminal pairs of the transportation network 𝐺. Let a path from node 𝑣1 ∈ 𝑉T to node
𝑣𝑛 ∈ 𝑉T in the network be a sequence of distinct nodes, which enables transportation
between terminal nodes 𝑣1 and 𝑣𝑛 such that there exists edges between consecutive
nodes of the sequence. The formalization of this concept is below in Definition 3.1.

Definition 3.1. A path is a sequence of distinct nodes 𝜋 = (𝑣1, 𝑣2, . . . , 𝑣𝑛−1, 𝑣𝑛) in a
transportation network 𝐺 = (𝑉, 𝐸) such that

(𝑣1, 𝑣2), . . . , (𝑣𝑛−1, 𝑣𝑛) ∈ 𝐸 ∧ 𝑣1, 𝑣𝑛 ∈ 𝑉T ∧ 𝑣2, . . . , 𝑣𝑛−1 ∈ 𝑉S.

The set of all paths in the transportation network is P. The set of paths that enable
transportation for terminal pair 𝑡 is P𝑡 = {𝜋𝑡1, . . . , 𝜋

𝑡
𝑠} ⊆ P, where 𝑠 is the number of

those paths. Figure 1 presents a path 𝜋 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8) for the terminal
pair 𝑡 = (𝑣1, 𝑣8) in an illustrative transportation network.
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Figure 1: A path from 𝑣1 to 𝑣8 in an illustrative transportation network.

The traffic volume (e.g., people or goods) between the terminal pairs is represented
with the vector 𝑓 = ( 𝑓 𝑡)𝑡∈T , where 𝑓 𝑡 ∈ R+ denotes the traffic volume corresponding
to terminal pair 𝑡 ∈ T .

In this thesis, we consider transportation networks that can be partitioned into
𝑘 ∈ Z+ subnetworks 𝐺1, . . . , 𝐺𝑘 . These subnetworks, for example, may represent
railway stations in a railway network, where the nodes of the subnetwork are railway
switches or other railway infrastructure that enables transportation in the network.
The terminal nodes and the edges connected to them are added to each subnetwork to
model traffic flow across multiple subnetworks. Figure 2 shows an illustrative network
that is partitioned into three subnetworks, where the terminal nodes 𝑣9, 𝑣10, 𝑣11, and
𝑣12 were added.
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Figure 2: An illustrative transportation network partitioned into three subnetworks.

Each subnetwork 𝐺 𝑗 = (𝑉 𝑗 , 𝐸 𝑗 ) consists of a set of nodes 𝑉 𝑗 = 𝑉S
𝑗
∪ 𝑉T

𝑗
, where

𝑉S
𝑗
⊆ 𝑉S denotes a subset of the physical nodes of the transportation network G, and

𝑉T
𝑗

is the set of terminal nodes of the 𝑗 th subnetwork. Similarly, the set of edges of the
subnetwork is 𝐸 𝑗 = 𝐸S

𝑗
∪𝐸T

𝑗
, where 𝐸S

𝑗
= {(𝑣1, 𝑣2) | 𝑣1, 𝑣2 ∈ 𝑉S

𝑗
∧ (𝑣1, 𝑣2) ∈ 𝐸} ⊆ 𝐸

is a subset of the original edges and 𝐸T
𝑗
⊆ 𝑉S

𝑗
×𝑉T

𝑗
denotes the set of edges connecting

nodes 𝑣 ∈ 𝑉S
𝑗

to terminal nodes 𝑣 ∈ 𝑉T
𝑗
. Lastly, 𝑁 𝑗 = |𝑉S

𝑗
| denotes the number of

physical nodes in the 𝑗 th subnetwork.
The set of terminal pairs of the 𝑗 th subnetwork is T𝑗 ⊂ 𝑉T

𝑗
× 𝑉T

𝑗
. The vector of

traffic volumes of the terminal pairs in subnetwork 𝐺 𝑗 is 𝑓 𝑗 = ( 𝑓 𝑡𝑗 )𝑡∈T𝑗 .

3.2 Disruptions in Transportation Networks

In this thesis, the nodes of the transportation network may get disrupted, while the
edges may not. We assume that the physical nodes 𝑣 ∈ 𝑉S of the network 𝐺 are either
operational or disrupted. We denote with 𝑂 (𝑣) = 𝑥𝑣 the operational status of node
𝑣 ∈ 𝑉S, where 𝑥𝑣 = 1 denotes that it is operational and 𝑥𝑣 = 0 that it is disrupted. The
binary state vector 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) ∈ {0, 1}𝑁 represents the operational status of all
physical nodes 𝑣 ∈ 𝑉S of the transportation network. The terminal nodes cannot be
disrupted, since they are not physical.

Disrupted nodes in the network may impact the operational status of the paths in
the network. A path 𝜋 is operational, which is denoted by 𝑂 (𝜋) = 1, if and only if all
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of the nodes in 𝜋 are operational. Thus 𝑂 (𝜋) = 1⇔ ⋀︁
𝑣∈𝜋 [𝑂 (𝑣) = 1]. Conversely,

the path 𝜋 is disrupted, which is denoted by 𝑂 (𝜋) = 0, if at least one of its nodes is
disrupted, which is equivalent to the event

⋁︁
𝑣∈𝜋 [𝑂 (𝑣) = 0].

Similarly a terminal pair 𝑡 is operational, which is denoted by 𝑂 (𝑡) = 1, if at least
one path in P𝑡 is operational, therefore 𝑂 (𝑡) = 1⇔ ⋁︁

𝜋∈P𝑡 [𝑂 (𝜋) = 1]. Conversely,
it is disrupted if and only if all paths in P𝑡 are disrupted, which is denoted by
𝑂 (𝑡) = 0⇔ ⋀︁

𝜋∈P𝑡 [𝑂 (𝜋) = 0].

3.3 Portfolios of Reinforcement Actions in Subnetworks

Reinforcement actions reduce the disruption probabilities of the nodes. A portfolio is
a combination of reinforcement actions, which for the 𝑗 th subnetwork is represented
by a binary vector 𝑞 𝑗 = (𝑞 𝑗 ,𝑣)𝑣∈𝑉S

𝑗
∈ {0, 1}𝑁 𝑗 = Q 𝑗 , where 𝑞 𝑗 ,𝑣 = 0 indicates that

node 𝑣 ∈ 𝑉S
𝑗

is not reinforced in 𝑞 𝑗 and 𝑞 𝑗 ,𝑣 = 1 indicates that it is. Additionally, Q 𝑗

denotes the set of all possible portfolios for the 𝑗 th subnetwork.
Each reinforcement action has a cost vector 𝑐𝑣 = (𝑐𝑣,1, . . . , 𝑐𝑣,𝑟) ∈ R𝑟

+ associated
with it, where 𝑟 is the number of different types of required resources and 𝑐𝑣,𝑖 indicates
how much of the 𝑖th resource type the reinforcement of node 𝑣 ∈ 𝑉S

𝑗
requires.

Additionally, we assume that the DM has limited resources at their disposal, which is
represented with the budget vector 𝑏 = (𝑏1, . . . , 𝑏𝑟) ∈ R𝑟

+, where 𝑏𝑖 ∈ R+ indicates
the units of the 𝑖th resource type the DM has at their disposal. In this thesis, the cost
vector of a portfolio 𝑞 𝑗 is

𝐶 (𝑞 𝑗 ) =
∑︁
𝑣∈𝑉S

𝑗

𝑐𝑣𝑞 𝑗 ,𝑣 ∈ R𝑟
+. (1)

Those portfolios, which do not exceed the limited amount of resources, are feasible
portfolios, as characterized by Definition 3.2.

Definition 3.2. Portfolio 𝑞 𝑗 is feasible if and only if

𝐶 (𝑞 𝑗 ) ≤ 𝑏,

where ≤ denotes the componentwise less than or equal to operator. The set of all
feasible portfolios for the subnetwork 𝐺 𝑗 is

QF
𝑗 = {𝑞 𝑗 ∈ Q 𝑗 | 𝐶 (𝑞 𝑗 ) ≤ 𝑏} ⊆ Q 𝑗 .
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3.4 Probabilities of Operational Statuses in Subnetworks

The probability that the node 𝑣 ∈ 𝑉S
𝑗

is disrupted, given that portfolio 𝑞 𝑗 has been
implemented, is

P[𝑂 (𝑣) = 0 | 𝑞 𝑗 ] = 𝛼𝑣 − 𝛿𝑣𝑞 𝑗 ,𝑣 , (2)

where 𝛼𝑣 ∈ (0, 1] is the disruption probability of node 𝑣 without reinforcement and
𝛿𝑣 ∈ (0, 𝛼𝑣] is the extent to which the reinforcement of node 𝑣 ∈ 𝑉S

𝑗
reduces its

disruption probability. The probability that a path 𝜋 belonging to the 𝑗 th subnetwork
is operational, given that portfolio 𝑞 𝑗 has been implemented is

P[𝑂 (𝜋) = 1 | 𝑞 𝑗 ] = P

[︄⋀︂
𝑣∈𝜋
[𝑂 (𝑣) = 1]

|︁|︁|︁ 𝑞 𝑗

]︄
=
∏︂
𝑣∈𝜋

P[𝑂 (𝑣) = 1 | 𝑞 𝑗 ] . (3)

The probability that the terminal pair 𝑡 ∈ T𝑗 is operational, given that portfolio 𝑞 𝑗

has been implemented, is the terminal pair reliability, as defined by Yoo and Deo [11],
and is given by

P[𝑂 (𝑡) = 1 | 𝑞 𝑗 ] = P

[︄ ⋁︂
𝜋∈P𝑡

[𝑂 (𝜋) = 1]
|︁|︁|︁ 𝑞 𝑗

]︄
. (4)

This probability can be computedusing, for example, the modifiedDotson algorithm
presented by Yoo and Deo [11], which considers edge disruptions instead of node
disruptions. We adapt their algorithm to node disruptions. Consider an alternative
form for terminal pair reliability

P[𝑂 (𝑡) = 1 | 𝑞 𝑗 ] =
𝑠∑︁

𝑖=1
P
[︁
𝑂 (𝜋𝑡𝑖 ) = 1

|︁|︁ 𝐴𝑖−1, 𝑞 𝑗

]︁
· P[𝐴𝑖−1

|︁|︁ 𝑞 𝑗 ], (5)

where we denote the event 𝐴𝑘 =
⋀︁𝑘

𝑚=1 [𝑂 (𝜋𝑡𝑚) = 0], 𝑘 = 0, . . . , 𝑠, with 𝐴0 denoting
the sure event and 𝑠 = |P𝑡 |. Proof for this formula is in Appendix A. This probability
for terminal pair 𝑡 ∈ T𝑗 may be computed with Algorithm 1. Below 𝜋𝑡𝑚 [𝑘] denotes the
𝑘th element in the path 𝜋𝑡𝑚.
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Algorithm 1 Terminal pair reliability
Output: 𝑅𝑡

1: 𝑅𝑡 ← 0
2: 𝑋0 ← ()
3: 𝑌0 ← ()
4: 𝑊 ← Queue()
5: 𝑊 .push((𝑋0, 𝑌0))
6: 𝑆 ← {(𝑋0, 𝑌0)}
7: while 𝑊 is not empty do
8: 𝑋,𝑌 ← 𝑊 .pop()
9: for 𝑚 ← 1 to 𝑠 do

10: if ∀𝑣 ∈ 𝜋𝑡𝑚 : 𝑣 ∉ 𝑌 then
11: for 𝑘 ← 2 to |𝜋𝑡𝑚 | − 1 do
12: 𝑣 ← 𝜋𝑡𝑚 [𝑘]
13: if 𝑣 ∉ 𝑋 then
14: Append 𝑣 to 𝑋

15: end if
16: end for
17: 𝑅𝑡 ← 𝑅𝑡 +

∏︁
𝑣∈𝑋 P[𝑂 (𝑣) = 1 | 𝑞 𝑗 ] ·

∏︁
𝑣∈𝑌 P[𝑂 (𝑣) = 0 | 𝑞 𝑗 ]

18: for 𝑘 ← 2 to |𝜋𝑡𝑚 | − 1 do
19: 𝑋′← 𝑋

20: for 𝑙 ← 𝑘 to |𝜋𝑡𝑚 | − 1 do
21: Remove 𝜋𝑡𝑚 [𝑙] from 𝑋′

22: end for
23: 𝑌 ′← 𝑌

24: Append 𝜋𝑡𝑚 [𝑘] to 𝑌 ′

25: if (𝑋′, 𝑌 ′) ∉ 𝑆 then
26: 𝑊 .push((𝑋′, 𝑌 ′))
27: 𝑆 ← 𝑆 ∪ {(𝑋′, 𝑌 ′)}
28: end if
29: end for
30: break
31: end if
32: end for
33: end while
34: return 𝑅𝑡
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First, in Steps 1–5, the terminal pair reliability 𝑅𝑡 is initialized to zero, the list
of operational used nodes 𝑋0 and the list of disrupted nodes 𝑌0 are initialized to be
empty lists, a queue 𝑊 is initialized to contain only the tuple (𝑋0, 𝑌0) and the tuple
is also added to the set of visited tuples 𝑆, which is used to track which tuples have
been explored to not explore them again. After that, the algorithm proceeds to the
loop. The first element (𝑋,𝑌 ) is popped from the queue in Step 8. Then the list of
paths is scanned through until we find a path that is not disrupted. If such path 𝜋𝑡𝑚

is found, 𝑋 is modified by adding each physical node 𝑣 in the path 𝜋𝑡𝑚 to 𝑋 , which
can be done by excluding the first and last node of the path from the loop since by
definition they are terminal nodes while the rest are physical nodes. Now, in Step 16,
the terminal pair reliability is incremented by the probability of all nodes in 𝑋 being
operational and all nodes in 𝑌 being disrupted. Then, in Steps 17–28, the physical
nodes of the found path are looped through, where in the 𝑘th iteration in Step 18, we
copy 𝑋 to 𝑋′ and then in, Steps 19–21, the nodes 𝜋𝑡𝑚 [𝑘], . . . , 𝜋𝑡𝑚 [|𝐿 |] are removed
from 𝑋′, where 𝐿 = |𝜋𝑡𝑚 | is the length of the path 𝜋𝑡𝑚. In Step 22, 𝑌 is copied to be
𝑌 ′ and then 𝜋𝑡𝑚 [𝑘] is appended to it in Step 23. If the tuple (𝑋′, 𝑌 ′) has not been
explored yet, it is added to the queue and marked as explored in Steps 24–27. After
that, the algorithm breaks to not explore further operational paths and continues to the
next element in the queue. The algorithm terminates once the queue becomes empty
and then returns the computed terminal pair reliability 𝑅𝑡 in Step 33. The algorithm
explores all mutually exclusive events where at least one path is operational, ensuring
each operational scenario is counted toward the terminal pair reliability exactly once.

The following example illustrates Algorithm 1. Consider the illustrative subnetwork
in Figure 3 with five physical nodes 𝑣5, 𝑣6, 𝑣7, 𝑣14, and 𝑣15, which all have a disruption
probability of 0.2. There are two terminal nodes 𝑣8 and 𝑣9, which form the only terminal
pair 𝑡 = (𝑣8, 𝑣9). There are four paths corresponding to the terminal pair 𝑡: 𝜋𝑡1 =

(𝑣8, 𝑣7, 𝑣6, 𝑣5, 𝑣9), 𝜋𝑡2 = (𝑣8, 𝑣7, 𝑣14, 𝑣15, 𝑣5, 𝑣9), 𝜋𝑡3 = (𝑣8, 𝑣7, 𝑣6, 𝑣14, 𝑣15, 𝑣5, 𝑣9), and
𝜋𝑡4 = (𝑣8, 𝑣7, 𝑣14, 𝑣6, 𝑣5, 𝑣9).
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Figure 3: An illustrative transportation network.

At first, all nodes can be in either state so (𝑋0, 𝑌0) = ((), ()). The path 𝜋𝑡1 =

(𝑣8, 𝑣7, 𝑣6, 𝑣5, 𝑣9) is operational, so 𝑋 becomes (𝑣7, 𝑣6, 𝑣5). Now we increment
the terminal pair reliability by

∏︁
𝑣∈𝑋 P[𝑂 (𝑣) = 1] ·∏︁𝑣∈𝑌 P[𝑂 (𝑣) = 0] = 0.83 · 1.

Then we disrupt the path 𝜋𝑡1. We add the three following tuples to the queue:
((), (𝑣7)), ((𝑣7), (𝑣6)), and ((𝑣7, 𝑣6), (𝑣5)). In the next iteration (𝑋,𝑌 ) = ((), (𝑣7)),
but in this case there are no operational paths, so we proceed to the next iteration,
where now (𝑋,𝑌 ) = ((𝑣7), (𝑣6)). Now the path 𝜋𝑡2 is operational, so 𝑋 becomes
(𝑣7, 𝑣14, 𝑣15, 𝑣5) and 𝑌 is still (𝑣6). Now we increment the terminal pair reliability
by

∏︁
𝑣∈𝑋 P[𝑂 (𝑣) = 1] ·∏︁𝑣∈𝑌 P[𝑂 (𝑣) = 0] = 0.84 · 0.2. Disrupting this path yields

us events, which we have already explored, so they are not added to the queue. The
last element in the queue is (𝑋,𝑌 ) = ((𝑣7, 𝑣6), (𝑣5)). And in this case there are no
operational paths. Since the queue is now empty, the algorithm stops and returns the
terminal pair reliability 𝑅𝑡 = 0.83 + 0.84 · 0.2 = 1856

3125 .
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3.5 Subnetwork Optimization Model

In this thesis, the objective function is to maximize the enabled traffic volume by
expectation between the terminal pairs T𝑗 for each subnetwork 𝐺 𝑗 while minimizing
the cost vector of the implemented portfolio of reinforcement actions. The problem
for the subnetwork 𝐺 𝑗 is formulated as the following multi-objective optimization
problem with 1 + 𝑟 objectives

max
𝑞 𝑗∈QF

𝑗

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑︁
𝑡∈T𝑗

𝑓 𝑡𝑗 · P[𝑂 (𝑡) = 1 | 𝑞 𝑗 ]

−
∑︁
𝑣∈𝑉S

𝑗

𝑐𝑣𝑞 𝑗 ,𝑣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Solving the multi-objective optimization problem in Equation (6) requires that the
set of cost-efficient portfolios is computed. The concept of cost-efficiency of portfolios
is defined in Definition 3.3.

Definition 3.3 (Cost-efficient portfolios). A portfolio 𝑞′
𝑗
∈ QF

𝑗
is cost-efficient if there

does not exist 𝑞′′
𝑗
∈ QF

𝑗
for which∑︁

𝑡∈T𝑗
𝑓 𝑡𝑗 · P[𝑂 (𝑡) = 1 | 𝑞′𝑗 ] ≤

∑︁
𝑡∈T𝑗

𝑓 𝑡𝑗 · P[𝑂 (𝑡) = 1 | 𝑞′′𝑗 ] (7)

𝐶 (𝑞′′𝑗 ) ≤ 𝐶 (𝑞′𝑗 ), (8)

with at least one strict inequality either in Equation (7) or for at least one resource
type in Equation (8). If such portfolio 𝑞′′

𝑗
exists, then 𝑞′′

𝑗
dominates 𝑞′

𝑗
, denoted with

𝑞′′
𝑗
≻ 𝑞′

𝑗
. The set of cost-efficient portfolios of subnetwork 𝐺 𝑗 is denoted with QCE

𝑗
.

The sets of cost-efficient portfolios QCE
1 , . . . ,QCE

𝑘
can be computed, for example,

by adapting the procedure presented by de la Barra et al. [31] for each instance of the
optimization problem presented in Equation (6).

3.6 Hierarchical Model

We propose the following hierarchical optimization model in Equations (9a)–(9c). In
this model, the optimization model in Section 3.5 is first solved for each subnetwork
𝐺 𝑗 of the transportation network 𝐺. We assume that the DM seeks to maximize the
expected enabled traffic volume between the terminal pairs T of the transportation
network 𝐺 and minimize the cost of the chosen combination of portfolios subject to
the constraint of the budget vector 𝑏. This problem is formulated as the optimization
problem
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max
𝑞1,...,𝑞𝑘

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑︁
𝑡∈T

𝑓 𝑡 · P[𝑂 (𝑡) = 1 | 𝑞1, . . . , 𝑞𝑘 ]

−
𝑘∑︁
𝑗=1

𝐶 (𝑞 𝑗 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (9a)

s.t.
𝑘∑︁
𝑗=1

𝐶 (𝑞 𝑗 ) ≤ 𝑏, (9b)

𝑞 𝑗 ∈ QCE
𝑗 , ∀ 𝑗 ∈ {1, . . . , 𝑘}. (9c)

The constraint (9b) ensures that the total cost of the selected portfolios 𝑞1, . . . , 𝑞𝑘

does not exceed the budget vector 𝑏 for any resource type. The constraint (9c) ensures
that the selected portfolios are cost-efficient in their corresponding subnetwork.

We propose the Algorithm 2 to solve the multi-objective optimization problem in
Equations (9a) – (9b). For simplicity denote by 𝑄 𝑗 = (𝑞1, . . . , 𝑞 𝑗 ),∀ 𝑗 ∈ {2, . . . , 𝑘} a
combined portfolio, where 𝑞𝑖 ∈ QCE

𝑖
, ∀𝑖 ∈ {1, . . . , 𝑗}.

Algorithm 2 Cost-efficient combined portfolios
Output: QCE

1: Compute QCE
𝑗

, for all 𝑗 ∈ {1, . . . , 𝑘}
2: Q∗1 ← Q

CE
1

3: for 𝑗 ← 2 to 𝑘 do
4: Q 𝑗 ← {(𝑞1, . . . , 𝑞 𝑗−1, 𝑞 𝑗 ) | (𝑞1, . . . , 𝑞 𝑗−1) ∈ Q∗𝑗−1 ∧ 𝑞 𝑗 ∈ QCE

𝑗
}

5: Q 𝑗 ← {(𝑞1, . . . , 𝑞 𝑗 ) ∈ Q 𝑗 |
∑︁ 𝑗

𝑖=1 𝐶 (𝑞𝑖) ≤ 𝑏}
6: Compute

∑︁
𝑡∈T 𝑓 𝑡 · P[𝑂 (𝑡) = 1 | 𝑞1, . . . , 𝑞 𝑗 ] for all (𝑞1, . . . , 𝑞 𝑗 ) ∈ Q 𝑗

7: QD
𝑗−1 ← {𝑄

′ ∈ Q∗
𝑗−1 | ∃𝑄

′′ ∈ Q 𝑗 : 𝑄′′ ≻ 𝑄′}
8: Q 𝑗−1 ← {(𝑞1, . . . , 𝑞 𝑗−1, 0̄) | (𝑞1, . . . , 𝑞 𝑗−1) ∈ Q∗𝑗−1 \ Q

D
𝑗−1}

9: QD
𝑗
← {𝑄′ ∈ Q 𝑗 | ∃𝑄′′ ∈ Q 𝑗−1 : 𝑄′′ ≻ 𝑄′}

10: Q 𝑗 ← Q 𝑗 \ QD
𝑗

11: Q 𝑗 ← Q 𝑗 ∪ Q 𝑗−1

12: Q∗
𝑗
← Q 𝑗 \ {𝑄′ ∈ Q 𝑗 | ∃𝑄′′ ∈ Q 𝑗 : 𝑄′′ ≻ 𝑄′}

13: end for
14: QCE ← Q∗

𝑘

15: return QCE

In Step 1, the sets of cost-efficient portfolios are computed for each subnetwork using
the algorithm in de la Barra et al. [31]. First, Q∗1 is initialized with the cost-efficient
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portfolios of the first subnetwork. Then, in Steps 3–13, the remaining subnetworks
are examined one by one. In Step 4, Q 𝑗 is initialized with all of those combined
portfolios (𝑞1, . . . , 𝑞 𝑗−1, 𝑞 𝑗 ) for which (𝑞1, . . . , 𝑞 𝑗−1) belongs to the previously found
set of cost-efficient combined portfolios Q∗

𝑗−1 and 𝑞 𝑗 belongs to the set of cost-efficient
portfolios of the 𝑗 th subnetwork. In Step 5, the infeasible combined portfolios from Q 𝑗

are removed, and after that, in Step 6, the expected enabled traffic volume is computed
for each combined portfolio in Q 𝑗 . In Steps 7–8, those previously found combined
portfolios in Q∗

𝑗−1 which are dominated by combined portfolios in Q 𝑗 are filtered
out. The remaining combined portfolios are padded with the trivially cost-efficient
portfolio, the zero vector 0̄ ∈ QCE

𝑗
, to keep the dimensions consistent. Conversely, in

Steps 9–10, the dominated combined portfolios in Q 𝑗 are filtered out. In Step 11, the
combined portfolios in Q 𝑗−1 are added to the set Q 𝑗 . Then, in Step 12, the combined
portfolios in Q 𝑗 that are dominated by combined portfolios in the same set are filtered
out. In Step 14, Q∗

𝑘
is saved as the set of cost-efficient combined portfolios, which is

then returned in Step 15.
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4 Application to Ten Railway Stations in Finland

To illustrate the hierarchical optimization model, consider the transportation network
comprising ten stations surrounding the Siilinjärvi train station in Northern Savonia,
Finland. We seek to compute the cost-efficient portfolios of reinforcement actions
for the railway switches, which are mechanical devices that enable a train to switch
from one railway track to another in the network. The network consisting of these
ten stations is shown in Figure 4 as a graph. Red dots represent physical nodes, most
of which are railway switches. There are other types of nodes in the network, such
as buffer stops, which we do not consider here. The blue lines represent the railway
track connecting the physical nodes, and each black square represents a terminal node,
which acts as a connection to other parts of the Finnish railway network and is used
to model transportation to or from outside this part of the network. Terminal nodes
of the subnetworks are omitted for clarity. Additionally, the subnetworks have been
circled with black dotted lines and labeled with their abbreviations. The ten stations,
their respective number of physical nodes, and terminal pairs are presented in Table 1.

Table 1: The ten stations of the network.

Abbreviation Station name Physical nodes Terminal pairs

TE Taipale 2 2
LNA Lapinlahti 8 2
APT Alapitkä 6 2
SIJ Siilinjärvi 37 3
SKM Sänkimäki 4 2
KNH Kinahmi 4 2
JKI Juankoski 4 2
TOI Toivala 4 2
SOR Sorsasalo 4 2
KUO Kuopio 42 2

Total 115 33
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Figure 4: Transportation network including ten stations.

Terminal pairs of the network are pairs of terminal nodes for which traffic is to be
enabled. Since the graph is undirected, we do not consider traffic direction separately.
This reduction via symmetry gives a total of 36 terminal pairs listed in Table B1 with
their corresponding yearly traffic volumes, measured in the number of trains, for 2024
(data from Fintraffic [41]), which are visualized as the heatmap in Figure 5.
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Figure 5: Yearly number of trains of the network.

Figure 6: Siilinjärvi station.
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Figure 6 presents the Siilinjärvi station as an undirected graph. Each red dot
represents a physical node, most of which are railway switches. The black squares
represent the terminal nodes, which act as connections to other stations. The edges of
the graph are shown as blue lines, which represent the railway tracks connecting the
switches. Yearly traffic volumes for the Siilinjärvi station are presented in Table 2,
measured in the number of trains. These traffic volumes were derived for all terminal
pairs of all ten stations from the traffic volume for the whole network in Table B1. For
example, trains going from South to North in the network are included in all traffic
volumes of those terminal pairs that belong to any path corresponding to the pair
(South, North) in all subnetworks.

Traffic that originates or terminates within a subnetwork is modelled as beginning
or ending at the closest terminal node of the adjacent subnetwork. For example, traffic
corresponding to the terminal pair (South, SIJ) is modelled as: South → SOR in
subnetwork KUO, then KUO→ TOI in subnetwork SOR, and finally SOR→ SIJ in
subnetwork TOI. This volume is therefore not considered in the subnetwork SIJ itself.

Table 2: Yearly number of trains for the Siilinjärvi station.

Terminal pair Yearly number of trains

(APT, TOI) 8498
(APT, SKM) 221
(SKM, TOI) 15

Due to the physical limitations of trains, we consider only paths with a maximum
turning angle of 90 degrees or less. For example, consider the illustrative transportation
network in Figure 7, where the feasible paths corresponding to the terminal pair (𝑣1, 𝑣2)
are in bold.
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Figure 7: Feasible paths for the terminal pair (𝑣1, 𝑣2) in an illustrative network.

Disruptions to railway switches may occur, for instance, due to the deterioration
of their parts or extreme weather conditions. For illustrative purposes, we assume
that all switches 𝑣 ∈ 𝑉S

𝑗
are identical and have an uniform disruption probability

P[𝑂 (𝑣) = 0 | 𝑞 𝑗 ] = 0.01 − 0.005 · 𝑞 𝑗 ,𝑣, and each switch can be reinforced, which
lowers its disruption probability from 0.01 to 0.005. Additionally, we assume that
there is only one type of resource, and that reinforcing each switch costs one unit of
that resource.

4.1 Cost-Efficient Portfolios for the Subnetworks

The number of cost-efficient portfolios for each subnetwork is presented in Table
3. The computations took approximately one minute to solve all ten optimization
problems using the procedure presented by de la Barra et al. [31]. Most subnetworks
have a small number of railway switches that can be reinforced, which yields a small
number of possible portfolios to consider. The two larger subnetworks, Siilinjärvi and
Kuopio, have a large number of possible portfolios to consider.
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Table 3: Number of cost-efficient portfolios for each subnetwork.

Station Number of cost-efficient portfolios

TE 3
LNA 3
APT 3
SIJ 24
SKM 3
KNH 2
JKI 3
TOI 3
SOR 2
KUO 22

Figure 8 presents the cost-efficient portfolios of Siilinjärvi. The most costly
cost-efficient portfolio reinforces only 15 switches, which is less than the number of
reinforcement actions available. This is explained by our choice of only modelling
the traffic going through the subnetwork and assuming that it is enough for the train
to get to any node of the subnetwork for it to be considered enabled traffic. Figure 9
presents the cost-efficient portfolios of Kuopio. In both of these two subnetworks, the
expected enabled traffic volume increases marginally, which is to be expected due to
the low disruption probability of railway switches. Cost-efficient portfolios are not
presented for the rest of the subnetworks, because there are relatively few cost-efficient
portfolios for them.
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Figure 8: Cost-efficient portfolios for Siilinjärvi.
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Figure 9: Cost-efficient combined portfolios for Kuopio.
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4.2 Cost-Efficient Combined Portfolios

In total, there are 1,539,648 combined portfolios obtained via combining the cost-
efficient portfolios of the subnetworks. Identifying the cost-efficient combined
portfolios took a little over one minute with a modern desktop CPU using Algorithm 2.
In total, there are 64 cost-efficient combined portfolios for which the expected enabled
traffic volumes and associated costs are shown in Figure 10. Additionally, a random
sample of 855 portfolios is presented in Figure 10 with black dots. The increase in
expected enabled traffic volume begins to diminish for portfolios that reinforce more
than 15 switches. There is an increase of around 5.9% in expected enabled traffic
volume for the cost-efficient portfolios that reinforces 45 switches when compared to
the baseline, where no switches are reinforced.
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Figure 10: Cost-efficient combined portfolios for the whole network.

4.3 Selecting Switches to Reinforce

A rational DM should choose one of the cost-efficient combined portfolios at a budget
level of their choice, but this is not straightforward when there are multiple alternatives.
One approach to help select reinforcement actions is to study the composition of
cost-efficient combined portfolios using the core index as proposed in Liesiö et
al. [28]. The core index of the reinforcement of node 𝑣 ∈ 𝑉S

𝑗
belonging to the
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𝑗 th subnetwork for a budget level 𝛽 ∈ Z𝑟
+ is defined as the relative share of those

cost-efficient combined portfolios, which have a cost equal to 𝛽, where node 𝑣 is
reinforced. We denote those cost-efficient combined portfolios, which have a cost
of 𝛽 with QCE(𝛽) = {𝑄 ∈ QCE | 𝐶 (𝑄) = 𝛽} ⊂ QCE. Thus, the core index of the
reinforcement of the railway switch 𝑣 ∈ 𝑉S

𝑗
for a budget level 𝛽 is

CI 𝑗 (𝑣, 𝛽) =
|{(𝑞1, ..., 𝑞𝑘 ) ∈ QCE(𝛽) | 𝑞 𝑗 ,𝑣 = 1}|

|QCE(𝛽) |
∈ [0, 1] . (10)

A core index equal to 1 indicates that the reinforcement of node 𝑣 ∈ 𝑉S
𝑗

belongs
to all cost-efficient combined portfolios for the budget level 𝛽, and therefore it can
safely be recommended to the DM at the budget level 𝛽. Conversely, if the core index
of the reinforcement of node 𝑣 is equal to 0 in the same scenario, the corresponding
reinforcement action can be disregarded, as it is not present in any cost-efficient
combined portfolio at this budget level. For those nodes for which 0 < CI 𝑗 (𝑣, 𝛽) < 1,
one can not draw similar conclusions. The core indexes of railway switch reinforcement
actions for all budget levels 𝛽 ∈ {1, ..., 45} are in Figure 11, where those reinforcement
actions, which were not present in any cost-efficient combined portfolios, were omitted.
In total, there are 45 switches, which were present in at least one cost-efficient combined
portfolio.
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Figure 11: Core indexes of railway switches.

Due to the delegation of responsibilities in the maintenance of the subnetworks, it
may not be required to recommend certain reinforcement actions, but to just allocate
resources to the reinforcement of each subnetwork and let their respective DMs decide
which reinforcement actions to implement. Let us devise a budget allocation plan based
on the cost-efficient combined portfolios by examining the share of budget allocated
to the subnetworks for all budget levels 𝛽 ∈ {1, ..., 45}. The average relative shares
of the budget allocated to the reinforcement of each subnetwork for all cost-efficient
combined portfolios are presented in Figure 12.
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Figure 12: Relative share of budget allocated towards each subnetwork for all cost-
efficient combined portfolios.

The budget allocation suggests heuristics to follow when suggesting how to allocate
the budget to the different subnetworks. At budget levels less than 10 units, TE and
KUO receive the majority of resources, which reflects their critical nature for enabling
traffic flow in the network. The allocation of resources becomes more diversified
across all subnetworks for the cost-efficient combined portfolios with a higher cost.

4.4 Sensitivity Analysis

Because the parameters may involve inaccuracies, sensitivity analysis should be
conducted to study the robustness of the solutions subject to changes in the parameters.
We conduct the sensitivity analysis on the traffic volumes, but not on the other
parameters like disruption probabilities. This choice is further discussed in Section
5. One approach, for example, includes deriving some confidence intervals 𝐼𝑡 for
each traffic volume. With those, we can construct the corresponding uncertainty set
D 𝑓 =

✕
𝑡∈T 𝐼𝑡 as the Cartesian product of the confidence intervals 𝐼𝑡 . Since the

expected traffic volume is a linear combination of the terminal pair reliabilities with
the traffic volumes as the weights, and the uncertainty set is convex, it is sufficient to
study the extreme points of the uncertainty set denoted withD 𝑓

ext (see e.g., Liesiö et al.
[29]). The uncertainty set is a hyperrectangle of dimension |T | = 36 and it therefore
has 236 ≈ 6.8 · 1010 extreme points, making this approach computationally intractable.

A more straightforward approach is to study the effect of variation in each traffic
volume separately, while keeping others fixed. For illustration, suppose that each
traffic volume 𝑓𝑡 varies by ±10%. The results of this analysis are presented in the
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tornado diagram in Figure 13, where the resulting difference in total expected enabled
traffic volume from the baseline is presented for one cost-efficient combined portfolio
with a cost of 45 units presented in Appendix C. The expected enabled traffic volume
changes the most when the largest traffic volume is varied.
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Figure 13: Sensitivity of each traffic volume.
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5 Discussion

This thesis has developed a hierarchical portfolio optimization model for identifying
cost-efficient portfolios of reinforcement actions in large transportation networks. The
results from the case study indicate that the proposed hierarchical approach can reduce
computation time while still being helpful in computing cost-efficient solutions. This
is possible by considering only cost-efficient portfolios for each subnetwork separately
and then combining them to compute cost-efficient combined portfolios for the entire
transportation network.

The limitations of the model may limit its applicability; for example, the model may
not be suitable for transportation networks that cannot be partitioned into subnetworks.
Furthermore, while the algorithm proposed for solving the model is computationally
efficient, it does not necessarily guarantee optimal solutions.

A potential extension to the work here is to consider also directed graphs, which may
better represent transportation networks with asymmetric traffic flows. Additionally,
one could also take edge disruptions into account, which would allow the framework
to be extended to transportation networks, which may have both types of disruptions.
Modelling common-cause disruptions could also be beneficial when seeking to
model transportation networks in more detail. Interdependencies and cost synergies
between the reinforcement actions could also be incorporated. To further decrease
the computation time, one could utilize parallel computing to solve the subnetwork
optimization models. This would enable the application of this model to even larger
networks.

In the presented case study, given more computational power and fewer uncertain
parameters, sensitivity analysis utilizing uncertainty sets could be computationally
tractable. This could support more robust decision-making. We did not conduct
sensitivity analysis on the disruption probabilities since it was assumed that the
disruption probabilities in the case study were uniform; conducting sensitivity analysis
on them would not necessitate a change in the composition of cost-efficient portfolios,
as discussed in de la Barra et al. [31]. A similar conclusion can be made for
the sensitivity of the reinforcement action costs. However, if these assumptions of
uniformity in the disruption probabilities and reinforcement action costs do not hold,
sensitivity analysis on them should be conducted to support robust decision-making.

Overall, the results from the case study indicate that hierarchical portfolio opti-
mization is a promising approach for supporting decision-making in the reinforcement
of large transportation networks. The approach seems to be computationally tractable,
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allowing the study of larger transportation networks than what would otherwise be
possible. While the model has limitations, it provides a strong foundation for building
more scalable and realistic models for the reinforcement of transportation networks.
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6 Conclusions

The objective of this thesis was to develop a hierarchical portfolio optimization model
to identify cost-efficient portfolios of reinforcement actions in large transportation
networks. Motivated by the computational challenges related to large transporta-
tion networks, the proposed approach solves smaller subnetwork-level optimization
problems that are combined into solutions for the entire transportation network.
Additionally, this approach may represent the delegation of real-world administrative
responsibilities better than approaches with a single decision maker.

The applicability of the proposed hierarchical portfolio optimization model was
demonstrated with a case study involving ten railway stations in Finland. The
results from this case study indicate that the hierarchical approach offers significant
computational advantages. The conducted sensitivity analysis demonstrated robustness
of the cost-efficient combined portfolios against uncertainty in the parameters of the
model.

This thesis addresses a pressing gap in the reliability engineering of transportation
networks: the scalability of portfolio optimization for reinforcing large networks. The
proposed hierarchical portfolio optimization model provides a middle ground between
optimality of solutions and computational tractability. Furthermore, by structuring the
optimization model based on the geographical decomposition, the results of the model
can be readily interpreted and presented to decision makers.

Future research directions include the relaxation of the simplifying assumptions
regarding, for example, the independence of disruptions and uniform parameter values
for the probabilities and costs. Extending the model to directed transportation net-
works could further enhance the applicability of the proposed hierarchical approach.
In conclusion, this thesis demonstrates that hierarchical portfolio optimization is a
promising approach for supporting decision-making in the reinforcement of trans-
portation networks, offering the scalability to analyze larger transportation networks
than what would otherwise be possible.
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A Proof of Terminal Pair Reliability Formula

Proposition A.1. Let P𝑡 = {𝜋𝑡1, . . . , 𝜋
𝑡
𝑠} be an ordered set of paths connecting a

terminal pair 𝑡 ∈ T𝑗 . Let

𝐴𝑘 =

𝑘⋀︂
𝑚=1
[𝑂 (𝜋𝑡𝑚) = 0], 𝑘 = 0, . . . , 𝑠,

be the event that the first 𝑘 paths are disrupted, where 𝐴0 denotes the sure event. Then,

P[𝑂 (𝑡) = 1 | 𝑞 𝑗 ] =
𝑠∑︁

𝑖=1
P
[︁
𝑂 (𝜋𝑡𝑖 ) = 1 | 𝐴𝑖−1, 𝑞 𝑗

]︁
· P[𝐴𝑖−1 | 𝑞 𝑗 ] . (A1)

Proof. By definition, the terminal pair 𝑡 is operational if and only if at least one path
connecting the terminals is operational. Thus,

P[𝑂 (𝑡) = 1 | 𝑞 𝑗 ] = P

[︄
𝑠⋁︂

𝑖=1
[𝑂 (𝜋𝑡𝑖 ) = 1]

|︁|︁|︁ 𝑞 𝑗

]︄
. (A2)

Let
𝐸𝑖 = [𝑂 (𝜋𝑡𝑖 ) = 1] ∧ 𝐴𝑖−1, 𝑖 = 1, . . . , 𝑠,

be the event that the 𝑖th path is the first operational path. Note that these events {𝐸𝑖}𝑠𝑖=1
are mutually exclusive and collectively exhaustive w.r.t. the event that at least one path
is operational, and therefore

𝑠⋁︂
𝑖=1

𝐸𝑖 =

𝑠⋁︂
𝑖=1
[𝑂 (𝜋𝑡𝑖 ) = 1],

from which it follows that

P[𝑂 (𝑡) = 1 | 𝑞 𝑗 ] =
𝑠∑︁

𝑖=1
P[𝐸𝑖 | 𝑞 𝑗 ] . (A3)

Using the definition of conditional probability, each term can be written as

P[𝐸𝑖 | 𝑞 𝑗 ] = P
[︁
𝑂 (𝜋𝑡𝑖 ) = 1 | 𝐴𝑖−1, 𝑞 𝑗

]︁
· P[𝐴𝑖−1 | 𝑞 𝑗 ],

which can be substituted into the sum in Equation A3 to complete the proof. □
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B Detailed Traffic Volume Table

Table B1: Yearly number of trains in the network.

Terminal pair Yearly number of trains

(South, North) 7614
(KUO, South) 2116
(APT, North) 1917
(South, SIJ) 1824
(North, KUO) 766
(KUO, SOR) 528
(SIJ, SKM) 525
(North, East) 212
(SIJ, North) 190
(North, LNA) 143
(KUO, SIJ) 133
(South, LNA) 98
(East, SIJ) 16
(North, SOR) 13
(LNA, East) 9
(KUO, East) 8
(South, TOI) 8
(JKI, East) 7
(TE, North) 7
(SIJ, APT) 5
(TOI, SIJ) 5
(KUO, TOI) 4
(South, JKI) 3
(SKM, East) 2
(South, East) 2
(East, TOI) 2
(APT, TOI) 2
(LNA, APT) 2
(TOI, North) 2

Continued on next page
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Continued from previous page

Terminal pair Yearly number of trains

(LNA, KUO) 1
(SIJ, LNA) 1
(TE, SIJ) 1
(South, APT) 1
(South, SOR) 1
(SOR, TOI) 1
(KUO, APT) 1

Total 16,170
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C Example Cost-Efficient Combined Portfolio

Table C1: Example cost-efficient combined portfolio.

Subnetwork Reinforced nodes

TE TE V0001, TE V0002
LNA LNA V0001, LNA V0002
APT APT V0001, APT V0002
SIJ SIJ V0611, SIJ V0612, SIJ V0613, SIJ V0615,

SIJ V0616, SIJ V0618, SIJ V0620, SIJ V0622,
SIJ V0632, SIJ V0634, SIJ V0636, SIJ V0638,
SIJ V0640, SIJ V0642, SIJ V0666

SKM SKM V0262, SKM V0271
KNH KNH V0381
JKI JKI V0411, JKI V0422
TOI TOI V0001, TOI V0002
SOR SOR V0001
KUO KUO V0002, KUO V0003, KUO V0004, KUO V0005,

KUO V0006, KUO V0011, KUO V0013, KUO V0021,
KUO V0023, KUO V0025, KUO V0027, KUO V0032,
KUO V0034, KUO V0041, KUO V0302, KUO V0941

Total 45 switches
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