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Abstract
The recent increase in the accessibility of machine learning resources has led many
to explore machine learning methods in music generation. A subfield of machine
learning that has seen a particularly significant rise in popularity is deep learning.
However, many model-application combinations in the field still remain unexplored.

In this thesis a sequence to sequence transformer model’s ability to generate
complementary instrument tracks for existing instrument tracks was investigated. The
model was implemented and analyzed in order to assess whether it is able to generate
instrument tracks that together with the original piece make coherent music. Although
the results that the implemented model generated were not adequate for any real-life
applications, indications for the model’s viability for such applications were found, if
a larger amount of resources is used and more research is conducted.
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Tiivistelmä
Koneoppimiseen tarvittavien resurssien saatavuuden kasvu on lisännyt koneoppimis-
metodien suosiota myös musiikin generoinnissa. Erityisen paljon suosion kasvua on
saanut koneoppimisen alakategorioista syväoppiminen. Siitä huolimatta moni mallin
ja käyttötarkoituksen yhdistelmä on vielä tutkimatta.

Tässä opinnäytetyössä tutkittiin sekvenssiparitransformerin kykyä tuottaa täy-
dentäviä instrumenttiraitoja olemassaolevalle instrumenttiraidalle. Työssä toteutettiin
malli, jonka generoituja tuotoksia analysoitiin etsien vastausta kysymykseen siitä,
kykeneekö malli tuottamaan instrumenttiraitoja, jotka aiempien instrumenttiraitojen
kanssa ovat yhdessä koherentti kokonaisuus. Vaikka tulosten perusteella malli ei ollut
riittävä käyttötarkoituksiin todellisissa sovelluksissa, merkkejä mallin kelpoisuudesta
tällaisiin sovelluksiin oli nähtävissä, mikäli kehitystyöhön panostetaan lisää.

Avainsanat koneoppiminen, syväoppiminen, optimointi, musiikki, generoiva malli
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1 Introduction
Music generation is a relatively under-advertised area in machine learning, compared
to other domains such as text and image generation, translation, speech-recognition and
more. However, even music generation has been affected by the increasing popularity
of deep learning applications in all machine learning [1]. State of the art music
generation models are massive deep learning models that are able to generate whole
coherent human-like songs purely in audio domain, either from nothing or from a
conditioning such as text-prompt [1] [2] [3].

The Deep Learning methods in music generation include many varying types
of models. Feed-forward networks, both fully connected and convolutional, have
been used as parts of models in music generation. Recurrent neural networks such
as long-short-term memory networks, as well as generative adversarial networks,
variational autoencoders, transformers and diffusion models all have been shown to
work in specific music generation tasks.

Other machine learning methods besides Deep Learning have been widely used
as well for generating music. A Markov chain model can be used to calculate the
conditional probability of the next musical element, given previous elements, and is
therefore suitable to add continuation or additional layers to an existing piece of music.
A genetic algorithm can be used to modify an existing music piece to another style, by
defining the chromosomes as pieces of music and the genes as musical elements and
creating a suitable fitness function that the algorithm uses to converge towards the
new style. To add complexity, these kinds of models can be combined with different
types of models, e.g. neural networks, to create increasingly sophisticated models. [1]

Transformer models have recently been one of the most popular and successful
machine learning model types for their unparalleled parallelization applications and
the ability to find long-term dependencies in sequences. They have thrived in many
fields of machine learning, including natural language processing, computer vision,
speech recognition and more. [4] Notably, currently some of the most well-known
models in the field such as GPT [5] and BERT [6] models are versions of transformer
models. However, transformer models have been utilized relatively little in music
generation compared to many other methods. A review of music generation methods,
which includes peer-reviewed papers concerning music generation from the years 2017
to 2021, listed only ten studies that utilized transformer models. The most common
generation model type was a traditional RNN model, that amounted to 52 papers out
of the total of 136 [1].

The objective of this thesis is to explore the capabilities of a sequence to sequence
transformer model in generating an additional music track to an existing set of tracks
in symbolic domain. The task is analogous to a traditional translation task, but the
language to translate from is "music with a set of instruments" and the language
to translate to is "complementary music with an other instrument". These kinds of
sequence to sequence translation tasks are traditionally performed by an encoder-
decoder transformer model, as in the original transformer paper [7], and the model
implemented in this thesis mimics that type of a model architecture.

This project has some similarities to previous work. The Music Transformer



[8] uses a decoder-only transformer to generate piano music from scratch and an
encoder-decoder version to condition the music with a melody. Both the LakhNES
[9] and the Multi-Track Music Machine [10] generate music that is conditioned by
whole instrument tracks, but the model architectures are decoder-only architectures.
Additionally, there are a number of other studies that use either an encoder-decoder or
decoder-only transformer models with varying objectives [1]. However, none are an
exact match to the setting proposed in this thesis.

To evaluate the performance of the seq2seq-transformer implemented in this
thesis, a dataset that consists of songs in MIDI-format is prepared into a form that the
transformer model can process. The transformer is trained on the prepared dataset,
whereafter its music generating capabilities are evaluated.
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2 Music generation and machine learning
Machine learning methods have been used for music generation in multiple domains,
ranging from event-based discrete music generation to working with raw waveform
data. Lately, deep learning methods have become increasingly popular, due to
accessibility of the required resources. [1] This thesis focuses on music generation in
MIDI domain, using transformers. The most relevant research articles to this thesis to
date are the Music Transformer [8], LakhNES [9] and the Multi-Track Music Machine
[10] which all utilize transformer models to generate music in MIDI domain. The
methods and resources that have been used in this thesis have taken inspiration, not
solely, but largely from these three research papers.

The Music Transformer was trained on choral pieces as well as a large piano dataset
to successfully produce human-like novel continuations to snippets of music similar to
the dataset. Whereas the focus of generation in this thesis is a conditioned setting using
an encoder-decoder model in which the generation is wholly conditioned on an existing
music track, the Music Transformer was mainly used as a decoder-only model that
was only primed with the beginning snippet in order to generate the continuation. The
researchers performed small experiments with conditioning on a melody as well by
utilizing an encoder-decoder architecture, and found that their model performed better
than the baseline models of the time. The Music Transformer’s novel contribution is
that it implements an efficient calculation for an attention mechanism which includes
additional relative positional data in the attention, described further in section 3.2. [8]

LakhNES is a transformer model that was pre-trained on the Lakh MIDI dataset [11]
and fine-tuned on the Nintendo Entertainment System Music Database (NES-MDB)
[12], which consists of 46 hours worth of 8-bit chiptunes. The researchers utilize the
massive Lakh dataset to improve the quality of the model as opposed to training just
on the smaller chiptune dataset. The model can produce human-like chiptunes, both
in an unconditioned settings as well as settings, where the generation is conditioned
with a rhythm. [9]

The Multi-Track Music Machine focuses specifically on conditioned user-controlled
generation. The model can generate small segments of complementary instrument
tracks with adjustable parameters, such as the preferred instrument and note-density.
While the objective of the paper is very similar to that of this thesis, the researchers use
a non-time-ordered sequence representation for the music and again utilize a decoder-
only model, whereas the model implemented in this thesis is an encoder-decoder
model and the representation for the music is time-ordered.

The following sections give the background to understand the model that was
implemented in the thesis, as well as the results that the model generated.

2.1 Machine learning
Machine learning is a broad umbrella term for many different methods that share
a similar strategy for problem solving. Methods of machine learning range from
simple linear regression to more complex deep learning methods. In its core, machine
learning consists of three components: a model, data and a loss function. The model
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is trained by fitting it to the training data by minimizing some loss function. When
tackling a problem with machine learning methods, the goal is to implement and train
a model, which can predict useful output even when encountering unseen data-points.
[13]

Machine learning can be divided into three main paradigms: supervised learning,
unsupervised learning and reinforcement learning. Supervised learning involves
processing human-labeled data. The model encounters input-output pairs, where
the preferred output is labeled beforehand and the model is fitted by minimizing the
loss between its predictions and the preferred "true labels". Unsupervised learning
involves unlabeled data and is used to find patterns in the data without any human
intervention. Typical unsupervised learning methods are clustering and dimension
reduction methods such as principal component analysis. Reinforcement learning
involves an agent (the ML model) in a game-like environment making decisions
and taking actions. The outcome of the actions are evaluated and good outcome is
rewarded, reinforcing the behavior that led to that outcome. Through trial and error
the model then converges to some optimal decision-making behavior in the context of
its environment. [13]

In this thesis, the model that is implemented and trained is given labeled music
data and therefore falls under the supervised learning category.

2.2 Deep learning
Deep learning is a subcategory of machine learning that involves artificial neural
networks (ANNs or NNs for short). Neural networks consist of a set of connected
nodes, that each implement a small function as a part of the larger system. Deep
neural networks typically have a very large amount of nodes with many layers of
connections, allowing the collection of these small functions as a whole to succeed in
nearly arbitrarily complex tasks.

While potentially highly effective, deep learning models are very black-box in
nature, which leads to a number of disadvantages. Finding the best parameters for
training and using deep learning models needs to be done by trial and error, which
could require a lot of effort and computing power. Additionally, black-box models
are not a good choice for high-risk settings or settings that require accountability and
explainability. Combined with the sudden increase in popularity for deep learning
models and especially transformers, there has been a surge of research on transformer
explainability, the most popular methods being based on transformer’s attention
mechanism. [14]

2.2.1 Neural networks

A neural network can either be a feedforward neural network (FNN), in which
information can only flow from input to the output, or a recurrent neural network
(RNN), which include feedback loops allowing information to flow backwards as well.

Figure 1 shows an illustration of a feedforward neural network. In a simple,
fully-connected FNN the nodes are arranged in layers. The input layer is followed by
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a number of hidden layers, which are followed by an output layer. Starting with the
input layer, the input gets multiplied by weights, each weight being unique to each
connection between two nodes. The nodes in the hidden layer receive input from all
the nodes in the previous layer, apply a simple activation function to the value, then
feed the output to all the nodes in the next layer, again multiplying the value with the
weights. This process is repeated until the output at the output layer is received.

Figure 1: Fully connected neural network.

A typical RNN works similarly to the FNN, but unlike in an FNN, some of the
inputs of the model are derived from past outputs of some of the RNN’s layers. That
is, an RNN receives two types of inputs: the present input and the recent past input.
As a result, RNNs are sequential in nature, as the network is run multiple times to
receive the final output. The normal use-case for RNNs is to process sequential data,
since the output of the network can be dependent on previous elements of a sequence.

2.2.2 Activation functions

Activation functions are simple functions that are applied to values after each node.
They are required in a neural network so that non-linearity is included in the model.
Without the use of activation functions, a neural network’s output signal would be just
a polynomial with degree one, and would be unable to learn any non-linear mappings.
Conversely, using activation functions makes it possible to learn arbitrarily complex
functions. In order to apply gradient descent to update the model’s weights, activation
functions need to be differentiable. Many different types of activation functions exist,
but the most commonly used one is ReLU, which stands for rectified linear unit. Figure
2 shows the ReLU function. ReLU, which can be defined as ReLU(𝑥) = max(0, 𝑥),
is differentiable everywhere except at the single point 𝑥 = 0. Although in theory it
should be extremely rare for the input of ReLU to be zero, in practice it tends to occur
frequently in a large deep learning model due to limited numerical-precision. The
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most prevalent deep learning libraries such as PyTorch and TensorFlow calculate the
derivative as

ReLU′(𝑥) =
{︄

0, 𝑥 ≤ 0
1, 𝑥 > 0,

(1)

effectively disregarding the issue. However, their choice of ReLU′(0) = 0 has been
shown to be generally the most robust option. [15] [16]

Figure 2: ReLU activation function.

2.2.3 Loss functions

Training a deep learning model includes making adjustments to the model’s weights
such that the output of some loss function gets minimized. A plethora of different loss
functions are used in the field, the choice of the function depending on the model and
the task. For a multi-class classification task such as the one in this thesis, the most
common choice is the cross-entropy loss

CrossEntropy(𝑦, 𝑦̂) = − 1
𝑁

𝑁−1∑︁
𝑖=0

𝐶−1∑︁
𝑗=0

𝑦𝑖, 𝑗 log( 𝑦̂𝑖, 𝑗 ), (2)

where 𝑦 are the true labels (one-hot-encoded vectors, in practice), 𝑦̂ are the predicted
probabilities of labels, 𝑁 is the amount of samples and 𝐶 is the number of different
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classes. Essentially, the cross-entropy is the averaged negative sum of those log-
probabilities that correspond to the true labels. [17]

In this thesis, the implemented deep learning model is a version of a transformer
model. The raw output of a transformer model 𝑍 = (𝑧0...𝑧𝑁−1) is a sequence of logit
vectors with values that act as likelihoods for the different classes. Before calculating
the loss, the vectors are mapped into probability distributions with the softmax function

𝑦̂𝑖, 𝑗 = Softmax(𝑧𝑖) 𝑗 =
𝑒𝑧 𝑗∑︁𝐶−1
𝑘=0 𝑒

𝑧𝑘
, ∀𝑖 ∈ (0, ..., 𝑁 − 1), ∀ 𝑗 ∈ (0, ..., 𝐶 − 1), (3)

such that the predicted probability distribution’s 𝑦̂𝑖 elements become bound to [0 1]
and sum up to one for all 𝑖 ∈ (0, ..., 𝑁 − 1).

2.2.4 Gradient descent and backpropagation

Teaching a deep learning model is done by gradually minimizing the perceived loss
between the true labels and the predicted outputs of samples by updating the weights
of the model as training samples are encountered. The weights are updated via some
form of gradient descent and the backpropagation algorithm [18], which is an efficient
implementation to calculate gradients of the weights of the neural network model with
relation to the loss function.

Let 𝐿 be the number of layers in the network. Let 𝑥 ∈ 𝑅𝑛 be the input and 𝑦 ∈ 𝑅𝑚
be the expected output of a training sample, also known as the true labels. Let𝑊 be the
set of weights and𝑊 [𝑙] be the weights between layers 𝑙 − 1 and 𝑙. Let 𝑔(𝑊, 𝑥) ∈ 𝑅𝑚
be the predicted output and 𝐶 (𝑦, 𝑔(𝑊, 𝑥)) be the cost, or the loss function, between
the expected and predicted outputs. Let 𝑓 [𝑙] be the activation functions at layer 𝑙 and
𝑎 [𝑙] , be the activation function outputs at layer 𝑙.

The backpropagation algorithm starts with a forward-pass, where the input 𝑥
traverses through the network and produces the prediction

𝑔(𝑊, 𝑥) = 𝑓 [𝐿] (𝑊 [𝐿] ( 𝑓 [𝐿−1] (𝑊 [𝐿−1] ... 𝑓 [1] (𝑊 [1]𝑥))), (4)

which is used to calculate the loss 𝐶 (𝑦, 𝑔(𝑊, 𝑥)) against the true labels 𝑦, such as in
equation (2) where 𝑦 = 𝑦 and 𝑦̂ = 𝑔(𝑊, 𝑥). The gradient of the loss is then calculated
with respect to the weights. For a network of fully-connected layers, the gradient is
calculated with the following equations

𝜕𝐶

𝜕𝑧 [𝑙−1] =(𝑊
[𝑙])⊤ 𝜕𝐶

𝜕𝑧 [𝑙]
𝑓 ′[𝑙−1] (𝑧 [𝑙−1]) (5)

𝜕𝐶

𝜕𝑊 [𝑙]
=
𝜕𝐶

𝜕𝑧 [𝑙]
(𝑎 [𝑙−1])⊤, (6)

where 𝑧 [𝑙] is the weighted input of layer 𝑙, which is the output of the previous layer
multiplied by the weights between the previous layer and the current layer. 𝜕𝐶/𝜕𝑧 [𝑙]
is commonly denoted as the error of layer 𝑙. Calculating the gradient for the loss
function starts with a straight-forward calculation of 𝜕𝐶/𝜕𝑧 [𝐿] starting from the final
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layer. Then, equation (5) is used to compute errors for all the layers in the network,
moving from the last layer towards the first layer. Finally, equation (6) is used to
calculate the partial derivatives for the weights, ultimately gaining the whole gradient
of the loss-function with respect to the weights of the model. All the values (excluding
the errors of the layers) required for these calculations can be cached during the
forward-pass. [18][19]

In practice, backpropagation is parallellized for mini-batches of data. A mini-batch,
which is a set of samples, is run through the model in parallel, calculating the gradients
in the way described above. The gradients are then averaged over the samples in the
batch before updating the models’ weights.

Once the gradient has been calculated, the weights are updated. The simplest
method is stochastic gradient descent (SGD), which updates the model weights, such
that

𝑊𝑡+1 = 𝑊𝑡 − 𝛼
𝜕𝐶 (𝑦, 𝑔(𝑊𝑡 , 𝑥))

𝜕𝑊𝑡

, (7)

where𝑊𝑡+1 are the weights at time-step 𝑡 + 1,𝑊𝑡 are the weights at time-step 𝑡, 𝛼 is
the learning rate, and 𝑔(𝑊𝑡 , 𝑥) is the forward-pass function with weights𝑊𝑡 . Usually,
more sophisticated methods are used for updating the weights than pure SGD. The
most common optimization algorithm for deep learning models is the Adam optimizer,
which is an extended version of SGD that utilizes momentum and root mean square
propagation. Pseudocode for the Adam optimizer algorithm is provided in 1, where
𝑚0 is the first moment vector, 𝑣0 is the second moment vector, 𝑔𝑡 are the weights’
gradients w.r.t. the loss function, 𝛽1 and 𝛽2 are decay rates for the moment estimates,
𝑚̂𝑡 and 𝑣̂𝑡 are the bias-corrected moment estimates and 𝜖 is some small constant value.
[20]

Algorithm 1 Adam optimizer algorithm [20]
𝑚0 ← 0
𝑣0 ← 0
𝑡 ← 0
while Ending condition has not been reached do

𝑡 ← 𝑡 + 1
# Compute gradients
𝑔𝑡 ← 𝜕𝐶/𝜕𝑊𝑡−1
# Compute the first and second moment vectors
𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡
𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2

𝑡

# Compute the bias-corrected moment vectors
𝑚̂𝑡 ← 𝑚𝑡/(1 − 𝛽𝑡1)
𝑣̂𝑡 ← 𝑣𝑡/(1 − 𝛽𝑡2)
# Update the weights
𝑊𝑡 ← 𝑊𝑡−1 − 𝛼𝑚̂𝑡/(

√
𝑣̂𝑡 + 𝜖)

end while
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2.3 Transformers
Transformers are RNN-like models that replace the usual recurrence structures with
a positional encoding and an attention mechanism. The RNN-models’ recurrence
structure forces the training to be done sequentially per element in a sequence, whereas
the attention mechanism together with positional encoding allows transformer models
to process a whole sequence parallel during training [7]. As a result, transformers
are extremely efficient to train and are a very enticing option for tasks involving
sequences. Figure 3 shows the sequence to sequence transformer model from the
original transformer paper [7]. The model consists of embedding layers for the model
inputs, positional encoding and 𝑁 encoder layers and decoder layers, which themselves
implement a certain structure of attention layers, normalization layers and feedforward
layers with residual connections. The parts that make up the transformer are explained
in the following sections.

2.3.1 Embedding

Transformers work with sequence inputs, where the elements of the sequence are
called tokens, which are comparable to classes in a traditional multi-class classification
problem. In the world of NLP, tokens represent words, parts of words or letters and
the set of all the possible tokens is called the vocabulary. Each token in the vocabulary
has an id, and the input of the transformer is usually a sequence of token id:s. The
transformer’s subsequent layers cannot work with just a sequence of discrete integer
token id:s, so the first layer of the transformer maps the token id:s into learnable
embeddings, which are continuous vectors. Using a sequence of continuous vectors
instead of discrete values in the model has plenty of advantages. While the numbers
in the vectors do not necessarily have any human-readable meaning, it is possible to
calculate similarity-scores for different embeddings, for example by calculating the
dot product between two embedding vectors. Deep learning models utilize these kinds
of mechanisms to find dependencies and similarities between tokens from a dataset
of token-sequences [21]. The length of the embedding vectors is often denoted as
model dimension, or model size, and is the output dimension for each sub-model in
the transformer.

2.3.2 Positional encoding

Since transformers do not exploit a recurrent structure in training, the inherent
positional information that RNNs have is lost. The positional information is important
for predicting elements in a sequence, so it is necessary to be implemented in the
model in some manner. Positional encoding solves this issue for transformers.

Positional encoding can be applied in multitude of methods, including both fixed
and learned methods. The most common fixed method is the one implemented in the
original transformer paper [7]. Each element in a sequence is mapped with a unique
vector, which forms a positional embedding matrix. The vector is generated with sine
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Figure 3: Encoder-decoder transformer model from the original transformer paper
Attention Is All You Need [7].

and cosine functions of different frequencies

𝑃𝐸 (𝑝𝑜𝑠, 2𝑖) = sin(𝑝𝑜𝑠/𝑛(2𝑖/𝑑)) (8)

𝑃𝐸 (𝑝𝑜𝑠, 2𝑖 + 1) = cos(𝑝𝑜𝑠/𝑛(2𝑖/𝑑)), (9)

where 𝑝𝑜𝑠 is the position of the element in a sequence, 𝑖 is the dimension of the 𝑅𝑑
dimensional embedding vector and 𝑛 is an arbitrary large number. This positional
embedding is added to the word embedding to create the input of a transformer model.
The authors of the paper hypothesized that this implementation would allow the model
to learn to attend to relative positions easily, since the positional encoding vectors can
be represented as linear transformations of each other, for any fixed positional offset.
[7][22]
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Using a fixed method instead of a learned method has potential perks. One of the
risks of a learned method is that learning the representations for positional relations is
reliant on data, which means that very long distance relations could be rare enough in
the data that the model fails to learn them. However, the tests made for the original
paper yielded similar results for both fixed and learned methods, and the authors
decided to use the fixed method for its simplicity. [7]

2.3.3 Attention mechanism

Transformers rely on an attention mechanism to learn connections between the
elements of a sequence. The attention mechanism calculates attention scores between
elements in two sequences, which can be interpreted as a metric for the strength of
relationship between the two elements. Figure 4 illustrates an example of what a
heatmap of attention scores could look like in a translation task on a trained model.
[23]

The attention mechanism implemented in the original transformer paper is the
scaled dot-product attention

Attention(𝑄, 𝐾,𝑉) = softmax
(︁𝑄𝐾⊤
√
𝑑𝑘

)︁
𝑉, (10)

where 𝑄 is the query matrix, 𝐾 is the key matrix 𝑉 and is the value matrix 𝑑𝑘 is a
scaling factor equal to the dimension of keys. Attention in transformer models are
conventionally applied as multi-head attention, where the attention is split into ℎ
different heads, each applying different learned linear projections to queries, keys and
values. The different heads produce output, that is concatenated before projected for a
final time to yield the final output for the multi-head attention. Thus,

MultiHead(𝑄, 𝐾,𝑉) = Concat(head1, ... , headh)𝑊𝑂 (11)

headi = Attention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 , 𝑉𝑊
𝑉
𝑖 ), (12)

where𝑊𝑂 is a projection matrix for the concatenated output, and𝑊𝑄

𝑖
,𝑊𝐾

𝑖
and𝑊𝑉

𝑖

are projection matrices of the 𝑖:th head for the input query, key and value respectively.
Figure 5 shows the the scaled dot-product attention and multi-head attention layers. [7]

In an encoder-decoder transformer that is trained for a causal sequence generation
task, in which the last member of the target sequence is dependent on all of the previous
members, the attention mechanism is used in three different contexts. The encoder
contains self-attention layers, where 𝑄, 𝐾 and 𝑉 all come from the previous layer’s
output. Self-attention captures the inner connections between the tokens in a single
sequence. The decoder contains self-attention layers similar to the encoder, but the
values need to be masked so that information from future values cannot flow to the past
values. This is done by setting illegal connections’ values to −∞ inside the softmax
function. The decoder also contains attention layers, where the queries come from the
previous layer, but the keys and values come from the encoder’s output, which would
produce attention scores similar to what is illustrated on Figure 4. [7]
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Figure 4: An example of an attention score heatmap. A lighter color shows a stronger
connection between the words. [23]

2.3.4 Normalization layers, feedforward layers and residual connections

After each attention layer or feedforward layer, there is a normalization layer. The
layer implements the function

𝑦 =
𝑥 − 𝐸 [𝑥]√︁
Var[𝑥] + 𝜖

𝛾 + 𝛽, (13)

where 𝑥 is the layer input, 𝑦 is the layer output, 𝛾 is a learnable scaling parameter,
𝛽 is a learnable shifting parameter and 𝜖 is a small constant for numerical stability,
in case the input’s variance becomes zero by chance. Essentially, the normalization
layers force the input to have zero mean and unit variance, whereafter the input is
scaled and shifted. This combination of a projection and a scaling allows the attention
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Figure 5: The scaled dot-product attention and multi-head attention.

mechanism to attend to each key equally, and prevents the existence of "unselectable
keys". [24] [25]

The feedforward layers in the transformer models are simply fully connected layers
that consist of two hidden layers with a ReLU activation function in between.

The model also utilizes residual connections with each normalization layer. The
input of the normalization layers are not just the previous layer’s outputs. Instead,
outputs of one of the model’s even earlier layers skip the layer that comes after and
are added to the input of the normalization layer. This means that the layers that
the skip-connection affects are attempting to learn the residual between the input
and the output, instead of a whole transformation from input to output. These types
of residual connections have been shown to increase accuracy of very deep neural
network models. They also alleviate numerical instability problems that can often
arise in very deep models such as vanishing and shattered gradients. [26] [27]

2.3.5 Tokenization

As previously stated in section 2.3.1, the inputs of a transformer models are sequences
of tokens. The information that a single token represents can be chosen freely, but
the choice has a large effect on the model’s performance. If the tokens correspond to
different words, the total vocabulary size and consequently the model size becomes
huge, increasing resource requirements and slowing down training and inference. If
the tokens correspond to single letters of the alphabet, it is difficult for the model to
learn meaningful input representations, as a single letter does not have much inherent
meaning like a single word would. One solution is to use subword tokenization, which
is a middle-ground of the earlier mentioned approaches. [28][29]

Byte pair encoding (BPE) is a simple but effective subword tokenization method.
Given a base-vocabulary, e.g. the letters of the alphabet, the words in the dataset
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are first split into the base-vocabulary elements. The tokenizer trains on a dataset by
calculating the frequency of different pairs of vocabulary members in the dataset. The
most frequent pair is added to the vocabulary, along with the merge-rule to modify the
dataset so that the previously split pairs are merged. This process is repeated until a
chosen vocabulary size is reached. When encoding text with a trained BPE-tokenizer,
the text is split into the base-vocabulary, after which all the learned merge rules are
applied to get the final tokenization. [28][29]

Defining all of the symbols the BPE could encounter as a base-vocabulary to
avoid ever producing unknown-tokens would potentially grow the vocabulary size to
massive proportions. Byte-level BPE or BBPE solves this problem and is one of the
most language-agnostic subword tokenizers. It uses bytes as base-vocabulary, which
forces the base vocabulary to be of size 256, while never encountering an unknown
token. [30]

Using BPE or similar general tokenization methods have been shown to to enhance
the performance of music generation regardless of the dataset or model used. [31] [32]

2.4 Music
Music is usually written as compositions, which are sets of instructions about how to
perform the piece. A composition includes concepts such as melody, harmony, rhythm
and timbre and these concepts are formed by the arrangement and the properties of
the set of notes in the composition [33].

This thesis focuses on a relatively small subset of concepts that can be attributed to
music. The MIDI format, which the model uses as the medium for music generation,
implements a western music system that by default excludes musical concepts that
are foreign to western music, such as microtonality. Since the model’s objective is
band instrument generation, the main genre in the dataset is western popular music,
as the tracks that do not contain the target instrument are filtered out. Concepts such
as timbre and agogic expression are also excluded. Instead, the thesis is focused on
all the musical principles that can be derived from just specifying the notes that are
played and the points in time in which the notes are played relative to each other.
These include the aforementioned melody, harmony, rhythm and more. The following
sections explain the necessary background in music and the MIDI-format to understand
the intentions of this thesis and the analyses of the results.

2.4.1 Elements of music theory

Although in principle music is an unrestrained art-form, there are plenty of different
sets of rules for music. Usually, the rules are loosely defined by the genre of the music
in question and are affected by a mixture of cultural and universal interpretations
of what sounds stimulating in some way. The rules can either be a set of written
guidelines or simply some commonly accepted practices. Oftentimes a composition
intentionally breaks these rules, which necessarily does not make poor quality music.
In fact deviating from some of the commonly accepted practises is often the key to
create something interesting and new, in some cases creating whole new trends of
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music in the process. This is one of the reasons that makes interpreting a generated
piece of music as "good" or "bad" ambiguous and subjective. However, it is still
possible to objectively analyze whether a piece of music follows a certain rule or not,
so it is possible to evaluate whether the model manages to learn some of the rules or
not.

In the western music system, there are seven named pitches, listed in an ascending
order: C, D, E, F, G, A and H by the Finnish, Scandinavian and Germanic naming
convention. After H, the next pitch in sequence would be another C again that is one
octave higher than the earlier C. Notes that are an octave apart sound similar which
is why they have the same name. Additionally, the pitches can be either raised or
lowered chromatically by a semitone, which is the smallest standard unit for difference
in pitch recognized in western music systems. Generally two named pitches are a
whole tone apart which is equal to two semitones. This means that a raised note is the
same as the next note in the sequence lowered, for example a raised G (also known
as G# or G sharp) is the same as a lowered A (also known as Ab or A flat). In music
theory lingo the two notations are then enharmonically equivalent. There are two
pairs of named pitches that are only one semitone apart, E & F and H & C. This
means that for example a raised E is enharmonically equivalent to F and a lowered F
is enharmonically equivalent to E. All together this divides an octave into a total of
twelve different unique pitches. [34] Figure 6 shows an illustration of piano keys that
are labeled with the pitch names to provide a tangible example for the explanation
above.

C D E F G A H C D E F G A H

C#/
Db

D#/
Eb

F#/
Gb

G#/
Ab

A#/
Bb

C#/
Db

D#/
Eb

F#/
Gb

G#/
Ab

A#/
Bb

Figure 6: Piano keys labeled with the pitch names.

Sections in music are conventionally based on a certain tonal key that defines the
tonal context for a section, that is, what different notes’ and combinations of notes’
functions in the section are. This also means that most of the notes in the section tend
to be from a set of notes that is called the scale associated with the key. There is a
major and a minor key associated with each unique pitch, making a total of twelve
different major and minor keys and scales, which form the most common and basic
scales called diatonic scales. An example of the major C scale would be C, D, E, F,
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G, A, H, the notes in the scale having degrees based on their position in the scale.
Notes that are outside the scale in a section of music with a clearly definable key and
scale are called altered notes. The melodies and chords that make the harmony in the
section can lie either inside or outside the key, generally depending on whether they
contain altered notes or not. [34]

Whereas harmony is a broader and more abstract concept, a chord or an interval is
a realized element of harmony. An interval is defined as two notes sounding at the
same time and a chord is defined as more than two notes sounding at the same time.
The most commonly used chords in western practices are triads, which are a specific
pattern of three notes. Specifically, the harmony of popular music tends to consist
mostly of triads. Each diatonic scale has seven different triads, one for each degree in
the scale. These triads that are tied to a diatonic scale are formed in a specific pattern,
by starting from some degree and picking the first, third and fifth degree notes relative
to that degree. For example in the key of C major, the first degree chord is C, E, G
and the fourth degree chord is F, A, C. [34] Chords tend to have certain progressions
in music, where the chords move from one to another as the music flows forwards,
some progressions being more common than others. In popular western music, it
is common to repeat a certain chord progression until the end of one section in the
music, then begin repeating another progression in the next one.

Rhythm is the timing of musical elements in relation to each other. A musical
piece is usually divided into bars. Notes and the absence of notes called rests can have
different time values. A beat is the "pulse" of the music. A section in a piece has a
defined time signature, which consists of two numbers, the lower number defining the
time value of one beat, and the upper number declaring how many of those beats a
bar can have. [34] A typical time signature would be for example 4/4, which means
that there are four beats with time value one quarter in a bar. One quarter beat can
contain either one quarter note, two eighth notes or four sixteenth notes and so on. A
composition then consists of bars with defined beats, that have notes with defined time
values.

2.4.2 Sheet music

Some results of this thesis will be shown in a format that is familiar to musicians:
sheet music. Figure 7 shows an annotated example of sheet music. Sheet music is read
similarly to how text is read, left to right, up to down. Each "row" of written sheet
music is called a system. At the beginning of each system, there are clefs, which give
context for the pitches of the notes. At the beginning of a piece, or if there is a change
to it in the middle of the piece, a time signature is given. Different bars, also known as
measures, are separated by barlines. The second system shows a change in key going
from C-major into D-major, which is reflected by the key signature. Additionally,
figure 7 shows various examples of different length notes, chords and rests, as well as
examples of accidentals, which can be used to raise or lower the note by a semitone.
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Figure 7: Annotated sheet music.

2.4.3 MIDI-format

Musical instrument digital interface, or MIDI for short, is a standard for storing and
communicating information about music playback. A MIDI file stores data as an
8-bit stream, grouped in 32-bit chunks. The chunks are either header chunks or track
chunks, header chunks giving information about the whole file, while track chunks
define a sequential stream of events for a single track. [35]

The header chunk defines the file’s MIDI format, the number of tracks and division,
which is a measure for how much time each MIDI clock-tick takes, either in real-world
units or abstract per-beat units. The MIDI format has three different options, one for a
single multi-channel track, one for multiple separate tracks that play simultaneously
and one for multiple separate tracks that play independently of each other. The division
defined in the header chunk declares the meaning of time values in the events, either
by ticks per quarter-note or a mapping to subdivisions of a second. [35]

Track chunks each declare a stream of events for a track. These include multiple
types of meta-events such as defining track name or lyrics, MIDI-system-exclusive
messages that might relay information to some specific MIDI-system units and most
importantly MIDI-events, which contain timestamped events for things analogous to a
musician playing a synthesizer. [35]

The MIDI-events send information to one of sixteen channels, which are parallel
communication pathways between different MIDI-devices. In practice, a channel
usually contains one instrument’s output. Channel 10 is special, designated for
percussion sounds and effects instead of sounds with a defined pitch. [35]

For this thesis, the information extracted from the MIDI-files include the division,
note on and note off events as well as the program change event. This is enough to
define the whole of "when" and "what" each instrument is playing.
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3 Research material and methods

3.1 Resources and data
The dataset used in this thesis is the clean subset from Lakh MIDI-dataset [11]. The
Lakh MIDI-dataset is a collection of 176581 unique midi-files, and the dataset used in
this thesis is a subset of 17233 of those files, with the directory structure and filenames
mapping each file to an artist and a song.

Figure 8 shows the pipeline for preparing data as well as training and inferencing
the model. To work with the midi-files, csv is used as a medium, by utilizing a
python library [36] that turns midi-files into csv and back. The midi-file samples
are filtered by instrument so that the necessary instruments are found from every
sample in the dataset. After that, the files are split into smaller chunked snippets, so
that each snippet contains 96 beats. In other words, with a 4/4 time signature the
snippets are 24 bars long. The split snippets are separated into pairs of a midi-file
that contains the target instrument track and a source midi-file that contains the other
instrument track. The samples are then tokenized into token ids with the MidiTok-tool
[37]. (B)BPE-tokenization is trained on the tokens, then applied to the dataset to
create a BPE-encoded dataset. These tokens can be used by the transformer model for
training and inference, and the resulting tokens can be decoded back into midi with
the previously trained tokenizers. The transformer models are implemented in the
PyTorch deep learning framework [38].

Figure 8: The complete pipeline from a dataset full of MIDI-files into generated
MIDI-samples.

The MidiTok library implements multiple tokenization schemes, copied from a
handful publications that have had success in music generation [37]. The tokenization
scheme used in this project is REMI, which stands for Revamped MIDI [39]. This
scheme was chosen, since it was originally made with popular music and beat-based
generation in mind, and should suit the used dataset and the objective of the thesis well.
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Figure 9 shows an example of REMI-tokenization. The MIDI events are grouped into
bars, which is discretized into some number of possible positions. The information of
the notes is arranged into different tokens, such that a position token is followed by the
pitch token, which is followed by a velocity token, which is followed by a duration
token. The token sequence goes as follows: a bar token is followed by a number of the
note-related tokens until all the notes in the bar are fully defined by the tokens, then
another bar token is inserted. Additional tokens such as tempo-tokens, rest tokens,
time signature tokens and program tokens would be possible to use as well, but they
are not included in the tokenization in this project. In order to use BPE tokenization
on these tokens, each token has some byte-representation mapped to them. [37][39]
The tokenization parameters are shown in Table 1.

Figure 9: An example of REMI-tokenization [37][39].

3.2 Model
The transformer models used for the experiments are modified versions of the Music
Transformer [8]. The Music Transformer is originally a decoder-only transformer that
utilizes relative global attention in its attention layers. For the purposes of this thesis
it has been modified into a seq2seq encoder-decoder transformer, similar to the one
in Figure 3. Relative global attention includes additional embedding matrix 𝐸𝑟 in
each attention head. 𝐸𝑟 contains an embedding for each pairwise distance 𝑟 = 𝑗𝑘 − 𝑖𝑞
between query position 𝑖𝑞 and key position 𝑗𝑘 . These embeddings are multiplied by
the queries, and the resulting matrix is rearranged so that we gain 𝑆𝑟𝑒𝑙 , in which each
entry (𝑖𝑞, 𝑗𝑘 ) is a dot product of the query at position 𝑖𝑞 and the embedding for the
distance 𝑗𝑘 − 𝑖𝑞. This matrix is injected to the attention equation (10) such that the
attention in the Music Transformer is calculated as

RelGlobalAttention(𝑄, 𝐾,𝑉) = softmax
(︁𝑄𝐾⊤ + 𝑆𝑟𝑒𝑙√

𝑑𝑘

)︁
𝑉. (14)

Adding this relative position information to the model on top of the absolute position
information has been shown to decrease validation loss and increase the quality of
generated samples in music generation models. [40][8] The model parameters are in
Table 1.
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3.3 Model training
The training inputs are the token ids for the reference instrument track, and the token
ids for the target instrument track. Both of the token sequences are padded with a
designated pad-token id value, so that the sequences match the sequence length of the
model. In order to not pay attention to these padded values, the model is also provided
with a padding mask matrix for both sequences each iteration, which tells the model
which tokens should not be included in the calculations. For the target sequence, a
causal mask is also provided, which prevents the model from "peeking into the future"
as described before in section 2.3.3. The target sequence is also shifted to the right by
one and prepended with a designated starting-token id.

The models were trained minimizing cross entropy loss, which is described in
section 2.2.3. The Adam optimizer algorithm (1) was used to train the models, in which
the gradients of the weights calculated in each iteration with the backpropagation
algorithm described in section 2.2.4. Dropout was also used in the model before each
normalization layer. Dropout is a technique, in which some of the connections between
the layers are deactivated randomly during training. Usually, this produces better
generalisation, as the model does not learn to rely on information flowing just from few
specific pathways. During inference, dropout is deactivated and all the connections
are always active. This makes the model deterministic during inference and stochastic
when training.

Each 200 training steps, a validation loss is calculated. This was done by picking
ten random mini-batches of samples from the validation dataset, calculating the
loss for these batches, then dividing the resulting cumulative loss by the amount of
mini-batches to make the validation loss comparable with training loss. Also, every
500 training steps, the model weights are saved to disk and 3 different samples are
picked at random from the validation set which are used to produce a number of
generated samples, in order to quickly see how the model performs at different stages
of training.

The calculations presented in the thesis were performed using computer resources
within the Aalto University School of Science “Science-IT” project.

3.4 Model inference
Model inference is done recurrently for transformers. The model takes in a target
sequence, which is at minimum just a "start-token", then the next token is sampled
from the output and concatenated to the target sequence. This is repeated until some
token (or arrangement of tokens) is sampled that marks the end of the sequence, or
until the maximum sequence length is reached. Inference was done in two different
ways. One is inference by only conditioning the generation with the token sequence
extracted from the source instruments in the encoder. The other one is inference by
additionally conditioning the generation with a start of the target instruments token
sequence, with 50 initial tokens for bass generation and 75 initial tokens for piano
generation, giving slightly more tokens for piano generation since piano-samples are
generally more note-dense per bar.
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Since the model outputs logits, which are likelihood values for different possible
token outputs from the vocabulary, there are choices for sampling the next token in
the sequence. Common choices include top-𝑘 and top-𝑝 sampling, which have been
shown to yield better results in NLP than pure sampling or maximum probability
sampling [41]. Top-𝑘 sampling picks the top 𝑘 likely samples while the top-𝑝 sampling
picks samples until a cumulative probability 𝑝 is reached. The probabilities are then
normalized accordingly so that the total probability sums up to one.

Temperature is another hyperparameter that can be used in inference. In order
to increase randomness in sampling, the output of the model are scaled so that the
softmax function which connects the output into probabilities is given by

Softmax(𝑥𝑖) =
𝑒𝑥𝑖/𝜏∑︁𝑛
𝑗=1 𝑒

𝑥 𝑗/𝜏
, (15)

where 𝑥𝑖 are the weighted likelihoods for each token, 𝑛 is vocabulary size and 𝜏 is
temperature. When generating samples in this thesis, only top-𝑘 sampling is utilized
with 𝑘 = 3 and 𝜏 = 1.
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Tokenization parameters (REMI)
Pitch range [21, 109]

N velocity bins 8
Position resolution 32
Use time signatures False

Use rests False
Use tempos False

Use programs False
BPE Vocabulary size 500
Model parameters
Model dimension 256
Vocabulary size 500
Encoder layers 6
Decoder layers 6
𝑁 attention heads 4

Feedforward hidden dim. 128
Sequence length 1500

Training parameters
Learning rate (𝛼) 10−4

Adam 𝛽1 0.9
Adam 𝛽2 0.999
Adam 𝜖 10−8

Dropout rate 0.1
Mini-batch size 16

Inference parameters
Top k sampling 3
Top p sampling -
Temperature (𝜏) 1

Init. tokens bass/piano 0 and 50/75

Table 1: Tokenization parameters, model parameters, training parameters and inference
parameters for both the bass generating and piano generating models.
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4 Results

4.1 Tokenization
Figure 10 shows the REMI tokenization token distribution before and after BPE
encoding for the bass training dataset. The leftmost spike in the dataset is token id 4,
which is the "bar" token. After that the next token ids 5 through 92 are pitch tokens,
which are lopsided towards the lower end of pitches for the bass, as one would expect.
The largest spike around token id 100 consists of the 8 velocity tokens with ids 93 to
100, and the duration tokens with ids 101 to 164. The final group of tokens is the set of
32 position tokens for token ids 165 through 196, where the downbeat (the first beat in
a measure) position is the largest and the third beat position is the second largest spike.

The effects of BPE on the token distribution are clear. Every token with id 197
through 499 is a new token that is a result of a merge in the BPE algorithm. The total
number of tokens is roughly half of the original dataset. Since it is more likely for a
more common token to get merged into a new token, the spikes in the distribution are
flattened significantly.
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Figure 10: Token distributions for the bass dataset.

Figure 11 shows the token distribution for the piano dataset. The distribution of
raw tokens is reasonably close to that of the bass, but with a few differences. In total,
there are almost double the tokens, since the piano parts tend to be more note-dense
than the bass parts in a track. The pitch tokens are shifted towards the mid-range of
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pitches, and while the downbeat is still the leading position, the other positions are
more even for the piano than for the bass.
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Figure 11: Token distributions for the piano dataset.

4.2 Training
Figures 12 and 13 show the training and validation losses for the bass generating and
the piano generating models, as a function of number of training steps. The validation
loss is nearly the same as the training loss throughout the training, although slightly
higher, for both of the models. At 20 000 steps, the training of both models has
converged.

4.3 Generation
For analysing the models’ performance, both the piano generating and the bass
generating models were instructed to generate 300 samples, using random samples
from their respective validation datasets as reference. As a result, 299 piano samples
and 294 bass samples were successfully generated, the remaining token sequences
being faulty beyond repair so that they could not be subsequently converted into
midi-files. Rhythm and tonality analysis was performed on the generated results.
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Figure 12: Validation and training losses for the bass generating model.

Figure 13: Validation and training losses for the piano generating model.

4.3.1 Rhythm analysis

For rhythm analysis, the token data was reduced into rhythm-sequences, that account
only for the position-tokens in the datasets. The data was split into bars, and every bar
was split into 32 positions similarly to the tokenization that was performed earlier.
The bars were presented as 32 character strings, where 1 means that a tone starts
from the position and 0 means that no tone starts from the position: for example a
"10000000000000001000000000000000" would represent a rhythm where a tone
starts at position 0 (the downbeat) and position 16 (the third beat) and nowhere else.

In addition to turning both the validation dataset and the generated dataset into
the rhythm-sequences, a mock-dataset was created for both instrument scenarios. The
mock-dataset reflects the generated dataset in that it has same density for tones per bar,
but the distribution of starting positions is flat, so each position in the rhythm sequence
has equal probability of having a 1. This acts as a baseline, expected behaviour of a
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model that has learned nothing about where to place the tones in the bar.
Figure 14 shows the distribution of tone positions in the three bass datasets and

Figure 15 shows the similar histograms for piano datasets. All the plots are normalized
by the total amount of bars in the respective dataset. The bass model generates mostly
tones that start on the downbeat and third beat in a bar. These are accurately the most
common positions in the original dataset, but the original dataset does include many
positions that the model almost entirely fails to generate. Additionally, the total amount
of tones the model generates per bar is vastly smaller than that of the original dataset.
The piano model behaves quite similarly. In the original dataset, the distribution is
flatter, and this is somewhat reflected in the generated samples. Similarly to the bass
variant, the piano model also creates less tones per bar compared to the original model.
However, it does create more tones per bar compared to the bass model, which is
expected of a working piano and bass model pair.

The generated rhythm sequences as well as the mock sequences were compared to
the original sequences using Levenshtein distance as the metric, which is considered
a decent approximation for human intuition for differences in two separate rhythm
sequences [42]. A random pair of a generated/mock sequence and an original dataset
rhythm sequence was picked 10 million times and the average Levenshtein distance
was calculated from these pairs. The results are shown in table 2. The average
distances do not hold too much inherent meaning and the distances between different
instrument datasets cannot be compared directly, but for both instrument scenarios the
generated dataset performed better than their mock counterpart. This means that the
generated rhythms were on average more similar to the rhythms on dataset than pure
noise, which suggests that the models have learned a non-zero amount about where to
place the tones in a bar.

Bass validation Piano validation
Generated 4.104 4.103
Mock 4.973 4.800

Table 2: Average Levenshtein distances from 10 million randomly picked pairs of
samples between validation dataset and the generated dataset or the mock dataset.

4.3.2 Tonality analysis

Analysing the models’ understanding of tonality means analysing whether the generated
samples reflect the harmonies that are present in the reference counterpart. The analysis
was done in a broad manner, which only takes into consideration whether the overall
keys of the generated samples match the reference sample.

To evaluate the key that a sample is in, the Krumhansl-Schmuckler key-finding
algorithm was utilized. The algorithm is based on empirically constructed key-profiles
for major and minor keys, in which a value is assigned for each of the twelve notes.
Then the total duration of each note sounding in the sample is measured, and a
line is fitted between the profile’s assigned values for notes and the time that the
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Figure 14: Rhythm distributions for the bass datasets.

34



0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

To
ne

s p
er

 b
ar

Original dataset

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

To
ne

s p
er

 b
ar

Generated dataset

0 5 10 15 20 25 30
Position

0.0

0.2

0.4

0.6

0.8

1.0

To
ne

s p
er

 b
ar

Mock dataset

Figure 15: Rhythm distributions for the piano datasets.
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corresponding note is sounding. This gives us a Pearson correlation coefficient which
can be interpreted as a metric for how likely the sample is from said key. [43] [44]

The analysis was performed by calculating the most likely key from the reference
sample and the top 𝑘 key-candidates from the generated sample, and checking whether
the key of the reference sample found from the key-candidates. This was done for all
the generated samples.

Figures 16 and 17 show the fraction of successful matches for each value of 𝑘
for key-candidates from generated samples and shuffled key-candidates. The shuffled
candidates result in a triangle shaped distribution, where the number of matches with
the original samples’ keys increase linearly with the amount of top 𝑘 candidates,
which was expected behavior. For both the bass and the piano scenarios, the generated
samples’ top 𝑘 key candidates shared more matches with the original key than the
shuffled key-candidates, especially with lower values of 𝑘 . For bass, in nearly third
of the samples the first key candidate was the same as the original samples key. The
piano model does not quite get there, with the first candidate being the same as the
original roughly one time out of six, however already among the top 3 candidates the
piano model catches up to the bass model in this regard. For a perfect model, it would
be expected that almost all the samples share the top one match. However, since the
models outperform the random mock-case by a mile, it is safe to say that the models
have learned a non-zero amount from tonality.
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Figure 16: The fraction of bass model generated samples that have a matching key of
the reference sample in the top 𝑘 key-candidates, given by the Krumhansl-Schmuckler
key finding algorithm.
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Figure 17: The fraction of piano model generated samples that have a matching key of
the reference sample in the top 𝑘 key-candidates, given by the Krumhansl-Schmuckler
key finding algorithm.
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4.3.3 Generated examples

For producing generated example samples for a more general analysis, a simple four
chord progression snippet of 24 bars was composed, shown in Figure 18. It follows
the classic "I V vi IV" chord progression that is present in many popular songs. The
key of the snippet is in Bb major, and the bass loops a simple pattern while the piano
plays accompaniment style chords with hints of melodic movement. The piece is
tokenized, and the piano part of the snippet is used as the reference for bass-generation
and vice-versa. A total of 3 generation cases were set up per instrument, one with a
model that is trained for a long time and two with a model that is trained for a shorter
time, one of which is a transposed version of the original snippet. For each case, two
generation examples were produced: one with only the other instrument as reference
and one with some of the original clip as well. Composer	/	arranger
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Figure 18: An example 24-bar snippet with a simple four chord progression for piano
and bass.

Figures 19 and 20 show two generation cases from the bass generation examples
and Figure 21 shows one of the generation cases from the piano generation examples
(see Appendix A for the remaining generation cases). The generated examples show
that the models manage to extract some information from the reference piece and
use that information to generate somewhat instrument-like corresponding samples.
However, all the smaller scale details of harmony are ignored by the models. Instead
of matching the underlying harmony at the time, the models generate seemingly
random notes from the correct key. Furthermore, the generations are very note-sparse,
consisting mostly of silence. More detailed explanations of the results are given in the
captions of the figures.

39



13

7

19

 



 


















































































 

 



 





























  



 









 







  



 





 









 









 





 





 







 





































 

 

 

 

 

 
































  

 



 

	=	120

Bass

Bass

Bass

Bass

Piano

Piano

Piano

Piano



Figure 19: A generation example for a bass generating model that was trained until
convergence of the validation loss for 20000 steps. The generated bass does not react
to the changes in the piano reference well: changes to chords in the reference are not
reflected in the generated bass in any way. The Db in the first bar is out of place, since
it is not in the key and even clashes especially severely with the underlying Bb major
chord. The abrupt H in the fifth bar is just as out of place. Other than that the generated
bass only repeats Bb, which is the first degree note of the key, every downbeat.
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Figure 20: A generation example from a bass generating model that has been trained
only for 1000 steps. The model seems to make bass-like decisions on what to generate,
but does not seem to react to the chords changing in the reference, instead it appears
to output random 3 beats long Bb, C and F notes on the downbeat. Although the
generation is not responsive to the reference piano part, the notes are very natural
choices in the key of Bb major.
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Figure 21: A generation example from a piano generating model with 20000 training
steps. The model generates a small sequence of notes that are in key, then just silence.
The sequence of notes is more piano-like than the generated bass examples.
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5 Conclusions
The neural network models trained in this project managed to learn some of the features
present in the music data that they were trained on, such as elements of rhythm and
tonality. Ultimately, the end results that the models manage to generate are musically
unimpressive. The models do not seem to react to the reference sample in a smaller
scale, as in, there seems to be no reaction to something changing bar-to-bar in the
reference. Instead the models seem to be able to interpret some features from the
sample in a macro scale, such as the key of the piece, and then randomly generate
something that could resemble the instrument trained on, based on the larger-scale
information that the model extracts from the reference used for conditioning.

There are multiple factors that could be the reason why the models do not perform
as well as similar models trained in previous studies. The amount of training the
models received is tiny compared to training amounts that deep learning models
usually go through. For example for the LakhNES model, the top-performer was first
pre-trained on the whole lakh dataset for 400k steps using a mini-batch size of 30
before fine-tuning on the NES-MDB dataset for more training [9]. The training of
the models in this project already converged after roughly 20k steps with a smaller
batch size, and with the current generation parameters only generated more and more
silence. This could potentially be fixed by using a larger dataset, either by performing a
large amount of data-augmentation such as transposing the samples into multiple keys,
or just having a larger dataset in the first place. Trying different training parameters
such as the learning rate could also help the model to converge slower and learn more
while avoiding over-fitting.

The quality of the dataset could also be an issue. Not a lot of qualitative sample-
by-sample analysis was done on the dataset, and the process that was used to create
the reference-target instrument samples does not guarantee that the samples are of
good quality. Since the original dataset does not consist strictly of music pieces that
are written for piano and bass, there is a high likelihood that outlier samples exist,
for example samples where either one of the instrument is silent for almost the entire
duration of the sample. The more samples there are where the target instrument is
silent, the more there is a risk of a mode collapse towards just producing silence,
that is, the model converges to a local minimum where the winning strategy is only
generating empty bars instead of trying to guess the correct tones. This could be
counteracted by creating metrics for filtering outliers from the dataset, such as note
density. Note density could also be used as a conditioning metric for generation, as
was done in the Multi-Track Music Machine paper [10], so that the model could be
asked to generate "denser" music than silence.

The inference method could also be something to improve on. The sampling
parameters could be experimented on to find better candidates, or a whole other
sampling strategy could be utilized, such as nucleus sampling, typical sampling or
ancestral sampling [45]. Additionally, masking unwanted token candidates during
generation could lead to interesting results, but this can be difficult when working with
BPE-encoded tokens.

The tokenization or model parameters could also be an issue. In a black-box model
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as complex as the one in this project, the pinpointing of the possible issues can be
challenging and would require plenty of experimentation beyond the scope of this
thesis.

Art generating models can be useful tools for any artist and non-artist alike, either
for finding inspiration or producing a template for some project, or using the model
to create some finished product. Even so, developing art generating technologies do
not come without issues. While the model implemented in this thesis does not pose a
threat to any musician’s livelihood, the societal, cultural and economical effects of
AI-generated art should not be disregarded in any setting that works on the domain. As
AI-generated art becomes more and more accessible, the work of skilled artists might
get underappreciated, especially by non-professional consumers. [46] Furthermore,
using copyrighted pieces as training data for generation models does not require
providing any compensation for the original authors of the piece currently, even if the
generation model would be used commercially, which is problematic.

In the end, the models that were trained in this thesis managed to generate some
nearly instrument-like samples. However, the generated samples were modest at best.
If the objective would be to create a model that produces complementing instrument
tracks with good-quality, a simple procedural model would likely achieve much better
results with less implementation effort and computational resources. While not usable
in any real-life applications as is, the models and methods that were created and
examined in this thesis could serve as a starting point for building an improved version
of the model in the future.
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A Additional generation results
Figures A1 to A9 contain the generation results from the cases that were not presented
in section 4.3.3, including cases where the generation is primed with an initial set of
tokens, and cases where the original sample was transposed by a semitone.
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Figure A1: A generation example from a bass generating model that has been trained
for 20000 steps, where the generation was primed with 50 initial tokens from the
original tokenized piece. Here the model only produces one C, which does follow the
earlier rhythmic pattern and is a note that exists in this key, but is definitely not any of
the more obvious choices, such as the notes that are in the underlying G minor chord.
After generating the C, the rest is just silence. This is an effect that was perceived
with the model overall: the more they were trained the more certain they were about
producing just silence.
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Figure A2: A generation example from a bass generating model that has been trained
for 1000 steps, where the generation was primed with 50 initial tokens. The model
generates random Bb and an F notes on the downbeat, so no particularly interesting
differences to the case where no initial tokens were given.

51



13

37

31

25

7

19























 













 



















 














 












    







 



















 



 







 

 

 






































 



















  






































































































































 



































 



 

 









 





 













	=	120

Bass

Bass

Bass

Bass

Piano

Piano

Piano

Piano

























Figure A3: A generation example from a bass generating model trained for 1000
steps, where the original piece has been transposed by a semitone into A major. Here
the model generates E, D# and C# tones, where E and C# are quite natural choices for
any tune in A major, but the D# is a little bit out of place. The D# could "lead" to the
dominant fifth degree E so it might act as a secondary dominant in the key of A-major,
but the D# is nevertheless a less natural choice in this context, and would need a bit
more justification by surrounding harmony decisions to make sense.
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Figure A4: A generation example from a bass generating model trained with 1000
steps, where the key is in A-major and the model is primed with 50 initial tokens.
Here the model just outputs a D and a C# throughout the sample, and while both make
sense in A-major, they do not themselves convince that the model has understood the
exact key that they are in.
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Figure A5: A generation example from a piano generating model with 20000 training
steps, primed with 75 initial tokens. The model generates a bar worth of tones in the
correct key and the rest is silence.
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Figure A6: A generation example from a piano generating model with 500 training
steps. The model generates almost nothing for the most part, then a single Bb note,
later another Bb note and finally one more Bb note except an octave lower.
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Figure A7: A generation example from a piano generating model with 500 training
steps, primed with 75 initial tokens. This time the model generates a bit more music,
using F, Bb and C, all natural choices in the key of Bb-major.
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Figure A8: A generation example for a piano generating model with 500 training
steps, where the reference piece is transposed to A-major. The model generates a
lot more music than the Bb-major counterparts, even playing some non-triad chords
every now and then. Once more it seems like the model generates random notes in the
correct key, just much more densely than in Bb-major.
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Figure A9: A generation example from a piano generating model with 500 training
steps, where the reference piece is transposed to A-major and the model is prime with
75 initial tokens. The generation acts very similarly to the version that does not get
any initial tokens, outputting notes in the correct key seemingly randomly.
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