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Abstract

Public research funding programs advance innovative research and produce significant
societal benefit through the development of breakthrough technologies. However,
these programs have in general been criticized for inefficient allocation of funds,
hampering the advancement of breakthroughs. Some of the hypothesized shortcom-
ings of these programs include the absence of a holistic portfolio approach to risk
management, excessively risk-averse selection of individual projects, and not funding
projects conditionally in multiple stages.

In this thesis, we develop a stochastic optimization model for formulating risk-
informed research funding policies to support the development of breakthrough
technologies. We include an option to abandon projects in the model, granting the
decision maker a possibility to experiment with a large set of projects by launching
them for a set period of time, and committing resources only to those which hold the
most promise after initial experimentation. Furthermore, we introduce concentration
risk by allowing different project sizes and we model portfolio level risk using the
Value-at-Risk framework.

Our numerical results are aligned with the aforementioned criticism towards re-
search funding programs. The results show that there can be a clear trade-off
between supporting the development of breakthrough technologies and research in
a more general sense. In light of our numerical results, conditional project funding
is important in risk-informed development of breakthrough technologies. However,
conditional funding of small projects did not function as a risk mitigate due to the
stiffness of the decision model. Rather, we found that more risk-seeking funding
policies can be formed by increasing the duration and share of the conditional funding.
Nevertheless, conditional funding of large projects can be a tool for risk management
and promote the development of breakthrough technologies.

Keywords Project portfolio optimization, portfolio decision analysis, risk constrained
optimization, Value-at-Risk, real option, stochastic optimization
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Tiivistelmä

Tutkimusrahoitusohjelmat edistävät innovatiivista tutkimusta ja tuottavat merkit-
tävää yhteiskunnallista hyötyä läpimurtoteknologioiden kehityksen kautta. Näitä
ohjelmia on kuitenkin yleisellä tasolla kritisoitu varojen tehottomasta allokoinnista.
Tehottomuuden takana oleviin puutteisiin on arvioitu kuuluvan muun muassa portfo-
lionäkökulman puuttuminen riskienhallinnasta, yksittäisten projektien ylivarovainen
valinta, sekä projektien rahoittaminen ilman väliarvointeja.

Tässä työssä kehitetään stokastinen optimointimalli läpimurtoteknologioiden kehittä-
miseen tähtäävien riskitietoisten tutkimusrahoitustoimintaperiaatteiden muodostami-
seksi. Malli sisältää reaalioption uudelleenarvioitujen projektien hylkäämiseksi, mikä
antaa päätöksentekijälle mahdollisuuden käynnistää iso joukko projekteja kokeilua-
jaksi ja siten sitoutua rahoittamaan vain lupaavimpia projekteja. Mallissa voidaan
tarkastella eri kokoisista projekteista aiheutuvaa keskittymäriskiä, jota mallinnetaan
portfoliotasolla Value-at-Risk kehikolla.

Työn numeeriset tulokset tukevat aiemmin esitettyä kritiikkiä tutkimusrahoitusohjel-
mia kohtaan. Tulokset osoittavat, että optimaalisten rahoitustoimintaperiaatteiden
muodostamiseen vaikuttaa vahvasti se, tavoitteleeko päätöksentekijä läpimurtotekno-
logioiden kehittämistä vai tieteellisen tutkimuksen edistämistä yleisemmällä tasolla.
Numeeristen tulosten valossa projektien ehdollinen rahoittaminen on tärkeä osa
riskitietoista läpimurtoteknologioiden kehittämistä. Pienten projektien ehdollinen
rahoittaminen ei kuitenkaan vähentänyt rahoitusohjelman riskitasoa mallin rajoitus-
ten ja jäykkyyden takia. Päinvastoin, ehdollisen projektirahoituksen lisääminen ja
pidentäminen nosti riskitasoa. Suurten projektien ehdollinen rahoittaminen osoittau-
tui keinoksi hallita rahoitusohjelmien riskitasoa sekä tukea läpimurtoteknologioiden
kehittämistä.

Avainsanat Projektiportfolio-optimointi, portfoliopäätösanalyysi, riskirajoitettu
optimointi, Value-at-Risk, reaalioptio, stokastinen optimointi
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1 Introduction

There is a widespread desire to foster innovative research, fueled by the anticipation
of developing new breakthrough technologies. These technologies may be based
on newly discovered physical or chemical phenomena, allowing the development of
novel products with profound and irreversible impacts on society. An illustrative
example of such groundbreaking discovery is the layered crystal structure utilized in
the modern lithium-ion battery, which is a pivotal component in all modern portable
consumer electronics and electric vehicles (Li et al., 2018).

Innovations leading to breakthrough technologies are exceedingly rare. Moreover,
it is typically impossible to know whether an early-stage research and development
(R&D) activity will result in such technologies. Hence, funding research in the hope
for breakthrough technologies is an inherently risky activity. As most funded research
fails to produce significant value, the justification for granting such funding can be
challenging (Goldstein and Kearney, 2020). Consequently, private companies often
avoid these risks by underinvesting in research and development of novel products
and ideas (Griliches, 1991). In addition, companies can face immense pressure
to generate profit in the short-term, while the development of new technologies is
in general a time-consuming process. Thus, taking on an overly ambitious R&D
activity and failing to demonstrate results in the short-term can result in losing the
relevant stakeholders’ trust and even lead to the company’s downfall. Conversely,
the willingness of a company to risk its short-term profit is found to be one of the
key drivers for innovation (Tellis et al., 2009).

These issues emphasize the importance of public research funding. In fact, the tremen-
dous positive impact of breakthrough technologies to national economic growth has
driven the establishment of public research funding programs targeted at ground-
breaking discoveries (Sharpe et al., 2013). However, more knowledge is needed to
understand what kind of conditions and policies help make such discoveries (Grilli
et al., 2018). Typically, funding programs attempt to recognise and invest in highly
promising research activities, whether in public or privately owned research de-
partments. For example, the Research Council of Finland has launched a research
funding program BioFuture2025 to promote scientific breakthroughs for curbing
climate change and the overuse of natural resources. This is pursued by seeking novel
research ideas and opportunities, and by granting funding for ambitious and even
risk-taking research activities (Research Council of Finland, 2017). Nevertheless,
public research funding agencies still face the same challenges of balancing between
potential high impact discoveries and risk of no return as do private companies
(Goldstein and Kearney, 2020). They also suffer from the pressure of demonstrating
short-term results discouraging the funding of risky research (Franzoni et al., 2022).
There has been a growing criticism towards public research funding programs for
their shortcomings in addressing these issues (Buzzacchi, 2022).

R&D activities are typically completed in the form of projects. Consequently, there
exists many decision-making and management frameworks, not to mention full-blown
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optimization models for efficient R&D project selection and management (Elbok and
Berrado, 2017; Gupta et al., 2022). Various organizations in the private sector have
successfully implemented these sometimes very case specific and complicated models
and frameworks. Furthermore, empirical evidence suggests that active management
practices are linked to increased success of radical innovation (O’Connor et al.,
2008). Yet, such direct project management approaches which are commonplace in
the private sector are not usually seen in use in public research funding programs
(Goldstein and Kearney, 2020). Rather, these programs tend to have minimal
influence on the research projects after initial funding is granted.

There exists some empirical evidence of effective active project level risk management
in public research funding programs. One example of such risk management is the
real option of evaluating and abandoning projects, which can reduce the risk of
committing resources to underperforming projects. This frees resources for other
more promising projects. However, there is little information on the use of such real
options as portfolio level risk mitigants in public research programs. (Goldstein and
Kearney, 2020)

The aforementioned abandonment option has been studied extensively in frameworks
where the goal is to maximize the expected value of a project portfolio and it has
been showed to hold significant value in certain conditions (see e.g., Santiago and
Vakili, 2005). By utilizing abandonment options, Vilkkumaa et al. (2015) explored
the shaping of long-term funding policies with the aim of fostering breakthrough
technologies. They found that when the objective was to maximize the number of
breakthrough technologies in the long-term, the abandonment option did indeed
have significant value. In these settings, an optimal policy was to launch a large
number of projects but to abandon a high portion of them later. This policy has
similarities to the "spray and pray" strategy familiar from the venture capital industry
(Lerner and Nanda, 2020). However, the policy was accompanied by the trade-off of a
decreased expected portfolio value when compared to a funding policy aimed purely
at maximizing this expected value. This was partly caused by the cost of evaluating
many projects and partly by the resources wasted on abandoned projects. Yet, even
without resulting in breakthroughs, R&D projects can still produce significant value
by merely contributing to the general scientific knowledge, which can be of use in
future research. Thus, the outcomes stemming from such basic R&D activities also
play an important role in fostering breakthrough technologies.

In settings such as those in Vilkkumaa et al. (2015) where the number of available
projects is large and the projects are independent, risk is not of significant concern
due to diversification benefits. However, this is not always the case. First, projects
can be large, leading to fewer funded projects. Second, projects can have significant
interdependencies. For example, very narrowly focused national funding policies have
been gaining popularity in recent times (Janssen, 2019), which could result in funding
highly correlated projects which all depend on the state of the underlying industry.
However, funding agencies do not generally consider portfolio risk holistically when
choosing research projects. Instead, the "one by one" method is typically used, i.e.,
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projects are scored individually, and the best ones are chosen, which can lead to
favouring less risky projects and aggravate the problem of being too risk-averse on
the portfolio level (Franzoni et al., 2022).

In this thesis, we explore with a decision model how funding agencies could approach
funding risky research projects to pursue breakthrough technologies whilst demon-
strating short-term results. Furthermore, we study how active project management,
such as the abandonment option, could be utilized to manage the portfolio level risk
in the same context. We investigate these questions by extending the quantitative
decision model of Vilkkumaa et al. (2015). We allow the decision maker to choose
between funding projects with different risk levels, caused by the projects’ varying
sizes. We formulate a 3-stage stochastic optimization problem with the objective
to maximize breakthrough technologies while using the Value-at-Risk framework
to measure the short-term riskiness of the portfolio. We solve the Pareto front
using the sample average approximation approach together with multi-objective
optimization and analyze the Pareto efficient solutions both with and without an
abandonment option. Furthermore, we analyze alternative project selection and
management strategies, and in the process, we provide insight into key principles for
shaping risk-informed funding policies for developing breakthrough technologies.

The rest of this thesis is organized as follows. In Chapter 2 we review the related
literature covering topics such as portfolio decision analysis and risk constrained
project portfolio optimization. In Chapter 3 we formulate the optimization model to
guide the shaping of risk-informed funding policies. In Chapter 4 we present a method
for solving the formulated optimization problem and derive needed analytic results.
In Chapter 5 we analyze the numerical results and heuristic portfolio management
strategies, the effectiveness of which are illustrated with Monte Carlo simulation. In
Chapter 6 we discuss the results, consider ideas for future research, and conclude the
findings.
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2 Background

2.1 Portfolio decision analysis

The strategic allocation of resources to competing activities stands as one of the
foremost considerations all organizations must address. Such activities are often
completed in the form of projects, geared towards achieving the organizations’ set
objectives. A project can be defined as a transitory plan for reaching a preset goal
and is typically accompanied by resource constraints such as budgets and deadlines.
These constraints force organizations to pursue only a selected number of projects
as there are usually more proposals for projects than available resources. Moreover,
completing a project successfully and in a timely manner requires the ability to
effectively manage these scarce resources in terms of coordinated efforts.

Portfolio management is the area of expertise concerned with the efficient allocation of
resources across a collection of investments. In a holistic sense, portfolio management
can be seen to cover all related aspects of this process such as the identification
of different investments alternatives, the selection of the most promising ones, the
distribution of resources to the ones selected, the monitoring of the investments, and
all subsequent adjustments to the previous decisions (Salo et al., 2023). Like typical
financial instruments such as stocks and bonds, projects can be viewed as investments
from which the investor expects to obtain future benefits. As with practically all
investments, these future benefits are uncertain as a project’s outcome may fall short
of initial expectations. Consequently, handling risks play a pivotal role in managing
a portfolio of projects.

Portfolio management appears most often in the context of managing traditional
financial portfolios consisting of stocks and bonds. However, the field of project
portfolio management has emerged especially in contexts such as R&D, IT and
construction (Elbok and Berrado, 2017). There are profound differences between
these two contexts. To begin with, most projects are indivisible and must therefore
be considered as lump investments. Moreover, projects are temporary endeavors
which, in some cases, must be completed subject to time constraints.

Second, observing an ongoing project’s status and estimating the project’s future
value is not trivial. It may require a tremendous amount of effort from a team
of experts and multiple well-chosen criteria to understand the project and all the
uncertainties affecting its future outlook (Rode et al., 2022). Moreover, as projects
are unique, there is rarely sufficient historical data which could be used as a reference
in decision making. In contrast, the prices of typical financial instruments are readily
available in the stock market without cost, and they can be observed in an almost
continuous manner. Furthermore, even though similar uncertainties hold as with
projects, there exists a significant amount of historical data on financial asset prices
which can be used together with well established statistical methods to estimate the
behaviour and risk-return characteristics of future prices.
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A mathematical approach to portfolio management emerged first in the 1950s with
the introduction of the modern portfolio theory (Markowitz, 1952). The theory was
based on the idea of maximizing the expected return of a portfolio of financial assets
while having a quantifiable risk constraint. During the same period of time, the
issue of effective project portfolio selection also emerged as an important decision
problem with the need for systematic ways to evaluate and compare different project
opportunities (Mottley and Newton, 1959). To tackle these issues, the discipline of
portfolio decision analysis (PDA) started to form.

Defined formally, PDA is the discipline focusing on improving methods for selecting
a subset of discrete objects from a wider set of alternative whilst taking into consid-
eration the relevant uncertainties, constraints, and the decision maker’s preferences
(Salo et al., 2011). The tools employed in PDA often originate from the field of
decision analysis, as PDA problems can be seen as extensions of conventional decision
problems. In this context, the decision maker is allowed to choose not only on
a single choice but on multiple selections from a large set of alternatives. This
can often make the problem much more complicated, as aspects such as non-linear
project dependencies and various uncertainties often require modelling on portfolio
level (Micán et al., 2020). Furthermore, the curse of dimensionality emerges in
multiselection decision problems. For example, there is only 100 ways to choose one
project out of a set of 100 options. In contrast, when the decision maker is allowed
to pick 5 projects, the number of distinct choices grows to (100

5
) or roughly 75 million.

Thus, analysing all possible options one by one is often infeasible.

According to a recent review on PDA research, uncertainty and risk were identified
as some of the key challenges in many PDA problems (Liesiö et al., 2021). The
typical approaches for tackling uncertainties in PDA problems are based on classic
probability theory and include methods such as decision trees and Monte Carlo
simulation. However, approaches such as fuzzy logic and scenario modeling are
also well established. In their review, Liesiö et al. (2021) also list out methods
used for managing risk such as robust optimization, worst-case analysis, concave
utility functions, and constraining risk-measures. Furthermore, they state that the
availability of data or access to expert judgement are essential factors in determining
to what extent uncertainties can be modelled. As the number of projects can be
vast, the task of doing a detailed analysis, perhaps including a thorough probability
assessment on each project can be overwhelming.

Another persistent challenge in many applications of PDA is that it can be hard
to elicit the decision makers’ preferences. There may be multiple decision makers
who have different preferences for to the various objectives, including acceptable
level of uncertainty. Typical methods for tackling these challenges are different
preference elicitation techniques and multi-attribute value theory (see e.g., Gasparini
et al., 2022). Often, the top management in organizations makes the final resource
allocation decisions. Thus, to foster robust decision processes, it is important that the
theories and methods used in PDA are transparent, understandable, and presentable.
Furthermore, having a well-defined decision process makes structured evaluation of
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past decisions possible (Salo et al., 2011).

2.2 Related literature

2.2.1 Funding innovative research

Sharpe et al. (2013) characterize breakthrough technologies as revolutionary innova-
tions based on new, underexplored, or untapped physical, chemical and biological
phenomena, resulting in significant and permanent changes through enhancing ex-
isting products or giving rise to new ones. The concept of exceptionally excellent
R&D results producing immense value is a more widespread phenomena and is
encapsulated by varying terms such as radical, disruptive, or high-risk innovation
(see e.g., Govindarajan and Kopalle, 2004). However, studies on these topics have
mostly come in the form of empirical examinations.

Vilkkumaa et al. (2015) studied the fostering of breakthrough technologies by mod-
elling research funding policies quantitatively. In their study, they examined the
differences of optimal funding policies when the objective varied between maximizing
the expected value of a project portfolio and the number of breakthrough technologies.
They considered these technologies to stem from rare exceptionally excellent projects
defined by an excellence threshold on the projects’ ex-post values. They showed
that there can be a significant trade-off between these two objectives, and that the
real option of evaluating and abandoning projects is valuable especially in uncertain
conditions where the values of the projects become more precise quickly after the
initial launch. They propose that breakthrough technologies can be best fostered
by experimenting with a large set of projects and committing resources only to the
projects that seem promising after initial experimentation.

Klingebiel and Rammer (2011) studied the effects of breadth, uncertainty, and
selectiveness in the context of promoting innovation using data from 1500 German
companies. In-line with Vilkkumaa et al. (2015), they found that selecting a broad
set of projects is particularly beneficial in uncertain conditions and with the option
to abandon projects. The study of O’Connor et al. (2008) covered the management
practices of large established firms by collecting data from 85 radical innovation
efforts. They revealed that the use of real options such as the option to evaluate
and abandon projects has a positive effect on radical innovation success, further
supporting previous findings.

Goldstein and Kearney (2020) studied the project management approaches used in
ARPA-E, a governmental research funding agency in the US. They found that real
options, such as the options to abandon, contract, and expand project budgets and
timelines were valuable especially when projects performed poorly, as this reduced
the risk of committing funding to weakly performing projects. This suggests that
active management could be used effectively in the context of project portfolio risk
management. However, they did not analyze the portfolio effects of the real options.
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Furthermore, they note that the management decisions on individual projects could
be explained in more detail if considering the whole portfolio view.

The aforementioned findings are loosely in agreement with the general guidelines
provided by Lerner (2009), who suggests that publicly funded programs supporting
entrepreneurial activities should be sufficiently preserving while still holding the
option to abandon failing activities. Too uncertain or short-term funding can, on the
other hand, encourage risk-averse research and result in a loss of motivation (Manso,
2011; Heinze, 2008). This was also recognised by Franzoni et al. (2022) who examined
reasons behind the bias against risky research. The authors hypothesize several
reasons for this and propose ideas that support risk-taking research such as diverse
funding boards, prizes for achieving breakthroughs, funding projects conditionally in
multiple stages, and the inclusion of a portfolio view in research project portfolio
selection.

Buzzacchi (2022) further discusses the inefficiencies in the allocation of funds by
public research funding programs. The prevailing project selection strategy is the
one by one approach, where project proposals are evaluated individually and the
top-ranked ones are chosen until the budget is depleted. Funding agencies also tend
to neglect the benefits of diversification, leading to insufficient support for risky
research and an undesirably low level of risk aversion. Moreover, conditional project
funding remains underutilized, even though it is widely adopted by private investors
in the venture capital industry.

2.2.2 Risk constrained project portfolio selection

Project portfolio risk management has been studied extensively across various fields
and contexts, also covering the aspect of optimal project selection (Micán et al., 2020).
Risk constraints are included in portfolio selection problems for multiple reasons.
First, regulation may impose limits on the allowed amount of risk or acceptable
risk budgets (Baule, 2014). Second, the realization of risky outcomes could inflict
significant harm to the underlying organization so that a risk-informed decision maker
must enforce a risk constraint. Existing studies on project selection problems have
considered various risk measures such as the variance, semi-variance, Value-at-Risk
(VaR), Conditional-Value-at-Risk (CVaR), and Gini coefficient (Huang et al., 2014;
Hong et al., 2023; Tofighian et al., 2018; Dixit and Tiwari, 2020; Marcondes, 2019).
Next, we briefly discuss a few closely related studies on risk constraints in project
selection.

Gemici-Ozkan et al. (2010) present a multi-stage decision analysis framework with an
abandonment option for selecting a R&D portfolio for a semiconductor manufacturer.
They start by quantifying experts’ market foresight and qualitative assessments to
build a scenario space from which they generate scenarios by sampling. As their
model contains multiple decision stages, they use conditional sampling to generate a
scenario-tree. This type of scenario generation is also known as nested sampling and
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is used when modelling multi-stage decisions or random events correlated through
time. The authors conduct the multi-stage stochastic optimization routine, in which
the expected income is maximized over the generated scenarios. They use a modified
Gini coefficient to constrain the total portfolio risk which combines the individual
projects’ risk measures with a linear function instead of a non-linear one. The authors
justify this choice by stating that modeling the true Gini coefficient on the whole
portfolio level would have led to a too cumbersome model. The Gini coefficient is a
measure of dispersion originally considered as a measure of income equality, but it is
also popular risk-measure in different contexts (Yitzhaki and Schechtman, 2013).

Hall et al. (2015) propose a framework for project portfolio selection in which the
underlying project return distributions are not explicitly known, although some
descriptive statistics of the distributions are available. They justify this choice of
modelling uncertainty by remarking that projects are unique and non-recurring. The
authors propose a new performance measure called the entropic underperformance
riskiness index (URI). They define it as the reciprocal of the Arrow-Pratt absolute
risk aversion coefficient for a decision maker who is indifferent between uncertain
portfolio returns and the certainty equivalent of these returns given that this certainty
equivalent is above a preset threshold. They proceed to minimize this performance
measure, which coincides with minimizing risk while achieving the target certainty
equivalent.

Tofighian et al. (2018) develop a multi-period portfolio optimization model, in which
a deterministic budget is allocated in each time period to a selected number of
projects with the possibility of investing left over budget to a risk-free asset. They
model the revenues of the projects as normally distributed random variables and
constrain the portfolio risk with VaR constraint. The model includes various project
interdependencies. For example, when the resources required by two projects are
similar, these resources can be shared between the projects to reduce the combined
project costs. The authors use a heuristic algorithm to solve the optimization model,
as they recognise that no analytical solutions are available due to the complexity of
the problem.

Kettunen and Salo (2017) study how uncertainty in project value estimates affects
the estimation of risk levels in project portfolio selection. They make connections
with the optimizer’s curse phenomenon, which states that in optimization problems
with uncertainty, the decision maker tends to choose alternatives for which the values
are overestimated, leading to post-decision disappointment (see e.g., Smith and
Winkler, 2006). They authors proceed to show that uncertain project values can
lead to biased Value-at-Risk estimates. Moreover, the inclusion of a risk constraint
to the selection problem can lead to an even larger bias, which grows when the risk
constraint is made stricter. Nevertheless, they illustrate that the use of a Bayesian
calibration approach is effective in removing the bias, and that this calibration can
be conducted with Monte Carlo simulation when closed-form posterior distributions
are not available.
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3 An optimization model for project selection

3.1 Model description

The optimization model presented in this section attempts to capture the key features
of the funding mechanism employed by typical public research funding programs. In
each time period of the multi-period framework, a fixed budget is available for the
funding program to fund research projects. The length of the time periods describes
the frequency of decision making and could range anywhere from a few months to
several years. In the beginning of a funding period, a set of research project proposals
are introduced. These projects proposals can be of different sizes, i.e., some projects
need more resources than others. However, a larger, more resource demanding project
will also produce more value when completed. As the projects are uncertain, funding
large projects can introduce significant concentration risk and can thus be viewed as
riskier. On the other hand, funding a few well chosen large projects can also yield
great results.

The research projects are granted funding according to the projects’ estimated future
values. We assume that the future values of the projects are independent of each
other. These future values could refer to the possible benefits that the completion
of the projects may yield, whether monetary or purely intellectual in nature. Often
the two of these are strongly correlated with each other, although it can take a
considerable amount of time before scientific findings give rise to useful applications.
The estimated future values could be obtained for example by using quantitative
technology forecasting techniques (Walk, 2012).

The projects’ future values are realized after project completion. We assume that
the completion of a project requires funding for its full planned duration. The fact
that many research projects fail to produce the outcome that was expected is taken
into account in the projects’ future values. The decision maker is allowed a one-time
option to conduct interim evaluations to a selected subset of on-going projects. This
re-evaluation of projects comes at a known cost, and it will produce more accurate
estimate of the projects’ future values. However, the re-evaluation of projects will not
increase the projects’ values or affect them in any other way. Using the information
from the re-evaluations, the decision maker has the option to abandon some of the
projects which will free resources to other projects. Even if a project is abandoned
before completion, it may still produce some salvage value, for instance, in the form
of an early prototype (Roberts and Weitzman, 1981).

Breakthrough technologies can be seen to stem from excellent research projects with
exceptionally large future values. We define excellent projects similarly to that in
Öquist and Benner (2012), who considered the top 10% of most cited scientific papers
as breakthrough research. More formally, a project is considered excellent if its value
exceeds a certain threshold on the project’s prior value distribution as illustrated in
Figure 1 (a). The probability of this event is referred to as the level of excellence.
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However, the value of breakthrough technologies emerging from excellent research
projects is not assumed to be fully described by the projects’ future values. Instead,
we assume that the long-term value of breakthrough technologies is higher than any
value attainable by the future value distribution. Therefore, we seek to maximize
the number of completed excellent projects in the long-term.

Figure 1: Illustration of (a) the level of excellence and (b) portfolio risk level.

To model different project sizes, we assume that the larger the project the more
likely it is to result in a breakthrough technology. This reflects the assumption
that projects which require more resources are more ambitious and likely oriented
towards less explored research areas, where a significant breakthrough is more
probable. Furthermore, to reflect the finding that breakthrough research often
requires sustained long-term funding for success (Heinze, 2008), we assume that
breakthrough technologies emerge only from completed excellent projects. Thus, we
do not consider any salvage value.

We study optimal funding policies for maximizing the number of completed excellent
projects in the long-term while also producing satisfactory value in short-term. This
value is based on a period-wise target portfolio value which could be set by the
funding agency or by an external financier. This target portfolio value should be
achieved with high enough probability called the portfolio risk level (see Fig. 1b). In
other words, we include a short-term risk constraint by applying the Value-at-Risk
framework to the total portfolio value (see e.g., Best, 2000). Furthermore, as we aim
to find insight on optimal long-term funding policies for funding risky research, we do
not seek to find separate optimal funding policies for each funding period. Instead,
we aim to find the optimal stable funding policy, which performs the best on a long
time horizon. Such a funding policy is inspired by typical rigid decision-making
frameworks that public organizations have. To keep the model sufficiently simple
and the computational demands reasonable, we assume that all the different funding
periods are identical and do not change in time and that the projects have all equal
duration.
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3.2 Stable funding policy

In the beginning of each funding period t the decision maker receives a fixed number
of proposals for new projects denoted by the set Nt. The deterministic period-wise
resource consumption of project i ∈ Nt is denoted by ci and it is dependent on the
size of that project. However, the distribution of the projects’ period-wise resource
consumption is assumed to be stationary and not depend on the funding period t.
Thus, the resource commitment needed to fund all projects for one period would be
a constant cn =

∑

i∈Nt
ci.

In each funding period, the decision maker chooses to launch a subset Lt ⊆ Nt of
projects. The number of launched projects |Lt| may depend on the funding period.
The launched projects are selected so that the sum of the period-wise resource
consumption of these projects is a fixed amount cℓ =

∑

i∈Lt
ci. This can be considered

as the budget for launching new projects. All projects have the same duration d.
Therefore, a project launched in the beginning of funding period t will be completed
by the start of period t + d.

A subset Et ⊆ Lt of the launched projects are funded only until the re-evaluation
period q < d. The number of re-evaluated projects is

|Et| = min(
cε

ec

, |Lt|),

where cε is the budget allocated for re-evaluation of projects and ec is the fixed
evaluation cost of one project. The rest Lt\Et projects will be granted funding for the
whole d periods. Thus, if a project is launched conditionally (i.e., re-evaluated after
q periods) it will get funding until period t + q < t + d, after which it will proceed to
the re-evaluation process. This process is considered to take place within a short
time window between the end of period t + q and beginning of period t + q + 1.

From the set of re-evaluated projects, the decision maker decides which At ⊆ Et

projects are abandoned. The size of this set is denoted by |At|. The remaining Et\At

projects are granted funding for the rest d−q periods. The choice to abandon projects
is done so that the abandoned projects’ total resource consumption ca =

∑

i∈At
ci is

constant through different periods.

The total number of completed projects is the sum of projects which are granted
full funding and projects which are granted funding after the re-evaluation, or
(|Lt| − |Et|) + (|Et| − |At|) = |Lt| − |At|. Thus, the total resource commitment for
the projects launched in the beginning of funding period t is the sum of (i) resource
consumption for |Lt| projects for q periods, (ii) allocated re-evaluation cost for ε
evaluations, and (iii) the resource consumption of |Lt|−|At| projects for d−q periods.
This can be also formulated as qcℓ + cε + (d − q)(cℓ − ca) = dcℓ − (d − q)ca + cε.

The process of deciding which projects to launch, re-evaluate, and abandon is
illustrated in Figure 2. This decision, the stable funding policy, can be summarized
with the four decision variables (cℓ, cε, ca, q). These decision variables are the same
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Projects 
are rejected

Projects 
are launched
conditionally

Projects 
are granted full

funding

Projects 
are continued

Projects 
 are

abandoned

Projects 
continue with full

funding

Period 
Initial value estimates
are observed for the

 project proposals 

Period 
Interim value estimates

are observed for the
conditionally launched

projects

Projects 
are completed

Period 

Projects are completed and
their values are observed

Figure 2: Illustration of the selection and management of projects proposed during
funding period t.

for all periods t ∈ N. In other words, the funding policy is constant over all funding
periods t. This means that the period-wise resource commitment is the sum of (i) the
resource consumption of projects launched but not yet re-evaluated, (ii) the resource
consumption of the on-going re-evaluated projects, and (iii) the evaluation costs
allocated for beginning of the period. Thus, the amount of resources needed by the
funding policy in period t is

C(t) =











tcℓ if 1 ≤ t ≤ q
qcℓ + (t − q)(cℓ − ca) + cε if q < t < d
qcℓ + (d − q)(cℓ − ca) + cε if d ≤ t.

Note that after the initial project build up lasting d periods, the resource consumption
per period will be constant. The stable funding policy is feasible if (i) the resource
commitment in each period is withing the budget B, (ii) the resource consumption of
abandoned projects does not exceed the resource consumption of launched projects,
which in turn does not exceed the resource consumption of all projects, (iii) the
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re-evaluation budget is a multiple of the evaluation cost of one project with an
multiplier less or equal to the number of all projects, and (iv) projects are evaluated
at the earliest one period after the launch and at the latest one period before the
end. Therefore, the set of all feasible funding policies can be defined as

PF = {(cℓ, cε, ca, q) ∈ N
4 | dcℓ − (d − q)ca + cε ≤ B,

ca ≤ cℓ ≤ cn,

cε = nec, where n ∈ N,

1 ≤ q < d}.

Furthermore, not all sets Lt, Et and At are feasible. It must hold that the resource
consumption of launched and abandoned projects is as described by the funding
policy, and the re-evaluation costs are less or equal to allocated costs. Thus, the set
of launched, evaluated, and abandoned projects must be included in the following
feasible sets in each funding period t:

PL =







Lt ⊆ Nt |
∑

i∈Lt

ci = cℓ ∀t ∈ N







PE =







Et ⊆ Lt |
∑

i∈Et

ec ≤ cε ∀t ∈ N







PA =







At ⊆ Et |
∑

i∈At

ci = ca ∀t ∈ N







.

3.3 Valuation model

The long term strategy for launching, re-evaluating, continuing, and abandoning
re-evaluated projects is determined by the stable funding policy (cℓ, cε, ca, q). The
decision of selecting the individual projects which will be funded, re-evaluated, and
continued in each period t will be based on the projects’ estimated future values.

In each time period t there are |Nt| new project proposals with future value realizations
denoted by vi for i ∈ Nt. We assume that the projects’ future values are conditionally
independent and identically distributed (i.i.d) random variables given the projects’
resource consumptions ci. In other words, if two projects have the same period-
wise resource consumption, they share the same future value distribution. The
prior probability density functions of these future values are known and denoted by
f(vi | ci). Thus, the future value of project i is Vi ∼ f(vi | ci).

The salvage portion is denoted by h(q): {1 .. d − 1} → (0, 1). Thus, the portion
depends on the re-evaluation period q and we assume it to be non-decreasing in q. If
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a project is abandoned in period q, a salvage value of h(q)vi will be obtained. This
means that the longer a project is funded, the more value it may potentially yield.
However, we assume that there is no additional salvage value emerging from the
abandoned projects’ excellence.

3.3.1 Initial value estimates

The decision maker is not able to observe the future values of a project directly
before project completion. Instead, when the project proposals arrive, the decision
maker will observe the estimates s0

i for i ∈ Nt. These estimates will be used to select
which projects are launched and funded for the whole d periods and which will be
launched and funded conditionally for q periods. We assume that these estimates
s0

i are i.i.d. when conditioned on the projects’ future values vi and the projects’
resource consumptions ci, i.e., (S0

i | Vi = vi, ci) ∼ f(s0
i | vi, ci) with known likelihood

probability density distributions f(s0
i | vi, ci) for all possible values of vi and ci. Thus,

the estimate s0
i of project i is independent on the future values of all other projects.

In order to mitigate the optimizer’s curse and bias in risk estimates demonstrated by
(Kettunen and Salo, 2017), we use Bayesian modeling of probabilities to obtain the
posterior estimates of the future values (Vi | S0

i = s0
i , ci). According to the Bayes’

rule, we have

f(vi | s0
i , ci) =

f(s0
i | vi, ci)f(vi | ci)

f(s0
i | ci)

=
f(s0

i | vi, ci)f(vi | ci)
∫∞

−∞ f(s0
i | vi, ci)f(vi | ci)dvi

. (1)

This formula gives the posterior probability density distribution f(vi | s0
i , ci) of the

future value (Vi | S0
i = s0

i , ci). Then, the posterior estimates, or the expected values
of the projects’ future values can be obtained by

E(Vi | S0
i = s0

i , ci) =
∫ ∞

−∞
vif(vi | s0

i , ci)dvi.

Note that as both a project’s future value vi and posterior value estimate s0
i are

independent of all other projects’ future values and value estimates, the posterior
estimate of the project is independent of other projects’ future values as well as their
prior and posterior value estimates.

3.3.2 Interim value estimates

Similarly to the initial value estimates, by re-evaluating the chosen projects after
q periods, we obtain the interim value estimates sq

i for i ∈ Et, which represent
the most up-to-date assessment of the projects’ future values. These estimates are
conditionally independent and identically distributed given the future values vi. Thus,
(Sq

i | Vi = vi, ci) ∼ f(sq
i | vi, ci), where the probability density function f(sq

i | vi, ci) is
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known for all values of vi and ci. The Bayes’ rule can be used to obtain the posterior
estimate for the future value (Vi | S0 = s0

i , Sq = sq
i , ci). Note that this time we use

both the initial value estimate s0
i and sq

i . Thus, we get

f(vi | s0
i , sq

i , ci) =
f(sq

i | vi, ci)f(vi|s0
i , ci)

f(sq
i | ci)

=
f(sq

i | vi, ci)f(vi | s0
i , ci)

∫∞
−∞ f(sq

i | vi, ci)f(vi | ci)dvi

.

Again, we can obtain the expectations of the projects’ future values by

E(Vi | S0
i = s0

i , Sq
i = sq

i , ci) =
∫ ∞

−∞
vif(vi | s0

i , sq
i , ci)dvi.

3.3.3 Excellent projects

In alignment with our previous definition of excellent projects, we define them as
follows. Project i is an excellent project given that its future value Vi is greater than
or equal to the excellence threshold vÀ

i with a predetermined level of excellence ξ. The
threshold is defined in a way that P(Vi ≥ vÀ

i ) =
∫∞

v
À
i

f(vi|ci)dvi = p(ci)ξ, where p(ci)

is an increasing function representing the assumption that projects requiring more
resources are more likely to be excellent when completed. Thus, given a project’s
cost, the parameter ξ defines the desired percentile rank, which determines together
with the prior future value distribution whether a given project is excellent or not.
The probability that a project is excellent can be calculated as

P(Vi ≥ vÀ
i | S0

i = s0
i , ci) =

∫ ∞

v
À
i

f(vi | s0
i , ci)dvi

during the projects’ initial selection, and as

P(Vi ≥ vÀ
i | S0

i = s0
i , Sq

i = sq
i , ci) =

∫ ∞

v
À
i

f(vi | s0
i , sq

i , ci)dvi

after the projects have been re-evaluated.

3.4 Optimal funding policy

Next, we formulate the optimization problem by constructing the objective function
and the risk constraint. We first establish the connection between maximizing
the number of breakthrough technologies in the long-term and the corresponding
period-wise expected value.

Proposition 1. Let CP
t be the number of the completed excellent projects launched

in the beginning of funding period t ∈ N as a function of the funding policy P ∈ PF .

Assume that E(CP
t | t ∈ N) is finite with all funding policies. Maximizing the total

number of completed excellent projects over a long time horizon with respect to the

feasible funding policies PF is equivalent to maximizing the expected number of

excellent projects E(CP
t | t ∈ N) during each period.
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Proof. We have assumed that the defining features (i.e., the number of project
proposals, projects’ resource consumptions, projects’ future value distributions and
observation distributions) of all funding periods are independent and identical over
time given a stable funding policy. Therefore, the number of completed excellent
projects (CP

t | t ∈ N) is a sequence of independent and identically distributed random
variables. A realization of these values (cP

t | t ∈ N) are thus independent and identical
random samples.

Let µP
n = 1

n

∑n
t=1 cP

t for n ∈ N. According to the strong law of large numbers (see
e.g., Ross, 2014), it holds with probability 1 that limn→∞ µP

n = E(CP
t ). Note that this

is true for all funding policies P ∈ PF . Thus, the sequence of functions µP
n converge

pointwise to the function E(CP
t ). Furthermore, this also indicates epi-convergence

as all the functions µP
n are bounded real valued functions and the domain of these

functions is a finite and discrete subset of R4. Under these conditions, the theorem
of convergence in minimization holds and we can show the equivalence as follows.
(Rockafellar and Wets, 2009)

lim
n→∞

arg max
P∈PF

{
n
∑

t=1

cP
t }

= lim
n→∞

arg max
P∈PF

{µP
n }

= lim
n→∞

arg min
P∈PF

{−µP
n }

= arg min
P∈PF

{ lim
n→∞

(−µP
n )}

= arg min
P∈PF

{−E(CP
t )}

= arg max
P∈PF

{E(CP
t )}.

Next, let us denote the set of project proposals arriving at a single funding period
simply by N . Furthermore, let the sets L, E , and A be the projects which are
launched, evaluated, and abandoned, respectively. We now construct the objective
function for the maximization problem used in finding the optimal long-term funding
policies (cℓ, cε, ca, q) and the optimal index sets (L, E , A), the latter of which depend
both on the chosen funding policy and the outlook of the projects’ future values.

Using Proposition 1, we can formulate the objective function as the expected number
of completed excellent projects. Furthermore, since we assumed that the projects
are independent in the sense that their future values and estimates are independent,
the expected number of completed excellent projects ω in the portfolio is equal to
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the sum of the probabilities of the individual projects being excellent:

ω = E





∑

i∈L\A

1(Vi ≥ vÀ
i )





=
∑

i∈L\A

E

(

1(Vi ≥ vÀ
i )
)

=
∑

i∈L\A

∫ ∞

−∞
1(vi ≥ vÀ

i )f(vi)dvi

=
∑

i∈L\A

∫ ∞

v
À
i

f(vi)dvi

=
∑

i∈L\A

P(Vi ≥ vÀ
i ).

Note that here we have not yet conditioned the probabilities using the initial or
interim observations. Additionally, when maximizing the number of excellent projects,
we do not have to consider the salvage value of the abandoned projects in the objective
function. Thus, the optimal funding policy can be found by solving the following
two-stage stochastic optimization problem, where we first maximize with respect to
the funding policy (cℓ, cε, ca, q) and second with respect to the index sets (L, E , A):

max
(cℓ,cε,ca,q)∈PF

ES0

i






max
L⊆PL

E⊆PE







∑

i∈L\E

P(Vi ≥ v
À
i | S0

i ) + ES
q
i



max
A⊆PA







∑

i∈E\A

P(Vi ≥ v
À
i | S0

i , S
q
i )






















. (2)

The latter stage can also be seen as a two-stage process. First, the decision is made on
the projects L and E that are launched and evaluated using the initial value estimates
s0

i . Second, the decision of abandoned projects A is made using the information from
the interim value estimates sq

i .

3.5 Portfolio risk

The risk of the portfolio 0 < α < 0.5 can be defined given a target portfolio value
V P

³ . The portfolio risk is the largest probability for the event that the portfolio value
is less than the target value. Thus, the portfolio risk is

α = P

(

V P ≤ V P
³

)

, (3)

where V P is defined by

V P = ES0

i





∑

i∈L\E

(Vi | S0
i ) + ES

q
i





∑

i∈E\A

(Vi | S0
i , Sq

i ) +
∑

i∈A

h(q)(Vi | S0
i , Sq

i )







 . (4)

Thus, V P is the random variable depicting the value distribution of the whole
portfolio given that a certain funding policy is implemented over all possible value
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observations s0
i and sq

i . Given that the distribution function fP(v) of the total value
of the portfolio V P is known, the probability in (3) can be calculated by

∫ V P
³

−∞
fP(v)dv.

In Table 1 we summarize all essential decision variables, key problem parameters,
and distributions related to the optimization framework.
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1st stage decision variables

cℓ Launch budget
cε Evaluation budget
ca Abandonment budget
q Evaluation period

2nd stage decision variables

L Set of launched projects
E Set of evaluated projects

3rd stage decision variables

A Set of abandoned projects

Key parameters

N Set of all projects
vi Projects’ future values
ci Projects’ period-wise funding costs
d Project duration
ec Project evaluation cost
B Total budget
ξ Level of excellence
vÀ

i Excellence threshold
ω Expected number of excellent projects
α Level of risk appetite
V P

³ Target portfolio value

Distributions

f(vi | ci) Future value prior probability density function
f(s0

i | vi, ci) Initial value estimate probability density function
f(sq

i | vi, ci) Interim value estimate probability density function
h(q) Salvage portion
p(ci) Resource adjustment to level of excellence

Table 1: Summary of decision variables, key parameters, and distributions.
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4 Computation of optimal funding policies

There are no easily derivable closed-form solutions available for the stochastic discrete
optimization problem of the model framework outlined in Chapter 3. Therefore,
in this Chapter, we present a case problem which we solve numerically using the
sample average approximation method (see e.g., Kleywegt et al., 2002). To this end,
we present needed analytical results for the case problem. Moreover, we present
optimality conditions to reduce the number of viable combinations for decision
variables and to improve solution time.

4.1 Sample average approximation method

The idea behind the sample average approximation method (SAA) is simple. First,
by means of Monte Carlo simulation, we generate a sample (Wj | j ∈ {1 .. S})
of the random variables W included in the optimization problem, where S is the
sample size. In this case, these random variables consist of the projects’ initial and
interim value observations s0

i and sq
i . Second, we estimate the objective function of

the original problem E [g(x, W )] with the sample average function
∑S

j=1
1
S

g(x, Wj),
where x is the decision variable. Then, we maximize the sample average function
with respect to x and obtain an estimate of the optimal objective value.

The optimization problem in (2) is essentially a three-stage decision tree. The
decisions are made in three stages, in between which some of the random variables
are realized and observed by the decision maker. Since the different branches of the
decision tree are independent of each other, we can find a solution for the entire
problem by combining optimal sub-solutions for the different branches. Thus, we
use nested Monte Carlo sampling with two layers reflecting the branching of the
decision tree between the different decision stages, illustrated in Figure 3. The first
layer contains the sample of the projects’ initial value estimates s0

i denoted here by
(Wj1

| j1 ∈ {1 .. S1}), where S1 is the sample size of the first layer. In practise, we
first generate a sample of the projects’ future values vi using the probability density
function f(vi | ci), after which we use the initial value estimate probability density
function f(s0

i | vi, ci) to generate the first layer.

The second layer (Wj1,j2
| j1 ∈ {1 .. S1}, j2 ∈ {1 .. S2}) of the nested sample

consists of the projects’ interim value estimates sq
i . The size of the second layer

is S1 × S2, which means that S2 samples are generated per each layer one sample.
When generating the sample of interim value estimates sq

i , we must consider that
the initial value estimates s0

i are already observed by the decision maker. In other
words, we generate the sample sq

i conditioned on the observations s0
i . In practice, we

first obtain a sample of the projects’ future values vi given the sampled initial value
estimates s0

i . The probability density function of this distribution f(vi | s0
i , ci) was

already described in (1). Then we proceed in generating the sample of the interim
value estimates sq

i using the probability density function f(sq
i | vi, ci).
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Figure 3: Illustration of the decision tree with sample size of S1 = 3 on the first layer
and S1 × S2 = 3 × 2 = 6 on the second layer.

The above method can be used to solve the optimization problem (2) without any
constraints. However, we are interested in solving the Pareto front of the optimization
problem, which is the set of all non-dominated, Pareto efficient solutions given a
constraint based on the portfolio risk level defined in (3). In other words, for each
portfolio risk level upper bound α̂, we want to obtain the optimal solution ω for the
problem (2) given that α ≤ α̂. However, since this Value-at-Risk based risk measure
depends on the full range of outcomes across the whole three-stage decision tree, we
cannot form a solution to the original problem by setting a risk constraint for all the
sub-problems of the different branches and then combining the solutions.

To overcome this issue, we use the multi-objective optimization framework to form
the Pareto front. More specifically, we apply linear scalarization to aggregate the
original objective ω and the portfolio risk level α into a single objective function.
This is done by summing the variables with weights λ and 1 − λ, where 0 ≤ λ ≤ 1.
Thus, the optimization problem is essentially converted into the form

max λω − (1 − λ)α,

where the second term has a negative sign as we want to minimize the portfolio risk.
By searching for the optimal solutions with all values of λ, we form the convex hull
of all possible solutions depicting the Pareto front.

Lastly, we discuss the general convergence properties of the sample average ap-
proximation method. It can be shown that in quite generic conditions, it holds
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that √
S(vs − v∗)

d−→ N(0, σ2(x∗)) when S → ∞,

where v∗ and x∗ are the optimal value and decision variable of the original optimization
problem, σ2(x∗) = Var[G(x∗, W )] is the variance of the objective value with respect to
the random element W , and vs is the optimal value of the approximate optimization
problem solved using the sample average approximation method with sample size of
S (Kleywegt et al., 2002). Thus, with a large sample size, it holds roughly that

vs ∼ N(v∗,
σ2(x∗)√

S
).

The accuracy of the solution obtained using SAA-method thus increases with a rate
proportional to the square root of the sample size. To balance between feasible
solution times and accuracy of the solution, we use a sample size of S1 = 500 and
S2 = 500 for the first and second layers of the Monte Carlo simulation, respectively.

4.2 Normally distributed project values

Research projects are often seen to produce returns that are heavily skewed, although,
there is little evidence on the exact statistical properties (Buzzacchi, 2022). As we
already took this skewness of the return distribution into account when modelling
excellent projects, we now assume that the projects’ future values are normally
distributed, i.e., (Vi | ci) ∼ N (µi, σ2

i ). Moreover, as we provide general insight
on project portfolio selection and not immediate decision recommendations, we
believe that normal distributions are the most sensible choice even if in practice the
underlying distributions deviate from normality.

We also assume that both the initial and interim estimates (S0
i | Vi = vi, ci) and

(Sq
i | S0

i = s0
i , Vi = vi, ci) are normally distributed. This stems from the idea that

these estimates are measurements of the project values with normally distributed
error-terms with mean equal to zero. The normality of the error-term can be
rationalized by the fact that research project proposals are often reviewed by multiple
professionals (Franzoni et al., 2022), and, in the light of the central limit theorem, the
averages of those reviews tend to be normal. Formalizing these assumptions, we get
(S0

i | Vi = vi, ci) ∼ vi + N (0, (τ 0
i )2) and (Sq

i | Vi = vi, ci) ∼ N (vi, (τ q
i )2). Furthermore,

to reflect the idea that the interim evaluations are more accurate than the initial
evaluations, we set τ q

i = rq−1τ 0
i , where r ∈ (0, 1) is called the uncertainty reduction

coefficient. Next, we show that these assumptions lead also to the normality of the
posterior value estimates.

Proposition 2. Let the projects’ future values (Vi, ci) and observed initial value

estimates (S0
i | Vi = vi, ci) be normally distributed. Then, the posterior value estimates

(Vi | S0
i = s0

i , ci) are also normally distributed. Furthermore, if (Vi | ci) ∼ N (µi, σ2
i )
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and (S0
i | Vi = vi, ci) ∼ vi + N (0, (τ 0

i )2) = N (vi, (τ 0
i )2), then the distribution of

(Vi | S0
i = s0

i , ci) has a mean

µ0
i :=

s0
i σ

2
i + µi(τ

0
i )2

σ2
i + (τ 0

i )2
,

and standard deviation

σ0
i :=

√

√

√

√

σ2
i (τ 0

i )2

σ2
i + (τ 0

i )2
.

Similarly, given that (Sq
i | Vi = vi, ci) ∼ N (vi, (τ q

i )2), the distribution of (Vi | S0
i =

s0
i , Sq

i = sq
i , ci) has a mean

µq
i :=

sq
i (σ

0
i )2 + µ0

i (τ
q
i )2

(σ0
i )2 + (τ q

i )2
,

and standard deviation

σq
i :=

√

√

√

√

(σ0
i )2(τ q

i )2

(σ0
i )2 + (τ q

i )2
.

Proof. The posterior distribution (1) of the future value of a project given initial
value estimate is

f(vi | s0
i , ci) =

f(s0
i | vi, ci)f(vi | ci)

f(s0
i | ci)

=
f(s0

i | vi, ci)f(vi | ci)
∫∞

−∞ f(s0
i | vi, ci)f(vi | ci)dvi

.
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Thus, as f(s0
i | ci) is constant, we have

f(vi | s0
i , ci) ∝ f(s0

i | vi, ci)f(vi | ci)

∝ exp
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∼ N(
s0

i σ
2
i + µi(τ

0
i )2

σ2
i + (τ 0

i )2
,

σ2
i (τ 0

i )2

σ2
i + (τ 0

i )2
).

The second to last step can be done by adding a suitable constant and completing
the square (i.e., v2 − 2va = v2 − 2va + a2 − a2 = (v − a)2 − a2

∝ (v − a)2, where a is
constant).

The proof for the distribution of f(vi|s0
i , sq

i , ci) proceeds identically from

f(vi|s0
i , sq

i , ci) ∝ f(sq
i |vi, ci)f(vi|s0

i , ci).

Next, we show how the risk of the project portfolio can be computed given a stable
funding policy P and a target portfolio value V P

³ . In Proposition 3, we derive formula
for the conditional risk

(α | S0 = s0, Sq = sq) = P

(

(V P | S0 = s0, Sq = sq) ≤ V P
³

)

,

which is conditioned on realized posterior value estimates. Using this result, we can
simply compute the unconditioned risk α of the portfolio by

α = ES0,Sq

[

α | S0, Sq
]

.
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Proposition 3. Let the future value posterior estimates be independent and normally

distributed, i.e., let (Vi | S0
i = s0

i , ci) ∼ N (µ0
i , (σ0

i )2) for i ∈ L \ E and (Vi | S0
i =

s0
i , Sq

i = sq
i , ci) ∼ N (µq

i , (σq
i )2) for i ∈ E \ A as in Proposition 2. Now, given a stable

funding policy P, an target portfolio value V P
³ , and estimates s0

i for i ∈ L \ E and sq
i

for i ∈ E \ A, it holds that

(α | S0 = s0, Sq = sq) = Φ(
V P

³ − µtotal

σtotal

),

where

µtotal =
∑

i∈L\E

µ0
i +

∑

i∈E\A

µq
i +

∑

i∈A

hi(q)µq
i ,

σtotal =
∑

i∈L\E

(σ0
i )2 +

∑

i∈E\A

(σq
i )2 +

∑

i∈A

(hi(q)σq
i )2

and Φ(·) is the cumulative distribution function of the standard normal distribution.

Proof. A well-known result in the field of probability and statistics is that the sum
of independent and normally distributed random variables is normally distributed
with a mean and variance equal to the sum of means and variances of the original
variables, respectively (see e.g., Ross, 2014). Stated in other words, let Xi ∼ N (ai, b2

i )
for i ∈ I be independent and normally distributed and let X =

∑

i∈I Xi. Then it
holds that X ∼ N (

∑

i∈I ai,
∑

i∈I b2
i ).

Let V P
s0,sq be the total portfolio value as in (4) given the realized posterior value

estimates s0 and sq. Formally, let

V P
s0,sq = (V P | S0 = s0, Sq = sq)

=
∑

i∈L\E

(Vi | S0
i = s0

i )

+
∑

i∈E\A

(Vi | S0
i = s0

i , Sq
i = sq

i )

+
∑

i∈A

hi(q)(Vi | S0
i = s0

i , Sq
i = sq

i )

Now, as the set of posterior value estimates
{

(Vi | S0
i = s0

i , ci) | i ∈ (L \ E)
}

⋃

{

(Vi | S0
i = s0

i , Sq
i = sq

i , ci) | i ∈ (E \ A)
}

are all independent of each other, we have

V P
s0,sq ∼ N





∑

i∈L\E

µ0
i +

∑

i∈E\A

µq
i +

∑

i∈A

hi(q)µq
i ,
∑

i∈L\E

(σ0
i )2 +

∑

i∈E\A

(σq
i )2 +

∑

i∈A

(hi(q)σq
i )2



 .
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Let us denote this normal distribution by N (µtotal, σtotal) and let

ϕ =
V P

s0,sq − µtotal

σtotal

be the normalized value of the portfolio. From this it follows that

(α | S0 = s0, Sq = sq)

= P

(

(V P | S0 = s0, Sq = sq) ≤ V P
³

)

= P(V P
s0,sq ≤ V P

³ )

= P(
V P

s0,sq − µtotal

σtotal

≤ V P
³ − µtotal

σtotal

)

= P(ϕ ≤ V P
³ − µtotal

σtotal

)

= Φ(
V P

³ − µtotal

σtotal

),

which completes the proof.

4.3 Projects’ resource consumption

In its most general form, the optimization problem defined in (2) contains multiple
knapsack problems. For instance, choosing the set L ⊆ N such that the objective
is maximized and that the capacity constraint

∑

i∈L ci = cℓ is satisfied is indeed a
knapsack problem as the projects’ future values are independent. The subproblems
of choosing which projects to re-evaluate and which to abandon are also equivalent
knapsack problems. Thus, solving these subproblems with many alternative resource
consumption levels can be complicated. To avoid solving these knapsack problems
for every instance, we restrict the number of different resource consumption levels ci

to two. Let us denote the number of small projects by ns and the number of large
projects by nl. Thus, ns + nl = |N |. Without any loss of generality, we assume that
the one period resource consumption for a small project is cs = 1. The resource
consumption of a large project is denoted by cl.

Even with two different types of projects, there is still a vast set of possibilities for
choosing the projects to be launched, evaluated, and abandoned. Next, we present
optimality conditions illustrating how this set can be reduced. We start by providing
a Proposition on how to launch, evaluate, and abandon projects when they are alike.

Proposition 4. Let the future values Vi and value estimates S0
i and Sq

i be normally

distributed as in Proposition 2, and let P = (cℓ, cε, ca, q) ∈ PF be a given stable

funding policy. Assume all projects have equal resource consumption, i.e., ci = c



27

for all i ∈ N . Assume also that cℓ

c
, ca

c
∈ N. Then, the index sets L ∈ PL, E ∈ PE ,

and A ∈ PA which maximize the second-stage optimization problem in (2) can be

formulated as

L = {i ∈ N | µ0
i is among the

cℓ

c
largest}

E = {i ∈ L | µ0
i is among the

cε

ec

smallest} (5)

A = {i ∈ E | µq
i is among the

ca

c
smallest}.

Furthermore, the index sets maximize the expected value of the portfolio µtotal and

minimize the standard deviation of the portfolio σtotal.

Proof. To start with, we show that the index sets in (5) minimize the standard
deviation of the portfolio value σtotal defined as

σtotal =
∑

i∈L\E

(σ0
i )2 +

∑

i∈E\A

(σq
i )2 +

∑

i∈A

(hi(q)σq
i )2.

Note that as all projects are alike it holds that σ0
i = σ0

j and σq
i = σq

j for all i, j ∈ N .
It also holds always that σ0

i > σq
i . This can be shown directly from the definition of

σq
i (see Prop. 2):

σ0
i > σq

i

=⇒ σ0
i >

√

√

√

√

(σ0
i )2(τ q

i )2

(σ0
i )2 + (τ q

i )2

=⇒ (σ0
i )2 >

(σ0
i )2(τ q

i )2

(σ0
i )2 + (τ q

i )2

=⇒ (σ0
i )2 + (τ q

i )2 > (τ q
i )2

=⇒ (σ0
i )2 > 0.

The last step would be false only if σ0
i = 0. This case can be ignored as it would

mean that there is no uncertainty in the initial value estimates. Now, due to the
feasibility restriction posed by sets PL and PA, the number of launched |L| and
abandoned |A| projects are constants. This means that

σtotal = (|L| − |E|)(σ0
i )2 + (|E| − |A|)(σq

i )2 + |A|(hi(q)σq
i )2

= |L|(σ0
i )2 + |E|((σq

i )2 − (σ0
i )2) + |A|((hi(q)σq

i )2 − (σq
i )2).

The only non-constant term here is |E|((σq
i )2 − (σ0

i )2). Choosing to evaluate cε

ec

projects maximizes |E| which in turn minimizes this only non-constant term, and,
therefore, also minimizes the standard deviation of the portfolio value σtotal.
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To show that the index sets in (5) maximize the number of excellent projects (2) and
expected portfolio value µtotal, we refer to the proof of Proposition 1 by Vilkkumaa
et al. (2015) which starts from the same set of assumptions.

Next, we use Proposition 4 to construct all possible index sets L, E , and A among
which we can search for the optimal alternatives in the case where there are two
different types of projects. We start by dividing the first three decision variables
(cℓ, cε, ca) into parts. Let us denote (cs

ℓ, cs
ε, cs

a) and (cl
ℓ, cl

ε, cl
a) as the budgets for

launching, evaluating, and abandoning small and large projects, respectively. It must
hold that

cℓ = cs
ℓ + cl

ℓ

cε = cs
ε + cl

ε (6)

ca = cs
a + cl

a.

The problem of choosing which projects to launch, evaluate, and abandon is separated
into two independent problems. The solutions Ls, Ll, Es, E l, As and Al for the
problems can be obtained using Proposition 4. Let ωs, ωl, µs

total, µl
total, σs

total and
σl

total be the corresponding expected number of excellent projects, expected values,
and standard deviations of the portfolio values given the optimal subsolutions. We
can combine these solutions as

L = Ls ∪ Ll

E = Es ∪ E l

A = As ∪ Al

ω = ωs + ωl

µtotal = µs
total + µl

total

σtotal =
√

(σs
total)

2 + (σl
total)

2.

Given the initial partition of the problem into the two subproblems, this is the
solution resulting in both maximal ω and µtotal, and minimal σtotal. Next, we show
that this also minimizes the conditional risk of the portfolio. Here we assume that
the target portfolio value is conservative enough so that V P

³ < µtotal. Then, it holds
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that

min
{

α | S0 = s0, Sq = sq
}

= min

{

Φ(
V P

³ − µtotal

σtotal

)

}

= min

{

V P
³ − µtotal

σtotal

}

=
min

{

V P
³ − µtotal

}

min σtotal

=
V P

³ − max µtotal

min σtotal

.

Thus, to obtain the optimal index sets L, E , and A which maximize the expected
number of excellent projects and minimize risk, it suffices to compute the optimal
solutions for the different ways to divide the budgets for the small and large projects.
For instance, if the number of large projects is nl = 5, there are

∑5
i=0

∑i
j=0

∑j
k=0 1 = 56

different ways to choose how many of them is launched (i), evaluated (j), and
abandoned (k). These choices fix the budgets (cl

ℓ, cl
ε, cl

a) for the large projects, and,
through (6), they also fix the budgets for the small projects. Thus, given the stable
funding policy P , there is a maximum of 56 cases that need to be considered.

Lastly, we give a result useful for restricting the number of combinations for first-stage
decision variables P = (cℓ, cε, ca, q).

Proposition 5. Let the stable funding policy P = (cℓ, cε, ca, q) be optimal and assume

that the number of available evaluations cε

ec
is less than the launching budget cℓ. Then,

the funding policy P = (cℓ, cε + 1, ca, q) is infeasible.

Here, we refer to the rigorous proof provided by Vilkkumaa et al. (2015). The idea
behind the Proposition is quite simple. Assume that all other decision variables
are fixed. Then, the evaluation budget should be as large as the possible, as the
possibility to evaluate more projects cannot be disadvantageous with respect to the
objectives of the problem. If the current funding policy already makes it possible to
evaluate all projects, then no more budget should be allocated to evaluations but,
rather to launch more projects or to abandon fewer projects.
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5 Results

In this Chapter, we present the numerical results of the optimization model described
in Chapter 3 to gain insight on optimal project selection and management. More
specifically, we seek to answers to the following research questions:

(i) How can the decision maker take into account the different projects’ sizes and
risks when selecting projects?

(ii) How should the decision maker’s appetite for risk be reflected in the funding
strategy?

(iii) How can the abandonment option be utilized in developing breakthrough
technologies under concentration risk and as a risk management tool?

We start by providing solutions the optimization problem (2) in varying conditions.
Then, we compare alternative project selection and management strategies with
optimal solutions.

5.1 Parameters

Table 2 presents the model parameters and functions which act as a starting point
of our analysis. We consider two different levels of resource consumption for the
projects as already mentioned in Chapter 4.3. The level of resource consumption is
cs = 1 and cl = 10, and the number of project proposals in each period is ns = 50
and nl = 5 for small and large projects, respectively. We set the duration of all
projects to d = 4. Thus, the resource requirement for funding all projects for the
full 4 periods is 4 × (50 × 1 + 5 × 10) = 400. We set the budget B so that 25% of
the projects can be funded until completion assuming no projects are evaluated, i.e.,
B = 0.25 × 400 = 100. The cost of evaluating one project is ec = 0.1.

The means and standard deviations of the projects’ future values and the estimation
errors are assumed to scale linearly with respect to the level of resource consumption.
Thus, the projects’ future values are normally distributed with means µs = 20 and
µl = 200, and standard deviations σs = 3 and σl = 30 for small and large projects,
respectively. The estimation errors related to the initial value observations are τ 0

s = 7
and τ 0

l = 70, and the corresponding errors of the interim observations are τ q
s = 7rq−1

and τ q
l = 70rq−1, where the uncertainty reduction coefficient is r = 0.5. Thus, the
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Parameter Value

cs 1
cl 10
ns 50
nl 5
B 100
µs 20
µl 200
σs 3
σl 30
τ 0

s 7
τ 0

l 70
r 0.5
d 4
ec 0.1
ξ 0.02

V P
À 470

Function Value

h(q)
(

q−1
d

)1.3

p(ci) ci

Table 2: Parameters and functions

distributions of the future values and their observations are

(Vi | cs) ∼ N(20, 32)

(Vi | cl) ∼ N(200, 302)

(S0
i | vi, cs) ∼ N(vi, 72)

(S0
i | vi, cl) ∼ N(vi, 702)

(Sq
i | vi, cs) ∼ N(vi, (7rq−1)2)

(Sq
i | vi, cl) ∼ N(vi, (70rq−1)2).

The salvage portion function is set to be slightly convex and is h(q) = ( q−1
d

)1.3. This
reflects the assumption that projects tend to start slowly, and major progress is made
during the projects’ final stages. The level of excellence is set at ξ = 2% and we
assume that it increases linearly with resource consumption. Thus, we set p(ci) = ci

implying that a small project is excellent with a probability of 1 × 2% = 2% and a
large project is excellent with probability 10 × 2% = 20%. The target portfolio value
is set at V P

³ = 470. This is 6% less than 25×20 = 500, which is the expected portfolio
value when randomly selecting 25, or the maximum number of small projects to the
portfolio each with an expected value of 20. The optimization model is solved using
MATLAB R2021a and a nested Monte Carlo sample size of 500×500.
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5.2 Optimal funding policy characteristics

Figure 4 presents four funding policies from the Pareto front for a fixed evaluation
period q = 3, indicating that the interim evaluations are conducted in the middle of
the projects’ life cycles. In each panel (a)-(d), we display how many small and large
projects are on average launched, evaluated, and abandoned given a stable funding
policy P = (cℓ, cε, ca, q). Here, we focus only on the projects which are launched on
a single funding period t = 1 and do not consider projects launched during later
funding periods. In the first period, the decision maker can either reject projects (R),
launch projects without possibility to re-evaluate (FF), or launch projects with the
option to re-evaluate (CF). In period 3, the decision maker can choose to continue
(C) or abandon (A) the re-evaluated projects.

With the first and most risk-averse funding policy (a), the probability that the
portfolio value is less than the target portfolio value V P

³ = 470 is close to zero.
This is indicated by the portfolio risk level α ≈ 0. The Pareto efficient funding
policy P = (cℓ, cε, ca, q) = (25, 0, 0, 3) denotes that the whole budget is spent on
launching projects. Furthermore, only small projects are launched. This funding
policy can be seen as the most resource conserving policy as no resources are spent
on experimenting with projects, some of which would have to be abandoned later.
Moreover, this is the most diversified funding policy with respect to the number of
completed projects. Both choices lead to the very small portfolio risk level. However,
the excepted number of completed excellent projects is also the smallest at ω = 0.85
projects per period.

The funding policy (b) P = (25, 0, 0, 3) is described by the same first-stage decision
variables as funding policy (a). The difference comes from how the budget is allocated
between the small and large projects. In funding policy (b), on average 0.8 large
project are launched across the 500 simulated instances together with, on average, 17
small projects. The value threshold for choosing whether to launch or reject a large
project is roughly E[Vi | s0

i ] = 210. Due to this, 2 large projects are launched in 6%
of the instances, 1 large project in 66% of the instances, and no large projects in 28%
of the instances. The probability that the target portfolio value is not reached is
approximately α = 0.01 and the excepted number of completed projects is ω = 1.01.
This seems to indicate that by having the opportunity to launch large projects when
they seem highly promising, the decision maker can obtain notably higher expected
value of completed excellent projects while keeping the portfolio risk on a suitable
level as many small projects are also funded.

In funding policy (c) P = (30, 2, 11, 3) almost all projects are funded conditionally,
i.e., funding is initially granted until the projects’ re-evaluation in the beginning
of period 3. On average, the number of launched large projects is 0.9, which is
similar as with funding policy (b). However, now roughly one third of the launched
projects are abandoned on period 3. Thus, while the number of launched projects is
increased by 20%, the number of completed projects is, vice versa, reduced by roughly
20%. This increases the chance to launch and then continue excellent projects, yet
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Figure 4: Illustration of the period 1 and period 3 actions of four funding policies
from the Pareto front with portfolio risk levels (a) α ≈ 0, (b) α = 0.01, (c) α = 0.04,
and (d) α = 0.13. The size of the nested Monte Carlo simulation is 500 × 500.

simultaneously reduces the amount of final diversification. Furthermore, while 40%
of the launched small projects are abandoned in period 3, only 27% of large projects
are abandoned. This indicates that large projects are still launched quite cautiously
when compared to small projects. The use of the abandonment option increases
the objective value roughly 10% to ω = 1.11 compared to funding policy (b). The
portfolio risk level is also increased and is α = 0.04.

Figure 5 illustrates the conditions in which different decisions regarding large projects
are made under funding policy (c). The first panel (i) represents the period 1 decision,
showing that large projects which are granted full funding for the whole 4 periods
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Figure 5: The range of the top 1 ranked large projects’ value estimates over 500
simulations separated according to both (i) period 1 and (ii) period 3 decisions
according to funding policy (c). A standard boxplot is used, i.e., the line inside each
box represents the median value, the edges of the box represent the 0.25 and 0.75
quantiles, the whiskers represent the maximum and minimum non-outlier values
defined using the interquartile range. Outliers are left out of the visual for clarity.

are estimated to have very high values roughly around E[Vi | s0
i ] = 230. Projects

with this large value estimates are quite likely to be excellent, which is why the
abandonment option is not used. On the other hand, large projects are often rejected
when the value estimates are less than 205.

The second panel (ii) in Figure 5 shows that after re-evaluation, large project are
continued when the updated value estimates E[Vi | s0

i , sq
i ] are approximately over 200.

Below this value, large projects are very unlikely to be excellent, which is why the
best decision is often to abandon them and use the leftover resources to continue 10
small projects instead. Note that the value estimates of large projects do not alone
explain the decisions concerning large projects but the whole portfolio view has to
be considered. For instance, if the set of project proposals is poor overall, it can be
too risky to launch even quite promising large projects.

The last, most risk-seeking funding policy (d) is P = (32, 2, 15, 3). The expected
number of completed excellent projects with this policy is ω = 1.14, which is only a
small improvement compared to funding policy (c). The probability that the target
portfolio value is not reached is α = 0.13. Now, almost half of all launched projects
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are abandoned in period 3. Furthermore, somewhat surprisingly, almost half of the
large projects are launched unconditionally (i.e., granted full funding). However,
when comparing to funding policy (c), we see that the risk-reward ratio of not having
the option to re-evaluate large projects is quite poor as this increases the objective
only by 0.03 while tripling the probability of not achieving the target portfolio value.
Thus, it seems that the main role of the wide use of the abandonment option for large
projects in funding policy (c) was reducing the portfolio risk. This is clearly seen in
Figure 6 (i), which shows the Pareto front associated with the optimization problem
including the four discussed funding policies (a)-(d). The Pareto front is convex,
which means that the benefit of switching to a riskier funding policy decreases as
the risk of the portfolio increases. While the overall optimal funding policy depends
on the risk appetite and preferences of the decision maker, the funding policy (d)
can still be considered as non-optimal in most cases.

Figure 6: (i) The Pareto front of funding policies including the funding policies
(a)-(d) presented in Figure 4 and (ii) the abandonment option value at the Pareto
front.

Figure 6 (ii) illustrates the abandonment option value with different levels of portfolio
risk. The option value is defined as the relative difference in the objective value ω
given that the abandonment option is available when the baseline is the objective
value without the option. In the model, the option can be removed simply by setting
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cε = ca = 0. Thus, the abandonment option value is

Option value :=
Objective value with option - Objective value without option

Objective value without option
.

Figure 6 (ii) shows that the option value is an increasing function with respect to
the portfolio risk level α. A decision maker with a low level of risk appetite will not
benefit at all from the option, whereas a decision maker with higher tolerance for
risk can expect up to a 10% increase in the number of completed excellent projects.
This is a bit unexpected, as the abandonment option tends to reduce the risk of
committing funding for individual projects which perform poorly. However, here
the use of the abandonment option may not be flexible enough for this effect to
materialize as the same proportion of projects should be abandoned during each
period.

5.2.1 Varying budget

Figure 7 presents the effect of budget size B to optimal funding strategy with two
levels of portfolio risk of α = 0.10 and α = 0.03. The target portfolio value V P

³ is
varied in proportion to the budget so that it remains roughly 6% below the expected
portfolio value when granting full funding to a maximum number of small projects.
Panel (i) shows how the portion of budget spent on launching large projects increases
with both risk levels as the budget increases. There are a few explanatory factors
behind this phenomenon. First, as the budget increases, the decision maker is
allowed to launch more projects leading to a lower portfolio risk through improved
diversification. The reduction in risk allows the decision maker to steer more of the
funding towards large projects. On the other hand, as the decision maker is allowed
to launch more projects, the average quality of these projects will decrease as better
project are granted funding first, making the selection of alternative large projects
more sensible.
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Figure 7: The effect of budget B to (i) the percentage of funding towards large
projects, and (ii) the level of experimentation defined as the ratio of the abandonment
budget and launch budget.

Figure 7 (ii) shows the effect of budget to the optimal funding policy’s level of
experimentation, defined as the ratio of the abandonment budget ca and the launch
budget cℓ. The larger the level of experimentation, the more projects are both initially
launched and abandoned after re-evaluation. After re-evaluation, there is thus a
larger selection of projects from which the completed projects can be selected. In
general, the level of experimentation decreases as the budget increases. However,
there is one data point not following this trend due to numerical model limitations.
The trend is more obvious with the higher portfolio risk level α = 0.10. This may
be counterintuitive as with a larger budget there are more resources to spend on
experimenting with a larger set of projects. However, a larger budget decreases
the average project quality, making it less sensible to experiment with unpromising
projects than to grant full funding to the most promising ones. On the contrary, with
a smaller budget more experimentation should be done to increase the likelihood of
funding excellent projects.
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Figure 8: Illustration of two funding policies with budgets (i) B = 75 and (ii)
B = 125. Both funding policies result in a portfolio risk level of α = 0.10

Figure 8 illustrates two funding policies with portfolio risk level α = 0.10. The
first funding policy (i) with budget B = 75 is P = (24, 2, 11, 3), with one large
projects being launched in 80% of instances and no large projects in the rest. The
funding of large projects is cautious as they are launched conditionally and only
25% of them are abandoned after re-evaluation. The second funding policy (ii) with
increased budget B = 125 spends the additional budget mostly to launch more large
projects. One large project is launched in 13% of instances, two large projects in
80% of instances, and three large projects in 7% of instances. Still roughly 25% of
large projects are abandoned. This indicates that the threshold for launching large
projects is significantly reduced along with the threshold of continuing them after
re-evaluation. This can be done as there is already, on average, 20 small projects
funded in each period resulting in sufficient diversification.

5.2.2 Choice of the evaluation period

Next, we free the decision variable q denoting the re-evaluation period. Previously,
the re-evaluations were conducted half-way through the projects’ life cycles in the
beginning of period 3. Here, we set τ 0

s = 10 and τ 0
l = 100 giving the following initial
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and interim value observation distributions:

(S0
i | vi, cs) ∼ N(vi, 102)

(S0
i | vi, cl) ∼ N(vi, 1002)

(Sq
i | vi, cs) ∼ N(vi, (10rq−1)2)

(Sq
i | vi, cl) ∼ N(vi, (100rq−1)2).

Figure 9 (i) presents the Pareto front with free re-evaluation period q. The vertical
line at α = 0.06 represents the threshold where the re-evaluation period changes from
period q = 2 to period q = 3 in the optimal funding policy. When the level of risk
appetite is smaller than α = 0.06, conditionally launched projects are re-evaluated
after one experimentation period. When projects are evaluated early, more of them
can be completed as less resources are needed for the experimentation. On the other
hand, the interim value estimates become less accurate increasing the uncertainty of
their value. The level of experimentation (ca/cℓ) also increases along the Pareto front
as illustrated in Figure 9 (ii). Thus, with an increased risk appetite, it is beneficial
to both experiment longer and with more projects. With longer experimentation,
the decision maker is more likely to detect excellent projects as the interim value
estimates are more accurate, yet more resources are wasted on funding projects which
are not completed. Figure 9 (ii) illustrates also how the probability of getting a
portfolio value less than 470 increases along with the proportion of large projects in
the portfolio as diversification worsens.
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Figure 9: (i) The Pareto front of funding policies with free re-evaluation period q and
(ii) the characteristics of the funding policies including the level of experimentation
defined as the ratio of the abandonment budget and the budget for launching projects
(ca/cℓ), and the percentage of funding towards large projects.

In Figure 10, we illustrate two of the funding policies presented in Figure 9. The
first, more risk-averse funding policy (a) is P = (27, 1, 3, 2) with a portfolio risk level
α = 0.01. In the majority of instances, only small projects are launched and 40%
of those are launched conditionally. Furthermore, only 30% of these projects are
abandoned after the re-evaluation. Thus, the number of completed small projects is
large reducing the portfolio risk through diversification. One large project is also
launched conditionally in 20% of instances.
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Figure 10: Illustration of two funding policies from the Pareto front with unrestricted
re-evaluation period q (Fig. 9) with risk levels (a) α = 0.01 and (b) α = 0.075.

The second funding policy (b) has a larger portfolio risk level of α = 0.075. The
funding policy is P = (30, 2, 11, 3), indicating that more projects are experimented
with and the experimentation is carried out longer. Almost all projects are launched
conditionally, and, on average, over a third of the launched projects are abandoned
after re-evaluation. The funding policy results in 13% more completed excellent
projects when compared to funding policy (a). Hence, it seems that more profitable
although riskier funding strategies can be obtained by launching more large projects,
experimenting with more projects, and conducting the experimentation longer.

5.3 Comparison of alternative project selection strategies

Table 3 describes four alternative funding strategies that we next compare with the
Pareto efficient solutions. These strategies specify the stage two and three decisions,
i.e., choosing which projects are launched, evaluated, and abandoned. The stage one
decision, stable funding policy (cℓ, cε, ca, q), is determined for each strategy so that
for the portfolio risk level it holds that α ≤ 0.10, and that the stable funding policy
is Pareto efficient given fixed index sets L, E , and A.
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Funding

strategy

Avoid

large

projects

Prefer

large

projects

Risk-indifferent

one by one

selection

Risk-informed

one by one

selection

Description Large

projects are

rejected as

too risky

Large

projects are

preferred

Risk-indifferent

funding strategy where

projects are chosen

one by one

Risk-informed funding

strategy where

projects’ riskiness is

considered

Selecting
launched
projects L

Only small

projects are

launched

A maximum

amount of

large

projects are

launched

Projects are selected

one by one to the

portfolio according to

the resource

consumption adjusted

excellence probabilities

P(Vi ≥ vÀ
i )/ci

Launched projects are

selected similarly as in

the risk-indifferent

policy except that a

20% risk premium is

required for large

projects to be selected

Selecting
evaluated
projects E

Optimal

selection

Optimal

selection

Similar logic as

choosing launched

projects

Large projects with

E[Vi | s0
i ] ≤ 230 are

evaluated

Selecting
abandoned
projects A

Optimal

selection

Optimal

selection

Similar logic as

choosing launched

projects

Large projects with

E[Vi | s0
i , sq

i ] ≤ 200 are

abandoned

Table 3: Description of alternative funding strategies.

Research agencies typically review and select projects to be funded one by one based
on the projects’ ranking until the whole funding budget is spent. This ranking can
be based on the aggregation of scores of multiple criteria including the riskiness of
research projects. However, funding agencies may be too risk-averse when reviewing
individual projects as they do not consider the whole portfolio view (Franzoni et al.,
2022). The Avoid large projects funding strategy attempts to describe aforementioned
conditions, where large projects are considered too risky and are always rejected.
Thus, only small projects are launched, and they are evaluated and abandoned in an
optimal way. An example of this funding strategy was already presented in Figure
4 (a) as the most risk-averse Pareto efficient solution in which all projects were
granted full funding. Thus, assessing projects’ riskiness and selecting them without
considering the whole portfolio view can lead to an undesirably low portfolio risk
level.

The avoid large projects funding strategy is shown in Figure 11 with a considerably
more risk-seeking stable funding policy (cℓ, cε, ca, q) = (32, 2, 15, 3). The expected
number of completed excellent projects is ω = 0.92, which is only 8% more than with
the most risk-averse Pareto efficient solution. The portfolio risk level increases to
α = 0.07 from near-zero. This stable funding policy allows the experimentation with
a larger set of projects, yet those projects are not necessarily of high quality, which
is why the benefits of the experimentation are small.
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In the prefer large projects funding strategy, the decision maker seeks to launch as
many large projects as possible, incentivized by the fact that they are more likely
to be excellent. In Figure 11 this strategy is shown with stable funding policy
(cℓ, cε, ca, q) = (25, 0, 0, 3), which means that all projects are granted full funding, and
in each period two large and five small projects are launched. The outcome of this
strategy is roughly the same as with the avoid large projects funding strategy. This
shows that both the portfolio level strategy and the selection of individual projects
must be aligned to reach optimal solutions.

The third funding strategy, risk-indifferent one by one selection attempts to maximize
the expected number of completed excellent projects by selecting the projects with
highest probabilities of being excellent to the portfolio one by one until the budget
is exhausted. This is done with respect to the projects’ resource consumption, i.e., a
higher quality is expected from project with a higher resource consumption. The
same logic is followed when evaluating and abandoning projects except starting
from the projects with lowest probabilities. The stable funding policy attached to
this strategy is (cℓ, cε, ca, q) = (31, 2, 13, 3). This strategy guides the decision maker
to launch, on average, 1.4 large and 17 small projects, the majority of which are
evaluated. On average, 0.5 large and 8 small projects are abandoned during the
re-evaluation period. This funding strategy is quite close to the Pareto front at
roughly ω = 1.1 and α = 0.08. However, with an optimal funding policy, the same
expected number of completed projects could be attainable with roughly half of the
risk at α = 0.04.

Figure 11: Comparison of alternative funding strategies with Pareto efficient solutions.
The funding strategies were simulated using 500 × 500 Monte Carlo samples.

The risk-informed one by one selection strategy attempts to capture the individual
projects’ risk to reward characteristics by requiring the large projects a 20% larger
resource consumption adjusted probability of being excellent when selected to the
portfolio instead of a small project. This percentage can be thought as a risk
premium required due to the lack of diversification when launching large projects.
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In addition, large projects are now evaluated if the initial value estimates E[Vi | s0
i ]

are smaller than 230 and are abandoned if the interim value estimates E[Vi | s0
i , sq

i ]
are smaller than 200. This seeks to mimic the phenomena illustrated in Figure
5, where highly promising large projects are committed to from the beginning,
majority of funded large projects are granted conditional funding, and evaluated
large projects are abandoned quite cautiously. This funding strategy paired up with
a stable funding policy (cℓ, cε, ca, q) = (32, 2, 15, 3) is near the Pareto front with
approximately ω = 1.1 and α = 0.05. The main differences to the risk-indifferent

one by one selection strategy is that large projects are both launched and abandoned
slightly less frequently. These observations indicate that all project possibilities
should be considered, and both the individual projects’ risks and the whole portfolio
view need to be taken into account in decision making.
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6 Discussion and conclusions

Fostering innovative research has a tremendous positive impact on society through
the development of new breakthrough technologies. However, there has been criticism
towards public research funding programs due to inefficiency in allocating funds
to advance such rare breakthroughs. Some key shortcomings in public research
funding are recognised to be, for instance, the lack of a holistic portfolio view in
risk management and not funding research projects conditionally in multiple stages.
In this thesis, we developed a stochastic optimization framework for forming risk-
informed research funding policies to support the development of breakthrough
technologies. The framework includes an abandonment option, which grants a
possibility to re-evaluate already launched projects and continue only those that
seem most promising. Concentration risk in the model is considered by allowing
freedom in the projects’ sizes and modelled using the Value-at-Risk framework. We
described a case problem and solved the Pareto efficient solutions numerically using
the sample average approximation method.

Our numerical results support the academic consensus that a holistic portfolio view
is important for effective project portfolio selection and management. In our model,
the decisions related to project selection can be split into two parts, (i) the selection
of the long-term stable funding policy, and (ii) the selection of individual projects
in each funding period done in accordance with the funding policy. We found that
both decision stages are dependent on the decision maker’s risk-appetite, and that
considering the interplay of these two stages is crucial for successful decision making.
A more risk-seeking funding policy requires a more risk-informed selection of funded
projects, and vice versa.

One key consideration in practically all risk management is diversification. In this
thesis, we assessed how dominantly large projects affect the performance of a research
project portfolio. We found that including large projects to a portfolio of research
projects can support the development of breakthrough technologies as a part of an
otherwise well diversified portfolio. However, to keep portfolio risk at a desired level,
funding large projects should be done cautiously by utilizing conditional funding and
a suitable amount of diversification should be ensured by funding smaller projects as
well. Conditional funding of large projects reduces the risk of committing a major
part of the funding budget to a project which could turn out to perform poorly
despite high initial expectations. Only highly promising large project opportunities
should be granted full funding without any initial experimentation.

One interpretation of the concept of a large project presented in this thesis is a set of
multiple small highly correlated projects. For instance, some fields of research could
have individual projects opportunities that are highly correlated due to dependencies
on the success of the underlying field or some related technology. Hence, an alternative
approach for modelling concentration risk could have been to add different levels of
correlation between the projects, inducing concentration risk in a similar fashion as
large projects. However, in our model, introducing correlation between the projects
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would not be straight forward but would require an extensive reformulation of the
model framework. Yet another viable approach for modelling risky projects could have
been to allow different levels of dispersion in the projects’ future value distributions
corresponding to different levels of risk. This would have also allowed all the projects
to be of the same size, perhaps giving a different point of view on risk-informed
research project selection.

In alignment with Vilkkumaa et al. (2015), our numerical results suggest that the
option to abandon projects can support the development of breakthrough technologies
even as a part of more risk-informed decision maker’s funding policy. However, we
found evidence that the value of the abandonment option predominantly comes from
applying it to a large set of small projects and then continuing only a portion of
the most promising ones. On the other hand, the abandonment option seemed to
function more as a risk management tool with large projects as most experimented
large projects were continued after re-evaluation and only a small number of them
were abandoned.

The quality of project opportunities matters. We found that when there is a large
amount of promising project opportunities, it is optimal to first experiment with a
large portion of those projects and then to continue the best ones. Conversely, when
the pool of promising projects is small, it may be better to experiment less and use
resources to complete a large number of projects. Our results also suggest that while
a highly experimental funding policy may be optimal for developing breakthrough
technologies, it may not be optimal from the point of view of promoting science in
general as all research efforts accumulate knowledge over time and play an important
role as a foundation for future breakthrough technologies. Thus, it is vital for research
funding agencies to find suitable balance between promoting innovative research yet
also supporting more conventional research endeavours.

We identified two approaches for a decision maker with an increased appetite for risk
to promote the development of breakthrough technologies using the abandonment
option. First, more project opportunities could be experimented with in general.
This increases the likelihood of launching excellent projects that lead to breakthrough
technologies. The decision maker could also allocate resources towards experimen-
tation with small projects rather than larger ones, although, this can increase the
portfolio risk excessively. Second, the re-evaluation period could be delayed further
into the projects’ lifecycles to obtain more accurate estimates of the project future
values before granting final funding.

Our results suggest that the most risk-averse project funding policy is to complete
a maximal number of projects. This is reasonable as the policy provides best
diversification. Hence, surprisingly, the option to abandon projects did not reduce
portfolio risk. One reason for this is that our model is based on a long-term stable
research funding policy with a fixed budget. Thus, the abandonment option obligates
the decision maker to abandon a fixed portion of the projects in each period. In
more dynamic conditions, the decision maker could, for instance, choose to abandon
all launched projects and use the saved budget on the next funding period to launch
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more promising projects. In such conditions, the abandonment option could be more
useful as a pure risk management tool as funds could be steered more efficiently
towards higher quality projects. However, this would also require an adaptive budget,
i.e., the possibility to save and loan money (see e.g., Tofighian et al. 2018).

We assumed that all projects are successfully completed given that a preknown budget
is granted for them. However, this may not hold for real world research projects. For
instance, Baker and Solak (2011) provided an optimization framework for selecting
a portfolio of R&D projects in response to climate change, in which the success
probabilities of the individual projects are dependent on the amount of provided
funding. Furthermore, the amount of funding needed to complete a research project
may also not be exactly known beforehand, and this should be considered in risk
management (see e.g., Hu and Szmerekovsky, 2017). In addition, the projects’ future
values may depend on aspects such as whether funding is granted for a short time
period or for the whole lifetime of the project. Heinze (2008) found that funding
programs which grant long-term research funding can encourage risk-taking leading to
more breakthrough results and short-term funding can, vice versa, lead to risk-averse
research strategies. They also found that big research teams may not be as effective
as small ones, indicating that the benefits gained from projects are not always directly
proportional to the amount of funding given. Our model does not consider many of
such intricacies but is developed on generic assumptions and simplifications. Yet, we
believe that we were able to provide valuable insight and principles for selecting a
portfolio of risky research projects.

Our numerical results are aligned with the criticism towards research funding pro-
grams, showing that there can be a large trade-off between supporting the devel-
opment of breakthrough technologies and research in a more general sense. Our
model shows that conditional project funding can be important in risk-informed
development of breakthrough technologies. Yet, conditional funding of small projects
did not function as a risk mitigate due to model restrictions. Rather, we found that
more risk-seeking funding policies can be formed by increasing the duration and
share of the conditional funding. Nevertheless, our results suggest that conditional
funding of large projects can be used as a risk management tool while promoting the
development of breakthrough technologies.
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