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(AGVS) in the interior parts of the hospital. Before the investment decision is
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The research objective of this thesis is to study the operational feasibility of the
proposed AGVS at OUH. Feasibility is studied through a discrete-event simula-
tion model (DES) by analyzing system performance in 22 system configurations
that differ in input data and parameters.

The conclusion of the results is that the proposed AGVS is operationally feasible
in fleet sizes in the range of 26-32 vehicles. The feasible range is bound from below
by delivery time requirements and it is bound from above by elevator waiting time
requirements. The results also show how sensitive model output is to certain type
of input changes. The sensitivity information and other findings presented in this
thesis can be useful in possible further design of the system.
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Oulun yliopistollinen sairaala (OYS) pohtii ihmistyövoimaan perustuvan materi-
aalin kuljetusjärjestelmän osittaista korvaamista automaattitrukkijärjestelmällä
sairaalan sisätiloissa. Ennen päätöstä järjestelmäinvestoinnista, on kuiten-
kin hyödyllistä arvioida korvaavan järjestelmän käyttökelpoisuutta. Tämän
työn tavoitteena on tutkia ehdotetun automaattitrukkijärjestelmän opera-
tiivista käyttökelpoisuutta OYS:ssa. Käyttökelpoisuutta tutkitaan tapahtu-
mapohjaisella simulointimallilla analysoimalla järjestelmän suorituskykyä 22
järjestelmäkonfiguraatiolla, joiden syötetiedot ja parametrit eroavat toisistaan.

Johtopäätös tuloksista on, että ehdotettu automaattitrukkijärjestelmä on ope-
ratiivisesti käyttökelpoinen, kun trukkien määrä on 26-32. Käyttökelpoista
määrää rajoittaa alhaalta toimitusaikavaatimukset ja ylhäältä sitä rajoittaa his-
sin odotusaikavaatimukset. Tuloksista selviää myös, kuinka herkästi mallin tulos-
teet muuttuvat tietyntyyppisillä muutoksilla syötteissä. Näistä herkkyystiedois-
ta ja muista tämän työn tuloksista voi olla hyötyä mahdollisessa tarkemmassa
järjestelmän suunnittelussa.
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Chapter 1

Introduction

The facilities of Oulu University Hospital (OUH) are at the end of their
lifetime, which is why Northern Ostrobothnia Hospital District launched the
Future Hospital 2030 program in 2012. The objective of the renewal program
is to improve productivity and treatment effectiveness and to update the
facilities of Oulu University Hospital to respond to the needs of the future.
Future requirements must be supported by the logistics systems as well. The
renovation project presents an opportunity to consider alternative material
handling systems because the new facilities can be designed to support these
systems. (Northern Ostrobothnia Hospital District, 2019)

Today, many types of material are transported by logistic workers in the
interior parts of the hospital. The workers mostly operate towing tractors but
some items must be delivered by hand. An automated guided vehicle system
(AGVS) transporting material inside the hospital could reduce the need for
towing tractors and improve delivery performance within the hospital. It
is important to study if such a system is useful before it is invested in.
Therefore, the feasibility of an AGVS at OUH is studied in this thesis.

1.1 Research objective

The research objective of this thesis is to study the operational feasibility of
the proposed automated guided vehicle system for internal logistics at Oulu
University Hospital. The purpose of the study is to ensure that the system
is able to handle realistic loads. Feasibility is studied through a discrete-
event simulation (DES) model by analyzing system performance in different
system configurations. This involves sensitivity analysis on various system
parameters and seeking the feasible fleet size range.
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CHAPTER 1. INTRODUCTION 2

The simulation model used in this feasibility study is specifically built to
represent the proposed system. Therefore, the principles of the model built
for the research problem are thoroughly explained. Likewise, the theory on
discrete-event simulation that is discussed in this thesis focuses on model
building.

1.2 Existing approaches

Since the first automated guided vehicles (AGV) were deployed in a hospi-
tal in 1988, many studies have analyzed the feasibility of AGV systems in
other health care facilities (Kirschling et al., 2009). A generic answer to the
problem does not exist because facilities are different in a number of ways.
The possible vehicle path topologies depend greatly on the size and layout of
the facility. Financials and company policies also impose requirements and
constraints, which may not apply at another site. Therefore, each facility
must be evaluated individually.

Many methods to study AGVS feasibility have been employed. Natu-
rally, simple systems can be studied using analytic methods. According to
Ilić (1994), fleet size in simple cases can be estimated based on hourly round
trips that vehicles make. However, even a manufacturing plant system can
potentially be studied using analytic methods. Ji and Xia (2010) propose
an approximate analytic method for minimizing the required fleet size in
a steady state manufacturing system. Some AGV systems do not have a
clear steady state, though. For example, hospitals may have a varying load
throughout the day with different types of items being transported at differ-
ent times. This behavior is further discussed in Chapter 3. Complexity like
that is one of the reasons why simulation based methods are typically used
in AGVS studies.

Discrete-event simulation appears to be the most prominent simulation-
based approach used to study AGV systems. Rossetti and Selandari (2000)
studied the feasibility of replacing a human-based delivery system with an
AGVS at The University of Virginia Hospital. Based on the results of their
DES models, the vehicles would significantly improve delivery variability at
the expense of slightly worse average performance and elevator waiting times.
Other simulation approaches have been presented in literature as well. For
instance, Lawrence Henesey1 and Persson (2009) evaluated the efficiency
of an AGVS at a container terminal through a multi-agent based simulation
(MABS) model. They find that MABS allows fine granular control of entities,
which can be useful in situations that involve different types of vehicles and
the coordination of their activities is essential.
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The feasibility of an AGVS can also be shown through optimization.
For example, Kasilingam (1991) proposes an integer programming model to
minimize the total system cost. Simulation-based optimization is also a valid
approach in designing of an AGVS based on Gosavi and Grasman’s (2009)
research.

In addition to mathematical modeling studies, the feasibility of AGV
systems has been evaluated using empirical methods. The feasibility of an
AGVS for medication delivery at The University of Wisconsin Hospital and
Clinics was determined using a pilot system with two vehicles. The decision
not to expand the pilot system was based on data collected during a 125-
day pilot phase. The collected data included technical and performance
observations as well as surveys, which measured the delivery quality perceived
by the staff. (Kirschling et al., 2009)

1.3 Structure of the thesis

The structure of the thesis is as follows. In Chapter 2, the principles of
building a DES model are discussed. The problem setting and automated
guided vehicles systems are discussed in Chapter 3 and the principles of the
simulation model built for the research problem are explained in Chapter 4.
In Chapter 5, the simulation scenarios are presented and their results are
analyzed. Chapter 6 summarizes the findings and presents conclusions of the
thesis as a whole.



Chapter 2

Building a discrete-event simu-
lation model

Building a DES model is a challenging task. For the best results, it is im-
portant to understand both the problem setting and the intricacies of the
simulation method. This thesis has an emphasis on the model building part
in a simulation study. Therefore, this chapter discusses principles of building
a DES model. The same principles are applied on the model presented in
Chapter 4. The first section of this chapter describes the overall process of
building DES models. The rest of the sections drill down to individual parts
of this process.

2.1 Model building process

The steps and the flow of a typical model building process are visualized in
Figure 2.1. As the flow chart shows, model building is an iterative process.
The simulation expert is required to constantly evaluate the work done until
the model is considered an adequate representation of the system. (Law,
2013)

4



CHAPTER 2. BUILDING A DES MODEL 5

Figure 2.1: Steps in a simulation model building process based on
Law’s (2013) steps in a simulation study.

After the problem is formulated sufficiently, the first step in model con-
struction is data collection and model definition. The purpose of the first
step is to decide which parts of the system are modeled and how they are
modeled considering the objectives of the study. Ideally, all the data is ob-
tained before programming the computer model has started. In practice,
however, programming may have to be done in parallel with data collection
to save time or cost because of challenges in obtaining some information
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quickly enough. It may also be difficult to predict all the types of data that
should be collected before hand. (Law, 2013)

The defined model is computerized using a programming language or a
simulation software. The programmed model is verified to ensure it matches
the conceptual model. The verified model is then used to make pilot runs
whose purpose is to provide data for model validation. (Law, 2013)

Ideally, the model is complete before simulation experiments are con-
ducted. However, results from production runs can generate new ideas and
cause changes in requirements. Thus, the model may have to be revised even
after simulation experiments have begun.

2.2 Modeling stochastics

Systems often include elements that are inherently stochastic. Analytic meth-
ods can be employed to analyze the output of simple stochastic systems.
However, if the system has many stochastic elements with different character-
istics, analytic models can be difficult to construct. Discrete event simulation
is a powerful tool for analyzing such systems numerically.

It can be challenging to choose which elements should be modeled as ran-
dom distributions. Selecting the distributions and their parameters correctly
is important for valid results. If the system exists, the distributions can
possibly be inferred experimentally. Sometimes the system being analyzed
does not exist. For example, feasibility studies are often conducted before
investment decisions. In such cases, prior information about similar systems
can be used. Another approach sometimes employed is the use of informed
guesses from experts in the field. (Law, 2013)

2.3 Verification

The purpose of verification is to ensure that the model is programmed cor-
rectly and the behavior is in accordance with the conceptual model (Law,
2013). There are many applicable methods for verifying a simulation model.
The methods include model review by an expert, output reasonability test-
ing and debugging. These techniques are similar to what is used in software
verification and in fact, many software verification techniques apply for sim-
ulation model verification. Verification is made easier by including assertions
and logging in the program.
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2.4 Validation

The purpose of validation is to ensure that the model represents the actual
system with the required accuracy. There are many decision-making ap-
proaches for determining whether a simulation model is valid. It is highly
subjective which approach is the best for a particular situation. A frequently
used approach is that the development team validates the model itself dur-
ing development. If the users of the model are not part of the development
team, they can also be involved with the developers in determining the va-
lidity. Alternatively, an independent third party can be tasked with making
the decision whether the model is valid. Involving people outside the de-
velopment team improves model credibility, though it may increase project
cost. (Sargent, 2011, p. 184-185)

There are many techniques to evaluate the validity of the model and the
data used by the model. If the system exists, it may be possible to compare
the output of the model to the output of the actual system. Other available
valid models, such as analytic models, can also be compared to the simulation
model. While animation and graphical measures are often used in model
verification, they can also assist in validation. Graphics can be especially
powerful when validation is required from parties that are not involved in
the technical part of the study. Other validation techniques include tracing
individual entities in the system, empirical assumption validation, output
consistency evaluation and historical data validation. (Sargent, 2011, p. 186-
188)

Since every simulation model is only an approximation of the actual sys-
tem, there is always a certain level of uncertainty in model validity. The
members of the simulation project decide the required confidence level for
the model validity and choose the used validation approach and techniques
accordingly. The validity confidence level must be taken into account when
the simulation results are interpreted and presented.

2.5 ProModel

Various tools can be used for building DES models. These include general
purpose languages and simulation software. In this thesis, the simulation
model of the AGV system is developed using ProModel 2018 software. Pro-
Model provides facilities for building discrete-event simulations. The tools
are specifically designed to assist in modeling manufacturing and logistics
systems. Simple systems can be modeled entirely by combining parts from
the set of included modeling elements. The user can also write custom func-
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tionality using a fairly simple built-in programming language. Complex logic
can also be included by invoking external subroutines written in a general
purpose language such as C++. (ProModel Corporation, 2019)

ProModel can read external data from Excel spreadsheets, SQL databases
and ASCII files. The user can observe the system state through animation
while the simulation is running. The data collected during simulation runs
can be analyzed, compared and visualized using the included Output Viewer.
ProModel is also capable of exporting results to Excel spreadsheets for ad-
vanced analysis. Additional data can be written to files during simulation
runs using the built-in programming language. (ProModel Corporation, 2019)

Ideally, the simulation tool does not affect modeling decisions. The capa-
bilities of simulation tools are not the same for all simulation tasks, however.
In practice, the model is designed in a way that enables efficient development
of a reasonably accurate model using the tools available. Therefore, tool se-
lection is a compromise between cost, development time, and model accuracy.
The simulation model presented in this thesis is designed using the elements
and methods typical in ProModel simulations. Thus, the nomenclature is
also similar to what is used in the software.



Chapter 3

Automated guided vehicle sys-
tem in a hospital

An automated guided vehicle is a self-driving vehicle used in material han-
dling. AGVs are often used to transport material in industrial buildings,
such as manufacturing plants and warehouses. But AGVs have uses outside
industry, too. For example, this thesis considers the use of these vehicles
in a health care facility. AGV systems and equipment are discussed in this
chapter. The operational environment is also described.

3.1 Automated guided vehicles

There are many types of automated guided vehicles available and the suitable
type depends on the application and the transported material. A distinctive
difference between AGV types is the method of material storage during trans-
portation (Tzafestas, 2013, Section 15.2). For example, AGVs in a warehouse
may transport pallets directly, while another application requires items to be
stored inside a container during transportation (Ferrara et al., 2014). The
assumption is that the preferred method of material storage during trans-
portation at OUH is to use carts. There is an example of an AGV designed
for transporting carts in Figure 3.1. The cart in the example is closed but
open carts are used as well. The suitable cart type depends on the stored
material. For instance, certain pharmaceuticals may require closed carts with
locks to prevent unauthorized access to the substances.

9
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Figure 3.1: An automated guided vehicle transporting a cart and another
vehicle traveling empty at Päijänne Tavastia Central Hospital in 2010. The
image is cropped from the original picture taken by Petri Niemi (2010). Copy-
right permission is granted by EP-Logistics Ltd.

A basic automated guided vehicle system consists of a number of vehi-
cles, a route network, a system controller and system users. The system users
schedule material transport orders and handle exceptional situations, such as
vehicles getting stuck. The controller allocates vehicles to tasks issued by the
users. Additionally, the AGVS can be integrated with other material han-
dling systems, such as elevator groups or automated storage systems (Ferrara
et al., 2014). Many facilities also require doors to be electrified and integrated
in the system so that AGVs can pass through them.

3.2 Oulu University Hospital

Oulu University Hospital is a university hospital part of the Northern Os-
trobothnia Hospital District. Its layout is shown in Figure 3.2. The proposed
automated guided vehicle system handles material in the four adjacent build-
ings shown in the layout. Buildings A and B have 12 floors. Some of the
floors in these two buildings contain wards for patient care. Material re-
quired in every floor of building A and B are supplied from support services
in building D and pharmacy in building C. These are located in the lowest
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floor. The support services include food terminal, laundry terminal, medi-
cal aid maintenance and waste depot. The material transported via these
locations are discussed in the next section.

Figure 3.2: Layout of Oulu University Hospital. The four distinct buildings
are A(yellow), B(green), C(red) and D buildings from right to left.

3.3 Transported material

The materials that are planned to be handled by the AGVS are food, laundry,
warehouse inventory, medical aids, pharmaceuticals and waste. All of these
are stored in carts during transportation, which means that AGVs do not
directly handle the items inside the carts. Packing and unpacking of carts is
performed by the staff.

Certain types of items must be delivered at designated times of the day.
For example, breakfast is delivered in the morning, lunch at noon and dinner
late afternoon. The allowed window for food deliveries can be fairly short,
between one to two hours. Figure 3.3 presents the estimated daily number of
carts moved by item type. As shown in the figure, food deliveries constitute a
major part of the total daily logistics. They are expected to cause a noticeable
spike in the AGV system load unless some other deliveries are scheduled
outside food shipment delivery windows. For example, waste are scheduled
for delivery after office hours in the baseline load that is used in most of the
simulation scenarios studied in this thesis.
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Figure 3.3: The estimated distribution of carts transported by item type.
Both inbound and outbound deliveries are included. For example, the per-
centage of laundry carts includes both clean and dirty laundry.

3.4 Feasibility of the system

The proposed AGVS may assist in fulfilling the needs of Oulu University
Hospital in the future. It is thus important to study if this type of system
can handle the required loads at the hospital. As stated in the Introduc-
tion, the objective of this thesis is to study the feasibility of the proposed
system. Since the system does not exist, its performance cannot be studied
experimentally. The proposed system is also too complex to study analyt-
ically within a reasonable amount of time. Hence it is analyzed using a
discrete-event simulation model. Multiple scenarios with different system
configurations are simulated and their output are analyzed. The principles
of the simulation model are discussed in the next chapter and the results are
presented in Chapter 5.



Chapter 4

Simulation model of the auto-
mated guided vehicle system

Chapter 2 discusses the key parts of building a discrete-event simulation
models. The same principles are used for constructing the model detailed in
this chapter. However, the model is built and run using ProModel software,
which is why modeling decisions are affected by what is possible and typical
in ProModel simulations.

The overview of the model is presented in Section 4.1. Control logic and
the elements that comprise the system are discussed in Section 4.2. Finally,
Section 4.3 explains how the model is verified and validated.

13



CHAPTER 4. SIMULATION MODEL OF THE AGV SYSTEM 14

4.1 Model overview

The model representing the proposed AGVS at OUH is a stochastic discrete-
event simulation model. The model reads input data, takes parameters and
running the model results in an output report containing statistics collected
during the execution. The overview of the inputs and outputs of the model
are shown in Figure 4.1.

Figure 4.1: Overview of model inputs and outputs.

The model reads input data from external Excel sheets. This includes lo-
cation information and a transport order schedule, which represents the typ-
ical daily workload concerning the AGVS. The system behavior and physical
attributes can be adjusted using a number of parameters. For instance, the
fleet size parameter determines the number of AGVs, which affects delivery
capacity.
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Running the model simulates a scenario that is defined by model input.
Each scenario represents a potential configuration and daily workload of the
system. The flow of a scenario is shown in Figure 4.2. Each scenario con-
sists of a number of replication runs. Since the order and the number of
events at the hospital vary daily, each replication is a possible realization of
events in one single day. Therefore, multiple replications improve statistical
significance of the results.

Figure 4.2: Flow of a simulation scenario in the AVGS model.

At the end of the scenario simulation, an output report is generated.
The report contains all the data collected in the replication runs. The data
includes observation based measurements and time series of select variables.
The report also provides statistical quantities. For example, the average cart
delivery time over the replications is included in the report.

Some simulation models end the simulation run based on system state.
In this model, however, every replication begins at 2.00 and ends at 2.00
the next day. What happens during the run is illustrated in Figure 4.3. In
the beginning, the model is initialized using input data and parameters. The
initialization procedure also generates system controller entities that manage
system state. Once the initialization is done, the system controllers begin
generating carts and logistic workers. These physical entities are transported
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from one location to another. Once 24 hours of simulation time has passed,
the model saves collected statistics and the run ends.

Figure 4.3: Flow of a replication run in the AGVS model.

As described above, the model transports carts and logistic workers be-
tween locations and tracks how well this is performed using observation and
time series based variables. The lifetime of transported entities begins with
their creation. Once created and placed to a source location, the next avail-
able resource collects the entity and starts its transportation. The resource
transports the entity through a path network to the destination, after which
the entity leaves the system. For example, AGV resources transport carts be-
tween cart processing locations through a network approximating the phys-
ical topology of the hospital. The next section describes the transported
entities in more detail and discusses the parts of the model that are involved
in their processing.
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4.2 Model structure

4.2.1 Entities

Every object that requires processing is modeled as an entity. Entities trigger
processes when they enter locations and can use resources to perform work
and move between locations. They do not necessarily exist in the system
for the whole duration of the simulation. An entity created in the system
always arrives to a location, which triggers the initial processing. The pro-
cessing can include work performed on the entity or waiting, for instance.
Once the processing at the location is complete, the entity can be routed to
another location. The entity can exit the system if further routing is not
necessary. (ProModel Corporation, 2018)

While entities are naturally suited for modeling physical objects such as
carts transported by AGVs, they can also represent abstract objects like
system controllers that manage system state. For example, controllers can
generate other entities or send information to other parts of the system. The
model in this thesis includes both physical and abstract entities.

Material is stored inside carts for transportation using AGVs at OUH.
Carts are modeled as entities, which are processed at the locations they
visit. A newly created cart is placed to a location and it is given a list of
destinations to visit. The creation triggers a search for an available AGV that
would transport the cart through the destinations. Once the cart arrives at
the final destination, the AGV drops it off and the cart exits the system.

There can be multiple types of carts available at the hospital. Some items,
such as pharmaceuticals, may have to be transported in closed and locked
containers, while other items only require open containers. However, the
model considers all carts equal, because the effect of cart type is considered
negligible. It is also assumed that there are always enough applicable carts
available at the locations they are generated at. Cart generation logic is
discussed in Section 4.2.5.

The model animation shows carts as long as the they exist in the system.
As shown in Figure 4.4, a cart waiting for a pickup is displayed as a grey
box. Once a vehicle picks it up, the vehicle is shown transporting the cart.
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Figure 4.4: An empty AGV (the left one) traveling to pick up a cart in
pharmacy and a full AGV (the right one) traveling to drop off another cart
to its destination during a simulation run.

The logistic elevators at OUH lift AGVs and logistic workers. The AGVs
are modeled as resources that transport carts. However, ProModel does not
support resource transportation using other resources. Therefore, transport-
ing AGV resources using elevators is not possible. That is why elevator
transportation for AGVs is tracked using dummy AGV entities, which are
created whenever AGV resources request a lift to another floor. The logic
used for generating these dummy entities is discussed in Section 4.2.5.

Since some items cannot be transported by AGVs alone, the effect of lo-
gistic workers is also considered. AGVs and logistic workers share the same
freight elevators for inter-floor transportation, which can increase the deliv-
ery time for AGVs. Other effects from workers are considered insignificant.
Logistic workers are modeled as entities similar to dummy AGVs because
their sole purpose is to model their elevator usage. The workers are lifted by
elevators essentially in the same way as AGVs although workers are able to
enter and exit the elevator faster than AGVs. Figure 4.5 shows how AGVs
and workers using elevators can be identified in the animation while the
simulation is running.
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Figure 4.5: A logistic worker being lifted by an elevator and an AGV entering
another elevator during a simulation run. The grey cubes model elevator
resources.

To initialize the simulation, a system controller entity arrives in the sys-
tem the moment the simulation run is initiated. Its arrival begins the ini-
tialization process, which sets up the initial system state. At the end of the
initialization phase, the system controller creates two elevator controllers,
one for building A and one for building B. Once the initialization phase is
complete, the role of the system controller is to generate carts for AGVs to
pick up while the elevator controllers generate elevator freight entities. Entity
generation logic and other control policies are explained in Section 4.2.5.

4.2.2 Locations

Locations represent areas that entities can be processed or stored at (Pro-
Model Corporation, 2018). The areas that AGVs pick up and drop off carts
in are represented by cart processing locations in the model. There is also
an elevator lobby location in immediate proximity to both elevator groups in
buildings A and B on each floor. Since there are 12 floors in both buildings,
there are 24 elevator lobbies in total. AGVs and logistic workers enter and
exit elevators through these elevator lobbies.

Since the model includes controller entities, there is an abstract location
that does not represent any physical location in the hospital. This abstract
location is simply required for the creation and processing of the controller
entities. The controller entities enter the location on simulation initialization.
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It is assumed that the new buildings in the hospital can be designed to
accommodate the spatial requirements of the system. Therefore, all locations
in the model have unlimited maximum capacity for holding carts waiting to
be picked up.

4.2.3 Resources

Resources model equipment that transports entities or performs operations
on them (ProModel Corporation, 2018). There are two types of resources
in the model, automated guided vehicles and elevators. The AGVs are re-
sponsible for picking up, transporting and dropping off carts. Elevators lift
AGVs and logistic workers between floors in buildings A and B. One elevator
resource represents an elevator cab and the associated shaft.

A moving AGV can either be transporting a cart or travel empty. The car-
ried weight can affect vehicle speed in the real system. In this model, though,
the vehicles are assumed to travel at a constant velocity at all times. This is
considered accurate enough for a feasibility study because the objective is not
to optimize the absolute performance of an existing system. Velocity and ac-
celeration also depend on the AGV model and manufacturer. Similarly, the
total weight of logistic workers and their freight can vary greatly because
they might be walking or driving a towing tractor. Even though elevator
acceleration depends on the lifted weight, the effect of lifted weight on ele-
vator travel time is considered small. That is why velocity and acceleration
of elevators are assumed constant as well.

ProModel supports static and dynamic resources. Static resources do
not visibly move during the simulation run because they are not assigned to
any path network. Once assigned to a path network, the resource becomes
dynamic and can move along the network. All resources in the model are
dynamic because AGV and elevator motion is modeled using path networks,
as described in the next section. (ProModel Corporation, 2018)

4.2.4 Networks

The resources in the model travel between locations to transport entities.
AGVs transport carts between processing locations while elevators lift AGVs
and logistic workers in buildings A and B. Resource movement is modeled
using path networks, which consist of nodes and path segments between the
nodes. Resources assigned to the network travel along the path segments,
which can be either uni-directional or bi-directional. Interfacing path nodes
with locations also allows the resources to pick up and drop off entities at
the locations assigned to the nodes. (ProModel Corporation, 2018)
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Using a path network simplifies modeling resource movement because
ProModel is capable of calculating optimal paths through the network. Re-
source control can also be automated using built-in rules for resource and
entity selection, which are discussed in Section 4.2.5. Furthermore, the ani-
mation shows resources moving in the network, which can be used in model
verification and validation. The model includes an AGV path network and
two elevator shaft networks.

The AGV resources in the model are assigned to a single path network
that is connected to all cart processing locations. The network, parking
nodes and cart processing locations are shown in Figure 4.6. The bulk of the
network is located on the corridors of the lowest floor. All cart processing
locations in buildings C and D interface with the network on the lowest floor.
The network also extends to logistic lobbies on all 12 floors in buildings A
and B. Therefore, the AGVs sent from support services must travel through
the lowest elevator lobbies to reach higher floors.

There are two nodes dedicated to vehicle parking on the lowest floor. One
of them is located near support service locations in building D and the other
one is located in building C. Idle AGVs park at these nodes. The parking
logic is discussed in Section 4.2.5.

Figure 4.6: Network of paths that AGVs can travel on, parking nodes and
locations that interface with the network. The dots represent nodes, which
connect path segments.

A single unified path network enables sending AGV resources from any lo-
cation to another. Each path segment is also specified with a distance, which
allows vehicle selection for carts based on distance along the network. Pro-
Model calculates optimal paths between nodes using these distances. Since
the unified network connects all cart processing locations, the locations on
different floors are also connected via the network.
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In an automated guided vehicle system with fixed guide-paths, a dead-
lock may occur when two or more vehicles try to occupy the same space at
the same time. However, the AGVs in this system are assumed to be free-
ranging, meaning that they can select the appropriate route freely to reach
their destination. Such AGVs constantly scan their surroundings, which
allows them to go around obstacles and pass other vehicles. Therefore, dead-
lock situations are considered unlikely in practice. The free-ranging behavior
is modeled using bidirectional path segments. Most of the paths used by the
vehicles are wide enough for bidirectional traffic at the hospital, which is why
the entire AGV path network is bidirectional for simplicity.

AGVs and logistic workers move between floors using elevators in the
system at OUH. The elevators are resources that transport entities, which
is why elevator shafts are modeled using path networks that the elevators
can move on. There are two elevator groups at OUH, one in building A and
another in building B. Thus, the model has two path networks representing
elevator shafts. While each elevator requires its own elevator shaft in practice,
controlling an elevator group is simpler using only one path network because
the built-in resource and entity selection rules in ProModel can only be used
within a single network. The used control rules are discussed in Section 4.2.5.

Figure 4.7 shows one of the path networks modeling an elevator shaft
and an elevator resource assigned to it. There are also nodes that interface
with elevator lobbies on each floor. The floor heights are identical in both
networks.

Figure 4.7: Elevator shaft and an elevator cab on the lowest floor. Freight
entities enter and exit the elevators through the nodes on the right column.

4.2.5 Control

The system model consists of multiple integrated subsystems. AGVs trans-
port material between locations and elevators enable the vehicles to switch
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floors. Additionally, logistic workers share elevators with AGVs, which af-
fects AGVS performance. This section discusses control policies that model
the behavior of these subsystems.

A typical automated guided vehicle system dispatches vehicles based on
either a predefined schedule or transport orders issued on the fly. Modern
systems are capable of mixing both types of dispatching rules. In a purely
schedule based approach, an AGV begins a task at a designated time and
visits all cart processing locations defined in the task. At each location, the
AGV can wait for a cart to be transported up to a maximum waiting time.
The vehicle continues to the next cart processing location after the maximum
waiting time has passed. (Deery, 1997)

The schedule based approach can be useful for recurring deliveries. How-
ever, the approach also forces staff to adhere to the schedule. An AGV
executing a scheduled task route will drive empty if the staff fail to supply
carts in time at the locations the vehicle visits. A transport order based
approach is more adaptive in this regard. Flexible vehicle dispatching is one
of the AGV system requirements at OUH so that the staff can focus on the
substance of their work as well as possible. Consequently, the vehicle dis-
patching process in the simulation model is based on transport orders that
are generated on demand.

The simulation model takes a table of transport orders for one day as
input. Each transport order represents demand for a number of carts to send
from one location to another. Since the time of demand for containers will
not be static every day, uncertainty in the order creation time is modeled by
setting a possible order time interval for each order. For example, an allowed
range for a breakfast transport order time might be from 6.00 to 7.00. A
simplified example of a transport order table is shown in Table 4.1. Even
though multiple containers can be included in a single order, each container
is assumed independent of the other containers. Thus, batching multiple con-
tainers for similar deliveries merely simplifies the creation and management
of the table. Containers and their order times are not truly independent in
practice, though. For example, system users may order multiple containers
to be transported at the same time to cover a large demand. The modeling
inaccuracy is considered small, however.

Using the transport order schedule, the simulation model generates a
detailed task schedule during the initialization of each simulation run. Since
an AGV is capable of transporting no more than one container at a time,
the model creates a task for each container in every transport order. As the
containers are assumed mutually independent, the actual order time for each
task is generated independently from uniform distribution U(a, b), where a
is the minimum order time of the task and b is the maximum order time.
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For instance, (a, b) = (6 h, 7 h) for order number 1 in Table 4.1. A simplified
example of a generated task schedule is shown in Table 4.2.

Table 4.1: An example of a container transport order schedule input to the
simulation.

Order
number

Order time
interval

Number of
carts

Source
location

Target
location

1 6.00-7.00 2 Food hub
Building A,

floor 2

2 10.00-11.00 2 Food hub
Building A,

floor 5

3 7.00-10.00 1
Building A,

floor 3
Warehouse

4 11.00-16.30 1 Pharmacy
Building B,

floor 6

Table 4.2: A possible realization of a container transport order schedule as
defined in Table 4.1.

Order
number

Task
number

Order
time

Source
location

Target
location

1 1 6.26 Food hub
Building A,

floor 2

1 2 6.14 Food hub
Building A,

floor 2

2 3 10.31 Food hub
Building A,

floor 5

2 4 10.59 Food hub
Building A,

floor 5

3 5 7.01
Building A,

floor 3
Warehouse

4 6 11.00 Pharmacy
Building B,

floor 6

Once a task is ordered in the simulation model, a cart is placed at the
source location and the AGV controller needs to bind a vehicle to the task.
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However, a vehicle cannot be assigned immediately at order time, if there are
no vehicles available. Therefore, the cart is always placed in a FIFO queue.
This means that the controller sends the next available vehicle to pick up
the cart that has been waiting the longest. If there are multiple vehicles
available, the controller selects the closest one. The metric used to calculate
the distance is the smallest travel distance through the vehicle path network.

Using the simple FIFO queue method for cart selection eliminates some
opportunities to optimize travel time. On the other hand, selecting always
the cart closest to a vehicle could cause an extremely high waiting time for
some carts. This cannot happen if there is always at least one vehicle im-
mediately available and the elevators have enough lifting capacity. However,
it is possible that all vehicles are in use during busy hours if the fleet is not
overly large. Therefore, a FIFO queue is a safer choice.

An AGV without a task to execute must move to a parking lot. Otherwise,
high volume locations might become filled with idling vehicles. Idle time is
also an opportunity to charge the batteries at the parking lots. Since AGV
movement is modeled using a path network in ProModel software, parking
strategy can be modeled using a park search logic. Park search logic selects
the parking node based on the current location of the AGV and free space
in the parking nodes. (ProModel Corporation, 2018)

Each parking location has a maximum number of AGV slots. For sim-
plicity, the total number of available slots is set equal to AGV fleet size. This
allows all vehicles to park at the same time. It also equalizes the number of
vehicles between the two parking nodes to some extent. Consider the case
that there are 20 vehicles in the system and both parking nodes can hold 10
each. If parking node C is already full with 10 vehicles, other idling vehicles
must travel to parking node D.

Once a vehicle completes its current task and no cart is waiting for pickup,
the vehicle is released from further work and becomes idle. Parking node se-
lection is primarily determined by the location the vehicle is released at.
However, the desired parking location can be full, in which case the other
parking node is selected. Park search logic in the model uses a static table
that defines the primary node and the secondary for each possible release
location. The release locations and parking node priorities are listed in Ta-
ble 4.3.

For minimized immediate empty driving after becoming idle, the AGV
should move to the closest parking station if possible. This is why idle
vehicles are primarily forwarded to the closest parking node from most of
the cart processing locations. The exceptions are pharmacy and laboratory,
whose closest parking node is in building C. However, the difference between
the distance from parking node C and D to these two locations is only 14 %.
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Table 4.3: Park search table used to select the parking node for idle AGVs.

AGV release Primary parking Secondary parking
location node node

Food terminal D C
Warehouse D C

Laundry terminal D C
Waste depot D C

Medical aid maintenance D C
Pharmacy D C
Laboratory D C

Building A locations C D
Building B locations C D

Parking node C already takes idle AGVs primarily from 24 cart processing
locations in buildings A and B when there are only 36 processing locations
in total. Therefore, the primary parking node for pharmacy and laboratory
are in building D.

AGVs use elevators to move between floors in buildings A and B. There
are four cargo elevators in both buildings and the AGVs can access the four
elevators from a logistics lobby on each floor. Integration of elevators to
an AGVS typically requires that the elevator can occupy only one AGV at
a time and other freight cannot be carried at the same time. The elevator
control logic in the model was built around this assumption. This assumption
enables the use of a simple control policy. As explained in Figure 4.8, the
elevator logic in the simulation model is as follows:

1. A load arrives in source floor lobby and it is placed to a waiting queue.

2. Once the load is the first in the waiting queue, the system selects the
first available elevator to carry the load. If there are multiple available
elevators, the elevator that is closest to the source floor is selected.

3. The load waits in the lobby until the selected elevator arrives at the
source floor.

4. The load moves inside the elevator and the elevator carries it to the
target floor.

5. Once the load has arrived to the target floor and left the elevator, the
elevator is freed for the next load in the waiting queue.
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Figure 4.8: Elevator waiting and transfer process for a single load.

As explained above, the loads in the waiting queue are selected using
FIFO logic. The logic can sometimes work counter-intuitively. Once a load
has left the elevator at its target floor, the elevator could have an opportunity
to pick up another load at the same floor to reduce empty driving. Because
of the FIFO logic, however, the system respects the waiting queue and moves
the available elevator to the floor with the next load in line. On the other
hand, this way the queuing and elevator selection logic can be modeled with
the built-in facilities in ProModel. Using the included resource and path
network tools reduces the possibility of errors and makes the the logic easy
to understand. The results in Chapter 5 show that the simple elevator control
logic is sufficient for modeling this particular system.

AGVs run on battery power, which is why available system capacity is
limited while any vehicles are charging. However, logistics activity at OUH
is mainly set during daytime, between 6.00 and 22.00. Most of the logistics
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activity occurs during office hours with peak activity around midday as shown
in Figure 4.9. Therefore, the batteries can be fully charged during the night.
AGVs are also likely to require intermittent charging during the day.

Figure 4.9: Distribution of the expected number of transport orders by the
hour of the day.

The system load distribution is not entirely flat during the day, as seen
in Figure 4.9. Thus, a system that can handle peak loads has some vehicles
parking most of the time. This provides opportunities to charge during the
day. If the fleet size is insufficient, the system capacity is fully utilized for
longer periods. The vehicles may require charging during these periods, in
which case the system capacity is also reduced.

McHaney (1995) explains that including battery constraints in AGVS
simulations may not be necessary in systems with low vehicle utilization.
Figure 4.9 shows that the AGVS at OUH is used only 16 hours per day and
the highest load is concentrated at midday. Since delivery times must not
grow too long during peak load hours, the fleet must be large enough to fulfil
this requirement. A realistic fleet size thus enables vehicles to have ample
idle time to charge outside peak load. Consequently, the effect of charging
in delivery performance is considered small and charging is not taken into
account in the simulation model. Still, the effect of this decision in the results
is considered in Chapter 5.
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4.3 Model verification and validation

The simulation model is verified mainly by checking the collected output
values. Checking involves analyzing whether the output values fall within
expected ranges. The program code is also verified using a debugger by
monitoring system state at run-time. Various constraint checks are placed in
the code as well. The checks enforce proper behavior by stopping the program
when constraints are violated. Animation shown by ProModel also helps to
verify that resources and entities are moved and processed in a seemingly
correct way. This is also used for validating the model.

In addition to animation, the model is validated by testing the plausi-
bility of the output. This is tested using both realistic and unlikely input.
Individual entities and resources are also traced in the system to ensure cor-
rect logic. Moreover, the model is accepted by the hospital staff involved in
the simulation project.



Chapter 5

Results and analysis

As stated in the first chapter, the objective of this thesis is to study the
feasibility of the proposed AGVS at OUH. The feasibility is studied through
a discrete-event simulation model, which is described in Chapter 4. Differ-
ent scenarios are evaluated by running the simulation using different input
parameter sets. To obtain information about system feasibility from key as-
pects, a total number of 22 scenarios are studied in this thesis. The results
of the simulation runs are presented and analyzed in this chapter.

Section 5.1 of this chapter presents the model input that are varied across
scenarios and discusses what type of output data is analyzed. The analysis
begins with a baseline scenario in Section 5.2. Then, sensitivity analysis on
a few input parameters is performed in Section 5.3. Sensitivity is analyzed
by varying each parameter across a number of scenarios. Some of the pa-
rameters, such as vehicle velocity, simply represent physical qualities of the
system. Sensitivity analysis on these parameters provides information on
the uncertainty of the results. Other inputs affect the control of the system.
That is why the capacity ratio between the two possible parking nodes is
varied and the best ratio is used for determining the feasible fleet size in
Section 5.4. Finally, Section 5.5 summarizes all the obtained results.

5.1 Methods

5.1.1 Common parameters

As discussed in Chapter 4, the model contains stochastic elements. The
stochastic elements in the model are modeled by random distributions. The
distributions and their arguments used in all studied scenarios are shown in
Table 5.1.

30
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Table 5.1: Model parameter distributions and distribution argument values
used in all scenarios.

Parameter Distribution (unit)

Cart pickup time N (30, 52) (s)
Cart drop-off time N (30, 52) (s)
Elevator enter time (AGV) N (10, 22) (s)
Elevator enter time (logistic worker) N (5, 22) (s)

Because of stochastic elements in the model, each simulation run must
consist of multiple replications to obtain reliable statistics. Computing re-
sources set the limit on how many replications can be run in a reasonable
time. The number of replications also affects the size of the output data,
which in turn influences the computational time during data analysis. All
scenarios in this thesis are run using 200 replications for a good balance be-
tween computational time and result accuracy. Each replication runs for 24
hours in simulation time. The simulation clock begins at 2.00 and ends at
2.00 on the next day.

5.1.2 Input variation

Feasibility of the proposed AGVS is studied by analyzing system perfor-
mance under different simulation scenarios. The scenarios are distinguished
by different input to the model. The key aspects are analyzed by varying the
following parameters

• AGV fleet size

• AGV velocity

• Mean logistic worker inter-arrival time (building A)

• Mean logistic worker inter-arrival time (building B)

• Number of elevators

• Parking node C and D capacity ratio.

The effect of a parameter is studied by comparing two or more scenarios, in
which the parameter of interest is different with all other parameters being
the same.
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AGV fleet size affects the maximum capacity of the system directly, which
is why it is arguably the most important parameter of interest. However,
the overall capacity is potentially limited by the lifting capacity of elevators
because the vehicles must use them to travel between floors. Therefore, it is
also important to study whether the lifting capacity is sufficient. The usable
lifting capacity for AGVs is affected by logistic workers who also use the same
elevators. A higher logistic worker activity is simulated with shorter worker
inter-arrival times.

AGV velocity depends on the chosen vehicle model and this thesis does
not assume the use of a specific model. Therefore, the sensitivity of velocity
is analyzed. Parking node capacity allocation may also affect system perfor-
mance. Different ratios are evaluated and the best ratio found is used for
estimating the feasible fleet size.

The simulation model takes a transport order schedule as input in addi-
tion to the parameters. The baseline schedule presented in the next section
represents the typical daily schedule and workload at the hospital for the
transported material considered in this thesis. It is possible that some days
are more demanding, however, which is why the effect of a more challenging
schedule with the same total workload is studied in Section 5.3.4.

5.1.3 Output analysis

System feasibility in each scenario is studied by analyzing system perfor-
mance through the collected output data. The output data is presented in
the form of performance indicators. The most important performance indi-
cators are cart delivery time and the number of incomplete cart deliveries.
Large delivery times indicate an insufficient system capacity. Spikes in system
load are studied through timeseries of the number of incomplete deliveries.

Elevator waiting time, elevator queue size and elevator resource usage are
used to analyze if the performance is limited by an insufficient lifting capacity.
A high system load can cause carts to accumulate at their source locations.
Thus, the number of carts waiting for pickup at processing locations is also
used in the analysis.

The system is considered feasible, if all the following criteria are met

• The average cart delivery time is 20 min at most and the 90th percentile
is 30 min at most

• The average number of carts waiting for pickup in any one location in
building A and B is 5 at most at any single time of day
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• The average number of carts waiting for pickup in any one location in
building C is 15 at most at any single time of day

• The average elevator waiting time is 30 s at most and the 90th percentile
is 60 s at most

• The 90th percentile of the largest elevator queue size of all elevator
lobbies is 5 at most at any single time of day

5.2 Baseline scenario

5.2.1 Input

The first simulation scenario is run using baseline input. The baseline param-
eter values are shown in table 5.2. In the following sections of this chapter,
only the parameters that differ from the baseline are presented. Thus, the
parameter values that are not explicitly specified in other scenarios are equal
to their baseline values.

Table 5.2: Baseline values of parameters that are varied across the studied
scenarios.

Parameter Value

AGV fleet size 10
Number of elevators (building A) 4
Number of elevators (building B) 4
AGV velocity 1.00 m/s
Mean logistic worker inter-arrival time (building A) 120 s
Mean logistic worker inter-arrival time (building B) 111 s
Parking node C and D capacity ratio 0:100

The transport order schedule used in the baseline scenario is characterized
by the distribution shown in Figure 5.1. The first carts are sent after 6.00 in
the morning and the last transport orders are created by 21.00. The highest
order counts occur between hours 10 and 11. Transport orders for lunch
carts account for approximately half of this demand. Lunch time also causes
another busy hour between 12-13, because empty lunch carts are sent back
to food terminal around that time. Dinner is served at around 16-17, which
is why it is the third busiest hour. The expected number of created orders
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drops rapidly after 17.00, which marks the end of office hours. Mainly only
less urgent items, such as waste, are transported after office hours.

Figure 5.1: The expected number of sent carts by the hour of the day in the
baseline input schedule of transport orders.

The baseline transport order schedule is used in all but one of the studied
scenarios. Section 5.3.4 analyzes a scenario with a different schedule using
the same total workload. The results obtained from running the model using
the baseline input are analyzed next.

5.2.2 Output

The system in the baseline scenario cannot cope with the load caused by
the transport order schedule. It is evident from Figure 5.2, which shows the
distribution of the time it takes to deliver a cart to its destination from the
moment it is sent. On average, it takes around 5.5 h to deliver the cart,
which is unacceptably high. 10 % of carts take more than 10 h to deliver
based on the 90th percentile. Thus, the system in the baseline scenario is
not feasible.



CHAPTER 5. RESULTS AND ANALYSIS 35

Figure 5.2: Distribution of cart delivery time in the baseline scenario.

Figure 5.3 shows that the reason for poor performance is insufficient sys-
tem capacity. The mean transport order backlog increases steadily the mo-
ment the first orders are created. The backlog begins to clear after 19.00 but
it is not resolved completely before the simulation period ends. This results
in carts spending almost all of their time waiting for pickup at their source
locations, as shown in Figure 5.4.

Figure 5.3: Mean number of incomplete cart deliveries over time in the base-
line scenario.
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Figure 5.4: Mean cart entity state in the baseline scenario.

Distribution of the elevator waiting time is shown in Figure 5.5. On
average, AGVs and logistic workers must wait only 4.4 s for the elevator to
arrive at the source floor. 90 % of the waiting times are below 19 s. Waiting
times are fast, which indicates that elevator lifting capacity is not the reason
for the poor system performance in the baseline scenario.

Figure 5.5: Distribution of elevator waiting time in the baseline scenario.
Both elevator groups in buildings A and B are taken into account in this
distribution.

As shown in Figure 5.6, all the vehicles are in use almost immediately
after the first carts are sent. This indicates that a larger fleet would improve
system capacity. The next section indeed shows that performance can be
increased considerably by adding more vehicles in the system.
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Figure 5.6: Mean hourly AGV usage in the baseline scenario.

5.3 Sensitivity analysis

5.3.1 Fleet size

The baseline scenario results indicate that 10 AGVs does not provide enough
resources to handle the daily demand at the hospital. Since a fleet size of
10 vehicles is clearly unfeasible, it is not sensible to analyze input sensitivity
using this size. Therefore, the realistic range on the fleet size is sought roughly
in this section. This allows using realistic fleet sizes in further analysis of the
system. AGV fleet size is also the most important system parameter because
it affects delivery capacity directly. Thus, it is useful to understand how the
system behaves when the number of vehicles changes.

To study the effect of fleet size, the baseline size of 10 is incremented by
10 in four scenarios. This results in five scenarios to compare. Parameters
other than AGV fleet size are kept constant across these scenarios. The used
fleet sizes during these runs are shown in Table 5.3.

The AGVs travel between floors using elevators in buildings A and B.
These elevators potentially constitute a bottleneck that limits the ability of
the vehicles to efficiently deliver carts around the hospital. Increasing the
fleet size can also increase elevator usage, which is why it is important to
study whether the lifting capacity can accommodate the needs of the AGVS.

Figure 5.7 shows that the average elevator usage relative to the number
of elevators increases as vehicles are added to the system. In the 10-vehicle
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Table 5.3: Varied parameter values in baseline scenario and scenarios 2-5.

Parameter Scenario

Baseline 2 3 4 5
AGV fleet size 10 20 30 40 50

configuration, the usage is low because a part of the transport orders are
not completed before the simulation period ends. If the 10-vehicle case is
ignored, the usage still grows as fleet size is increased. This makes sense,
because more vehicles can make it more likely that more elevators are in use
at the same time. As desribed in Chapter 4, the first load in the elevator
queue always uses the next available elevator when all elevators are in use.
If fewer elevators are in use at the same time, an elevator closer to the
calling site can be selected, which decreases traveling time and thus, elevator
usage is decreased. The usage grows asymptotically with fleet size, which is
why it is approximately the same in 30 and 50 vehicle configurations. The
differences between the usage percentages in buildings A and B are small,
though elevators in building A exhibit slightly higher use overall.

(a) Building A (b) Building B

Figure 5.7: Mean total elevator resource usage in buildings A and B against
AGV fleet size.

Adding more vehicles beyond 30 does not increase mean elevator usage
considerably because the mean number of AGVs in use does not increase
either. This is evidenced by Figure 5.8 showing the absolute AGV usage
against the fleet size. AGV usage is actually lower in 40 and 50 vehicle
configurations compared to a 30 vehicle configuration. The reason is that
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a larger vehicle pool provides better chances for the system controller to
select vehicles closer to carts waiting for pickup. This reduces traveling time
to pickup locations. Lower absolute AGV usage in the baseline scenario is
caused by the small number of 10 vehicles in the system.

Figure 5.8: Mean total AGV usage against fleet size.

The simulation model tracks the time AGVs and logistic workers must
wait after arriving at the elevator lobby until they can begin to enter the
elevator. Figure 5.9 illustrates the differences between waiting times in the
first five scenarios with mean and 90th percentile values. Increased elevator
usage translates to higher waiting times. While 10 vehicles result in an
average waiting time of around 4 s, the average is around 20 s in a 50 vehicle
configuration. Ignoring 10 % of the worst occurrences, the maximum waiting
time is 65 s in building A and 60 s in building B. The effect of fleet size on
elevator waiting time is analyzed in Section 5.4 in more detail.

Figure 5.9: Mean and 90th percentile of elevator waiting time in buildings A
and B.
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The simulation model collects time series of elevator queue sizes on each
floor in buildings A and B during simulation. The queue lengths include
both AGVs and logistic workers. The time series are used to calculate the
largest queue size at each time point in both buildings. Figure 5.10 shows
the average time series of the largest per-floor queue size in three scenarios.
It shows that increasing the fleet size also increases elevator queue sizes.
However, on average, the largest queue size stays reasonable throughout the
simulation period even with a 50 vehicle configuration.

90th percentile of the largest queue size in a 50 vehicle configuration is
shown in Figure 5.11. Using 50 vehicles, the queue size is 3 at most if 10
% of the largest values are ignored. Elevator lobbies at the hospital could
accommodate even larger queues but the results show that such queues are
rare.

Figure 5.10: Mean of the largest elevator queue size by time in buildings A
and B for three fleet sizes.

Figure 5.11: 90th percentile of the largest elevator queue size by time in
buildings A and B when fleet size is 50.

The number of AGVs in the system affects system performance greatly.
Insufficient capacity causes a quick buildup of order backlog on average, as
seen in Figure 5.12. Using 10 AGVs, carts accumulate in source locations in
a considerably faster rate than the vehicles can deliver them. The first tasks
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are created at 6.00, after which the order backlog begins to rise immediately,
ultimately reaching a size of around 500 tasks on average by 19.30. Even
though the last transport orders are created by 21.00, the drop in demand is
not enough to resolve the backlog before the end of the simulation period.

Figure 5.12: Number of incomplete AGV tasks against simulation time av-
eraged over the replications. Each line represents the average replication in
a scenario. See Figure 5.13 for a zoomed view of the curves from scenarios
with 30 or more vehicles.

Compared to the baseline scenario, using 20 vehicles shows a similar ac-
cumulation of carts until the demand drops. The highest average number
of incomplete cart deliveries is considerably smaller, however. Even though
20 vehicles is enough to resolve the average order backlog completely before
the end of the simulation period, the system struggles to keep the backlog in
check between hours 9-19.

Using 30 vehicles instead of 20 prevents the gradual increase in order
backlog during hours 8-16. Further increases in fleet size show diminishing
returns. The differences between 30, 40 and 50 vehicle configurations cannot
be seen in Figure 5.12 because of the large accumulation of carts in the base-
line scenario. Figure 5.13, on the other hand, shows these small differences
with a comparison of only scenarios having at least 30 vehicles. There is a
slight benefit from using 40 or more vehicles, which shows as lower peaks
in the number of incomplete cart deliveries during the system load spikes at
around 11.00, 13.00 and 16.00. 90th percentile also improves slightly during
these load spikes, as shown in Figure 5.14.
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Figure 5.13: The average number of incomplete AGV tasks against simulation
time for fleet sizes 30, 40 and 50.

Figure 5.14: 90th percentile of the number of incomplete AGV tasks against
simulation time for fleet sizes 30, 40 and 50.
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Raising the fleet size from 30 to 40 is a 25 % increase in vehicle capacity.
However, increases in capacity reduce the overall fleet usage, as shown in
Figure 5.15. Therefore, it may be difficult to justify increasing the fleet size
beyond 30 considering the small benefit that it provides during short peak
loads.

Figure 5.15: Mean relative AGV usage against fleet size.

An insufficient fleet size causes a gradual increase in the number of incom-
plete incomplete cart deliveries. This results in lengthy cart delivery times,
which is evident in Table 5.4. Using 20 vehicles, the cart delivery time is
over 60 minutes on average. This is a large improvement over the baseline
result, although it is still unacceptably high. Adding 10 more vehicles to
the system brings the mean delivery time down to an acceptable 15.6 min.
Further increases in capacity provide only small overall decreases in delivery
times through improved peak load performance. The difference in mean cart
delivery time between 30 and 50 vehicle configurations is approximately 8 %.

It is important that there are not too many deliveries that take signifi-
cantly longer to complete compared to a typical delivery. The box plot in
Figure 5.16 shows the variation in the delivery time against AGV fleet size.
Based on the figure, 25 % of cart deliveries take over 91.2 minutes to com-
plete if the system has 20 vehicles. Increasing the capacity to 30 vehicles not
only brings the median down but the variation is also considerably smaller.
Using 30 vehicles, 50 % of delivery times fall between 12.3 and 18.5 minutes.
Fleet sizes from 30 to 50 provide reasonable worse case delivery times.
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Table 5.4: Mean cart delivery time in five systems employing AGV fleets of
different size. The delivery time is rounded to three significant digits.

Fleet size Mean cart delivery time (min)

10 332
20 62.3
30 15.6
40 14.6
50 14.4

Figure 5.16: Box plot of cart delivery time against AGV fleet size. 50 % of
observations are included within the blue boxes and the red horizontal lines
in the middle are medians. The maximum length of the whiskers is 1.5 times
the interquartile range.

5.3.2 Vehicle velocity

The AGV models applicable for hospital logistics are different from those
used in many other applications, such as manufacturing. One of the differing
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characteristics is vehicle velocity. The simulation model in this thesis does
not assume that a specific AGV model is used. Therefore, it is important to
analyze how largely vehicle velocity affects system performance. The effect
is analyzed by comparing two scenarios that use unequal velocities.

The baseline velocity used in the studied scenarios is 1.00 m/s. In this
section, a scenario with vehicles traveling at the baseline velocity is compared
to a scenario with 20 % slower vehicles. Values of the varied parameters are
shown in Table 5.5.

Table 5.5: Parameter values different from the baseline in scenarios used to
study the effect of AGV velocity.

Parameter Baseline Scenario 3 Scenario 6

Fleet size 10 30 30
AGV velocity (m/s) 1.0 1.0 0.80

Most carts are transported through the corridors between support services
and the elevator lobby on the first floor in building A. It takes approximately
8 min for the AGV to travel this distance at the baseline velocity of 1.00 m/s.
Based on the results in the previous section, this travel time is approximately
half the cart delivery time in a 30-vehicle system. Thus, changes in vehicle
speed are expected to affect delivery speed considerably.

As shown in Figure 5.17, decreasing vehicle velocity from 1.0 m/s to 0.80
m/s increases average cart delivery time from 16 min to 23 min when there
are 30 vehicles in the system. The relative increase is 46 %. 90th percentile is
increased from 22 min to 34 min, which is a 49 % increase. Thus, a velocity
of 0.80 m/s cannot produce feasible delivery times in a 30-vehicle system.
The system performance is rather sensitive to changes in vehicle velocity
because decreasing velocity by 20 % increases delivery time by 46 % in this
comparison. As was to be expected, traveling horizontal distances accounts
for a major part of the delivery time. Figure 5.18 also shows the decline in
system capacity when velocity is decreased by 20 % from the baseline. On
average, there are many more undelivered carts during the peak load hours
around midday.
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Figure 5.17: Cart delivery time statistics when AGV velocity is 1.0 m/s and
when it is 0.80 m/s. The fleet size is 30 in both scenarios.

Figure 5.18: Number of incomplete cart deliveries over time when AGV
velocity is 1.0 m/s and when it is 0.80 m/s. Fleet size is 30 in both scenarios.

5.3.3 Logistic workers

The AGVS is not the only material transportation system at the hospital.
Some items are delivered by logistic workers who also use the same elevators.
Therefore, it is important to study if an increase in logistic worker activity
has adverse effects on AGVS performance. These effects and their impact
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are studied in this section. This analysis is carried out by comparing two
scenarios, one of which has a 25 % higher logistic worker activity compared
to baseline.

Logistic worker inter-arrival times to buildings A and B are modeled as
exponential distributions with mean inter-arrival times as input parameters.
One of the scenarios used for analysis in this section uses the baseline inter-
arrival times. The mean inter-arrival times are 20 % lower in the other. Both
scenarios use 30 AGVs. Table 5.6 shows the parameter value differences
between the baseline and these two scenarios.

Table 5.6: Parameter values varied in scenarios used to study the effect of
logistic worker activity.

Parameter Scenario

Baseline 3 7
Fleet size 10 30 30

Mean worker inter-arrival time (building A) (s) 120 120 96.0
Mean worker inter-arrival time (building B) (s) 111 111 88.8

Figure 5.19 shows cart delivery time statistics when the mean inter-arrival
times are at their baseline and when they are reduced by 20 %. The statistics
show that the AGVS is not sensitive to changes in logistic worker arrival vol-
ume. The 20 % reduction in the mean inter-arrival time increases mean and
median cart delivery time by approximately 1 %. Worst-case performance
is affected slightly more but the increase in the 90th percentile is also small,
about 2 %.

Figure 5.20 shows how the difference in the mean inter-arrival time be-
tween the two scenarios affects the number of incomplete cart deliveries by
the time of the day. There are small differences in the mean numbers through-
out the day. However, the differences are mostly indistinguishable, which is
expected based on the small difference in mean cart delivery times.
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Figure 5.19: Cart delivery time statistics when mean logistic inter-arrival
times in buildings A and B are equal to the baseline values and when they
are reduced by 20 %. Fleet size is 30 in both scenarios.

Figure 5.20: Cart delivery time statistics when mean logistic inter-arrival
times in buildings A and B are equal to the baseline values and when they
are reduced by 20 %. Fleet size is 30 in both scenarios.

5.3.4 Transport order schedule

As described in Chapter 4, the transport order schedule input to the simula-
tion represents the daily demand for cart deliveries. The baseline schedule is
assumed to represent this demand realistically. While the simulation model
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includes a degree of uncertainty in transport order times, the order time dis-
tribution is the same across simulation runs with a given input order schedule.
Thus, it is important to study how a heavier schedule affects system perfor-
mance. For example, if the system implementation plans indicate that it is
impossible to maintain the assumed schedule in practice, it is useful to know
how a heavier workload affects the system. The effect of such a schedule
is studied in this section. The baseline schedule is referred to as ”baseline
schedule” and the heavier schedule as ”heavy schedule”.

The hypothesis is that the system performs worse if the total demand is
distributed over a smaller period of time and if there are large variations in
demand during this period. The transport order schedule is characterized
by the distribution of the expected number of sent carts over time. The
expected numbers of sent carts per hour in both baseline and heavy schedules
are shown in Figure 5.21. The total number of sent carts are the same in
both schedules but the load is less balanced in the heavy schedule. Highest
load peaks are larger and the shape of the distribution is more narrow. In
the baseline schedule, orders are created between hours 6 to 21. Whereas in
the heavy schedule, only a small percentage of orders are created between
hours 6 to 7 and the last orders are created before 20.00.

(a) Baseline schedule (b) Heavy schedule

Figure 5.21: Distribution of the expected number of sent carts by the hour
of the day. Subfigure (a) shows the baseline distribution and the heavy
distribution used in scenario 8 is shown in Subfigure (b).

Scenario 8 is run using the heavy schedule. It is compared to scenario
3, which is run with the baseline schedule but otherwise equal input. The
differences to the baseline parameter values in these scenarios are shown in
table 5.7.
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Table 5.7: Parameter values different from baseline in scenarios 3 and 8,
which are run with different transport order schedules. Baseline values are
also shown.

Parameter Baseline Scenario 3 Scenario 8

Fleet size 10 30 30

The effect of the heavy schedule on cart delivery time compared to base-
line schedule is shown in Figure 5.22. In comparison with the baseline, the
heavy schedule results in higher cart delivery times. The increase in both
the average and the 90th percentile is about 28 %. Even though the total
number of transported carts are the same in both scenarios, concentrated
workload and large variations in demand decrease system performance sig-
nificantly. However, the heavy schedule allows sufficient performance, with
an average delivery time of about 20 min and a 90th percentile of about 29
min. Typically, cart delivery time is under 20 min based on the median in
the heavy schedule scenario.

Figure 5.22: Cart delivery time statistics in the scenario using the baseline
transport order schedule and another using the heavy schedule. Fleet size is
30 in both scenarios.

Figure 5.23 shows the mean number of incomplete cart deliveries over time
in both scenarios compared in this section. The large variations in demand
in the heavy schedule and the shorter window for deliveries throughout the
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day clearly increase the number of undelivered carts. Peak average is around
48 in the heavy scenario and in the baseline scenario it is about 33. Note
that using the baseline schedule, most of the sent carts are assigned an AGV
immediately on average, because there are 30 vehicles to select from. At
around 11.00, there are a few carts waiting for vehicle assignment on average.
In contrast, there are many more carts waiting for vehicle assignment in
the heavy scenario. At the same peak load moment at 11.00, there are 48
undelivered carts on average. This means that there are 18 carts waiting for
an AGV to be assigned to them.

Figure 5.23: Mean number of incomplete cart deliveries over time with two
different transport order schedules. AGV fleet size is 30 in both scenarios.

Based on the comparison between the baseline scenario and the heavy
scenario, the distribution of the cart delivery demand affects system perfor-
mance greatly. Balancing the total load over the day with as small variations
as possible reduces delivery times significantly. A perfectly balanced load is
unlikely to be possible in practice, though.

5.3.5 Number of elevators

There are four elevators dedicated to logistics in both elevator groups in
buildings A and B at OUH. Under normal conditions, all elevators are in use.
However, it is possible that some of them are down because of a breakdown
or a scheduled maintenance, for instance. To evaluate the performance of
the AGVS under a decreased elevator capacity, the simulation model is run
using only three elevators per elevator group. This reduces the number of
available elevators by 25 % compared to the baseline.
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The differences in input parameters values in the compared scenarios are
shown in table 5.8. Scenarios 9 and 10 are run using 25 vehicles. Scenario 9
uses 4 elevators per elevator group and scenario 10 has 3 of them. Scenario 11
is run with 30 vehicles and 3 elevators per group to analyze if increasing the
fleet size can compensate for the reduced performance caused by the smaller
lifting capacity.

Table 5.8: Parameter values different from baseline in scenarios 9, 10 and 11,
which are run to analyze reduced elevator lifting capacity.

Parameter Scenario

Baseline 9 10 11
Fleet size 10 25 25 30

Number of elevators (building A) 4 4 3 3
Number of elevators (building B) 4 4 3 3

Cart delivery times in the three scenarios compared in this section are
shown in Figure 5.24. When there are 25 vehicles and 4 elevators per eleva-
tor group in the system, the average cart delivery time is approximately 20
min. Decreasing the number of elevators per group from 4 to 3 increases the
average cart delivery time to 27 min. The 90th percentile increases from 31
min to 44 min. The decrease in lifting capacity decreases AGVS performance
greatly. However, increasing the fleet size from 25 to 30 compensates for the
reduced lifting capacity in terms of cart delivery time.
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Figure 5.24: Cart delivery time statistics in scenarios with different fleet sizes
and elevator group sizes.

Figure 5.25 presents the mean number of cart deliveries against the time
of the day in the three considered scenarios. The figure shows that de-
creasing the lifting capacity by 25 % in a 25-vehicle system does not affect
performance significantly during low load. For example, the mean number
of incomplete deliveries are nearly equivalent between hours 6-10 in both
25-vehicle scenarios. However, the insufficiency in lifting capacity shows dur-
ing high load situations. For example, without reduction in the number of
elevators, a 25-vehicle system is able to resolve the transport order backlog
faster in the hours after the high load spike at 13.00. In comparison with
the 25-vehicle scenarios, the 30-vehicle scenario with reduced lifting capacity
shows the best performance in terms of number of incomplete cart deliveries.
Even with the reduced lifting capacity, the 30-vehicle scenario performs the
best during high load in this regard.
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Figure 5.25: Mean number of incomplete cart deliveries over time in scenarios
with different number of elevators and vehicles. The varied parameters in the
scenarios are presented in the legend on the right.

While having 30 vehicles in the system compensates for the reduction
in lifting capacity, elevator waiting times are long compared to the waiting
times in the 25-vehicle systems. This is evident in Figure 5.26. The 90th
percentile is as high as 190 s in the 30-vehicle configuration. AGVs do not
mind waiting, but the long waiting time is not user friendly for the logistic
workers using the same elevators. Worst case waiting times are also rather
high in the scenarios with 25 vehicles and 3 elevators per group.

Figure 5.26: Elevator waiting time statistics in scenarios with different num-
ber of elevators and vehicles.
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Figure 5.27 shows the 90th percentile of the largest elevator queue size in
all the elevator lobbies in each building by time of the day. Like waiting times,
elevator queues become longer if the lifting capacity is reduced by 25 %. The
peak 90th percentile of the largest queue size is 6.5 in the 30-vehicle scenario.
Such queue sizes should be taken into account in the elevator lobby design
if the number of available elevators is often reduced. The 4-elevator scenario
with 25 vehicles clearly performs the best in this regard. The momentary
90th percentile is 2 at most in that scenario.

Figure 5.27: 90th percentile of the largest elevator queue size by time in
buildings A and B. Both logistic workers and AGVs are included. The varied
parameters in the compared scenarios are shown in the legend on the right.

It is possible that the long elevator waiting times and queue sizes in
situations with reduced lifting capacity are caused by the simple elevator
logic in the simulation model. An optimized algorithm would likely improve
lifting throughput during periods of high elevator utilization. However, based
on these results, keeping all 8 elevators functional is essential for the AGVS
performance.

5.3.6 Parking node capacity

The simulation model has two possible nodes at which vehicles can park. The
capacity ratio between parking node C and D is 0:100 in the baseline scenario
and all scenarios analyzed in the previous sections. This ratio means that all
vehicles park at node D. This section compares system performance in six
scenarios. One of them uses the baseline parking node capacity ratio of 0:100.
Other scenarios use varying ratios that make both parking nodes available.
The differences in input parameter values in the scenarios compared in this
section are shown in Table 5.9. All the scenarios are run using a fleet size of
25.
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Table 5.9: Parameter values different from baseline in scenarios used to com-
pare the effect of node capacity ratios between parking nodes C and D.

Parameter Scenario

9 12 13 14 15 16
Fleet size 25 25 25 25 25 25

Parking node capacity ratio 0:100 10:90 20:80 40:60 50:50 60:40

The effect of parking node capacity ratio on cart delivery time is shown
in figure 5.28. Using the baseline parking node capacity ratio between C and
D nodes provides an average cart delivery time of 20 min. 90th percentile is
31 min. The five other system configurations, which allocate idling vehicles
between both nodes in differing ratios, provide almost equivalent results.
The largest delivery times are seen using 40:60 ratio. The smallest average
and median are obtained with 10:90 ratio. However, 10:90 ratio provides the
same 90th percentile as 0:100 ratio.

Figure 5.28: Cart delivery time statistics in scenarios with different parking
node capacity ratios and otherwise equal input.

It appears that the system favors ratios, which allocate more vehicles to
node D rather than to node C. However, allocating at least some part of the
capacity to node C is better than not using it at all. The difference between
the smallest and the largest average delivery time between the scenarios
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compared in this section is just under 2 %. Therefore, the choice of ratio is
not important. Nevertheless, since the ratio of 10:90 provides the best results
in this comparison, this ratio is also used in estimating the feasible fleet size
in the next section.

5.4 Feasible fleet size

The results in Section 5.3.1 show that the AGV fleet size has a significant
effect on system performance. Thus, the feasibility of the system is also
affected and it is important to find the fleet size that allows feasible operation.
The sizes studied in Section 5.3.1 are 10 apart from each other so the results
cannot provide an exact feasible range. A more detailed analysis is thus
necessary. The lower and upper bound of the feasible fleet size are presented
in this section.

The minimum feasible fleet size is determined by comparing seven sce-
narios with all fleet sizes in range 24-30. The exact numbers are shown in
Table 5.10. The results of the previous section show that out of the studied
parking node ratios, a ratio of 10:90 between nodes C and D provides the
best AGVS performance. Therefore, the scenarios studied in this section are
also run with this ratio.

Table 5.10: Parameter values different from baseline in scenarios used to
estimate the feasible fleet size.

Parameter Scenario

12 17 18 19 20 21 22
Fleet size 25 24 26 27 28 29 30

Parking node
10:90 10:90 10:90 10:90 10:90 10:90 10:90

capacity ratio

Running the seven scenarios with varying numbers of vehicles produces
the cart delivery time statistics shown in Figure 5.29. 25 vehicles is enough
to meet the requirement of 20 min for the average delivery time. However,
the 90th percentile is slightly over the limit of 30 min. Using 26 vehicles
instead drops the 90th percentile to 26 min. Therefore, the fleet size must
be 26 at minimum for cart delivery times to be feasible.
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Figure 5.29: Cart delivery time statistics in scenarios with different fleet
sizes. Parking node capacity ratio is 10:90 in all scenarios.

It would be sensible to think that the system would perform better the
more vehicles are used. However, Figure 5.30 shows an increasing trend in
the average elevator waiting time and the 90th percentile as the fleet size is
increased. The results on waiting times in Section 5.3.1 also show the same
trend even though the scenarios are run with slightly different parameters.
The performance requirements dictate that the average elevator waiting time
must be no more than 30 s and the 90th percentile must be 60 s or less for
the system to be considered feasible. Figure 5.30 shows that fleet sizes larger
than 32 violate the 90th percentile requirement.

Figure 5.30 shows that the median waiting time is exactly 0 in all cases.
This is surprising but explainable. A median of 0 means that most of the
time, a lifting request can be fulfilled using an elevator already on the same
floor. This makes sense because all of the scheduled deliveries are either
inbound or outbound from a first floor location. Also, the cart processing
locations on upper floors are close to elevator lobbies so the AGVs can likely
use the same elevator they arrived in to continue to their next location.
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Figure 5.30: Elevator waiting time statistics in scenarios with different fleet
sizes. Median is 0 in all scenarios.

Although adding more vehicles to the system improves delivery perfor-
mance, elevator waiting times are increased as a result. Fortunately, the
results in this section show that using a fleet size in range 26-32 allows all
requirements to be fulfilled.

5.5 Summary

Based on the simulation results presented in this chapter, the proposed AGVS
at OUH can operate feasibly. Feasible operation requires 26 vehicles at a
minimum given that the used parameters apply. However, the results also
show that elevator waiting times can become unfeasible if the fleet size is too
large. Thus, the feasible fleet size is better expressed as a range rather than
a lower bound. Based on the results, the feasible range is 26-32 vehicle.

The results show that cart delivery times decrease as more vehicles are
added to the system. However, increasing the fleet size beyond the feasible
range has diminishing returns. Increasing the fleet size from 20 to 30 de-
creases the average delivery time by 75 % while a fleet size increase from 30
to 50 decreases the average by a mere 9 %.

The optimal usage of the two available parking nodes was also evaluated
in this chapter. This was done by varying the capacity ratio between the
two possible parking nodes. The results show that the ratio has a minimal
effect on system performance. The differences in delivery times are under
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2 % between the studied ratios. The best performance is achieved when
the capacity ratio between the parking nodes in buildings C and D is 10:90.
Using only parking node D provides virtually the same performance, though.

The sensitivity to changes in input data was evaluated as well. The dif-
ference in performance was compared using two transport order schedules.
One schedule was the baseline schedule and the other was a heavy schedule
with larger load peaks and faster rate in delivery requests. Although sys-
tems in both configurations made the same deliveries during the simulation
period, the heavy schedule caused delivery times to suffer by 28 %. Therefore,
distributing the load evenly is crucial for the performance of the system.

The performance of the system can be greatly affected if parameter values
representing physical qualities change. Increasing the frequency of logistic
worker arrivals in the system by 20 % has almost an imperceptible effect. On
the other hand, decreasing vehicle velocity by 20 % can increase the average
delivery time by 46 %. Thus, the results are rather sensitive to the selected
vehicle and the associated system. The feasible fleet size is largely affected,
if the chosen system cannot attain the assumed average velocity of 1.0 m/s.

The sensitivity analysis also shows that the availability of the four ele-
vators in each building are essential for the AGVS performance. Disabling
one elevator in both buildings increases the average elevator waiting time
by approximately 225 % in a 25-vehicle system. The average cart delivery
time is also increased by 36 %, which can be compensated with a larger fleet,
however. Compensating with a larger fleet causes an even higher load on the
elevators but at least cart delivery time requirements would be satisfied.
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Conclusions

The objective of this thesis was to study the feasibility of the proposed au-
tomated guided vehicles system at Oulu University Hospital. The study was
carried out by analyzing system performance through a discrete-event simu-
lation model that represented the system. The simulation results show that
feasible operation is possible. A fleet size of 26-32 vehicles allows feasible
operation in all aspects considered in this thesis.

Although this thesis shows that technical feasibility of the system is at-
tainable, financial aspects are not considered. Financial viability is also im-
portant to analyze before an investment decision is made. Fortunately, the
results of this thesis can be used for evaluating the economics of the system.
For example, the estimated feasible fleet size can be used for assessing the
costs of the vehicle units.

Although the simulation model in the thesis is considered a reasonably
accurate representation for the problem at hand, the results can be slightly
biased. For example, the model does not take battery charge levels into
account, although the omission is justified because of low vehicle utilization
in this case. Moreover, the simulation model could be refined to take AGV
breakdowns into account. There also exists some uncertainty in the results.
Since the system performance is greatly affected by the vehicle velocity, the
estimated feasible fleet size range is valid only if the chosen system can attain
the assumed average velocity used in the simulations.

Further research on the topic could include optimization of the system.
The control rules used in the thesis model are simple and not designed for
the absolute best performance. Thus, it would be interesting to study how
the lower bound on the feasible fleet size range could be decreased through
optimized control logic in vehicle selection and dispatching rules. Optimiza-
tion of the system design in general could be useful during implementation
of the system and over its lifetime.

61



CHAPTER 6. CONCLUSIONS 62

The results in this thesis apply only to single-load vehicles. Further re-
search on the subject could include the use of multi-load vehicles and study
their benefits in comparison to single-load vehicles. The performance of the
system could also be compared to other types of material handling systems
through similar simulation approaches. This could include financial viability
analysis as well.
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