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Abstract
Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy
(VMAT) are widespread optimisation frameworks used in treatment plan generation
for cancer patients today. Practitioners commonly spend a significant amount of
time balancing optimisation objectives to produce clinically acceptable treatment
plans. Recent work has proved machine learning predicted dose distributions used in
conjunction with dose mimicking or structure objectives derived from the predicted
dose to be able to produce high quality treatment plans.

In this thesis, the aim was to use MVision’s deep learning predicted dose distri-
butions and evaluate different optimisation strategies for producing dose distributions
similar in quality. Pure dose mimicking approaches, an approach using dose derived
structure objectives in addition to hybrid dose mimicking and structure objective
approaches were explored.

For the experiments, MatRad, an open source radiotherapy treatment planning toolkit
was used. The toolkit provides a pencil beam dose influence matrix calculation
algorithm and an interior point method optimiser package, which were used for dose
optimisation. Voxel mimicking approaches were generally not able to mimic the pre-
dicted dose distributions and the optimisation dose distributions were of significantly
lower quality. No optimisation method was able to consistently reproduce the quality
of the predicted dose, but the structure based objectives showed most potential.

Keywords Dose mimicking, deep learning dose prediction, voxel mimicking, IMRT,
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Tiivistelmä
Intensiteettimoduloitu sädehoito sekä kaarihoitotekniikka ovat nykyisin laajassa
käytössä olevia optimointimenetelmiä syöpäpotilaiden sädehoidon suunnittelussa.
Syöpälääkärit käyttävät tyypillisesti huomattavan määrän aikaa optimointitavoitteiden
luomiseen sekä tasapainottamiseen laadukkaan annosjakauman tuottavan sädehoito-
suunnitelman luomiseksi. Viimeaikainen tutkimus on osoittanut, että koneoppimista
hyödyntävien annosennusteiden jäljittely optimoimalla voi tuottaa laadukkaita annok-
sia.

Tässä diplomityössä tarkoituksena oli hyödyntää MVisionin syväoppimispohjaisia
annosennusteita ja arvioida erilaisten optimointistrategioiden kykyä tuottaa yhtä laa-
dukkaita annosjakaumia annosennusteen pohjalta. Tutkimuksen kohteena oli kaksi eri
pelkästään annosta jäljittelevää menetelmää, annosennusteen pohjalta annos-tilavuus
-tavoitteita luova menetelmä sekä kaksi hybridimenetelmää.

Kokeissa oli käytössä avoimen lähdekoodin sädehoitosuunnittelukirjasto MatRad.
Kirjasto tarjoaa intensiteettimodulointiin soveltuvan kernelpohjaisen pencil-beam
-algoritmin ja sisäpistemenetelmää käyttävän optimoĳan, joita käytettiin annosopti-
mointiin. Annosta jäljittelevät menetelmät eivät kyenneet jäljittelemään annosennus-
tetta eikä tuottamaan laadukkaita annoksia kaikissa tapauksissa. Yksikään optimointi-
menetelmä ei tuottanut johdonmukaisesti muita menetelmiä parempia tuloksia, mutta
annos-tilavuus -tavoitteet automaattisesti luova menetelmä vaikuttaa lupaavimmalta.

Avainsanat Annosjäljittely, annosennuste, intensiteettimoduloitu sädehoito,
kaarihoito
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1 Introduction
Cancer is a group of diseases characterised by abnormal growth of cells that have
the potential to spread to other parts of the human body. It is a major cause of death
throughout the world, especially so in high-income countries. [24]

A group of cells growing in an uncontrolled manner form a tumor, which are the
target of treatment for most cancer treatment methods. Depending on the type of
cancer, stage of its progression and its location, different treatment methods are used.
Some commonly used treatment methods of cancer include surgery, chemotherapy
and radiotherapy. [1]

In radiotherapy, high doses of ionising radiation is used to kill cancer cells and
shrink tumors. Radiotherapy can be either internal, where a radiation source is placed
inside a patient’s body or external, where a radiation device shoots ionising through
the patient. In this thesis, the focus is on external radiotherapy.

External radiotherapy is commonly delivered by a linear accelerator, a device which
accelerates charged particles up to speeds enough to damage the DNA of cancer cells.
Most types of cancer are moderately radiosensitive, which means that relatively large
amounts of ionising radiation are required to have a curing effect. Some types of
cancer might be so insensitive to radiation that the required amounts of radiation would
be unsafe for the surrounding organs.

Sparing of surrounding tissue and organs is a major consideration in radiother-
apy treatment planning. Modern linear accelerators and treatment planning systems
provide various means of planning treatment in a way which spares surrounding
organs. This topic will be covered in Sections 2.2.4-2.3.3.

Treatment planning starts with a desired radiation dose for the patient. A doc-
tor prescribes a dose for the target organ and sets radiation limits for the surrounding
organs. The aim of treatment planning is to devise a dose delivery plan for the
linear accelerator, which delivers a dose with minimum deviation from the desired
dose. In practice, surrounding organs receive significant amount of radiation and
compromises have to made to achieve the desired dose levels in the tumor. The tradeoff
between target coverage and organ-at-risk (OAR) sparing makes dose optimisation a
multi-objective optimisation problem.

Since the beginning of treatment planning, increasingly sophisticated and accu-
rate planning methods have been developed. Relevant in modern radiotherapy and
this thesis are inverse planning methods, a group of methods in which parameters of
the treatment machine are adjusted iteratively with optimisation according to desired
dose and physical machine limitations. In inverse planning methods, optimisation
objectives based on the desired target dose and OAR dose limits are used to guide an
optimiser software to find an optimal dose.
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In clinical practice, commercial optimisation software is commonly used for plan
creation. A practitioner sets radiation targets for the tumor and limits for surrounding
organs according to best clinical knowledge of the type of cancer and the individual
requirements and constraints of the patient. Less common in practice is dose mimick-
ing, an approach where instead of target and OAR objectives, the optimiser is guided
to get as close to a desired dose grid as possible. This reference dose grid is created
with a deep learning model trained on a set of patient cases on which multiple rounds
of VMAT (volumetric modulated arc therapy) optimisation were run by a clinical
expert to provide high quality training data. Patient data is given to the trained model,
which predicts a dose grid of high quality with regards to clinical objectives. It is
hypothesised that the dose grid should be close to what can be attained for the patient
with optimisation.

In this thesis, one of the goals is to evaluate the potential of dose mimicking, predicted
dose derived conventional structure objectives and various hybrid approaches in attain-
ing this dose quality by running experiments on 15 patient cases. These approaches
will be described in detail in Section 3.2 and the patient data described in Section
4. Due to the lack of open source VMAT optimisers, IMRT (intensity modulated
radiation therapy) was used instead. The effects of using IMRT for dose mimicking on
VMAT characteristic dose distributions is discussed in Section 5.2.

Simultaneously, all these approaches enable an automatic workflow for plan cre-
ation. The conventional optimisation objectives are automatically derived from the
predicted dose for the experiments. In addition, the dose mimicking and hybrid meth-
ods utilise the predicted dose for setting up the optimisation process automatically.
Indeed, a second goal of this thesis is to devise an automatic procedure for setting up
plan optimisation informed by the experimental results.

The conventional objectives derived from the predicted dose were found to per-
form the best, the reasons for which are discussed in Section 5.2. Informed by these
results, it is proposed that conventional objectives derived from the predicted dose can
be used to produce doses of almost comparable quality to the predicted dose, even
with an IMRT optimiser.



2 Literature review

2.1 Cancer treatment modalities
Abbas and Rehman [1] list four main categories of cancer treatment modalities: surgery,
radiotherapy, chemotherapy and hormonal therapy [1]. Surgery and radiotherapy are
considered local treatment methods, as they can both be used to treat a tumor located
in a specific location of the patient. Chemotherapy and hormonal therapy are sys-
temic treatment methods, which means that they target cancer cells throughout the body.

In the normal functioning of the body, a cell divides around 50 times until it dies. The
cell dies as a result of apoptosis, a process in which the body sends a signal for the
cell to stop dividing and the cell is replaced by another after its death. Cancer cells
exhibit no response to these signals and continue to grow and divide uncontrollably.
In addition, cancer cells have the ability to spread to other tissues but not before the
cancer tumor has grown sufficiently large. If cancer processes far enough for cancer
cells to start invading surrounding tissues, it is very hard to treat and often turns fatal
for the patient. Cancer treatment methods may either aim to kill a body of tumor cells
or to affect the uncontrollable division behavior of cancer cells throughout the body. [1]

Before 1950, the only cancer treatment considered was surgery. Surgery is an
especially promising treatment option for tumors because it assures minimal damage
to surrounding tissue, unlike radiotherapy and chemotherapy. Depending on the type
of tumor and its location in the body, surgery aims to remove either the whole tumor
or the bulk of its mass, leaving the rest of the tumor to be treated by other treatment
methods. [1]

Radiotherapy is a collection of treatment methods, in which a dose of ionising
radiation is delivered to a tumor. Charged particles interacting with tumor cells
can alter their genetic structure to the extent of killing them directly or halting their
replication mechanisms [1]. In this thesis, the focus is on external radiotherapy, in
which a focused beam of particles is delivered from outside of the body on the target.
Radiotherapy will be discussed more thoroughly in Section 2.2.

Chemotherapy affects tumors by removing the ability of tumor cells to divide and
enforces their natural death. However, chemotherapeutic drugs also affect normal
cells, leading to various serious side effects. With high enough doses, these drugs can
affect the immune system, which can eventually lead to complications or even death
of the patient.

Abbas and Rehman [1] also report numerous other treatment methods, including
hormonal therapy, various radiation modalities and agents capable of disrupting the cell
cycle or cell division, falling to the same category with chemotherapy. In their report
on cancer treatment modalities, Zadeh et al. [18] also note that different treatment
modalities, such as surgery and radiotherapy, can be used jointly to achieve better results.
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As previously stated, this thesis will focus solely on radiotherapy. However, regardless
of whether a patient has previously undergone a surgery or received chemotherapy, the
underlying process for radiotherapy planning is the same. Previous treatment history
is accounted for by practitioners by the radiation targets and limits they set for organs
and the tumor and by designing the planning target volumes appropriately.

2.2 Radiation therapy
2.2.1 Beam production

Ionising radiation delivers biological damage to cells by breaking molecular bonds,
which damages DNA. Photons from the radiation source interact with matter, producing
high energy electrons. These electrons travel through tumor tissue, interacting with
both water molecules around cells and the cells directly. Electrons interacting with
water molecules produce highly reactive water ions and hydroxyl radicals. Both water
ions and hydroxyl radicals are reactive ions which have the potential to affect chemical
bonds in the radiation target. This can induce various biological effects on cancer cells,
killing them or affecting their ability to reproduce. It is worth noting that ionising
radiation has the potential to induce cancer and this effect can be delayed by years
after exposure to radiation. [33]

2.2.2 Linear accelerators

The advent of radiotherapy dates back to the year 1895, when X-rays were discovered
by Wilhelm Röntgen. During the 20th century, new radioactive isotopes and radiation
techniques were discovered and scientists would gain understanding of the effects of
radiation dose on cell survival, aiding the development of radiotherapy treatments.
Eventually, the development of dose delivery machines lead to electron linear acceler-
ators, which would be able to deliver megavoltage X-rays. These megavoltage X-rays
would have high enough particle energies to penetrate the skin and give high doses to
deep tumors. [14]

The initial electron beam is generated by accelerating electrons through an elec-
tric potential difference. Medical linear accelerators are cyclic accelerators, which
means that electrons go through the same linear path with the potential difference
multiple times, gaining energy each time. Although the initial beam consists of
electrons, the X-ray is produced by the electron beam hitting a medium, usually a target
made of tungsten. Electrons from the initial beam displacing electrons of the target
material produce characteristic X-rays, emitted in the form of photons. Characteristic
X-rays are the result of Coulomb interactions, in which electrons of the atoms in the
target material are displaced from their orbit. An electron from a higher shell fills the
vacant orbit, releasing a discrete amount of energy equivalent to the energy difference
between the shells. Tungsten is a particularly appealing material due to its high atomic
number, which makes high energy characteristic X-rays possible. Another type of
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X-ray resulting from electrons hitting the target material is a bremsstrahlung ray, which
has a continuous spectrum of energy. This kind of X-ray is the result of interaction
between electrons and atom nuclei. The electron decelerates and its loss of kinetic
energy is released in the form of bremsstrahlung photons. Some linear accelerators
can be used to produce electron beams by not using an X-ray target [33]. However,
electron beams are of less relevance in this thesis and will not be discussed.

According to Podgorsak [33], linear accelerators consist of five major parts: gantry,
gantry support, treatment table, modulator cabinet and control console. Gantry is
the part along which the radiation source rotates, supported by the gantry support.
Treatment table is where the patient lies. The modulator cabinet is a component
that produces electrical powerandhigh-voltage pulses required for electron acceleration.

In the next section, the focus will be on beam modifiers, the moving parts in the head
of the treatment device which are used to shape beams for finer targeting of the tumor
and surrounding tissue.

2.2.3 Beam modifiers

The head of the treatment device consists of parts used for production of photon beams
and shaping, localising and monitoring both electron and photon beams. Leaving
aside the details of how clinical beams are produced, mostly relevant for beam shaping
are the several collimators, which act by absorbing incident radiation. The primary
collimator narrows the beam down to a circular beam. Two horizontal and vertical
jaws further narrow it to a rectangular beam. Finally, the multileaf collimator (Figure
1), a collection of moving tungsten plates, can be used to shape the resulting beam to
more complicated and clinically useful shapes. [33]

Modern linear accelerators have from 20 to 80 pairs of narrow tungsten leaves,
with a typical width of around 10 millimeters. Each leaf is individually controlled by
a computer, allowing irregular beam shapes accurately conforming to target structure
shape. [9]

2.2.4 Treatment planning

Organs exhibit different responses to ionising radiation. Too much radiation to any
organ has the risk of causing side effects more serious than the cancer to be treated.
Different organs vary in their ability to withstand radiation. The ideal is to give
zero radiation to all OARs, while giving the exact amount of radiation for the target
required to treat the tumour. In practice, however, this objective is impossible and
compromises have to be made. It is the job of the practitioner to determine safe limits
of radiation for each organ depending on the patient, the type of cancer and pre-
existing conditions of the patient. Based on these limits, treatment plans can be created.

The radiation beam emitted from the treatment machine is initially a rectangu-
lar field of uniform intensity. Without any shaping of the field, the beam will not be
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Figure 1: A multileaf collimator consists of radiation absorbing tungsten leaves,
which can be moved individually allowing complex beam shapes. Picture from Varian
Medical Systems, Palo Alto, California. [Source: Bortfeld [4]]

entirely concentrated on the tumor, but will give unnecessary radiation to tissue around
the tumor. This issue creates the need for conformal therapy, in which beam shape is
modulated to conform to the tumor shape. According to Fraass [12], Takahashi [43]
was the first to describe the use of "geared sectional collimators", mechanical devices
used to conform to treatment target shape, utilising 3D models of the tumor to plan the
conformal treatment. These devices were the early version of the modern multileaf
collimators, described in the previous section.

When treating a patient with radiation, the beam will first pass through tissue and
organs in front of the target, deliver radiation to the target and continue, dispersing
energy not only on the tumor to be treated but through a whole section of the patient’s
body. To avoid irradiating a particular organ past safe limits, multiple beams from
different directions can be used. The beams are all centered on the tumor, which is
aligned with the axis of rotation of the gantry. Each beam can be less intense or of
shorter duration, which reduces radiation on organs around the target while the target
receives the full dose. For these reasons, treatment planning procedures utilise gantry
rotation or several beam angles and multileaf collimation to create treatment plans.

Rotational dose delivery is a relatively old idea, first suggested by Kohl [21]. Brahme
et al. [6] were the first to pose treatment planning as an inverse problem. Their
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paper asks the question - which radiation intensity distribution from the incoming
beam produces a uniform dose distribution in a cylindrical target volume? Bortfeld
[4] describes this paper as the one which ’invented’ IMRT, a topic of a subsequent
section. In a modern setting, characterised by abundant computational resources and
computerised control of various linac features, inverse planning encompasses finding
optimal gantry positions and speeds, leaf positions and beam intensities iteratively
by optimisation methods. The term "inverse planning" hints to its separation from
the traditional forward planning approach, where plan parameters are manually set
according to the best subjective knowledge of the practitioner giving the treatment.

Modern linear accelerators have the capacity to deliver treatment plans with varying
gantry speed and dose rate, which allow more fine tuned treatment plans. The degree
of complexity and interplay between these features allows for more conformable plans
but also makes treatment planning more complicated [7]. To devise treatment plans by
inverse planning, two elements are crucial: dose calculation and optimisation methods.
These will be the topics of subsequent sections.

2.2.5 Treatment quality evaluation

Modern treatment planning techniques can provide highly conformal treatment plans,
but how exactly is the plan quality assessed? The evaluated quality of a dose is highly
dependent on the patient, the type of cancer treated and the organs surrounding the
tumor. It is up to the radiation oncologist to inspect the distribution of radiation
received by the PTV and OARs for quality control.

A common tool used by practitioners for plan evaluation is the dose volume histogram
(DVH). Dose volume histograms can also be used to compare doses resulting from
two different treatment plans, as illustrated in Figure 2.

Doses can also be visualised on every 2D slice of the patient by coloring each
pixel according to dose intensity. DVH curves reduce the three dimensional spatial
information of the dose to two dimensions, losing information in the process. Hence a
slice-by-slice inspection of the dose is recommended in [17].

Determining safe limits for radiation on OARs is an extremely complex problem.
Dr. Emami [11], in a report on tolerance of normal tissue to radiation, summarises
complications arising from irradiation of different organs and corresponding recom-
mendations for radiation limits. Even these limits, as stated in the report, can vary
from patient to patient as a higher risk of complications could be accepted to improve
the likelihood of a certain treatment outcome. In the end, radiation limits need to be
decided by the practitioner not only considering clinical outcomes, but also preferences
of the patient being treated.

The previous statement underlines the multi-objective nature of dose optimisation.
This tradeoff between tumor control probability (TCP) and normal tissue complication

15



Figure 2: An example DVH with two plans compared [Source: Craft et al. [10]]

probability (NTCP) is often illustrated with a graph of the therapeutic radio, shown in
Figure 3. The TCP and NTCP are modelled to take into account biological effects
of radiation on cells, estimating probabilities of killing the tumor and producing
complications in normal tissue, respectively [30].

Metrics derived from the DVHs are also useful and can be simpler to interpret
than DVH curves themselves. Such metrics are minimum, maximum and mean dose
on the PTV and OARs. The ICRU Report 83 by Grégoire and Mackie [15] recommends
reporting the 98th and 2nd quantile of the dose for maximum and minimum doses for
better statistical significance. In addition, homogeneity indices report the uniformity
of dose in the PTV, conformity indices measure the ratio of high doses on the PTV
to high doses on normal tissue while gradient indices measure the steepness of dose
falloff around the PTV. A homogeneity index and conformity index in addition to
the mean and 99th quantile dose are also reported for the experimental results of this
thesis and explained with more detail in Section 5.1.

2.3 Dose optimisation
2.3.1 Structure delineation

For optimisation and dose calculation purposes, the patient geometry information
is stored as a three-dimensional grid of voxels, which are small rectangular cuboid
volume elements. This information is generally obtained by magnetic resonance
imaging (MRI) or computational tomography (CT) and further sampled or interpolated
for desired grid resolution. In order to create optimisation objectives for the tumor or
OARs, borders are generally drawn by practitioners or automatic tools around these
volumes of interest (VOI) on the MRI or CT images. Based on these delineated areas
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Figure 3: Relationship between tumor control probability and normal tissue compli-
cation probability [Source: Chang et al. [8]]

in each image, 3D volumes corresponding to each volume can be created. All VOIs
then take up a set of voxels in the grid.

There are essentially two ways to define dose objectives: per-volume or per-voxel.
Per-voxel dose is simply desired dose for each voxel, and can be described as a vector
consisting of the desired dose each voxel in the planning volume. In practice, however,
defining voxel-based doses might be difficult and are usually generated automatically
as in the dose prediction model used in this thesis. Volume objectives are generally
defined on the whole organ volume, and objectives such as max or mean dose or EUD
objectives are defined on a per volume basis. The objectives used for optimisation
will be more thoroughly discussed in Section 3.2.

2.3.2 Intensity modulated radiation therapy (IMRT)

IMRT is a dose delivery technique involving several fixed gantry positions, the number
and angles of which can be decided by the practitioner. In his IMRT review paper,
Bortfeld [4] decribes IMRT as treatment planning methods where intensities of incom-
ing beams are modulated to conform to the target and surrounding organ objectives
and the multiple beam directions complement each other, accounting for cold and hot
spots of other beams. A schematic drawing of IMRT is shown in Figure 4.

The process for optimising an IMRT treatment plan is generally realised in two distinct

17



Figure 4: IMRT with multiple beam angles and beam intensity distributions visualised.
[Source: Metcalfe et al. [26]]

steps - fluence optimisation and leaf sequencing. Fluence optimisation is the process of
optimising the beam intensity distributions from each incoming beam and leaf sequenc-
ing is the subsequent step of finding leaf positions and movement patterns conforming
to the optimised fluence maps as closely as possible. Both topics will be handled
in more technical detail for the specific approaches used in the experiments of this thesis.

Fluence optimisation starts with discretising each beam to a two-dimensional grid
of beamlets - small rectangular sections of the whole beam. Each beamlet results in
an individual dose contribution in the body, and the intensity (amount of radiation)
passing through each beamlet can be individually optimised to find an optimal intensity
distribution for each beam. The calculation of the contribution of each beamlet in a
body made of heterogeneous tissue is a complex topic and will be addressed in Section
2.3.4.

The optimised intensity distributions represent ideal beams and are generally not
attainable with a multileaf collimator (MLC), as the moving plates are not able
to modify the incoming beam to arbitrary intensity distributions. Various strate-
gies for leaf sequencing exist. Saw et al. [34], identify the two main strategies
for leaf sequencing in IMRT - the static "step-and-shoot" technique and dynamic
leaf sequencing. Figure 5 illustrates an optimal fluence map and a single MLC segment.

In static leaf sequencing, the optimal fluence map is stratified to a number of levels of
intensity, and the leaf sequencing algorithm tries to find a minimal number of leaf
positions, also called segments, whose sum corresponds to the discrete levels. Each
segment is delivered separately and radiation is turned off during leaf movement.

In dynamic leaf sequencing, the leaves are allowed to move while radiation is
being delivered, allowing wedge-shaped intensity distributions. As described by Saw
et al. [34], "the intensity pattern is decomposed into a series of segments such that the
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Figure 5: Drawing of a fluence map and a single segment of MLC leaf positions.
The desired fluence map can generally not be delivered by a single segment. [Source:
Siggel [40]]

leaf positions in one segment are related to those of the next segment by leaf veloc-
ity constraints and unidirectional motion". This kind of delivery technique provides
shorter delivery times than with static sequencing, albeit prone to leaf-positional errors.

For static leaf sequencing after the sequencing step, the leaf positions can be further
optimised with direct machine parameter optimisation (DMPO). This includes opti-
mising each leaf position for each segment directly to account for decrease in dose
quality after the sequencing step. DMPO was originally designed to replace the fluence
optimisation and leaf sequencing step [36], using a simulated annealing approach for
finding suitable segments, given beam angles, energies and segments per beam as
a starting point. In the experiments conducted in this thesis in Section 5, however,
DMPO was used after leaf sequencing as a separate optimisation step.

2.3.3 Volumetric modulated arc therapy (VMAT)

Treatment times required for delivering IMRT plans, depending on the number of
beam angles and segments used, can be too long for sufficient throughput in clinics.
VMAT was originally invented by Karl Otto [32] to overcome this issue.

The new type of treatment featured dose delivery while the gantry is rotating a
full 360 degree round. In theory, the added freedom of beam angles should result in
higher quality doses. However, the deliverable segments between consequent angles
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need to be close enough to account for maximum leaf travel speeds. Furthermore, the
design of the linac and its components pose additional constraints, including maximum
and minimum dose rate and maximum gantry rotation speed.

The idea and practical implementation of modulating the field shape while the
gantry is rotating was first conceived by Yu [45], who designed intensity modulated arc
therapy (IMAT), a precursor to VMAT using multiple superimposed arcs. According
to Otto [32], IMAT has several issues producing an accurate and deliverable plan.
Optimisation of leaves while the gantry is moving is generally done with coarse
sampling at angle increments of 5-10 degrees and leaves can travel significantly
between subsequent angles. Too coarse angle sampling and significant leaf movement
between angles can cause large differences between optimised and delivered dose due
to errors in dose calculations [32, 37]. These issues were the original motivation of
developing VMAT.

Similarly, the approach proposed by Otto [32] starts with fluence optimisation and
leaf sequencing for each beam direction. Initial sampling is coarse and can be done
for intervals of 10 degrees. After initial optimisation, additional beam shapes are
added between the optimised ones by linear interpolation and the leaf positions are
then optimised directly, taking into account leaf travel and dose rate constraints. This
is similar to DMPO described in the previous section, but with machine imposed
constraints. In order to achieve adequate dosimetric accuracy, the final sampling
needs to be at intervals of at most 1 degree. Such a number of beam directions to
optimise naturally makes the problem computationally challenging and in order to
make the total optimisation time feasible, the number of optimisation iterations for
each direction is reduced as the number of beam directions increases.

The main advantage of VMAT over IMRT is the reduced treatment time: the treatment
plan is delivered with a single arc in constant motion whereas IMRT generally uses
a large number of beam directions with multiple MLC segments for each direction.
In addition, delivering radiation while the gantry rotates has the potential to provide
more conformable doses and avoid excessive dose on OARs, as every beam direction
is utilised. The resulting dose distributions are significantly different, as illustrated in
Figure 6.

2.3.4 Dose calculation

Given a gantry angle, patient geometry and center of gantry rotation, a dose calculation
algorithm computes the resulting dose inside the patient. The dose is calculated for
every beamlet (alternatively, pencil beam) separately. That is, for every portion of the
beam grid a dose calculation algorithm approximates the dose in every voxel inside
the patient. Technically, the dose calculation procedure calculates a matrix 𝐷, whose
element in the 𝑖th row and 𝑗 th column is equal to the radiation absorbed by 𝑗 th voxel
as a result of delivering a unit intensity of radiation with beamlet 𝑖. This is the dose
format required for dose optimisation purposes but the calculation can be done with
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Figure 6: Comparison of dose distributions for IMRT and VMAT plans, demonstrating
the effect of constant radiation during gantry rotation. [Source: Nguyen et al. [27]]

various different methods and is generally computationally intensive.

Essentially, a dose calculation algorithm takes as input the intensity distribution
of the incident beam and calculates the distribution of energy deposited in the body
taking into account patient tissue heterogeneities and interaction of photons with the
tissue. Photons exiting the treatment head interact with the treatment head components
and patient tissue, causing various forms of energy deposition in the patient.

Ahnesjö and Aspradakis [2] describe four types of dose resulting from a photon
beam. These types are described in figure 7 as primary photon dose, treatment head
scatter, contaminant particles and phantom scatter.

Primary photon dose is the energy dispersed in the body as a result of photon
absorptions into electrons in the target material. The main source of direct photon
absorption at low photon energies is the photoelectric effect [33]. At higher energies
pair production, an event where a photon interacts with an atom nucleus to produce a
proton-electron pair, is more prominent. Pair production also leads to the annihilation
of the proton with a free electron, producing two opposite direction photons. In Comp-
ton scattering, a free electron is scattered by an incoming photon while the photon
changes direction. Compton scattering dominates at intermediate photon energies. [33]

Phantom scatter refers to photons scattered inside the patient. As mentioned previ-
ously, Compton scattering and pair production are sources of secondary photons with
direction differing from the original beam direction. In Rayleigh (coherent) scatter,
a low-energy photon hits an atom, not displacing any particles or losing energy but
changing direction. [33]

Treatment head scatter is the photon scatter resulting from photon interactions in parts
of the treatment head, such as the collimator or the flattening filter. The scattered
photons enter the treatment body and have similar interactions at the primary beam,
but the irregular directions and changed intensities of the scattered photons add a com-
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Figure 7: Types of dose resulting from photon irradiation and scatter effects. [Source:
[2]]

ponent to the dose that needs to be accounted for in treatment planning. Contaminant
particles are charged particles from the treatment head or the air between the treatment
head and the treated body.

Radiation energy deposited is generally measured in Grays (Gy), the amount of
energy in Joules absorbed per mass in kilograms. Photons transfer their energy to
electrons and proton-electron pairs as kinetic energy and charged particles transfer
their energy in further interactions. There are different ways of quantifying the transfer
of the indirectly ionising photon radiation depending on the accuracy wanted for dose
measurements. According to the International Commission on Radiation Units and
Measurements (ICRU) report 85 [31], the absorbed dose is the sum of all energy
deposition interactions, by charged or uncharged particles, in a mass 𝑑𝑚 of material.
A common approximation is the KERMA (kinetic energy released per mass), which is
limited to energy transferred by uncharged particles.

Accuracy and speed of dose calculation are major considerations when selecting
a dose calculation algorithm for treatment planning. A good dose calculation algo-
rithm is such that it is able to model the aforementioned particle interactions and the
resulting energy distribution with sufficient accuracy while being fast enough to be
usable in a clinic.

A common approach for dose calculation in IMRT divides beams into beamlets,
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as explained in Section 2.3.2. For optimisation purposes, the contribution of each
beamlet to the dose is computed separately. An accuracy concern arising from this
approach is that the contribution of each beamlet can not be decoupled from MLC
leaf positions, as each MLC leaf lets some radiation through and causes scattered
radiation. Radiation through the leaves can be a significant source of radiation [20].

Inaccuracy in dose calculation used for optimisation can cause significant inac-
curacy in the final dose after convergence [35]. To counter this issue, many approaches
involve using a lower accuracy dose calculation algorithm for most iterations and either
correction by a more accurate algorithm for subsequent iterations or final convergence
exclusively with the higher accuracy algorithm [35, 38].

In Monte Carlo algorithms, a large number of particle tracks are simulated from the
treatment head to the body, modeling first principles of particle interactions. With this
approach, Monte Carlo algorithms should theoretically provide best dose calculation
accuracy when simulated with high enough number of particles and several studies have
used a Monte Carlo dose as a benchmark for more approximative algorithms [3, 22, 13].

The high number of simulated particles needed for sufficient accuracy is compu-
tationally challenging and can be too time-consuming for practical purposes. To
reduce computational requirements, several algorithms have been developed which
use kernels to approximately describe the energy dispersion by secondary photons
and electrons from the primary interaction site. These methods are called convolution
methods. If the algorithm further takes into account heterogeneities in the media, it is
called a convolution-superposition algorithm [23].

2.3.5 Voxel based optimisation

Dose optimisation objectives are traditionally defined on OARs and the PTV and the
objectives are balanced by a practitioner to provide an acceptable dose distribution.
The approach in this thesis was to use a deep learning (DL) predicted dose distribution
on the whole body and attempt to mimic it with various optimisation methods.

The most important benefit from using dose mimicking is the elimination of the
need of a practitioner in the dose optimisation step, increasing patient throughput and
potentially producing higher quality doses [25, 19]. The idea of dose mimicking is not
new: McIntosh et al. [25] trained several machine learning models for predicting dose
distributions and applied dose mimicking with fixed beam settings for both IMRT
and VMAT. They had promising results with the mimicked doses nearly consistently
outperforming clinical doses. However, they also recognised the necessity of a dose
prediction technique capable of producing a dose distribution which is realistic for the
optimiser and treatment machine to achieve.

A recent work by Kadoya et al. [19] explored the use of dose structures based
on a DL predicted dose, and concluded that treatment plans generated using these
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structures were clinically acceptable after being reviewed by practitioners, and in some
regards even of higher quality than benchmark clinical plans.

The aim of this thesis is to find the best optimisation strategy to be used together with
MVision’s DL predicted dose distribution and to test the usability of the predicted
dose distribution for optimisation purposes. The experimental part explores using pure
voxel mimicking and generated optimisation objectives based on the predicted dose.
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3 Methods

3.1 Optimisation problem formulation
3.1.1 Fluence optimisation

Denote by 𝐷 the dose influence matrix, with 𝐷𝑖 𝑗 being the dose delivered to voxel
𝑖 through beamlet 𝑗 by unit amount of radiation through the beamlet. Let 𝜏 be the
vector of beamlet weights. Then, the dose to voxel 𝑖 is given by 𝐷𝜏.

Let 𝑓 denote the objective function, which is a weighted sum of several objec-
tive functions optimising the dose to the PTV and minimising the dose to the OARs
and normal tissue around the PTV. Various objectives are explored, and the exact
functions used are discussed in Section 3.2. In addition, dose optimisation might
involve constraints on the dose, but they are not explored in the experiments conducted
in this thesis.

In traditional IMRT, the first optimisation problem is to solve

min
𝜏

𝑓 (𝐷𝜏)

𝜏 ≥ 0,

where the non-negativity requirement for 𝜏 prevents negative radiation amounts.

In this approach, the main problem is that the optimised fluence maps 𝜏 might
not be deliverable with the machine in use, because it does not take into account
leaf movement. To create deliverable plans, leaf sequencing based on the optimised
fluences 𝜏 must be applied.

3.1.2 Leaf sequencing

The leaf sequencing algorithm used in these experiments is a static sequencing
algorithm by Siochi and Alfredo [41]. This approach discretises fluence levels of
beamlets to desired accuracy and finds an optimal combination of beam shapes and
radiation durations conforming to the discretised fluences. Following an example
from [41], assume for simplicity an (unrealistic) beam with 3 pairs of leaves and a
3x5 discretisation to beamlets. Assume further that the fluences are discretised to
9 intensity levels and the intensities are rounded to yield the following total beam
durations: ⎡⎢⎢⎢⎢⎣

5 7 9 8 6
5 7 7 7 6
1 4 4 4 1

⎤⎥⎥⎥⎥⎦
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Then a set of leaf position used to deliver such an intensity distribution could be, for
example⎡⎢⎢⎢⎢⎣

5 7 9 8 6
5 7 7 7 6
1 4 4 4 1

⎤⎥⎥⎥⎥⎦ = 3
⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 1 1
0 1 1 1 0

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
1 1 1 0 0
1 1 1 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
+2

⎡⎢⎢⎢⎢⎣
0 1 1 1 0
0 1 1 1 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ + 2
⎡⎢⎢⎢⎢⎣
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦
The binary matrices represent deliverable beams: 1 is for beamlets not blocked by
MLC leaves and 0 is for blocked beamlets. The algorithm takes into account certain
limitations on leaf movement, such as discontiguity and leaf collisions in addition to
tongue and groove effects.

3.1.3 Direct machine parameter optimisation

In direct machine parameter optimisation (DMPO) [16], the approach is to solve the
following optimisation problem:

min
𝑥,𝑤

𝑓 (𝑑 (𝑥, 𝑤))

s.t. 𝐴𝑥 ≤ 𝑏

𝑤 ≥ 0

(1)

In this approach, each beam is divided into control points, and each control point
is described by a vector of leaf positions 𝑥 and a segment weight 𝑤. The function
𝑑 (𝑥, 𝑤) calculates the dose resulting from the given leaf positions and segment weight
for a beam. In the optimisation problem (1), the leaf positions for all control points
of all beams are collected to the vector 𝑥 and segment weights of all control points
are collected to the vector 𝑤. Then 𝑑 (𝑥, 𝑤) is the dose received by the patient and
𝑓 (𝑑 (𝑥, 𝑤)) is the objective function. The constraint 𝐴𝑥 ≤ 𝑏 ensures that the leaf
positions 𝑥 are achievable by the machine, and 𝑤 ≥ 0 prevents negative fluences.

Although in this thesis DMPO is restricted to shaping individual segments, it readily
extends to VMAT: The control points are simply set up for different angles and
the constraint 𝐴𝑥 ≤ 𝑏 needs to take into account gantry speed and maximum leaf
movement per gantry angle rotation for subsequent leaf positions.

3.2 Optimisation methods
3.2.1 Conventional objective generation

Conventional objectives or volume objectives, as mentioned previously, are optimisa-
tion objectives defined on volumes corresponding to organs or the treatment target.
There are different types of constraints or objectives one can define for the dose of
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each volume. Some common ones include maximum dose, minimum dose, mean dose
and dose-at-volume.

Maximum, minimum and mean dose are self-evident. Similarly to dose quality
evaluation in Section 2.2.5, the 99th quantile was used for the maximum dose also
for the optimisation objectives. While maximum and mean dose are used to limit
radiation to all volumes, minimum dose is used for the PTV to ensure a certain
amount of radiation. However, minimum objectives were not used for the experiments.
The dose-at-volume is the minimum amount of radiation 𝑑 absorbed by a specified
percentage of volume, denoted by 𝐷𝑉𝑝 (𝐷) = 𝑑, where 𝐷 is the dose at every voxel in
the given volume and 𝑝 is the percentage. This means that 𝑝% of the volume receives
at least 𝑑 amount of radiation. The dose-at-volume objective can be used to allow the
given dose 𝑑 to at most 𝑝% of the volume, but is penalised or strictly restricted if too
many voxels of the volume receive more than 𝑑.

Which kind of dose objectives should be used depends on the type of organ in
consideration. Depending on the dose distribution and the organ, the biological effects
caused by the radiation may vary greatly. Niemierko and Goitein, in their report,
characterise organs as a collection of functional subunits [29]. Some organs, called
serial organs, fail when a single functional subunit is destroyed. An example of
such an organ is the spinal cord. Parallel organs are more graded in their response
to radiation absorbed. These are important considerations for practitioners when
choosing optimisation objectives and evaluating plans.

A type of dose objective well suited for handling different types of organs is the
equivalent uniform dose (EUD), which tries to approximate the amount of dose that
would have the same biological effect to the organ if distributed uniformly to the entire
volume. Niemierko [28] defines the EUD as

𝐸𝑈𝐷𝐷,𝑎 =
(︁ 1
𝑁

𝑁∑︁
𝑖=1

𝑑𝑎𝑖
)︁ 1
𝑎 ,

where 𝑁 is the number of voxels in a given volume with dose 𝐷, 𝑑𝑖 is the dose received
by voxel 𝑖 and 𝑎 is called the volume parameter, which is used to model the biological
effects of different dose distributions and organs.

A large value for 𝑎 corresponds to an organ which has low tolerance for high
dose values anywhere in the organ (serial organ). A value 𝑎 = 1 corresponds to the
mean dose and a value less than one has the effect of giving larger weights for low
doses. This could be useful for target volumes when trying to avoid cold spots in the
delivered dose [42]. Determining the value of 𝑎 for different organs can be difficult
in practice and requires extensive knowledge about the biological effects different
radiation distributions have on different organs.

For the automatic objective generation, two EUD objectives with 𝑎 = 1 and 𝑎 = 3 and
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a dose-at-volume objective with 𝑝 = 1 were created based on the corresponding values
from the predicted dose distribution for each OAR. During the optimisation, a dose
exceeding the reference values was penalised with squared deviation. Formally: let
𝐷 𝑝𝑟𝑒𝑑 be the DL predicted dose and 𝐷 𝑝𝑟𝑒𝑑,𝑂𝐴𝑅 the predicted dose restricted to a given
𝑂𝐴𝑅. Then the EUD and dose-at-volume values are 𝐸𝑈𝐷𝐷 𝑝𝑟𝑒𝑑,𝑂𝐴𝑅 ,1, 𝐸𝑈𝐷𝐷 𝑝𝑟𝑒𝑑,𝑂𝐴𝑅 ,3
and 𝐷𝑉1(𝐷 𝑝𝑟𝑒𝑑,𝑂𝐴𝑅), respectively. For brevity, denote them by 𝑎1, 𝑎3 and 𝑏.

Now consider a dose distribution 𝐷 to the OAR during optimisation. Denote by
𝑐 = 𝐷𝑉1(𝐷) the dose-at-volume value of 𝐷 in 𝑂𝐴𝑅, that is, the 99th quantile of 𝐷.
Ideally, 𝑐 ≤ 𝑏 and the objective function takes a positive value when 𝑐 > 𝑏. Then the
following objective function was defined for the OAR:

𝑔𝑂𝐴𝑅 (𝐷) = 𝑔𝑂𝐴𝑅,𝐸𝑈𝐷1 (𝐷) + 𝑔𝑂𝐴𝑅,𝐸𝑈𝐷3 (𝐷) + 1
𝑁

𝑁∑︁
𝑖=1

𝑔𝑂𝐴𝑅,𝐷1 (𝑑𝑖)2,

where

𝑔𝑂𝐴𝑅,𝐸𝑈𝐷1 (𝐷) =
{︄

0, 𝐸𝑈𝐷𝐷,1 ≤ 𝑎1

(𝐸𝑈𝐷𝐷,1 − 𝑎1)2, 𝐸𝑈𝐷𝐷,1 > 𝑎1

𝑔𝑂𝐴𝑅,𝐸𝑈𝐷3 (𝐷) =
{︄

0, 𝐸𝑈𝐷𝐷,3 ≤ 𝑎3

(𝐸𝑈𝐷𝐷,3 − 𝑎3)2, 𝐸𝑈𝐷𝐷,3 > 𝑎3

𝑔𝑂𝐴𝑅,𝐷1 (𝑑𝑖) =
{︄

0, 𝑑𝑖 ≤ 𝑏 or 𝑑𝑖 ≥ 𝑐

(𝑑𝑖 − 𝑏)2, 𝑏 < 𝑑𝑖 < 𝑐,

𝑑𝑖 is the dose to a single voxel and 𝑁 the number of voxels in𝑂𝐴𝑅. The intuitive mean-
ing of the last objective is that any dose exceeding the reference dose-at-volume value
𝑏 of the predicted dose but not above the 99th quantile dose in the OAR will be penalised.

For the PTV, the average squared deviation from the prescribed dose level is used
and weighted by 20 to give sufficient importance for target dose homogeneity, that
is, higher conformity to the prescribed dose value in the target. It is a topic of later
discussion whether this weight was sufficient.

In addition to PTV and OAR objectives, normal tissue objectives (NTO) were
added around the PTV to induce a sharper dose gradient around the PTV. This
mitigates leakage of high doses to surrounding areas. The NTOs, defined as rings
of equal margin around and with increasing distance from the PTV, approximate an
exponential falloff function:

𝑓 (𝑥) =
{︄
𝑓0𝑒

−𝑘 (𝑥−𝑥𝑠𝑡𝑎𝑟𝑡 ) + 𝑓∞(1 − 𝑒−𝑘 (𝑥−𝑥𝑠𝑡𝑎𝑟𝑡 )), 𝑥 ≥ 𝑥𝑠𝑡𝑎𝑟𝑡

𝑓0, 𝑥 < 𝑥𝑠𝑡𝑎𝑟𝑡 ,

where 𝑓0 is the start dose near the surface of the PTV, 𝑓∞ is the end dose far from the
surface, 𝑥𝑠𝑡𝑎𝑟𝑡 is the width of the margin around the PTV and 𝑥 is the distance from
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the surface of the PTV. Controlling the sharpness of the dose gradient, 𝑘 is the falloff
parameter.

For the experiments, 𝑓0 was defined as 95% and 𝑓∞ as 25% of the prescribed
dose. The value for 𝑘 was defined such that 𝑓 (𝑥) is 50% of the prescribed dose at
𝑥 = 20 (mm) and 𝑥𝑠𝑡𝑎𝑟𝑡 was set to 2mm. Rings of 3mm width were created for the
PTV and dose exceeding 𝑓 (𝑥) was penalised with squared deviation, where 𝑥 is the
distance of the inner surface of the ring from the surface of the PTV. Rings were
created up to a cumulative margin of 30mm.

3.2.2 Full voxel mimicking

In the full voxel mimicking approach, a voxel-based squared deviation objective was
used for the PTV and voxel-based squared overdosing for the rest of the body. The
objective function definition is similar to the conventional objectives in the previous
section for the OARs.

3.2.3 Partial voxel mimicking

Similarly to full voxel mimicking, the partial voxel mimicking approach uses squared
deviation and overdosing for the PTV and OARs but ignores the voxels lying outside of
the PTV and OARs. Partial voxel mimicking is also named as "labels voxel mimicking"
in the graphs in Section 5.2.

3.2.4 Hybrid approaches

Added as a countermeasure for poor target homogeneity in the voxel mimicking
approaches, the two hybrid approaches replace the squared deviation from the predicted
dose to squared deviation from prescribed dose level in the PTV. Voxel based dose
mimicking is still applied for the rest of the body. In addition, the second hybrid
approach uses the normal tissue objectives also used in the conventional approach to
induce a sharper dose gradient around the PTV.
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4 Case-study setup

4.1 Patient data sets
The experiments were performed on 15 patient cases, including 4 prostate, 3 head and
neck, 2 pelvis, 5 bone and 1 lung cases. Each dataset contains CT images of the patient,
which is required for dose calculation inside the patient as a detailed description of
patient anatomy is necessary for dose calculation. In addition, each dataset contains a
structure file, a plan file and a dose file. The structure file contains contour information
of the PTV and each of the organs, which essentially enables the optimiser to know
which voxels of the patient are part of which organs. This is essential information
for objective function definitions. The plan file contains relevant metadata for the
optimisation procedure and the dose file contains the predicted dose matrix.

4.2 Dose predictions
For each dataset, a dose is predicted using MVision’s dose prediction model. The
model is a deep learning model, trained with patient data created by a clinical expert.
The data was curated by running optimisation to obtain a high quality dose by fine
tuning VMAT optimisation objectives in an iterative trial-and-error approach. This
process was repeated for numerous cases to create a training dataset for the model,
which learns to predict a dose matrix given patient data. This dose matrix is used as a
benchmark for all the optimisation experiments and as the target dose distribution for
the voxel mimicking approaches.

4.3 Tools
MatRad, a radiotherapy planning toolkit developed by Wieser et al. [44], was used
for the experiments. For dose calculation, a pencil beam kernel algorithm described
by Bortfeld et al. [5] is implemented in MatRad following the details of [39]. The
algorithm relies on a kernel decomposition approximation and tissue heterogeneity
approximation with radiological depth tracing. As a pencil beam algorithm, it is prone
to significant errors when tissue heterogeneity is present and should not be used as the
sole dose computation algorithm for dose optimisation in a clinical setting. As the
goal of this thesis is not to create clinically acceptable treatment plans, this mainly
limits the accuracy of the results of the experiments [35].

The dose calculation relies on base data obtained with a clinically approved photon dose
calculation engine [44]. The base data includes parameters of the decomposed lateral
scattering kernels and depth dose components for a generic 6MV linear accelerator.
As such, the dose calculation does not necessarily reflect any linear accelerator used in
clinical practice, and different parameters would be needed in clinical dose calculations.

The library includes functionalities used for reading patient geometry, setting up
beam geometry and running optimisation. IPOPT, an open source optimiser relying on
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the interior point method for solving convex optimisation problems with constraints, is
also included. Neither fluence optimisation nor DAO are generally convex problems,
but the two step optimisation process and multiple beam directions are assumed to
provide a local solution adequately close to the global optimum.

While the DL model used for dose prediction was trained on dose distributions
produced by a VMAT optimiser, MatRad does not provide a VMAT optimisation
framework. Instead, IMRT with 11 fixed beams of equidistant angles was used
for each dataset and with each optimisation method. Optimised fluence maps were
sequenced into static MLC segments and the resulting leaf positions further optimised
as explained in Sections 3.1.2 and 3.1.3.
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5 Experimental results
For the experimental results, a dose was optimised for each patient case using each
optimisation method, defined in Section 3.2. The quality of each optimised dose was
measured using a set of metrics described in the following section. Each metric is
visualised as a deviation in percentage to the corresponding metric of the baseline
predicted dose. As such, the aim of the visualisation is to demonstrate the ability of
each optimisation method to provide equivalent or better dose quality than the baseline
dose and to compare the performance of the optimisation methods.

5.1 Metrics
5.1.1 Homogeneity index

Each patient case has a target structure around the tumor and a prescribed dose level
for the tumor. Ideally, a treatment plan would achieve a highly uniform dose on the
whole target structure with small deviations. The deviation from homogeneity of the
target dose is measured with the homogeneity index.

Let 𝐷𝑚𝑒𝑎𝑛 be the mean dose received by the target. In addition let, 𝐷0.02 be the 98%
quantile of the dose, that is, the dose level which 2% of the target exceeds and similarly
𝐷0.98 the dose which 98% of the dose exceeds. The homogeneity index 𝐻 is calculated
as

𝐻 =
𝐷0.02 − 𝐷0.98

𝐷𝑚𝑒𝑎𝑛

.

Ideally, the difference between 𝐷0.02 and 𝐷0.98 is small and 𝐻 is close to zero. In
practice, however, the homogeneity index tends to be closer to 0.1 for most of the
patient cases and optimisation approaches.

5.1.2 Conformity index

As mentioned in Section 3.2.1, high doses can leak around the target and cause hot
spots in normal tissue. The conformity indices measure the extent to which doses
above a certain threshold are concentrated on the target. Let 𝐷 be the prescribed dose
for the target and 𝑘 < 1. In addition, let 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 be the volume of the target structure,
𝑉𝑘,𝑡𝑎𝑟𝑔𝑒𝑡 the volume of the target with dose exceeding 𝑘𝐷 and 𝑉𝑘,𝑏𝑜𝑑𝑦 the volume of
the whole body with dose exceeding 𝑘𝐷. The conformity index 𝐶𝑘 is calculated as

𝐶𝑘 =
𝑉2
𝑘,𝑡𝑎𝑟𝑔𝑒𝑡

𝑉𝑡𝑎𝑟𝑔𝑒𝑡𝑉𝑘,𝑏𝑜𝑑𝑦

.

The higher the proportion of the target receiving at least the reference dose and the
smaller the volume outside the target receiving the reference dose, the closer to 1 the
conformity index gets. Depending on the reference value of 𝑘 chosen, good values
for 𝐶𝑘 can vary from 0.3 to 0.9. For the metrics in this thesis, values of 𝑘 = 0.95 and
𝑘 = 0.5 were chosen.
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5.1.3 Organ metrics

For each organ, the mean dose and the 99th quantile dose is reported as the maximum
dose. These are both important metrics for assessing the potential damage caused to
organs by radiation.

For cases with highly variable locality and thereby different OARs, the deviation met-
rics for each organ are averaged. This means that for such cases the average deviation
of all mean dose metrics from the baseline and similarly, the average deviation of all
maximum dose metrics from the baseline are shown. Such cases are head and neck,
lung and bone cases.

For the pelvis and prostate cases, the same set of organs were used in optimisa-
tion so each of the organ metrics can be reported separately. In these cases, the
deviations from baseline were averaged separately for each organ across all the datasets
in the corresponding category.

5.2 Discussion
The results, shown in Figures 8 - 12, feature metrics explained in the previous
section. "Hi" refers to the homogeneity index as explained in Section 5.1.1 and
"Ci95" and "Ci50" refer to conformity indices 𝐶95 and 𝐶50, respectively. For bone,
head and neck and lung cases, the deviations of mean and maximum doses from
baseline are labeled with "Means" and "Maxima", respectively. For pelvis and prostate
cases, the deviation of mean and max doses for each organ were averaged across the
cases as explained in Section 5.1.3. Similarly to the organ metrics, the deviations
of homogeneity and conformity indices for each category were averaged across all cases.

All the relative deviations from the baseline were averaged across the cases from each
category, which are explained in Section 4.1. In the plots, these metric values are
additionally scaled between -100% and 100% such that 0% is the baseline metric
value and either -100% or 100% is the largest deviation of any optimisation method
from the baseline.

The full voxel mimicking and labels voxel mimicking, also referred to as partial
voxel mimicking in Section 3.2, are pure voxel mimicking methods. For these methods
the quality deviation should optimally be close to zero or positive, reflecting the
fact that these methods attempt to mimic the baseline dose but do not penalise dose
values below the baseline in normal tissue. For the most part, partial voxel mimicking
dominates full voxel mimicking except for the homogeneity index. Partial voxel
mimicking places a relatively greater importance on the OARs through the assignment
of optimisation weights for OARs, explaining why the OAR metrics are better. For the
same reason, the PTV is assigned relatively lower significance, causing homogeneity
indices to be worse. Nevertheless, both methods fail to produce good dose distributions.
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The hybrid and conventional approaches are not pure voxel mimicking methods.
Nevertheless, their ideal performance would show balanced quality deviation on the
metrics. However, both hybrid approaches produced generally worse metrics than the
baseline does, except for the lung and bone cases and to some extent the head and neck
cases. Being only three datasets in total, some of the lung and bone cases could be
outliers benefiting from an IMRT setup more than from VMAT. It could also be the
case that the predicted dose is not optimal in these cases.

Out of all the methods, the conventional one seems to perform best for most cases
and is the only one producing consistently better metrics for the head and neck cases
than the baseline dose. However, it does not clearly dominate the other methods, as is
obvious from the pelvis and prostate cases.

The results indicate that no optimisation method proved to be consistently of at
least similar quality to the baseline predicted dose or dominate the other methods
for all cases. However, dose optimisation is a multi-objective problem where each
OAR and the PTV are given weights for optimisation with no guarantee that the
weights are optimally chosen. This affects especially the conventional optimisation
approach, whereas in the dose mimicking approaches no special consideration for
weight selection needs to be given assuming the dose distribution to mimic is reachable
with the optimiser at hand. It could be argued that with a different selection of weights
the conventional approach could produce better results. The main issues are the poor
homogeneity index and increased dose to certain organs in pelvis and prostate cases.

Figure 8: Aggregated metrics for bone cases
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Figure 9: Aggregated metrics for head and neck cases

Figure 10: Metrics for the lung case

The failure of the voxel mimicking approaches to generate doses of similar quality
to the baseline can be attributed to their inability to mimic the baseline dose: dose
comparisons to the baselines reveal that the resulting dose distributions differ signif-
icantly from the baselines. There is nothing unexpected about this discovery - the
baseline doses are predicted by a deep learning model using VMAT training data, with
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no guarantees of achievability by an IMRT optimiser. The conventional optimisation
objectives, however, only guide the optimiser to pursue a similar quality for the PTV
and the organs to the baseline. These objectives are on a structure level, allowing much
more variability in the final dose distribution than the voxel mimicking approaches.
Hence, they are more agnostic to the specific optimisation problem definition or leaf
sequencing algorithm used.
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Figure 11: Aggregated metrics for pelvis cases
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Figure 12: Aggregated metrics for prostate cases
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6 Conclusion
The aim of the thesis was to use MVision’s dose prediction model for setting up
optimisation objectives automatically and to evaluate the best optimisation approach
for matching predicted dose quality with MatRad.

Dose mimicking, attempting to guide the optimiser towards the same dose as the
predicted dose, produced poor results. Accuracy concerns of MatRad’s pencil beam
dose calculation in addition to differences between dose distributions produced by
VMAT and IMRT treament plans are hypothesised to be the reason for the inability of
these methods to mimic the predicted dose.

Using structure based objectives derived from DVH metrics of the predicted dose
produced consistently at least equally good metrics as the other methods for bone,
lung and head and neck cases. For the prostate and pelvis cases, no method clearly
dominated others. However, visualisation of the results attest that the structure based
objectives perform best, although not consistently able to match the dose quality of the
predicted dose. This approach does not suffer from the unattainability of the predicted
dose to the same extent as the dose mimicking approaches, as structure based optimi-
sation objectives leave more room for variance inside structures without compromising
dose quality. In light of this observation, better performance does not come as a surprise.

The thesis successfully demonstrates that using structure based objectives derived from
a predicted dose distribution is a feasible approach with MVision’s dose prediction
model. The concept could be developed further into a fully automatised treatment
planning process, in which a practitioner submits patient images with the prescribed
dose into a system, receiving a clinically acceptable treatment plan without having to
optimise the plan themselves.

However, the results also call for future research for both the structure based objectives
and dose mimicking with a more standardised dose optimisation framework. Ideally,
the dose prediction model should be trained with doses optimised with the same
VMAT optimiser and the experiments of this thesis should be repeated with that same
optimiser. Without these further developments, consistently adequate treatment plans
can hardly be realised with a fully automatic optimisation process.
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