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Abstract
Efficient scheduling in retail operations is achieved through workforce optimization
which is essential in managing the large expense of personnel costs. In addition to
regulations and contractual terms, the employee skills determining which tasks an
employee is able to complete play a significant role in the scheduling process. An
optimal workforce schedule ensures the personnel is fully utilized while complying
with rules and regulations. However, a schedule is rarely optimal due to the complex
restrictions leading to employee idling.

This thesis proposes a simulation based sensitivity analysis algorithm to improve the
results of an existing workforce optimization solution. The algorithm recommends
new skills to be trained to employees in attempt to lower the idle hours of employees by
enabling them to work on additional tasks. Missing employee-skill recommendations
are determined with a Multiple One-At-a-Time sensitivity analysis method which uses
Latin Hypercube Sampling to explore the space of possibilities. Different scenarios
representing stores or store departments are used to test the algorithm.

Improvements in test scenarios are measured by the amount of idle hours that can
be decreased. Results show a large variation between both the amount that can be
improved and the run times of the algorithm. Some test cases decrease idle hours
close to zero while others can not be improved. In addition, the differences between
the fastest and slowest execution time is almost thousandfold. Based on the results
and the initial data of test cases, observations are made to help identify whether
there is a possibility for improvement or not although definitive conclusions can not
be made. The thesis is concluded with suggestions on how the algorithm could be
improved.
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Tiivistelmä
Tehokas aikataulutus vähittäiskaupan alalla saavutetaan työvoiman optimoinnilla,
joka on olennaisen tärkeää suurten henkilöstökustannusten hallinnassa. Säädösten
ja sopimusehtojen lisäksi työntekijöiden taidot, jotka määrittävät, mitä tehtäviä
työntekijä pystyy suorittamaan, ovat merkittävässä asemassa aikataulutusprosessissa.
Optimaalinen työvoiman aikataulutus varmistaa sen, että henkilöstöä hyödynnetään
täysimääräisesti noudatetaan sääntöjä ja määräyksiä. Aikataulut ovat kuitenkin har-
voin optimaalisia, koska monimutkaiset rajoitukset johtavat työntekijöiden joutilaana
toimimiseen.

Työssä ehdotetaan simulointiin perustuvaa herkkyysanalyysialgoritmia, jolla paranne-
taan olemassa olevan työvoiman optimointiratkaisun tuloksia. Algoritmi suosittelee
työntekijöille koulutettavia uusia taitoja, joilla pyritään vähentämään työntekijöiden
joutilaanaolemisaikaa heidän pystyessä työskentelemään useamman työtehtävien
parissa. Puuttuvia taitoja suositellaan moninkertaisesti toistamalla yksi kerrallaan
-herkkyysanalyysimenetelmää, jossa hyödynnetään latinalaista hyperkuutiopoiminta-
metodia otosten keräämiseen syöteavaruudesta. Algoritmin testaamiseen käytetään
todellisia myymälöitä tai myymäläosastoja edustavia skenaarioita.

Testiskenaarioiden tuloksien parannusta mitataan sillä, kuinka paljon joutilaanaolo-
tunteja voidaan vähentää. Tulokset osoittavat suurta vaihtelua sekä parannettavissa
olevien joutilaanaolotuntien määrässä että algoritmin suoritusajoissa. Joissakin testi-
tapauksissa joutilaanaolotunnit vähenevät lähes nollaa, kun taas toisissa tapauksissa
niitä ei voida lainkaan vähentä. Lisäksi, erot nopeimman ja hitaimman suoritusajan
välillä ovat lähes tuhatkertaiset. Tulosten ja testitapausten lähtötietojen perusteella
havainnoidaan tunnistettavia ominaisuuksia tapauksista, joissa on parannusmah-
dollisuuksia, vaikka lopullisia johtopäätöksiä niistä ei pystytäkään tekemään. Työn
lopussa esitetään algoritmin parannusehdotuksia.

Avainsanat Työvoima, taidot, optimointi, simulointi, herkkyysanalyysi
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Glossary

workforce human resources available in an organization to
complete working tasks

workload the amount of work required to be completed

shift a period of time when an employee is assigned to
their work task

workforce management process meant to maximize the competency and
performance of an organization

workforce planning process meant to ensure that an organization has
the proper amount of working capital available at
any given time

workforce scheduling process of defining working hours for the available
workforce to meet the current and future workload

workforce optimization optimizing workforce schedules

footfall the number of customers arriving to the store at a
given time



1 Introduction
In retail, a large and multi-skilled personnel is needed to keep the daily business
running steadily. Varying numbers of cashiers, shelving workers and salespersons
are needed at different times of the day depending on a multitude of factors, such
as large incoming deliveries, peak hour footfall or customer attracting events. This
essential group of people accounts for up to 15 % of a company’s turnover in labor
costs (Skorupa et al., 2019), which in combination with the increasingly competitive
retail environment (Hodson et al., 2012), highlights the need of using workforce
planning as a strategical tool to reduce expenditures.

Store managers own the important task of balancing personnel costs with the work-
force need and the available staff while fulfilling contractual terms, labour laws and
employee preferences. Workforce management tools help retailers in creating shifts
more efficiently while also providing visibility in most important key performance
indicators. However, the use of aforementioned tools does not drastically decrease
the need for manual work in shift planning. It is time consuming and difficult to
achieve optimality in shifts so that all constraints are met and there is no over- or
understaffing (Ernst et al., 2004). To overcome this challenge, workforce optimization
is deployed.

Workforce optimization provides retailers with automated shift planning which ac-
counts for the timing, location, type and the needed quantity of workforce. Three
main components must be focused on to achieve optimal results: workload fore-
casting based on incoming deliveries, customer footfall and online orders; workload
optimization where store specific tasks and staffing rules are considered; and shift
optimization which is based on the available employees, their skills, regulations and
the needed workforce (Halme, 2020b). Together these components are used to create
an optimized shift schedule which complies with the given restrictions and preferences
in the best way possible giving the store manager a good starting point in creating
shifts.

Achieving optimal and feasible shifts with a workforce optimization model requires
an amplitude of input information, such as contractually agreed working hours
and limitations outlined by any collective labour agreements. In addition, each
employee has a set of skills which determine the tasks they can be assigned to. This
information is used to form and constrain an often complex optimization model in
which the relationships between the outputs and the inputs are not always clear.
However, it is known that training employees to multiple skills increase scheduling
possibilities (Disselkamp, 2013) and help overcome short demand peaks in certain
tasks (De Bruecker et al., 2015). This creates a desire for model users to perform
manual what-if scenarios by slightly changing the input information in attempt to
analyze consequences or find a more optimal solution.

This thesis develops a systematic simulation based sensitivity analysis approach
to improve commercial workforce optimization solution by proposing training of
addition skills for certain employees. The underlying solution is considered as a
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black-box optimization tool which is evaluated with input files that are modified
based on a Multiple One-At-a-Time algorithm. Results are analyzed to provide
insight on what can be achieved with modifications in the skill sets and how they
affect the optimality of the solution. The sensitivity analysis is performed on test
data to achieve the most realistic results possible. Based on these analyses, model
users are given suggestions on actions that are identified to make the solution more
optimal.

The remainder of this thesis is structured as follows. Section 2 introduces the
challenges of optimizing workforce schedules in the retail setting, concepts needed in
developing the sensitivity analysis approach, and the existing literature on scheduling
problems including sensitivity analysis and skills. In Section 3, the underlying
workforce optimization solution is explained and the sensitivity analysis approach is
developed. Section 4 presents the results from executing the developed approach on
test scenarios which are further discussed in Section 5. The thesis is concluded in
Chapter 6 with recommendations for future research directions.
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2 Background
This section discusses the background of workforce scheduling, introduces experimen-
tal design methods in simulation and reviews the existing Literature on workforce
scheduling problems.

2.1 Workforce scheduling principles
The topic of workforce scheduling was introduced in a toll booths and traffic delays
study by Edie (1954) and the first influential approach on the subject was proposed by
Holt et al. (1955) a year later. Optimization models and algorithms have since been
developed, taking into account more complex problems. Kesavan and Mani (2015)
report that in addition to manufacturing, application areas include: transportation
systems, health care systems, civic services, call centers, financial services, hospitality
and tourism, venue management and retail. However, there is no type of scheduling
model that would be used in general for each application. They find that early research
focused on determining workforce requirements for manufacturing environments in
the context of a long time horizon aggregate planning. The planning horizon of up
to 12 months considered employment, production and inventory levels in simplified
manners to minimize overall costs.

In the last few decades, among the growth in popularity of IT systems in general, also
workforce management (WFM) systems and tools have become increasingly popular
(Hota and Ghosh, 2013). They have expanded from simple mechanical timekeeping
solutions to cloud-based computer systems including extensive management tools.
Disselkamp (2013) describes modern WFM systems as having six important principles
which they follow: aligning workforce with organizational goals; controlling the
dynamic and unpredictable nature of an organization; timing events happening in
the organization; informing each stakeholder with meaningful and cultivated data;
providing visibility across the whole organization; and executing the five preceding
principles in an efficient matter. Thus, these systems cover many aspects of managing
human resources and are essential in controlling workforce costs by providing, among
others, automated workforce planning and scheduling.

Baker (1976) proposed that workforce schedules can be classified in three main groups.
In the first group, days off scheduling problems in which working and resting days
are assigned while employees must have a set amount of resting days during a week.
In the second group, shift scheduling problems where daily shifts are created so that
the needed capacity is fulfilled according to availability of the workforce. Start and
end times as well as the lengths of the shifts are defined for each employee. The third
group includes tour scheduling problems in which features of the first and second
group problems are combined. The majority of more recent workforce scheduling
problems fall into the third category in which long operating weeks and days create
a need for both shift assignment as well as resting days appointment (Van den Bergh
et al., 2013).

Scheduling problems classified as touring problems include appointing shifts and
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resting days but, they can further be divided into smaller subproblems due to their
complexity. Ernst et al. (2004) proposed an interesting approach in which the
workforce scheduling process is divided into six modules:

1. Demand modelling which determines the amount of workforce needed for a
planning period based on fluctuating customer footfall, mandatory daily tasks
and the minimum shift requirements.

2. Days off scheduling where resting days are determined.

3. Shift scheduling which considers the total amount of workforce and tasks to be
done to meet the demand while also accounting for possible breaks.

4. Constructing work schedules over a planning horizon which satisfies a set of
constraints.

5. Assigning tasks to be completed during a shift to the lines of work.

6. Assigning employees to lines of work if not already done in tandem with the
fourth module.

Other approaches to scheduling problems can be thought as modifications of the
described module process. For example, Talarico and Duque (2015) approach the
problem with three steps: demand planning, optimal workforce generation and
shift assignment while Defraeye and Van Nieuwenhuyse (2016) add one step more:
demand forecasting, workforce requirements, shift scheduling and assigning workforce
to shifts.

Scheduling is viewed from different perspectives depending on which organizational
department it is done for. When creating schedules, employees have their own
preferences, desires and differences in productivity levels which they would take into
account. On the other hand, human resource departments must comply to certain
regulations and company wide rules while financial departments are strictly interested
in staying in budget. On the contrary, operation managers want as much workforce
scheduled to their operations as needed (Kesavan and Mani, 2015). The regulatory
side of scheduling needs to be respected at all times but taking other perspectives
into account is a balancing act. Fisher et al. (2020) view workforce planning and
scheduling as a two-part hierarchy where first workforce is allocated and then the
allocated amount is used as a base to create schedules. Nonetheless, every aspect
has to be considered and employees have to be scheduled to each task based on their
skills and qualifications as well as preferences and work time restrictions to achieve
effective schedules.

2.2 Retail workforce scheduling
Large portions of the scientific literature concentrate on workforce problems in
healthcare, transportation or manufacturing (Van den Bergh et al., 2013) and before
Melachrinoudis and Olafsson (1992) presented a scheduling system for cashiers, the
retail sector had received little attention on the subject. In the recent decades,
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however, the increased attention on retail performance has increased the interest in
workforce scheduling and optimization (Kesavan and Mani, 2015).

2.2.1 Challenges

Workforce scheduling in retail is considered more challenging than other industries
due to the constantly fluctuating workforce need which is one of the most significant
factors retailers have to account for (Parisio and Jones, 2015). The fluctuation is
created by different factors, such as rush hours demanding more cashier work and
incoming deliveries requiring shelving work, which have to be handled to ensure
smooth store operation. Thus, forecasting the needed workforce for each task is
an important part of workforce scheduling. Typical tasks in retail include cashier
work, shelving, clerical duties at a service counter or a department of the store and
store opening or closing routines. They can be divided into fixed and volume-based
tasks from which the latter constitutes of 80 % of the workforce (Halme, 2020a).
Fixed tasks always need a similar amount of workforce, but the workforce need for
volume-based tasks is harder to estimate as multiple factors need to be accounted for.
In a retail setting where each customer generally leaves with a purchase, historical
sales data can be used to create an estimate of future customer traffic. However,
some retail sectors, such as clothing stores, see less purchases per customer and thus
store traffic data can be used instead (Chuang et al., 2016; Olivares et al., 2020).
Customer footfall forecasts and incoming deliveries need to be combined to create
a common forecast for workforce need. This is done by using efficiency multipliers
which indicate the amount of delivery boxes that can be shelved or the number of
customers that a cashier can handle in a certain time period.

De Bruecker et al. (2015) point out that the fluctuation in workforce need should
be handled without incurring extra costs and thus implementing carefully planned
personnel schedules are needed. They note that to avoid the fluctuations and
uncertainty of workforce demand, many retailers hire seasonal and part-time workers.
Seasonal workers are employed to work full-time for some weeks during high seasons,
such as Christmas, whereas part-time workers are employed year-round with a variable
amount of working hours per day and week. Fisher et al. conclude that these two
types of employees bring retailers with benefits of having lower workforce costs than
full time employees and bringing workforce flexibility due to their more adjustable
working times.

In addition to workforce flexibility from the employer viewpoint, Parisio and Jones
(2015) note that flexible working hours and contracts enable employee wishes to be
granted more easily. A healthy mixture of stability and flexibility has to be achieved to
strike a balance in efficiency and benefit both parties. Too much flexibility increases
the scheduling problem complexity which means that finding a feasible solution
becomes harder (Van den Bergh et al., 2013). In addition, as benefits of increasing
workforce at a store are uncertain and hard to measure while the additional costs
are fixed, retailers tend to focus too much on simple cost measures while leaving the
store understaffed (Fisher et al., 2020).
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2.2.2 Workforce schedule optimization

In their literature review, Van den Bergh et al. (2013) find that the objective of a
scheduling problem is commonly to minimize workforce cost rather than minimizing
the actual number of employees. They report that minimizing costs gives a wider
range of possibilities where each category or action, such as overtime or day of
week wage, has a different cost. Van den Bergh et al. categorize most solutions
as mathematical programming which include integer, linear, dynamic and goal
programming as well as improvement heuristics. Less frequently used solutions
include constraint programming, queuing and simulation.

The creation of a schedule is driven by constant as well as dynamic factors which
can be categorized as either soft or hard constraints depending on the objective.
Hard constraints must be satisfied by the solution while soft constraints only incur a
penalty to the objective value and thus, they can be violated if a better solution can
be found. Jones and Nolde (2013) note that solving the problem until mathematical
optimality is generally not feasible nor necessary and in their scheduling problem
solution, constraints are split into a hierarchy based on their criticality and used as
a hard or soft constraint respectively. This method is used to allow the creation of a
feasible schedule to be calculated while no schedule would strictly meet all desired
restrictions.

In their literature review, Van den Bergh et al. (2013) observe similar mixing of hard
and soft constraints as Jones and Nolde (2013) and in addition, they highlight the
simultaneous usage of a single parameter as both a soft and a hard constraint. The
most common hard constraint, used in 75 % of all research papers reviewed by Van den
Bergh et al. (2013), is a coverage constraint which specifies that enough workforce
has to be present during a shift. On the other hand, the coverage constraint is also
one of the most popular soft constraints because the workforce should be minimized
as well. They are commonly used together to achieve sufficient workforce at each
time period while minimizing overstaffing. Furthermore, more advanced solutions
incorporate lunch breaks and other short breaks into the coverage constraints to keep
a constant workforce available.

In addition to simple workforce coverage constraints, also employee skills are com-
monly considered in scheduling problems (Van den Bergh et al., 2013). The definition
of employee skills is the ability to perform a task in a satisfying manner and they can
be divided into two classes: hierarchical and categorical skills. Hierarchical skills are
those where an employee with a low skill level completes less work in the same time
that a very skilled employee does. A higher skilled employee has more experience
and has received more training on the subject. A lower skilled employee can usually
substitute a higher skilled one with the cost of lower efficiency. Within categorical
skills, the difference in skill level is disregarded and a task can be completed as long
as an employee has received a sufficient training. In essence, in categorical skills
there are no better or worse performing employees but rather employees who can
complete a task or who can not. (De Bruecker et al., 2015).
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In the literature, employee skills are viewed as fixed components that can not
be modified due to training possibilities often being left out of scheduling models
(Van den Bergh et al., 2013). Skills are either viewed as hard constraints in tasks that
require a special skill or as a soft constraint to favor employees with a better skillset
for the task. Disselkamp (2013) suggests that cross-training employees, meaning that
an employee possesses multiple different categorical skills, and splitting the workload
into smaller tasks increases the scheduling possibilities. De Bruecker et al. (2015)
add that cross-training increases flexibility and thus short demand peaks can be
overcome more easily. However, they mention that while cross-training improves
employee productivity, efficiency is decreased due to more frequent task changing
which interrupts the workflow. Fisher et al. (2019) find that cross-training a skill via
online module increased sales by 1.8 %.

Government regulations and collective labor agreements such as maximum working
hours during a certain time span and required resting times which must be complied
with are commonly used as hard constraints. However, maximum working hours and
resting times can simultaneously be used as soft constraints when a certain level is
desired while regulatory constraints function as definitive limits (Van den Bergh et al.,
2013). For example, the model proposed by Bürgy et al. (2019) allow employee shifts
to be extended by an hour which is still under the regulatory maximum hours but is
more than the employee has agreed as normal working hours with the employer. Other
time-related constraints found from literature include limiting consecutive working
and non-working days, maximum amount of overtime and amount of weekend shifts
during a predefined period (Van den Bergh et al., 2013). In addition to complying
with laws and regulations the aforementioned constraints are intended to create
fairness and keeping employees satisfied as stable scheduling is shown to increase
productivity within employees (Williams et al., 2018).

Due to having such a large spectrum of constraints and aspects to account for,
optimization problems are commonly complex and highly variable between use
cases. Constraints and objectives as well as the solution type differ largely between
application areas. This makes it hard to compare different optimization solutions and
the goodness in their results as Van den Bergh et al. (2013) note in their literature
review. Only few research papers compare their results to other studies within
the same field and even then the comparison is done to a very limited amount of
recent solutions. Ernst et al. (2004) observe similar aspects in commercial scheduling
software which can provide considerable optimization capabilities but with the price
of being specialized to a targeted application area with no easy way to apply it to
other industries. On the other hand, software solutions capable of broad application
commonly lack automated scheduling and function more as a tool for manual functions
and reporting where the scheduling is done as a manual process.

2.3 Experimental design in simulation
Imitating real-life processes using mathematical computer models is called simulation.
It is widely used in trying to gain understanding on how the underlying process
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behaves in different situations. This leads to experimenting with the model parameters
on how they affect the outcome of the simulation model and thus on how they would
affect the real-life situation (Law et al., 2014). When the alternative model inputs
are not known in advance and the goal of experimenting has less structure, for
example to find most influential input parameter, a more structured approach is
needed. Designing simulation experiments is more effective than unsystematically
trying different input configurations in trying to achieve the goal of the study (Kelton
and Barton, 2003).

In simulations, input factors are categorized as controllable and uncontrollable based
on whether they can be influenced by managerial decisions in the corresponding real-
world situation (Law et al., 2014). Thus, when optimizing simulated processes, the
controllable factors, such as the number of employees in a store, are generally focused
on. Law et al. (2014) explain that uncontrollable factors in the real-world become
controllable when exercising a simulation model and are important in simulating
impacts of unusual scenarios. They add that in experimental simulation, however,
the experimental and fixed factors are decided depending on the goal of the study.
Finding the experimental factors that have the most influence on the simulation
output is done with sensitivity analysis.

2.3.1 Sensitivity analysis

Sensitivity analysis studies the changes in the output of a model when inputs are
varied in the plausible value region (Saltelli, 2002). It can be applied to any system
that transforms inputs into outputs but commonly the system deploys a complex
mathematical model for which additional insights are sought. According to Razavi
et al. (2021), the motivations for conducting sensitivity analysis include the desire to
find the most critical input that deserves the most attention and further analysis or
to identify interesting regions in the input space where input interactions or small
movements alter the output. They also view that inputs can be classified based on
the underlying system and may consist of model parameters, constraints or boundary
conditions which can be either discrete or continuous variables, or triggers that
activate varying parts of the model. Outputs generally consist of objective, error or
model response functions that represent the effects of different input components.

Figure 1 demonstrates the sensitivity analysis process on a high level as described
by Razavi et al. (2021). The system processes inputs θ1 . . . θn into outputs Z in box
(b) which are received by the sensitivity analysis tool in box (a) that creates new
inputs based on the received data. The tool quantifies the information, such as input
interactions and the contribution in variability of an input to output variability, it
has gathered in box (c). There is a lot of information that can be quantified and
thus achieving meaningful results requires the sensitivity analysis to have a clear
objective (Saltelli et al., 2008).

The study of sensitivity analysis can be divided in local and global methods. Local
sensitivity analysis is the more known, simple and intuitive method where one or
multiple inputs are varied around a nominal point in the input space hence the
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Figure 1: A high-level process chart for a typical sensitivity analysis. (Razavi et al.,
2021).

naming of the method (Saltelli et al., 2008). Saltelli and Annoni (2010) note that
when the model output is explored only in the neighborhood of a pre-determined set of
boundaries, local approaches provide sufficient model sensitivity information as there
is no need for information over the whole input space. However, the local method
has a vast drawback where if the underlying model is not linear or the linearity is
not known, the exploration of the rest of the input space is restricted which can lead
to false assumption of important factors being noninfluential (Saltelli et al., 2008).
In contrast, global sensitivity analysis attempts to provide a thorough overview of
how inputs interact with each other and affect the output in the whole input space
regardless of the underlying model (Razavi et al., 2021) while also preventing false
assumptions of noninfluential factors (Saltelli et al., 2008).

While global methods are preferred in general sensitivity analysis, the most popular
method is a local one-at-a-time (OAT) method (Saltelli and Annoni, 2010). In this
method, one input parameter is changed at a time while keeping others fixed while
returning to the baseline point before changing another parameter. The baseline
point is commonly an established point where the properties are well-known and
which already gives satisfactory results from the model. Thus, all input sensitivities
and their performances are referred to the baseline point. The popularity of the OAT
method can be explained by the intuitivity of changing one moving part around a safe
baseline point for which the change of the output is entirely caused by the difference
in the changed parameter. Similarly, a lack of effect on the output when changing
an input parameter immediately implies that the parameter is noninfluential. In
addition, the chances of making changes that would make the model totally unfeasible
is small when only the surrounding of the baseline values are explored.

OAT is based on assumptions of input factor independence and the linearity of the
underlying model and in most research papers reviewed by Saltelli and Annoni (2010),
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these assumptions are not justified. They also note that multiple research papers
have found interaction effects between parameters only while conducting global
sensitivity analysis opposed to OAT where it is impossible to discover interactions
due to the one-at-a-time characteristic. Although OAT has shortcomings, it still
remains a popular sensitivity analysis method due to its simplicity and its integral
part of decision making systems where the impact of potential changes to the status
quo are of interest (Razavi et al., 2021).

2.3.2 Latin Hypercube Sampling

When a model has several tens or even hundreds of inputs and the execution time of
the model is relatively long, an OAT method might not be feasible due to runtime
limitations. To combat this issue, Space Filling Designs (SFD) are introduced to
sample input possibilities so that the whole space of input values is evenly explored
with a smaller amount of model executions (Damblin et al., 2013). A SFD is a more
sophisticated version of random sampling where, depending on the sampling method,
prior sampled points affect the next points to be sampled.

Latin Hypercube Sampling (LHS) is a SFD which attempts to populate the whole
input space by taking an even amount of random sampling points from each segment
of a divided input space (McKay et al., 2000). It is an extension of quota sampling,
a common method for selecting survey participants, in which the target group is
divided into smaller sub-groups from which the interviewer is free to choose the
subjects based on the given proportion (Moser and Stuart, 1953). In LHS, the count
of samples n must first be decided which is then used to divide each dimension r
to n segments creating an r-dimensional hypercube when r ≥ 2 (Law et al., 2014).
Each segment is turned into a standard uniform distribution from where a point is
randomly chosen and all chosen points are moved to the diagonal of the cube. The
dimensions are then independently permuted so that each hyperplane only contains
a single sample. The hypercube achieves the Latin Square quality due to having
exactly one sample per hyperplane, hence it is called a Latin Hypercube (Law et al.,
2014).

A two-dimensional input space is depicted in Figure 2 where each dimension is divided
to account for a sample size of n = 5 creating a 5× 5 matrix. The matrix on the left
includes samples points on the diagonal of the created matrix for which permutations
for each dimension form the matrix on the right-hand side. The right-hand side
contains the final sample locations where each row and column only contain a single
sample.

To further augment the LHS method, a maximin strategy is deployed to select the
best sample set. The maximin strategy maximizes the minimum distance between a
pair of samples in a set of a Latin Hypercube samples and thus ensures a good space
filling character for the sample set. The distance between a sample pair is calculated



11

Figure 2: A two-dimensional input space containing latin hypercube sample locations
before and after each dimension is permuted when n = 5.

using Euclidean distance

d(xi, xj) =
[︄

r∑︂
k=1

(xik − xjk)2
]︄1/2

, (1)

where xi and xj are two samples from the sample set X = x1, x2, x3, . . . , xn where
each sample has r dimensions. The distances are calculated between each pair of
samples in a sample set forming a distance matrix Dij from which the minimum
distance min Dij is calculated.

LHS algorithms output sample values for each dimension from a continuous uniform
distribution between 0 and 1 which are then scaled to accommodate the values used
as inputs. If scaling is done for discrete values and the number of samples n is larger
than the possible values of a discrete variable, the latin square quality is lost. This
occurs due to the samples being generated in n segments for each dimension and
then rounded to the nearest integer which will result in the input rows and columns
having more than one sample each. However, the original objective of LHS being
a SFD is only amplified due to there being more samples than in a regular LHS.
Figure 3 shows a two-dimensional Latin Hypercube before and after the samples
are distributed to the integer values of the axes. On the left-hand side plot, the
samples are distributed according to the gray grid which represents the LHS grid
with n = 6. On the right-hand side, the samples are rounded to the axis values
{xi, xj ∈ Z : xi ∈ [0, 4], xj ∈ [0, 3]} which are depicted with dashed lines resulting
in integer value samples. It must be noted that since regular rounding is done and
uniform distributions are used in every instance, the border values have a smaller
chance of receiving the sample. For example, in Figure 3 rounded values for xj are
as follows.
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round(xj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if xj ∈ [0, 0.5[
1, if xj ∈ [0.5, 1.5[
2, if xj ∈ [1.5, 2.5[
3, if xj ∈ [2.5, 3]

,

where values 0 and 3 are achieved from a smaller set of the axis length. Thus, when
creating integer samples using LHS, the value ranges of axes must be extended by 1
in both ends to ensure uniform probabilities for each value. The samples rounded to
the extended values are then discarded.

Figure 3: A two-dimensional input space containing latin hypercube sample locations
before and after samples are scaled to integer values when n = 6 and {xi, xj ∈ Z :
xi ∈ [0, 4], xj ∈ [0, 3]}.

2.4 Literature review
The workforce scheduling problem literature mainly consists of studies proposing
their own mathematical model to solve a given problem. A majority of the studies do
not compare their results to other studies but rather to simple models (Özder et al.,
2020) and only some include basic sensitivity analysis to further explore the proposed
model. Skills are widely included in scheduling problems with varying context as
they bring real life implications to purely mathematical models. De Bruecker et al.
(2015) have reviewed the literature that focus on problems in which skills are taken
into account. This section consists first of a general review of sensitivity analyses
conducted for workforce scheduling problems and then a review interesting studies
where skill has been incorporated into scheduling problems.

2.4.1 Sensitivity analysis in scheduling problems

Sensitivity analysis on workforce optimization models has been proposed in few
studies, of which most analyses are done with simple what-if scenarios. These
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scenarios are created by deviating one or multiple input parameters from the baseline
values and inspecting the output differences to the baseline solution and thus they
can be considered as an OAT method. The most important reason for the lack of
sensitivity analyses is the large computational time the models require to calculate
optimal results. Computing times can, for example, vary from 20 seconds of the
metaheuristic solution by Talarico and Duque (2015) to over 30 minutes taken by
the stochastic programming based solution by Parisio and Jones (2015).

Talarico and Duque (2015) incorporate sensitivity analysis in the proposed model to
solve a workforce scheduling problem for an Italian supermarket chain. They propose
a metaheuristic model to solve the problem which includes an ideal mix of full-time
and part-time workers. They perform a sensitivity analysis on the configuration
parameters of the proposed model by investigating each possible combination of
parameters and determine the most impactful parameters while also considering
the computing time. Using analysis of variance (ANOVA) they find that all the
parameters in their heuristic model have a significant impact on the value of the
objective function which is to minimize the total personnel cost. A statistical analysis
is then performed on these parameters to measure the effects of parameters to the
solution quality and to choose the best parameters possible for the final solution.
During multiple scenario analyses, on average, they observed an improvement of
roughly 13 % in the objective function value with optimized parameters compared
to initial values generated by their algorithm.

In a manufacturing environment, Othman et al. (2012) develop a linear multi objective
integer programming model which takes human aspects such as personality, fatigue
and recovery time into consideration when scheduling workforce. They highlight that
the model users must be aware of how recommendations given by the model change
when input values are varied and thus it is important to conduct sensitivity analysis.
In the first part, they create test scenarios in which the weights of the parameters of
the objective function are modified to simulate different company objectives such as
cost minimization or the minimization of employee idle times. They conclude that
changing weights enables the model to better comply with company policies and
rules by, for example, weighting the minimization of idle time increases workforce
utilization. In the second part of the sensitivity analysis, they study the effects
of recovery allowance, maximum endurance time and maximum fatigue inputs to
the output of the model by studying three scenarios in which the weights of the
parameters are shifted. They conclude that fatigue levels have minimal effect on the
objective function which attempts to minimize costs, but it gives information on the
amount of breaks a worker should have.

A workforce scheduling problem with fluctuating demand, days-off requirements
and different daily wage rates where weekly costs are minimized is formulated by
Mohamad and Said (2013) as an integer linear programming problem. They perform
linear programming problem sensitivity analysis to determine non-binding variables
that can be changed without changing the objective function but affect the solution.
In addition, they find the range in which objective coefficients affect the objective
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value but not the solution. The sensitivity analysis is performed one-at-a-time and
simultaneous changes are not addressed in their work.

An integer linear programming approach is also proposed by Razali et al. (2018),
who solve a preference based workforce scheduling problem in a small retail store
with the objective of minimizing workforce costs. They perform a sensitivity analysis
by creating five scenarios where the store workforce is decreased from the previous
scenario. They conclude that decreasing from the full available workforce increased
the weekly costs in all scenarios due to overtime costs. On the contrary, instead
of removing workforce, Mohammadian et al. (2019) perform sensitivity analysis by
adding available workforce in the healthcare sector. They propose a goal programming
method based on preferences to schedule nurse shifts with sparse nurse availability
due to an ongoing nursing shortage in the healthcare sector. Sensitivity analysis is
made on the proposed model by calculating different scenarios in which the number
of nurses available at a certain time are increased one at a time. Due to the shortage,
decreasing the available nurses would cause a decrease in the optimality of the
solution and thus analysis with less nurses is not considered. The analysis shows an
increase in the deviation of fulfilling nurse off days based on their interests which is
explained by the increased number of nurses and their preferences. However, they
conclude that increasing nurses minimizes the differences in the working days of
nurses and eliminating the need of overtime work.

2.4.2 Skills in scheduling problems

Henao et al. (2015) analyze the impact of adding multi-skilled employees to a
workforce scheduling problem. They propose a mixed integer linear programming
model to decide which skill or skills should be trained to which employee and their
working tasks for a planning period of a week. The setting of the study is in a home
improvement store where a skill covers the ability to work at a specific department.
Each employee can be trained for any department in the store but initially each
is specialized, only having one skill. Metrics used to measure the goodness of a
result are weekly personnel demand coverage and weekly overstaffing. The model
is executed in six scenarios in which the amount of departments in the stores vary.
The results show that there are always economic benefits in training employee to be
multi-skilled when the training costs are low and it also improves coverage levels and
especially when there is slight understaffing. They also find that the coverage did
not increase when overstaffing is either very high or very low in each department.
The staffing structures are found to have the best coverage to cost ratio when there
is a balance of multi-skilled and specialized employees.

Focusing on workforce planning for airport ground staff, Zeng et al. (2019) propose
a branch-and-price approach for solving the underlying model. The objective of the
study is to find the smallest employee mix with which daily demand profiles from a
large airport in China can be covered. Due to growing airport sizes and high turnover
rates, the majority of employees are always new while the other part consists of
employees with more experience. Thus, a hierarchical skill system is deployed where
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experienced employees are able to work more efficiently than newcomers. They also
allow downgrading, which in this context means that an experienced employee can
also work on a lower level task than their competence would allow. They experiment
the proposed model with 10 scenarios where each have different demand profiles,
amount employees and levels per skill. Their results show that the proposed model
gives better coverage compared to a previously used model although the solution time
for each scenario differed drastically due to the chosen branch-and-price method.

In contrary to hierarchical skills, Avramidis et al. (2010) include categorical skill in
their proposed simulation based scheduling algorithm with the goal of minimizing
employee costs in a telephone call center while reaching the service level target.
Each employee has one or multiple skills which represent which type of call they can
handle. Every employee with a particular skill finishes the tasks related to that skill
as efficiently as any other employee because there is no hierarchy in the skills. They
model arriving calls with stationary Poisson processes in scenarios where the size of
the calling center in term of employees vary. The results of the proposed algorithm is
compared to a two-step scheduling, where first staffing levels are decided and based
on them shifts are created with linear programming. Results show that that the
proposed model is superior to the two-step method in terms of employee costs in all
call center sizes but increasingly in the larger ones. However, the proposed model
did not always return a feasible solution while the two-step method always resulted
in feasible schedules.
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3 Research material and methods
This section presents the methods used in this thesis. First, a high level description
of the workforce optimization model is given to give an understanding of the basic
functionalities of the underlying process. Then, the test data is introduced alongside
a statistical method for generating samples. Finally, the selection and implementation
of the sensitivity analysis approach as well as key performance indicators to measure
the goodness of results are explained.

3.1 Underlying workforce optimization solution
The existing workforce optimization solution is presented as a black-box solution.
Thus, only the needed inputs and the resulting outputs are explored instead of
exploring the mathematical models behind the solution. The target of the solution
is to create shifts that match the workload as closely as possible with the best
possible employee skill, while conforming to contractual requirements and collective
agreements. The optimization part of the solution is divided into two main parts:
long term planning (LTP) and intraday optimization. LTP assigns rest and work
days to employees and determines the shift lengths for each working day of a planning
period that commonly spans multiple months. This is done in two steps where first
the working days are chosen and then their lengths are determined. The solution uses
a workforce forecast that indicates the total amount of work per working task for each
day. Both the working days and working hours optimizations use adaptive greedy
algorithms which iterate over all possibilities to maximize a reward utility function
until a better solution cannot be found. The intraday optimization uses simulated
annealing to create optimal shifts and calculations are done for one planning week
at a time. It uses the results of LTP as inputs and decides the start time of each
shift, lunch break slot for each working day and tasks for each employee on each
shift. Intraday optimization results are complete employee schedules that comply
with every restriction, but which can still be modified by the manager. Figure 4
depicts a simplified process of the optimization solution. In this thesis, the focus is
on the LTP module.

Figure 4: The underlying workforce optimization solution process.

A multitude of input parameters are needed for the solution to work as desired and
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for it to output meaningful results. They are used as constraints and as penaliz-
ing or rewarding factors in both parts of the optimization solution. Some of the
most important parameters include the preferred base shift duration, shift length
restrictions, average weekly hours and balancing periods. Values for these constraints
are collected from parameters defined in the employee contract, collective labour
agreement and store level operations. When needed, the values can be manually
changed by the model configurer.

In addition to the aforementioned parameters, each employee has a skillset which
determines the skills they possess and thus which tasks they can work on. Tasks and
skills are related in such way that there exists only one skill per task to be completed,
for example, the task of shelving requires the shelving skill. In LTP skills are used
as penalizing or rewarding factors when assigning working days and their lengths to
employees. The intraday optimization uses the skills as constraints when assigning
employees to tasks. The skillset of an employee in the optimization input is not
necessarily an exhaustive list of the employees competences, but rather a list of tasks
on which the employee is desired to work on. Adding a skill to an employee means
that they are able to work on the task related to the added skill. Any costs and time
required to train an employee to a task for which they do not yet have competences
are not considered.

Skills have levels from 1 to 3 which indicate the priority of the skill which the
employee should be using. In addition to skill priorities, the tasks are also given
priorities representing the importance of the task. For example, an employee can
have a skill level of 3 in "cashier" and a skill level of 1 in "meat counter" from which,
depending on other employees and task priority, the system will prefer cashier as a
task for the employee. An employee can not be assigned to a task for which they do
not possess the skill for. A time period in which an employee is not assigned to any
particular task is counted as idle time.

3.2 Test data
The test data used in experiments represent 20 different planning units where each
of them has one input file containing all needed information. A planning unit might
represent an entire store, independent floors or departments within a store depending
on user needs. Thus, there are large differences in amount of configured employees
and skills between planning units. The smallest planning units in the test data
set have roughly 10 employees and a few different skills while largest planning unit
has over 100 employees and over 15 unique skills. Each data file includes workload
forecasts for the planning period of the scenario which ranges from 1 to 6 months
with the most common length being 4 months. The working days optimization
in LTP uses day-level forecasts of each work type which are further disaggregated
to smaller intervals later in the intraday algorithm. The workload forecasts are
pre-calculated and will not be analyzed in this thesis. Each file also includes all
parameters that are used in the optimization including input parameters for each
employee and store specific inputs. Employees have a skillset where skills that they
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possess are defined with a level from 1 to 3. The skills for each employee can be
adjusted by the store manager and commonly trial and error methods are used to
achieve desirable optimization results.

Baseline statistics for each test case can be seen in Table 2. The skill count is the
amount of different skills and thus also the amount of tasks that exist in the test case.
Skills per employee is the average amount of skills an employee possesses. A value of
under 1 means that there are employees within the test case who do not have any
skills. Workload hours are all the forecasted working hours in all tasks combined for
the whole planning period. Idle hours depict the total amount of estimated idle time
between all employees for the whole planning period.

Table 2: Baseline statistics for each test case.
Test
case

Employee
count

Skills
count

Skills per
employee

Workload
hours

Idle
hours

Workload hours
per idle hours

1 65 10 4.6 44908 1105 38.7
2 91 12 0.9 25350 3221 7.7
3 30 5 1.0 24892 666 35.8
4 86 11 2.4 22679 4569 4.9
5 60 10 3.9 9833 3070 3.3
6 80 10 4.8 8560 1881 4.4
7 14 2 0.0 1071 2932 0.4
8 80 10 4.8 8560 1861 4.5
9 19 5 2.5 3216 779 4.1
10 15 3 0.6 3419 1104 3.0
11 112 14 0.9 28039 2301 11.4
12 14 5 3.3 3502 588 7.0
13 25 5 1.6 4101 3972 1.0
14 14 5 3.3 3502 596 6.9
15 33 14 2.0 7484 740 9.9
16 10 2 0.2 918 1500 0.6
17 78 10 0.9 4784 3886 1.2
18 33 14 2.0 7484 741 9.9
19 30 14 2.1 7543 812 8.9
20 27 4 1.0 3895 167 23.4

3.3 Sampling of new skills
The best way to execute OAT is to try every single possibility of deviating from
the baseline input values, but with larger setups this becomes infeasible due to
the excessive amount of iterations that would be needed. To combat this issue,
Latin Hypercube Sampling is used to choose what skill should be added to which
employee in each OAT iteration. LHS explores the employee-skill space evenly while
keeping the number of samples and thus the iteration count manageable. The Latin
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Hypercube samples are generated in a discrete two dimensional space of size e× s
where e is the total amount of employees and s is the total amount of different skills
in the test scenario. The samples drawn from LHS are thus indices of the matrix
dimensions which are used to select the employee-skill combinations.

An example of the employee-skill matrix is shown in Table 3 where rows depict the
skillset of an employee. In the baseline situation each cell is either empty if the
employee does not have the skill or marked with the skill level if the employee has
the skill in their skillset. A generated sample is thus an employee-skill combination
to use in an OAT iteration. If the employee already has the sampled skill in their
skillset, the sample is skipped as an employee can not have the same skill twice.
Table 4 depicts the situation where an employee-skill sample has been added to the
baseline situation. The sample adds skill 2 with level 1 is added to employee number
3.

Table 3: A two dimensional skillset matrix depicting the skill levels of each employee.
skill 1 skill 2 skill 3 ... skill s

employee 1 3
employee 2 3 1
employee 3 3
...
employee e 2 3

Choosing the amount of samples to be generated in this setting is a difficult task.
Loeppky et al. (2009) suggest that n = 10d sample points, where d is the amount of
dimensions in the input space, would be sufficient for initial results for a computer
experiment. In our setting, however, the two-dimensional input matrix is merely
a way of spreading out all possible input parameters where each cell is an input
parameter that is either 0 or 1. Choosing n = 10d sample points would mean that
20 samples are taken and while it might be sufficient for smaller planning units with
only few employees and tasks, it is not enough to discover the possibilities of a larger
planning unit where 20 sample points would only cover 1 to 2 % of all possibilities.
Thus, the amount of samples are scaled according to the size of the planning unit.
In the test cases, a task is underemployed more often than an employee is as there
are generally less tasks than employees. Hence, skills are used as the scaling factor
for the sample size. The amount of samples generated is n = 15s, where s is the
number of unique skills in the planning unit. On average, this means that each skill
is added to 15 different employees one at a time.
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Table 4: A two dimensional skillset matrix after skill 2 with level 1 is added to
employee 3.

skill 1 skill 2 skill 3 ... skill s
employee 1 3
employee 2 3 1
employee 3 1 3
...
employee e 2 3

3.4 Key Performance Indicators
LTP has integrated key performance indicators (KPIs) which are automatically saved
in the output file of the solution and can be extracted for further use. Two KPIs
were chosen to measure the performance of the solutions: TotalIdle and TotalScore.
TotalIdle refers to the total amount of idle work there is in the solution for the whole
planning period. Idle work refers to a time during the working shift of an employee
when they are not working on a specific task but where they would be available to
work. This means that any breaks are not counted as idle work. TotalIdle is chosen
as a KPI due to it directly addressing the total duration that the employees are
not efficiently working. It is measured in ticks of 15 minutes, the base duration in
the solution, which can easily be translated to a monetary value to use in further
decision making. Improving the TotalIdle means lowering the total value closer to
zero. When TotalIdle is zero, each employee is assigned to a task at all times when
they are available to work during the planning period. Due to the quantifiability of
the TotalIdle, it can also be compared between planning units and different test cases.
When comparing test cases, one must remember to account for other differences too,
such as the amount of employees and the length of the planning period.

TotalScore accounts for the task priority, the working day length deviation from the
desired working day length as well as the TotalIdle. It is the value of the function
which is maximized in the LTP algorithm when assigning working hours to employees.
Thus, it gives a broader view of the solution quality compared to the TotalIdle,
where effects on other aspects than idle time can be seen. The TotalScore can not
directly be compared between different planning units as their employee counts,
contractual agreements and planning unit settings can greatly vary. It is only useful
when comparing results of different optimization runs for the same planning unit.

3.5 Multiple One-At-a-Time algorithm
Conducting a proper sensitivity analysis requires certain considerations to be made
so that the correct approach is used. Saltelli et al. (2008) list the most important
aspects from which the most relevant for this thesis are the setting for the analysis,
the computational cost needed to execute a model, and the number of inputs as well
as their possible interactions.
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Sensitivity analysis is used in this thesis with the goal of providing information on
the possible benefits of adding missing skills to employees. The objective is thus to
start from a given input configuration of employee-skill combinations and attempt to
find an input with better results. Global sensitivity analysis methods are superior
in finding parameter interactions and measuring model robustness. However, the
underlying solution is known to be robust and only changes around the nominal
input configurations are feasible. Thus, local sensitivity analysis is used where only
the proximity of an initial state is explored. The number of inputs to be analyzed
depends on the number of employees and the quantity of unique skills in the test
scenario. The analyzed test cases have up to 1500 inputs of interest.

The desired sensitivity analysis method should be one that can be applied to any test
scenario while maintaining a reasonable total execution time. Even if test scenarios
with low input quantities and short execution times would allow more in-depth
sensitivity analysis methods than larger more complex scenarios, a common method
is chosen to achieve unified results. The method should be able to handle hundreds
of input parameters while also having local sensitivity analysis characteristics. Thus,
the chosen model is a Multiple One-At-a-Time (MOAT) sensitivity analysis method.
It is an extension of the regular OAT method which builds a new set of inputs
from the results of the OAT analysis and repeats the experiment until a certain
stopping criterion is reached. Saltelli and Annoni (2010) describe this method as an
alternative, more complete version of OAT.

In real-world use, employee skillsets are adjusted by the store manager according to
employee wishes and their skills. Thus, it is assumed that the skillsets, as they exist
in input files, are correctly set to achieve good enough results from the workforce
optimization solution and satisfy the workforce need. The existing skillsets are used as
a baseline from where the sensitivity analysis method starts to explore neighborhood
possibilities. In this setting, an OAT iteration means adding a skill to the existing
skillset of an employee while keeping all other input parameters unmodified and then
executing the solution. The added skill is added as a level of 1 skill as the differences
compared to adding it with level 3 are negligible and introducing a further dimension
to the sensitivity analysis increases computing costs drastically. In addition, when
adding a new skill, it is not desirable for it to be prioritized over existing skills.
However, it can be argued that being able to complete a new task efficiently requires
a lot of training or practical experience in the task.
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Procedure 1 Functions
1: function CallLTP(’in : LTPinput’)
2: Call the LTP algorithm with new input file
3: end function

4: function OAT(’in : LTPinput’)
5: S ← Generate LHS samples
6: R← empty matrix ▷ Initiate results matrix
7: for s in S do
8: if s not in in then
9: ins ← in + s ▷ Add sampled employee-skill to LTP input file

10: R(s)← CallLTP(ins) ▷ Collect results to matrix
11: end if
12: end for
13: s← argmins idle(R[s]) ▷ Choose sample that minimizes idle
14: return (R, s)
15: end function

Figure 5: One-At-a-Time function from Procedure 1 as a simplified flowchart.
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Procedures 1 and 2 describe the used sensitivity analysis method in simplified pseudo
codes. Figures 5 and 6 depict the procedures as flowcharts. In Procedure 1, two
functions that are used in the MOAT method are introduced. Lines 1-4 define a
function to modify the input file of the test scenario with the desired employee skills
map and uses it to call the LTP algorithm. A skills map is a collection of all employee
skillsets and can be pictured as a two-dimensional matrix with employees as rows
and skills as columns (see Table 3). Lines 5-16 define the OAT method, which takes
a skills map as input. In the beginning of the OAT method, LHS samples are created
based on the skills map provided in the function call. Each sample is checked whether
it already exists in the skills map as samples are created without considering the
existing employee skills. This decreases the final used sample count by approximately
25 %. If the sample is not already in the skills map it is temporarily added there as
depicted in 4 and it is used to execute the CallLTP function from which resulting
score and idle values are collected in a results matrix. When all samples have been
iterated over, the sample that resulted in the smallest idle value when added to the
skills map is chosen and it is returned as the output value for the OAT function.

Procedure 2 MOAT algorithm
1: SM ← SkillsMap from input file ▷ Collect baseline SkillsMap
2: Rb ← CallLTP(in) ▷ Collect baseline results
3: AddedSkills← ∅ ▷ Initiate added skills list

4: R, s← OAT(SM) ▷ First iteration of MOAT
5: SM ← SM + s ▷ Create the new baseline SkillsMap
6: AddedSkills← AddedSkills + s ▷ Collect added skill

7: while
[︂
diff(min Rb(idle), min R(idle))

]︂
≥ 1% OR ≤ 20 do

8: Rb ← R ▷ Update baseline results
9: R, s← OAT(SM)

10: SM ← SM + s ▷ Update baseline SkillsMap
11: Add← Add + s ▷ Collect added skill
12: end while

Procedure 2 describes the MOAT algorithm in full. Lines 1-3 set up the process by
collecting the baseline skills map from the input file, calculate the baseline results
with the original input file and initiating an empty list for added skills. The first
MOAT iteration is done on lines 4-6, enabling the use of a while loop for further
executions on lines 7-12. A single MOAT iteration is completed when the baseline
skills map is updated based on the OAT approach. On line 4, the OAT function
is executed with the skills map and the result is used to update the baseline skills
map on line 5. Starting from line 7, the MOAT is continued while the difference
between idle values in the baseline results and the results from the MOAT iteration
exceed a small arbitrary number to terminate when meaningful results are no more
achieved. The stopping criteria are when the differences between the results are less
than 1 % or is smaller than 20 units. On line 8, the baseline result value is updated
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to represent the value of the previous MOAT iteration. This way, the while loop
evaluates the difference between the two latest MOAT iterations and stops if the
decrease is too small.

Figure 6: Multiple One-At-a-Time algorithm from Procedure 2 presented as a
simplified flowchart.

In this version (A) of the MOAT algorithm, the criteria for adding a certain skill as well
as stopping the algorithm is based on the largest decrease in the idle value. Another
version (B), where the criteria is changed to be based on the largest improvement in
score is also tested in Section 4. In this version, line 14 in Procedure 1 is changed to
choose the sample with the largest resulting score and the evaluation on line 7 in
Procedure 2 is changed to check whether the difference between the maximum score
values is over 1 %.

The two versions use different objectives for the MOAT algorithm. In version A, the
objective is to choose an addition of an employee-skill combination that minimizes
the idle value. In version B, the objective is to choose an employee-skill combination
that maximizes the score value. Both versions of the MOAT algorithm are tested
and the better one is chosen.
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4 Results
This section presents the results of executing the MOAT algorithm on test case
scenarios. First, Section 4.1 discusses the technical execution of the analysis and its
performance. Next, Section 4.2 compares the two different versions of the MOAT
algorithm. Finally, Sections 4.3 and 4.4 present the results of adding skills and the
decrease to the total idle value.

4.1 Execution of the MOAT algorithm
The sensitivity analysis is completed for a total of 20 different test scenarios containing
unique data. The smallest test scenario includes 10 employees and only 2 skills for a
total of 20 possible employee-skill combinations while the largest test scenario has
112 employees and 14 skills for a total of 1568 combinations. The results are obtained
by calling the LTP algorithm in a Docker virtual machine with an input file that
is modified using Python 3.9. The virtual machine is created on a Windows laptop
with a 4-core 3.4 GHz processor and 16 GB of RAM. The Python package SciKit is
used to create samples using LHS.

Figure 7: The LTP algorithm execution times for test scenarios with regards to their
employee-skill combination count.
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The computational cost of executing a single LTP algorithm run for each test case can
be seen in Figure 7 in which a large variation in execution times between different test
cases can be seen. The lowest execution time is 0.01 seconds for test case 13 whereas
the longest execution time for test case 1 is almost three orders of magnitude longer
at 8.58 seconds. For an imaginary scenario with 1000 employee-skill combinations
where all combinations are experimented with would require 1000 OAT iterations.
This corresponds to a total of roughly 10 seconds and 2.5 hours respectively. By
using LHS in the MOAT algorithm, the OAT iteration count is decreased by up to
70 % depending on the amount of skills in the test scenario.

The Spearman correlation values of the execution time to the amount of employees and
skills are 0.58 and 0.35 respectively. The moderate correlation values are supported
by visually analyzing Figure 7 in which large variation in run times can in some part
be explained by the difference in the amount of employees and skill between scenarios.
However, the comparably high 2 second runtime of test case 3 with 30 employees
and 5 skills and the low 0.06 second runtime of test case 18 with 33 employees and
14 skills are clear outliers when considering this explanation.

A more thorough exploration of run time differences is not in the scope of this
thesis and based on only the number of skills and employees, one can not make an
assumption on the magnitude of the execution time. Thus, baseline run times are
estimated by running the LTP algorithm before starting the sensitivity analysis. The
general increase in execution time when more skills and employees are added has
a two-fold effect on the execution time of the sensitivity analysis. First, increased
iteration execution time linearly increases the total runtime and, second, an increased
number inputs implies more iterations to be executed when performing sensitivity
analysis.

4.2 Comparison of MOAT stopping criteria
Both versions of the MOAT algorithm are executed for each test case. The differences
in the total improvements until the algorithm stopping criteria can be seen in Table
5 where a positive value indicates a better result when using the version A and
a negative value indicates a better result with version B. In version A, the skill
choosing and stopping criteria are based on idle and in version B they are based on
skill. As expected, version A performs better when comparing the decrease in idle
value and likewise version B performs better when comparing differences in score
value. For example, in test cases 5 and 18, however, version A performs better for
the decreasing the score. Similarly, for test case 6, version B performs better for
decreasing the idle value. This is interesting because if the objectives of the algorithm
versions are to maximize the improvements of either idle or score values, one would
think that the results are the best in decreasing their objectives. Since this does
not hold true for some test cases, it indicates that the algorithm is not perfect in
finding inputs with the largest improvements. Overall, the differences between the
two versions are small but since version A is marginally better, it is chosen as the
version with which further results are presented.
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Table 5: Differences in KPI improvements when using both versions of the MOAT
algorithm. A positive value indicates better results when using version A.

Test case Idle improvement A vs. B Score improvement A vs. B
Value Percentage Value Percentage

1 2 0.0% 1 0.0%
2 0 0.0% -151 -0.2%
3 83 3.1% 1 0.0%
4 -59 -0.3% -1000 -0.7%
5 681 5.5% 8455 1.7%
6 -135 -1.8% -7824 -0.1%
7 -46 -0.4% -27122 -0.2%
8 58 0.8% 399 0.0%
9 0 0.0% 0 0.0%
10 -9 -0.2% -1172 -0.2%
11 93 1.0% 304 0.3%
12 0 0.0% -21 0.0%
13 0 0.0% -2 0.0%
14 0 0.0% 11 0.0%
15 3 0.1% -48 -0.1%
16 0 0.0% 0 0.0%
17 33 0.2% 608 0.1%
18 -12 -0.4% 364 0.5%
19 29 0.7% -503 -1.9%
20 0 0.0% 65 0.3%

Figure 8 shows the idle and score value improvements of nine test cases where the
MOAT algorithm produced the largest idle value improvements. The figure shows
improvement as a percentage of the baseline values during iterations so that the two
values can be compared. For either value, improving them means decreasing their
value. For test cases where the MOAT algorithm is stopped before iteration 7, a
dashed line is drawn to fill the plot. The total idle time is a value that is used as a
component when calculating the total score value from the LTP algorithm and thus
the two are correlated. In some test cases, the idle value improves slower than the
score value which indicates that the idle value has a strong influence on the score
value. The two other main factors affecting the score value is the task priority and
deviation of working day length which in these cases have a lower presence. This
can be seen especially in test case 16, where the idle value improves by only 36.1 %
but the score value gets an 86.2 % increase. In other test cases, the idle value is
improved drastically whereas the score is improved only slightly. For example, in
test case 3, the total idle gets close to zero with a 96.6 % improvement by iteration
number 6 whereas the score value has only improved by 20.1 %. This implies that
the score value is largely influenced by other factors than the idle value.
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Figure 8: The percentage improvement of score and idle values from their baseline
values during MOAT iterations.

4.3 Optimized addition of skills
Table 6 shows the results of the MOAT analysis for the most impacted test cases.
Complete results can be found in Appendix A. For each iteration, the skill that
brings the largest decrease in idle value is added to an employee with information on
how much the idle value is improved. Iterations in this context indicate the number of
added skills and the order in which they are added to achieve the largest decrease. A
missing skill is added to an employee until the stopping criteria of MOAT is reached.
Test cases where very little or no decrease could be seen reach the stopping criteria
after their second added skill. In other test cases, such as number 2, up to 7 missing
skills are added before the MOAT algorithm is stopped. It must be noted that skill
IDs and employee numbers are not comparable between test cases.

The added skills are distributed within employees so that a single employee appears
in the results only once. The only exception is in test case 10, where skills 1 and 2 are
both added to employee number 1. The same missing skill, however, is added multiple
times for different employees in many test cases. For example, skill 1 is added to 4
different employees in test case 3 and skill 2 is added to 3 different employees in test
case 7. The addition of the same skill indicates that there is a large employee deficit
for the given task. Consequently, adding multiple skills to an employee would imply
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that they have significantly more idle hours than other employees.

There is also a large difference between test cases in how the idle value improves
when more skills are added. In test case 19, the first skill addition improves the idle
value by 2367 but further skill additions hardly improve it more. In contrast, the idle
value in test case 2 does not improve as much for the first added skill but continues
to improve with steadily decreasing amounts until the last added skill.

Table 6: Results for most improved test case on which skill should be added to which
employee and how much it improves the idle score.

Iteration 1 2 3 4 5 6 7

Test case 7
Skill ID 2 2 2 1 1 - -

Employee number 6 7 4 6 10 - -
Idle value decrease 1918 1392 484 452 39 - -

Test case 2
Skill ID 4 11 10 11 10 4 1

Employee number 34 24 43 10 3 25 2
Idle value decrease 1175 1103 1025 396 260 141 28

Test case 3
Skill ID 1 1 1 1 2 - -

Employee number 17 26 24 29 21 - -
Idle value decrease 1445 880 222 82 26 - -

Test case 19
Skill ID 4 5 7 - - - -

Employee number 11 13 9 - - - -
Idle value decrease 2367 94 30 - - - -

Test case 10
Skill ID 2 2 1 1 - - -

Employee number 9 1 4 1 - - -
Idle value decrease 1252 285 153 76 - - -

4.4 Decreases in idle values
Decreases in idle values for each test case in each iteration are presented in Figure 9.
Detailed idle improvement progress during MOAT iterations can be seen in Appendix
A. If the MOAT algorithm is stopped before iteration 7, a dashed line is drawn
from the last iteration to fill the plot. The test cases can roughly be categorized
into two groups where in one, adding missing skills results in significant decrease in
the idle value and in the other group the idle decrease is small or insignificant. The
largest decrease in idle time occurs in test case 7 where a 4331 tick decrease is seen.
This represents 1083 fewer hours of idle time during the planning period of 126 days
which is the equivalent of 8.5 hours per day or more than a full time employee. The
largest decrease in one iteration can be seen in test case 19 where adding a single
missing skill to an employee decreased the idle time by 2434 ticks or 608.5 hours
during the planning period of 126 days. This equals to almost 5 hours less idle per
day during the whole planning period which corresponds to two thirds of the hours
of a full time employee when assuming 7.5 hour working days. In test cases 12, 13
and 14, no decreases can be achieved by adding missing skills to employees.
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Directly comparing different test cases is usually not feasible due to each test case
representing a different planning unit with different amount of employees, skills,
contracts and working hours. However, large stores might divide departments or
floors into planning units where a store manager would benefit of directly comparing
results within the store.

Figure 9: The idle decrease of each test case from their original value during MOAT
iterations.

It is also important to look at the proportional decrease in the idle value to get a
better understanding of the results. Figure 10 shows the decrease in idle value in
percentage for each test case during each iteration. Test cases 3 and 19 with 99.7 %
and 76.9 % decreases respectively stand out from the chart. In test case 3, with a
decrease of 2655 ticks and an addition of 5 missing skills, the idle is almost completely
eliminated. Adding a single missing skill in test case 19 improved the idle value by
72.8 %. While the total idle decreases in test cases 4 and 5 are above 2000 ticks
and rank high in Figure 9, their proportional decreases are under 20 %. This can be
explained by the size of the planning units the test cases represent. The two test
cases have 86 and 60 employees respectively which ranks them in the larger end of
all test cases and more employees generally results in more total idle time.
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Figure 10: The idle decrease of each test case in percentage during MOAT iterations.
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5 Discussion
Results show that in some test cases the idle values can be significantly decreased
while in other test cases the values could not be made better. There is thus large
variation in the values and the causes for that are of great interest. To determine
whether it is possible to identify planning units where significant decreases can be
made, an analysis is done for baseline values and planning unit variables. First, the
correlations between the amount of employees, amount of skills, average amount of
skills per employee, average total workload ratio and average daily workload ratio
is calculated. In this context, the workload ratio indicates the amount of future
workload per task per employee who has the skill to complete the task. The average
is calculated over all tasks in the planning unit of the test case and a daily value is
calculated by dividing the value by planning period. A high average workload ratio
means that on average, there is a lot of workload per employee for a given task.

The average correlations for all test cases can be seen in Table 7 where Spearman
correlation is used because the data does not follow a normal distribution. The
employee count has a low correlation of 0.23 from which no conclusions can be
drawn. The skill count has a correlation value of 0.04 meaning that the correlation
is nonexistent. A moderate negative correlation of −0.51 can be seen in the average
skill count per employee which suggest that the less skills employees have, the more
the idle value could be improved. An intuitive explanation for this is that having
less skills per employee makes them have to wait until there is work in the few skills
they have rather than having possibilities of working on different tasks that would
be more important which induces idle work. Workload ratio has a moderately strong
positive correlation coefficient of 0.69 which implies that the larger the workload
ratio is, the more the idle value can be decreased. Since there are differences in the
lengths of the planning periods of test cases, a more reasonable value to calculate
correlations with is the average workload ratio per day which is slightly lower at
0.56 but still shows moderately strong correlation. Calculating and analyzing the
daily average workload ratio and the average skill count per employee can thus give
indications whether there is room for improvement in employee skillsets with the
goal of reducing idle hours.

Table 7: Average Spearman correlation between the total decrease in idle score and
different statistics of test cases.

Decrease in idle
Employee count 0.23
Skill count 0.04
Average skills per employee -0.51
Average workload ratio 0.69
Average workload ratio per day 0.56

In a situation where there is a lot of daily work per employee per skill, the decrease of
the total idle when adding a missing skill to an employee is not intuitive. One would
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think that if there is more work than an employee can handle, there would not be any
decrease if more work would be available to be done. However, there exist multiple
scenarios which by their own or in tandem with other scenarios create situations
when the idle score is improved. Below are listed the most common scenarios which
can also be observed in the test cases:

• Days without workload
If there exist working days where the workload for certain tasks is zero and if
there exists an employee who only possesses skills to work on tasks that do
not have workload, idle hours are accumulated for those days. Adding a skill
that has workload enables the employee to be allocated to work on other tasks
which will lower the idle time. However, as the workload data in this thesis
is aggregated to a single value per skill for the whole planning period of the
planning unit, it is not possible to inspect daily workload forecasts.

• Skewed skillsets
Employee skillsets can be skewed so that there is an abundance of workforce
available for some tasks while other tasks have much less available workforce.
An employee with skills in the tasks with most workforce might need to wait for
their turn to be allocated to the work which results in idle time. This imbalance
in skillsets can be relieved by adding missing skills to these employees. This
way, they can be allocated to work on other tasks rather than wait until there
is work available in the overemployed task which in turn decreases the idle
time.

• Employee without skills
There can exist employees who for some reason do not have any skill determined
yet. This means that they are not available to work on any task and their whole
working time is considered as idle time. An extreme of this scenario would be
that all employees have an empty skillset. Adding any skill to any employee
would improve the total idle value since all work done in that scenario is idle
work. In this scenario, the underlying workforce optimization solution does not
work as intended and the skills should be verified by the store manager before
attempting to optimize them.

It must be remembered that there can be differences in employee specific contracts
which can result to different outcomes from each scenario. For example, in a situation
where an employee has a contract outlining that only daily work can be assigned to
them, adding skills for a task that is complete during a night shift does not decrease
the idle hours even if there is employee deficit for that task. There are, however,
common situations where adding missing skills does not improve results:

• Abundance of skills
When every employee has a large amount of skills in their skillset, they can
flexibly be allocated at any time to tasks that require workforce. If a prioritized
employee is not available to do a task, almost every other employee can do
the job. Adding missing skills in this situation will not improve the idle value
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as the existing idle time does not originate from scenarios mentioned earlier.
Instead, idle values result from an excessive amount of employees or manually
fixed shifts that include idling which can not be modified by the workforce
optimization.

• Low idle to begin with
If a planning unit is already well optimized or there exists too much workload
for employees to handle, the idle value can already be low to begin with. Adding
missing skills to a well optimized solution where the employee skills and the
workloads match perfectly can lead to fragmented working shifts where an
employee unnecessary switches between tasks. Similarly, employees working to
their full capacity will not either benefit from adding missing skills but rather
increase the possibility of receiving more fragmented working shifts.

The proposed algorithm only considers which skills are missing and how much adding
one of them would improve the solution. A clear weakness in this is that in real
world situation every skill can not be trained to anyone and there exists conflicts
between skills. For example, an employee with skills regarding keeping the store
clean is specialized in cleaning tasks and would in most cases not be interested in the
tasks done by a shift manager. Considering which skills are compatible with each
other would require manual work for each planning unit as there are no universal
rules which apply to every use case. Thus, not considering skill conflicts allows the
algorithm to be used on a more general level.

Results of the proposed algorithm give suggestions to model users on which skills
should be added to which employees and in what order. The best employee-skill
combination in terms of improving the idle value is chosen on each iteration. Often,
there are multiple employee-skill combinations per iteration that improve the idle
value significantly more than others from which the best one is chosen. The algorithm
could be developed to suggest other almost as good employee-skill combinations from
which the model users could then choose the most suitable one. This could be done
on every iteration so that the model user could see how much an additional skill
would bring benefit and make decisions based on that information.

Computing time is considered in this thesis, but no time budget is set. An interesting
approach would be to consider a time budget where the algorithm would have a
certain time to optimize the results. This would be an important aspect as solution
end-users must know and be able to limit the run time. However, restricting run
time could lead to suboptimal results in larger planning units as less samples would
be evaluated. The former further development suggestion could also restrict the run
time by letting the model user stop the process after a sufficient amount of skills are
added.

Especially more demanding skills are known to decay over a longer period of time
when they are not used (Arthur Jr. et al., 1998) but for easier physical tasks the
retention rate is high. In retail it can be assumed that once a skill is learned it
is not lost due to the simple characteristics of the tasks. This is assumed in the
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workforce optimization literature as well as in this thesis. However, the skills in
the underlying workforce optimization solution indicate the tasks an employee can
be assigned to and do not single-handedly indicate what the competences of the
employee are. Thus, the algorithm could also be improved by adding the ability to
identifying redundant skills which could be removed from the employees without
negatively impacting optimization results.
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6 Conclusions
This thesis proposed a simulation based sensitivity analysis algorithm to improve
the results of an existing workforce optimization solution in the retail setting by
recommending the training of specific missing skills to employees. The existing
solution returns optimized employee schedules whose quality is measured by the
amount of idle time. The goal is to reduce the idle time as much as possible to ensure
employees are working efficiently since workforce is the largest expense in the retail
word. The proposed algorithm outputs employee-skill suggestions to be added along
with the amount of idle decrease until no more improvements can be made.

The models behind the solution are complex and the effects on the results when
modifying input values are not always apparent. Thus, the proposed algorithm
was based on a One-At-a-Time sensitivity analysis method, which was executed
multiple times in succession to find the missing skills that improve the results the
most. Latin Hypercube Sampling was used to efficiently explore the space of missing
employee-skill combinations to mitigate computing times in larger scenarios. The
algorithm was implemented in Python programming language, which was executed
in a Docker virtual machine environment. The underlying workforce optimization
solution is called in the virtual machine with modified test case input files where skills
have been added to employees. In this thesis the test cases represented scenarios of
stores for which the workforce is optimized. It was assumed that the unmodified test
cases portray realistic situations that result in satisfactory schedules.

Results showed large variations in the amount of decreased idle time throughout test
scenarios which can be explained by the differences in their properties. In best cases,
the idle time was almost completely eliminated while in some cases no decreases
could be made. It was more common for a skill to be added multiple times than an
employee getting multiple added skills. Based on the disparity of results, different
observations were gathered from the starting situations of test cases to help identify
situations where adding missing skills improve the results or where they remain
unchanged. Although common factors were found, definitive conclusions could not
be drawn from test case characteristics alone.

Results also indicated large variations in the computing times of each test case in
which almost a thousandfold difference was seen between the fastest and slowest
calculations. Although, the computational time was not in the center of focus, it has
a large impact on the usability of the algorithm in real life. This could be addressed
in further research by adding a budget for the computation time of the algorithm
instead of purely limiting the iteration count.

A large assumption made in this thesis is that every employee can be taught each skill
with the sole restriction of having a skill only once. The proposed algorithm could be
improved by considering relationships between skills as discussed in Section 5 although
it would require additional configuration for each planning unit. Alternatively, the
algorithm could be structured so that on each iteration multiple alternative choices are
presented and one would have to be chosen before proceeding to the next iteration as
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opposed to directly calculating until a threshold. This would remove the configuration
requirement and give store managers more choices.
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A Appendix

Table A1: Results of the MOAT analysis for each test case.
For each iteration, the best skill-employee combination is
shown with how much it improves the idle value.

Test case Iteration 1 2 3 4 5 6 7

1
Skill id 1 - - - - - -

Employee number 60 - - - - - -
Idle value decrease 17 - - - - - -

2
Skill id 4 11 10 11 10 4 1

Employee number 34 24 43 10 3 25 2
Idle value decrease 1175 1103 1025 396 260 141 28

3
Skill id 1 1 1 1 2 - -

Employee number 17 26 24 29 21 - -
Idle value decrease 1445 880 222 82 26 - -

4
Skill id 4 4 2 6 - - -

Employee number 28 57 33 36 - - -
Idle value decrease 1154 487 279 111 - - -

5
Skill id 2 2 6 2 2 2 -

Employee number 47 46 6 5 13 19 -
Idle value decrease 662 553 121 463 245 21 -

6
Skill id 7 2 - - - - -

Employee number 69 69 - - - - -
Idle value decrease 325 38 - - - - -

7
Skill id 2 2 2 1 1 - -

Employee number 6 7 4 6 10 - -
Idle value decrease 1918 1392 484 452 39 - -

8
Skill id 10 7 - - - - -

Employee number 69 69 - - - - -
Idle value decrease 23 40 - - - - -

9
Skill id 4 - - - - - -

Employee number 11 - - - - - -
Idle value decrease 232 - - - - - -

10
Skill id 2 2 1 1 - - -

Employee number 9 1 4 1 - - -
Idle value decrease 1252 285 153 76 - - -

11
Skill id 9 12 11 4 2 8 -

Employee number 88 74 73 46 90 53 -
Idle value decrease 1104 667 556 498 94 62 -

12
Skill id 1 - - - - - -

Employee number 9 - - - - - -
Idle value decrease 0 - - - - - -
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Table A1 continued from previous page
Test case Iteration 1 2 3 4 5 6 7

13
Skill id 1 - - - - - -

Employee number 2 - - - - - -
Idle value decrease 0 - - - - - -

14
Skill id 1 - - - - - -

Employee number 7 - - - - - -
Idle value decrease 0 - - - - - -

15
Skill id 9 - - - - - -

Employee number 24 - - - - - -
Idle value decrease 28 - - - - - -

16
Skill id 1 1 2 2 - - -

Employee number 3 4 6 7 - - -
Idle value decrease 750 750 610 40 - - -

17
Skill id 6 6 - - - - -

Employee number 15 10 - - - - -
Idle value decrease 117 70 - - - - -

18
Skill id 12 - - - - - -

Employee number 24 - - - - - -
Idle value decrease 38 - - - - - -

19
Skill id 4 5 7 - - - -

Employee number 11 13 9 - - - -
Idle value decrease 2367 94 30 - - - -

20
Skill id 3 - - - - - -

Employee number 27 - - - - - -
Idle value decrease 58 - - - - - -
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Table A2: Idle value results from executing the MOAT algorithm version A.
Test case Starting idle End idle Decrease Decrease (%)

1 4419 4398 21 0.5%
2 12882 8754 4128 32.0%
3 2663 8 2655 99.7%
4 18277 16245 2032 11.1%
5 12278 10213 2065 16.8%
6 7522 7181 341 4.5%
7 11728 7443 4285 36.5%
8 7442 7379 63 0.8%
9 3114 2876 238 7.6%
10 4416 2645 1771 40.1%
11 9202 6221 2981 32.4%
12 2351 2351 0 0.0%
13 15888 15888 0 0.0%
14 2384 2384 0 0.0%
15 2961 2927 34 1.1%
16 6000 3836 2164 36.1%
17 15543 15373 170 1.1%
18 2963.4 2935 28.4 1.0%
19 3249.5 751 2498.5 76.9%
20 666 608 58 8.7%
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Table A3: Score value results from executing the MOAT algorithm version A.
Test case Starting score End score Improvement Improvement (%)

1 -76257 -74886 1371 1.8%
2 -60798 -49973 10825 17.8%
3 -42167 -33712 8455 20.1%
4 -136990 -113472 23518 17.2%
5 -485797 -440134 45663 9.4%
6 -12877600 -12852831 24769 0.2%
7 -10926444 -4421091 6505353 59.5%
8 -12876492 -12874655 1837 0.0%
9 -476574 -470955 5619 1.2%
10 -566978 -350458 216520 38.2%
11 -88806 -82307 6499 7.3%
12 -136751 -136750 1 0.0%
13 -2624186 -2624185 1 0.0%
14 -159118 -159107 11 0.0%
15 -66916 -64949 1967 2.9%
16 -5415994 -744828 4671166 86.2%
17 -620912 -605355 15557 2.5%
18 -66834 -64665 2169 3.2%
19 -29637 -19590 10047 33.9%
20 -18669 -17039 1630 8.7%
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Table A4: Score value results from executing the MOAT algorithm version B.
Test case Starting score End score Improvement Improvement (%)

1 -76257 -74887 1370 1.8%
2 -60798 -49822 10976 18.1%
3 -42167 -33713 8454 20.0%
4 -136990 -112472 24518 17.9%
5 -485796.7 -448589 37208 7.7%
6 -12877600.2 -12845007 32593 0.3%
7 -10926444.2 -4393969 6532475 59.8%
8 -12876491.6 -12875054 1438 0.0%
9 -476573.9 -470955 5619 1.2%
10 -566978.4 -349286 217692 38.4%
11 -88806.1 -82611 6195 7.0%
12 -136750.6 -136729 22 0.0%
13 -2624185.5 -2624183 3 0.0%
14 -159117.9 -159118 0 0.0%
15 -66915.9 -64901 2015 3.0%
16 -5415993.8 -744828 4671166 86.2%
17 -620819.1 -605870 14949 2.4%
18 -66835.5 -65031 1805 2.7%
19 -29487.2 -18937 10550 35.8%
20 -18668.9 -17104 1565 8.4%
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Table A5: Idle value results from executing the MOAT algorithm version B.
Test case Starting idle End idle Decrease Decrease (%)

1 4419 4400 19 0.4%
2 12882 8754 4128 32.0%
3 2663 91 2572 96.6%
4 18277 16186 2091 11.4%
5 12278 10894 1384 11.3%
6 7522 7046 476 6.3%
7 11728 7397 4331 36.9%
8 7442 7437 5 0.1%
9 3114 2876 238 7.6%
10 4416 2636 1780 40.3%
11 9202 6314 2888 31.4%
12 2351 2351 0 0.0%
13 15888 15888 0 0.0%
14 2384 2384 0 0.0%
15 2961 2930 31 1.0%
16 6000 3836 2164 36.1%
17 15541.8 15405 136.8 0.9%
18 2964.3 2924 40.3 1.4%
19 3240.2 771 2469.2 76.2%
20 666 608 58 8.7%
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