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Abstract
Finding a suitable elevator system for a given building in a complex task. There are
many design considerations which must be taken into account, one of main ones being
the level of traffic in the building. This thesis investigates how to mathematically
define the problem of finding maximum traffic intensity, which is still feasible given
certain waiting time and time-to-destination constraints, for a building with a specific
elevator system. The problem of finding the maximum intensity is a simplified inverse
problem to usual elevator planning. The thesis also provides methods on solving the
defined problem efficiently.

A simulator is utilized to simulate waiting time and time-to-destination metrics for
a given traffic intensity. However, because of the high computational complexity of
the simulator, it cannot be utilized with a simple algorithm for finding the maximum
intensity. The thesis suggests the use of Bayesian optimization with Gaussian processes
to optimize the search of maximum intensity.

Thesis explores the literature of Bayesian optimization and Gaussian processes
and provides an introduction to the topics. From literature, a few candidate Bayesian
optimization algorithms are developed to suit the particular traffic optimization
problem.

With the help of a toy optimization problem, the optimum of which is known, the
performance of the candidate algorithms is analyzed. According to the results of the toy
analysis, the list of suitable candidates is narrowed down. The remaining algorithms
are then tested with a real traffic simulator and their performance is analyzed from
multiple perspectives. At the end, one algorithm is picked as the best. Sensitivity tests
are then performed on this algorithm to validate its performance in different scenarios.
In the sensitivity analysis we also discover some weaknesses in the chosen algorithm.

The resulting finding is that the chosen algorithm performs well in a variety of
circumstances and provides a suitable method estimating the maximum traffic intensity.
However, there are some factors which affect the performance of the algorithm, for
example the size of the search space. Therefore, the results of the algorithm must be
examined with the help of domain knowledge.

Keywords Elevators, Bayesian optimization, Gaussian processes, Optimization
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Tiivistelmä
Rakennuksen hissisuunnittelu on moniulotteinen tehtävä, jossa on huomioitava monta
muuttujaa. Yksi keskeisimmistä on hissiliikenteen intensiteetti. Tämä diplomityö
tarkastelee eräänlaista yksinkertaistettua käänteisongelmaa hissisuunnittelulle, joka on
liikenneintensiteetin maksimin löytäminen asetettujen odotus- ja matkustusaikarajoit-
teiden alla. Liikenneintensiteetin maksimin etsiminen esitetään ensin matemaattisena
optimointitehtävänä, jonka jälkeen tutkitaan eri algoritmeja sen ratkaisemiseen.

Liikenneintensiteetin maksimin löytämiseen hyödynnetään simulaattoria, jolla
lasketaan odotus- ja matkustusaikoja eri intensiteeteille. Johtuen simulaattorin las-
kennallisesta raskaudesta, intensiteetin maksimia ei voida löytää käyttämällä yleistä
optimointialgoritmia. Tämän vuoksi bayesilaista optimointia ja gaussisia prosesseja
hyödynnetään simuloitavien intensiteettiarvojen valitsemiseen.

Diplomityö esittelee bayesilaisen optimoinnin ja gaussisten prosessien teorian.
Kirjallisuudesta saatujen taustatietojen avulla kehitetään muutama algoritmiehdokas
liikenneintensiteetin optimointia varten.

Algoritmiehdokkaita testataan ensin leluongelmalla, jonka optimi on tiedossa.
Algoritmien suorituskykyä tarkastellaan monesta eri näkökulmasta ja tämän analyysin
tuloksena rajataan epäsopivia ehdokkaita pois. Parhaat algoritmit otetaan seuraavaan
vaiheeseen jossa tarkastellaan niiden suorituskykyä oikean liikennesimulaattorin
yhteydessä. Paras algoritmi valitaan eri metriikoiden perusteella. Parhaalle algoritmille
suoritetaan herkkyysanalyysi, joka kertoo kuinka algoritmi suoriutuu erilaisissa
tilanteissa. Herkkyysanalyysin avulla löydetään myös muutama heikkous valitussa
algoritmissa.

Diplomityön johtopäätöksenä on että valittu algoritmi suoriutuu hyvin erilaisissa
tilanteissa ja soveltuu ongelman ratkaisualgoritmiksi. Kuitenkin huomataan että
algoritmi ei suoriudu yhtä hyvin, jos tietyt ongelman muuttujat ovat asetettu väärin.
Esimerkiksi algoritmin hakualueen rajat pitää määrittää oikein jotta algoritmi löytää
optimaalisen intensiteetin. Näiden herkkyyksien vuoksi algoritmia käytettäessä on
hyödynnettävä asiantuntemusta ja sen tuottamia tuloksia on syytä tarkastella kriittisesti.

Avainsanat Hissit, Bayesilainen optimointi, Gaussiset prosessit, Optimointi
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Symbols and abbreviations

Symbols
R+ The positive real values
𝜙 Probability density function for the standard normal distribution
Φ Cumulative density function for the standard normal distribution
D 𝑓 A dataset containing samples of function 𝑓

𝑓 |D 𝑓 The posterior Gaussian process for function 𝑓 computed using D 𝑓

M 𝑓 A Gaussian process model for function 𝑓

𝑇AWT The average waiting time function
𝑇ATTD The average time-to-destination function
𝐶AWT Constraint value for average waiting time
𝐶ATTD Constraint value for average time-to-destination

Abbreviations
WT Elevator waiting time
TTD Elevator time-to-destination
AWT Average waiting time
ATTD Average time-to-destination
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1 Introduction

1.1 Background
The Shanghai Tower has the fastest elevator in the world. The elevator reaches speeds
of 73 kilometers per hour on its approximately 580 meter continuous run [21]. The
increasing prevalence of high-rise buildings requires innovations on the design and
production of elevator systems.

An elevator group consists of a couple of basic elements. The elevators themselves,
the elevator shafts, and the control systems. The control system is responsible for
managing the elevator call allocations. In other words, after a person calls an elevator,
the control system assigns an elevator to handle that call.

When designing an elevator group for a particular building, one must consider
many different aspects. For example, the number of floors, energy efficiency, tenant
specific considerations, and elevator cost. When performing this design analysis,
one must also consider the capacity of the elevators. The capacity must be such that
the elevator group is capable of performing at a suitable efficiency and such that
the elevator group system does not get overwhelmed by traffic, leading to a traffic
blockage.

To find a suitable elevator group capable of handling a specific level of traffic,
a simulator can be used to calculate an estimate of the waiting time and time-to-
destination for a hypothetical user. By waiting time, we mean the time between the
event that the user calls the elevator system and the event that the elevator system to
provides them an elevator. Time to destination is defined to be the sum of waiting time
and the time it takes for the elevator to move the person to their desired destination.

By using these metrics, one can analyze the performance of specific elevator
group configurations and find a suitable elevator for a given building layout and use.
However, one major disadvantage in simulating the traffic for a given elevator group
is the fact that it takes many computationally intensive simulations to try different
elevator configurations. The end result is that it takes a long time to find a good
elevator configuration.

1.2 Research questions
This thesis focuses on a simpler inverse problem of elevator design. Specifically, we
want to find the maximum traffic intensity a given elevator system can handle under
certain performance constraints. Knowledge of the maximum traffic intensity can then
be used in the design and planning of future elevator systems.

More concretely, this thesis will provide answers to two research questions. Firstly,
how to precisely mathematically define the problem of finding a maximum traffic
intensity, under certain waiting time and time-to-destination constraints, for a specific
building and elevator system. Secondly, how to solve the aforementioned problem
with as few simulations as possible using a simulator in conjunction with statistical
methods.
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1.3 Structure
In this introduction chapter, we have discussed the context and general idea of elevator
planning and defined our research questions. In the next chapter we discuss elevator
planning in detail and examine the relevant literature related to it. In Chapter 3 we
define mathematically the problem of finding optimal traffic intensity, answering our
first research question. The rest of the thesis is dedicated to solving the formulated
problem.

In Chapter 4 we discuss the literature related to Gaussian processes, which serve
as an important building block for developing the Bayesian optimization algorithms,
which we use to solve the problem. The background on Bayesian optimization is given
in Chapter 5. Chapter 6 contains implementation details of our candidate algorithms
and their pseudo-code.

The candidate algorithms are then tested using a toy problem in Chapter 7 before
being used in Chapter 8 to solve the real maximum traffic problem. Finally, we discuss
the results in Chapter 9 and conclude the thesis in Chapter 10. The list of references is
also provided at the end. Finally, Appendix A contains additional information related
to the algorithms.

10



2 Elevators
This section discusses the main design problem which we are trying to solve. First we
will describe the general steps in elevator planning for an office building and discuss
the various aspects which we take into consideration. After sufficient background
knowledge, we will explore simulation as an instrumental part in elevator planning
and define the main problem of this thesis.

2.1 Planning
As discussed in the introduction, the process of designing elevator systems for an
office building is a complex task. However, we can rely on the standard ISO 8100-32
[1] as the main source of information.

As the standard [1] describes, when considering an elevator system for a specific
building we must choose a variety of different parameters. The parameters include for
example, the number of elevators, elevator speed, and size [1]. These parameters in
turn affect the service level of our elevator system and are therefore important to get
right for a specific building.

On the other hand, if we are given an elevator system for a building, how can we
quantify whether or not it is appropriate? The standard [1] defines a set of key metrics
which we can use.

2.2 Performance
The standard defines that a suitable elevator system would be capable of transporting
enough people such that the waiting time for those passengers would not exceed
a defined threshold [1]. We can also intuitively note that as a user of an elevator
system, one would want the elevator to transport them to their desired destination in a
reasonable time, but safely. Consequently, this thesis will focus on metrics supporting
these goals.

The standard defines two different time metrics: the time it takes for the elevator to
first arrive to the floor the user currently occupies and the time it takes it to transport
them to their desired destination. The time metrics are called waiting time (WT) and
time-to-destination (TTD) respectively [1]. Figure 2.1 illustrates these definitions
using a timeline of a person entering the leaving an elevator system.

As a simple example, the case where the user calls the elevator at 13:00:00 and
the elevator arrives at 13:01:30, in that case the waiting time would be 90 seconds.
Continuing the example, if the elevator transports the user between times 13:01:30
and 13:02:15 to their desired destination, the time-to-destination would then be the
total time difference 13:02:15 - 13:00:00 which is 135 seconds.
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Figure 2.1: Waiting time and time-to-destination depicted on a timeline alongside
elevator system events. Adapted from [16].

Furthermore, since we are mainly interested in the overall performance of the
elevator system and we intuitively know that the elevator system cannot perform with
the same efficiency in all specific traffic situations, the standard considers the averages
of these time periods. Namely it considers the average waiting time (AWT) and average
time-to-destination (ATTD) [1].

One crucial factor which affects AWT and ATTD is the traffic intensity, the
percentage of people in the building entering the elevator system within a 5 minute
window. Note that the standard refers to the same quantity as passenger demand [1].
Intuitively, we can think that if the intensity of people arriving to the elevators is high,
the more difficult it is for the elevator system to transport them in the same amount
of time as with a low traffic intensity. In the next section, we will explore ways of
determining whether an elevator system is suitable for a specific building using the
concept of traffic intensity.

2.3 Simulation
The standard [1] discusses two different approaches for determining if an elevator
system is suitable for a specific building. One approach is an uppeak calculation
method where we assume a pure upwards traffic, with a specific intensity, from the
entrance floor to other floors with an equal probability. However, as the standard [1]
states, there are many constraints when using the uppeak method. The standard deems
uppeak method infeasible cases where for example the number of lifts is higher than
8, there are multiple entrance floors, etc. Therefore, instead of the uppeak method we
will utilize the second approach proposed in the standard which uses a simulator [1].

Simulators have been used extensively to study elevator systems, for example
in [26]. According to the standard, the simulator should use information about the
building to estimate AWT values for a specific traffic intensity. The standard [1] defines
that the simulations should be run with different traffic mixes, in other words different
ratios of inbound, outbound, and interfloor traffic in the building. The standard also
gives specific traffic intensities and AWT limits which must be satisfied for the elevator
to be determined suitable for the building [1].

The simulation software developed by KONE [27] simulates the passenger traffic
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according to a certain traffic profile. The simulator can be used in many different
traffic settings and with different control systems. For our purposes we will mainly
utilize a 2 hour simulation, however we do also experiment with shorter simulations.
Estimates of AWT and ATTD are computed using simulated passengers. The main
input to the simulation is the traffic intensity. Other inputs to the simulator include a
random seed for reproducibility and data about the building and elevator system such
as the number of elevator shafts, speeds of the elevators, elevator door opening and
closing times, number of floors in the building, and heights of the floors. The detailed
building and elevator data is important for the simulator to create a realistic simulation
and therefore accurately estimate the AWT and ATTD values.

2.4 Goal
We have now sufficient background knowledge to discuss the main problem of this
thesis. As stated in the introduction, we want to find a suitable method for finding the
optimal traffic intensity for a given building.

More specifically, the goal is to use the simulator as a source of AWT and ATTD
values to find the maximum traffic intensity for an elevator system which does not
violate predetermined AWT and ATTD limits. This is analogous to an inverse problem
of elevator planning. Instead of finding a suitable elevator system for a building and
which satisfies AWT and ATTD limits for a set traffic intensity, our goal is to find the
maximum traffic intensity for a given building and elevator system which satisfies the
AWT and ATTD limits. Note that while the standard [1] does not require the use of
ATTD values for determining if an elevator system is suitable, we have an ATTD limit
in our problem.

Practically, we use the simulator to estimate AWT and ATTD values for different
traffic intensities and determine which is the maximum such that AWT and ATTD
limits are not violated. However, as the simulator only calculates an estimate of AWT
and ATTD values, we must use statistical methods to determine if a given intensity is
feasible or not. Furthermore, as the simulation software is computationally intensive,
we must be conservative with the number of simulations we run.

The goal is therefore to find the maximum traffic intensity for a given building and
elevator system, using as few estimates of the AWT and ATTD values as possible while
simultaneously having some guarantee of the validity of the result. We mathematically
formalize the problem in the following chapter.
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3 Problem definition
To precisely and mathematically define the main problem of this thesis, we utilize the
work of Alexandris et al. for defining useful notions.

Definition 3.1 (Intensity). We define traffic intensity (often referred to as just "inten-
sity") 𝑝 to be the average number of passengers in a 5-minute interval. 𝑝 is considered
a percentage value of the total number of people in the building. For example, 𝑝 = 12
would correspond to the situation where 12% of the total population of the building
would be equal to the number of elevator passengers in a 5-minute time interval.

Definition 3.2 (Traffic mix). A traffic mix contains information about how the traffic
is split into outbound, inbound, and interfloor traffic. By inbound, we mean traffic
flowing into the building from entrance floors, outbound is the traffic flowing out from
entrance floors and interfloor is the traffic between the floors. For example one traffic
mix could be 40%, 40%, and 20% for inbound, outbound, and interfloor traffic.

Definition 3.3 (Steady-state elevator system, inspired by [2]). The steady-state elevator
system is a hypothetical elevator system which we define as running continuously and
which is subjected to passenger traffic with a certain intensity (Definition 3.1) and a
certain traffic mix (Definition 3.2).

Definition 3.4 (Average waiting time, inspired by [1, 2]). The average waiting time
𝑇AWT(𝑝, 𝑆, 𝑀) for an intensity 𝑝 (Definition 3.1) corresponds to the long-time average
waiting time occurring in a steady-state elevator system (Definition 3.3) during traffic
with intensity 𝑝 (Definition 3.1) and mix 𝑀 (Definition 3.2).

Definition 3.5 (Average time-to-destination, inspired by [1, 2]). The average time-
to-destination 𝑇ATTD(𝑝, 𝑆, 𝑀) for an intensity 𝑝 (Definition 3.1) corresponds to the
long-time average time-to-destination in a steady-state elevator system (Definition 3.3)
during traffic with intensity 𝑝 (Definition 3.1) and mix 𝑀 (Definition 3.2).

The mathematical definitions for AWT and ATTD are inspired by the work of
Alexandris et al. [2]. We use the notion of a steady-state system when analyzing the
elevator systems. Using a steady-state elevator system, we define the AWT and ATTD
values to be computed from that hypothetical elevator system which runs continuously
with a specific traffic intensity and traffic mix. Intuitively, we want to our definitions
of AWT and ATTD values to correspond to values which would be typical for the
elevator system when subjected to a specific traffic intensity and mix.

With these definitions, we can define the main problem of this thesis as

Definition 3.6 (Maximum traffic intensity problem).

max . 𝑝

such that:
𝑇AWT(𝑝, 𝑆, 𝑀) ≤ 𝐶𝐴𝑊𝑇
𝑇ATTD(𝑝, 𝑆, 𝑀) ≤ 𝐶𝐴𝑇𝑇𝐷

𝑝 ∈ R+ ∪ { 0 }
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where 𝑇AWT(𝑝, 𝑆, 𝑀) and 𝑇ATTD(𝑝, 𝑆, 𝑀) are the average waiting time and average
time-to-destination values for the elevator system 𝑆 with intensity 𝑝 and traffic mix 𝑀 .
The bounds for AWT and ATTD are formalized as the quantities 𝐶𝐴𝑊𝑇 and 𝐶𝐴𝑇𝑇𝐷
respectively.

Evaluating the objective function 𝑝 is trivial. The main challenge is in the functions
𝑇WT and 𝑇TTD. Assuming a fixed elevator system 𝑆 and traffic mix 𝑀 , we cannot know
the AWT and ATTD values for an intensity 𝑝 due to the complexity of the elevator
system. Intuitively, to know these values precisely, we would have to analyze the
elevator system and examine the waiting times and time-to-destination for a very long
time before we would have an accurate view on the distributions of AWT and ATTD.
This is because for a general traffic mix, the steady-state elevator system is only a
hypothetical scenario. Real-world elevator systems behave more chaotically due to the
complex nature of their control systems.

However, we use the simulator [27] to sample AWT and ATTD estimates for a
specific traffic intensity 𝑝. We hope that while the true steady-state AWT and ATTD
values are hard to capture, we can still estimate them using a simulation with finite
length. Simulating a range of intensity values is however computationally intensive,
therefore we cannot for example use a simple grid search along some interval [𝑎, 𝑏] to
hopefully find a good estimate for optimal intensity 𝑝. Luckily, we can use Bayesian
optimization with Gaussian processes [23, 8] to create an algorithm for picking an
optimal intensity 𝑝 with as few simulations as possible. We will discuss them in the
next Chapters.
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4 Gaussian process regression
Gaussian processes have been studied for a long time, the theory of stochastic processes
dating back to the times of Kolmogorov and Wiener [25, 30]. Today, they are mostly
considered a part of of supervised machine learning and have been used in a variety of
different contexts, including stellar astrophysics [6] and space weather [4].

Gaussian processes are commonly applied in regression problems, problems where
we have a continuous input variable x and try to predict some 𝑦 = 𝑓 (x) for some
unknown function 𝑓 [23]. The main idea is to model the underlying function by
fitting a Gaussian process regression model using some dataset D 𝑓 (Definition. 4.1).
Definition 4.3 defines a Gaussian process.

Definition 4.1 (Dataset). We define a dataset D 𝑓 = (X, y) to be a pair of input and
output samples. The input samples x𝑖 ∈ X are members of R𝑀 and the output samples
y𝑖 are members of R. The input matrix X is therefore a member of R𝑁×𝑀 where 𝑁
is the number of input samples in the dataset D 𝑓 . The output vector y is similarly a
vector in R𝑁 .

A dataset is also related to a function 𝑓 : R𝑀 → R. We define the outputs by
requiring that y is the image of function applied on input samples X. Formally, we
define

y𝑖 = 𝑓 (x𝑖)
Note that we denote by x𝑖 ∈ X a sample x𝑖 being a row at index 𝑖 of the matrix X. We
will use similar notation for other matrices which contain samples.

Definition 4.2 (Noisy dataset). A noisy dataset D 𝑓 = (X, y) is similar to a regular
dataset as defined in Definition 4.1 with one key difference. Specifically, we allow
some noise in the evaluation of the function at the input sample points X. Formally,
we define

y𝑖 = 𝑓 (x𝑖) + 𝜖
where 𝜖 ∼ N(0, 𝜎𝜖 ) is the error. We assume the error to be independently and
normally distributed with mean of 0 and non-zero standard deviation of 𝜎𝜖 for each
input sample x𝑖 ∈ X.

Definition 4.3 (Gaussian process, from [23]). We define a Gaussian process to be
a collection of real-valued random variables, any finite number of which having a
joint normal distribution. The mean and covariance functions of a Gaussian process
𝑓 : X → R are defined to be

𝜇(x) := E[ 𝑓 (x)]
Σ(x, x’) := E[( 𝑓 (x) − 𝜇(x) ( 𝑓 (x’) − 𝜇(x’)]

We shall also denote the Gaussian process as 𝑓 (x) ∼ GP(𝜇(x), Σ(x, x’)). The set X
contains the points x for which the random variable 𝑓 (x) is defined. The distribution
of a Gaussian process 𝑓 is (almost) uniquely characterized by the specific mean and
covariance functions, 𝜇 and Σ.
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There are two ways of looking at Gaussian processes, the weight space and function
space views [23]. A connection between them can be made, however to introduce the
topic a weight space approach would be a more friendly introduction [23]. We will
therefore repeat the main points in the introduction to Gaussian processes using the
weight space approach as described in [23].

To begin, let us introduce a basic linear function regression

𝑓 (x) = 𝜙(x)𝑇w

where 𝜙 : X → R𝐷 is a feature map, mapping the input x into some feature space of
dimension𝐷. For example, for a scalar input x = 𝑥 ∈ R, one possible feature map would
be to consider the exponentiation of the original input, 𝜙 : 𝑥 ↦→ [1, 𝑥, 𝑥2, 𝑥3, . . . 𝑥𝐷−1]𝑇 .
Choosing a suitable feature map 𝜙 allows us to perform a linear regression without
worrying if the original data fits a linear function [23]. The vector w ∈ R𝐷 contains
the weights for each feature. We place a prior distribution on the weight vector
w ∼ N(0, Σ𝑝), a multivariate normal distribution with mean of 0 and Σ𝑝 covariance
matrix.

We define 𝑘 (x, x′) = 𝜙(x)𝑇Σ𝑝𝜙(x′) as the covariance function, also known as the
kernel. The connection to a Gaussian process can be made evident by noting that
𝑓 (x) = 𝜙(x)𝑇w as a random variable has an expectation of 0

E[ 𝑓 (x)] = 𝜙(x)𝑇E[w] = 0

and the covariance of 𝑓 (x) and 𝑓 (x′) is the kernel function value 𝑘 (x, x′)

cov( 𝑓 (x) 𝑓 (x′)) = E[ 𝑓 (x) 𝑓 (x′)] = 𝜙(x)𝑇E[ww𝑇 ]𝜙(x′) = 𝜙(x)𝑇Σ𝑝𝜙(x′) = 𝑘 (x, x′)

We note that 𝑓 is a Gaussian process 𝑓 ∼ GP(0, Σ𝑘 ). Σ𝑘 is the Gaussian pro-
cess covariance matrix computed by using the kernel 𝑘 , the elements of Σ𝑘 are
𝑘 (x, x′), x, x′ ∈ X [23].

If we have a dataset D 𝑓 of function 𝑓 samples, we can compute the posterior
Gaussian process using Bayesian formalism. In Bayesian formalism, we not only
consider some point estimates of the weights w, but a distribution over the parameters
[23]. As w ∼ N(0, Σ𝑝) is the prior distribution on the weights, we can use Bayes’
rule to compute the posterior distribution density 𝑝 of the weights w

𝑝 [w|X, y] = 𝑝 [y|X,w]𝑝 [w]
𝑝 [y|X]

where 𝑝 [y|X] is a normalizing constant [23]. The vector y is the outputs of dataset D 𝑓

with inputs X, D 𝑓 = (X, y) as per Definition 4.1. Assuming we have the feature map
𝜙, we can calculate the posterior distribution of the weights using matrix Φ = 𝜙(X),
the feature map computed for each input sample x ∈ X. The posterior distribution
density for w is,

𝑝 [w|X, y] ∼ N (w̄, Σ̄)
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where w̄ = 1
𝜎2
𝜖
(𝜎−2

𝜖 𝚽𝚽𝑇 + Σ−1
𝑝 )−1𝚽y and Σ̄ = (𝜎−2

𝜖 𝚽𝚽𝑇 + Σ−1
𝑝 )−1 [23]. Now that we

have the formula for the posterior distribution of the weights w, we can predict the
function value at a new point x,

P[ 𝑓 (x) = 𝑦 |x,X, y] =
∫
P[ 𝑓 (x) = 𝑦 |x,w]𝑝 [w|X, y]dw

The resulting posterior is again a normal distribution

𝑓 (x) |D 𝑓 ∼ N(𝜎−2
𝜖 𝜙(x)𝑇 𝐴−1Φy, 𝜙(x)𝑇 𝐴−1𝜙(x))

for which 𝐴 = 𝜎−2
𝜖 ΦΦ𝑇 + Σ−1

𝑝 [23]. We can rewrite the posterior as having mean of

𝜙(x)𝑇Σ𝑝Φ(𝐾 + 𝜎2
𝜖 𝐼)−1y

and covariance matrix

𝜙(x)𝑇Σ𝑝𝜙(x) − 𝜙(x)𝑇Σ𝑝Φ(𝐾 + 𝜎2
𝜖 𝐼)−1Φ𝑇Σ𝑝𝜙(x)

when setting 𝐾 = Φ𝑇Σ𝑝Φ. The vector k(x) is defined to contain values 𝑘 (x, x𝑖) for
samples x𝑖 ∈ X. Theorems 4.1 and 4.2 encapsulate the formalism of computing a
posterior Gaussian process using a dataset.

Theorem 4.1 (Gaussian process posterior, from [23]). Given a Gaussian process
𝑓𝑝 ∼ GP(0, Σ𝑘 ) and a noiseless dataset D 𝑓 = (X, y) (Definition 4.1). Then, the
posterior process 𝑓 |D 𝑓 ∼ GP(𝜇, Σ), which is also a Gaussian process, has the
following mean and variance functions:

𝜇(x) = k(x)𝑇𝐾−1y
var(x) = 𝑘 (x, x) − k(x)𝑇𝐾k(x) = Σ(x, x)

where 𝐾 is the covariance matrix. 𝐾 contains the values of the kernel 𝑘 evaluated at
training samples X. The vector k(x) contains the covariances of the input point x and
the points in the input sample set X.

According to Theorem 4.1, after conditioning on the sampled points in the dataset
D 𝑓 , the corresponding posterior process is a Gaussian process with specific mean and
covariance structures. Figure 4.1 demonstrates the prior and posterior distributions for
an unknown function 𝑓 when conditioning on five samples.
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(a) Example of a prior distribution. The shaded area corresponds
to a 95% confidence region. The lines correspond to three random
functions (Gaussian processes) drawn from the prior distribution
of 𝑓 .
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(b) Example of a posterior distribution. The random samples
and confidence intervals behave similarly to the prior distribution
case. However, now we draw from the posterior distribution of
𝑓 given 4 noiseless samples of the function 𝑓 , marked in black.
The specific function used is 𝑓 (𝑥) = −𝑥 sin 𝑥. The input points
are 𝑥 ∈ {1, 2, 3, 4}.

Figure 4.1: Prior and posterior distributions. Adapted from [23].
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Theorem 4.2 (Noisy GP posterior, from [23]). According to [23], with the basic setup
as in Theorem 4.1, and a noisy dataset D 𝑓 (Definition 4.2), the posterior Gaussian
process 𝑓 |D 𝑓 ∼ GP(𝜇, Σ) has the following mean and variance functions:

𝜇(x) = k(x)𝑇 (𝐾 + 𝜎2
𝜖 𝐼)−1y

var(x) = Σ𝑝 (x, x) − k(x)𝑇 (𝐾 + 𝜎2
𝜖 𝐼)k(x) = Σ(x, x)

Theorem 4.1 assumes that the training dataset is non-noisy, with a noisy dataset
D 𝑓 = (X, y) (Definition 4.1), we need to simply add the noise to the covariance
matrix 𝐾 . 𝐾 corresponds to the original covariance matrix evaluated at the samples
x𝑖 ∈ X and 𝜎2

𝜖 𝐼 forms the additive noise by increasing the diagonal entries of 𝐾 by the
noise level 𝜎2

𝜖 . Theorem 4.2 encapsulates the case of using a noisy dataset D 𝑓 when
computing the posterior distribution 𝑓 |D 𝑓 . Note that to use Theorem 4.2 we must
know the noise level 𝜎𝜖 in our samples. However, in practice we estimate the noise 𝜎𝜖
as an additional hyperparameter alongside the kernel hyperparameters, Section 4.2
discusses the optimization of kernel hyperparameters.

We have to be precise when talking about the posterior process 𝑓 |D 𝑓 versus the
predictive distribution of a new sample 𝑦. Using a noisy dataset D 𝑓 (Definition
4.2), predicting the true function 𝑓 is achieved by using the posterior process 𝑓 |D 𝑓

computed using Theorem 4.2. The prediction of a new sample 𝑦 is made by adding the
noise value 𝜖 to the value of 𝑓 and treating the result as a random variable 𝑦, formally

𝑦 = 𝑓 (x) + 𝜖, 𝜖 ∼ N(0, 𝜎𝜖 )
Conditioning on the dataset D 𝑓 which we use to model 𝑓 ∼ GP(𝜇, Σ) as a Gaussian
process, the probability distribution of random variable 𝑦 is a normal distribution with
specific mean and variance. Formally the conditional distribution of 𝑦 is,

𝑦 |D 𝑓 ∼ N(𝜇(x), Σ(x, x) + 𝜎2
𝜖 )

where 𝜎𝜖 is the additive noise observed in the samples [23]. Figure 4.2 indicates the
difference between the distributions 𝑓 |D 𝑓 and 𝑦 |D 𝑓 . We note that with a noiseless
D 𝑓 dataset, the function prediction no uncertainty at sample locations (at inputs
x𝑖 ∈ X). Intuitively, we can think that since the samples are assumed to be non-noisy,
we have all of the information required to predict the true function 𝑓 value at those
input points. This is in contrast to the case where we have noisy samples, the variance
of the posterior 𝑓 |D 𝑓 is greater than zero even at points x𝑖 ∈ X. This reflects the fact
that sampling at a point does not give us enough information to perfectly predict the
true function 𝑓 at those points.
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(a) Latent function 𝑓 prediction of a GP with a noisy kernel.
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(b) Predicting a noisy sample 𝑦, 𝑦 = 𝑓 (𝑥) + 𝜖 with a Gaussian process
model. The smaller crosses indicate possible values for the noisy sample 𝑦.

Figure 4.2: The posterior of the latent function 𝑓 and the posterior of a noisy sample
𝑦 modelled with Gaussian processes. The 95% confidence region is shown in the
shaded area. Blue solid line indicates the mean of the posterior process, training
samples marked in black. Orange, red, and green dashed lines are samples from the
posterior distributions. Dataset used is the same as in Figure 4.1
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For ease of notation and to make following algorithms easier to understand, we
define a model M 𝑓 to encapsulate the posterior and the kernel in Definition 4.4.

Definition 4.4 (Model). A model M 𝑓 is the encapsulation of the posterior process
with the kernel used in the creation of the posterior. Formally a model is a collection
M 𝑓 = (𝜇, Σ, 𝑘), where 𝜇 and Σ are the posterior process mean and covariance
functions and 𝑘 is the kernel used. For notation, we define M 𝑓 .𝜇 = 𝜇,M 𝑓 .Σ = Σ,
and M 𝑓 .𝑘 = 𝑘 .

4.1 Kernels & Covariance matrices
For the kernel functions of the Gaussian processes, we will describe a few commonly
used kernel functions which include the squared exponential kernel, also known as the
Gaussian kernel, and a subset of the Matérn kernels. The definitions for these kernels
are adopted from the book by Rasmussen and Williams [23], with additions from [7].

Definition 4.5 (Squared exponential kernel, adapted from [23, 7]). The Gaussian
kernel or the squared exponential kernel is defined to be the following.

𝑘 (x, x′) = 𝜎2 exp(− ∥x − x′∥2

2𝑙2
)

where x ∈ R𝑀 . The parameter 𝑙 is the characteristic length-scale of the kernel. The
parameter 𝜎 is the scale parameter in the output space. This kernel is also known as
the Radial Basis Function kernel or RBF kernel.

Definition 4.6 (An isotropic kernel, from [23]). A kernel 𝑘 : X ×X → R is isotropic,
if for all pairs (x, x′) ∈ X ×X the value of 𝑘 depends only on the distance between the
points. Formally 𝑘 (x, x′) = 𝑘 (y, y′) ⇐⇒ ∥x − x′∥ = ∥y − y′∥, where ∥ · ∥ denotes
some norm. In this thesis, the norm ∥ · ∥ is the standard Euclidean norm.

The Figure 4.3 illustrates the form of the squared exponential kernel (Def. 4.5), we
can plot the value of the kernel as a graph of a scalar input 𝑟 by defining 𝑟 = ∥x − x′∥
since the value of the kernel depends only on the distance between the input points.
Kernels with this property are called isotropic [23]. Due to their simplicity and
robustness, we will only explore some of most common isotropic kernels, Definition
4.6 defines the notion of an isotropic kernel.
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Figure 4.3: Squared exponential kernel value 𝑘 (x, x′) as a function of the distance
𝑟 = ∥x − x′∥ between input points, since RBF is isotropic. Hyperparameters are set to
𝜎 = 1, 𝑙 = 1.

We also experiment with Matérn kernels corresponding to once and twice differ-
entiable processes. These kernels are defined in Definition 4.7. These kernels are also
isotropic. Figure 4.4 illustrates the values for the two Matérn kernels.

Definition 4.7 (Matérn kernels, adapted from [23]). The general Matérn kernel is of
form

𝑘 (x, x′) := 𝜎2 2𝜈−1

Γ(𝜈)

(︄√
2𝜈
𝑙

∥x − x′∥
)︄𝜈
𝐾𝜈

(︄√
2𝜈
𝑙

∥x − x′∥
)︄

where 𝜈 is a positive parameter and 𝑙 is the associated length scale parameter. Γ is the
Gamma function and 𝐾𝑣 is a modified Bessel function. The parameter 𝜎 is the scale
parameter in the output space.

From the general form, we obtain kernels for once and twice differentiable processes
by setting 𝜈 = 3/2 and 𝜈 = 5/2 respectively. For half-integer values of 𝜈 the general
form becomes simpler to work with [23]. The aforementioned kernels are,

𝑘𝜈=3/2(x, x′) = 𝜎2

(︄
1 +

√
3
𝑙
∥x − x′∥

)︄
exp

(︄
−
√

3
𝑙

∥x − x′∥
)︄

𝑘𝜈=5/2(x, x′) = 𝜎2

(︄
1 +

√
5
𝑙
∥x − x′∥ + 5

3𝑙2
∥x − x′∥2

)︄
exp

(︄
−
√

5
𝑙

∥x − x′∥
)︄

where again the parameter 𝜎 is a output scaling factor and 𝑙 is the characteristic
length-scale.
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Figure 4.4: Matérn kernel value 𝑘 (𝑟), for 𝜈 = 3/2 and 𝜈 = 5/2 values.

4.2 Hyperparameter optimization
The common hyperparameters are the output scaling factor 𝜎 and the characteristic
length-scale 𝑙. Given a dataset D 𝑓 = (X, y) with 𝑁 samples, to find the best
hyperparameters for describing the data we utilize marginal likelihood estimation
(MLE). In this section, we will describe the process of finding optimal parameters
with MLE.

To find appropriate models using these kernels we need to find suitable hyperpa-
rameter values 𝜃. We find optimal values 𝜃∗ for kernel 𝑘 using log marginal likelihood
estimation. From [23] we note the log marginal likelihood of a Gaussian process
model as being

logP[y|X, 𝜃, 𝜎𝜖 ] = −1
2

y𝑇𝐾𝑦 (𝜃, 𝜎𝜖 )−1y − 1
2

log |𝐾𝑦 (𝜃, 𝜎𝜖 ) | −
𝑁 log 2𝜋

2

where 𝐾𝑦 (𝜃, 𝜎𝜖 ) = 𝐾 (𝜃) + 𝜎2
𝜖 𝐼 is the covariance matrix for noisy function predictions

y computed from the kernel matrix 𝐾 (𝜃), 𝐾 (𝜃)𝑖 𝑗 = 𝑘𝜃 (x𝑖, x 𝑗 ) by adding the specified
noise 𝜎𝜖 level to the diagonal entries. Figure 4.5 illustrates the log marginal likelihood
values for different values of two hyperparameters. We have formalized the finding of
optimal hyperparameters as fitting the model using data in Algorithm 4.1.
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Figure 4.5: A contour plot of log marginal likelihood when optimizing hyperparame-
ters for a RBF kernel. Optimizing the 𝜎 scaling factor and length-scale parameter 𝑙.
Log marginal likelihood increases towards the green-yellow color with the optimum
marked as a blue cross. Using the same dataset as in Figure 4.1

Algorithm 4.1 Model fitting algorithm
Input: Dataset D 𝑓 and kernel 𝑘𝜃 parameterized by hyperparameter values 𝜃.
Output: Model M 𝑓 .

1: Dataset D 𝑓 = (X, y).
2: if Dataset D 𝑓 is noisy then
3: Optimize hyperparameters and noise 𝜃∗, 𝜎∗

𝜖 = arg max𝜃,𝜎𝜖
logP [y|X, 𝜃, 𝜎𝜖 ]

using kernel 𝑘𝜃 .
4: Compute 𝑓 |D 𝑓 ∼ GP(𝜇, Σ) using Theorem 4.2 with kernel 𝑘𝜃∗ and noise 𝜎∗

𝜖 .
5: else
6: Optimize hyperparameters 𝜃∗ = arg max𝜃,𝜎𝜖

logP [y|X, 𝜃] using kernel 𝑘𝜃 .
7: Compute 𝑓 |D 𝑓 ∼ GP(𝜇, Σ) using Theorem 4.1 with kernel 𝑘𝜃∗ .
8: end if
9: Create a model M 𝑓 = (𝜇, Σ, 𝑘 𝑓 ) using Definition 4.4.

10: return M 𝑓

In practical terms, to optimize the difference hyperparameters, we will utilize
a common optimization technique L-BFGS-B which is a quasi-Newton method
for solving constrained nonlinear optimization problems [3], implemented in the
GPy-library [14]. For numerical stability reasons, we add a small noise level to the
covariance matrix 𝐾 even in the case of not having noisy datasets and using Theorem
4.1. The exact value of this stability noise is in Appendix A.
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5 Bayesian optimization
Gaussian processes provide a great framework for modeling functions based on few
samples. However, as our original problem is to optimize the intensity 𝑝, we need to
shift our focus to optimization.

Bayesian optimization provides a toolkit for optimizing black-box functions [8].
By a black-box, we mean a function 𝑓 : X → R which is computationally intensive to
evaluate for a given input x ∈ X, for example our elevator traffic simulation computation
for AWT at an intensity 𝑝. Bayesian optimization, like Gaussian processes has been
studied for a relatively long time and earliest related papers circulated in the 1960s
and 1970s [19, 31]. It has been used in many different applications, for example in
chemistry [10] and drug development [24].

In this chapter, we will first introduce the general algorithm of Bayesian op-
timization, which we will then augment to handle constraints and noisy datasets.
From literature, we will then introduce two algorithms which we will use in our own
algorithms which we will implement in Chapter 6.

5.1 Basics
The basic framework of Bayesian optimization is displayed in Algorithm 5.1. The
Algorithm takes as input the objective function 𝑓 , the kernel 𝑘 for Gaussian process
and an initial dataset D 𝑓 . This algorithm can be used to solve optimization problems
of the form

min
x∈X

𝑓 (x)

where X is some simple set for which membership of a point is cheap to evaluate, for
example a rectangle in R𝑀 , c1 ≤ x ≤ c2 [8]. In our thesis the set X is a subset of the
real line R.
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Algorithm 5.1 High-level algorithm of Bayesian optimization, adapted from [8].
Input: The objective function 𝑓 , kernel 𝑘 with set of hyperparameters 𝜃𝑘 𝑓

,
and set of initial dataset D 𝑓 = (X, y),X ∈ R𝑁0×𝑀 , y ∈ R𝑁0 . Acquisition function
AF, optimal point discovery function OP, and stopping criterion function CR. The
underlying input set X.

Output: The pair of optimal input and output values (x∗, 𝑓 ∗).

1: Set 𝑛 = 𝑁0.
2: while CR(AFmax, 𝑛) = 0 do
3: M 𝑓 = Fit(D 𝑓 , 𝑘 𝑓 , 𝜃𝑘 ) ⊲ Model fitting using Algorithm 4.1.
4: AFmax = max𝑥∈X AF(x,D 𝑓 ,M 𝑓 )
5: x𝑛+1 = arg maxx∈X AF(x,D 𝑓 ,M 𝑓 )
6: Create a new sample 𝑦𝑛+1 = 𝑓 (x𝑛+1) of objective function 𝑓 at x𝑛
7: Add the new input-output pair (x𝑛+1, 𝑦𝑛+1) into dataset D 𝑓

8: Increment 𝑛 = 𝑛 + 1
9: end while

10: (x∗, 𝑓 ∗) = OP(D 𝑓 ,M 𝑓 )
11: return (x∗, 𝑓 ∗)

One of the most important components of the Bayesian optimization method is
to choose an acquisition function (AF). The acquisition function is responsible for
choosing which input point x ∈ X is sampled next in the optimization process. In
other words, the acquisition function should model how much it is worth for us to
sample a specific point next in our optimization. The acquisition function should take
a candidate point x, one or more datasets, and one or more Gaussian process models
as inputs. The function should then return some value for each point in X and the
point to be sampled next should be the point where the acquisition function attains
its global maximum. Although in a general setting, finding the global optimum for
the acquisition function could be challenging. One of the commonly used acquisition
functions is expected improvement which is defined in Definition 5.1 [8, 11, 20, 18].
Other commonly used acquisition functions include for example Knowledge Gradient
and Entropy Search [9, 17].

Definition 5.1 (Expected improvement, from [8]). Using a dataset D 𝑓 , and model
M 𝑓 , the expected improvement (EI) at candidate point x ∈ X is defined as

EI(x) = E[max( 𝑓 ∗ − 𝑓 (x), 0) |M 𝑓 ]
The improvement between the Gaussian process value at x and the currently optimal
value 𝑓 ∗ = minx∈X 𝑓 (x),D 𝑓 = (X, y). Note that we define the expectation as being
conditioned on the model M 𝑓 which contains the posterior distribution of 𝑓 (x).

Intuitively, expected improvement, as defined in Definition 5.1, measures the
expected improvement between the currently optimum value 𝑓 ∗ and some candidate
value which is predicted using a Gaussian process model M 𝑓 . Essentially, EI answers
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the question: "How much my objective function 𝑓 improves at input point x compared
to the currently best value 𝑓 ∗?".

To compute expected improvement as defined in Definition 5.1 we can use
integration by parts, as described in [18]. Using integration by parts, we can express
the expectation in an analytical form, this result is shown in Theorem 5.1.

Theorem 5.1 (from [8]).

EI(x) = Δ(𝑥)Φ
(︃
Δ(𝑥)
𝜎(x)

)︃
+ 𝜎(x)𝜙

(︃
Δ(𝑥)
𝜎(x)

)︃
(1)

where Δ(x) = 𝑓 ∗ − 𝜇(x) is the difference between the best observed function value
and the mean M 𝑓 .𝜇 of the posterior distribution at the candidate point x. 𝜎(x)2 =

M 𝑓 .Σ(x, x) denotes the posterior variance at x. 𝜎(x) =
√︁
𝜎(x)2 is the posterior

standard deviation. 𝜙 is here the probability density function for a standard normal
and Φ is the corresponding cumulative density function.

Other aspects of the Algorithm 5.1 include the choice of stopping criterion
CR(AFmax, 𝑛) and optimal point discovery function OP(D 𝑓 ,M 𝑓 ). The stopping
criterion function takes as input the current maximum acquisition function value and
the iteration number 𝑛. We utilize the acquisition function value as our stopping
criterion,

CR(AFmax, 𝑛) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 AFmax ≤ 𝐶AF

1 𝑛 ≥ 𝐶𝑁
0 otherwise

in other words, we stop if the acquisition function maximum value is below some
threshold 𝐶AF or we have reached maximum iterations 𝑛 ≥ 𝐶𝑁 .

In a setting with no constraints and no noise, the result of the optimization algorithm
is determined from the dataset D 𝑓 = (X, y) by function OP after the stopping criterion
has been met. The optimal point is either an already sampled point x∗ ∈ X or the
point with the minimum posterior mean [8]. Formally the optimal input point x∗ is
computed

x∗ = min
(︃
min
x𝑖∈X

y𝑖,min
x𝑖∈X

𝜇(x)
)︃

The optimal function value 𝑓 ∗ is then obtained by sampling the function at the optimal
point 𝑓 ∗ = 𝑓 (x∗).

To add constraints into the optimization problem, we modify many of the funda-
mental building blocks of Algorithm 5.1 to take feasibility into account. The next
section will describe this augmentation in detail.

5.2 Constrained optimization
To handle constraints in Bayesian optimization, we must first define commonly used
notions of feasibility.
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Definition 5.2 (Feasibility). We consider a point x ∈ X to be feasible if for all
𝑗 ∈ 𝐽, 𝑐 𝑗 (x) ≤ 0. The index set 𝐽 = { 1, 2, . . . , | 𝐽 | } indexes our constraint functions
𝑐1, 𝑐2, . . . , 𝑐𝐽 . A constraint function 𝑐 : X → R limits the domain of our problem to
only consider solutions x ∈ X which satisfy 𝑐(x) ≤ 0.

Definition 5.3 (Independence). We consider Gaussian processes ( 𝑓𝑖)𝑁𝑖=1 to be inde-
pendent if for any x ∈ X we have the equality

P [ 𝑓1(x) = 𝑦1, 𝑓2(x) = 𝑦2, . . . , 𝑓𝑁 (x) = 𝑦𝑁 ] =
𝑁∏︂
𝑖=1
P [ 𝑓𝑖 (x) = 𝑦𝑖]

for any values 𝑦1, 𝑦2, . . . , 𝑦𝑁 .

Our aim is to extend the optimization framework to solve problems of form

minx∈X 𝑓 (x)
such that:

𝑐1(x) ≤ 0
𝑐2(x) ≤ 0

.

.

.

𝑐𝐽 (x) ≤ 0

In many constrained Bayesian optimization methods the constraint functions 𝑐 𝑗 : X →
R are modelled by mutually independent (Definition 5.3) Gaussian processes which
are also independent of the Gaussian process used to model the objective function [11,
20]. In Definition 5.2, we have defined the feasibility of input points. One possible way
of implementing constraints to our optimization algorithm is to modify the expected
improvement defined in Definition 5.1 by a factor related to the probability of x being
feasible [11, 20].
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Algorithm 5.2 High-level algorithm of constrained Bayesian optimization
Input: The objective function 𝑓 , constraint functions 𝑐1, 𝑐2, . . . , 𝑐𝐽 , objective

function kernel 𝑘 𝑓 alongside a set of kernel hyperparameters 𝜃 𝑓 , collection of
constraint function kernels 𝑘𝑐1 , 𝑘𝑐2 , . . . , 𝑘𝑐𝐽 each with kernel hyperparameter set
𝜃𝑘𝑐1

, 𝜃𝑘𝑐2
, . . . , 𝜃𝑘𝑐𝐽 , initial objective function dataset D 𝑓 with 𝑁0 samples, collection

of initial constraint function datasets D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 with 𝑁0 samples. Acquisition
function AF, optimal point discovery function OP, and stopping criterion function
CR. The underlying input set X.

Output: The pair of optimal and feasible input and output values (x∗, 𝑓 ∗).

1: Set 𝑛 = 𝑁0.
2: while CR(AFmax, 𝑛) = 0 do ⊲ Stopping criterion.
3: M 𝑓 = Fit(D 𝑓 , 𝑘 𝑓 , 𝜃𝑘 𝑓

)
4: for 𝑗 ∈ 𝐽 do
5: M𝑐 𝑗 = Fit(D𝑐 𝑗 , 𝑘𝑐 𝑗 , 𝜃𝑘𝑐 𝑗 )
6: end for
7: AFmax = maxx∈X AF(x,D 𝑓 ,D𝑐1 , . . . ,D𝑐𝐽 ,M 𝑓 ,M𝑐1 , . . . ,M𝑐𝐽 )
8: x𝑛+1 = arg maxx∈X AF(x,D 𝑓 ,D𝑐1 , . . . ,D𝑐𝐽 ,M 𝑓 ,M𝑐1 , . . . ,M𝑐𝐽 )
9: Sample the objective function 𝑓 at x𝑛+1: 𝑦𝑛+1 = 𝑓 (x𝑛+1)

10: Add the new sample (x𝑛+1, 𝑦𝑛+1) to D 𝑓

11: for 𝑗 ∈ 𝐽 do
12: Sample the constraint function 𝑐 𝑗 at x𝑛+1: 𝑐 𝑗 ,𝑛+1 = 𝑐 𝑗 (x𝑛+1)
13: Add the new sample (x𝑛+1, 𝑐 𝑗 ,𝑛+1) to D𝑐 𝑗

14: end for
15: Increment 𝑛 = 𝑛 + 1
16: end while
17: (x∗, 𝑓 ∗) = OP(D 𝑓 ,D𝑐1 , . . . ,D𝑐𝐽 ,M 𝑓 ,M𝑐1 , . . . ,M𝑐𝐽 ) ⊲ Optimal point.
18: return (x∗, 𝑓 ∗)

Note that Algorithm 5.2 is a high-level overview of the constrained Bayesian
optimization setting. Most of the details regarding modeling the objective function and
the constraints are hidden in the acquisition function AF and optimal point discovery
OP function. Also the convergence criterion CR is modified to take constraints into
account.

More specifically, we want the optimal point x∗ to satisfy 𝑓 (x∗) ≤ 𝑓 (x),∀x ∈
Xfeasible and ∀ 𝑗 ∈ 𝐽 : 𝑐 𝑗 (x∗) ≤ 0. Xfeasible is the set of feasible input points,
Xfeasible = {x ∈ X : 𝑐 𝑗 (x) ≤ 0, 𝑗 ∈ 𝐽}. In other words, the optimal point should
minimize 𝑓 among feasible points while being itself feasible (Definition 5.2).

As a helpful definition, let us define the dataset of feasible objective function
observations, Dfeasible

𝑓
in Definition 5.4. We will use this in a later section when

discussing practical implementations of constrained optimization, see Section 5.4.

Definition 5.4. We define the feasible objective function dataset computed from
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D 𝑓 = (X, y) as being Dfeasible
𝑓

= (Xfeasible, yfeasible) where

Xfeasible = { x ∈ X : x ∈
⋂︂
𝑗∈𝐽

X 𝑗 ,Dfeasible
𝑐 𝑗

= (X 𝑗 , c 𝑗 ) }

yfeasible = { 𝑦𝑖 ∈ y : x𝑖 ∈ Xfeasible }

Dfeasible
𝑐 𝑗

is the dataset of feasible samples, formally Dfeasible
𝑐 𝑗

= { x𝑖 ∈ X 𝑗 : c 𝑗𝑖 ≤ 0 }.
yfeasible is filtered from y using the indices of X and Xfeasible. In essence, we want to
save those observations 𝑦 where the corresponding x ∈ X is feasible.

5.3 Noisy constrained optimization
After adding constraints we must handle the possible noise in our objective function
and constraint function samples. In other words, we do not observe them directly,
rather we have access to noisy samples which we assume to be of the form

y𝑖 = 𝑓 (x𝑖) + 𝜖 𝑓 𝑖
C 𝑗𝑖 = 𝑐 𝑗 (x𝑖) + 𝜖𝑐 𝑗 𝑖

where 𝜖 𝑓 𝑖 ∼ N(0, 𝜎 𝑓 ), 𝜖𝑐 𝑗 𝑖 ∼ N(0, 𝜎𝑐 𝑗 ), x𝑖 ∈ X. In other words, we assume that
for each sample, the noise values in the objective function sample y𝑖 and constraint
function samples C 𝑗𝑖 are normally distributed random variables with means of 0 and
some standard variances which are same for all samples x𝑖 ∈ X.

Note that the addition of noise does not affect the structure of our optimization
problem, it only affects the optimization algorithm and the method we use to find the
optimal input-output pair. In other words, we are still optimizing a problem of the form

minx∈X 𝑓 (x)
such that:

𝑐1(x) ≤ 0
𝑐2(x) ≤ 0

.

.

.

𝑐𝐽 (x) ≤ 0

we just do not have visibility into the objective function 𝑓 or constraints 𝑐1, 𝑐2, . . . , 𝑐𝐽
directly.

Algorithm 5.3 contains the pseudo-code used in the noisy constrained Bayesian
optimization. The only difference between Algorithm 5.2 and Algorithm 5.3 is that
we now assume that the samples contain some additive noise.
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Algorithm 5.3 High-level algorithm of noisy constrained Bayesian optimization
Input: The objective function 𝑓 , constraint functions 𝑐1, 𝑐2, . . . , 𝑐𝐽 , objective

function kernel 𝑘 𝑓 alongside a set of kernel hyperparameters 𝜃𝑘 𝑓
, collection of

constraint function kernels 𝑘𝑐1 , 𝑘𝑐2 , . . . , 𝑘𝑐𝐽 each with kernel hyperparameter set
𝜃𝑘𝑐1

, 𝜃𝑘𝑐2
, . . . , 𝜃𝑘𝑐𝐽 , initial objective function dataset D 𝑓 with 𝑁0 samples, collection

of initial constraint function datasets D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 with 𝑁0 samples each.
Acquisition function AF, optimal point discovery function OP, and stopping criterion
function CR. The underlying input set X.

Output: The pair of optimal input and output values (x∗, 𝑓 ∗).

1: Set 𝑛 = 𝑁0.
2: while CR(AFmax, 𝑛) = 0 do
3: M 𝑓 = Fit(D 𝑓 , 𝑘 𝑓 , 𝜃𝑘 𝑓

)
4: for 𝑗 ∈ 𝐽 do
5: M𝑐 𝑗 = Fit(D𝑐 𝑗 , 𝑘𝑐 𝑗 , 𝜃𝑘𝑐 𝑗 )
6: end for
7: AFmax = maxx∈X AF(x,D 𝑓 ,D𝑐1 , . . . ,D𝑐𝐽 ,M 𝑓 ,M𝑐1 , . . . ,M𝑐𝐽 )
8: x𝑛+1 = arg maxx∈X AF(x,D 𝑓 ,D𝑐1 , . . . ,D𝑐𝐽 ,M 𝑓 ,M𝑐1 , . . . ,M𝑐𝐽 )
9: Sample the objective function 𝑓 at x𝑛+1: 𝑦𝑛+1 ⊲ Noisy sample

10: Add the new sample (x𝑛+1, 𝑦𝑛+1) to D 𝑓

11: for 𝑗 ∈ 𝐽 do
12: Sample the constraint function 𝑐 𝑗 at x𝑛+1: 𝑐 𝑗 ,𝑛+1 ⊲ Noisy sample
13: Add the new sample (x𝑛+1, 𝑐 𝑗 ,𝑛+1) to D𝑐 𝑗

14: end for
15: Increment 𝑛 = 𝑛 + 1
16: end while
17: (x∗, 𝑓 ∗) = OP(D 𝑓 ,D𝑐1 , . . . ,D𝑐𝐽 ,M 𝑓 ,M𝑐1 , . . . ,M𝑐𝐽 )
18: return (x∗, 𝑓 ∗)

5.4 Solution methods
Looking back to our original maximum traffic intensity problem in Chapter 3, we
assume that the samples for the AWT and ATTD values are inherently noisy. The
simulator gives us some samples for those averages, however they are noisy estimates
of the true average values. Therefore, we currently have the correct layers to solve our
original problem. Next, we will explore literature and describe a couple of proposed
methods for solving these kinds of optimization problems.

More specifically, we have hidden the most important detail of choosing the next
sample point behind the acquisition function AF. We will next explore ways to modify
and extend the traditional expected improvement of Definition 5.1 to behave well with
constraints and noisy samples.
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5.4.1 Constrained expected improvement algorithm (CEI)

The paper [11] describes the first approach which we will examine. The main idea is
to use constrained expected improvement (Theorem 5.2) as the acquisition function.
Assuming that our samples are not noisy, according to the paper, the best point
to sample next would be the point x∗ which is feasible and maximizes expected
improvement (Definitions 5.1, 5.2). Definition 5.5 formalizes this idea.

Definition 5.5 (Constrained improvement, from [11]). We define the constrained
improvement at x as being

IC(x) = F(x) max( 𝑓 ∗ − 𝑓 (x), 0)
where 𝐹 (x) is an indicator variable for x being a feasible point or not. 𝑓 ∗ is the best
value seen from already sampled points.

Since we do not know if x is feasible, we must treat F(x) as a random variable.
When taking the expectation of IC(x) and modeling the constraint functions 𝑐 𝑗 with
models M𝑐 𝑗 , we can compute the expectation of E

[︁
IC |M 𝑓 ,M𝑐1 ,M𝑐2 , . . . ,M𝑐𝐽

]︁
[11]. Theorem 5.2 is the main result which we use to evaluate the aforementioned
expectation.

Theorem 5.2 (Constrained expected improvement, from [11]). The constrained
expected improvement is simply the original expected improvement scaled with the
probability of the candidate point being feasible PF(x),

E
[︁
IC |M 𝑓 ,M𝑐1 ,M𝑐2 , . . . ,M𝑐𝐽

]︁
= EIC(x) = PF(x)EI(x)

where PF(x) =
∏︁𝐽

𝑗=1 P[M𝑐 𝑗 (x) ≤ 0] by assumption of having independent (Def.
5.3) constraint models M𝑐1 ,M𝑐2 , . . . ,M𝑐𝐽 . The expected improvement EI(x) is
defined in Definition 5.1. However, we should augment Definition 5.1 to consider
the best value 𝑓 ∗ as being computed from feasible objective values yfeasible, where
Dfeasible

𝑓
= (Xfeasible,, yfeasible) as defined in Definition 5.4.

The expected constrained improvement of Theorem 5.2 is used as the acquisition
function when iterating the Bayesian optimization Algorithm 5.3. The stopping
criterion and optimal point discovery are discussed in Chapter 6 since we use different
than those proposed in the paper [11].

5.4.2 Noisy expected improvement algorithm (NEI)

The other method, described in paper [20], extends on the idea of constrained
improvement. Combining feasibility with expected improvement, defined in Definition
5.1, allows us to handle constraints. Again, the main concept is to multiply the
improvement by a probability that the sample point is feasible. The resulting Theorem
5.3 also allows us to handle cases where there does not exist a sample in the feasible
dataset Dfeasible

𝑓
[20].

The paper [20] first defines an utility function 𝑢(D 𝑓 )
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𝑢(D 𝑓 ) =
{︄
−minx𝑖∈X 𝑓 (𝑥𝑖) Dfeasible

𝑓
≠ (∅, ∅)

−𝑀 Dfeasible
𝑓

= (∅, ∅)

which assumes no noise in our dataset. Assuming we have otherwise identical datasets
D𝑛

𝑓
and D𝑛+1

𝑓
, containing 𝑛 and 𝑛 + 1 samples respectively with x𝑛+1 being the new

sample only contained in the latter dataset. We can then compute the improvement in
utility 𝐼 (x𝑛+1) = 𝑢(D𝑛+1

𝑓
) − 𝑢(D𝑛

𝑓
) between the datasets as

𝐼 (x𝑛+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x𝑛+1 is infeasible.
𝑀 − 𝑓 (x𝑛+1) x𝑛+1 is feasible and D𝑛,feasible

𝑓
= (∅, ∅)

max( 𝑓 ∗ − 𝑓 (x𝑛+1), 0) otherwise

where 𝑓 ∗ is the best feasible objective function value obtained in dataset D𝑛
𝑓

[20].
Now taking the expectation of the improvement for a candidate point x, we obtain
Theorem 5.3.

Theorem 5.3 (Expected improvement with feasibility, from [20]). Assuming noise-
less datasets D 𝑓 ,D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 , let the number of feasible objective function
observations be 𝐹 =

|︁|︁|︁Dfeasible
𝑓

|︁|︁|︁. Then

EIInf.(x|D 𝑓 ,D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 ) =
{︄

EI(x)𝑃𝐹 (x) 𝐹 > 1
(𝑀 − 𝜇 𝑓 (x))𝑃𝐹 (x) 𝐹 = 0

where 𝑃𝐹 (x) =
∏︁𝐽

𝑗=1 P
[︁
M𝑐 𝑗 (x) ≤ 0

]︁
is again the probability of being feasible,

computed using the models M𝑐1 ,M𝑐2 , . . . ,M𝑐𝐽 . M 𝑓 .𝜇 = 𝜇 𝑓 is the mean of the
Gaussian process M 𝑓 modeling the objective function 𝑓 . The dependence on the
datasets is through the models and the computation of the expected improvement using
the best previously seen feasible objective function value.

The parameter 𝑀 ∈ R is a hyperparameter which affects the trade-off between
exploration and exploitation in the case of not having feasible samples. In other words,
with high 𝑀 we prefer to sample in those regions of the input space where there are
more likely feasible points.

Since in Theorem 5.3 we require noiseless datasets of function and constraint sam-
ples, we first build Gaussian process models using noisy datasets and use those models
to sample noiseless values. In other words, using noisy datasetsD 𝑓 ,D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽

we build models M 𝑓 ,M𝑐1 ,M𝑐2 , . . . ,M𝑐𝐽 which we in turn use to build noiseless
datasets D 𝑓

˜ ,D𝑐1
˜ ,D𝑐2

˜ , . . . ,D𝑐𝐽
˜ which we use in Theorem 5.3. We can therefore

define the noisy expected improvement as an expectation in Definition 5.6.

Definition 5.6 (Noisy expected improvement, from [20]). Given noisy dataset D 𝑓 of
objective function values and a set of noisy datasets (D𝑐 𝑗 )𝐽𝑗=1 of constraint samples
for constraint functions 𝑐 𝑗 , 𝑗 ∈ 𝐽, we define the noisy expected improvement as the
expectation
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EIN(x|D 𝑓 ,D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 ) = E[EIInf.(x|D 𝑓
˜ ,D𝑐1

˜ ,D𝑐2
˜ , . . . ,D𝑐𝐽

˜ )]

where we take the expectation using the noiseless datasets D 𝑓
˜ ,D𝑐1

˜ ,D𝑐2
˜ , . . . ,D𝑐𝐽

˜
which we generate using models M 𝑓 ,M𝑐1 ,M𝑐2 , . . . ,M𝑐𝐽 created using the noisy
datasets D 𝑓 , D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 . In other words, we consider the generated datasets
as random variables drawn from the models.

Theorem 5.4 (from [20]). With the context of Definition 5.6, we express the expectation
as an integral

EIN(x|D 𝑓 ,D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 ) =
∫

y

∫
c
EIInf.(x|D̃)P

[︁
y|M 𝑓

]︁ 𝐽∏︂
𝑗=1
P

[︁
c 𝑗 |M𝑐 𝑗

]︁
dcdy

where D̃ = {D 𝑓
˜ = (X, y), (D𝑐 𝑗

˜ = (X, c 𝑗 ))𝐽𝑗=1}. We compute the probabilities of
sampling noiseless objective function values y using model M 𝑓 and similarly for
the noiseless constraint samples c1, c2, . . . , c𝐽 we use models M𝑐1 ,M𝑐2 , . . . ,M𝑐𝐽 .
In essence, we are integrating over all possible noiseless samples using the Gaus-
sian process models. The models themselves are created using the noisy datasets
D 𝑓 ,D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 .

Expressing the expectation of Definition 5.6 using an integral over the generated
noiseless samples we have Theorem 5.4. The integral is intractable, however as the
paper describes there is a simple quasi Monte Carlo simulation method to approximate
this integral [20]. However, to utilize the proposed sampling method, the integral must
be transformed as an integral over an unit cube. Applying Theorem 5.5 to the integral
of Theorem 5.4, we can form the main result in Theorem 5.6.

Theorem 5.5 (Changing domain of integration, from [20]). The integral of a function
𝑓 : R𝑑 → R of a multivariate normal random variable y, with probability density
function 𝑝(y|𝜇, Σ), over the domain R𝑑 can be transformed into a integral over an
unit cube [0, 1]𝑑 ⊂ R𝑑 ,∫

R𝑑
𝑓 (y)𝑝(y|𝜇, Σ)𝑑y =

∫
[0,1]𝑑

𝑓 (𝐴Φ−1(u) + 𝜇)du

where 𝜇 and Σ are the parameters of the multivariate normal random variable, 𝐴 is a
matrix such that 𝐴𝐴𝑇 = Σ, for example the Cholesky decomposition of Σ [5].

Theorem 5.6 (Noisy expected improvement estimation, from [20]). Estimating the
integral in Theorem 5.4 can be achieved by having a Sobol sequence [28] (t𝑘 )𝑁𝑘=1 and
then using Theorem 5.5 to transform the integral. The end result is that

EI𝑁 (x|D 𝑓 ,D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 ) ≈
1
𝑁

𝑁∑︁
𝑘=1

EIInf.(x|c̃(t𝑘 ), f̃ (t𝑘 ))
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where [︃
f̃ (t𝑘 )
c̃(t𝑘 )

]︃
= 𝐴Φ−1(t𝑘 ) + 𝝁

𝝁 = [𝜇 𝑓 , 𝜇𝑐1 , 𝜇𝑐2 , . . . , 𝜇𝑐𝐽 ]𝑇

Σ = diag(Σ 𝑓 , Σ𝑐1 , Σ𝑐2 , . . . , Σ𝑐𝐽 )
Σ = 𝐴𝐴𝑇 (Cholesky decomposition.)

The vector 𝝁 contains the posterior means of the objective function and constraint
functions, fitted using Gaussian processes, at the sample points. The matrix Σ is a
block-diagonal matrix containing the covariance matrices of the posterior distributions
for the objective functions and constraint functions.

Using Theorem 5.6, we can estimate the value of the noisy expected improvement,
defined in Definition 5.6. Note that in Theorem 5.6 we estimate the noisy expected
improvement using a Sobol sequence, it provides us with a better convergence for the
estimate when compared to uniform random sampling [20, 28].

Finally, the estimate of Theorem 5.6 is used as our acquisition function value in
Algorithm 5.3.
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6 Implementation
In Chapter 5 we described methods used to solve a general optimization problem with
noisy objective function and constraints. However, there are certain things which make
our elevator problem a special case of the general Bayesian optimization problem.

First, the objective function is simply the input 𝑝, indicating the traffic intensity.
we have no further objective than to maximize the input 𝑝, given certain expensive to
evaluate constraints which depend on 𝑝. Second, for our underlying set we simply
have X = [0, 𝑝max] ⊂ R. In other words, we only consider an interval of the real line
with non-negative elements. This corresponds to the intensity 𝑝 being a non-negative
real-value.

Finally, we have a reason to believe that the constraint functions behave monotoni-
cally after a certain point, in the sense that there exists some 𝑝 such that constraint
functions at 𝑝 are non-positive and at 𝑝 + 𝛿, 𝛿 > 0 they are positive, indicating that
𝑝 + 𝛿 is infeasible. In other words, there cannot be some larger 𝑝′ > 𝑝 which would
also be feasible. The monotone behaviour of constraints is domain knowledge related
to the original elevator problem. This behaviour is used as motivation for the toy
problem in Chapter 7.

Since the objective function for the elevator problem is the intensity 𝑝, we do not
need to model it using a Gaussian process since it is trivial to compute. In general,
assuming the objective function of our problem is simply 𝑥 ∈ R, we can simplify many
of the equations used in the general settings. We will describe those simplifications
next and then we describe the optimization algorithms which we implement.

The expected improvement in Definition 5.1 can be computed simply as,

EI(𝑥) = max(𝑥 − 𝑥∗, 0)
where 𝑥 is the input value and 𝑥∗ the maximum observed value in objective function

dataset D 𝑓 = (X, y). This is because the objective function of our problem is simply
𝑓 (𝑥) = 𝑥 and we have a scalar input x𝑖 = 𝑥𝑖, in other words D 𝑓 = (x, x) where
x𝑖 = 𝑥𝑖 ∈ R.

Note that [20] and [11] have defined the optimization as a minimization problem
and we have a maximization problem. Therefore we have the opposite sign in some of
the equations used by our implementation, an alternate way of thinking is to consider
our objective function to be 𝑓 (𝑥) = −𝑥 in a minimization problem. However, changing
the sign does not affect any of the theory described in previous chapters, it only affects
the specific implementation for our elevator problem.

Next, we will describe how we can augment and modify the two algorithms
of papers [20] and [11], introduced in Chapter 5 to fit our problem to suit a trivial
maximization problem max𝑥∈X 𝑥 with expensive-to-evaluate constraints 𝑐1, 𝑐2, . . . , 𝑐𝐽 .
In total, we have 5 different algorithms which could suit our purposes. The NEI
algorithm, described in the next section based on [20], and 4 different variants on the
constrained expected improvement idea of paper [11]. The different variants are CEI,
NCEI, CEI-Mean, NCEI-Mean which we describe in section 6.2.
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6.1 NEI Algorithm
In this section we implement an algorithm inspired by paper [20] and discuss some of
the details of our implementation and differences compared to the original in [20].

Algorithm 6.1 NEI Algorithm, based on [20].
Input: Objective function 𝑓 , constraint functions 𝑐1, 𝑐2, . . . , 𝑐𝐽 , constraint

sample datasets D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 , objective function sample dataset D 𝑓 , kernels
𝑘 𝑓 , 𝑘𝑐1 , 𝑘𝑐2 , 𝑘𝑐3 , . . . , 𝑘𝑐𝐽 , candidate point 𝑥, and the underlying input set X. The
datasets have 𝑁 samples.

Output: Acquisition function value at 𝑥.

1: for 𝑗 ∈ 𝐽 do
2: M𝑐 𝑗 = Fit(D𝑐 𝑗 , 𝑘𝑐 𝑗 , 𝜃𝑘𝑐 𝑗 )
3: Initialize empty vector 𝜇 𝑗 ∈ R𝑁 and empty matrix Σ 𝑗 ∈ R𝑁
4: Let 𝜇 𝑗𝑖 = M𝑐 𝑗 .𝜇(𝑥𝑖), 𝑥𝑖 ∈ X ⊲ Mean values at the sample points.
5: Collect 𝜇 𝑗 =

[︁
𝜇 𝑗1, 𝜇 𝑗2, . . . , 𝜇 𝑗𝑁

]︁
6: Let (Σ 𝑗 )𝑖,𝑘 = M𝑐 𝑗 .Σ(𝑥𝑖, 𝑥𝑘 ) ⊲ Covariance values at sample points
7: end for
8: Construct a block-diagonal matrix Σ = diag

(︂
(Σ 𝑗 )𝐽𝑗=1

)︂
9: Let 𝜇 be a vector created by concatenating the vectors 𝜇1, 𝜇2, . . . , 𝜇 𝑗

10: Cholesky decomposition of the covariance matrix, Σ = 𝐴𝐴𝑇

11: Generate a Sobol sequence, (t𝑖)𝑖=𝐾𝑖=1
12: for 𝑘 = 1, 2, . . . , 𝐾 do
13: Using Theorem 5.5, we can estimate the noisy expected constrained improve-

ment, by first creating samples C̃𝑘

C̃𝑘 = 𝐴Φ
−1(t𝑘 ) + 𝝁 ∈ R𝐽𝑁

14: for 𝑗 ∈ 𝐽 do
15: From C̃𝑘 extract samples for constraint 𝑗 , c̃𝑘 𝑗
16: Create a new non-noisy dataset D𝑐 𝑗

˜ for constraints using samples c̃𝑘 𝑗
17: Fit a new model M̃𝑐 𝑗 using D𝑐 𝑗

˜ , 𝑘𝑐 𝑗 , and 𝜃𝑘𝑐 𝑗 without optimizing hyper-
parameters

18: end for
19: end for
20: Initialize EIN = 0
21: for 𝑘 = 1, 2, . . . , 𝐾 do
22: Compute EIInf.

(︂
x| (M̃𝑐 𝑗 )𝐽𝑗=1

)︂
23: Update EIN = EIN + 1

𝐾
EIInf.(x)

24: end for
25: return EIN

The Algorithm 6.1 is adapted from the original paper [20], however since the
objective function is trivial, some of the definitions of Section 5.4.2 can be simplified.
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The quantity in Theorem 5.3 can be simply computed as

EIInf.(𝑥) =
{︄

max(𝑥 − 𝑥∗, 0)𝑃𝐹 (𝑥) 𝐹 > 1
(𝑀 + 𝑥)𝑃𝐹 (𝑥) 𝐹 = 0

(2)

Note the changed sign in both branches of the augmented definition. The probability
of feasibility 𝑃𝐹 (𝑥) is computed as in Theorem 5.3.

We should note that practical implementation runs the loop on lines 1 − 19 once
per iteration of the Bayesian optimization. The lines 20 − 25, are run for each point
𝑥 ∈ X used to find the maximum of the acquisition function as NEI is utilized as the
acquisition function in Algorithm 5.3.

6.2 CEI Algorithm and variants
Another alternative acquisition function algorithm can be created by implementing
the ideas of paper [11]. The paper does not mention noisy evaluations at all. However,
since we do not need to model the objective function, we can ignore the noise errors of
objective function evaluations. In this section we will describe a basic version of the
algorithm using paper [11], which we call CEI. We will then explore augmentations
and modifications of this algorithm to handle noisy constraint samples. These modified
versions will be called NCEI, CEI-Mean, and NCEI-Mean algorithms.

We begin by first describing a close implementation of the algorithm in paper [11].
This will serve as our baseline algorithm for further developments.

Algorithm 6.2 Constrained expected improvement (CEI) algorithm, based on [11].
Input: Objective function 𝑓 , constraint functions 𝑐1, 𝑐2, . . . , 𝑐𝐽 , constraint

sample datasets D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 , objective function sample dataset D 𝑓 , kernels
𝑘 𝑓 , 𝑘𝑐1 , 𝑘𝑐2 , 𝑘𝑐3 , . . . , 𝑘𝑐𝐽 , candidate point 𝑥, underlying input set X. The datasets have
𝑁 samples.

Output: Acquisition function value at 𝑥.

1: for 𝑗 ∈ 𝐽 do
2: M𝑐 𝑗 = Fit(D𝑐 𝑗 , 𝑘𝑐 𝑗 , 𝜃𝑘𝑐 𝑗 )
3: end for
4: Build feasible dataset D 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑓
from D 𝑓 by filtering infeasible samples out.

5: if
|︁|︁|︁D 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑓

|︁|︁|︁ > 0 then
6: Let PF(𝑥) = P[𝑥 is feasible] = ∏︁

𝑗∈𝐽 P[M𝑐 𝑗 (𝑥) ≤ 0].
7: Compute EI(𝑥) using D 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑓
as per Theorem 5.1.

8: EIC(𝑥) = EI(𝑥)PF(𝑥)
9: return EIC(𝑥)

10: else
11: return 1(𝑥 = �̂�)
12: end if
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Algorithm 6.2 simply first fits independent Gaussian process models for each of the
constraints 𝑐 𝑗 , 𝑗 ∈ 𝐽. The models are then used on line 6 to compute the probability
of the candidate point 𝑥 ∈ X being feasible. The improvement of objective function
value is then weighed by the probability of being feasible on lines 7 − 8, calculating
the expectation of constrained improvement, as defined in Definition 5.5. The creation
of the feasible dataset Dfeasible

𝑓
on line 4 is done by filtering out infeasible samples

from D 𝑓 . Formally the feasible dataset is Dfeasible
𝑓

= (Xfeasible, yfeasible) where

Xfeasible = { 𝑥𝑖 ∈ X : c 𝑗 𝑖 ≤ 0,∀ 𝑗 ∈ 𝐽 }
yfeasible = { 𝑦𝑖 ∈ y : 𝑥𝑖 ∈ Xfeasible }

and c 𝑗 𝑖 ∈ D𝑐 𝑗 is the constraint sample for input sample 𝑖 of constraint 𝑐 𝑗 .
In the case of Dfeasible

𝑓
= (∅, ∅) we will simply propose to sample a random point

�̂� ∈ X. We assume that this situation is quite rare in our experiments, since we set
the range of searchable traffic intensity values to contain both low and high values.
However, this is an important fail safe to guarantee the Bayesian optimization algorithm
continues to iterate when there is no feasible samples. This is an addition which is not
discussed in the original paper [11].

In the original version of the algorithm (CEI), we consider the constraint models
M𝑐 𝑗 , 𝑗 ∈ 𝐽 to not incorporate noise. Therefore, the posterior variance 𝜎2(𝑥) =

M𝑐 𝑗 .Σ(𝑥, 𝑥) is 0 for all points 𝑥 in the training sample set X.
When considering noisy constraint samples, we can extend the base algorithm

simply by fitting (Algorithm 4.1) a noise value 𝜎𝜖 alongside other kernel parameters
for models M𝑐 𝑗 , 𝑗 ∈ 𝐽. However, when computing the probability of candidate point
𝑥 being feasible, we use model M𝑐 𝑗 , 𝑗 ∈ 𝐽 to model the value the real constraint
function 𝑐 𝑗 (𝑥). In other words, we try to predict the underlying constraint function,
rather than the noisy samples. We will call this algorithm variant NCEI for noisy
constrained expected improvement. This variant does not change the computation of
expected improvement (EI), we only change the fitting process of models M𝑐 𝑗 , 𝑗 ∈ 𝐽
to include a noise level.

One problem with using CEI and NCEI algorithms is the fact that we have to
compute EI(𝑥) using the previously observed feasible samples. However, if our
datasets D𝑐1 ,D𝑐2 , . . . ,D𝑐𝐽 are noisy, we might have a feasible sample 𝑥𝑖 in Dfeasible

𝑓

for which the input 𝑥𝑖 is not truly in the feasible range. In other words 𝑐 𝑗 (𝑥𝑖) > 0 for
some constraint function 𝑐 𝑗 ∈ 𝐽 while the constraint samples are all non-positive,
c 𝑗𝑖 ≤ 0,∀ 𝑗 ∈ 𝐽.

To handle this, we should filter the feasible input samples using the Gaussian
process models for the constraints, to make sure that feasible input samples in Dfeasible

𝑓

are truly feasible. We therefore modify the filtering step of line 4 of Algorithm 6.2
to build the feasible dataset using the models, formally the feasible dataset is then
composed of

Xfeasible = { 𝑥𝑖 ∈ X : P [𝑦�̃� ≤ 0] ≥ 1 − 𝛿,∀ 𝑗 ∈ 𝐽 }
yfeasible = { 𝑦𝑖 ∈ y : 𝑥𝑖 ∈ Xfeasible }
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where 𝑦�̃� is a noisy sample drawn from the model M𝑐 𝑗 at input point 𝑥𝑖. 𝛿 is some
hyperparameter corresponding to the sensitivity of our filter [12]. We shall use 𝛿 = 0.05
in all empirical experiments. In other words, the filtering step on line 4 should remove
all samples for which some constraint model M𝑐 𝑗 , 𝑗 ∈ 𝐽 predicts a low probability
of being feasible. We call algorithms with this filtering CEI-Mean and NCEI-Mean,
corresponding to the CEI and NCEI algorithms.

In the CEI-Mean and NCEI-Mean algorithms, we also augment the case where
there are no feasible samples (lines 10−12 in Algorithm 6.2). In those cases, we use the
point with highest chance of being feasible from the dataset, 𝑥∗ = arg max𝑥∈X PF(𝑥)
and return the value EIC(𝑥) computed with respect to that point 𝑥∗. Essentially, we
take constrained expected improvement with respect to a point which has highest
likelihood of being feasible from the dataset D 𝑓 .

Table 1 illustrates the differences between the different variants of the CEI
algorithm. In total, we have 4 different variants CEI, NCEI, CEI-Mean andNCEI-Mean,
depending on whether we filter based on raw constraint function samples or constraint
function models, whether we fit a noise model alongside other hyperparameters for
models M𝑐 𝑗 , 𝑗 ∈ 𝐽, and how we handle the case of Dfeasible

𝑓
= (∅, ∅).

Algorithm Fit noise level Filtering Dfeasible
𝑓

= (∅, ∅)
CEI No Samples c 𝑗𝑖 Random point

NCEI Yes Samples c 𝑗𝑖 Random point
CEI-Mean No Models M𝑐 𝑗 , 𝑗 ∈ 𝐽 EI𝐶 (𝑥 | arg max𝑥′∈X PF(𝑥′))

NCEI-Mean Yes Models M𝑐 𝑗 , 𝑗 ∈ 𝐽 EI𝐶 (𝑥 | arg max𝑥′∈X PF(𝑥′))

Table 1: Different variants of the CEI algorithm.

6.3 Other implementation details
We have now explored the different acquisition function variants and in Chapter 5
we defined the stopping criterion. Therefore, the optimal point discovery function
is the last piece which we will need to complete the general Algorithm 5.3. In this
section we will also discuss the normalization of constraint function values and the
discretization of our domain.

6.3.1 Optimal point

After we have reached convergence criterion in Algorithm 5.3, we return some best
estimate 𝑥∗ of the true optimum input point. The rule proposed in the paper [20]
considers the trade-off between feasibility and the objective function value. We define
the estimate formally in Definition 6.1.

Definition 6.1 (Optimal point in noisy setting, adapted from [20]). The optimal point
x∗ is defined as

x∗ = arg max
x∈X

x
∏︂
𝑗∈𝐽
P[M𝑐 𝑗 (x) ≤ 0]
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where the constraints are modelled using Gaussian processes. Therefore the required
probabilities can be computed using models M𝑐 𝑗 , see Definition 4.4 for the definition
of a model.

6.3.2 Normalization of samples

To improve the performance of the Gaussian process models M 𝑗 , 𝑗 ∈ 𝐽, we normalize
the constraint function samples. For any constraint function value 𝑐 𝑗𝑖 = 𝑐 𝑗 (x𝑖), x𝑖 ∈ X,
we normalize it using a simple centering and scaling normalization according to
Definition 6.2. Normalization of training samples is a common way to help model fit
in supervised machine learning [23].

Definition 6.2 (Normalization of constraint values). Given a set of constraint function
values D𝑐 𝑗 = (X, c 𝑗 ) of size 𝑁 𝑗 for constraint function 𝑐 𝑗 , 𝑗 ∈ 𝐽, normalization is
done by first computing the empirical mean

m 𝑗 =
1
𝑁 𝑗

𝑁 𝑗∑︁
𝑖=1

(c 𝑗 )𝑖

and empirical standard deviation

std 𝑗 =

⌜⃓⎷
1
𝑁 𝑗

𝑁 𝑗∑︁
𝑖=1

((c 𝑗 )𝑖 − 𝑚 𝑗 )2

Using the aforementioned values, we scale the constraint value vector c 𝑗 values

�̄� 𝑗𝑖 =
𝑐 𝑗𝑖 − m 𝑗

std 𝑗
where 𝑐 𝑗𝑖 is the element at index 𝑖 of constraint vector c 𝑗 .

6.3.3 Discretization of domain

The interval [0, 𝑝max] is discretized for the implementation. The discretization is done
uniformly, the step size in the toy problem (Chapter 7) is approximately 0.785 and in
the elevator traffic problem (Chapter 8) it is exactly 0.01. The maximum acquisition
function value AFmax is obtained by simply computing the value for each candidate
point 𝑥 ∈ [0, 𝑝max].

6.4 Software
For practical implementation of the algorithms, we utilize Python [29] alongside
common libraries NumPy [15] and scikit-learn [22]. These provide us with excellent
tools for implementing the algorithms and computing the necessary matrices and other
mathematical structures. The Gaussian process models themselves are implemented
using the GPy library [14], which contains a robust implementation of Gaussian
process modeling and hyperparameter search.
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7 Toy problem experimentation
To find the best model for the original elevator problem, in this chapter we perform an
analysis on the performance of each candidate algorithm when solving an optimization
problem with known constraint and objective functions and whose optimum point is
known. This toy problem, as defined Definition 7.1 should suffice for our first analysis.

Definition 7.1 (Toy problem).

max . 𝑥

such that:
𝑐1(𝑥) ≤ 0
𝑐2(𝑥) ≤ 0

𝑥 ∈ [0, 50/2𝜋]

Where 𝑐(𝑥) = 𝑥
10 sin

(︁
𝑥

10
)︁
+ 5, and the constraints are 𝑐1(𝑥) = 𝑐(𝑥) − 8 and

𝑐2(𝑥) = −𝑐(𝑥) +2. The problem domain is the set X = [0, 50/2𝜋] which is discretized
as described in Section 6.3.3. For the toy problem, we pretend that 𝑐1 and 𝑐2 are
expensive to evaluate and we therefore utilize the framework of Bayesian optimization
to solve the toy problem. In Figure 7.1, we can see geometrically that the constraint
function 𝑐1 restricts us to consider input values whose constraint function value 𝑐(𝑥) is
8, similarly the constraint 𝑐2 restricts us to consider input values where 𝑐(𝑥) is larger
than 2. The constraint function 𝑐 behaves monotonically in the region where 𝑥 ≥ 50,
this is motivated by the earlier discussion in Chapter 6 regarding the monotonicity of
AWT and ATTD values.

From Figure 7.1 we can clearly see that an optimal solution to the toy problem is at
𝑥∗ ≈ 67.4. We can also solve numerically the feasible region for 𝑥 from the constraints
𝑐1, 𝑐2. The approximate feasible regions are

𝑥 ∈ [0, 40.0]
𝑥 ∈ [57.3, 67.4]

The endpoint of the later feasible region is also the global optimum point 𝑥∗.
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Figure 7.1: The function 𝑐(𝑥) = 𝑥
10 sin( 𝑥10 ) + 5 shown in blue, boundary of feasibility

for constraints 𝑐1 and 𝑐2 indicated by dashed red lines and shaded areas. The vertical
dashed blue line indicates the position of the optimal point 𝑥∗.

7.1 Toy experiment setup
To correspond to our original problem, we experiment with having noise in our
constraint function observations. The noise levels are varied to examine how the
magnitude of noise affects the performance of our optimization methods. The constraint
samples 𝑐 𝑗 1 and 𝑐 𝑗 1 are generated according to

𝑐1𝑖 =
𝑥𝑖

10
sin( 𝑥𝑖

10
) − 3 + 𝜖1𝑖

𝑐2𝑖 = − 𝑥𝑖
10

sin( 𝑥𝑖
10

) − 3 + 𝜖2𝑖

for samples 𝑥𝑖 ∈ X. The errors 𝜖1𝑖, 𝜖2𝑖 ∼ N(0, 𝜎𝜖 ) are identically distributed for all
input samples 𝑥𝑖 ∈ X and the noise standard deviation 𝜎𝜖 is the same for both 𝑐1 and 𝑐2.
We experiment with noise standard deviations in the set {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.

As for the kernel used, for most experiments we utilize a basic squared exponential
kernel (RBF kernel, Definition 4.5). However, we do experiment with Matérn kernels
(Definition 4.7) as well.

For each algorithm, NEI, CEI, NCEI, CEI-Mean, NCEI-Mean (Chapter 6), we
perform 50 experiments. A single experiment consists of finding the maximum 𝑥 ∈ X
such that the constraints 𝑐1 and 𝑐2 are satisfied. The initial input samples X are exactly
the same each time, namely {25, 50, 75} ⊂ X. However, the initial constraint datasets
are subject to noise, therefore we have different initial constraint samples in each
experiment. The exact hyperparameters for each candidate algorithm are described in
the Appendix A.1.
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Figure 7.2: The state of the NEI algorithm for a noiseless version of the toy problem.
The blue and orange lines indicate mean of the constraint 𝑗 , 𝑗 = 1, 2 posterior
distribution, shaded areas are 95% confidence bands for each constraint. Blue and
orange crosses indicate training samples for that iteration of constraint GP models.
Feasible constraint region is below the black line of 𝑐𝑖 (𝑥) = 0.

Figure 7.2 illustrates the NEI optimization algorithm in the noiseless toy problem
setting. We can note that the blue Gaussian process posterior distribution is similar
in shape to the real constraint 𝑐1, at least near the training sample points. This
indicates that the NEI algorithm, in conjunction with the Gaussian process kernel
hyperparameter search, has found suitable Gaussian process models for the constraint
functions 𝑐1 and 𝑐2.

7.2 Toy experiment results
To analyze the results of the toy problem, we use a couple of different metrics. We
will use the difference to optimum, as defined in Definition 7.2, as our most important
metric in analyzing the performance of the different optimization methods. We will
also examine how difference to optimum, root-mean-square error, iteration count, and
optimization time change depending on the level of noise in our samples.

Definition 7.2 (Difference to optimum). The difference to true optimum point 𝑥∗ by
an estimated optimum �̂�∗ is defined to be 𝑥∗ − �̂�∗.

Definition 7.3 (Root-mean-square error). The root-mean-square error of a set of
differences to optimum d ∈ R𝑁 is ⌜⃓⎷

1
𝑁

𝑁∑︁
𝑖=1

d2
𝑖
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7.2.1 Non-noisy observations

We will first examine how the algorithms perform under non-noisy samples. In other
words, in the case of 𝜎𝜖 = 0.
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Figure 7.3: Boxplot of the difference of estimated optimum �̂�∗ to correct optimum
point 𝑥∗ for different algorithms in a noiseless toy problem. Note that due to not
having any deviation, the boxes are displayed as just the median lines in green. The
distributions are computed from 50 experiment repetitions.

As we can see from Figure 7.3, the difference to the optimal point (Definition. 7.2)
is the same with every algorithm across the 50 experiments. Regarding difference to
optimum, they behave identically in a noiseless setting. The positivity of difference to
optimum means that they all underestimate the optimum point 𝑥∗ by approximately
0.682. Furthermore, the estimate of the optimum is the best possible since the next
point from the estimate, when taking discretization into account, is already an infeasible
point.
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Figure 7.4: Boxplot of the number of iterations in a noiseless toy problem setting.
Note that since the standard deviation of the results is 0, we simply have the median
line for each algorithm displayed. In other words, the boxes in our boxplots have
heights of 0. The distributions are computed from 50 experiment repetitions.
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From Figure 7.4, we note that the number of iterations is the same for all algorithms
in the noiseless setting. Therefore, the computation time it takes for the algorithms to
complete is the only metric which we can use to separate them from each other.
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Figure 7.5: Relative time taken for algorithms to terminate in a noiseless setting. The
distributions are from 50 repetitions. Median is displayed with the green line. Boxes
correspond to lower and upper quartiles. Whiskers are displayed to the datapoints at
most 1.5 times the interquartile range (distance between 3rd and 1st quartile) from the
edges of the box. Outliers are datapoints to be over 1.5 times the interquartile range
from the edges of the box.

Figure 7.5 displays the number of seconds taken to solve the noiseless toy problem.
We can see that NEI algorithm takes the longest to complete, this can be explained by
the fact that NEI is computationally heavy when compared to the other algorithms
[11, 20].
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7.2.2 All noise levels
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Figure 7.6: RMSE (Definition 7.3) as function of sample noise standard deviation
𝜎noise. 50 experiments for each algorithm and noise value.

When moving to the noisy observations, things become more interesting. The
difference to optimum, while still close to 0, begins to fluctuate as we increase the
level of noise. The root-mean-square error depicted in Figure 7.6 indicates that the
NEI algorithm performs the best in terms of the root-square-mean error when there
is a high level of noise. NCEI-Mean algorithm also works comparatively well under
high noise.
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Figure 7.7: Median number of iterations needed for convergence for different noise
levels 𝜎noise. 𝐶𝑁 = 64 is the upper limit for number of iterations. 50 experiments for
each algorithm and noise value.
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However, things are not as straightforward with the number of iterations. For ex-
ample the NCEI-Mean algorithm exhibits bad behaviour when it comes to terminating,
the iteration count is often the maximum allowed iteration count (64 iterations). All of
the other algorithms except NCEI-Mean perform similarly well in this regard. Figure
7.7 illustrates this phenomenon.
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Figure 7.8: From the 50 samples, the median of the maximum acquisition function
value for different algorithms as a function of the iteration progress, 𝜎noise = 2.0. Note
that for already terminated algorithms, we place 0 as the AF value in the figure.

The bad termination behavior of NCEI-Mean algorithm is also illustrated in Figures
7.8 and 7.9. The acquisition function value does not converge for NCEI-Mean very
well. However, other algorithms converge quite well, even in a noisy setting.
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Figure 7.9: Boxplot of iteration count for different algorithms computed from the 50
repetitions. Noise level 𝜎noise = 2.0. Median is displayed with the green line. Boxes
correspond to lower and upper quartiles. Whiskers are displayed to the datapoints at
most 1.5 times the interquartile range (distance between 3rd and 1st quartile) from the
edges of the box. Outliers are datapoints to be over 1.5 times the interquartile range
from the edges of the box.

From this analysis, we can clearly see that the best performing algorithms is NEI.
NCEI, and CEI are quite error prone in high noise cases. The mean corrected NCEI
(NCEI-Mean) is quite accurate, but struggles with convergence as stated previously.
In this light, it is best to use the NEI algorithm as the main subject of study when
moving to the actual elevator problem.
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Figure 7.10: Root-mean-square error for Matérn kernel with 𝜈 = 3/2. 50 experiments
for each algorithm and noise value.
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Figure 7.11: Root-mean-square error for Matérn kernel with 𝜈 = 5/2. 50 experiments
for each algorithm and noise value.

As an additional study, we replace the previously used RBF kernel with a once or
twice differentiable Matérn kernel (Definition 4.7). Figures 7.10 and 7.11 illustrate
the fact that we can get comparable results with a Matérn kernel instead of RBF. We
also note that the performances of the optimization methods were comparable to ones
with RBF kernel in all relevant aspects.
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8 Elevator problem results
As we saw with our toy problem there are many factors to consider when comparing the
different optimization algorithms. However, the performance of the NEI algorithm was
overall good and the algorithm could handle high noise scenarios as well. Therefore, in
this chapter we will mainly use the NEI algorithm to optimize the real traffic intensity
using the simulator [27].

Recalling the original problem, we have the following optimization problem for
the intensity 𝑝

max . 𝑝

such that:
𝑇AWT(𝑝, 𝑆, 𝑀) ≤ 𝐶𝐴𝑊𝑇
𝑇ATTD(𝑝, 𝑆, 𝑀) ≤ 𝐶𝐴𝑇𝑇𝐷

𝑝 ∈ R+ ∪ { 0 }
fixing the elevator system 𝑆 and traffic mix 𝑀 , the simulator is used to estimate AWT
and ATTD for the different intensities 𝑝.

For the main study in this Chapter, we utilize a 2-hour simulation with a traffic
profile consisting of 40% outgoing, 40% ingoing, and 20% interfloor traffic. From the
2-hour simulation time, we will cut a 15-minute interval from the beginning and a
5-minute interval from the simulation data, as described in the standard [1].

The simulated building has 13 floors (12 tenant floors and 1 entrance floor) and 4
elevator shafts and elevators. The simulated elevator control system is a conventional
control system, which allows users to call elevators based on direction of travel and
then indicate the destination floor from inside the elevator car. The exact building
parameters and elevator parameters are described in [13] under the L4 configuration.

After obtaining the main results using the NEI algorithm, we will examine how
different variables affect the optimization performance and results. The characteristics
which we will change are the length of the simulation, maximum intensity 𝑝max, the
ATTD limit 𝐶ATTD, and the Gaussian process kernel used in modeling the constraints.
More information about the case studies are in the relevant sections. The case studies
will provide us valuable information about the sensitivity of the NEI algorithm in our
particular elevator setting when it comes to certain key variables.

8.1 Comparison of selected algorithms
We compare how NEI, NCEI, CEI, and CEI-Mean algorithms performed in terms of
their optimal point estimate, iteration count and computation time taken. The main
experiments were performed by tasking each algorithm to optimize intensity 𝑝 with
limits 35 and 50 for AWT and ATTD respectively, 𝐶AWT = 35, 𝐶ATTD = 50. The range
of intensity percentage values considered was 𝑝 ∈ [0, 20] with discretization step
size of 0.01 as described in Section 6.3.3. Stopping criterion of each algorithm was
AFmax ≤ 𝐶AF with 𝐶AF = 0.05. Exact hyperparameter ranges for different algorithms
are in the Appendix A.2. For each algorithm, we performed the main experiment 5
times and the results of those experiments are referred to as baseline results.
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Figure 8.1 shows the number of iterations needed for algorithm stopping. We can
see that the NEI and NCEI algorithms have the lowest iteration count. Looking at the
optimization problem solutions in Figure 8.2, we can see that NCEI algorithm does
not agree with the rest of the algorithms as to what is the best possible intensity 𝑝.
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Figure 8.1: Number of iterations for different algorithms, 5 optimization runs per
each.

CEI CEI-Mean NCEI NEI

7.5

10.0

12.5

15.0

17.5

20.0

O
p
ti
m

al
 p

 e
st

im
at

e

Figure 8.2: Plot of the estimated optimal intensity 𝑝 in the 5 repetitions of the baseline
experiments.

Because we do not know the perfect optimum intensity for the L4 building, we
must rely on statistical methods for determining whether our algorithms find a suitable
intensity value. This is done by running the simulator at some intensity 𝑝 + 𝛿 where
𝛿 ∈ { 0, 0.1, 0.5, 1.0, 2.0 } and 𝑝 is the estimated optimum intensity obtained using
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one of the algorithms. In other words, we increase the traffic intensity 𝑝 by a small
or large amount relative to the estimate of the optimal value and examine the AWT
and ATTD values obtained from running the simulator at those new intensities. From
those samples we compute a validation percentage as defined in Definition 8.1.

Definition 8.1 (Validation percentage). From validation dataset D𝛿
𝑉

containing N
samples of AWT and ATTD,

D𝛿
𝑉 = (yAWT, yATTD)

computed using a simulation at intensity 𝑝 + 𝛿, we can define the validation percentage
as being the ratio

1
𝑁

𝑁∑︁
𝑖=1

1((yAWT)𝑖 ≤ 𝐶AWT and (yATTD)𝑖 ≤ 𝐶ATTD)

In other words, we empirically estimate if 𝑝 + 𝛿 is also a feasible intensity value.

In the baseline experiments, for each of the 5 optimization runs, after estimating
the optimal intensity value 𝑝 the validation was run for 10 iterations for each of the
𝛿 values. Using those 𝑁 = 10 AWT and ATTD values, we compute a validation
percentage for each 𝛿.
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Figure 8.3: Validation percentage as a function of 𝛿 for different algorithms. 50
samples per 𝛿-value; 5 optimization runs with 10 validation samples each equals 50
samples for single algorithm and 𝛿 value.

Figure 8.3 shows the validation percentage for each of the algorithms. One
immediate observation is that for the NCEI algorithm, the validation percentage is
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0 for all 𝑝 + 𝛿 values and even for 𝛿 = 0. Therefore, there is significant statistical
evidence to support the conclusion that NCEI does not find a suitable intensity.

From the same figure we can clearly see that the other algorithms performed quite
well. The validation percentage for the estimated optimal 𝑝 is at least 44% and when
increasing 𝑝 by 1 percentage-point, the validation percentage decreases. This shows
that we can quite clearly estimate the optimal 𝑝 value quite adequately, because the
immediate neighbourhood in the positive direction of estimated optimal 𝑝 is infeasible.

However, Figure 8.3 also shows that increasing 𝑝 by 0.1 percentage-point, also
gives us a good estimate for optimal 𝑝. This indicates that while we do find the
correct neighbourhood for optimal 𝑝, we do not have a fully accurate estimate of the
true optimal intensity. This is nonetheless expected since it would be impossible to
determine the absolutely optimal value using noisy estimates for AWT and ATTD
values.
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Figure 8.4: Plot of the relative time taken to find optimal sampling points for different
algorithms. 5 repetitions for each of the algorithms.

Finally, to get a better understanding of the different algorithms, we examine
runtime taken for each algorithm to arrive at the estimate of optimal 𝑝. Figure 8.4
illustrates how NEI algorithm takes the longest time to find next sampling point.
However, as we can see from 8.5, NEI is still competitive in terms of the total
optimization time taken. The total time is the time taken to find each suitable sampling
point combined with the time it takes for the simulator to simulate the traffic for the
proposed intensities.
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Figure 8.5: Plot of the relative total time taken in for different algorithms. 5
independent repetitions for each algorithm.

In conclusion, from the baseline results we can see that the NEI algorithm performs
adequately for our purposes. NEI is computationally most expensive but in terms of
the total time taken it is still competitive. NEI also has one of the lowest iteration
counts which is important since we want to find the optimum with as few samples
as possible. The solution NEI algorithm finds is also often a good approximation of
the optimal intensity and the variance of the results between experiments is low. We
therefore focus our next case studies to the NEI algorithm and disregard the other
examined algorithms CEI, NCEI, and CEI-Mean.

8.2 Case studies
After examining the baseline results, we move onto a series of case studies using the
NEI algorithm. These case studies primarily include changing some aspect of the
algorithm or simulation setup and we will see how sensitive the NEI optimization
algorithm is to various changes.

More specifically, we first examine the effect that shortening the simulation time
has on the optimization. This is done to see whether we can decrease the simulation
time and still have comparably good optimization results when compared to longer
simulations. After that we change the upper bound 𝑝max of the domain [0, 𝑝max] and
see how sensitive the NEI algorithm is to changes in the optimization region.

We also examine the effect of changing the ATTD limit has on the optimization.
Changing of the ATTD limit also has the effect of changing the active constraint to be
the one set in the standard [1] for AWT (𝐶AWT).

Finally, we examine whether changing the RBF kernel to a once or twice differ-
entiable Matérn process kernel has any effect on the optimization performance. Our
experiments with the toy model revealed that it might not affect the results significantly,
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however examining that result in the traffic intensity context is an interesting exercise
nonetheless.

8.2.1 Shorter simulations

For the baseline results, we utilized a 2-hour simulation time, of which we again
removed 15 minutes from the start and 5 minutes from the end as specified in [1]. This
case study examines the effect of reducing the simulation time on the optimization
result and performance. In addition to the baseline 2-hour simulation, we experiment
with 1-hour and 30-minute simulations.
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Figure 8.6: Plot of the estimate of optimal intensity 𝑝 as a function of the simulation
time. Sampled from 5 independent experiments.

Figure 8.6 illustrates the effect of shortening the simulation time on the estimated
optimum intensity 𝑝. From the figure we can clearly deduce that lowering the simulation
time increases the standard deviation of the optimization estimate. Intuitively, when
simulating for a longer time we can obtain a better estimate of the AWT and ATTD for
a given 𝑝 and this decreases the variance in our optimization results. Figure 8.6 also
illustrates another phenomenon, namely the mean of the estimates for the optimal 𝑝 is
lower when simulating for a shorter time. This could be because when having more
noisy samples for the ATTD and AWT values, the NEI algorithm is more conservative
in the optimal point discovery as defined in Definition 6.1.
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Figure 8.7: Plot of the iteration count for different simulation times. Sampled from 5
independent experiments.

From Figure 8.7 we can see that decreasing the simulation time increases the mean
iteration count. Again, this is intuitively clear as decreasing the simulation time will
increase the noise in our samples for ATTD and AWT. Therefore, the NEI algorithm
has to compensate by examining more of the search space and with more samples and
this increases the iteration count.
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Figure 8.8: Validation percentage for different simulation times. Computed across 5
experiments with 10 validation samples for each 𝛿 in each experiment.

Figure 8.8 illustrates the effect of having shorter simulations on the validity of the
estimated optimum intensity 𝑝. The figure indicates that for shorter simulation times,
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the NEI algorithm tends to be more conservative. We suspect that this might be the
result of having more noise in the Gaussian process models. Referring to optimal point
definition (Definition 6.1), we can say that since the samples generated by shorter
simulations are more noisy, the models M𝑐AWT ,M𝑐ATTD have a larger uncertainty for
the value of the constraint functions 𝑇AWT and 𝑇ATTD. In other words, the posterior
processes 𝑇AWT |DAWT and 𝑇ATTD |DATTD have a variance function which predicts
larger variances for each input point 𝑥 ∈ X.

An alternative explanation is that for short simulations, the simulation has not
reached an approximate steady state. Removing the first 15 minutes from the
calculations might not be enough to start obtaining steady-state estimates for AWT
and ATTD from the simulation. This is not a problem for a longer simulation, because
even if 15 minutes is not enough, we still obtain a reasonable number of steady-state
estimates. Those samples are then averaged to estimate the AWT and ATTD values
which are good enough approximations of the true steady-state values.

8.2.2 Changing upper bound for optimization domain
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Figure 8.9: Boxplot of optimal 𝑝 estimate according to NEI algorithm for different
upper bounds for range of intensity 𝑝. The ranges are [0, 20] and [0, 30]. Computed
across 5 experiments.
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Figure 8.10: Validation percentages for instances of NEI algorithm with different
upper bounds for 𝑝, 𝑝 ∈ [0, 𝑝max]. Computed across 5 experiments with 10 validation
samples for each 𝛿 in each experiment.

Increasing the higher bound allows us to see how well the NEI algorithm performs
when the searchable space is bigger. More specifically, in this case study we replicate
the same setup as with baseline results beside changing the percentage range upper
bound to either 10, 20 or 30. We also change the inital grid of {4, 16} to only contain
a single element {4}, this is done to make sure that the initial grid is contained in the
optimization domain.

Figure 8.9 illustrates that compared to the baseline results, we obtain a higher value
for the estimated optimal intensity 𝑝. Figure 8.10 shows the validation percentage as a
function of the domain upper bound. From that figure, we find that the higher values
for the optimal intensity are infeasible intensities since the percentage of AWT and
ATTD samples being under the limits is under 25% for the high estimated optimal
intensity values.

We also note that the iteration count median is 8 for the baseline result using
[0, 20] and 2 for the range [0, 30]. This indicates that the NEI algorithm does not
optimize well for the higher bound case. The worse convergence is explained by the
phenomenon of the AWT and ATTD samples increasing fast as we increase 𝑝. This
corresponds to the phenomenon of the elevator system not being able to handle the
traffic as traffic intensity 𝑝 increases enough, causing very high AWT and ATTD
values.

8.2.3 Changing ATTD limit

In this case study, we change the average time-to-destination limit. We experiment
with 𝐶ATTD = 70, 𝐶ATTD = 90, and 𝐶ATTD = 110 in addition to the baseline result
made with 𝐶ATTD = 50.
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Figure 8.11: Effect of changing ATTD limit on the optimal intensity 𝑝 estimate. 5
independent repetitions for each limit value.

From Figure 8.11, we can see that the optimal intensity increases as we increase
the ATTD constraint 𝐶ATTD. Also from Figure 8.12 we can see the transfer of
active constraint from ATTD to AWT. By active constraint we mean the constraint
which limits the intensity value 𝑝 from increasing further. Mathematically, an active
constraint 𝑐 satisfies 𝑐(𝑥) = 0 for the optimal value 𝑥.

With 𝐶ATTD = 50, 𝐶ATTD = 70, the active constraint is ATTD according to Figure
8.12. The increase of optimal 𝑝 can be explained by the fact that increasing ATTD
limit changes the active constraint from ATTD to AWT as displayed in the figure.
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Figure 8.12: Effect of changing𝐶ATTD on which constraints are active. The datapoints
are AWT and ATTD values sampled using estimated optimal intensity 𝑝. The points
are gathered from 5 separate experiments with 10 repetitions each for a single ATTD
limit. 𝑥-axis represents the difference of𝐶AWT and the AWT value at estimated optimal
intensity 𝑝. 𝑦-axis shows the same quantity for ATTD.

From Figure 8.12 we can however note that the NEI algorithm is more conservative
when both AWT and ATTD constraints are close to being active. The dataset
corresponding to 𝐶ATTD = 90 illustrates this phenomenon by not being close to either
of the axis.
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8.2.4 Kernel comparison
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Figure 8.13: Plot of the optimal 𝑝 estimate with different kernels. 5 experiments with
each kernel.

We also examine the effect changing the kernel function has on the result of the NEI
optimization algorithm. Previously we utilized the RBF kernel (Definition 4.5), this
case study examines optimization performance when utilizing a Matérn kernel with
𝜈 = 3/2 and 𝜈 = 5/2, Definition 4.7. Note that we keep the bounds on the specific
hyperparameters the same as with RBF kernel, since the Matérn kernels have similar
hyperparameters as the RBF kernel [23, 7].

Figure 8.13 illustrates the effect of changing the kernel used in the NEI algorithm.
We can see that the Matérn kernel corresponding to a once differentiable process
causes the estimate for optimum 𝑝 to have a larger variation than the RBF and the
twice differentiable Matérn kernels.

8.3 Validation building
As a final analysis tool, we analyze a similar building but with 8 lifts and see how our
NEI optimization algorithm performs under new building data. The exact building
and elevator parameters are described in [13] as L8. This serves as validation of our
NEI algorithm since most of the development and previous testing was done using the
L4 case including the baseline results.

As before, we optimize 5 times the intensity 𝑝 with AWT and ATTD targets of 35
and 50 seconds respectively. The total simulation time is 2 hours and we remove 15
minutes from the start and 5 minutes from the end for AWT and ATTD calculations,
as previously. The NEI algorithm hyperparameters are kept the same and we optimize
the intensity within the percentage range [0, 20]. The discretization step is 0.01 and
the initial sampling grid is {4, 16}, as in the baseline experiments for L4.
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We examine the same metrics: optimal intensity 𝑝 estimate, iteration count, total
seconds taken, and validation percentage (Definition 8.1). We compare the new L8
results to the baseline results (also referred to as L4) to conclude whether or not the
NEI algorithm performs as adequately in the new building environment.
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Figure 8.14: Plot of optimal estimated intensity 𝑝 for baseline (L4) and validation
(L8) buildings, 5 experiments in each case.

We begin by examining Figure 8.14 which displays the optimal 𝑝 estimate for
both baseline and validation buildings. The figure illustrates clearly that the NEI
algorithm estimated the optimal intensity being quite similar for both buildings. There
is a single outlier optimization iteration for L8, which did not converge to a correct
estimate. However, the rest of the iterations did converge to a similar estimate for
optimal intensity with both building types.

Furthermore, examining the iteration counts in Figure 8.15, we can conclude the
NEI algorithm having a very similar performance in that regard. The iteration counts
are very similarly located and have a similar spread. L8 has a slightly larger min-max
range, however this is probably due to the inherent randomness in the NEI algorithm
and the simulation samples.
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Figure 8.15: Plot of the iteration counts for baseline (L4) and validation (L8) buildings,
5 repetitions for both buildings.

0.
0

0.
1

0.
5

1.
0

2.
0

δ

0

20

40

60

80

100

V
al

id
at

io
n
 p

er
ce

n
ta

ge

Configuration

L4

L8

Figure 8.16: Validation percentage (Definition 8.1) forL4 andL8 buildings. Computed
across 5 experiments with 10 validation samples for each 𝛿 in each experiment.

To validate the estimated optimal 𝑝 being a good estimate of the optimal intensity,
we can use Figure 8.16 which shows the validation percentage for both cases. The
figure illustrates the fact that for both buildings, the NEI algorithm can find a good
estimation of the optimal intensity. NEI algorithm returns a bit more pessimistic
estimate for L8, since for example the validation percentage for 𝛿 = 0.5 is 20 per cent.
However, the validation percentage for 𝛿 = 1.0 is very low. Indicating that while being
perhaps a little conservative, the estimate for the L8 building is a good approximation
of the true optimal intensity.
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9 Discussion of results
In this section, we critically examine the results obtained in Chapters 7 and 8 and
propose some solutions to the problems discovered alongside suggestions for further
research. The main method for finding interesting details is to compare and combine
results from both the toy problem and traffic intensity problem.

From the baseline results, we note that the NEI algorithm can be used as to
find the optimal traffic intensity. It performed excellently in terms of the validity
of the estimated optimal intensity while providing a competitive total computation
time. Furthermore, compared to some of the other algorithms, NEI had a very stable
performance in terms of iteration count. The NEI algorithm could also be used with a
different building and elevator system, resulting in a very similar performance as seen
in the validation case study.

However, the behaviour of the NEI algorithm is affected by the some of the problem
parameters. The algorithm seems to struggle when the optimization region contains
some traffic intensities which cause the elevator simulation to give very large values
for AWT and ATTD, multiple times the limits 𝐶AWT, 𝐶ATTD. Therefore, to use the
optimizer the domain of the optimization should be set appropriately to not contain
such regions. One approach would be to first use some set of initial simulations and then
use the NEI algorithm once a suitable region for the optimization has been identified.
Alternatively, the use of domain knowledge could be used to set the boundaries of the
optimization appropriately.

One other fact can be made evident from the ATTD limit case study. Namely, the
NEI algorithm was more conservative in cases where both ATTD and AWT constraints
were close to active. Therefore, in the case where both ATTD and AWT for estimated
optimal intensity are close to the limit, we might underestimate the optimal intensity
value. In these kinds of situations, the estimated value for optimal intensity might be
increased manually to a more appropriate level, with the help of further validation
simulations. However, this does require some domain knowledge of the problem and
more computation time.

The length of the simulation also had an effect on the performance of the NEI
algorithm. With a shorter simulation, the algorithm gave a more conservative estimate
for the optimal intensity on average, however the results had a larger deviation as well.
Therefore, the algorithm can be used with a shorter simulation but could give results
which are not as reliable. Also the number of iterations increased, resulting in more
computation time. This phenomena can be intuitively explained as when the length
of the simulation is lower, the estimates for AWT and ATTD have a larger variation.
These samples are then used by the optimizer which has to account for the increase in
variation when fitting the Gaussian process models.

An alternative explanation for the worse performance with shorter simulations
can be conjured by examining the stopping criterion. It is possible that the chosen
cutoff value 𝐶AF is too large to allow the NEI algorithm to find a good estimate of the
maximum intensity. Further experiments with different values for 𝐶AF should be to
confirm which of the two proposed explanations is closer to reality.

One other aspect which should be investigated further is the affect of the kernel
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on the performance of the algorithm. Specifically, the Matérn kernel for once-
differentiable processes did not yield similar performance as the RBF kernel or the
Matérn kernel for twice-differentiable processes. This indicates that the smoothness
of the models for 𝑇AWT and 𝑇ATTD is possibly a key attribute when utilizing the NEI
algorithm in the elevator traffic optimization setting. However, since this behaviour
was not exhibited in the context of the toy problem, further research is needed to
identify the real cause of this phenomena.

Another interesting result can be found by analyzing both the toy problem results
and the traffic intensity problem results together. Specifically, we note that the CEI
algorithm performed very similarly to the NEI algorithm in terms of its iteration count
in the context of the toy problem, however the CEI algorithm performed poorly in that
aspect when used in the traffic intensity problem. On the other hand, the estimates
for the optimal intensity obtained using CEI were very similar to the ones obtained
by CEI, even with the high iteration count. This indicates that CEI can provide a
comparably good estimate for the optimal traffic intensity, if allowed to iterate longer
than NEI.

Noting that CEI and NEI are both good algorithms for the two examined problems,
NCEI-Mean exhibited bad performance in the context of the toy problem. This is
mainly due to the high iteration count of the algorithm, exemplified by the fact that the
iteration count often exceeded the allowed maximum of 64 iterations. However, the
resulting estimate after the iteration ended was still a comparably good estimate of the
true optimum point. An interesting exercise would be to use NCEI-Mean in the traffic
intensity problem.

One final thing of note is the discrepancy between the estimate of the optimal
intensity and the validation percentage, Figure 8.2 and Figure 8.3. Aside from NCEI,
the other algorithms found similar estimates for the optimal intensity, however there is
significant differences in the validation percentages for those algorithms. A simple
explanation can concluded from the fact that the validation percentages are computed
from noisy AWT and ATTD samples. Therefore, there are some uncertainties with the
validation percentage results, especially with the relatively low repetition count of 10
samples.

On the other hand, another explanation could be that even small changes in the
estimated maximum intensity cause the validation AWT and ATTD samples to be
infeasible. In other words, some algorithms find a slightly more optimistic estimate of
the optimum intensity, resulting in more of their validation samples being infeasible. A
more careful analysis of the validation results and using longer validation simulations
could be used to resolve this issue.

In conclusion, we have discovered some relevant constraints and weaknesses of
the NEI algorithm alongside with interesting phenomena to study further. We also
examined the performance of other candidate algorithms and found both strengths and
weaknesses of the other candidate algorithms. We also expanded on some issues with
our methodology which could affect our results and proposed further experiments to
alleviate the problems.
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10 Conclusion
We began this thesis by discussing the problem of elevator planning for office buildings.
Through that discussion and by examining standards related to the area of elevator
planning, we selected relevant metrics for designing a building for a given occupancy
population. The relevant metrics were the average waiting time (AWT) and average
time-to-destination (ATTD).

From the general problem of elevator planning, we formed a simplified inverse
problem of finding maximum traffic intensity for a given building and elevator system,
which satisfies some AWT and ATTD limits. We also discussed the process of using a
simulator to estimate AWT and ATTD values for a given elevator system and building.

Then, we mathematically formalized the problem of finding a maximum traffic
intensity. The mathematical formalism of our problem is a Bayesian optimization
problem with expensive-to-evaluate constraints. From the theory of Bayesian op-
timization with Gaussian processes, we picked up crucial elements into our final
optimization method, such as the expected improvement acquisition function.

In our implementation of the algorithms, we modified them to suit our particular
optimization problem. Since the objective function is trivial, our implementations
of the algorithms does not model them using a Gaussian process. We also added
special considerations to handle noisy constraint function samples in implementing
algorithms which did not take noise into account originally.

After implementing the various candidate algorithms according to literature and
our specific problem setting, we tested them using a relevant toy problem with a trivial
objective function and constraints which we pretended were expensive-to-evaluate.
We also formed the constraints to have hopefully a similar structure to the elevator
problem constraints, at least in terms of their monotonicity after a certain point. By
analyzing the results from the toy problem, we eliminated some unsuitable algorithm
candidates.

Using the remaining candidate algorithms and a suitable virtual test building,
we produced optimization results for the maximum traffic intensity. We analyzed
various metrics and came to the conclusion that the NEI algorithm performed the best
overall. We performed a series of case studies using the NEI algorithm to analyze the
sensitivity of the algorithm changes in certain parameters.

The case studies proved that the NEI algorithm is adequately good at adapting
to changes in the problem setup. However, we found that in some circumstances the
algorithm did not perform as well as in the baseline case. The NEI algorithm struggled
in cases where for example, we included traffic intensity values which resulted in high
the AWT and ATTD values.

As a final experiment, we used another building and elevator setup with the
simulator to see how well the NEI algorithm generalized. From our results, we could
note that the NEI algorithm performed well when using a new building. This indicates
that the NEI algorithm is a suitable method to find the maximum traffic intensity with
different elevator systems and buildings.

Using the results gathered from both the toy problem and the problem of finding
the maximum intensity, we discussed some of the problems and constraints with the

68



NEI algorithm. Moreover, we also found some interesting phenomena, which could
be interesting to research further. Some problems with our analysis methodology were
also discussed.

Looking back at our research questions, we have discovered a mathematical
definition for the problem of finding the maximum traffic intensity. We also found a
reasonably robust method for solving the problem using a low number of simulation
samples.
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A Algorithm hyperparameters
This appendix contains information about the hyperparameters used in the different
Bayesian optimization algorithms. See Chapter 6 for the implementation details of the
various algorithms.

A.1 Toy problem
For the toy problem, described in Chapter 7, we will utilize the following hyperpa-
rameters as described in Table A1.

Algorithm 𝐶𝑁 K M 𝛿 𝐶AF 𝜎
stability
𝜖 𝜎min

𝜖 𝜎max
𝜖

NEI 64 32 100 - 0.001 10−6 10−6 100
CEI 64 - - - 0.001 10−6 0 0

NCEI 64 - - - 0.001 10−6 10−6 100
CEI-Mean 64 - - 0.05 0.001 10−6 0 0

NCEI-Mean 64 - - 0.05 0.001 10−6 10−6 100

Table A1: Hyperparameter values for different algorithms.

Table A1 contains 4 different parameter values for the different algorithms. 𝐶𝑁
refers to the numberof maximum iterations during the Bayesian optimization algorithm.
For the NEI algorithm, 𝐾 number refers to the number of estimates made with the
Sobol sequence. Also, 𝑀 refers to the parameter which describes the explore-exploit
ratio in the case with having no feasible samples in the NEI algorithm. For 𝐾 and 𝑀
parameters, see Chapter 6 for more information. 𝛿 refers to the culling of possibly
unfeasible samples made in the CEI-Mean and NCEI-Mean algorithms. The 𝐶AF
refers to the stopping criterion cutoff point as described in Chapter 6.

Finally, the different 𝜎 parameters refer to the process of fitting a Gaussian process
model. The 𝜎stability

𝜖 is a value which is added to the covariance matrix of a Gaussian
process model as described in Section 4.2. It is used to improve the numerical stability
of the posterior distribution calculation. The two remaining parameters, 𝜎min

𝜖 and
𝜎max
𝜖 , are the limits of the fitted noise value. In other words, the fitted noise value 𝜎𝜖

should be within those bounds. See Algorithm 4.1 for more details.



A.2 Elevator problem
The hyperparameters used in the elevator problem are displayed in Table A2. They
are similar to the ones used in the toy problem (Table A1). One significant difference
is the increase of the cutoff value for the acquisition function from 0.001 to 0.05. We
also increased the maximum noise bound 𝜎max

𝜖 to include very high noise levels in
applying the algorithms to the elevator problem.

Algorithm 𝐶𝑁 K M 𝛿 𝐶AF 𝜎
stability
𝜖 𝜎min

𝜖 𝜎max
𝜖

NEI 64 32 100 - 0.05 10−6 10−6 109

CEI 64 - - - 0.05 10−6 0 0
NCEI 64 - - - 0.05 10−6 10−6 109

CEI-Mean 64 - - 0.05 0.05 10−6 0 0

Table A2: Hyperparameter values for different algorithms used in solving the elevator
problem.
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