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Abstract
Maritime shipping accounts for almost 3% of yearly global greenhouse gas emissions.
One potential way to reduce these emissions is to switch from burning oil to renewable
synthetic fuels. Hydrogen and ammonia can be produced in a renewable way, and
can be fed into a fuel cell to directly generate electricity to power a ship. Ammonia
can also be burned in engines like traditional marine fuels, aiding the potential
switch. In this thesis, a biobjective mixed-integer linear program is developed and
implemented to aid in optimally placing renewable bunkering locations in the Baltic
Sea. A price model for producing hydrogen and ammonia around the Baltic Sea,
as well as historical ship data is used in conjunction with the optimization model.
Several solution approaches for multiobjective optimization problems are implemented
and used to compute Pareto optimal solutions. A robustness measure for production
locations, called the core index, is applied. Based on the robustness measure, we
identify ports where producing renewable bunkering fuel is advisable, even if the
preference between reducing emissions and keeping costs down is not known in
advance. Sensitivity analysis is performed to gauge how the results are impacted by
changes in input parameters.
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Sammandrag
Maritim sjöfart står för nästan 3% av globala växthusgasutsläpp årligen. Detta är ett
faktum som måste åtgärdas. Ett sätt att minska på utsläppen från sjöfarten är att byta ut
de traditionella oljebaserade bränslena, mot nya syntetiska förnybara bränslen. Exempel
på sådana med hög potential är väte och ammoniak. Dessa kan produceras rakt med
elektricitet, och kan matas in i en bränslecell för att generera elektricitet ombord på ett
skepp. Ammoniak kan också användas rakt i en traditionell förbränningsmotor.

I detta diplomarbete har en flermåls heltalsoptimeringsmodell utvecklats och imple-
menterats för att understöda optimal placering av förnybara bunkringsplatser i Östersjön.
I arbetet antas det att om väte eller ammoniak behövs för bunkring i en hamn måste
det produceras lokalt. Till skillnad från väte, så kan ammoniak även köpas från mark-
naden, eftersom det existerar en marknad för förnybar ammoniak. Till detta har också
en prismodell för väte och ammoniak i de olika länderna runt Östersjön utvecklats.
Optimeringsmodellen har körts på historiskt sjöfartsdata från år 2023. Denna data består
av rutter mellan olika hamnar för olika skeppstyper. Utöver detta har olika flermåls
problemlösare testats. En robusthetsmetrik för hamnar, kallat kärnindex, är introducerat.
Ett högt kärnindex för en hamn betyder att det med hög sannolikhet är lönt att producera
syntetiska bränslen i denna hamn.

Med hjälp av dessa verktyg kan hamnar, där det är optimalt att producera syntetiska
bränslen för bunkring, identifieras. Olika lösningar med olika kostnader presenterades.
Kärnindexet användes också för att kategorisera olika hamnar. De hamnar med det högsta
kärnindexet, dvs där det är högst sannolikt lönt att producera syntetiska bränslen för
bunkring, är Göteborg, Sverige; Åbo, Finland; Kotka, Finland; Helsingfors, Finland och
Gävle, Sverige. Dessa hamnar är optimala på grund av en kombination av vätgaspriset
och mängden skeppstrafik.

En detaljerad känslighetsanalys gjordes, både på syntetiska bränslepriset, och på
parametern för minimiproduktionstakten. Som följd av analysen identifierades vissa
hamnar som eventuellt optimala om några av dessa storheter ändrades lite, och andra som
inte känsliga till förändringar, dvs. hamnarna fortsätter vara optimala eller icke optimala.

Nyckelord Optimering, bunkringsplats, Östersjön, heltalsprogrammering,
kärnindex, vätgas, ammoniak
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Symbols and abbreviations

Symbols
N the set of natural numbers, 0 included
R the set of real numbers

Abbreviations
DM decision maker
EU European Union
GHG greenhouse gases
g𝐶𝑂2𝑒𝑞 grams of CO2 equivalent emissions
HFO heavy fuel oil
ICE internal combustion engine
IMO International Maritime Organization
LNG liquefied natural gas
LP linear program
MDO marine diesel oil
MILP mixed-integer linear program
min. minimize
NOx nitrogen oxides
PM10 particulate matter
PPA power purchase agreement
s.t. subject to
SOx sulphur oxides
Synfuel synthetic fuel
TTW tank-to-wake
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1 Introduction
A study done by the International Maritime Organization (IMO) claims that green
house gases (GHG) from the shipping industry has increased by 9.6% from 2012 to
2018 [1]. During the same time, the share of total global emissions from the shipping
industry has increased from 2.76% to 2.89%. This has happened while the carbon
intensity of ships, on average, has actually decreased by 21-31% depending on the
metric used. However, this decrease in carbon intensity has slowed down in recent
years. Total emissions from shipping is currently predicted to continue to rise until
2050. Thus there is an urgent need to lower the GHG emissions from shipping, and
IMO has developed a plan to reduce the amount of GHG emissions from shipping by
at least 70% by 2040 [2].

Emission free fuels need to be implemented and deployed in the shipping industry
to reach decarbonisation goals by 2050 [3]. To reach decarbonisation, different ways
of managing demand, such as logistic optimization and curtailing traffic volumes
have been explored. Adding to this, an improvement in ship design and propulsion
technology could possibly reduce the GHG emissions by up to 55%. This, however, is
not enough, thus we need marine fuels that are emission free to meet the goals set up
by IMO.

Mathematical optimization has widely been used within the maritime shipping
industry [4]. Problems that require decision making quickly become very large when
dealing with large shipping networks, different ports, and different requirement from
different actors within shipping.

In this thesis, we develop a multi-objective optimization model, to model where in
the Baltic sea decarbonised bunkering solutions for maritime shipping could be be
optimally placed. In this context bunkering means refueling for ships, and bunker fuel
is ship fuel. This model is then solved using real world voyage data from shipping
in the Baltic sea. The purpose of this model is to aid the uptake of decarbonised,
emission free fueling for ships.



2 Background
This section first presents the current situation regarding emissions in the shipping
industry. Then synthetic fuels, hydrogen and ammonia are presented. Mathematical
optimization has been used a lot in the shipping industry and is then presented. Finally,
we go more in depth into the mathematical side of optimization.

2.1 Emissions in shipping
Maritime shipping is the most energy efficient mode of transportation we currently
have [4]. A modern container ship is much more efficient than trains, trucks, or planes,
as shown in Figure 1. Thus, around 80% of world trade is done through maritime
shipping.

0 100 200 300 400 500

Triple-E ship

Train

Truck

Plane

3

18

45

560

Grams of CO2 emitted by transporting 1 ton if cargo for 1 km for each shipping type.

Figure 1: Shipping type emission data from [4]. A Triple-E ship is a specific type of
large container ship.

As previously mentioned, total GHG emissions from shipping is still rising [1].
The demand for shipping is also continuing to rise which places an even higher demand
on reducing GHG emissions [5]. The development of maritime GHG emissions since
the 1990s can be divided into three periods. Figure 2 shows this phenomenon. The
solid orange line shows the global maritime shipping demand, and the blue line shows
GHG emissions emitted by maritime shipping. Before 2008, demand and emissions
increased linearly together. After 2008 followed a short period of carbon emission
reduction, while shipping demand continued to increase, but at a slower rate than
before 2008. Finally, after 2014, GHG emissions have risen slowly again, while
shipping demand continues to rise as fast as before 2008.

The marine fuel that is most commonly used today is heavy fuel oil (HFO),
accounting for a 79% share of fuel consumption [5]. The second and third most
used marine fuels are marine diesel oil (MDO) and liquefied natural gas (LNG),
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Figure 2: Global shipping emissions and trade demand, acquired from the Fourth
IMO GHG Study 2020 executive summary [5].

respectively. Looking at ship types, bulk carriers, container ships, and oil tankers
consume by far the most fuel [5]. Trailing behind are chemical tankers, general cargo
ships, and liquefied gas tankers. Ships usually need fuel for several purposes, such
as propulsion, auxiliary engines, and boilers. Here, propulsion is by far the largest
consumer of fuel.

Not only does the shipping industry release large amounts of GHG emissions,
air pollutants are also released [6]. This is partly due to HFO being essentially a
byproduct of oil refining, so it is impure [7]. The worst of these pollutants are sulphur
oxides (SOx), nitrogen oxides (NOx), and particulate matters (PM10) [6]. Not only do
these pollutants contribute to climate change, but unlike carbon dioxide, they impact
the health of humans and the quality of air negatively.

It is clear that emissions from the shipping industry needs to be reduced. The
International Maritime Organization (IMO) have developed a strategy to reach net-zero
by 2050 [2]. This strategy includes steps, such as increasing the use of zero emission
fuels, technologies, and energy sources to at least 5% by 2030. After that the ambition
is to reach net-zero emissions by around 2050. This thesis is related to these two
points, i.e., where is it optimal to place decarbonised bunkering (i.e. refueling) stations
for ships in the Baltic sea.

2.2 Synthetic fuels
Synthetic fuels or synfuels encompass more than the traditional definition of fuels
made from syngas derived from coal, or hydrocarbons that are produced from sources
other than petroleum [8]. The traditional hydrocarbon connection is narrow, but
understandable given their heavy use in modern society. A more modern definition
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that is more general places fuels on a spectrum such that they are primarily produced
by hydrogen addition, carbon rearrangement, or usually a combination of both.

When considering synfuels, there are three criteria to take into consideration [8].
These are renewability, feasibility at scale, and usability in existing infrastructure.
Regarding renewability, perhaps the most important factor is that any hydrogen
feedstock used needs to be produced in a renewable fashion, i.e., via electrolysis.
For scalability, the processes need to be able to be scaled up from laboratory test
to large scales. E.g. Fischer-Tropsch synthesis producing liquid hydrocarbons has
been demonstrated at an industrial scale. Finally, regarding suitability for existing
infrastructure, e.g. renewable methane can be used in natural gas infrastructure, and
liquid synfuels could be used in the transportation sector. Finally it is worth noting that
a diverse portfolio of synfuels is needed to, e.g. minimize production uncertainties,
instead of trying to focus on a single "best" fuel.

2.2.1 Hydrogen

One potential synthetic fuel that has been explored is hydrogen [9]. Hydrogen as
a marine fuel offers many potential upsides. Fuel cells, which produce electricity
directly from hydrogen, have higher efficiencies compared to internal combustion
engines. Hydrogen is used as a feedstock for other potential synthetic fuels, such
as ammonia and methanol, which means it is much less energy intensive to create
hydrogen compared to other potential synfuels. Using hydrogen as a fuel only produces
water as a byproduct, which means hydrogen is emission free, as long as it is also
produced in such a way. There are however several downsides of using hydrogen as a
marine fuel, it is much less volumetrically dense, potentially requiring up to seven
times more space on a ship compared to traditional fuel oils [10]. This means that
cargo carrying capacity can be negatively affected. Storage of the fuel onboard the
ship is also much more difficult compared to fuel oils, as is refueling. Converting ships
to use hydrogen as a fuel might also lead to ship operators being forced to bunker, i.e.
refuel, more often [9].

As previously mentioned, to be able to use hydrogen as a emission free marine
fuel, the hydrogen has to be produced in an emission free way [9]. Hydrogen can
be categorised into gray, blue, and green hydrogen [11]. Gray hydrogen is the most
common type of hydrogen produced today. It is produced from fossil sources, and
as a byproduct, emits carbon dioxide. Blue hydrogen is very similar to gray, except
the produced carbon dioxide is captured, and thus not emitted. Green hydrogen is,
as the name implies, produced completely using renewable energy sources. The
most promising green hydrogen technology is water electrolysis. Electrolysis works
by splitting water into hydrogen and oxygen with electricity. This implies that the
electricity used for electrolyzers must be renewable itself. Wind and solar seem to be
the most promising candidates.
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2.2.2 Ammonia

Another promising synthetic fuel candidate is ammonia [12]. Ammonia is an inorganic
compound with the chemical formula NH3. Ammonia can be used as a hydrogen
carrier in fuel cells, or used straight in an internal combustion engine (ICE). Since
ammonia is inorganic, burning it releases no carbon dioxide emissions. Ammonia
has a relatively high volumetric energy density of 4.8 MWh/m3 compared to 1.4
MWh/m3 for hydrogen compressed to 700 bar [13]. Thus, ammonia has roughly half
the volumetric energy density of HFO, which is at 9.7 MWh/m3. Since ammonia is
widely used in the fertilizer industry worldwide, there already exists infrastructure and
regulations related to ammonia [12]. This means that a potential switch to ammonia
for the shipping industry could be relatively easy. However, there are also downsides
to ammonia, synthesizing ammonia through the Haber-Bosch process is very energy
intensive [13]. Ammonia is also very toxic and corrosive. Furthermore, since ammonia
contains nitrogen, burning it in an ICE releases NOx compounds [12]. In 2022 the
first ever ammonia ready ship was delivered [14].

2.3 Mathematical optimization in the shipping industry
Due to the size and complexity of maritime shipping networks, optimization tools
have been implemented for several purposes within the industry to achieve efficiency
[4]. We can divide the problems into three different levels, strategic, tactical, and
operational. The strategic problems include which markets to serve, fleet size and
composition, as well as route design. Tactical problems include service selection, cargo
routing, fleet deployment, speed optimization, and scheduling. Finally, operational
problems include vessel berthing, container placement within the ship, empty container
management, and disruption management.

To model these types of problems mathematically presents some difficulty regarding
the uncertainty of the available data [4]. Demand from customers fluctuate throughout
the year, weather can have a large impact on arrival times, and technical problems in
ports can cause delays. Ports themselves also favour ships sticking to their original
timetable, which makes changing the arrival times or the routes themselves difficult
for ship operators.

The cost of fuel is the most important factor for the operating costs of a ship [15].
Up to 75% of the operating costs can stem from fuel costs. Thus, optimizing the
sailing speed of a fleet can yield great monetary gains. Fuel consumption is often
modeled by the speed of the vessel cubed [4]. However, in practice many factors
impact fuel consumption such as vessel type, draught of the vessel, weather conditions,
and more. A model to determine the optimal sailing speed and fleet size for a given set
of port calls is presented in [15]. They also concluded that the optimal sailing speed is
dependant on the current oil price.

Since most countries do not have a perfect trade balance, empty containers
accumulate in import heavy regions [4]. These empty containers have to be repositioned
by the shipping companies that own them, which can be very expensive. Thus,
repositioning has to be handled in an optimal way. It is estimated that around 20% of
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port activities are just for repositioning of empty containers [16]. Optimization has
been used to save over $80 million for a large shipping company by reducing empty
container inventory [17].

Determining the placement of the containers within the ship itself (stowage
planning) is no trivial task [4]. Not only can modern ships carry large amounts of
containers, the final list of goods is usually known very late, thus very fast algorithms
are needed. First, factors such as weight, volume, and electrical outlets (usually for
refrigerated containers), is needed to be considered when determining the mixture of
containers. This is usually called the master planning problem. Second, the containers
should be assigned so that loading and unloading time is minimized, and so that the
ship is stable and not under too much mechanical stress. This is called the slot planning
problem. Other factors to consider are that containers need to be loaded from the
bottom up, the height of container stacks are limited by the line of sight from the
bridge, the weight needs to be distributed evenly and below a set maximum limit, and
that rearranging containers at each ports should be avoided. It is clear why stowage
planning is so important. A model for the master planning problem is presented in
[18]. The model considers several types of containers, and can be solved quickly for
large ships.

While estimates vary, up to 75% of the operating costs of a ship can be attributed to
bunkering fuel costs [19, 15]. Fuel prices are dependent with oil prices, and bunkering
in some ports is more expensive than in others [4]. Thus, bunkering in an optimal
way is important. The bunkering problem tries to minimize bunkering costs while
assuring vessels have enough fuel. These problems can involve hundreds of vessels and
thousands of port calls. A model presented in [20] maximizes profits for a ship operator
company, while taking into account the uncertainty of bunkering costs using Markov
processes. Markov processes are mathematical models used to model uncertainty,
such as the uncertainty in bunker fuel prices.

Around 70% of shipping round trips are expected to experience delays in one or
more ports [4]. Ship operators usually decide the course of action when a delay occurs
manually. Delays can usually propagate due to the complexity of the shipping network,
thus, handling delays in an optimal way is important. The vessel schedule recovery
problem is presented in [21], which optimizes the trade off between the increased
fuel consumption from speeding up vessels, and the impact the delays have on the
cargo. The model demonstrated superior results compared to a trained professional,
and savings up to 58% were observed.

This thesis can be considered related to the bunkering problem, since the optimiza-
tion of bunkering is included. However, the problem presented in this thesis is novel
in the sense that it is more a facility location problem with a heavy focus on reducing
emissions in the shipping industry. We need to choose at which ports synthetic fuels
are produced and which voyages are most suitable to using synthetic fuels.

2.4 Mixed-integer linear programming (MILP)
Let us first introduce the general linear program (LP).
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Definition 1 A linear program is of the form

min. 𝑐𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0,
(1)

where 𝐴 is a 𝑚 by 𝑛 matrix, 𝑏 is a 𝑚-dimensional column vector, 𝑐 is a 𝑛-dimensional
row vector, and 𝑥 is a 𝑛-dimensional column vector of decision variables [22].

The linear function 𝑐𝑥 is minimized, while being subjected to the constraint that 𝐴𝑥 is
less than 𝑏.

Definition 2 A mixed-integer linear program (MILP) is a linear program with the
additional constraint that some variables must be integers. A MILP has the general
structure of

min. 𝑐𝑥 + ℎ𝑦
s.t. 𝐴𝑥 + 𝐺𝑦 ≤ 𝑏

𝑥 ≥ 0
𝑦 ∈ N𝑝,

(2)

where A is 𝑚 by 𝑛, G is 𝑚 by 𝑝, 𝑐 is a 𝑛-dimensional row vector, ℎ is a 𝑝-dimensional
row vector, 𝑏 is a 𝑚-dimensional column vector, 𝑥 is a 𝑛-dimensional column vector
of decision variables, and 𝑦 is a 𝑝-dimensional column vector of integer decision
variables [22].

Variations exists such as integer programs (IP) where all decision variables have to be
integers, or binary integer program (BIP) where all decision variables are constrained
to be binary. Even though, the structure of the MILP (2) is very similar to the LP (1),
simply rounding the solution given by the LP relaxation, which is the LP you get by
ignoring the integer constraint, is not at all sufficient to solve a MILP [22]. Consider
the problem max. 𝑥1 + 16

25𝑥2, subject to the feasible set shown in Figure 3, where the
blue dots are the feasible points bounded by the two blue lines [23]. Solving the LP
relaxation gives the solution (376/193, 950/193), while the optimal integer solution is
(5, 0). Not only does rounding the LP relaxation solution not give the optimal integer
solution, it is not even feasible in this particular case.
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Figure 3: Graphical representation of the feasible region of the example [23].

Since rounding is not possible, enumeration could be another possibility, since
the intersection of the problem constraints with the set of integers is usually finite.
However, this is in practice only possible for very small problems with few decision
variables.

To solve MILP problems, let us first introduce the notion of bounds [22]. Let z be
the optimal objective value to Problem (2). If we can find a sequence of lower bounds

𝑧1 < 𝑧2 < ... < 𝑧𝑠 ≤ z, (3)

and a sequence of upper bounds

�̄�1 > �̄�2 > ... > �̄�𝑡 ≥ z, (4)

we can then get a suitable tight bound (�̄� ≥ z ≥ 𝑧) for the optimal objective value
z. In this context, we usually talk about two types of bounds, primal bounds and
dual bounds. Primal bounds are found from a feasible solution to the problem (not
necessarily optimal). For a minimization problem, primal bounds are upper bounds.
Dual bounds are often found by an infeasible solution, i.e., a solution that is outside
the feasible set. In the context of MILP, dual bounds can be found by solving the LP
relaxation. For a minimization problem, dual bounds are lower bounds.

To solve a regular LP (1) the simplex method can be used [24]. We can note that
due to the linearity of a LP, an optimal solution will always be at a vertex of the feasible
region made up by the equality constraints. Thus, if we find a feasible vertex, we can
move along the edge that improves the objective function the most, and repeat until it
can no longer be improved. Then the optimal solution has been found.
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However, this approach does not work for MILP (2), since the feasible region
is not continuous, and the vertices made up by the equality constraints are usually
not feasible, e.g. see Figure 3. However, we can solve the LP relaxation of the
MILP problem, choose one of the decision variables 𝑥𝑖 and branch the problem into
two subproblems with additional constraints 𝑥𝑖 ≤ ⌊𝑥∗

𝑖
⌋ and 𝑥𝑖 ≥ ⌈𝑥∗

𝑖
⌉. We can then

continue solving the subproblems in the same way by branching and adding constraints
until an integer solution is found, however, the number of problems to solve then grows
exponentially. But if lower or upper bounds can be found during the process, we can
discard entire "branches" from the tree so that we only try to solve subproblems that
can potentially improve our solution. This method is called branch and bound [22].
Since solving one MILP involves solving usually a large amount of LPs, potentially
exponentially many, it is clear why solving MILPs is so computationally difficult.

2.5 Multiobjective optimization
Unlike the problem discussed in Section 2.4, let us now consider a problem with
several objective functions. These problems are called multiobjective optimization
problems. The structure of a multiobjective optimization problem is as follows,

min. { 𝑓1(𝑥), 𝑓2(𝑥), ..., 𝑓𝑘 (𝑥)}
s.t. 𝑥 ∈ 𝑆.

(5)

Here, 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛) are the decision variables in the feasible set 𝑆, and we
have 𝑘 ≥ 2 objective functions [25]. For example, 𝑆 can be the feasible set of a LP
(Definition 1) or a MILP (Definition 2).

Definition 3 Let’s denote the objective function vectorby f(x) = ( 𝑓1(𝑥), 𝑓2(𝑥), ..., 𝑓𝑘 (𝑥)),
where 𝑓𝑖 (𝑥) : R𝑛 → R, 𝑖 ∈ {1, ..., 𝑘}, are the individual objective functions. The
feasible objective region, is the image of the feasible set 𝑆, denoted by 𝑍 = f(𝑆) ⊂ R𝑘 .

Unlike single-objective optimization problems, there is usually no single decision
vector that minimizes all objective functions [25]. This is because the objective
functions in multiobjective optimization problems are usually conflicting in some way.
They may also be in different units which makes comparisons between two objective
functions, and scalarisation difficult.

Since the number of decision variables 𝑛 is much greater than the number of
objective functions 𝑘 , we usually study multiobjective optimization problems from the
objective space [25]. Here a problem arises, there is no complete order for the objective
space, e.g. while (1, 1) is less than (2, 2), (1, 2) and (2, 1) cannot be traditionally
compared. However, we can study certain vectors from the feasible objective region 𝑍 ,
i.e., vectors such that improving one component cannot be done without deteriorating
some other one. Such vectors are called Pareto optimal vectors.

Definition 4 A vector 𝑥∗ ∈ 𝑆 is Pareto optimal if there does not exist another decision
vector 𝑥 ∈ 𝑆 such that 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑥∗) for all 𝑖 = 1, ..., 𝑘 and 𝑓 𝑗 (𝑥) < 𝑓 𝑗 (𝑥∗) for at least
one index 𝑗 [25]. The set of all Pareto optimal vectors is called the Pareto optimal set.
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Corollary 4.1 An objective vector 𝑓 (𝑥∗) ∈ 𝑍 is Pareto optimal if its corresponding
vector 𝑥 ∈ 𝑆 is Pareto optimal [25]. These are also sometimes called non-dominated
vectors.

Figure 4 shows the Pareto optimal set for a biobjective minimization problem in bold.
The Pareto optimal set is not necessarily finite in size. There also exists a weaker

Figure 4: The Pareto optimal set is the bolded line [25].

version of Pareto optimality.

Definition 5 A vector 𝑥∗ ∈ 𝑆 is weakly Pareto optimal if there does not exist another
vector 𝑥 ∈ 𝑆 such that 𝑓 (𝑥) < 𝑓𝑖 (𝑥∗) for all 𝑖 = 1, ..., 𝑘 [25].

Corollary 5.1 An objective vector 𝑓 (𝑥∗) ∈ 𝑍 is weakly Pareto optimal if its corre-
sponding vector 𝑥 ∈ 𝑆 is weakly Pareto optimal [25].

While Pareto optimality 4 is preferred to weakly Pareto optimality 5, weak Pareto
optimal points are usually easier to find and verify. There are several ways to
generate, at least parts of, the Pareto optimal set [25]. These methods are also called
posteriori methods, since no prior knowledge on how the different objectives are
valued is assumed. Unfortunately however, such methods are usually computationally
expensive. Some methods can only find Pareto optimal vectors that lie on the convex
hull of the feasible objective region 𝑍 . This thesis will present four methods from
literature, the weighting method, the 𝜀-constraint method, the weighted Tchebycheff
method, and the boxing method.

2.5.1 Weighting method

For the weighting method, the original problem (5) is transformed to a single objective
problem by taking a weighted sum of the objective functions [25].
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Definition 6 The weighting problem, defined as

min.
𝑘∑︁
𝑖=1

𝑤𝑖 𝑓𝑖 (𝑥)

s.t. 𝑥 ∈ 𝑆,
(6)

where 𝑤𝑖 ≥ 0 for all 𝑖 = 1, ..., 𝑘 and
∑︁𝑘
𝑖=1 𝑤𝑖 = 1.

The weighting problem has only one objective, the weighted sum, so it can be solved
using traditional optimization methods. By varying the weights, different Pareto
optimal points can be found. The weighting problem is very easy to implement,
however, not all Pareto optimal points can be found unless the feasible objective region
𝑍 is convex. Solutions to the weighting method are guaranteed to be weakly Pareto
optimal, and Pareto optimal if all weights 𝑤𝑖 are positive.

2.5.2 𝜀-constraint method

For the 𝜀-constraint method, one objective function is chosen to be minimized, while
the rest of the objective functions are converted into constraints [25]. These constraints
are made by setting an upper bound to the corresponding objective functions.

Definition 7 The 𝜀-constraint problem, defined as

min. 𝑓 𝑗 (𝑥)
s.t. 𝑓𝑖 (𝑥) ≤ 𝜀𝑖 ∀𝑖 = 1, ..., 𝑘, 𝑖 ≠ 𝑗

𝑥 ∈ 𝑆,
(7)

where 𝑗 ∈ {1, ..., 𝑘}, and 𝜀𝑖 are the upper bounds.

Again, the multiobjective problem has been turned into a single-objective problem,
and different Pareto optimal solutions can be found by varying the upper bounds 𝜀𝑖.
It is theoretically possible to find all Pareto optimal solutions with the 𝜀-constraint
method. However, it is more computationally expensive due to extra constraints. The
𝜀-constraint method can handle nonconvex problems. Solutions to the 𝜀-constraint
method are guaranteed to be weakly Pareto optimal.

2.5.3 Weighted Tchebycheff method

For the weighted Tchebycheff method, the concept of the ideal objective vector needs
to be introduced [25].

Definition 8 The ideal objective vector z∗ ∈ R𝑘 is defined so that each component 𝑧𝑖
is the minimum of 𝑓𝑖 (𝑥) subject to 𝑥 ∈ 𝑆, for each 𝑖 = 1, ..., 𝑘 .

We can then minimize the weighted distance between the objective vector f(x) and
the ideal vector z∗. When using the max-norm, it is called the weighted Tchebycheff
problem.
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Definition 9 The weighted Tchebycheff problem, defined as

min. max
𝑖=1,...𝑘

{𝑤𝑖 ( 𝑓𝑖 (𝑥) − 𝑧𝑖)}

s.t. 𝑥 ∈ 𝑆, (8)

where 𝑤𝑖 ≥ 0 ∀𝑖 = 1, ..., 𝑘 and
∑︁𝑘
𝑖=1 𝑤𝑖 = 1.

The problem in Definition 9 is not in the form of a MILP (Definition 2). It can be
transformed into a MILP form, if 𝑆 is corresponding to a MILP.

Corollary 9.1 The MILP form of the weighted Tchebycheff problem is

min. Δ
s.t. Δ ≥ 𝑤𝑖 ( 𝑓𝑖 (𝑥) − 𝑧𝑖) ∀𝑖 = 1, ..., 𝑘

𝑥 ∈ 𝑆,
(9)

where Δ ∈ R is an additional decision variable.

By varying the weights, different Pareto optimal solutions can be found. The weighted
Tchebycheff Problem (8) is guaranteed to find at least one Pareto optimal solution.
If several are found for one set of weights, the one which is Pareto optimal has to be
verified. Like the 𝜀-constraint method, the weighted Tchebycheff method can handle
non-convex problems.

2.5.4 Boxing method

The three previous methods are very general in the sense that they produce solutions
for all types of problems. However, since the model in this thesis possesses some
special properties, we might want to exploit them. The boxing method introduced in
[26] is aimed specifically for biobjective problems with discrete feasible objective
regions. First some concepts need to be introduced.

Definition 10 The biobjective lexicographic minimization problem is defined as

lex min. ( 𝑓1(𝑥), 𝑓2(𝑥))
s.t. 𝑥 ∈ 𝑆,

(10)

where lex min. denotes the lexicographic minimum [27]. The lexicographic minimum
means that the first objective is more important than the second one, and will be
minimized first. Only if the first minimization does not yield a unique solution will the
second objective be minimized, with the condition that the first objective remains the
same.
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We can illustrate this with an example. Figure 5 shows an example feasible objective
region Z. If we first minimize the second objective 𝑓2, we get the lexicographic
optimum 𝑎, since 𝑓1 cannot then change without affecting 𝑓2. However, if we instead
first minimize the first objective 𝑓1, we can then still minimize the second objective 𝑓2
without affecting 𝑓1. Thus, the other lexicographic optimum is 𝑏.

𝑓1

𝑓2

𝑎

𝑏

Z

Figure 5: Example feasible objective region Z, and the two lexicographic minima 𝑎
and 𝑏.

With this information we can introduce the lexicographic 𝜀-constraint method.
Note that here we consider 𝑓2(𝑥) to be more important.

Definition 11 The lexicographic 𝜀-constraint problem, defined as

lex min. ( 𝑓2(𝑥), 𝑓1(𝑥))
s.t. 𝑓1(𝑥) ≤ 𝜀

𝑥 ∈ 𝑆,
(11)

where the objectives are lexicographically minimized with the additional constraint as
in Definition 7 [26].

The idea behind the Boxing method is, given a box (rectangle) containing all
Pareto optimal solutions, the box can be iteratively divided into two smaller boxes
still containing all Pareto optimal solutions [26]. Stopping when a suitable number of
Pareto optimal solutions have been found is guaranteed to yield a good representation
of the complete Pareto optimal set.

Let 𝑅(𝑧1, 𝑧2) be the rectangle defined by 𝑧1 as the upper left point and 𝑧2 as the
lower right point, and 𝑎(𝑅(𝑧1, 𝑧2)) be the area of said rectangle [26]. Below a slight
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modification of the Boxing method is presented. Let the two initial points for the
boxing algorithm be

𝑧1 = (𝑧1
1, 𝑧

1
2) = lex min

𝑥∈𝑆
( 𝑓1(𝑥), 𝑓2(𝑥)) and

𝑧2 = (𝑧2
1, 𝑧

2
2) = lex min

𝑥∈𝑆
( 𝑓2(𝑥), 𝑓1(𝑥)).

The complete Pareto optimal set is a subset of 𝑅(𝑧1, 𝑧2). Let 𝜀 = (𝑧1
1 + 𝑧

2
1)/2. Then

let 𝑥∗ be optimal for problem (11), and 𝑧∗ be ( 𝑓1(𝑥∗), 𝑓2(𝑥∗)). 𝑧∗ is then Pareto
optimal. We then define a point 𝑝 = (𝜀, 𝑧∗2). We can then notice that the rectangles
𝑅1 = 𝑅(𝑧1, 𝑧∗) and 𝑅2 = 𝑅(𝑝, 𝑧2) contain all Pareto optimal solutions, and combined
are less than half the area of the original rectangle. We then chose the largest of
the remaining rectangles and repeat the steps. When the remaining rectangles are
sufficiently small we stop the algorithm.

2.5.5 Decision maker

A concept that might be needed for solving multiobjective optimization problems is a
decision maker (DM) [25]. While every Pareto optimal solution is mathematically
equally optimal, in the real world we might want to chose a single solution. This is
where the decision maker is needed. The decision maker is a person or a group with
more insight into the given problem, and is able to provide preference statements
between the different objectives. E.g. in this context a decision maker might say that
reducing emissions is more important than keeping costs down. Such statements can
then be used to add additional constraints to reduce the size of the Pareto optimal set.

22



3 Research methods
This section the research methods used in this thesis. First, the optimization model is
presented. Then a small example model is solved and presented. The implemented
multiobjective solvers are then presented, along with a robust way of categorizing the
ports based on the multiobjective solutions. Finally the data used for the model is
presented. Figure 6 shows a flowchart of how the model is structured.

Historical
ship data

Additional
parameters

Synthetic fuel
price model

Optimization model
&

Multiobjective method

Optimal synfuel
production
locations

Robust ports

Figure 6: Flow chart showing how the complete model will work. Inputs into the
model are shown in red, and outputs are shown in green.

3.1 Optimization model
The objective is to develop a model that finds optimal ports where decarbonised
bunkering options could be placed. We want to maximize the reduction in CO2
emissions, i.e., maximize the uptake of decarbonised synfuels. We also want to
minimize the costs related to these new synfuels. These two objectives are conflicting,
i.e., reducing emissions by a large amount is expensive.

The synfuels can be either produced locally at the ports where they are needed, or
some can be bought from the global market and shipped to the chosen port. Producing
fuels locally has a price dependent on location, while purchasing from the market has
a set price, independent of location. If local production of a certain fuel is considered,
more than a set minimum amount needs to be produced per year. Purchasing from the
market is assumed to have infinite capacity. If purchasing from the market is done, a
minimum amount is enforced. It is assumed that the cost of the bunkering itself is
negligible. If a voyage is to be done using a synthetic fuel, the ship needs to bunker at
the port of origin.

The model parameters are the inputs in red in Figure 6, and the decision variables
are the outputs we get, in green. First the nomenclature for the model is presented.
Then the model itself is presented.
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Sets
𝑖, 𝑗 ∈ 𝑃 Set of ports
𝑘 ∈ 𝐾 Set of synfuels
𝑘 ∈ 𝐻 ⊂ 𝐾 Subset of synfuels that are hydrogen
𝑘 ∈ 𝐴 ⊂ 𝐾 Subset of synfuels that are ammonia
𝑡 ∈ 𝑇 Set of ship types

Decision variables
𝑥𝑖 𝑗 𝑘𝑡 ∈ N Amount of voyages from port 𝑖 to 𝑗 for ship type 𝑡, assigned with fuel 𝑘 .
𝑏𝑖𝑘 ≥ 0 Amount of local production for fuel type 𝑘 in harbour 𝑖 (MWh/year).
𝑚𝑖𝑘 ≥ 0 Amount of fuel 𝑘 bought from the market to harbour 𝑖 (MWh/year).
𝑦
𝑝

𝑖𝑘
∈ {0, 1} Binary indicator variable if fuel 𝑘 is produced in port 𝑖.

Parameters
𝑉𝑖 𝑗 𝑡 Number of voyages from from port 𝑖 to 𝑗 for ship type 𝑡.
𝐸𝑖 𝑗 𝑡 Average energy needed per voyage from port 𝑖 to 𝑗 for ship type 𝑡 (MWh).
𝑝1
𝑖𝑘

Cost of fuel 𝑘 produced locally in harbour 𝑖 (=C/MWh).
𝑝2
𝑘

Market price for fuel 𝑘 (=C/MWh).
𝛽
𝑝

𝑘
Minimum allowable production rate for fuel 𝑘 (MWh/year).

𝛼 Emission constant (g𝐶𝑂2𝑒𝑞/MWh).
𝑧 Maximum energy that can be served by hydrogen per voyage (MWh).
𝜇 Efficiency factor.

Constraints

Constraint (12) makes sure that we do not assign more fuels than there are voy-
ages per route. E.g. if there are 10 recorded voyages from port A to port B, we can
switch at most 10 routes to new synfuels.∑︁

𝑘∈𝐾
𝑥𝑖 𝑗 𝑘𝑡 ≤ 𝑉𝑖 𝑗 𝑡 , ∀𝑖, 𝑗 ∈ 𝑃,∀𝑡 ∈ 𝑇 (12)

Constraint (13) makes sure we assign as much synthetic fuel, to voyages that leave
from port 𝑖, as what is produced in, and what is bought to port 𝑖, for every fuel 𝑘 that
can be bought from the market. E.g. if 500 MWh of ammonia is produced in, and 500
MWh is bought to port A, exactly 1000 MWh of ammonia is assigned to voyages that
leave from port A. The efficiency factor 𝜇 is used to quantify that fuel cells are more
efficient than ICE. Since the energy needed 𝐸𝑖 𝑗 𝑡 is for an ICE burning traditional fuels,
we multiply by the efficiency factor 𝜇 to get the energy needed for a fuel cell ship.∑︁

𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 + 𝑚𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴 (13)

Constraint (14) makes sure that we assign as much synthetic fuel, to voyages that leave
from port 𝑖, as what is produced in port 𝑖, for every fuel 𝑘 that cannot be bought from
the market. ∑︁

𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻 (14)
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Constraint (15) states that only voyages that on average have an energy requirement
of less than 𝑧 can use hydrogen. This constraint tries to capture that only relatively
short voyages with a relatively small energy need can use hydrogen, due to its lesser
volumetric density.

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 ≤ 𝑧, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐻,∀𝑡 ∈ 𝑇 (15)

We want to impose a constraint that makes sure that if we decide to produce a
synthetic fuel it has to be above a certain minimum rate. For ammonia, there is a strict
minimum amount. However, since producing ammonia already requires hydrogen,
producing hydrogen only requires that ammonia and hydrogen production is above the
set minimum. Constraint (16) makes sure that if ammonia is produced, it is produced
above a certain minimum amount, in every port. Constraint (17) makes sure that if
hydrogen is produced, the sum of hydrogen and ammonia production is above a certain
minimum, in every port.

𝑏𝑖𝑘 ≥ 𝛽
𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴 (16)∑︁

𝑘 ′∈𝐾
𝑏𝑖𝑘 ′ ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻 (17)

Constraint (18) is a big M constraints to allow for no production, where 𝑀 is a
sufficiently big constant.

𝑏𝑖𝑘 ≤ 𝑀 · 𝑦𝑝
𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾 (18)

However, constraint (18) is a weak formulation, since it is difficult to determine a single
𝑀 that is large enough to not make any solution infeasible, but also small enough to
make potential LP relaxations partly integer solutions. Thus the constraints can be
reformulated so that for every 𝑖, we assign a different upper bound 𝑁𝑖. This 𝑁𝑖 is the
total amount of energy needed to satisfy all voyages leaving port 𝑖, and is determined
from the available data. Constraint (19) is a stronger formulation of constraint (18),
and will be used instead.

𝑏𝑖𝑘 ≤ 𝑁𝑖 · 𝑦𝑝𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾 (19)

Objective functions

Objective function (20) captures the emissions that are reduced by switching to
synfuels. 𝛼 represents tons of CO2 equivalent emissions per MWh of HFO burned.
This objective function (20) is maximized, so to turn it into a minimization problem,
− 𝑓1 is minimized.

𝑓1 =
∑︁
𝑖∈𝑃

∑︁
𝑗∈𝑃

∑︁
𝑘∈𝐾

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝛼 (20)
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Objective function (21) represents the total yearly cost in =C/year. The yearly cost is
comprised of the synfuels that are locally produced as well as the synfuels that are
bought from the market. This objective function (21) is minimized.

𝑓2 =
∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑏𝑖𝑘 · 𝑝1
𝑖𝑘 +

∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐴

𝑚𝑖𝑘 · 𝑝2
𝑘 (21)

The full model then becomes

min. {−(
∑︁
𝑖∈𝑃

∑︁
𝑗∈𝑃

∑︁
𝑘∈𝐾

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝛼),
∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑏𝑖𝑘 · 𝑝1
𝑖𝑘 +

∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑚𝑖𝑘 · 𝑝2
𝑘 }

s.t.
∑︁
𝑘∈𝐾

𝑥𝑖 𝑗 𝑘𝑡 ≤ 𝑉𝑖 𝑗 𝑡 , ∀𝑖, 𝑗 ∈ 𝑃,∀𝑡 ∈ 𝑇∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 + 𝑚𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 ≤ 𝑧, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐻,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁

𝑘 ′∈𝐾
𝑏𝑖𝑘 ′ ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑏𝑖𝑘 ≤ 𝑁𝑖 · 𝑦𝑝𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑥𝑖 𝑗 𝑘𝑡 ∈ N, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑚𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑦
𝑝

𝑖𝑘
∈ {0, 1}, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾.

(22)

3.2 Example model solution
To illustrate this model and give a small example, let us consider a small, scaled down
version. Let us consider only two ports 𝑎 and 𝑏, only one synthetic fuel, and only
one ship type. This fuel costs 110 =C/MWh in port 𝑎 and 160 =C/MWh in port 𝑏. Fuel
cannot be bought from the market. There are 3 voyages from 𝑎 to 𝑏, and 5 voyages
from 𝑏 to 𝑎, within a certain time frame, that all require 500 MWh worth of fuel. If we
install local production of the synthetic fuel, a minimum of 1000 MWh needs to be
produced within the same time frame. Let the emission constant be 0.3 tCO2e/MWh.
This simple model is solved by enumerating all feasible solutions and eliminating
solutions that are not Pareto optimal. Figure 7 shows the complete Pareto set.

Table 1 shows the Pareto optimal solutions to the example problem, where 𝑥𝑎𝑏 and
𝑥𝑏𝑎 is the number of voyages were we use the synthetic fuel from 𝑎 to 𝑏, and 𝑏 to 𝑎
respectively. Variables 𝑏𝑎 and 𝑏𝑏 is the produced amount of synthetic fuel in port 𝑎
and 𝑏 respectively. Some noteworthy properties of the Pareto optimal set shown in
Figure 7 for this model can be observed. The Pareto optimal set does not lie entirely
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Figure 7: Pareto optimal set for the example model.

on the convex hull of the feasible objective region. Thus, the weighting method (6)
might not be able to find all Pareto optimal solutions. The Pareto optimal set is also
not continuous, but consists of discrete points.

𝑥𝑎𝑏 𝑥𝑏𝑎 𝑏𝑎 𝑏𝑏 Objective 1 (tCO2e) Objective 2 (k=C)
0 0 0 0 0 0
2 0 1000 0 300 110
3 0 1500 0 450 165
2 2 1000 1000 600 270
3 2 1500 1000 750 325
3 3 1500 1500 900 405
3 4 1500 2000 1050 485
3 5 1500 2500 1200 565

Table 1: Solutions to the example model, every row is a Pareto optimal solution.
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3.3 Multiobjective methods
The four methods introduced in section 2.5 are implemented. First is the weighting
method in Definition 6. The method then becomes

min. 𝑤1(−
∑︁
𝑖∈𝑃

∑︁
𝑗∈𝑃

∑︁
𝑘∈𝐾

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝛼) + 𝑤2(
∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑏𝑖𝑘 · 𝑝1
𝑖𝑘 +

∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑚𝑖𝑘 · 𝑝2
𝑘 )

s.t.
∑︁
𝑘∈𝐾

𝑥𝑖 𝑗 𝑘𝑡 ≤ 𝑉𝑖 𝑗 𝑡 , ∀𝑖, 𝑗 ∈ 𝑃,∀𝑡 ∈ 𝑇∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 + 𝑚𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 ≤ 𝑧, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐻,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁

𝑘 ′∈𝐾
𝑏𝑖𝑘 ′ ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑏𝑖𝑘 ≤ 𝑁𝑖 · 𝑦𝑝𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑥𝑖 𝑗 𝑘𝑡 ∈ N, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑚𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑦
𝑝

𝑖𝑘
∈ {0, 1}, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾

(23)
where 𝑤1, 𝑤2 ≥ 0 and 𝑤1 + 𝑤2 = 1. The coefficients 𝑤1 and 𝑤2 are evenly distributed
between 0 and 1, satisfying the constraint.

Second is the 𝜀-constraint method in Definition 7. The 𝜀-constraint problem looks
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as follows

min.
∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑏𝑖𝑘 · 𝑝1
𝑖𝑘 +

∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑚𝑖𝑘 · 𝑝2
𝑘

s.t. − (
∑︁
𝑖∈𝑃

∑︁
𝑗∈𝑃

∑︁
𝑘∈𝐾

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝛼) ≤ 𝜀∑︁
𝑘∈𝐾

𝑥𝑖 𝑗 𝑘𝑡 ≤ 𝑉𝑖 𝑗 𝑡 , ∀𝑖, 𝑗 ∈ 𝑃,∀𝑡 ∈ 𝑇∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 + 𝑚𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 ≤ 𝑧, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐻,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁

𝑘 ′∈𝐾
𝑏𝑖𝑘 ′ ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑏𝑖𝑘 ≤ 𝑁𝑖 · 𝑦𝑝𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑥𝑖 𝑗 𝑘𝑡 ∈ N, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑚𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑦
𝑝

𝑖𝑘
∈ {0, 1}, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾

(24)

where 𝜀 is the upper bound for objective function 𝑓1 (20). To find suitable values for
𝜀 we first note that the maximum that − 𝑓1 can achieve is trivially when all 𝑥𝑖 𝑗 𝑘𝑡 are
zero. This corresponds with no synfuels being assigned to any routes and thus no CO2
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reduced. To find the minimum of − 𝑓1 we solve the following problem,

min. − (
∑︁
𝑖∈𝑃

∑︁
𝑗∈𝑃

∑︁
𝑘∈𝐾

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝛼)

s.t.
∑︁
𝑘∈𝐾

𝑥𝑖 𝑗 𝑘𝑡 ≤ 𝑉𝑖 𝑗 𝑡 , ∀𝑖, 𝑗 ∈ 𝑃,∀𝑡 ∈ 𝑇∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 + 𝑚𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 ≤ 𝑧, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐻,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁

𝑘 ′∈𝐾
𝑏𝑖𝑘 ′ ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑏𝑖𝑘 ≤ 𝑁𝑖 · 𝑦𝑝𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑥𝑖 𝑗 𝑘𝑡 ∈ N, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑚𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑦
𝑝

𝑖𝑘
∈ {0, 1}, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾

(25)

which tells us how much CO2 emissions can be reduced if we ignore the costs. Thus,
we optimize without the second objective. When the upper and lower bounds are
known, 𝜀 can be evenly distributed between these bounds to find an even distribution
of Pareto optimal solutions. The amount of Pareto optimal solutions can then be
determined beforehand to a suitable number.

Then, the MILP form of the weighted Tchebycheff problem in Definition 9.1 can
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be constructed. The model becomes as follows,

min. Δ

s.t. Δ ≥ 𝑤1(−
∑︁
𝑖∈𝑃

∑︁
𝑗∈𝑃

∑︁
𝑘∈𝐾

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝛼 − z1)

Δ ≥ 𝑤2(
∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑏𝑖𝑘 · 𝑝1
𝑖𝑘 +

∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑚𝑖𝑘 · 𝑝2
𝑘 − z2)∑︁

𝑘∈𝐾
𝑥𝑖 𝑗 𝑘𝑡 ≤ 𝑉𝑖 𝑗 𝑡 , ∀𝑖, 𝑗 ∈ 𝑃,∀𝑡 ∈ 𝑇∑︁

𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 + 𝑚𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 ≤ 𝑧, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐻,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁

𝑘 ′∈𝐾
𝑏𝑖𝑘 ′ ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑏𝑖𝑘 ≤ 𝑁𝑖 · 𝑦𝑝𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑥𝑖 𝑗 𝑘𝑡 ∈ N, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑚𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑦
𝑝

𝑖𝑘
∈ {0, 1}, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾

(26)

where 𝑤1, 𝑤2 ≥ 0, 𝑤1 +𝑤2 = 1 and z1, z2 are the ideal objective vectors. z2 is trivially
zero and can be omitted. z1 is the solution to Problem (25). The coefficients 𝑤1 and
𝑤2 are evenly distributed between 0 and 1, satisfying the constraint.

Finally, for the Boxing method, the lexicographic 𝜀- constraint method looks as
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follows,

lex min. (
∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑏𝑖𝑘 · 𝑝1
𝑖𝑘 +

∑︁
𝑖∈𝑃

∑︁
𝑘∈𝐾

𝑚𝑖𝑘 · 𝑝2
𝑘 ,−(

∑︁
𝑖∈𝑃

∑︁
𝑗∈𝑃

∑︁
𝑘∈𝐾

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝛼))

s.t. − (
∑︁
𝑖∈𝑃

∑︁
𝑗∈𝑃

∑︁
𝑘∈𝐾

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝛼) ≤ 𝜀∑︁
𝑘∈𝐾

𝑥𝑖 𝑗 𝑘𝑡 ≤ 𝑉𝑖 𝑗 𝑡 , ∀𝑖, 𝑗 ∈ 𝑃,∀𝑡 ∈ 𝑇∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 + 𝑚𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁
𝑗∈𝑃

∑︁
𝑡∈𝑇

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 = 𝑏𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑥𝑖 𝑗 𝑘𝑡 · 𝐸𝑖 𝑗 𝑡 · 𝜇 ≤ 𝑧, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐻,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐴∑︁

𝑘 ′∈𝐾
𝑏𝑖𝑘 ′ ≥ 𝛽

𝑝

𝑘
· 𝑦𝑝

𝑖𝑘
, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐻

𝑏𝑖𝑘 ≤ 𝑁𝑖 · 𝑦𝑝𝑖𝑘 , ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑥𝑖 𝑗 𝑘𝑡 ∈ N, ∀𝑖, 𝑗 ∈ 𝑃,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇
𝑏𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑚𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾
𝑦
𝑝

𝑖𝑘
∈ {0, 1}, ∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝐾

(27)
where 𝜀 will be iteratively updated like in Section 2.5.4.

3.4 Robust ports and Core index
While the Pareto optimal sets that are generated by the methods in Section 3.3 are great
tools for a potential decision maker, the information they contain can be condensed even
further. Here, the concept of robust choices will be introduced and then implemented,
based on [28]. Let 𝑆𝑃𝑎𝑟𝑒𝑡𝑜 be the set of Pareto optimal vectors, excluding the trivial
vectors which lead to both objectives being zero, and 𝑠 ∈ 𝑆𝑃𝑎𝑟𝑒𝑡𝑜 be the the individual
Pareto optimal vectors. The trivial vectors, which mean nothing is produced, of course
at no cost, are removed, since for analysis they are not a desirable solution. Let us
then consider the variable (𝑦𝑝

𝑖𝑘
)𝑠 which denotes if fuel 𝑘 is produced in port 𝑖 in the

solution 𝑠.

Definition 12 The ideal core index for port i and fuel k is

CI∗(𝑖, 𝑘) =
|{(𝑦𝑝

𝑖𝑘
)𝑠 | (𝑦𝑝𝑖𝑘 )𝑠 = 1}|
|𝑆𝑃𝑎𝑟𝑒𝑡𝑜 |

. (28)

The ideal core index for a given port and fuel is between 0 and 1. An ideal core
index of one indicates that independently of preferences between reducing emissions
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and keeping costs down, it is optimal to produce fuel 𝑘 in port 𝑖. An ideal core index
of zero means that it is never optimal to produce fuel 𝑘 in port 𝑖. An ideal core index
somewhere in between means that this particular fuel and port combination is included
in some, but not all Pareto optimal solutions.

Definition 13 We define three distinct sets of

• Core ports: CI∗(i,k) = 1

• Borderline ports: 0 < CI∗(i,k) < 1

• Exterior ports: CI∗(i,k) = 0.

Here, the sets are defined separately for each fuel, since ammonia and hydrogen behave
quite differently in the context of this model. From the perspective of the DM, it is
clear that choosing to produce fuels in ports with an ideal core index of 1 is preferred
while choosing to produce fuel in ports with an ideal core index of 0 should be avoided.
Core ports can be considered robust, since they are always included in Pareto optimal
solutions, regardless of the preference between the objectives.

Since the complete Pareto optimal set is not always able to be computed, let us
introduce a slight modification to the ideal core index, called the core index.

Definition 14 The core index for port i and fuel k is

CI(𝑖, 𝑘) =
|{(𝑦𝑝

𝑖𝑘
) 𝑓 | (𝑦𝑝𝑖𝑘 ) 𝑓 = 1}|

|𝐹 | , (29)

where F is the computed subset of the Pareto optimal set, in the image space, and f ∈
𝐹.

Most things that hold for the ideal core index also hold for the core index, i.e.,
a core index of one indicates that independently of preferences between reducing
emissions and keeping costs down, it is optimal to produce fuel 𝑘 in port 𝑖. However,
some things becomes more difficult if we do not have the complete Pareto optimal set,
which is usually the case when working with real world problems where computing the
complete Pareto optimal set is infeasible. Instead, we rely on methods, such as those
in Section 2.5 to compute a subset of the complete Pareto optimal set. The objective
functions are not necessarily injective, such is the case in this thesis, which means
that we might have several solutions for a single objective value. Which solution
the solver actually computes is not completely random, it can e.g. be influenced by
which variable the branching is done on during the branch and bound method, which
is something that can be decided by the user in the Gurobi solver [29]. This means
that if there are several solutions that have equal objective values, the solver has a
preference, which is not necessarily known to the user. This means that there might be
perfectly optimal solutions that might not appear as solutions, since the solver might
not chose them, which especially means that using a low core index to decide against
a certain port might be unjustified. To recommend against a port with core indices
of zero, the root cause why the core indices are zero have to be identified first. For
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example, if producing in that port is always infeasible, we can recommend against that
port. However, a high core index still means that a particular port is present in many
Pareto optimal solutions.

3.5 Data
3.5.1 Historical ship data

Historical ship data from the year 2023 is used. The data originated as AIS messages
from ships, and is cleaned and prepared at VTT into a more manageable form.

Each data point in the dataset used for this thesis consisted of a single route for a
single ship from one port to another, with ship length and width, as well as estimated
power needed for that trip. A total of 173 ports of origin, and around 5000 routes
were included. The first step in using this data is to cluster the ports into reasonable
sized clusters for two reasons. The first reason is to make it easier to run the MILP
model, since the amount of the integer variable 𝑥𝑖 𝑗 𝑘𝑡 grows by the number of ports to
the power of two. Secondly we assume a local hydrogen or ammonia plant can serve
several ports if they are close enough.

The ports were clustered using the K-means method [30]. The number of clusters
is chosen to be 40. Table 2 shows the cluster id and the approximate place name for
each cluster. Figure 8 shows the ports and their clusters, each cluster has its own color
and the center of each cluster is marked with its id.

Cluster id Place name Cluster id Place name
0 Hamburg 20 Oulu
1 Helsinki 21 St Petersburg
2 Norrköping 22 Thisted
3 Gdansk 23 Riga
4 Copenhagen 24 Södertälje
5 Kokkola 25 Klaipėda
6 Vyborg 26 Szczecin
7 Åland islands 27 Flensburg
8 Bornholm 28 Gotland
9 Aarhus 29 Åhus
10 Saremaa 30 Kotka
11 East Frisian peninsula 31 Tallinn
12 Kaliningrad 32 Sillamäe
13 Porvoo 33 Kiel
14 Gothenburg 34 Oskarshamn
15 Turku 35 Marstrand
16 Northern Sweden 36 Sassnitz
17 Ludza 37 Bremen
18 Gävle 38 Ekenäs
19 Rostock 39 Karlskrona

Table 2: Table with cluster ids and approximate place name.
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Figure 8: The Baltic sea ports and their respective clusters.

Since the data contains information about ship type and the size of the ship, we
want to differentiate between size and type combinations to get more granular voyage
data. The ship types included are Bulk carrier, and Container ship. The lengths of
the ships are distributed between 115 m and 400 m. Figure 9 shows a histogram of the
ship lengths. Note that one ship might appear several times in the data.
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Figure 9: Histogram of the length of the ships in the routes.

We divide the ship lengths into three categories, shorter than 150 m, between 150
m and 250 m, and longer than 250 m. The ships are then be divided into six distinct
groups, which are shown in Table 3. We then define a voyage such that it starts and

Ship group Type Length
1 Bulk carrier < 150 m
2 Bulk carrier ≥ 150 m & < 250 m
3 Bulk carrier ≥ 250 m
4 Container ship < 150 m
5 Container ship ≥ 150 m & < 250 m
6 Container ship ≥ 250 m

Table 3: Table showing how the different ships are grouped.

ends in a port cluster, for a single ship group. Thus, for every ship group all routes that
start in the same port cluster and end in the same port cluster are aggregated such that
the power needed is averaged. The headers for the final data, used for the model, are

• Origin

• Destination

• Ship group

• Average power needed

• Number of trips.
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Note that voyages that start and end in the same port cluster are allowed, and are
present in the data.

3.5.2 Price for hydrogen and ammonia

Figure 11 shows a breakdown of the estimated costs for a hydrogen valley in the
northern Ostrobothina region in Finland [31]. This price model is used as a base.
We clearly see that the electrolyzer and wind power purchase agreement (PPA) are
the two largest parts of the total price. We assume that the cost of the electrolyzer

Figure 10: Breakdown of the cost of hydrogen for a hydrogen valley in northern
Finland [31].

is the same everywhere around the Baltic sea. We also assume that all other parts
(excluding electrolyzer and wind PPA costs) are the same in all countries. We can then
use wind PPA cost data from different countries to estimate the cost of hydrogen from
a hydrogen valley somewhere else in Europe. We notice that the Baltic countries and

Country Wind PPA (=C/MWh)
Sweden 34.5
Finland 35

Denmark 40
Poland 55

Germany 56

Table 4: Wind PPA data from several EU countries for the year 2022 from Bloomberg
[32].

Russia is missing from this wind PPA price data. The levelised cost of wind electricity

37



has been estimated to be 80.07 =C/MWh in Russia [33]. The levelised cost of wind
electricity can be seen as a lower bound for a potential wind PPA price. Thus, we
assume that the wind PPA price in Russia is 80 =C/MWh. Due to the unavailability of
data for the Baltic countries, we assume that their wind PPA price will be the average
of Russia and Poland, which are their neighbours. This yields a price of 67.5 =C/MWh.
A more detailed breakdown for the cost of hydrogen in each country is available in
Appendix A in Table A1.

Using the values from Table 4 [32] as well as the values for the Baltic countries
and Russia, the wind PPA part from the cost breakdown in Figure 11 can be scaled for
the different countries. Using the lower heating value of 33.33 kWh/kg, we can also
get the cost per unit of energy [34]. Table 5 and Figure 11 shows the cost of hydrogen
in 10 countries around the Baltic sea.

Country =C/kg𝐻2 =C/MWh𝐻2
Sweden 3.70 111.0
Finland 3.73 111.9

Denmark 4.04 121.2
Poland 4.97 149.1

Germany 5.03 151.0
Baltic countries 5.75 172.4

Russia 6.52 195.6

Table 5: Prices for hydrogen in the countries surrounding the Baltic sea per kilogram
and per MWh.

0 1 2 3 4 5 6

Sweden
Finland

Denmark
Poland

Germany
Baltic countries

Russia

3.7
3.73

4.04
4.97
5.03

5.75
6.52

Hydrogen price =C/kg

Figure 11: Bar chart with the cost of hydrogen in =C/kg.

In this model, green ammonia is produced via Fischer-Trops synthesis. To estimate
the price for ammonia (NH3) we use a value for the specific consumption of hydrogen
for Fischer-Trops synthesis, of 0.177 t𝐻2/t𝑁𝐻3 [31]. The cost of the electricity needed
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for the synthesis is estimated at 30 =C/t𝑁𝐻3 [31]. Fischer-Trops synthesis produces
heat, which can be sold as district heating for 12 =C/t𝑁𝐻3 [31]. Using a lower heating
value of 5.17 MWh/t𝑁𝐻3 [34], the price of ammonia can be calculated. Table 6 shows
the price of ammonia in countries surrounding the Baltic sea.

Country =C/MWh𝑁𝐻3
Sweden 130.1
Finland 131.2

Denmark 141.8
Poland 173.6

Germany 175.8
Baltic countries 200.2

Russia 226.7

Table 6: Price estimate of ammonia in =C per MWh, around the Baltic sea.

In the model in Section 3.1, we also allow for the purchase of fuels from the
market, since in some areas it might not be suitable to construct local production
facilities. Green ammonia average price data for the month of April 2024 is available
from [35]. This price data is for green ammonia shipped to northwestern Europe from
the US, Canada, and the Middle East. Using the average exchange rate from USD to
=C from 2024 [36] and the lower heating value of 5.17 kWh/kg [34], an average price
for green ammonia from the global market can be calculated. Thus, the market price
for ammonia is 177.96 =C/MWh. It is assumed that the cost of shipping is included in
this price. Currently, there is no real global market for hydrogen. Thus, if hydrogen is
needed in a port, it has to be produced locally.

However, if we produce and use synthetic fuels instead of burning HFO, we do not
have to purchase any HFO. This price reduction has to be taken into account. During
the year of 2023 the average HFO price in northwestern Europe was 416.1 =C/t [37].
Converting this to euros per MWh yields 38.42 =C/MWh. If a MWh of a synthetic fuel
is produced, its price is reduced by 38.42 =C. Table 7 shows the final synfuel prices.
For port clusters that are in several countries, the number of ports per country, and the
cluster center will be used as a tie breaker to determine the price.

Country =C/MWh𝐻2
(produced)

=C/MWh𝑁𝐻3
(produced)

=C/MWh𝑁𝐻3
(purchased)

Sweden 72.6 91.7 139.5
Finland 73.5 92.8 139.5

Denmark 82.8 103.4 139.5
Poland 110.7 135.2 139.5

Germany 112.6 137.3 139.5
Baltic countries 134.0 161.8 139.5

Russia 157.2 188.3 139.5

Table 7: Synthetic fuel price table with prices relative to the price of HFO.
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3.5.3 Other parameter values

The emission parameter 𝛼 is determined by considering well-to-wake (WTW) emis-
sions. WTW emissions consider the whole lifecycle of the fossil fuel. We consider
CO2 equivalent emissions (CO2e), which take into account other emissions than just
carbon dioxide such as methane and nitrogen oxides. For HFO, the best case scenario is
that burning one ton of fuel emits only 3.915 tons of CO2e emissions [38]. Combining
with the lower heating value for HFO 10.83 MWh/t [34], burning HFO emits 0.3615
tCO2e/MWh. However, while using a fuel cell to produce power from ammonia or
hydrogen yields no emissions, producing these fuels in a renewable way still has
some emissions. In the EU, regulations state that for a fuel to be called renewable,
the lifetime emissions has to be below a certain threshold [39]. For ammonia and
hydrogen, this value is 0.1014 tCO2e/MWh. This value is the "worst case" emissions
that can be emitted while still classifying the fuel as renewable. Thus, the emission
parameter 𝛼 is determined by the emissions that are not emitted by switching from
HFO, and from the lifetime emissions that are emitted by hydrogen or ammonia. The
value for 𝛼 is then 0.2601 tCO2e/MWh.

The parameter 𝑧 determines the maximum allowed energy amount needed for a
voyage that hydrogen can serve. In reality it is more complicated than this but for
simplicity’s sake the constraint is imposed in this way. Based on a report by [40], we
assume that 𝑧 is 500 MWh.

The parameter 𝛽𝑝
𝑘

is the minimum allowed production rate for fuel 𝑘 , if fuel 𝑘 is
produced at a specific port. This is set to a value that will capture investor willingness,
i.e., a production rate too low would not get any investors. This is set to 10950
MWh/year.

The efficiency parameter 𝜇 determines how much more efficient a fuel cell is
compared to a traditional ICE. The efficiency factor is assumed to be 0.71, which
means a fuel cell equipped ship would only need 0.71 times of the energy that a
traditional ship would need. Table 8 shows these parameters.

Parameter Value Source
𝛼 0.2601 tCO2e/MWh [38, 34]
𝑧 500 MWh [40]
𝛽
𝑝

𝑘
10950 MWh/year Assumed

𝜇 0.71 Assumed

Table 8: Parameter values and their sources.
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4 Results
In this section, we first compare the performance of the different multiobjective
methods. Then, we present the solutions that the model gives. Using these results,
the core indices are calculated for the ports. Finally, a thorough sensitivity analysis is
performed. The model is implemented in Python using Gurobi version 11.0.1 [41]
as the solver, with an optimality gap of 0.01%. The computer used is a laptop with a
12th Gen Intel(R) Core(TM) i7-1265U, and 16 GB of RAM.

4.1 Multiobjective method comparison
Since computing the complete Pareto optimal set is not reasonable for a model of this
size, we are interested in computing reasonably sized and evenly spaced subsets of
the complete Pareto optimal set. Figure 12 shows how the different multiobjective
methods from Section 2.5 compare when computing a small subset of the complete
Pareto optimal set.

We notice that the weighted Tchebycheff method (Figure 12b) and the weighting
method (Figure 12c) perform poorly when only solving for a small amount of Pareto
optimal solutions. The Tchebycheff method does not find evenly distributed points,
they are instead more concentrated in the upper end, even though the weights are
evenly distributed. The same can be said for the weighting method, but since the
weighting method can only find points on the convex hull of the feasible objective
region, we notice large gaps. Thus, both of these methods are not well suited for the
task at hand.

Both the 𝜀-constraint method (Figure 12a) and the Boxing method (Figure 12d)
perform well in the sense that the individual points are evenly distributed. The boxing
method yields 25 Pareto optimal solutions since the desired amount of solutions cannot
be directly input into the method. Due to the even spacing for the solutions given by
the 𝜀-constraint method, it is chosen as the default multiobjective method for further
analysis. If the Pareto optimal set was less like a straight line, the Boxing method
would probably be preferred since the distances between points can change depending
on the angle between them.
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(a) 20 Pareto optimal solutions using the 𝜀-constraint
method.

(b) 20 Pareto optimal solutions using the weighted Tcheby-
cheff method.

(c) 20 Pareto optimal solutions using the weighting method. (d) 25 Pareto optimal solutions using the Boxing method.

Figure 12: Pareto optimal solutions found using different multiobjective methods.

4.2 Model solution
Figure (13) shows a thousand Pareto optimal solutions in red, and the specific cost of
emission reduction for every solution in blue. The specific cost of emission reduction
measures how much you pay per ton of reduced emissions, for every solution. Two
specific solutions, A and B are highlighted, and will be discussed further in a later
stage. We notice that the specific cost of emission reduction (blue line) does not
behave nicely at the lower end of the graph. This is because, while the corresponding
solutions are mathematically optimal, the overall cost is so low that the minimum
production constraint really dictate the solutions. For example, in the top left corner
of Figure 13, we notice that the specific cost of emissions peaks when the cost is close
to zero. This is because all those solutions are only comprised of buying ammonia
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from the market since producing over the minimum production rate is too expensive.
Ignoring these solutions only comprising of buying ammonia, the specific cost of
emissions lies between 230 and 330 =C/ton. The specific cost of emission reduction
given by the model can be compared to the European emission trading system (ETS)
price which during the year 2023 averaged at 85.3 =C/ton, and peaked at over 100 =C/ton
[42]. During the year 2023, maritime shipping emissions were not included in the
ETS. However, from 2024 onward it is included [43]. It is estimated that the ETS
price will reach almost 200 =C/ton in 2035 [44]. This estimated ETS price is then not
far from the lower end estimated by the model.

Figure 13: Figure showing a thousand Pareto optimal solutions.

Let us examine solution A (shown in Figure 13). Figure 14 shows where, and how
much of each fuel is produced. As is to be expected, for this solution, optimal production
locations are concentrated to the countries with the least expensive synthetic fuels.
The production centers from west to east are Aarhus and Copenhagen in Denmark,
Gothenburg and Gävle in Sweden, and the Turku region, Helsinki and Kotka in Finland.
The three westernmost ports have a quite even split between producing ammonia and
hydrogen, while the four easternmost ports are predominantly producing ammonia.
This indicates that in the western Baltic sea there is a lot of shorter voyages being done
that are suitable to Hydrogen fueling, while in the east the voyages are on average
longer which is not suitable to hydrogen, and needs ammonia instead. In this solution
no ammonia is needed to be bought. This solution has a specific cost of emissions of
around 250 =C/ton.
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Figure 14: Map showing production amounts and locations for solution A. Production
amount indicated by the size of the half circle.

We can also study a solution at the top of the cost range to see how it compares. We
study solution B in Figure 13. This solution has a specific cost of emission reduction
of around 325 =C/ton. Figure 15 shows this solution. Many of the ports included
in this solution were also present in the previously shown solution, which is to be
expected since they are comparatively inexpensive. Five port clusters in the south have
been added to this solution, the East Frisian peninsula, the Bremen region, and the
Hamburg region in Germany, and the Szczecin region and Gdansk region in Poland.
For this purpose Germany is considered a country bordering the Baltic sea and thus
the western ports in Germany are included. The Bremen and Hamburg regions are the
largest producers of both ammonia and hydrogen, which reflects on Germany’s status
as the largest economy in Europe.
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Figure 15: Map showing production amounts and locations. Solution B is shown.

However, in this solution, ammonia is also purchased to several ports. Figure 16
shows were ammonia is purchased. The locations were ammonia is purchased to can
be divided into two groups. One is where the estimated price of producing ammonia
locally is more than the market price, such as the Baltic countries and Russia. The
other is where the minimum production amount for ammonia cannot be achieved,
and thus ammonia has to be purchased. Such ports can be observed in Germany and
Sweden. The three most notable ports, where ammonia is purchased, are Tallinn in
Estonia, Riga in Latvia, and Klaipėda in Lithuania.
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Figure 16: Map showing ammonia purchase amounts and locations. The most
expensive solution is shown.

4.3 CPU runtimes
We can also study how the CPU runtimes differ when varying the number of Pareto
optimal solutions, and the optimality gap. When varying the number of Pareto optimal
solutions, the standard optimality gap of 10−4 is used, and when varying the optimality
gap, we find 20 Pareto optimal solutions. Table 9 shows how the CPU runtimes vary.
When varying the desired number of Pareto optimal solutions, the runtime increases
almost linearly, which is to be expected. However, when decreasing the optimality gap
the runtime increases non linearly. When varying the optimality gap, the core indices
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and the optimal production amounts do not change beyond the variance allowed for by
the optimality gap.

Number of Pareto
optimal solutions

Solution time (s) Average time per solution (s)

20 8 0.40
200 79 0.40
1000 387 0.39

Optimality gap Solution time (s) Average time per solution (s)
10−4 8 0.40
10−5 20 1.00
10−6 169 8.45
10−7 337 16.9

Table 9: CPU runtime for different number of Pareto optimal solutions and different
optimality gaps.

4.4 Port core indices
We use the core index (CI) defined in Section 3.4 to condense the information from all
available Pareto optimal solutions. The Pareto optimal solutions used to calculate the
core indices are seen in Figure 13. Figure 17 and Table 10 shows the core indices for
the Baltic sea ports. Ports not in this list have core indices of zero. The ports with
core indices of zero are infeasible with respect to the constraints of the model, or
ports were it is cheaper to buy ammonia instead of producing. This means that we
can recommend against them. We see that the ports with the highest core indices are
in countries with low cost of hydrogen, Sweden and Finland. The core indices are
in general very similar for hydrogen and ammonia at a given port, with the notable
exception of Hamburg, where the hydrogen core index is significantly larger. Table 10
also shows the maximum amount of synthetic fuels that could be produced in each
port, as well as the specific cost of emissions for that port if all the synthetic fuel is
used for ships. From the original list of 173 ports, 12 areas have been identified to
have a non zero core index, which is a large reduction.
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Figure 17: Map showing the core indices calculated from a thousand Pareto optimal
solutions.
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Cluster
id

Place name CI
H2

CI
NH3

Capacity
H2

(MWh/y)

Capacity
NH3

(MWh/y)

Specific cost
of emission
reduction
(=C/ton)

14 Gothenburg 0.96 0.97 6605 13700 234.7
15 Turku 0.96 0.96 7690 44096 246.9
30 Kotka 0.91 0.91 4180 14398 242.8
1 Helsinki 0.88 0.88 3987 26483 247.8
18 Gävle 0.86 0.86 566 10952 249.2
9 Aarhus 0.75 0.75 10670 31391 269.5
4 Copenhagen 0.70 0.70 9382 10954 257.8
0 Hamburg 0.62 0.42 12206 63468 366.2
3 Gdansk 0.58 0.58 8602 20474 351.4
37 Bremen 0.55 0.55 10398 77597 369.1
26 Szczecin 0.51 0.51 333 10964 369.3
11 East Frisian peninsula 0.48 0.48 373 10954 374.9

Table 10: Core indices for the port clusters in the Baltic sea, calculated from a
thousand Pareto optimal solutions.

It is worth noting that the core index is not simply a measure of the specific cost of
emissions. We see in Table 10 that ports with low specific cost of emissions in general
have high core indices and vice versa. However, in this case, a high core index seems
to mean that that port has either a high capacity, low specific cost of emissions, or a
combination of the two. E.g. Turku has a higher specific cost of emissions compared
to Gävle, but the core indices for Turku are higher. Turku has a significantly higher
production capacity compared to Gävle.

We can also study how the core indices are affected by the number of Pareto
optimal solutions used. Table 11 shows the core indices calculated with 1000, 200,
and 20 Pareto optimal solutions. The maximum absolute deviation observed is 0.048.
This is still relatively large. If we ignore the indices from only 20 Pareto optimal
solutions, the maximum absolute deviation is only 0.009. Thus, computing the core
indices with only 200 evenly distributed Pareto optimal solutions is reasonable. Unless
otherwise stated, core indices are computed from 200 Pareto optimal solutions.
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1000 Solutions 200 Solutions 20 Solutions
Cluster id CI H2 CI NH3 CI H2 CI NH3 CI H2 CI NH3
14 0.963 0.968 0.970 0.975 0.900 0.950
15 0.960 0.960 0.960 0.960 1.000 1.000
30 0.907 0.907 0.910 0.910 0.950 0.950
1 0.882 0.882 0.880 0.880 0.900 0.900
18 0.864 0.864 0.870 0.870 0.900 0.900
9 0.747 0.747 0.750 0.750 0.750 0.750
4 0.702 0.702 0.705 0.705 0.750 0.750
0 0.623 0.417 0.625 0.420 0.650 0.450
3 0.583 0.583 0.585 0.585 0.600 0.600
37 0.545 0.545 0.545 0.545 0.550 0.550
26 0.511 0.512 0.520 0.520 0.550 0.550
11 0.475 0.475 0.475 0.475 0.500 0.500

Table 11: Comparison between the core indices for different number of Pareto optimal
solutions.

4.5 Sensitivity analysis
To validate the model, sensitivity analysis is needed. We analyze the model when
varying the cost of hydrogen, which is probably the parameter that will vary the most
in the real world compared to our estimates. The minimum allowable production rate
is also varied, since it is a parameter that is difficult to realistically estimate

4.5.1 Cost of hydrogen

The cost of hydrogen is likely to vary in the real world. The cost of green hydrogen
also directly influences the cost of ammonia. We will study how the core indices, as
well as the specific cost of emission reduction (=C/t𝐶𝑂2𝑒) are affected by changes in the
price of hydrogen. We study the impact of a 10% and a 50% increase, as well as a
10% decrease in the cost of hydrogen. The price of buying ammonia from the market
is not affected

Increasing the cost of hydrogen by 10% or 50% increases the relative price
compared to HFO by more than 10% or 50% respectively. This is also true for
ammonia, the price of which is dependant on the price of hydrogen. Table 12 shows
the new fuel prices.
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Base 10% increase 50% increase
Country H2 NH3 H2 NH3 H2 NH3
Sweden 72.6 91.7 83.7 104.4 128.1 155.0
Finland 73.5 92.8 84.7 105.5 129.5 156.6
Denmark 82.8 103.4 94.9 117.2 143.4 172.5
Poland 110.7 135.2 125.6 152.2 185.3 220.3
Germany 112.6 137.3 127.7 154.6 188.0 223.5
Baltic countries 134.0 161.8 151.2 181.4 220.1 260.1
Russia 157.2 188.3 176.8 210.6 255.0 299.9

Table 12: Hydrogen and ammonia prices relative to HFO, in =C/MWh.

Figure 18 shows 20 Pareto optimal solutions, for a hydrogen price increase of 10%
and 50%. We notice in Figure 18a that the specific cost of emissions is slighly higher
than the base case. However, in Figure 18b, the specific cost of emissions graph is
horizontal and constant. This is because with the 50% increase in the cost of hydrogen,
all the solutions only consist of buying ammonia from the market.

(a) 20 Pareto optimal solutions with a 10% increase in the
cost of hydrogen.

(b) 20 Pareto optimal solutions with a 50% increase in the
cost of hydrogen.

Figure 18: Comparison between Pareto optimal solutions for different prices for
hydrogen.

Figure 19 shows the core indices with price increase of 10%. Since the model
chooses to not produce anything with the 50% increase in the price all the core indices
are zero in that case. We see that many ports see no apparent change in their core
indices, except for ports in Germany and Poland. German and Polish ports all have
core indices of zero, except for Bremen in Germany where the hydrogen core index is
nonzero. With the increase in the price of hydrogen, it is cheaper to buy ammonia in
Poland and Germany. With no ammonia production, there is not enough hydrogen
demand on its own to get over the minimum production amount, except for in Bremen.
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The production and purchase amounts for the most expensive solution are shown in
Appendix B in Tables B1 and B2.

Figure 19: Map showing the core indices with the price of hydrogen increased by
10%, calculated from 200 Pareto optimal solutions.

Next, we reduce the price of hydrogen by 10%. Table 13 shows these new prices
compared to the base prices.
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Base 10% decrease
Country H2 NH3 H2 NH3
Sweden 72.6 91.7 61.5 79.0
Finland 73.5 92.8 62.3 80.0
Denmark 82.8 103.4 70.7 89.5
Poland 110.7 135.2 95.8 118.2
Germany 112.6 137.3 97.5 120.1
Baltic countries 134.0 161.8 116.7 142.1
Russia 157.2 188.3 137.6 166.0

Table 13: Ammonia and hydrogen prices, relative to HFO, with a 10% decrease in
the price of hydrogen. Given in =C/MWh.

Figure 20 shows 20 Pareto optimal solutions with the decreased price. No large
differences compared to the base case shown in Figure 12a is observed. Figure 21
shows the core indices with the decreased fuel prices. Here, the biggest difference
is that Tallinn, Estonia, and Riga, Latvia, now have non zero core indices for both
hydrogen and ammonia. The production and purchase amounts for the most expensive
solution are shown in Appendix B in Tables B3 and B4.

Figure 20: 20 Pareto optimal solutions with the decreased prices given in Table 13.
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Figure 21: Map showing the core indices with the price of hydrogen decreased by
10 %, calculated from 200 Pareto optimal solutions.

Ports, where the price of producing ammonia is close to the market price of
ammonia are somewhat sensitive to changes in the price of hydrogen (and ammonia).
We see that a 10% increase in the price of hydrogen leads to it not being feasible to
produce fuels in Germany (except Bremen) and Poland. On the other hand, decreasing
the cost of hydrogen makes it somewhat feasible to produce in Tallinn and Riga
indicated by their nonzero, but still small core index. A potential decision maker
needs to carefully consider these prices. On the other hand, producing in inexpensive
countries is an easier choice, indicated by their high core indices.
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4.5.2 Minimum production amount

The model might be sensitive to the minimum production rate, since there are probably
ports with favourable prices that do not quite have enough outgoing traffic to reach
the minimum production amount. We study what happens if we lower the minimum
production rate to 5000 MWh/y and to 1 MWh/year from the base case of 10950
MWh/y.

Figure 22 shows 20 Pareto optimal solutions, with a minimum production rate of
5000 MWh/y and 1 MWh/y respectively. We notice that the specific cost of emissions
(blue crosses) is lower in Figure 22b. This is because the minimum production rate
of 1 MWh/year is so low that all voyages that could use hydrogen are using it, and
hydrogen has the lowest price.

(a) 20 Pareto optimal solutions with a minimum production
rate of 5000 MWh/y.

(b) 20 Pareto optimal solutions with a minimum production
rate of 1 MWh/y.

Figure 22: Comparison between Pareto optimal solutions for different minimum
production rates.

Figure 23 shows the core indices for different minimum production rates. Figure
23a is in many ways similar to Figure 17, with the notable addition that four new ports
have been added with a nonzero hydrogen core index. These ports are, from west to
east the Kiel area in Germany, Klaipėda in Lithuania, Riga in Latvia, and Tallinn in
Estonia. The German and Danish ports have higher hydrogen core indices compared to
the ammonia core indices. Otherwise, the ammonia core index is not heavily affected
by the lowering of the minimum production constraint. The production and purchase
amounts for the most expensive solution are shown in Appendix B in Tables B5 and
B6.

Figure 23b shows the core indices when the minimum production rate is set to 1
MWh/y. For the ammonia core indices there is not a large difference, except one new
port cluster in northern Sweden. The largest difference however, is that hydrogen has a
relatively large core index in almost every port. Since this instance has practically no
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minimum production amount, and hydrogen is less expensive than ammonia, hydrogen
in produced in small quantities almost everywhere. Ports with an ammonia core index
of zero can mean two things, either, no routes long enough to not be able to be served
by the less expensive hydrogen, or buying ammonia from the market is cheaper than
producing locally, such as e.g. the Baltic countries. The production and purchase
amounts for the most expensive solution are shown in Appendix B in Tables B7 and
B8.

(a) Core indices with a minimum production rate of 5000
MWh/y.

(b) Core indices with a minimum production rate of 1
MWh/y.

Figure 23: Comparison between core indices for different minimum production rates.
Core indices calculated from 200 Pareto optimal solutions.

The ammonia core indices are, in general, not heavily impacted by varying the
minimum production rate. The hydrogen core indices are in general more sensitive.
However, if we ignore the unrealistic scenario of the minimum production rate being
1 MWh/y, the hydrogen core indices are not heavily impacted. Even when halving the
original minimum production rate, the core indices that were above zero originally did
mostly stay the same. Four new ports had a hydrogen core index above zero, which
can be categorized into ports with potential for hydrogen production, if a smaller
minimum production rate is acceptable, i.e., if small investments are possible from an
investors point of view.
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5 Conclusions
Maritime shipping accounts for almost 3% of yearly global greenhouse gas emissions.
One potential way to reduce these emissions is to switch from burning oil to renewable
synthetic fuels. Hydrogen and ammonia can be produced in a renewable way, and can
be fed into a fuel cell to directly generate electricity to power a ship. Ammonia can
also be burned in engines like traditional marine fuels, aiding the potential switch.

A mixed-integer linear program for identifying decarbonized bunkering options
in the Baltic sea was developed and implemented. The model aims to maximize
a decrease in emissions while minimizing the associated costs. A price model for
hydrogen and ammonia in countries surrounding the Baltic sea was developed to be
used with the optimization model. Historical ship data from the year 2023 for voyages
was used to be able to run the model. A brief comparison between multiobjective
methods was also performed.

The hydrogen prices were estimated to be the lowest in Sweden and Finland,
closely followed by Denmark. Poland and Germany are estimated to have medium
priced hydrogen, while the Baltic countries and Russia have expensive hydrogen. The
cost of hydrogen is mostly determined by the cost of wind energy in the different
countries. The cost of hydrogen is the largest part of the cost of green ammonia, since
green ammonia is produced from green hydrogen.

Ship voyage data from 2023 was used. All ports present in the data were clustered
into 40 appropriately sized clusters. The different ships in the data were grouped into
six different groups based on the size of the vessel and ship type. Routes were then
defined as from one port cluster to another, for every ship group. The data consisted
of around 5000 individual routes.

The concept of robust ports was introduced. A robust port is a port where producing
ammonia or hydrogen is optimal, regardless of the preference between maximizing
the decrease in emissions and minimizing costs. The robustness of a port is measured
by its core index which takes a value between zero and one. A value of one means
that a fuel is produced in that port in every Pareto optimal solution, while a value of
zero indicates that a fuel is never produced in that port. The ports with the highest
core indices, in order, were Gotheburg, Turku, Kotka, Helsinki, and Gävle. Seven
other port clusters also had non zero core indices. These ports are such, that producing
synthetic fuels for bunkering is optimal. The core index seems to be a suitable metric,
since it takes into account both the specific cost of emissions, as well as the capacity.

Sensitivity analysis on the model was performed, first by varying the cost of
hydrogen, which will likely vary in the real world. Since ammonia needs to be
produced from hydrogen, changing the price of hydrogen affects the price of ammonia
as well. What was found from this is ports where the cost of producing ammonia is
close to the market price, which did not change during the sensitivity analysis, were
sensitive to the changes in the cost of hydrogen. If the price of producing ammonia
increased above the market price it was no longer optimal to produce there. Similarly,
if the price of producing dropped below the market price, it could become optimal
to produce. However, ports where hydrogen prices were very low or very high, were
not impacted by this. Thus, a potential decision maker has to be careful considering
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prices and price estimates regarding producing and purchasing ammonia.
Then, sensitivity analysis on how varying the minimum allowable production rate

impacted the core indices was done. The minimum production rate is enforced to
limit producing small amounts scattered everywhere, and instead trying to concentrate
production and bunkering facilities, since it is assumed that investors are not keen on
too small projects. When halving the minimum production rate, only four additional
ports became feasible for hydrogen production, and none for ammonia. This is a
good sign since estimating a realistic minimum production rate is difficult. Among
these newly added ports, one was in each Baltic country. Two of which, Tallinn and
Riga, also became feasible when slightly lowering the price of hydrogen. This means
that Tallinn and Riga might also be feasible ports for decarbonized bunkering, since
decreases in either the cost of hydrogen, or the minimum production rate has made
them feasible. Better hydrogen price estimates for the Baltic countries could make
this decision more certain.

One thing that has become clear is that the local hydrogen production and pricing
has a large impact on feasibility of ports. Currently, it is only feasible to produce
hydrogen locally, but that might need to change. If the inexpensive prices in the Nordic
countries could be leveraged for production, and then those synfuels could be exported
to other countries around the Baltic sea, the prices could potentially go down in the
expensive areas. Lower prices would increase feasibility.

Comparing the specific cost of emission reduction gained from the model with the
European emission trading system (ETS) price is difficult. During the year 2023, ETS
did not include maritime shipping. During that same year the ETS price averaged
around 85 =C/ton, while the model ranged from 230 to 330 =C/ton. While the estimates
from the model are conservative, it is still a significant increase. However, due to
maritime shipping being included in the system from 2024 onwards and due to the
emission cap in the system decreasing every year, it is reasonable to think that the ETS
price will increase in the coming years. It is estimated that the ETS price will reach
almost 200 =C/ton in 2035, which means the difference could be small by then.

5.1 Limitations
Current ship operators usually prefer to bunker once when the ship is in a port with
inexpensive bunkering and then sail for weeks or potentially months before bunkering
again. This model is not set up to reflect on these preferences. The available data was
not set up in such a way that longer voyages that include several ports for a single ship
could be identified. However, these preferences that current ship operators have might
need to be challenged if synthetic fuels are to be used in the future. Due to the lower
volumetric density, especially of hydrogen, more frequent bunkering is needed to not
sacrifice carrying capacity too much.

Due to the apparent unavailability of wind PPA data in the Baltic countries, their
hydrogen price estimates is thus lacking. The hydrogen price was then estimated to be
the average between the Russian and Polish prices, both of which neighbor the Baltic
countries. This turned out to be a somewhat sensitive price, and better price estimates
would be needed to be able to make better decisions for the Baltic countries.
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Currently, a green hydrogen economy does not yet fully exist. However, it is
reasonable to think that this will change in the future, i.e., green hydrogen will be
produced and consumed by large quantities. This means that the minimum production
rate constraint imposed in this model might not make sense anymore. Producing more
hydrogen than what is needed for ships in a port could be feasible since the excess
hydrogen could just be sold to other sectors that need it.

5.2 Future work
Expanding the data to e.g. incorporate the North Sea would be a great addition to just
the Baltic Sea. It is reasonable to assume that many ships leave the Baltic Sea for the
massive ports in the Netherlands and Belgium. Also incorporating more ship types
could be interesting, for example Ro-pax (roll on/roll off passenger ships) usually
cover the same route all the time which could make them very suitable to synthetic
fuels due to the reduced uncertainty.

Changing the model to allow for "chained" routes, and thus for refueling less often,
while much more complicated, would allow for a more detailed analysis of routes. It
would also allow for more realistic refueling strategies to be modeled and optimized.

The ports in the original dataset was first clustered, based on location, where the
number of clusters was determined beforehand. This was done partly to make the
dataset more manageable, and partly since producing synthetic fuels at a location
could serve several ports if they are close enough. However, it could potentially
be more realistic to cluster the ports in a better way. Perhaps, clustering the ports
based on more than just location, e.g., potential production amount could make the
clusters more uniform. Some form of dynamic pricing could be incorporated so that a
individual port could belong to a cluster further away but with a higher price, if the
original cluster does not reach the minimum production amount. This is related to the
uncapacitated facility location problem, which already exists in literature.
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A Synfuel price data

Sweden Finland
Component Price =C/kg𝐻2 Component Price =C/kg𝐻2
Electrolyzer 1.03 Electrolyzer 1.03
H2 Pipeline 0.48 H2 Pipeline 0.48
El. transmission 0.21 El. transmission 0.21
Wind PPA 2.14 Wind PPA 2.17
ELSPOT purchase 0.19 ELSPOT purchase 0.19
ELSPOT sales -0.17 ELSPOT sales -0.17
H2 heat sales -0.16 H2 heat sales -0.16
Other sales -0.02 Other sales -0.02
Total 3.70 Total 3.73
Denmark Poland
Component Price =C/kg𝐻2 Component Price =C/kg𝐻2
Electrolyzer 1.03 Electrolyzer 1.03
H2 Pipeline 0.48 H2 Pipeline 0.48
El. transmission 0.21 El. transmission 0.21
Wind PPA 2.48 Wind PPA 3.41
ELSPOT purchase 0.19 ELSPOT purchase 0.19
ELSPOT sales -0.17 ELSPOT sales -0.17
H2 heat sales -0.16 H2 heat sales -0.16
Other sales -0.02 Other sales -0.02
Total 4.04 Total 4.97
Germany The Baltic countries
Component Price =C/kg𝐻2 Component Price =C/kg𝐻2
Electrolyzer 1.03 Electrolyzer 1.03
H2 Pipeline 0.48 H2 Pipeline 0.48
El. transmission 0.21 El. transmission 0.21
Wind PPA 3.47 Wind PPA 4.19
ELSPOT purchase 0.19 ELSPOT purchase 0.19
ELSPOT sales -0.17 ELSPOT sales -0.17
H2 heat sales -0.16 H2 heat sales -0.16
Other sales -0.02 Other sales -0.02
Total 5.03 Total 5.75
Russia
Component Price =C/kg𝐻2
Electrolyzer 1.03
H2 Pipeline 0.48
El. transmission 0.21
Wind PPA 4.96
ELSPOT purchase 0.19
ELSPOT sales -0.17
H2 heat sales -0.16
Other sales -0.02
Total 6.52

Table A1: Detailed price breakdown of the cost of hydrogen in nine countries [31].
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B Sensitivity analysis solutions

B.1 10% increase in cost of hydrogen

Figure B1: Production amounts for the most expensive Pareto optimal solution with a
10% increase in the cost of hydrogen.
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Figure B2: Purchase amounts for the most expensive Pareto optimal solution with a
10% increase in the cost of hydrogen.
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B.2 10% decrease in cost of hydrogen

Figure B3: Production amounts for the most expensive Pareto optimal solution with a
10% decrease in the cost of hydrogen.
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Figure B4: Purchase amounts for the most expensive Pareto optimal solution with a
10% decrease in the cost of hydrogen.
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B.3 Minimum production rate of 5000 MWh/y

Figure B5: Production amounts for the most expensive Pareto optimal solution with a
minimum production rate of 5000 MWh/y.
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Figure B6: Purchase amounts for the most expensive Pareto optimal solution with a
minimum production rate of 5000 MWh/y.
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B.4 Minimum production rate of 1 MWh/y

Figure B7: Production amounts for the most expensive Pareto optimal solution with a
minimum production rate of 1 MWh/y.
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Figure B8: Purchase amounts for the most expensive Pareto optimal solution with a
minimum production rate of 1 MWh/y.
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