
Master’s Programme in Mathematics and Operations Research

A Hybrid Metaheuristic for Efficient Elevator
Zoning in Buildings with Sky Lobbies

Niko Miller

Master’s Thesis
2025



© 2025
This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Author Niko Miller

Title A Hybrid Metaheuristic for Efficient Elevator Zoning in Buildings with Sky
Lobbies

Degree programme Mathematics and Operations Research

Major Applied Mathematics

Supervisor Prof. Fabricio Oliveira

Advisor Mr. Mirko Ruokokoski (MSc)

Collaborative partner KONE Corporation

Date April 15, 2025 Number of pages 96 Language English

Abstract
This thesis studies the problem of optimal sky lobby placement in high-rise buildings
– a central but previously unsystematized question in elevator system design. The
problem is examined jointly with elevator zoning, and the thesis presents the first
formal mathematical model that captures their joint structure. To solve the problem, a
novel hybrid metaheuristic method is developed, combining simulated annealing for
sky lobby placement with a hidden genes genetic algorithm for zoning the resulting
building segments. The method is applied to an extensive computational study across
a wide range of building parameters, enabling identification of general patterns in
optimal solutions and challenging several prevailing design heuristics. The work
establishes a systematic foundation for future research on elevator system design in
high-rise buildings and opens numerous directions for extending the model to more
complex real-world settings.

Keywords Sky lobbies, Elevator zoning, Elevator system design, High-rise
buildings, Combinatorial optimization, Metaheuristics, Hybrid
metaheuristics, Simulated annealing, Genetic algorithm, Hidden genes
genetic algorithm



Tekijä Niko Miller

Työn nimi A Hybrid Metaheuristic for Efficient Elevator Zoning in Buildings with
Sky Lobbies

Koulutusohjelma Mathematics and Operations Research

Pääaine Applied Mathematics

Työn valvoja Prof. Fabricio Oliveira

Työn ohjaaja DI Mirko Ruokokoski

Yhteistyötaho KONE Corporation

Päivämäärä 15.4.2025 Sivumäärä 96 Kieli englanti

Tiivistelmä
Tämä diplomityö tarkastelee korkeiden rakennusten yläodotustilojen (sky lobby)
optimaalisen sijoittelun ongelmaa, joka on keskeinen mutta aiemmin järjestelmälli-
sesti tutkimaton kysymys hissijärjestelmien suunnittelussa. Ongelmaa tarkastellaan
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Symbols and Abbreviations

Symbols

𝐿 Number of elevators in a group
𝐶 Elevator car capacity (persons)
𝑑 Floor height (meters)
𝑣 Rated elevator speed (m/s)
𝑚 Number of sky lobbies (or number of zones, depending on context)
𝑁 Total number of populated floors (excluding ground floor)
𝑁𝑃 Total number of passengers over all floors
𝑁𝑘 Number of passengers on floor 𝑘
𝑝𝑘 Fraction of passengers on floor 𝑘
𝑃 Expected number of passengers in an elevator car
𝐻 Expected reversal floor
𝑆 Expected number of stops per trip
𝑡𝑣 Transit time between adjacent floors
𝑡𝑠 Additional time per stop (door and deceleration time)
𝑡𝑝 Average passenger entering/exiting time
𝑍 Number of possible zoning arrangements
𝑆𝑚 (𝑁) Number of valid ways to place 𝑚 sky lobbies among 𝑁 floors
𝑓 (𝑥) Objective function
𝑝𝑐 Crossover probability
𝑝𝑚 Mutation probability
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Abbreviations
RTT Round-trip Time
INT Interval
NTT Nominal Travel Time
CLF Car Load Factor
HC5 Handling Capacity (persons carried in 5 min)
%HC5 HC5 relative to the building population
DCS Destination Control System
SA Simulated Annealing
GA Genetic Algorithm
HGGA Hidden Genes Genetic Algorithm
COP Combinatorial Optimization Problem
TSP Traveling Salesman Problem
HPC High-Performance Computing
CLT Call Time
WT Waiting Time
TT Transit Time
TTD Time to Destination
RD Ride Time
JT Journey Time
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Definitions

Elevator Terminology

Main Lobby The primary entrance floor of a building, from which pas-
sengers typically begin their elevator journey.

Sky Lobby A lobby (transfer) floor located above the main lobby where
passengers switch from shuttle elevators to local elevators
(or vice versa).

Shuttle Elevator A large-capacity elevator (single- or double-deck) that trav-
els non-stop between the main lobby floor and one or more
sky lobby floors.

Local Elevator An elevator that provides service to a designated set of
floors (a zone) within a building stack, typically starting
from either the main lobby (if no sky lobby exists) or a sky
lobby.

Stack A building segment between the main lobby and a sky lobby,
between two sky lobbies, or between the highest sky lobby
and the top floor. Each stack is served by one or more local
elevator groups.

Zone A contiguous subset of floors within a stack, served by a
particular elevator group. A single stack can be split into
multiple zones.

Zoning A design method that partitions the floors of a stack into one
or more zones, each served by a dedicated elevator group,
to reduce the number of stops and save core area.

Elevator Group A set of elevators operating in a coordinated manner to
serve a particular set of floors or one or more zones.

Double-deck Eleva-
tor

An elevator design featuring two stacked elevator cars that
move together in a single shaft, enabling simultaneous
boarding on two adjacent floors.

Shaft Area The cross-sectional area required for each elevator shaft
within the building’s core.

Lobby Area The total floor area directly allocated for passenger wait-
ing and elevator entry/exit in front of a specific elevator
excluding the area occupied by elevator shafts.

Core Area The total area occupied by elevator shafts, lobbies, and
supporting infrastructure (e.g., machine rooms, corridors)
within the building’s central core.
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Service Quality Measures

Call Time Time from when the landing call is given until the assigned
elevator begins decelerating to the floor where the call was
made.

Waiting Time Time from when the passenger gives the call or joins the
queue until the elevator begins opening its doors at the
origin floor.

Transit Time Time from when the elevator doors start opening at the
origin floor until they start opening again at the destination
floor.

Ride Time Time from when the passenger enters the elevator until they
exit at the destination floor.

Time to Destination Time from when the passenger gives the call or joins the
queue until the elevator begins opening its doors at the
destination floor.

Journey Time Time from when the passenger gives the call or joins the
queue until they exit the elevator at the destination floor.

Traffic Terminology

Traffic Type A classification of elevator traffic based on where passengers
originate and where they exit (e.g., uppeak, downpeak, two-
way, interfloor).

Traffic Pattern A time-based variation in elevator traffic, as different traf-
fic types can dominate during different periods (morning
uppeak, midday two-way, evening downpeak).

Uppeak Traffic A morning or arrival traffic pattern dominated by passengers
traveling from the main lobby to upper floors.

Downpeak Traffic An evening or departure traffic pattern dominated by pas-
sengers traveling from upper floors down to the main lobby.

Interfloor Traffic Passengerflow that travels between floors within the building
(excluding the main lobby), for example moving from one
tenant floor to another tenant floor.

Round-Trip Time The time (seconds) from when an elevator’s doors open at
the main lobby until they reopen at the main lobby after
serving one or more upper floors.
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Nominal Travel Time The time (seconds) for an elevator to run express from the
main lobby to its highest served floor with no intermediate
stops.

Interval The average time (seconds) between consecutive elevator
cars departing from the main lobby in uppeak conditions.

Handling Capacity The maximum number of passengers an elevator system
can transport within a specified time frame (commonly a
5-minute period).

Metaheuristic Terminology

Metaheuristic A high-level algorithmic framework designed to find near-
optimal solutions to complex optimization problems by
intelligently guiding lower-level heuristics.

Hybrid Metaheuristic A metaheuristic approach that combines two or more algo-
rithms (e.g., population-based and single-solution-based)
to exploit their complementary strengths.

Simulated Annealing A single-solution metaheuristic inspired by the metallurgical
annealing process. It iteratively explores a neighborhood
of solutions and employs a cooling schedule that decreases
the likelihood of accepting worse solutions over time.

Genetic Algorithm A population-based metaheuristic inspired by biological
evolution. Solutions are encoded as chromosomes, and op-
erators such as selection, crossover, and mutation iteratively
improve the population.

Hidden Genes Ge-
netic Algorithm

A variation of the genetic algorithm that handles variable-
length or variable-cardinality solutions by allowing certain
genes to be hidden (inactive), facilitating more flexible
solution representations.

Neighborhood In simulated annealing, the set of solutions obtained by
making small or incremental changes to the current solution,
from which the next candidate solution is chosen.

Cooling Schedule In simulated annealing, the mechanism that controls how
the “temperature” parameter decreases over time, affecting
the probability of accepting worse solutions.
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Mutation In genetic algorithms, a genetic operator that randomly
alters one or more genes in a chromosome-like structure,
introducing new traits into a population.

Crossover In genetic algorithms, a genetic operator that combines
segments of two parent solutions to produce one or more
offspring solutions, enabling the exchange of genetic mate-
rial.

Selection In genetic algorithms, a process for choosing which indi-
viduals (solutions) advance to the next generation, typically
based on fitness or objective function quality.

Elitism In genetic algorithms, a policy whereby the best solutions
from one generation are automatically carried over to the
next, ensuring the retention of top performers.
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1 Introduction

In 2023, 186 buildings with a height of 200 m or more were completed worldwide,
marking a record year for tall-building construction (Council on Tall Buildings and
Urban Habitat, 2024). The number of tall buildings has grown exponentially and is now
approximately ten times higher than at the turn of the millennium. The global total has
surpassed 2,400 tall buildings, including 241 “super-tall" structures rising above 300
m, more than half of which have been completed since 2015. Furthermore, the average
height of the world’s 100 tallest buildings has increased from 281.5 meters in 2020 to
409.6 meters in 2023. These trends demonstrate that the design of highly functional
elevator systems for tall buildings is becoming increasingly important.

This proliferation of tall buildings would not have been possible without significant
innovations in elevator system design. One such innovation was the introduction of
sky lobbies. Since the 1970s, sky lobbies have become an integral component of
elevator system design in high-rise buildings owing to their ability to significantly
reduce the elevator system’s footprint and thereby increase the proportion of rentable
area. A sky lobby is an intermediate transfer floor on which passengers switch from
shuttle elevators to local elevators to reach their final destination. Without the use of
sky lobbies, many of the world’s tallest buildings would be economically infeasible. A
poorly designed elevator configuration not only increases waiting and travel times, but
can also significantly inflate the elevator core, reducing the rentable area and overall
profitability. Consequently, developers and building owners are strongly motivated to
explore systematic methods for optimizing sky lobby configurations.

Because sky lobbies divide a building into distinct segments, known as stacks, the
effectiveness of an elevator configuration involving sky lobbies cannot be evaluated
independently of the elevator configurations within each stack. Elevator zoning is
a method used to design optimal elevator configurations for stacks. This involves
partitioning a stack into disjoint sets of contiguous floors, referred to as zones.
Typically, each zone is served by a dedicated elevator group, and the zones do not share
floors, except for the building entrance level. Exact methods have been developed to
solve the zoning problem using single-objective formulations (Powell, 1971, 1975;
Ruokokoski et al., 2018), whereas metaheuristic approaches have extended the problem
to multi-objective settings (Viita-aho, 2019).

In contrast to elevator zoning, the optimal design of sky lobby configurations remains
considerably more ambiguous in the literature. Schroeder (1984) argues that a 100-
floor building is not economically feasible without a sky lobby and dedicated shuttle
elevators between the ground floor and the sky lobby. While it has long been understood
that there exists a threshold beyond which one or more sky lobbies become necessary,
there is an ongoing debate regarding the precise location of that threshold.

Schroeder (1989) suggests that sky lobbies should be considered for buildings exceeding
40 – 50 floors. According to Fortune (1985), sky lobbies beyond approximately 60
floors are necessary. Barney and Al-Sharif (2015) similarly notes that conventional
zoning can typically serve buildings up to 60 floors from a main terminal lobby, and
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that the use of double-deck elevators can extend this limit to 80 floors. More recently,
Siikonen (2024) claimed that, depending on factors such as tenant profile, population,
floor height, and elevator technology, buildings with 70 – 90 floors may still be served
without the need for sky lobbies.

Clearly, there is no consensus on when sky lobbies should be introduced. Nor is there
agreement on how many sky lobbies should be used or on which floors they should
be located. Furthermore, the potential core area savings are inconclusive. Although
existing studies, such as Schroeder (1985), Schroeder (1989), and Siikonen (2024),
offer valuable insights into the types of sky lobby configurations that may be advisable
and the potential extent of core area savings, definitive conclusions remain unresolved.
A key limitation of these studies is that the placement of sky lobby floors and the
zoning of local elevator groups within stacks were largely arbitrary. As a result, the
configurations proposed in the literature are almost certainly suboptimal.

A likely reason for the lack of consistent and conclusive results in the literature is
the absence of a systematic optimization-based method for solving the sky lobby
configuration problem. Precisely this gap is addressed in this thesis. Given information
about a building’s characteristics and population, this study seeks to answer the
following research questions:

1. How many sky lobbies should be used?

2. On which floors should the sky lobbies be placed?

3. What is the potential reduction in elevator core area resulting from the use of
optimally placed sky lobbies?

To address these questions, the problem of determining an optimal elevator configura-
tion in a building with sky lobbies is formulated as an optimization problem with a
single objective: minimizing the elevator core area. This minimization is subject to the
conventional elevator design criteria to ensure adequate performance. A novel hybrid
metaheuristic with nested structure is developed to solve this problem and applied to
compute near-optimal solutions across a wide range of problem instances.

On the outer level of the proposed hybrid, simulated annealing (SA) – a single-solution
based metaheuristic – is used to propose 𝑘 sky lobby floors for a building. These
sky lobbies partition the building into 𝑘 + 1 distinct building segments (stacks). On
the inner level, the hidden genes genetic algorithm (HGGA) – a population-based
metaheuristic – is used to find the optimal zoning arrangement for the stacks. A shuttle
elevator configuration is determined for stacks with a sky lobby. High performance
computing resources are used to find optimal hyperparameters for the metaheuristic
components, to cache partial solutions and lastly to compute the final results.

In contrast to earlier studies that relied on a limited number of arbitrarily selected
configurations, the proposed method explores the entire search space of sky lobby
configurations and converges on near-optimal solutions for any given set of parameters.
As a result, this thesis presents a unified framework in which both sky lobby placement
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and zoning configurations within stacks are optimized jointly, rather than being treated
in isolation.

This thesis makes three main contributions. First, it provides a formal mathematical
formulation of the sky lobby placement problem, which has not previously been
established. Second, by presenting solutions across a wide range of building heights
and population densities, this work offers new insights into when sky lobbies should
be introduced, how many should be used, and the resulting elevator core area savings.
These findings challenge prevailing industry assumptions, which are largely based on
rules of thumb. Third, on the methodological side, this thesis provides further evidence
of the effectiveness of the HGGA in variable-sized design space problems. Moreover,
it is the first study to successfully employ HGGAs within a hybrid metaheuristic
framework. Collectively, these contributions advance both the theoretical and practical
understanding of sky lobby optimization and provide a solid foundation for future
research on the topic.

The scope of this thesis is limited to office buildings with up to three sky lobbies
and an evenly distributed population across floors. In practice, most designs feature
one or two sky lobbies, and only the tallest or most complex buildings employ three
or more. Analyzing up to three sky lobbies thus captures the majority of real-world
use cases. The traffic type is assumed to be up-peak, meaning that down-peak and
interfloor traffic are not considered. This choice was motivated by the availability of
analytical formulas for up-peak conditions. Moreover, up-peak traffic is typically the
most demanding scenario for elevator systems; hence, if a configuration performs well
under up-peak conditions, it is likely to perform adequately under other traffic patterns
as well.

The remainder of this thesis is organized into five sections. Section 2 provides
background on elevator systems and reviews the literature on elevator zoning and sky
lobby configurations. Section 3 introduces metaheuristics and presents the rationale
behind the methodological choices in this thesis. Section 4 describes the methodology
used in this study. Section 5 presents the results, including the optimal number
and placement of sky lobbies, potential core area savings, and the resulting elevator
core-to-office space ratios. Finally, Section 6 concludes the thesis by discussing the
results, outlining the limitations of the study, and proposing directions for future
research.
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2 Elevator Systems

This section provides a foundation for understanding the research problem addressed
in this thesis. It begins with an overview elevator traffic, including key performance
metrics and traffic patterns observed in high-rise buildings. Next, it introduces zoning
as a strategy to reduce the space occupied by elevators in a building and reviews
approaches for determining optimal zoning arrangements. The section then discusses
the concept of sky lobbies, their benefits, and design considerations. Finally, the
motivation for this thesis is presented, identifying gaps in existing research and defining
the scope of this study.

2.1 Elevator Traffic Fundamentals

In this subsection, the fundamental principles of elevator traffic are described. First,
the vertical transportation problem is outlined. Next, common traffic types and patterns
observed in buildings are presented. Finally, core equations and performance measures
used in elevator research are introduced.

2.1.1 The Vertical Transportation Problem

Barney and Al-Sharif (2015) define the vertical transportation problem as follows: move
a specific number of passengers from their origin floors to their respective destination
floors, minimizing passenger waiting and traveling time while also minimizing the
number of elevators, core space (i.e., the combined volume of elevator shafts and
lobby areas), cost, and energy consumption.

In practice, the vertical transportation problem is an optimization problem with
multiple objectives and constraints. On the one hand, increasing the number or
speed of elevators allows passengers to reach their destination floors faster. However,
additional elevators incur higher installation, maintenance, and modernization costs,
and they occupy building areas that could otherwise generate rental income. Therefore,
solving the vertical transportation problem always involves a compromise between
budget constraints, available building space, and the desired level of passenger service
(Siikonen, 1997b).

Addressing the vertical transportation problem requires balancing supply and demand,
where supply is determined by the number, rated speed, and capacity of elevators, and
demand refers to passenger arrivals.

2.1.2 Elevator System Events

In a conventional control system, a passenger arrives at the elevator lobby and places an
elevator call by pressing either the “up” or “down” button, depending on the direction
of their intended destination floor. This call is referred to as a landing call1 (Barney &
Al-Sharif, 2015). When the elevator arrives, the passenger enters and selects their

1Also the terms "hall call" and "corridor call" have been used.
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destination floor by pressing the corresponding button inside the elevator car. In a
destination control system (DCS), the passenger requests an elevator by specifying
their destination floor directly on a device called a destination operation panel (DOP),
which is located in the elevator lobby. The elevator system then informs the passenger
on the DOP which elevator to board.

In a conventional control system, the call time (CLT) begins when the elevator
call is placed and ends when the elevator starts to decelerate for the passenger’s
destination floor (Sorsa, 2002). Waiting time (WT) is defined as the interval between
the passenger’s arrival at the elevator lobby and the moment the elevator doors begin
opening at the departure floor. Transit time (TT) refers to the interval from when the
doors start opening at the departure floor until they start opening at the destination
floor. The total time to destination (TTD) is defined as the interval from the passenger’s
arrival at the elevator lobby until the doors begin opening at their destination floor
(Barney & Al-Sharif, 2015). Thus, the TTD is the sum of the waiting time (WT) and
TT, expressed as:

𝑇𝑇𝐷 = 𝑊𝑇 + 𝑇𝑇.

Ride time (RD) refers to the interval from when a passenger enters the elevator until
they exit (Sorsa, 2002). Journey time (JT) is defined as the duration from the moment
a passenger registers a landing call or a destination call until they exit the elevator
system (Barney & Al-Sharif, 2015). Thus, JT can be expressed as the sum of WT and
RD:

𝐽𝑇 = 𝑊𝑇 + 𝑅𝐷.

Figure 1 illustrates the sequence of passenger events in the elevator system and
maps them to corresponding service quality measures defined in the previous para-
graphs.

Previous
car

leaving

Passenger
arrives
or gives

a call

Passenger 
stands in
front of

the allocated 
lift

Call is
cancelled

Responding
lift arrives

and starts to 
open doors

Next car 
leaving

Doors start
to open at 

destination 
floor

EVENT

Departure Interval

Standing  timeWalking time

Transit TimeWaiting Time

Time to Destination

Journey Time

Call Time

Passenger 
exits the car

Figure 1: Sequence of passenger events in the elevator system and the corresponding
service quality measures. Adapted from Siikonen (2021)
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Like many other services, elevator demand can be highly irregular. Peaks in demand
can place strain on the system, considerably increasing passenger journey times. The
primary difficulty in planning an elevator system lies not in calculating its expected
performance, but in accurately estimating the demand (Barney & Al-Sharif, 2015).
Therefore, understanding how demand varies across different scenarios is crucial
for designing efficient elevator systems. Common traffic types and patterns that
characterize these variations are described in the next section.

2.1.3 Traffic Types and Patterns

According to Siikonen (1997a), elevator traffic in office buildings and similar multi-
floor buildings can be categorized into three main traffic components: incoming,
outgoing, and inter-floor. Each component may vary in intensity throughout the day.
Incoming traffic refers to passengers arriving at the building, while outgoing traffic
consists of passengers leaving the building. Inter-floor traffic involves passengers
traveling between populated floors within the building.

The prevailing traffic condition is often a mixture of these three components. Siikonen
(1997a) identified five distinct traffic types based on the relative intensity of each
component: upward, downward, two-way, inter-floor, and mixed traffic. Table 1 shows
the categorization of traffic types based on these components.

Table 1: Definitions of elevator traffic types based on the distribution of traffic
components. The percentages in the Incoming, Outgoing, and Inter-floor columns
represent the share of traffic in each respective component. The resulting traffic type
classification is shown in the Traffic Type column. Adapted from Viita-aho (2019)

Incoming Outgoing Inter-floor Traffic Type
100% - - Upward

- 100% - Downward
50% 50% - Two-way
40% 40% 20% Mixed
25% 25% 50% Inter-floor

When traffic intensity is considered, distinct traffic patterns emerge. Barney and
Al-Sharif (2015) identified four typical daily traffic patterns in office buildings: uppeak
traffic, midday (lunchtime) traffic, random interfloor traffic, and downpeak traffic.

An uppeak traffic condition occurs when the dominant (or only) traffic flow is upward,
with all or most passengers entering the elevator system at the building’s main lobby.
Uppeak traffic typically happens in the morning, as passengers arrive at work and seek
to reach their workstations on upper floors (Barney & Al-Sharif, 2015).

A midday (lunchtime) traffic condition occurs around midday and features prominent
traffic flow to and from specific floors, one of which may be the main lobby (Barney
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& Al-Sharif, 2015). Midday traffic is sometimes called two-way traffic, as building
occupants typically leave the building via the main lobby for lunch and subsequently
return, creating consecutive outgoing and incoming traffic.

Random interfloor traffic occurs when no clear pattern of elevator calls can be identified
(Barney & Al-Sharif, 2015). It is the most common pattern and persists for most of the
working day in office buildings. Typically, it results from occupants visiting different
floors for work-related purposes, such as meetings.

A downpeak traffic condition exists when the dominant or sole traffic flow is downward,
with all or most passengers leaving the elevator system at the main lobby. Downpeak
traffic occurs at the end of the workday, as occupants exit their offices. Evening
downpeak is generally more intense than morning uppeak; however, handling capacity
during downpeak is around 50% greater because elevators make fewer stops. Typically,
elevators stop at selected floors to pick up departing passengers and then run express
to the main lobby (Barney & Al-Sharif, 2015).

Strakosch (1967) presented the typical traffic patterns in office buildings. These
patterns are illustrated in Figure 2.

Figure 2: Typical elevator traffic patterns in an office building over the course of
a working day. The figure is divided into upward traffic (top) and downward traffic
(bottom). The x-axis shows time from 8 am to 8 pm, while the y-axis indicates traffic
intensity, measured as the percentage of the building population requiring elevator
service within a 5-minute interval. Adapted from Strakosch (1967)
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Uppeak traffic occurs prominently in the morning, followed by midday two-way
traffic (lunchtime), random interfloor traffic throughout the day, and finally, an intense
downpeak at the end of the workday. While these traffic patterns are still present
in modern office buildings, their location (in time), shape and magnitude may have
shifted and changed slightly due to changes in building usage – such as the addition of
restaurants and cafeterias on upper floors, the adoption of flexible working hours and
remote work options, and restrictions like indoor smoking bans.

2.1.4 Equations for Uppeak Traffic

Research on elevator performance has primarily focused on uppeak traffic conditions,
based on the common assumption that an elevator system capable of handling uppeak
traffic can effectively handle all other traffic types as well.

Moreover, uppeak traffic is the only traffic type for which analytical equations exist, as
it involves only a single active call per passenger. In contrast, other traffic patterns often
involve multiple simultaneous calls, making system performance highly dependent
on the specific group control logic and rendering accurate mathematical modeling
significantly more difficult.

In this thesis, only uppeak traffic is considered. The corresponding performance
equations are derived in the following paragraphs.

Perhaps the most fundamental measure of elevator performance is the round-trip time
(RTT). Barney and Al-Sharif (2015) define RTT as the duration (in seconds) of a
single elevator car’s journey around a building, starting from when the car doors open
at the main lobby and ending when the doors reopen at the main lobby after completing
the trip. A widely accepted formula for RTT is:

𝑅𝑇𝑇 = 2𝐻𝑡𝑣 + (𝑆 + 1)𝑡𝑠 + 2𝑃𝑡𝑝, (1)

where 𝐻 is the expected reversal floor, 𝑡𝑣 is the transit time between adjacent floors, 𝑆
is the expected number of stops during the trip, 𝑡𝑠 is the time spent at each stop, 𝑃 is
the expected number of passengers carried, and 𝑡𝑝 is the average time required for a
single passenger to enter or exit the elevator car.

Interval (INT) is the average time between successive elevator car arrivals at the main
lobby floor

𝐼𝑁𝑇 =
𝑅𝑇𝑇

𝐿
, (2)

where 𝐿 is the number of elevators in the group. (Barney & Al-Sharif, 2015)

The 5-minute handling capacity (HC5) of an elevator group is the number of passengers
it can service during uppeak traffic conditions with a car load factor (CLF) of 80%. It
is given by

𝐻𝐶5 =
300 · 𝐶𝐿𝐹 · 𝐶 · 𝐿

𝑅𝑇𝑇
, (3)
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where 𝐶 is the elevator car size in persons and 𝐿 is the number of elevators in the
group.

HC5 may also be given relative to the total population in the building (POP) in which
case we denote it by %HC5 (Ruokokoski & Siikonen, 2017). The formula reads

%𝐻𝐶5 =
𝐻𝐶5
𝑃𝑂𝑃

· 100%. (4)

Nominal travel time (NTT) is the time period for an elevator to travel from the ground
floor to the highest served floor without any stops (Ruokokoski et al., 2018). It is given
by

𝑁𝑇𝑇 =
𝑑 · 𝑁
𝑣

, (5)

where 𝑑 is the floor height, 𝑁 is the floor count, and 𝑣 is the rated speed of the
elevator.

Traditional elevator system design criteria are based on handling capacity, interval, and
nominal travel time during uppeak traffic conditions (Ruokokoski & Siikonen, 2017).
In residential buildings, handling capacity should exceed 5–7.5% per 5 minutes, while
in commercial buildings, it should be 11–13% per 5 minutes (Strakosch, 1984). The
average interval should range between 40 and 100 seconds in residential buildings and
between 20 and 30 seconds in commercial buildings (Barney & Dos Santos, 1985).
Nominal travel time should be less than 50 seconds in residential buildings and less
than 32 seconds in commercial buildings (Siikonen, 1997b).

2.1.5 Revised RTT Formulation

There is a shortcoming in the RTT calculation as given by (1) – it does not account
for the dependence of acceleration and deceleration times on travel distance, elevator
speed, acceleration, and jerk. Moreover, it does not allow for varying passenger
numbers between floors. Roschier and Kaakinen (1978) addressed these shortcomings
and derived a more accurate formula for calculating RTT. A brief overview of their
proposal follows. For a full derivation, please refer to the original publication.

Consider a general building with the main entrance on floor zero. Subsequent floors
are 1, 2, · · · , 𝑁 . Let 𝑁𝑘 denote the count of passengers on floor 𝑘, 1 ≤ 𝑘 ≤ 𝑁 . Then
the total number of passengers is

𝑁𝑃 =

𝑁∑︁
𝑘=1

𝑁𝑘 . (6)

Let 𝑝𝑘 denote the fraction of passengers on floor 𝑘 so that

𝑝𝑘 =
𝑁𝑘

𝑁𝑃
. (7)
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Clearly,

𝑁∑︁
𝑘=1

𝑝𝑘 = 1. (8)

Let 𝑟 denote the travel distance (in floors) from floor 𝑖 to floor 𝑗 so that 𝑟 = 𝑗 − 𝑖. The
number of initial passengers in the car is 𝑃.

When 1 ≤ 𝑟 ≤ 𝑁 , the expected number of 𝑟-floor runs in upward direction (𝑈𝑟) and
downward direction (𝐷𝑟) are given by

𝑈𝑟 =

𝑁−(𝑟−1)∑︁
𝑖=1

[︄(︂
1 −

𝑖+(𝑟−2)∑︁
𝑘=𝑖

𝑝𝑘

)︂𝑃
−
(︂
1 −

𝑖+(𝑟−1)∑︁
𝑘=𝑖

𝑝𝑘

)︂𝑃]︄
−
𝑁−𝑟∑︁
𝑖=1

[︄(︂
1 −

𝑖+(𝑟−1)∑︁
𝑘=𝑖

𝑝𝑘

)︂𝑃
−
(︂
1 −

𝑖+𝑟∑︁
𝑘=𝑖

𝑝𝑘

)︂𝑃]︄
,

(9)

𝐷𝑟 =

(︂ 𝑟∑︁
𝑘=1

𝑝𝑘

)︂𝑃
−
(︂ 𝑟−1∑︁
𝑘=1

𝑝𝑘

)︂𝑃
. (10)

The expected number of stops in upward direction (𝑆𝑢) and downward direction (𝑆𝑑)
are formulated as

𝑆𝑢 =

𝑁∑︁
𝑟=1

𝑈𝑟 , (11)

𝑆𝑑 =

𝑁∑︁
𝑟=1

𝐷𝑟 = 1. (12)

Finally, the formula for RTT is

𝑅𝑇𝑇 =

𝑁∑︁
𝑟=1
(𝑈𝑟 + 𝐷𝑟) (𝑡𝑟 + 𝑡𝑑) + 2𝑃𝑡𝑝, (13)

where 𝑈𝑟 and 𝐷𝑟 are the expected number of runs with 𝑟-floor distance in upward
and downward direction, respectively; 𝑡𝑟 is the flight time for an 𝑟-floor distance; 𝑡𝑑
is the additional delay during a single stop, namely the door operating time; 𝑃 is the
expected number of passengers carried; and 𝑡𝑝 is the the average time for a single
passenger to enter or leave a car.
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2.2 Elevator Zoning

2.2.1 The Concept of Zoning

For smaller buildings, elevators are typically assigned to a single group serving
each populated floor. As the floor count increases, so does the expected number of
stops. As a consequence, the performance of a single group of elevators deteriorates
(Barney & Al-Sharif, 2015). One solution is to keep increasing the elevator count
until performance targets are met. However, this significantly increases the core area
occupied by elevators as each shaft must be built from the ground up.

A more efficient solution is to limit the number of floors each elevator must serve –
a strategy known as zoning. In zoning, the building is divided into disjoint sets of
contiguous floors, called zones, with each zone typically served by its own dedicated
group of elevators. Except for the entrance floor, these zones generally do not overlap
(Ruokokoski et al., 2018).

In its simplest form, zoning divides a large lift group into two distinct zones: a low-rise
(LR) zone and a high-rise (HR) zone. Figure 3 illustrates this arrangement.

Figure 3: Typical zoning arrangement for a building with 40 floors. The main lobby
is located on floor 0, and the highest populated floor is 39. The low-rise (LR) zone
covers floors 1 – 20, and the high-rise (HR) zone covers floors 21 – 39. Both zones
are served by a dedicated group of three elevators

The LR elevators serve floors immediately above the entrance while the HR elevators
performs an express ride past the LR floors and serve the top part of the building. Since
shafts of the LR elevators occupy only the lowest part of the building, a significant
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portion of the core area is saved. Furthermore, the LR elevators can have a lower rated
speed than the HR elevators since the total distance traveled is shorter. This allows
smaller machinery, which are less expensive and consume less energy (Ruokokoski
et al., 2018).

In a similar manner, a building can be divided into as many zones as needed.
Furthermore, the exact floor split of the zones may be tailored. Finding a suitable
zoning arrangement is a difficult problem, since the number of zoning arrangements
grows exponentially with floor count. For a building with 𝑁 floors, the number of
zoning arrangements is

𝑍 = 2𝑁−1. (14)

However, there is often an upper limit to the number of zones due to practical reasons.
Ruokokoski et al. (2018) showed that if the number of zones is restricted to 𝑚, the
number of zoning arrangements is

𝑍 =

𝑚∑︁
𝑘=1

(︃
𝑁 − 1
𝑘 − 1

)︃
. (15)

Figure 4 plots values of 𝑍 from Equation (15) for various choices of 𝑚 as a function
of the floor count 𝑁 on a logarithmic scale.
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For example, the number of zoning arrangements is roughly one billion when the floor
count is 60 and the maximum zone count is 8.

2.2.2 Review of Zoning Methods

In 1971, Bruce Powell introduced the first optimization method for the static zoning
problem using a dynamic programming procedure. Powell’s method minimizes a
single objective function such as the maximum filling time of a building or the
difference in filling times between zones.

Powell’s algorithm builds the overall solution recursively by reusing partial solutions
from the previous step. In the first step, the algorithm computes all possible one-zone
arrangements that serve floors 1 through 𝑘 , for each 𝑘 = 1, . . . , 𝑁 , where 𝑁 is the total
number of floors.

Next, for the two-zone case, the algorithm determines the optimal splitting point 𝑥
so that the first zone serves floors 1 to 𝑥 − 1 (using the already computed one-zone
solutions) and the second zone serves floors 𝑥 to 𝑘 (for each 𝑘 = 2, . . . , 𝑁). The
objective function value for the two-zone arrangement is then evaluated by combining
the precomputed value for the first zone with the new computation for the second
zone.

For three zones, the procedure is similar: the algorithm selects an optimal splitting
point 𝑥 such that the third (uppermost) zone serves floors 𝑥 to 𝑘 , while the optimal
two-zone arrangement (previously computed) takes care of floors 1 to 𝑥 − 1. This
process continues – incrementing the number of zones – until the desired maximum
number of zones, say 𝑚, is reached.

Powell’s initial method requires as input the number of elevators for each zone and their
maximum velocities. Four years later, Powell extended his earlier work by presenting
a method that determines the least amount of elevators needed in each zone to satisfy
given performance criteria along with their velocities (Powell, 1975). He also added
a maximum waiting time constraint based on interval and introduced four practical
constraints:

(C1) All zones must contain an even number of cars.

(C2) Car speeds in any zone must be no slower than the speed of the cars in the next
lower zone.

(C3) Car speeds are subject to a minimum speed restriction that is a function of the
lowest floor in the zone.

(C4) Passenger handling capacity must meet or exceed a predetermined value (e.g.,
12 percent of the zone’s population in a 5-minute period).

Even though Powell’s method produces an optimal zoning within seconds, it has
not been widely adopted in the industry – more than 50 years after Powell’s work,
Ruokokoski and colleagues noted that the current practice in the lift industry is still
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more or less based on rules of thumb, duty table calculations, and the designer’s
expertise (Ruokokoski et al., 2018).

Ruokokoski et al. (2018) made the following modifications to Powell’s method: i)
the nominal velocity of elevators is selected based on the highest floor of the zone
instead of the lowest floor; ii) the car load factor is a decision variable instead of
being a constant fixed to 100% since using fixed car load factors may lead to over- or
under-sizing; iii) the number of elevators in a zone should be at minimum and it can
differ from values of other zones only by 2 but do not need to be even; and iv) The
RTT formula by Roschier and Kaakinen (1978) is used which takes into account the
exact running times of each flight during the round trip, instead of using flight time
approximations.

Furthermore, Ruokokoski et al. (2018) chose the rated velocity of elevators based on a
nominal travel time constraint. That is, the time period for an elevator to travel from
the ground floor to the highest floor in the zone without any stops must be shorter than
a predetermined value. In addition to maximum filling time of a building, the authors
considered two new objective functions: the core area occupied by elevators and the
total number number of elevators in the building.

In their work, the optimal zoning 𝑀 𝑓 (𝑁) with respect to objective function 𝑓 for a
building having 𝑁 upper floors is obtained by the following dynamic programming
recursion:

𝑀 𝑓 (𝑁) = min
2≤𝑛≤10

{︃
min

1≤𝑍𝑛≤𝑍max

[︃
min

𝑍𝑛≤𝑥≤𝑁
𝐹

(︂
𝑀
𝑍𝑛−1
𝑓
(𝑥 − 1), 𝑓 (𝑥, 𝑁, 𝑣∗, 𝑃∗, 𝐿∗)

)︂]︃}︃
,

(16)

where 𝑛 is the number of elevators, which can vary between 𝑛 and 𝑛 + 2. 𝑍𝑛 is the
number of zoning alternatives, and 𝑍max is the predefined maximum number of zones.
𝑣∗ is the nominal velocity of the elevators in the zone, 𝑃∗ is the average number of
passengers per elevator, and 𝐿∗ is the number of elevators in the zone.

The superscript ∗ indicates that the variables are chosen in such a way that they
satisfy the given constraints. In the case of maximum filling time, the function 𝐹 (·)
corresponds to the maximum of 𝑀𝑍𝑛−1

𝑓
(·) and 𝑓 (·), whereas for the objective functions

related to core area and the total number of elevators, 𝐹 (·) represents the sum of
𝑀
𝑍𝑛−1
𝑓
(·) and 𝑓 (·).

Ruokokoski et al. (2018) found that the maximum filling time objective contradicts
with both the core area and the total number of elevators objective. The former
objective prioritizes solutions where zones have similar filling times and handling
capacities while the latter objectives prioritize solutions with minimal elevator shafts.
The authors concluded that zoning should thus be considered as a multi-objective
optimization problem.

Based on the findings of Ruokokoski et al. (2018), Viita-aho (2019) posed the zoning
problem as a multi-objective optimization problem. Viita-aho (2019) considered four
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different objective functions but his main focus was on minimizing the price of the
elevator configuration and the core area occupied by the elevators.

Instead of using dynamic programming like Ruokokoski et al. (2018) and Powell
(1971, 1975), Viita-aho (2019) applied the reference-point-based elitist non-dominated
sorting genetic algorithm (NSGA-III) to identify Pareto-optimal zoning solutions.
As genetic operators, NSGA-III uses real-valued polynomial mutation and simulated
binary crossover.

Viita-aho (2019) approached genetic encoding as follows. To limit the size of the
search space of the genetic algortihm, the number of zones, say 𝑖, is decided before
running the algorithm. Then, during each iteration, the decision variables are:

The upper floors of the zones, given by K = [𝑘1, 𝑘2, . . . , 𝑘𝑖], the elevator speeds
V = [𝑣1, 𝑣2, . . . , 𝑣𝑖], the elevator car capacities C = [𝐶1, 𝐶2, . . . , 𝐶𝑖], and the number
of elevators L = [𝐿1, 𝐿2, . . . , 𝐿𝑖]. The decision variable vector or chromosome x is
then defined as:

x = [K V C L], (17)

where the chromosome length is 𝑛 = 4 · 𝑖.

Viita-aho (2019) systematically solved the zoning problem as described in Algorithm
1. In the algorithm, 𝑍 denotes the zone count and 𝑍𝑚𝑎𝑥 is the upper limit of zones; 𝐿
denotes the elevator count and 𝐿𝑚𝑎𝑥 is the upper limit of elevators; 𝑟 represents the
run index, and 𝑅max is the total number of runs; 𝑡 denotes the generation, and 𝐺max is
the total number of generations.

Algorithm 1 Pseudocode of the iterative zoning procedure in Viita-aho (2019)
1: procedure Zoning
2: for each 𝑍 = 1, . . . , 𝑍max do
3: for each 𝐿 = 3, . . . , 𝐿max do
4: for each 𝑟 = 1, . . . , 𝑅max do
5: for each 𝑡 = 1, . . . , 𝐺max do
6: NSGA-III(Z, L, r, t)
7: end for
8: end for
9: end for

10: end for
11: end procedure

Viita-aho (2019) found that genetic algorithms are suitable for solving the zoning
problem in a multi-objective setting. However, he mentions a few drawbacks. First,
the search space is very large, which means that the genetic algorithm might get stuck
in a local minimum. Second, if the zone count is a variable, the population size in the
genetic algorithm needs to be increased significantly to obtain good results. Lastly,
with large floor counts, runtime of the algorithm grows clearly because the algorithm
converges slower as the number of possible zoning arrangements increases.
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Results also showed that the two main objectives (price and core area) are generally
not in conflict. In other words, an elevator configuration with smaller core area was
generally also less expensive. The opposite was true when price and maximum filling
time were optimized: an arrangement that fills the building fast was more costly.
Furthermore, Viita-aho (2019) found that zones are typically smaller in the lower
portion of a building and that car sizes and elevator speeds tend to be greater in zones
that are located higher in the building.

In addition to optimization methods, some rule-based approaches has been suggested.
For instance, Al-Sharif et al. (2016, 2017) proposed the following trigger rule: if the
number of elevators exceeds 8 for conventional group control (or 12 for destination
control), and if the car capacity exceeds 26 persons (or 2000 kg), then the building
should be zoned or the number of zones should be increased if zoning is already in
place.

Another rule, addressing excessive transit time, specifies that if the average transit
time exceeds 90 seconds, the building should be zoned or have its number of zones
increased. A third rule provides recommendations on how to divide the building
population when zoning. For two zones, 57% of the population should be assigned to
the lower zone and 43% to the upper zone. For three zones, the lower zone should
accommodate 43% of the population, the middle zone 30%, and the upper zone 27%.
In the case of four zones, the first should contain 29%, the second 27%, and both the
third and fourth zones should have 22% each. This distribution is designed to equalize
the number of elevators serving each zone and maintain symmetry.

Current industry practices often rely on simple heuristic rules, presumably because
they are easier and faster to apply than the presented optimization methods. Despite
Powell’s optimization approach being available for over fifty years, it has seen limited
practical use. Furthermore, existing zoning methods have a significant limitation—they
do not explicitly account for elevator lobby areas. In tall buildings with multiple
elevator zones, lobby spaces can occupy a considerable area. Consequently, existing
methods may suggest zoning arrangements that include too many elevators. Thus,
there remains considerable room for improving elevator zoning by developing methods
that balance accuracy with simplicity and practicality.

In addition to zoning, an effective way to reduce the footprint of elevators in a building
is to use sky lobbies – intermediate transfer points in tall buildings. The next section
discusses sky lobbies and their benefits in elevator zoning.

2.3 Sky Lobbies

As the number of floors in a high-rise building increases, an increasing share of the
building must be reserved for elevator shafts. At some point, adding more elevators
becomes impractical – elevator shafts and machine rooms takes up too much space,
making the building inefficient and unprofitable for its owners (Sorsa, 2002). Before
the 70s, this problem placed a cap on building size. Around 1970, a new type of
solution to the core space problem was introduced: sky lobbies. A sky lobby divides
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the building into two smaller building segments called stacks, where the upper stack is
served by shuttle elevators transporting passengers to the sky lobby, from where they
continue by local elevator groups to their final destination (Al-Sharif, 2017; Schroeder,
1989).

Shuttle elevators typically serve only the main lobby floor and one sky lobby floor,
ensuring a fast express ride for the first leg of a passenger’s journey. With multiple
sky lobbies, shuttle elevators may stop at more than one sky lobby floor. Shuttle
elevators can be either single or double deck. In the case of double-deck shuttles,
a corresponding double-deck sky lobby is required to accommodate simultaneous
passenger unloading from both cars.

There are five types of sky lobby configurations (Barney & Al-Sharif, 2015; Schroeder,
1989):

1. Single-deck shuttles with single-deck local elevators (e.g., the original World
Trade Center).

2. Double-deck shuttles with single-deck local elevators (e.g., Sears Tower).

3. Double-deck shuttles with double-deck local elevators (e.g., PETRONAS Tow-
ers).

4. Single-deck shuttles with single-deck local elevators operating in a top-down
fashion (no known examples).

5. Double-deck shuttles with single-deck local elevators operating in a top-down
fashion (e.g., UOB Plaza).

When determining the size of shuttle elevator groups, downpeak conditions play a
critical role. Schroeder (1984) explains that elevator groups above the sky lobby are
capable of handling 40–50% more traffic during downpeak than during uppeak, as
fully loaded cars travel non-stop to the sky lobby. Therefore, to avoid congestion at
the sky lobby during downpeak traffic conditions, the capacity of the shuttle elevator
group must also be sized 40–50% larger than what an uppeak analysis would indicate.
Schroeder (1984) claims that without this additional downpeak capacity requirement,
shuttle elevators and sky lobbies would be the most economical configuration for any
high-rise building.

The number of sky lobby combinations grows rapidly with floor count, especially
when there are multiple sky lobbies. What follows is a derivation of the number of sky
lobby configurations as a function of the floor count and the sky lobby count. 𝑘 sky
lobbies effectively split the building into 𝑘 + 1 stacks. Let 𝑁 denote the total number
of floors in the building. A sky lobby may be located on any floor from 1 to 𝑁 − 1
(with floor 0 as the entrance and floor 𝑁 as the top floor). If there are multiple sky
lobbies, they must not be placed on consecutive floors. We now derive the number of
valid combinations for sky lobby placements.

Suppose we have a building with 𝑁 floors numbered 0, 1, 2, . . . , 𝑁 , and sky lobbies
may be placed on floors 1 through 𝑁 − 1. If we wish to place 𝑚 sky lobbies such that
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no two are on consecutive floors, let the positions be

𝑎1, 𝑎2, . . . , 𝑎𝑚 with 1 ≤ 𝑎1 < 𝑎2 < · · · < 𝑎𝑚 ≤ 𝑁 − 1,

subject to
𝑎𝑖+1 − 𝑎𝑖 ≥ 2 for 𝑖 = 1, 2, . . . , 𝑚 − 1.

To eliminate the non-adjacency constraint, we introduce shifted variables:

𝑏𝑖 = 𝑎𝑖 − (𝑖 − 1), 𝑖 = 1, 2, . . . , 𝑚.

Since 𝑎𝑖+1 ≥ 𝑎𝑖 + 2, it follows that

𝑏𝑖+1 = 𝑎𝑖+1 − 𝑖 ≥ 𝑎𝑖 + 2 − 𝑖 = 𝑏𝑖 + 1 > 𝑏𝑖,

so the 𝑏𝑖 form an increasing sequence without any gap restrictions. Note that:

𝑏1 = 𝑎1 ≥ 1, and 𝑏𝑚 = 𝑎𝑚 − (𝑚 − 1) ≤ (𝑁 − 1) − (𝑚 − 1) = 𝑁 − 𝑚.

Thus, the 𝑏𝑖 are chosen from the set {1, 2, . . . , 𝑁 − 𝑚} with the only condition
that

𝑏1 < 𝑏2 < · · · < 𝑏𝑚 .
The number of ways to choose 𝑚 distinct numbers from {1, 2, . . . , 𝑁 −𝑚} is given by
the binomial coefficient (︃

𝑁 − 𝑚
𝑚

)︃
.

Hence, the general formula for the number of valid sky lobby placements is

𝑆𝑚 (𝑁) =
(︃
𝑁 − 𝑚
𝑚

)︃
, (18)

where 𝑁 is the floor count and 𝑚 is the number of sky lobbies.

Figure 5 illustrates the values of 𝑆𝑚 (𝑁) for 𝑚 = 1, 2, 3, 4 on a logarithmic scale. For
instance, when 𝑁 = 100 and 𝑚 = 3, the number of possible sky lobby configurations
is approximately 100,000.
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Figure 5: Number of valid sky lobby placements as a function of the total number of
floors 𝑁 . The curves represent: 𝑆1(𝑁) = 𝑁 − 1 for one sky lobby, 𝑆2(𝑁) =

(︁𝑁−2
2
)︁

for
two sky lobbies, 𝑆3(𝑁) =

(︁𝑁−3
3
)︁

for three sky lobbies, and 𝑆4(𝑁) =
(︁𝑁−4

4
)︁

for four sky
lobbies. A logarithmic 𝑦-axis highlights the rapid combinatorial growth as 𝑁 increases

In the next subsection, a real world elevator system with multiple sky lobbies is
presented.

2.3.1 Case Study: World Trade Center

One of the earliest buildings with a sky lobby configuration – the first World Trade
Center – was built in 1971. It was 415 m high with 110 floors and 2 sky lobbies on
the 44th and 78th floors, dividing the building into three stacks. To further facilitate
traffic at the sky lobbies, two-way escalators provided service between the floors
immediately above and below the sky lobby floors (Otis Elevator Company, 1967).
Figure 6 illustrates the elevator system design, highlighting the three stacks and their
corresponding transfer points at the sky lobbies.

The first stack comprised local elevators serving floors below the 44th-floor sky lobby.
It included four groups of six single-deck lifts, each serving different floor zones:
floors 9 – 16 at 4 m/s, floors 17 – 24 at 5 m/s, floors 25 – 32 at 6 m/s, and floors 33 –
40 at 7 m/s. Passengers traveling beyond the 40th floor used express shuttle elevators
operating at 8 m/s to reach the first sky lobby (Barney & Al-Sharif, 2015).

The second stack extended from the 44th-floor sky lobby to the 78th floor. This stack
was served by eight express shuttle elevators traveling at 8 m/s. From the sky lobby,
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Figure 6: Elevator system layout of the original World Trade Center (1972–2001),
illustrating the sky lobbies at the 44th and 78th floors and the resulting three stacks.
Express (shuttle) elevators start from the main lobby and bypass intermediate floors
to reach the sky lobbies, while local elevators and short escalator connections serve
individual zones

four groups of six single-deck local elevators provided access to mid-rise floors: floors
46 – 54 at 2.5 m/s, floors 55 – 61 at 4 m/s, floors 62 – 67 at 4 m/s, and floors 68 – 74
at 5 m/s (Barney & Al-Sharif, 2015).

The third stack served the upper portion of the building, beginning at the 78th-floor
sky lobby. Eight express shuttle elevators transported passengers from the ground
level to this sky lobby at 8 m/s, where they transferred to local elevators. This stack
included four groups of six single-deck lifts serving floors 80 – 86 at 2.5 m/s, floors
87 – 93 at 4 m/s, floors 94 – 99 at 4 m/s, and floors 100 – 107 at 5 m/s (Barney &
Al-Sharif, 2015).

According to Otis – the elevator manufacturer – one of the most important factors that
made the project economically feasible was incorporating sky lobbies. (Otis Elevator
Company, 1967).
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2.3.2 Advantages and Disadvantages

The main advantage of introducing sky lobbies is reduced core space occupied by
elevators. Due to the effect of splitting the building into smaller stacks, a sky lobby
permits the local elevator zones to be placed on top of one another with the effect of
adding more than one elevator to each slot in the elevator shaft. With double-deck
elevators, a total of four cars can operate in the same shaft. Sharing a single shaft
between multiple elevators significantly reduces the core area occupied by elevators
(Fortune, 1995).

Another advantage of introducing sky lobbies is reduced cost. Even though the use of a
sky lobby and shuttle elevators increases the total number of elevators, the installation
cost can be lower, because local elevators in the upper stacks no longer need to take an
extensive express ride over the lower stacks and may thus have lower speeds (Schroeder,
1984). The only elevators that are required to have high speeds are the shuttle elevators
transporting passengers between main lobby and sky lobby floors.

The main drawback of introducing sky lobbies is that passengers traveling to floors in
the upper stacks must take two separate elevator trips: an express ride to the sky lobby
using a shuttle elevator, and then to the destination floor using a local elevator.

Another drawback of introducing sky lobbies is the creation of dead floors – floors just
below the sky lobby that cannot be served by either the low-rise or high-rise elevator
groups. This issue arises because the machine room for the high-rise elevators is
typically located directly beneath the pit of the low-rise elevators, leading to two or
three floors that lack direct elevator access (Schroeder, 1989).2 However, these floors
are not entirely wasted; their high location makes them well-suited for essential building
infrastructure, such as heating, ventilation, and electrical systems. Alternatively, if
connected to the sky lobby via separate elevators or escalators, they can function
as premium office spaces, benefiting from direct access to shuttle elevators and a
quieter environment compared to other tenant floors. The sky lobby itself also presents
opportunities for commercial use, such as restaurants, shops, or lounges (Schroeder,
1989).

2.3.3 Review of Existing Studies

Schroeder (1985) analyzed the benefits of using one versus two sky lobbies in a study
of 14 buildings, each with up to 214 floors and 100 occupants per floor. Surprisingly,
the results indicated that incorporating two sky lobbies increases space requirements,
suggesting that a single sky lobby may be the more efficient solution. Instead of
increasing the sky lobby count, Schroeder (1985) envisioned quadruple-deck elevators,
though he acknowledged their technical infeasibility at the time. Notably, even today,
quadruple-deck elevators have not been implemented in practice, whereas buildings
with up to five sky lobbies, such as the Shanghai Tower, have been constructed.

2This issue can be avoided with machine room-less (MRL) elevator systems, first introduced by
KONE in 1996, which eliminate the need for a dedicated machine room.
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Schroeder (1989) showed that introducing sky lobbies becomes advantageous when
the floor count reaches 40 or more. Schroeder (1989) analyzed how various common
sky lobby configurations compare to a zoned configuration without sky lobbies in a
building with 40 populated floors and 100 passengers per floor. The study assessed the
core area and cost implications of four main sky lobby configurations: (A) single-deck
shuttles with single-deck local elevators, (B) double-deck shuttles with single-deck
local elevators, (C) single-deck shuttles with single-deck local elevators utilizing a
"top-down" elevatoring strategy, and (D) double-deck shuttles with double-deck local
elevators.

Results showed that solution A with 1-deck elevators reduced the core area by 28%
and came at a 23% lower real cost after adjusting for savings in operational expenses,
including energy savings, maintenance savings, and space savings as rental income
3. Solution B with 2-deck shuttles reduced the core area by 33% and came at a 39%
lower real cost. Solution D with both shuttles and local being 2-deck reduced core
area 51% and comes at a 139% lower real cost. Solution C with top/down elevatoring
reduced the core area only by 14% and came at a 62% higher real cost and was thus
deemed unattractive. Even though solutions B and D seem more attractive based
on the numbers, Schroeder (1989) notes that these configurations are infeasible in
practice for the considered building. The reason is that if a shutdown were to occur,
handling capacity and interval would deteriorate too drastically due to smaller elevator
groups in those configurations. However, for larger buildings, such configurations
become both feasible and attractive.

In a recent study, Siikonen (2024) demonstrated that a sky lobby can significantly
reduce the core space of elevators in a building. In the paper, Siikonen (2024) used
simulation to assess the core space demand of various elevator configurations in
a 312-meter-high building with 78 floors and an estimated population of 10,920
people.

The six elevator configurations considered in the study fall into two main categories:
zoned building arrangements, where all elevator groups start from the ground, and
sky-lobby arrangements, where a shuttle group serves as an intermediary. The zoned
building arrangement consists of seven elevator groups starting from the ground, with
four different configurations: (1) single elevators with a conventional control system
using up and down call buttons, (2) single elevators with a destination control system,
(3) double-deck elevators with a conventional control system using up and down call
buttons, and (4) double-deck elevators with a destination control system.

In contrast, the sky-lobby arrangement, which includes a shuttle group and six
local elevator groups, features two configurations: (5) double-deck elevators with
a destination control system for all elevator groups, and (6) double-deck elevators
with a destination control system for the local elevator groups while implementing a
multi-car solution for the shuttle group, utilizing three circulating systems with five
cabins each.

3Operational expenses were capitalized at 10%
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In the zoned arrangement, the double-deck destination control system (4) required only
60% of the core area compared to the conventional single-deck system (1). However,
the sky-lobby configurations (5 and 6) demonstrated even greater space efficiency.
Results showed that the sky-lobby arrangement utilizing double-deck elevators with a
destination control system (5) reduced the core area to 46% of the conventional zoned
system. Notably, the sky-lobby solution incorporating a multi-car shuttle system (6)
achieved the most significant reduction, requiring only 37% of the core area of the
conventional single-deck arrangement without a sky lobby (1).

Overall, the existing results are inconclusive regarding when sky lobbies should
be used, on which floors they should be located, and what their core area savings
potential is. Prior studies lack uniform modeling assumptions and typically cover
only a few arbitrarily chosen instances, making it difficult to identify patterns or
generalize findings. One possible reason for this is that the question of optimal sky
lobby placement is mathematically complex and lacks a formal derivation. This
combinatorial optimization problem involves an extremely large search space, as it
constitutes a nested version of Equations (18) and (15). Problems of this scale are
generally unsolvable using exact methods. Instead, approximate methods are employed
to determine near-optimal solutions within practical runtimes. Metaheuristics represent
an important class of these approximate methods and will be the focus of the next
section.
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3 Metaheuristics for Combinatorial Optimization

The sky lobby placement problem exemplifies a large-scale combinatorial optimization
problem, where the search space is so extensive that exact methods become intractable.
In such scenarios, metaheuristics provide a powerful framework for generating high-
quality solutions within reasonable computation times. These algorithms have proven
effective across numerous complex domains – from scheduling and routing to facility
layout – by balancing exploration of a vast search space with exploitation of promising
solution regions.

In the sections that follow, we first define combinatorial optimization more formally,
then provide an overview of the principal metaheuristic paradigms, and finally highlight
how hybrid methods can further enhance performance. This foundation sets the stage
for developing an algorithmic approach capable of tackling the optimal zoning and
sky lobby placement problem posed in the preceding section.

3.1 Combinatorial Optimization Problems

Combinatorial optimization problems seek to find an optimal solution from a finite
(or countably infinite) set of discrete possibilities. Such problems often involve binary
or integer variables, but the requirement is not strictly that all variables must be
integer-valued – rather, that the set of feasible solutions itself is discrete.

Perhaps the most well known COP is the Travelling Salesman Problem (TSP). Given a
list of cities and the distances between each pair of cities, what is the shortest possible
route that visits each city exactly once and returns to the origin city? Both the zoning
problem of finding the optimal zoning arrangement of elevators and the sky lobby
problem of finding the optimal count of sky lobbies and their floors are COPs.

In COPs, we are looking for an object in a finite – or potentially a countably infinite –
set. This object is usually in the form of an integer number, a permutation, a subset or
a graph (Blum & Roli, 2003).

According to Blum and Roli (2003), a combinatorial optimization problem 𝑃 = (𝑆, 𝑓 )
is defined by:

– a set of variables 𝑋 = {𝑥1, . . . , 𝑥𝑛};

– variable domains 𝐷1, . . . , 𝐷𝑛;

– constraints among variables;

– an objective function 𝑓 to be minimized, where

𝑓 : 𝐷1 × · · · × 𝐷𝑛 → R+.

The set of all possible feasible assignments is given by:

𝑆 = {𝑠 = {(𝑥1, 𝑣1), . . . , (𝑥𝑛, 𝑣𝑛)} | 𝑣𝑖 ∈ 𝐷𝑖, 𝑠 satisfies all the constraints}.
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Here, (𝑥𝑖, 𝑣𝑖) indicates that variable 𝑥𝑖 is assigned the value 𝑣𝑖. Blum and Roli (2003)
use set-of-pairs notation to keep track of which value belongs to which variable. An
equivalent way would be to write solutions as vectors (𝑣1, . . . , 𝑣𝑛).

𝑆 is typically called the solution (or search) space, since each solution 𝑠 ∈ 𝑆 is a
candidate solution to the problem. To solve the problem, we find a solution 𝑠∗ ∈ 𝑆
with minimum objective function value, i.e., 𝑓 (𝑠∗) ≤ 𝑓 (𝑠) ∀𝑠 ∈ 𝑆. The solution 𝑠∗ is
called the globally optimal solution of 𝑃, and the set of globally optimal solutions is
the subset 𝑆∗ ⊆ 𝑆.

Since COPs often arise in practice, they have been studied extensively. Algorithms
for solving COPs can be categorized into complete and approximate methods (Blum
& Roli, 2003). Complete methods find an optimal solution within bounded time for
every finite-size instance. In contrast, approximate methods sacrifice the guarantee
of finding optimal solutions in order to obtain sufficiently good solutions within a
significantly shorter time frame.

Many COPs have been shown to be NP-hard. Even without NP-hardness, combi-
natorial explosion makes complete methods infeasible in practice for many COPs.
Siikonen (1997b) provides an example with the elevator dispatching problem: "In a
building with an eight-car group there can be nearly 60 hall calls when all the up and
down calls are taken into account. The total number of possible route combinations to
be calculated are more than 6.2 · 1057". Therefore, a complete method would only be
feasible for low buildings with 2-3 elevators in the group.

Due to the practical limitations of complete methods, approximate methods for solving
COPs have received much attention from researchers. Since the 1980s, metaheuristics
have emerged as a powerful and versatile class of methods, providing general-purpose
frameworks for solving complex optimization problems. These methods will be
covered in more detail in the next section.

3.2 Definition and Characteristics of Metaheuristics

The term metaheuristics was first introduced by Glover (1986). The term derives from
the composition of two Greek words. Heuristic derives from the verb heuriskein, which
means “to find”, while the suffix meta means “beyond, in an upper level” (Blum &
Roli, 2003). The name reflects the nature of metaheuristics as a higher-level procedure
for guiding the search process of an optimal solution to some problem.

Lodi et al. (1999) define metaheuristics as follows: "A metaheuristic is an iterative
master process that guides and modifies the operations of subordinate heuristics to
efficiently produce high-quality solutions. Itmay manipulate a complete (or incomplete)
single solution or a collection of solutions at each iteration. The subordinate heuristics
may be high (or low) level procedures, or a simple local search, or just a construction
method.".

Of fundamental importance when using metaheuristics is to dynamically balance
between diversification (exploration) and intensification (exploitation) (Blum & Roli,
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2003). The aim is to quickly identify regions in the search space with high quality
solutions and to avoid spending time in regions which are either already explored or
which do not contain high quality solutions. In exploration, unexplored regions are
visited to ensure that all regions of the search space are more evenly explored and that
the search is not confined to only few regions. During exploitation, promising regions
are explored more thoroughly in the hope to find better solutions (Talbi, 2009).

Talbi (2009) suggests classifying metaheuristics to single-solution basedandpopulation-
based metaheuristics.4 Population-based metaheuristics place greater emphasis on
exploration through the concurrent management and evolution of multiple candidate
solutions, which promotes broader search space coverage. Genetic algorithms exem-
plify population-based methods. Conversely, single-solution-based methods place
more emphasis on exploitation by iteratively improving a single solution with an inten-
sive local search. Simulated annealing is a representative example of single-solution
methods.

Figure 7 shows a classification diagram for common algorithmic strategies used in
combinatorial optimization.

Figure 7: Classification of combinatorial optimization methods. This diagram focuses
on algorithmic strategies primarily used for solving discrete optimization problems,
such as exact methods (e.g., branch and bound) and approximate methods including
heuristics and metaheuristics. A* is a graph traversal and path searching algorithm
and IDA* is one of its variants (Iterative Deepening A*). Adapted from Talbi (2009)

At the top level, these methods are divided into exact methods, which guarantee
optimal solutions (e.g., branch and bound), and approximate methods, which aim for
near-optimal solutions with reduced computational effort. Among the approximate

4Other classification methods include inspiration (nature-inspired vs. non-nature-inspired), memory
usage (memory vs. memoryless), determinism (deterministic vs. stochastic), and search strategy
(iterative vs. greedy).
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methods, we distinguish between heuristic algorithms and approximation algorithms.
A key subset of heuristics is metaheuristics, which can be further classified into
single-solution based and population-based approaches, as discussed earlier.

3.3 Single-solution based Metaheuristics

As the name suggests, single-solution based metaheuristics (S-metaheuristics) focus
on iteratively improving a single solution. Talbi (2009) describes these methods as
"walks" through the search space, where each step moves from the current solution to
a neighboring one.

Each move in an S-metaheuristic consists of two phases: the generation phase and
the replacement phase (Talbi, 2009). In the generation phase, a set of neighbors 𝑁 (𝑠)
is generated from the current solution 𝑠, typically by applying a move operator 𝑚
that performs a small perturbation to the solution 𝑠. A solution 𝑠′ ∈ 𝑁 (𝑠) is called
a neighbor of 𝑠. In the replacement phase, a new solution 𝑠′ ∈ 𝑁 (𝑠) is selected to
replace 𝑠. This process is repeated until a termination criterion is met.

Algorithm 2 presents a high-level template for S-metaheuristics. The functions
StoppingCriteriaMet(), GenerateNeighbors(), and SelectNeighbor() correspond to
checking the stopping condition, generating the set of neighbors, and selecting a
neighbor from this set, respectively.

Algorithm 2 High-level template for S-metaheuristics
1: Input: Initial solution 𝑠0
2: 𝑡 ← 0
3: while not StoppingCriteriaMet() do
4: 𝑁 (𝑠𝑡) ← GenerateNeighbors(𝑠𝑡)
5: 𝑠𝑡+1 ← SelectNeighbor(𝑁 (𝑠𝑡))
6: 𝑡 ← 𝑡 + 1
7: end while
8: Output: Best solution found

There are two fundamental design choices shared by all S-metaheuristics: the definition
of the neighborhood function and the choice of initial solution. Without a well-defined
neighborhood structure, S-metaheuristics are unlikely to succeed (Talbi, 2009).

The neighborhood definition depends strongly on the chosen representation for the
problem at hand. With a binary string representation, the neighborhood of a solution
may consist of strings, where one bit of the solution is flipped. For permutation
problems like the TSP, the neighborhood of a solution could consist of permutations
that result from swapping the positions of two cities in the current tour. This is known
as a swap neighborhood, and it contains all solutions that can be reached by exchanging
the order of any two cities in the current permutation.

There typically is a tradeoff between the size (or diameter) and the quality of the
neighborhood to use and the computational complexity to explore it (Talbi, 2009).
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Large neighborhoods may improve the quality of the obtained solutions since more
neighbors are considered at each iteration. However, this comes at a computational
cost of generating and evaluating a large neighborhood.

The main property that is needed from a neighborhood is locality. Locality refers to
the effect in the solution when performing a move in the neighborhood. When small
moves are made, the solution should not change much. This is referred to as strong
locality. Weak locality means that small moves result in large changes in the solution
in which case the search converges to a random search (Talbi, 2009).

In addition to defining a suitable neighborhood, it is important to choose an appropriate
initial solution from which the trajectory int hte search space starts. According to
Talbi (2009), the two main strategies for choosing an initial solution are a random
approach and a greedy approach. A third strategy, not explicitly considered by Talbi,
is to leverage domain knowledge to construct an initial solution that is likely close to
the optimum.

To illustrate these strategies, consider the traveling salesman problem (TSP). In a
random approach, an initial TSP solution is generated by constructing a random tour
through all cities, without regard to total distance. A greedy approach might use the
nearest-neighbor heuristic, which begins at a randomly chosen city and iteratively
selects the closest unvisited city until the tour is complete. A domain knowledge-based
approach could involve consulting an experienced traveler who has insight into efficient
city sequences based on practical experience.

Regarding the strategy of choosing the initial solution, there is a tradeoff between
quality of solutions and computational time (Talbi, 2009). The best strategy will depend
on the efficiency of the two approaches and the properties of the S-metaheuristic.
For example, a random approach may be justified for a larger neighborhood since it
is less sensitive to the initial solution. However, even though producing a random
solution may be faster than using a greedy approach, the metaheuristic may require
significantly more iterations to converge if the random solution is from a poor region
of the search space.

Most well known S-metaheuristics include local search, simulated annealing, and tabu
search. Among the various S-metaheuristics, simulated annealing stands out due to its
ability to probabilistically accept worsening solutions, making it particularly effective
for escaping local optima.

3.3.1 Simulated Annealing

Metropolis et al. (1953) developed the Metropolis algorithm to simulate the behavior
of a physical system in thermal equilibrium at a fixed temperature. The algorithm is
based on generating a sequence of states of the solid with Monte Carlo methods.

The Metropolis algorithm proceeds as follows. Starting from an initial state 𝑖 with
energy 𝐸𝑖, a new state 𝑗 with energy 𝐸 𝑗 is generated by modifying the position of
one particle. In each step, the energy difference Δ𝐸 = 𝐸 𝑗 − 𝐸𝑖 is computed. If Δ𝐸 is
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negative, the new state 𝑗 has lower energy and it becomes the current state 𝑖. If Δ𝐸 is
positive, the probability that state 𝑗 becomes the current state 𝑖 is given by

P(𝑖 ← 𝑗) = exp
(︃
− Δ𝐸

𝑘𝑏 · 𝑇

)︃
, (19)

where 𝑇 represents the fixed temperature of the solid and 𝑘𝑏 = 1.38 · 10−23𝐽/𝐾 is the
Boltzmann constant. The acceptance criterion for the new state 𝑗 in Equation (19) is
called the Metropolis criterion.

The Metropolis algorithm simulates thermal equilibrium at a given temperature by
generating a large number of transitions. Over time, the distribution of states converges
to the Boltzmann distribution, which gives the probability that the system occupies
state 𝑖 of energy 𝐸𝑖 at temperature 𝑇 (Gendreau & Potvin, 2019).

Algorithm 3 shows a pseudo code of the Metropolis algorithm, where𝑈 denotes the
uniform distribution.

Algorithm 3 The Metropolis Algorithm
1: Input: Initial state 𝑖, energy function 𝐸 (𝑖), temperature 𝑇 , number of iterations 𝑁
2: Compute initial energy 𝐸𝑖 = 𝐸 (𝑖)
3: for 𝑡 = 1 to 𝑁 do
4: Generate a new candidate state 𝑗 by perturbing state 𝑖
5: Compute energy 𝐸 𝑗 = 𝐸 ( 𝑗)
6: Compute energy difference Δ𝐸 = 𝐸 𝑗 − 𝐸𝑖
7: if Δ𝐸 < 0 then
8: Accept new state: 𝑖 ← 𝑗

9: else
10: Compute acceptance probability 𝑃 = exp(−Δ𝐸/(𝑘𝐵𝑇))
11: Draw a random number 𝑟 ∼ 𝑈 (0, 1)
12: if 𝑟 < 𝑃 then
13: Accept new state: 𝑖 ← 𝑗

14: end if
15: end if
16: end for
17: Output: Final state 𝑖

In the 1980s, a new powerful method to solve combinatorial optimization problems
emerged (Černý, 1985; Kirkpatrick et al., 1983). This method was called Simulated
Annealing (SA) and it is rooted on the Metropolis Algorithm. In SA, the Metropolis
acceptance criterion is applied repeatedly to generate a search trajectory through the
solution space of the optimization problem. The fundamental idea in SA is to allow
moves resulting in solutions of worse quality than the current solution (uphill moves)
in order to escape from local minima (Blum & Roli, 2003)

SA draws its power from a close analogy with the physical annealing process in
metallurgy. In the physical process, a material is heated and then gradually cooled
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to remove defects and reach a stable low-energy crystalline structure. In the context
of optimization, the goal is to find a solution with the lowest objective value. This
analogy is formalized in Table 2, where each concept from physics maps naturally to
its counterpart in optimization: the state of the material corresponds to a candidate
solution, atomic positions to decision variables, and energy to the objective function
value. The ground state, which minimizes energy, aligns with the global optimum, while
metastable states represent local optima. The temperature controls the randomness of
state transitions in both cases – high temperatures allow more exploration, while low
temperatures focus the search around good solutions.

Table 2: Analogy Between the Physical System and the Optimization Problem in the
context of SA. Adapted from Talbi (2009)

Physical System Optimization Problem

System state Solution
Molecular positions Decision variables
Energy Objective function
Ground state Global optimal solution
Metastable state Local optimum
Rapid quenching Local search
Temperature Control parameter 𝑇

In the Metropolis algorithm, a system evolves by transitioning between states with
different energy levels, accepting new states probabilistically based on the Metropolis
criterion. SA generalizes this concept by interpreting energy as an objective function
and allowing controlled exploration of suboptimal solutions through a control parameter
𝑇 for the temperature.

The algorithm starts with an initial solution and iteratively explores random neighboring
solutions. At each iteration, a candidate solution 𝑠′ is generated, and the change in the
objective function is computed as

Δ𝐸 = 𝑓 (𝑠′) − 𝑓 (𝑠).

The probability of accepting 𝑠′ is given by

P{accept 𝑠′} =
{︄

1, if Δ𝐸 ≤ 0,
exp

(︂
−Δ𝐸

𝑇

)︂
, if Δ𝐸 > 0.

This acceptance probability, derived from the Boltzmann distribution, allows the
algorithm to escape local minima by permitting occasional transitions to worse
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solutions. The temperature 𝑇 controls this randomness; at high 𝑇 , the search is more
exploratory, while at low 𝑇 , the algorithm behaves more greedily.

Over time, the temperature decreases according to a cooling schedule 𝑔(𝑇), progres-
sively reducing the likelihood of accepting worse solutions and guiding the search
toward convergence. Each temperature level follows an equilibration phase5, where
multiple solution transitions occur before cooling further (Talbi, 2009). This structure
ensures a gradual transition from exploration to exploitation.

Having introduced the Metropolis acceptance criterion and the concept of gradually
lowering the temperature 𝑇 to guide the search from exploration to exploitation, we
now present the complete SA procedure in Algorithm 4.

The procedure initializes a solution 𝑠 and an initial temperature 𝑇max. For each
temperature level, multiple iterations of the Metropolis acceptance criterion are
performed to approximate equilibrium, with the corresponding iteration count denoted
by EquilibriumIterations(). The temperature is then updated according to the cooling
schedule 𝑔(𝑇), gradually reducing the probability of accepting non-improving moves.
This process repeats until the stopping condition, checked by StoppingCriteriaMet(),
is satisfied. Finally, the best solution 𝑠∗ is returned.

Algorithm 4 The simulated annealing algorithm
1: Input: Initial solution 𝑠0, initial temperature 𝑇max, cooling schedule 𝑔(𝑇)
2: 𝑠← 𝑠0
3: 𝑇 ← 𝑇max
4: while not StoppingCriteriaMet() do
5: for 𝑖 = 1 to EquilibriumIterations(𝑇) do
6: Generate a random neighbor 𝑠′
7: Δ𝐸 ← 𝑓 (𝑠′) − 𝑓 (𝑠)
8: if Δ𝐸 ≤ 0 then
9: 𝑠← 𝑠′ // Better solution

10: else
11: 𝑃← exp (−Δ𝐸/𝑇)
12: Draw 𝑟 ∼ 𝑈 (0, 1)
13: if 𝑟 < 𝑃 then
14: 𝑠← 𝑠′ // Accept worse solution with probability 𝑃
15: end if
16: end if
17: end for
18: 𝑇 ← 𝑔(𝑇)
19: end while
20: Output: Best solution found 𝑠∗

Along with the neighborhood definition, the most critical for SA performance is the
5The number of transitions per temperature level, often called the equilibration phase, is typically

set empirically or based on heuristic tuning.
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cooling schedule, which refers to the controlled scheme to decay the temperature.
What follows is a derivation showing that with certain choices, SA converges to the
global optimum. Moreover, most common cooling schedules are presented.

The dynamic process of moving from one candidate solution to the next during SA is
a Markov chain, since the successor solution depends only on the current solution.
Aarts et al. (1997) showed that under certain conditions on the cooling schedule, the
algorithm converges in probability to the global optimum. More precisely, there exists
a constant Γ ∈ R such that the probability of finding the global minimum approaches
1 as the number of iterations 𝑘 tends to infinity, i.e.,

lim
𝑘→∞

𝑃(global minimum found after 𝑘 steps) = 1,

if and only if the sum of the exponential terms related to the cooling schedule diverges,
that is,

∞∑︁
𝑘=1

exp
(︃
Γ

𝑇𝑘

)︃
= ∞,

where 𝑇𝑘 represents the temperature at the 𝑘-th iteration.

However, cooling schedules which guarantee convergence to a global optimum are
often too slow for practical applications. Therefore, faster cooling schedules are
commonly used (Blum & Roli, 2003). Perhaps the most prevalent is the geometric (or
exponential) cooling schedule, defined by:

𝑇𝑘+1 = 𝛼𝑇𝑘 ,

where 𝛼 ∈ (0, 1) is a constant, resulting in:

𝑇𝑘 = 𝑇0𝛼
𝑘 ,

where 𝑇0 is the initial temperature. Other common cooling schedules include linear
cooling, 𝑇𝑘 = 𝑇0 − 𝛽𝑘 for some constant 𝛽 > 0, polynomial cooling, 𝑇𝑘 = 𝑇0

(1+𝑘)𝛾 for
some constant 𝛾 > 0, and logarithmic cooling, 𝑇𝑘 = 𝑇0

log(1+𝑘) .

The initial temperature and cooling schedule must be adapted for the problem instance
at hand since the cost of escaping a local minima depends on the search landscape
(Blum & Roli, 2003). A simple method to inform the decision of an appropriate initial
temperature is to sample the search space with a random walk and record statistics (e.g.,
mean and standard deviation) of the objective function values. Overall, due to the sheer
number of combinations, it is impossible to find the optimal hyperparametrization for
each problem instance in SA.

3.3.2 Applications of Simulated Annealing

SA has been successfully applied in various NP-hard combinatorial optimization
problems. For example, Connolly (1990) used SA to solve the Quadratic Assignment
Problem (QAP). The QAP involves assigning items to locations so that the total
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cost from their pairwise interactions and distances is minimized. The authors found
improved solutions for several of the largest problems available in the literature at the
time of publication using only modest CPU time. Furthermore, the proposed scheme
did not require retuning for different problem instances. In sum, Connolly (1990)
were able to develop one of the most effective heuristics for solving the QAP using
SA.

Another successful application was in Laarhoven et al. (1992). The authors used
SA to solve the Job-shop Scheduling Problem (JSP) – one of the most difficult CO
problems there is. JSP concerns scheduling a set of jobs, each with a specific sequence
of tasks on different machines, to minimize the total completion time while ensuring
no machine handles more than one task at a time. Their SA scheme was able to find
better solutions for the largest instances than well known heuristics tailored specifically
for the problem, namely Matsuo et al. (1989) and Lasserre (1992). In cases where
SA outperformed the tailored heuristics, it came at a computational cost. However, as
noted in Laarhoven et al. (1992), this cost is easily compensated by the the ease of
implementation and the high quality of solutions.

In both studies, great care was taken to ensure that the neighborhood structure and
the selection of neighbors were proper and that the cooling schedule was optimized.
Connolly (1990) ran a large number of test runs on two different methods to choose
neighbors from the neighborhood: a random and sequential approach to conclude that
the latter performed better for this class of problems. Laarhoven et al. (1992) reported
that a slow cooling schedule (slow decrement of the control parameter) significantly
improved the quality of the average best solution returned by the algorithm. To
conclude, these studies demonstrate that with a carefully designed neighborhood
structure and an optimized cooling schedule, SA is an excellent method to solve very
difficult CO problems.

3.4 Population-based Metaheuristics

Whereas S-metaheuristics focus on improving a single solution, population-based
metaheuristics (P-metaheuristics) iteratively improves a population of solutions.
P-metaheuristics start from an initial population of solutions. Until a stopping
criteria is met, an iterative process of generating a new population of solutions and
replacing the current population of solutions follows. In the replacement phase,
a selection is carried out from the current and the new population. Examples of
P-metaheuristics are evolutionary algorithms (EAs), particle swarm optimization
(PSO), and artificial immune systems (AISs). Most P-metaheuristics are inspired by
nature (Talbi, 2009)

Algorithm 5 shows the general framework for P-metaheuristics. The functions
StoppingCriteriaMet(), GenerateNewPopulation(), and SelectNewPopulation() cor-
respond to checking the stopping condition, generating the new population, and
selecting a new population, respectively.

Accroding to Talbi (2009), one way of categorizing P-metaheuristics is the way in
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Algorithm 5 High-level template for P-metaheuristics
1: 𝑃← 𝑃0 // Initialize population
2: 𝑡 ← 0
3: while not StoppingCriteriaMet() do
4: 𝑃′𝑡 ← GenerateNewPopulation(𝑃𝑡)
5: 𝑃𝑡+1 ← SelectNewPopulation(𝑃𝑡 ∪ 𝑃′𝑡)
6: 𝑡 ← 𝑡 + 1
7: end while
8: Output: Best solution(s) found

which a new population of solutions is generated. In evolution based P-metaheuristics,
solutions of the population are selected and reproduced through variation operations
such as mutation and recombination. Variation operations act directly on the rep-
resentations of the solutions. An example of this type of P-metaheuristic is EAs.
In blackboard-based P-metaheuristics, solutions of the population participate in the
construction of a shared memory, which will guide the generation of new solutions.
Compared to the first class, recombination between solutions is indirect. Bee colony
is an example of the latter class of P-metaheuristics. In this thesis, the focus will be
on the first class of P-metaheuristics, namely a specific type of EAs called genetic
algorithms.

3.4.1 Genetic Algorithms

Holland (1992) developed the Genetic Algorithm (GA) through an effort to com-
putationally model the biological evolution of species. Most organisms evolve by
two main processes: natural selection and sexual reproduction. Natural selection
determines which members of a population survive to pass their genetic material
to successive generations. Sexual reproduction ensures mixing and recombination
among the genes of their offspring, accelerating the rate of evolution. Occasionally,
random mutations occur, introducing new genetic variations that may influence the
evolutionary trajectory of a population.

In the work of Holland (1992), the search for a good solution to a problem translates
into a search over specific bit strings. The problem is encoded by identifying a set
of binary characteristics relevant to the task at hand. Each candidate solution is
then represented as a fixed-length bit string, where each bit indicates the presence
(1) or absence (0) of a corresponding characteristic. For instance, when evaluating
apartments to rent, the characteristics could include “has a balcony,” “is near public
transport,” “includes heating,” and “allows pets.” A candidate apartment represented
by the string 1101 would have a balcony, be near public transport, allow pets, but
not include heating. This binary encoding forms the foundation for constructing a
population of potential solutions.

The algorithm begins with a randomly generated set of such binary strings, each
evaluated using a problem-specific fitness function that quantifies its quality. In
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the apartment example, the fitness function could score each apartment based on
how well it matches a tenant’s preferences, assigning higher values to configurations
that fulfill more desirable traits. Over successive generations, higher-performing
strings are selected and recombined to form new candidate solutions. Occasional
mutations prevents the population from becoming uniform and thereby incapable
of further evolution. Through this evolutionary process, the population gradually
converges toward increasingly good solutions by continually mixing and propagating
advantageous characteristics.

As discussed in Section 3.1, the search spaces associated with complex combinatorial
optimization problems can become extremely large. GAs address this challenge by
effectively casting a wide net over the search space, allowing simultaneous sampling
from multiple regions. Regions with higher average fitness tend to be sampled more
frequently, guiding the search toward most promising regions over time.

Algorithm 6 outlines the high-level procedure of a simple genetic algorithm.

Algorithm 6 Simple Genetic Algorithm (adapted from Mitchell (1998)). The algo-
rithm evolves a population of fixed-length binary string chromosomes using fitness-
proportionate selection, and single-point crossover and bit-wise mutation as the
variation operators

1: Input: Population size 𝑛, chromosome length 𝑙, fitness function 𝑓 , crossover
probability 𝑝𝑐, mutation probability 𝑝𝑚

2: Initialize population 𝑃0 with 𝑛 random binary strings of length 𝑙
3: 𝑡 ← 0
4: while not StoppingCriteriaMet() do
5: Evaluate fitness 𝑓 (𝑥) for each 𝑥 ∈ 𝑃𝑡
6: Initialize new population 𝑃′← ∅
7: while |𝑃′| < 𝑛 do
8: Select parents 𝑥1, 𝑥2 ∼ 𝑃𝑡 with fitness proportionate selection
9: Perform single-point crossover on 𝑥1, 𝑥2 to obtain offspring 𝑦1, 𝑦2 with

probability 𝑝𝑐
10: Otherwise, set 𝑦1 ← 𝑥1, 𝑦2 ← 𝑥2
11: Mutate each bit in 𝑦1 and 𝑦2 independently with probability 𝑝𝑚
12: Add 𝑦1 and 𝑦2 to 𝑃′
13: end while
14: if |𝑃′| > 𝑛 then // Odd population size
15: Remove one individual at random from 𝑃′

16: end if
17: 𝑃𝑡+1 ← 𝑃′

18: 𝑡 ← 𝑡 + 1
19: end while
20: Output: Best individual(s) in 𝑃𝑡 according to fitness 𝑓

In each generation, parent chromosomes are selected using fitness-proportionate
selection (Algorithm 7). Offspring are then produced using single-point crossover
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(Algorithm 8) with probability 𝑝𝑐, and otherwise copied directly. After crossover, each
bit of the offspring is independently mutated with probability 𝑝𝑚, a process known as
bit-wise mutation (Algorithm 9). This evolutionary cycle is repeated until a predefined
stopping criterion is met, checked with the function StoppingCriteriaMet().

Algorithm 7 Fitness-proportionate selection (roulette wheel selection)
1: Input: Population 𝑃 with fitness values 𝑓 (𝑥) for each 𝑥 ∈ 𝑃
2: Compute total fitness 𝐹 =

∑︁
𝑥∈𝑃 𝑓 (𝑥)

3: For each 𝑥 ∈ 𝑃, compute selection probability 𝑝(𝑥) = 𝑓 (𝑥)/𝐹
4: Sample two individuals 𝑥1, 𝑥2 ∈ 𝑃 independently according to distribution 𝑝(𝑥)
5: Output: Selected parents 𝑥1, 𝑥2

Algorithm 8 Single-point crossover
1: Input: Parent chromosomes 𝑥1, 𝑥2 of length 𝑙
2: Sample crossover point 𝑘 ∼ {1, 2, . . . , 𝑙 − 1}
3: 𝑦1 ← concatenate 𝑥1 [1 : 𝑘] with 𝑥2 [𝑘 + 1 : 𝑙]
4: 𝑦2 ← concatenate 𝑥2 [1 : 𝑘] with 𝑥1 [𝑘 + 1 : 𝑙]
5: Output: Offspring chromosomes 𝑦1, 𝑦2

Algorithm 9 Bit-wise mutation (flip-bit mutation)
1: Input: Chromosome 𝑦 of length 𝑙, mutation probability 𝑝𝑚
2: for 𝑗 = 1 to 𝑙 do
3: Sample 𝑟 ∼ 𝑈 (0, 1)
4: if 𝑟 < 𝑝𝑚 then
5: Flip bit 𝑦[ 𝑗] (i.e., 𝑦[ 𝑗] ← 1 − 𝑦[ 𝑗])
6: end if
7: end for
8: Output: Mutated chromosome 𝑦

Fitness-proportionate selection (also known as roulette wheel selection) selects
individuals for reproduction with a probability proportional to their fitness. This
means that highly fit individuals have a greater chance of being selected, but even
lower-fitness individuals retain a non-zero probability. While intuitive and historically
common, fitness-proportionate selection may lead to premature convergence if a few
individuals dominate early Talbi (2009).

In modern GAs, fitness-proportionate selection has been largely replaced by rank-based
selection methods (Goldberg & Deb, 1991). The most common variant is tournament
selection, described in Algorithm 10. In this method, a small is subset randomly
sampled from the population, and the fittest among them is selected. The most typical
tournament size is 2, but a larger tournament size may also be used (Goldberg & Deb,
1991). Tournament selection is simple to implement, easily parallelizable, and allows
precise control over selection pressure through the tournament size parameter.
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Algorithm 10 Tournament selection
1: Input: Population 𝑃 with fitness values 𝑓 (𝑥) for each 𝑥 ∈ 𝑃, tournament size 𝑘
2: Randomly sample 𝑘 individuals from 𝑃 to form tournament set 𝑇1
3: 𝑥1 ← arg max𝑥∈𝑇1 𝑓 (𝑥)
4: Randomly sample 𝑘 individuals from 𝑃 to form tournament set 𝑇2
5: 𝑥2 ← arg max𝑥∈𝑇2 𝑓 (𝑥)
6: Output: Selected parents 𝑥1, 𝑥2

Figure 8 illustrates the principle of single-point crossover applied to two binary-valued
chromosomes. In this example, the crossover point is located at position 𝑘 = 4, meaning
the genetic material is exchanged after the fourth gene. The resulting offspring inherit
the first 𝑘 genes from one parent and the remaining genes from the other.

Parent 1: 1 0 1 1 0 1 0 0

Parent 2: 0 1 0 0 1 0 1 1

Crossover Point

Offspring 1: 1 0 1 1 1 0 1 1

Offspring 2: 0 1 0 0 0 1 0 0

Figure 8: Single-point crossover in a genetic algorithm. Two parent chromosomes
exchange genetic material at position 𝑘 = 4, resulting in two new offspring. Genes
inherited from the first parent are highlighted in gray

Figure 9 illustrates the bit-flip mutation operator applied to a single binary-valued
chromosome. In this example, the gene at position 5 (using 1-based indexing) is
selected for mutation and flipped from 0 to 1. The number of genes that get mutated
can range between 0 and 𝐿, where 𝐿 is the length of the chromosome. However, often
the mutation probability is low, so it is common that none or only a few genes gets
mutated.

Before mutation:

After mutation:

1 0 1 1 0 1 0 0

1 0 1 1 1 1 0 0

Mutation Point

Figure 9: Bit-flip mutation in a genetic algorithm. The bit at position 5 is flipped
from 0 to 1, highlighted in gray

In the classic simple GA by Holland (1992), outlined in Algorithm 6, the offspring
replace their parents in the subsequent generation. A direct consequence is that the best
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solution might not survive from one generation to the next. Elitism is a mechanism
whereby the best solution in the current generation is directly passed to the subsequent
generation. It was shown by Rudolph (1994) that the canonical GA converges to the
global optimum when elitism is applied.

Typically, elitism is parametrized such that a given proportion of the current population
(e.g., chromosomes with top 5% fitness values) is passed directly to the subsequent
population. A side effect of elitism is that it increases selective pressure by limiting
the number of "slots" for newly created chromosomes in the subsequent generation
(Gendreau & Potvin, 2019).

GAs have several strengths over traditional optimization methods. Notably, they are
well-suited for complex objective functions and are inherently parallelizable (Yang,
2010). GAs can effectively handle problems with objective functions that are linear
or nonlinear, stationary or non-stationary, continuous or discontinuous, smooth or
non-smooth, and even stochastic.

The most straightforward form of parallelization is the master-subordinate model, in
which the evaluation of individuals’ fitness is distributed across multiple processors.
Since fitness evaluation is often the most computationally expensive component of
a GA, this approach can yield substantial performance improvements (Cantú-Paz,
1998). As a result, GAs are sometimes described as "embarrassingly parallel". Other
parallelization approaches include fine-grained and coarse-grained (or island-based)
models (Cantú-Paz, 1998). These methods are outside the scope of this thesis, but
it is worth noting that they alter the behavior of the algorithm itself. Unlike the
master-subordinate model, which retains global selection and mating, fine-grained
and island models restrict these operations to local neighborhoods or subpopulations,
introducing additional parameters and affecting convergence.

The main weakness of GAs is its sensitivity to the formulation of the fitness function
and hyperparameters such as population size, mutation and crossover probabilities,
and the selection method (Yang, 2010). Any inappropriate choice can make it difficult
for the algorithm to converge or in the worst case produce meaningless results.
Moreover, due to the inbuilt randomness in GA, successive runs may produce different
results.

3.4.2 Hidden Genes Genetic Algorithm (HGGA)

In order to recombine different chromosomes in a GA, their lengths must be equal.
Hence, the number of design (or decision) variables must be the same in all solutions.
However, in many applications, the number of decision variables is a question in itself.
Abdelkhalik (2013) introduced the Hidden Genes Genetic Algorithm (HGGA) to allow
the standard GA (simply GA hereafter) to be applied for problems with variable-size
design space (VSDS). Since then, Abdelkhalik and collaborators have shown that
HGGA effectively solves complex VSDS optimization problems (Abdelkhalik &
Darani, 2016, 2018)
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In HGGAs, some genes are hidden (inactive), so that their value does not affect the
evaluation of chromosomes (i.e., computing the fitness function). The genes that are
hidden in a chromosome represent variables that do not appear in a specific solution.
This concept allows GA to handle VSDS optimization problems. Let 𝐷𝑉𝑚𝑎𝑥 be the
maximum number of design variables. In HGGAs, all the solutions (chromosomes)
have length 𝐷𝑉𝑚𝑎𝑥 . Thus, they can be treated similarly and standard GA operators
such as crossover can be applied to them.

To determine whether a gene is hidden or not, each gene is associated with a tag. If
the value of a tag is 1, then the corresponding gene is hidden (inactive), and if it is 0,
the gene is not hidden (active) (Abdelkhalik & Darani, 2016). The tags are evolved
through crossover and/or mutation operations, similarly to the genes corresponding to
the design variables. Figure 10 illustrates the tags concept in the HGGA framework.
In this example, genes 𝑔1 and 𝑔4 are hidden (highlighted in gray), and the tag row is
also shown in gray to indicate its passive nature.

Hidden Genes

Tags: 1 0 0 1 0

Genes: g1 g2 g3 g4 g5

Figure 10: The concept of hidden genes and corresponding tags in a HGGA. Genes 𝑔1
and 𝑔4 have tags = 1, making them “hidden”. Adapted from Abdelkhalik and Darani
(2016)

Abdelkhalik and his collaborators drew the idea of hidden genes from the workings
of the deoxyribonucleic acid (DNA). DNA is organized into a long structure called
chromosome. Genes, which are instructions for making a protein, are contained in the
DNA and are coded with a specific language with only 4 letters (A, G, T, and C) and
64 words. Differences between these words cause genes to produce different proteins,
making cells of distinct organs function differently. An additional layer of coding
determines which genes should be transcribed by the cell, depending on the cell’s
specific role. For instance, genes critical for heart function are turned off in kidney
cells, and vice versa. The genes that are turned off are called hidden genes. There are
several ways to hide genes from the cell. In one way, chemical groups get attached to
the DNA and cover up parts of the gene. In another way, a cell can produce a protein
that marks the genes to be read (Starr, 2013).

Algorithm 11 presents the Hidden Genes Genetic Algorithm (HGGA). The procedure
begins by determining the maximum number of design variables, generating an
initial population of chromosomes, and evaluating the fitness of each chromosome
while excluding hidden genes. The population is then refined through iterative
rounds of selection, crossover, and mutation until a stopping condition, checked
by StoppingCriteriaMet(), is satisfied. The final output is the best chromosome(s)
according to the specified fitness function.
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Algorithm 11 The Hidden Genes Genetic Algorithm (HGGA). Adapted from
Abdelkhalik (2013)

1: Input: Maximum number of design variables 𝐷𝑉max, population size 𝑛, fitness
function 𝑓 , selection method, crossover operator, mutation operator

2: 𝐶𝐿 ← 𝐷𝑉max // Chromosome length
3: Create initial population 𝑃0 of size 𝑛 with random chromosomes of length 𝐶𝐿
4: 𝑡 ← 0
5: for all chromosome 𝑥 ∈ 𝑃0 do
6: Determine hidden genes for 𝑥
7: Compute 𝑓 (𝑥) by excluding hidden genes
8: end for
9: while not StoppingCriteriaMet() do

10: Selection: Perform competitive selection on 𝑃𝑡
11: Variation: Apply crossover and mutation to generate offspring set 𝑂
12: for all offspring 𝑦 ∈ 𝑂 do
13: Determine hidden genes for 𝑦
14: Compute 𝑓 (𝑦) by excluding hidden genes
15: end for
16: Form new population 𝑃𝑡+1 from selected parents and 𝑂
17: 𝑡 ← 𝑡 + 1
18: end while
19: Output: Best chromosome(s) in 𝑃𝑡 according to 𝑓

An important design feature of the HGGA is the evolution of tags. In the first paper,
Abdelkhalik and collaborators used a simple approach called the feasibility mechanism.
The feasibility mechanism rule assumes initially no hidden genes in a chromosome; if
the obtained chromosome is feasible then there is no hidden genes. If the solution is not
feasible, then starting from one end of the chromosome the algorithm hides genes—one
by one—until the chromosome becomes feasible (Abdelkhalik, 2013).

After having researched HGGAs for a few years, Abdelkhalik and Darani (2016, 2018)
had developed further mechanisms for evolving tags. Abdelkhalik and Darani (2018)
presented two main approaches: logical evolution and stochastic evolution. In logical
evolution, tags for the offspring are derived from the tags of their parents using fixed
logical rules such as OR or AND. In stochastic evolution, tags are evolved through
genetic operators such as mutation and crossover, similarly to the main genes in the
chromosome.

3.4.3 Applications of Genetic Algorithms

Genetic Algorithms (GA) have been used effectively in the elevator industry to solve
complex combinatorial optimization problems. An important application, sometimes
called the Elevator Car Routing Problem (ECRP), has been tackled for both single
and double deck elevators. Tyni and Ylinen (1999) employed a GA to address the
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allocation of passenger landing calls to single deck elevators. Their approach is a
two-level hybrid: at the upper level, the GA allocates landing calls to elevators using
selection, crossover, and mutation; at the lower level, each elevator’s service sequence
is determined by a simple heuristic known as the “collective control principle”. This
aims to minimize the average landing call time. A gene bank was used to store
previously computed fitness values, which decreased CPU time by 65% (Tyni &
Ylinen, 1999). This permitted real-time execution of the call-allocation algorithm in
KONE’s elevators. Their method was one of the first real-time applications of genetic
algorithms in control systems (Tyni & Ylinen, 1999, 2001).

In this approach, the chromosome representation includes call genes, which specify
which landing calls to serve, and direction genes for any elevator that is not currently
moving, ensuring an idle elevator always has an assigned direction (up or down) (Tyni
& Ylinen, 2001).

Sorsa et al. (2003) adapted the algorithm of Tyni and Ylinen (1999) to solve the ECRP
for double deck elevators in real time. Building on the framework above, Sorsa et al.
(2003) extended the chromosome to include deck genes, which determine which calls
each deck serves. By combining the newly introduced deck genes with the existing
call and direction genes, the algorithm can decide whether an idle elevator should start
moving up or down and how each deck should respond to incoming calls. Analysis of
CPU time indicated that a real time extension for quadruple-deck elevators could be
feasible, even though the number of solutions would grow to 10120 when considering
8 quadruple-deck elevators serving 40 floors,6 highlighting GA’s applicability for very
large problem instances.

Another application of GAs in the elevator industry has been the zoning problem of
elevators. As described earlier, Viita-aho (2019) studied the static zoning problem
and developed a GA based method to find Pareto-optimal zoning arrangements when
optimizing for both core area occupied by elevators and price of the elevator system.
Liu et al. (2010) studied dynamic zoning and used GA to find zoning arrangements that
minimize energy usage. Their algorithm was able to reduce the energy consumption
by more than 10% and the average waiting time by more than 40% when comparing
to a traditional zoning method.

The HGGA has been successfully applied to standard benchmark mathematical
functions and interplanetary trajectory optimization problems by Abdelkhalik and
his collaborators (Abdelkhalik, 2013; Abdelkhalik & Darani, 2016, 2018). In these
studies, the HGGA has consistently outperformed the standard Genetic Algorithm (GA)
and demonstrated its capability to solve problems with very large search spaces.

An interplanetary trajectory optimization problem can be defined as follows. Given
a range of possible departure dates from Earth, a range of possible arrival dates to
a target planet, and the dry mass of the spacecraft, the objective is to determine the
mission architecture and corresponding trajectory variables that optimize a specified
objective function – typically minimizing the required fuel mass (Abdelkhalik &

6For reference, the number of solutions is 1036 for 8 single-deck elevators serving 20 floors
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Darani, 2018). The mission architecture includes decisions on the number of planetary
flybys, the number of Deep Space Manoeuvres (DSMs)7 in each leg of the journey,
as well as the specific flyby planets, the dates and times of flybys and DSMs, the
magnitude and direction of each DSM, and the exact launch and arrival dates.

Such problems are inherently complex and, in many cases, intractable using exact
optimization methods. In Abdelkhalik and Darani (2018), the HGGA was applied to
solve the optimal trajectory problem from Earth to Jupiter.

To manage the high computational cost associated with interplanetary trajectory
optimization, Abdelkhalik and Darani (2018) employed a two-phase solution strategy:
first solving a zero-DSM problem to determine the sequence of flybys, and then
optimizing the remaining variables in a multigravity-assist trajectory with deep space
maneuvers. Using this approach, the HGGA with Mechanism A (mutation probability
of 5%) produced a trajectory consisting of two flybys – Venus and Earth – resulting in
a total mission sequence of Earth–Venus–Earth–Jupiter with a final mission cost of
10.1266 km/s. This solution improves upon previous results in the literature, such
as that of Olympio et al. (2007), which assumed the same planet sequence and fixed
flyby and departure dates, yielding a cost of 10.267 km/s.

Unlike earlier methods, the HGGA does not require the mission architecture to be fixed
in advance and is capable of autonomously determining it as part of the optimization
process. Among the tested tag evolving methods, Mechanism A and Logic A both
achieved strong performance, each reaching a success rate of approximately 75% in
repeated experiments. The success rate measures the proportion of runs in which the
algorithm converges to the best-found solution.

The high success rate of the HGGA coupled with mechanism A in solving the trajectory
of the Earth-Jupyter mission indicates that the HGGA is a robust method to solve
highly complex combinatorial optimization problems with variable design space. This
hints that it should be well suitable for the zoning problem, where the number of
zoning arrangements is enormous and where the optimal zone count is not known in
advance.

3.5 Hybrid Metaheuristics

Research on metaheuristics for combinatorial optimization has increasingly shifted
from an algorithm-centric to a problem-oriented perspective. As Blum et al. (2011)
notes, “nowadays the focus is on solving the problem at hand in the best way possible,
rather than promoting a certain metaheuristic”. This shift has been accompanied by
growing interest in hybrid metaheuristics – combinations of different metaheuristic
strategies – motivated by their potential to outperform standalone algorithms.

Talbi (2002) emphasizes that “the best results found for many practical or academic
optimization problems are obtained by hybrid algorithms”, citing successful combi-

7DSMs are propulsive impulses used to change the spacecraft’s velocity instantaneously.
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nations of descent local search, simulated annealing, tabu search, and evolutionary
algorithms.

The core motivation for hybridization lies in the complementary strengths of different
metaheuristics. As Blum et al. (2011) further explains, “the main motivation behind
the hybridization of different algorithms is to exploit the complementary character
of different optimization strategies.” In other words, combining metaheuristics can
create synergies that enhance search performance.

Talbi (2002) suggests classifying hybrid metaheuristics based on either design or
implementation considerations. Design considerations refer the hybrid algorithm
itself, including its architecture and functionality. Implementation, on the other hand,
concerns the hardware, programming model and environment on which the algorithm
is run. Figure 11 shows the classification based on design considerations.

Figure 11: Classification of hybrid metaheuristics based on design considerations.
Adapted from Talbi (2002)

On the first level, hybrid metaheuristics are classified to low-level and high-level
hybrids. In the low-level class, a given function of a metaheuristic is replaced by
another metaheuristic where as in the high-level class, different metaheuristics are
self-contained. In this thesis, I will focus on high-level hybrids.

Within high-level hybrids, the second level classifies between relay and teamwork
hybrids. In relay hybrids, different metaheuristics are applied in a sequential manner,
using the output of the previous metaheuristic as an input for the subsequent meta-
heuristic. Relay hybrids can be viewed as a pipeline of metaheuristics. Teamwork
hybrids, on the other hand, concerns cooperating metaheuristics that are ran in a
parallel fashion. In this thesis, I focus on relay hybrids.

In high-level relay hybrids (HRH) self contained metaheuristics are executed in a
sequence. Population-based metaheuristics are well suited for finding promising
regions in the search space. On the other hand, it is well known that they are not
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particularly good at fine-tuning solutions that are close to the optimal solutions.
Therefore, a common approach is to combine evolutionary algorithms like GAs with
single-solution based metaheuristics such as tabu search, which take over the phase
of exploiting the promising regions in the search space (Talbi, 2002). Depending on
the problem structure, sometimes also single-solution based metaheuristics may feed
into population-based metaheuristics. For example, Lin et al. (1991) proposed initial
solutions with SA and used GAs to enrich the solutions found.

There can be two kinds of HRHs: heterogeneous and homogeneous. In homogeneous
HRHs, the same metaheuristic is used in all of the algorithms whereas in heterogeneous
HRHs, different metaheuristics are used. For example, nested GAs would be considered
a homogeneous high-level relay hybrid, but the application of Lin et al. (1991) above
can be classified as a heterogeneous HRH.

Finally, all hybrids are either global orpartial based on how the individual metaheuristics
cooperate. In global hybrids, all algorithms use the full search space whereas in partial
hybrids, the problem is decomposed into sub problems, each one having its own
search space. An example of a partial homogeneous HRH application can be found in
Husbands et al. (1991). Husbands and coauthors decomposed the job-shop scheduling
problem into individual jobs, where the optimal process plan for each job was solved
by a GA. A communication medium collected fittest individuals from each GA, and
evaluated the resulting schedule as a whole, rewarding the best process plans.

In this thesis, a heterogeneous HRH will be used to study the problem of zoning with
sky lobbies. Initially, SA will be employed to propose sky lobby floors. The sky
lobby floors split the building into stacks. Next, The optimal zoning arrangement for
these stacks will be solved with HGGAs. This second level method can be viewed as
another hybrid, which can be classified as a partial homogeneous HRH without mutual
constraints between the HGGAs. Optimal zoning arrangements for each individual
stack will be combined in the SA. The SA will also factor in the shuttle elevator
configuration and evaluate the objective function of the full solution. A more detailed
description of the full scheme will provided in Section 4.
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4 Methodology

4.1 Introduction and Overview

The objective of this thesis is to determine the optimal configuration of sky lobbies in
a high-rise building such that the total core area occupied by the elevator system is
minimized. The core area includes both the elevator shaft and the lobby space required
for passenger transfer. Specifically, the problem is defined as follows: Given arbitrary
building parameters (floor count and population per floor), what is the optimal number
of sky lobbies and their respective locations such that the total elevator core area is
minimized while satisfying performance constraints?

From a computational perspective, the research question results in a nested combina-
torial optimization problem (COP). At the outer level, the task is to determine the
optimal number and locations of sky lobbies. At the inner level, the goal is to find the
optimal zoning configuration for each sub-building (or stack) defined by the selected
sky lobbies, such that each elevator group serving a zone satisfies the performance
criteria while contributing as little as possible to the total core area.

As discussed in Section 2.2, finding an optimal zoning arrangement is a challenging
task, as the number of possible configurations grows exponentially with the floor count
(see Equation (15)). Furthermore, Section 2.3 showed that the number of possible
sky lobby configurations also becomes large in high-rise buildings, particularly when
multiple sky lobbies are considered (see Equation (18)).

When these two problems are nested, the search space of the combinatorial optimization
problem becomes prohibitive, and no directly applicable complete methods are
available to solve it. As demonstrated in Section 3, metaheuristics are effective tools
for addressing combinatorial optimization problems with complex structure and very
large search spaces. Furthermore, the literature on hybrid metaheuristics (Section 3.5)
highlights that hybrid methods are often essential for solving difficult combinatorial
problems effectively. In particular, the relative strengths of different metaheuristics
can be leveraged to align with the problem structure, enabling the construction of
tailored and high-performing approaches. For this reason, the main research question
in this thesis is addressed using a novel hybrid metaheuristic framework.

The rest of the methodology section is structured as follows. Section 4.2 presents the
optimization framework, including the decision variables, the objective function, the
performance constraints, and the full mathematical formulation. Section 4.3 describes
the computational model, which is based on a hybrid metaheuristic that combines
Simulated Annealing (SA) and a Hidden Genes Genetic Algorithm (HGGA). The
implementation of SA and HGGA is explained in Sections 4.3.1 and 4.3.2, respectively,
along with the methods used to tune their parameters. In Section 4.3.3, the HGGA
is benchmarked against an exact method to validate its effectiveness in finding the
optimal zoning arrangement for stacks.
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4.2 Optimization Framework

4.2.1 Decision Variables

Let the building consist of 𝑁 ∈ Z+ floors, numbered from 0 (ground floor) to 𝑁 (top
floor), and denote the set of floors by

F = {0, 1, 2, . . . , 𝑁}.

The outer-level decision variable is a vector of 𝑘 ordered integers representing the
floors designated as sky lobbies:

s = (𝑠1, 𝑠2, . . . , 𝑠𝑘 ), with 0 < 𝑠1 < 𝑠2 < · · · < 𝑠𝑘 < 𝑁.

The 𝑘 sky lobbies in s partition the building into 𝑘 + 1 contiguous vertical segments
(stacks). The first stack (stack 0) comprises floors from 0 up to 𝑠1 − 1 (with floor
𝑠1 acting as the sky lobby). The second stack spans from 𝑠1 to 𝑠2 − 1, and each
intermediate stack is defined by the floors between consecutive sky lobbies. Finally,
the last stack (stack 𝑘) covers floors from 𝑠𝑘 to 𝑁 .

For each stack 𝑗 = 0, 1, . . . , 𝑘 , the inner-level decision variable, is a vector of positive
integers representing the upper floors of the elevator zones within that stack. Denote
the zoning configuration for stack 𝑗 by

z( 𝑗) =
(︂
𝑢
( 𝑗)
1 , 𝑢

( 𝑗)
2 , . . . , 𝑢

( 𝑗)
𝑛 𝑗

)︂
⊆ F ( 𝑗) ,

where each 𝑢( 𝑗)
𝑖

represents the upper floor of zone 𝑖 in stack 𝑗 , and F ( 𝑗) is the set of
floors in stack 𝑗 .

In each stack, the first zone serves floors starting from the base of the stack (i.e., floor
0 for stack 0 or 𝑠 𝑗 + 1 for stacks 𝑗 > 0) up to 𝑢( 𝑗)1 . Each subsequent zone 𝑖 serves the
floors immediately following the previous zone, that is, from 𝑢

( 𝑗)
𝑖−1 + 1 to 𝑢( 𝑗)

𝑖
, with the

final zone extending to the top floor of the stack.

For example, consider a 20-story stack (with floors numbered 0 through 20) divided
into two zones. If the first zone’s upper floor is 10, then the first zone operates from
floor 0 to 10, and the second zone serves floors 11 to 20.

Thus, the overall configuration of the elevator system is represented by the pair(︂
s, {z( 𝑗)}𝑘𝑗=0

)︂
,

where the vector s determines the sky lobby placements and the collection {z( 𝑗)}𝑘
𝑗=0

specifies the zoning configurations within each stack.
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4.2.2 Objective Function

In this thesis, the focus is on minimizing a single objective: the core area occupied by
elevators in a building with sky lobbies.

In Ruokokoski et al. (2018), the core area occupied by elevators in a single zone was
determined as

𝐶𝐴(𝑢, 𝐶, 𝐿) = (𝑢 + 1) · 𝐿 · 𝐴(𝐶), (20)

where 𝑢 is the upper floor of the zone, 𝐿 is the number of elevators, and 𝐴(𝐶) is the
cross-sectional area of the shaft, with 𝐶 (the elevator capacity, measured in persons)
chosen from a discrete set.

Equation (20) does not take into account the lobby area of elevators. Omitting the
lobby area from the elevator core area calculation creates a bias in favor of adding
more elevators, as their space requirements appear underestimated. Therefore, what
follows is a new formulation for core area which takes lobby area into account. In the
proposed formulation, elevator capacities are chosen from a discrete set, with each
capacity uniquely determining the corresponding shaft dimensions and car depth. Let
us denote the shaft width, shaft depth, and car depth as 𝑠𝑤 , 𝑠𝑑 , and 𝑐𝑑 , respectively, all
of which are functions of 𝐶.

The shaft area of an elevator car can now be expressed as

𝐴𝑠 (𝐶) = 𝑠𝑤 (𝐶) · 𝑠𝑑 (𝐶), (21)

and the lobby area of an elevator car as

𝐴𝑙 (𝐶) = 𝑠𝑤 (𝐶) · 𝑐𝑑 (𝐶). (22)

Thus, the core area of an elevator car is defined as

𝐶𝐴𝑐𝑎𝑟 (𝐶) = 𝐴𝑠 (𝐶) + 𝐴𝑙 (𝐶)
= 𝑠𝑤 (𝐶) · 𝑠𝑑 (𝐶) + 𝑠𝑤 (𝐶) · 𝑐𝑑 (𝐶)
= 𝑠𝑤 (𝐶) [𝑠𝑑 (𝐶) + 𝑐𝑑 (𝐶)] . (23)

Now, the core area of elevators in a single zone is expressed as

𝐶𝐴𝑧𝑜𝑛𝑒 (𝑢, 𝐶, 𝐿) = (𝑢 + 1) · 𝐿 · 𝐶𝐴𝑐𝑎𝑟 (𝐶), (24)

where the notation follows Equation (20).

For a given stack 𝑗 with a multi-zone configuration z( 𝑗) =
(︂
𝑢
( 𝑗)
1 , 𝑢

( 𝑗)
2 , . . . , 𝑢

( 𝑗)
𝑛 𝑗

)︂
, its

total core area is

𝐶𝐴
( 𝑗)
𝑠𝑡𝑎𝑐𝑘

=

𝑛 𝑗∑︁
𝑖=1

𝐶𝐴𝑧𝑜𝑛𝑒 (𝑢( 𝑗)𝑖 , 𝐶
( 𝑗)
𝑖
, 𝐿
( 𝑗)
𝑖
). (25)

When sky lobbies are used, all but the first stack must have a shuttle elevator group to
transfer passengers from the ground floor to the sky lobby. Therefore, an additional
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core area corresponding to the shuttle elevator group must be included. In this case,
the shuttle core area is denoted as

𝐶𝐴𝑠ℎ𝑢𝑡𝑡𝑙𝑒 (𝑢𝑠, 𝐶𝑠, 𝐿𝑠), (26)

where 𝑢𝑠, 𝐶𝑠, and 𝐿𝑠 refer to the upper floor, car size, and elevator count of the shuttle
lift group, respectively. The computation is performed in the same way as for local
elevator groups in Equation (25), with the exception that the lobby area is calculated
only for the sky lobby floor and the lower terminal floor – that is, the floors where the
shuttle elevators stop.8 The total core area of a stack then becomes

𝐶𝐴
( 𝑗)
𝑠𝑡𝑎𝑐𝑘

=

𝑛 𝑗∑︁
𝑖=1

𝐶𝐴𝑧𝑜𝑛𝑒 (𝑢( 𝑗)𝑖 , 𝐶
( 𝑗)
𝑖
, 𝐿
( 𝑗)
𝑖
) + 1{ 𝑗>0}𝐶𝐴

( 𝑗)
𝑠ℎ𝑢𝑡𝑡𝑙𝑒

(𝑢( 𝑗)𝑠 , 𝐶
( 𝑗)
𝑠 , 𝐿

( 𝑗)
𝑠 ), (27)

where 1{ 𝑗>0} is an indicator function taking the value 1 for all but the first stack (i.e.,
when 𝑗 > 0) and 0 otherwise.

Finally, for a building partitioned into 𝑘 +1 stacks (with 𝑘 sky lobbies), the full building
core area is

𝐶𝐴𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 =

𝑘∑︁
𝑗=0
𝐶𝐴
( 𝑗)
𝑠𝑡𝑎𝑐𝑘

. (28)

Equation (28) represents the objective value in this thesis. Therefore, let us define

𝑓

(︂
s, {z( 𝑗)}𝑘𝑗=0

)︂
= 𝐶𝐴𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 . (29)

4.2.3 Inequality Constraints

For each local elevator group (zone) in stack 𝑗 ∈ {0, 1, . . . , 𝑘} and for each zone
𝑖 ∈ {1, . . . , 𝑛 𝑗 }, we impose the following performance constraints: the minimum
relative handling capacity (%HC) of elevator groups is set 12% / 5 minutes (or 300
seconds, which is used in subsequent formulas), the maximum interval (INT) is set
to 30 seconds, and the maximum nominal travel time (NTT) is 25 seconds. These
thresholds reflect typical performance criteria for office buildings and are expressed
formally below.

Let 𝐶 ( 𝑗)
𝑖

, 𝐿 ( 𝑗)
𝑖

, and 𝑅𝑇𝑇 ( 𝑗)
𝑖

denote, respectively, the capacity, the number of elevators,
and the round-trip time for the 𝑖th zone in stack 𝑗 , and let

𝑃𝑂𝑃
(︁
ℓ
( 𝑗)
𝑖
, 𝑢
( 𝑗)
𝑖

)︁
denote the population served by the zone, where the lower floor ℓ( 𝑗)

𝑖
is defined as

ℓ
( 𝑗)
𝑖

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if 𝑗 = 0 and 𝑖 = 1,

𝑠 𝑗 + 1, if 𝑗 > 0 and 𝑖 = 1,

𝑢
( 𝑗)
𝑖−1 + 1, if 𝑖 > 1.

8The area adjacent to the shuttle elevator shafts on intermediate floors is typically used for auxiliary
functions, such as restrooms.
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Furthermore, let ℎ denote the floor height and 𝑣 ( 𝑗)
𝑖

the rated speed of the elevator
group in zone 𝑖 of stack 𝑗 . Then, the local elevator group constraints for %HC, INT,
and NTT are respectively given by

𝑔1, 𝑗 ,𝑖 (s, z( 𝑗)) =
300 · 𝐶𝐿𝐹 · 𝐶 ( 𝑗)

𝑖
· 𝐿 ( 𝑗)

𝑖

𝑅𝑇𝑇
( 𝑗)
𝑖
· 𝑃𝑂𝑃

(︁
ℓ
( 𝑗)
𝑖
, 𝑢
( 𝑗)
𝑖

)︁ × 100% ≥ 12%, (30)

𝑔2, 𝑗 ,𝑖 (s, z( 𝑗)) =
𝑅𝑇𝑇

( 𝑗)
𝑖

𝐿
( 𝑗)
𝑖

≤ 30 s, (31)

𝑔3, 𝑗 ,𝑖 (s, z( 𝑗)) =
ℎ

𝑣
( 𝑗)
𝑖

≤ 25 s. (32)

For shuttle elevator groups, which are present only in stacks 𝑗 ∈ {1, . . . , 𝑘}, let the
decision variables be given by (𝑢( 𝑗)𝑠 , 𝐶

( 𝑗)
𝑠 , 𝐿

( 𝑗)
𝑠 ), and denote by 𝑅𝑇𝑇 ( 𝑗)𝑠 and 𝑣 ( 𝑗)𝑠 the

corresponding round-trip time and operating speed. In this configuration, the shuttle
elevator group in stack 𝑗 is responsible for handling passengers from the sky lobby
on floor 𝑠 𝑗 to the top floor of the stack (the floor preceding the next sky lobby), or
alternatively to the top floor 𝑁 if 𝑗 = 𝑘). Accordingly, we define

𝑃𝑂𝑃𝑠 ( 𝑗) =
{︄
𝑃𝑂𝑃(𝑠 𝑗 , 𝑠 𝑗+1 − 1), for 𝑗 ∈ {1, . . . , 𝑘 − 1},
𝑃𝑂𝑃(𝑠𝑘 , 𝑁), for 𝑗 = 𝑘.

Thus, the constraints for the shuttle elevator groups constraints for %HC, INT, and
NTT are respectively formulated as

𝑔
(shuttle)
1, 𝑗 (s) = 300 · 𝐶𝐿𝐹 · 𝐶 ( 𝑗)𝑠 · 𝐿 ( 𝑗)𝑠

𝑅𝑇𝑇
( 𝑗)
𝑠 · 𝑃𝑂𝑃𝑠 ( 𝑗)

× 100% ≥ 12%, (33)

𝑔
(shuttle)
2, 𝑗 (s) = 𝑅𝑇𝑇

( 𝑗)
𝑠

𝐿
( 𝑗)
𝑠

≤ 30 s, (34)

𝑔
(shuttle)
3, 𝑗 (s) = ℎ

𝑣
( 𝑗)
𝑠

≤ 25 s. (35)

In summary, the complete set of inequality constraints that must be satisfied by the
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model is given by

∀ 𝑗 ∈ {0, . . . , 𝑘}, ∀ 𝑖 ∈ {1, . . . , 𝑛 𝑗 } :

𝑔1, 𝑗 ,𝑖 (s, z( 𝑗)) ≥ 12%, (36)

𝑔2, 𝑗 ,𝑖 (s, z( 𝑗)) ≤ 30 s, (37)

𝑔3, 𝑗 ,𝑖 (s, z( 𝑗)) ≤ 25 s, (38)

∀ 𝑗 ∈ {1, . . . , 𝑘} :

𝑔
(shuttle)
1, 𝑗 (s) ≥ 12%, (39)

𝑔
(shuttle)
2, 𝑗 (s) ≤ 30 s, (40)

𝑔
(shuttle)
3, 𝑗 (s) ≤ 25 s. (41)

4.2.4 Problem Formulation

Having defined the objective function and inequality constraints of the problem in the
previous subsections, the complete formulation for the optimization problem is

min
s, {z( 𝑗 ) }𝑘

𝑗=0

𝑓

(︂
s, {z( 𝑗)}𝑘𝑗=0

)︂
= 𝐶𝐴𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔

s.t. 𝑔1, 𝑗 ,𝑖 (s, z( 𝑗)) ≥ 12%, ∀ 𝑗 ∈ {0, . . . , 𝑘}, ∀ 𝑖 ∈ {1, . . . , 𝑛 𝑗 },
𝑔2, 𝑗 ,𝑖 (s, z( 𝑗)) ≤ 30 s, ∀ 𝑗 ∈ {0, . . . , 𝑘}, ∀ 𝑖 ∈ {1, . . . , 𝑛 𝑗 },
𝑔3, 𝑗 ,𝑖 (s, z( 𝑗)) ≤ 25 s, ∀ 𝑗 ∈ {0, . . . , 𝑘}, ∀ 𝑖 ∈ {1, . . . , 𝑛 𝑗 },
𝑔

(shuttle)
1, 𝑗 (s) ≥ 12%, ∀ 𝑗 ∈ {1, . . . , 𝑘},

𝑔
(shuttle)
2, 𝑗 (s) ≤ 30 s, ∀ 𝑗 ∈ {1, . . . , 𝑘},

𝑔
(shuttle)
3, 𝑗 (s) ≤ 25 s, ∀ 𝑗 ∈ {1, . . . , 𝑘},

s ∈
{︂
(𝑠1, . . . , 𝑠𝑘 ) ⊆ F : 0 < 𝑠1 < 𝑠2 < · · · < 𝑠𝑘 < 𝑁

}︂
,

z( 𝑗) ⊆ F ( 𝑗) , ∀ 𝑗 = 0, . . . , 𝑘 .

(42)

4.3 Computational Model

A novel hybrid metaheuristic is developed to solve the optimization problem in (42).
The hybridization is a heterogeneous high-level relay hybrid (HRH), which applies
SA and HGGA sequentially. Initially, SA will be employed to propose sky lobby
floors. The sky lobby floors split the building into stacks. Next, the optimal zoning
arrangement for these stacks will be solved with HGGAs. This second level method
can be viewed as another hybridization, classified as a partial homogeneous HRH
without mutual constraints between the individual metaheuristics components (that
is, the HGGAs). The optimal zoning arrangements for each individual stack in the
inner level will be combined on the outer level, operated by the SA. The SA will also
factor in the shuttle elevator configuration and evaluate the objective function of the
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full solution. A high-level pseudo-code of the hybridization scheme is provided in
Algorithm 12.

Algorithm 12 High-level procedure to determine optimal sky lobby configuration
using a heterogeneous HRH (SA + HGGAs)

1: Input: Floor count, population per floor, sky lobby count
2: Generate initial sky lobby floor split using SA
3: while termination criteria not met do
4: Split the building into stacks based on sky lobby floors
5: for each stack 𝑗 = 0, . . . , 𝑘 do
6: Solve optimal zoning arrangement using HGGA
7: if 𝑗 > 0 then
8: Determine shuttle elevator configuration
9: end if

10: end for
11: Evaluate total core area (local elevator groups + shuttle elevator groups)
12: Perturb sky lobby configuration using the SA move operator
13: end while
14: Output: Best solution found during the outer SA loop

A more detailed description of the implementations of the individual metaheuristics
– SA and HGGA – will be provided in the next two subsections, 4.3.1 and 4.3.2,
respectively.

4.3.1 Simulated Annealing

As explained earlier, SA is used on the outer level of the hybridization to find optimal
floors for the sky lobbies. In this subsection, I explain how SA was adapted for this
problem. In particular, how the solutions were represented, what initial solutions
were used, how the neighborhood function was defined, and how the cooling schedule
among other hyperparameters were determined.

A solution in the SA is represented as an array of 𝑘 ordered integers denoting the
floors where sky lobbies are placed:

s = (𝑠1, 𝑠2, . . . , 𝑠𝑘 ), with 0 < 𝑠1 < 𝑠2 < · · · < 𝑠𝑘 < 𝑁.

The initial solution for the SA is chosen such that sky lobbies divide the building into
evenly spaced stacks. For example, if the building has 100 floors and one sky lobby, it
is placed on the 50th floor. If there are two sky lobbies, they are placed on the 33rd and
66th floors, and so on. This method was selected for its simplicity and based on the
observation that, in practice, sky lobbies are often placed in this manner. Furthermore,
it is expected that the optimal solution is not far from this initial configuration, as the
core area of a stack generally grows exponentially with floor count. In other words,
it is seen unlikely that the optimal solution would involve significantly uneven stack
sizes.
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In this work, I introduce two parameters that govern the neighborhood function within
the simulated annealing algorithm. The first parameter, referred to as the perturbed
floors parameter, determines which sky lobbies will be subject to perturbation. This
parameter may assume one of three values. When set to "all", every sky lobby in the
solution is selected for perturbation. When set to "random", a random number of sky
lobbies, uniformly chosen between one and the total number of sky lobbies, is selected.
When set to 1, exactly one sky lobby is randomly chosen for perturbation.

The second parameter, the neighborhood size parameter, is a positive integer that
specifies the range within which a sky lobby floor may be perturbed. Specifically, if
the current floor is 𝑓 and the neighborhood size is 𝑛, a new floor is chosen uniformly
at random from the interval [ 𝑓 − 𝑛, 𝑓 + 𝑛]. After constructing the set of sky lobbies
to be perturbed and generating their new floors, the resulting solution 𝑠′ is validated
against the stack size constraints using the function ValidateSolution(). Should the
constraints be violated, the proposed move is discarded.

Algorithm 13 presents the pseudo-code for the neighborhood function in the SA.

Algorithm 13 Definition of the neighborhood function in the SA component
1: Input: current solution 𝑠, perturbed floors parameter 𝑝, neighborhood size

parameter 𝑛, total number of sky lobbies 𝑁
2: 𝑠′← 𝑠

3: // Determine the set 𝐼 of sky lobby indices to be perturbed
4: if 𝑝 = "all" then
5: 𝐼 ← {0, 1, . . . , 𝑁 − 1}
6: else if 𝑝 = "random" then
7: Draw an integer 𝑘 uniformly at random from {1, . . . , 𝑁}
8: Randomly select 𝑘 distinct indices from {0, 1, . . . , 𝑁 − 1} and assign them to
𝐼

9: else if 𝑝 = 1 then
10: Let 𝐿 be a predetermined sky lobby index
11: 𝐼 ← {𝐿}
12: end if
13: for each index 𝑖 ∈ 𝐼 do
14: Let 𝑓 ← 𝑠[𝑖] // current floor of sky lobby 𝑖
15: Draw a new floor 𝑓 ′ uniformly at random from [ 𝑓 − 𝑛, 𝑓 + 𝑛]
16: Update 𝑠′[𝑖] ← 𝑓 ′

17: end for
18: if ValidateSolution(𝑠′) = false then
19: Output: current solution 𝑠 // Stack size constraint violated
20: else
21: Output: proposed solution 𝑠′ // The solution is feasible
22: end if

The optimal parameters of the neighborhood function, along with those defining the
cooling schedule, were determined through an extensive grid search. First, data were
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collected on the range of possible objective function values to identify a suitable range
for the initial and minimum temperatures. Next, multiple candidate values for the
initial and minimum temperatures were tested in combination with linear, quadratic,
logarithmic, and exponential cooling schedules across various problem instances. The
parameters of the neighborhood function – Perturbed floors and Neighborhood size –
were also included in the hyperparameter grid. Table 3 presents the range of values
explored for each hyperparameter.

Hyperparameter Values
Initial temperature {500, 1000, 5000, 10000, 30000}
Minimum temperature {1, 10, 100, 300}
Steps {1000, 3000, 5000, 10000}
Cooling schedule {linear, quadratic, logarithmic, exponential}
Neighborhood size {1, 2, 3, 5, 10}
Perturbed floors {1, random, all}

Table 3: Ranges of values used for each hyperparameter in the grid search. The
parameters include settings for the simulated annealing cooling schedule and neigh-
borhood structure

The hyperparameter grid shown in Table 3 was tested on a representative subset of
instances, defined by the key parameters of the problem: the building’s floor count,
population per floor, and the number of sky lobbies. The tested floor count values were
40, 60, . . . , 200, and the tested population per floor values were 20, 40, . . . , 200. The
number of sky lobbies tested was 1, 2, and 3. Each combination of hyperparameters
and problem instances was run using 10 different random number generator seeds. For
each case, the mean and standard deviation of the objective function were computed
across the resulting sample.

Based on the results, the optimal hyperparameter configuration for each instance was
identified by sorting the configurations in increasing order according to the following
priority: (1) mean objective value and (2) standard deviation of the objective value.
A mapping structure was then developed to generalize the optimal hyperparameter
selection to unseen instances, including those not present in the original grid.

The mapping rule is as follows: round the floor count up to the nearest value in the
grid (e.g., 19 is rounded up to 20, and 21 to 25). Population count rounding follows
the same logic: 24 is rounded up to 25, while 26 is rounded up to 30. Thus, for the
input parameter tuples (19, 24) and (21, 26), the corresponding hyperparameters from
instances (20, 25) and (25, 30), respectively, would be used. The rationale behind
this approach is that selecting hyperparameters optimized for a problem with a larger
search space is generally safer than choosing those from a smaller one.

Table 4 shows optimal hyperparametrizations for a subset of instances with floor count
100. In the table, the problem parameters – floor count (FC), population per floor
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(Pop), and sky lobby count (SL) – are provided in the first three columns and are
visually separated by a vertical line from the simulated annealing hyperparameters:
initial temperature (IT), minimum temperature (MT), steps (St), cooling schedule
(CS), neighborhood size (NS), and perturbed floors (PF). The instances are grouped
into separate sections by sky lobby count using horizontal lines for clarity.

FC Pop SL IT MT St CS NS PF

100 40 1 500 1 1000 exponential 1 random
100 100 1 500 1 1000 exponential 1 random
100 160 1 500 1 1000 logarithmic 2 1
100 200 1 500 1 1000 logarithmic 3 1

100 40 2 500 1 1000 exponential 1 1
100 100 2 500 1 1000 exponential 1 1
100 160 2 500 1 1000 logarithmic 2 1
100 200 2 500 1 1000 logarithmic 3 1

100 40 3 500 1 1000 exponential 1 random
100 100 3 500 1 1000 exponential 1 random
100 160 3 500 1 1000 logarithmic 2 1
100 200 3 500 1 1000 logarithmic 3 1

Table 4: Optimal SA hyperparametrizations for selected representative instances. The
table is organized by floor count (FC), population per floor (Pop) and various sky
lobby counts (SL). The vertical line separates the problem parameters (FC, Pop, SL)
from the SA hyperparameters: IT = initial temperature, MT = minimum temperature,
St = steps, CS = cooling schedule, NS = neighborhood size, and PF = perturbed floors.
Optimal hyperparameters were chosen by ranking the hyperparameter combinations
on aggregated results over 10 random number generator seeds with the following
priority (1) mean objective value (2) standard deviation of the objective value

The table shows that for a floor count of 100, the best initial and minimum temperatures
are 500 and 1, respectively. The optimal number of steps was 1000. Among the tested
cooling schedules, both exponential and logarithmic schedules appeared to perform
best. Regarding the neighborhood size, the most effective values for the perturbed
floors parameter were either 1 or a random count, and the neighborhood size ranged
from 1 to 3.

4.3.2 Hidden Genes Genetic Algorithm

As explained earlier, a Hidden Genes Genetic Algorithm (HGGA) is used on the inner
level to find the optimal zoning arrangement for a stack.

For each stack 𝑗 = 0, 1, . . . , 𝑘 , the inner-level decision variable is an array of positive
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integers representing the upper floors of the elevator zones within that stack. The
solution in hence represented as

z( 𝑗) =
(︂
𝑢
( 𝑗)
1 , 𝑢

( 𝑗)
2 , . . . , 𝑢

( 𝑗)
𝑛 𝑗

)︂
⊆ F ( 𝑗) ,

where each 𝑢( 𝑗)
𝑖

represents the upper floor of zone 𝑖 in stack 𝑗 , and F ( 𝑗) is the set of
floors in stack 𝑗 .

In a genetic algorithm context, the array z( 𝑗) is a chromosome consisting of zone
genes. To implement the hidden layer, a corresponding binary tag is assigned to each
gene 𝑢( 𝑗)

𝑖
in the solution, indicating whether a zone is active or hidden. This is best

understood through the following example.

Figure 12 shows a chromosome encoding for a 40-floor building. The first and fourth
genes are tagged as hidden, leaving three active zones. Their upper floors are 12, 26,
and 40, respectively. These define the active zoning scheme: floors 0 – 12, 13 – 26,
and 27 – 40.

Hidden Genes

Tags: 1 0 0 1 0

Genes: 4 12 26 28 40

Figure 12: Adaptation of the hidden genes concept to elevatorzoning. The chromosome
encodes five candidate upper floors (4, 12, 26, 28, and 40) with corresponding tags.
Genes with tag = 1 are hidden and ignored during zone construction. In this example,
the first and fourth zones are hidden, resulting in three active zones

When evaluating a candidate solution by computing the fitness value of the chromo-
some, hidden zones are excluded from the zoning arrangement, and the active zones
define the actual floor division of zones within the stack.

Since the number of genes in a chromosome sets an upper limit on the number of
active zones, the chromosome must contain at least as many genes as the optimal
solution requires. However, increasing the number of genes also increases the number
of potential solutions that can be constructed. For example, if the optimal solution for
a simple building contains only two zones, using a chromosome with 20 genes would
lead to a population where most chromosomes have too many zones. Conversely,
such a chromosome structure might be well suited for a larger building with a dense
population, which may require more zones in the optimal solution.

Therefore, a chromosome length that adapts to the problem size would be desirable. To
enable a scalable chromosome length, a parameter 𝑍max was introduced. 𝑍max denotes
the maximum number of zones in a building and thus determines the chromosome
length (as each gene corresponds to a zone). Five values for 𝑍max were selected –
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4, 8, 12, 16, and 20 – based on optimal zone counts observed in previous studies
(Ruokokoski et al., 2018; Viita-aho, 2019).

Furthermore, since the optimal number of zones is not known in advance, it is ideal
for the initial population to contain chromosomes whose number of active zones is
distributed across values likely to be near the optimum. To maximize the number of
high-quality chromosomes in the initial population, the number of active zones in
first-generation chromosomes was drawn from a binomial distribution with parameters
𝑛 = 𝑍max and 𝑝 = 0.7. The value of 𝑝 was selected based on its empirical performance
in preliminary trials. For example, if 𝑍max = 12 is used to generate an initial population
for a given instance, the resulting values of the probability mass function of active
zone counts is shown in Figure 13.
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Binomial Distribution for n = 12, p = 0.7

Figure 13: Probability mass function (PMF) of a binomial distribution with parameters
𝑛 = 12 and 𝑝 = 0.7, representing the number of active zones in a chromosome.
This distribution models the sampling of active zones in the initial population of
chromosomes, where each gene corresponds to a potential zone

The figure illustrates that, for a building with a maximum of 12 zones, the resulting
distribution spans a wide range of active zone counts and is centered around values 8
– 9. This distribution supports the genetic algorithm in effectively identifying which
zone counts are associated with promising regions of the search space. Empirical trials
showed that this method yields a diverse set of initial solutions likely to be near the
optimal configuration, thereby providing a solid foundation for the genetic algorithm
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to perform effectively. However, the results also demonstrated that selecting a suitable
value for 𝑍max is critical for different instances of the problem.

Another critical parameter was the population size, 𝑁𝑃. As noted by Viita-aho (2019),
when zoning arrangements are not systematically explored across different zone counts
– or more generally, across different subsets of the full search space – the value of
𝑁𝑃 must be significantly increased. For small instances (e.g., a 20-story stack), a
large population size was not necessarily required. However, for larger instances
(e.g., an 80-story stack), a larger 𝑁𝑃 was necessary to ensure sufficient diversity
in the solution pool. The population sizes considered were selected from the set
{300, 500, 1000, 3000}.

After drawing the number of active zones, 𝑍𝑖, from a binomial distribution with
parameters 𝑛 = 𝑍max and 𝑝 = 0.7, chromosomes for the initial population were
constructed as follows. First, 𝑍𝑖 − 1 of the upper floors are randomly selected to
correspond to active zones, while the remaining 𝑍max − 𝑍𝑖 are assigned to inactive
zones. To ensure that the top floor of the stack is served, one additional active zone with
the upper floor 𝑁 is appended at the end. This procedure yields a chromosome with
𝑍𝑖 active zones, where the associated upper floors are arranged in strictly increasing
order and the final zone always covers the top floor of the stack.

After generating the initial population of chromosomes, subsequent generations were
produced through crossover and mutation. The maximum number of generations was
set to 500. In addition, a stagnation limit of 100 generations was applied: if the best
solution found thus far did not improve within 100 generations, the algorithm was
considered to have converged and was terminated.

The selection method used was tournament selection with a tournament size of 2.
Unlike fitness-proportionate selection, tournament selection is robust to fitness scaling,
and a size of 2 is commonly used in the literature (Goldberg & Deb, 1991). Empirical
testing during algorithm development confirmed that tournament selection consistently
outperformed fitness-proportionate methods, and a tournament size of 2 yielded the
best results among the sizes tested.

In addition to tournament selection, elitism was applied to directly preserve the top 5%
of chromosomes based on fitness in each generation. This ensured that high-quality
solutions were not lost during crossover or mutation operations and allowed the
algorithm to converge to near optimal solutions.

The crossover operator used in the HGGA was single-point crossover, with the
crossover probability selected from the set {0.7,0.85,0.9,0.95}. Mutation was applied
using bitwise mutation (FlipBit) independently to both tags and genes. The mutation
mechanism for tags followed Mechanism A described by Abdelkhalik and Darani
(2018), where tag mutation occurs independently of gene mutation. This mechanism
was selected due to its simplicity and its relatively strong performance in a comparative
assessment of different tag evolution approaches conducted by Abdelkhalik and
Darani (2018). For reference, all tag evolution approaches considered in the works of
Abdelkhalik and Darani are listed in Appendix A.
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Mutation probabilities forbothgenes and tags were selected from the set {0.01, 0.02, 0.05, 0.1}.
During the first 30 generations, a higher mutation rate of 0.2 was used for both tags
and genes to promote early exploration of the solution space. A similar strategy was
applied by von Schantz and Ehtamo (2022), and the algorithm’s performance improved
in trials when this rule was used.

Since zones at random indices were swapped between chromosomes during crossover,
the operation occasionally resulted in infeasible offspring. In some cases, the
chromosome could be repaired; in others, it was penalized with a large constant to
prevent it from being selected for reproduction in subsequent generations. A repairable
infeasible chromosome was one in which the upper floors were no longer in strictly
increasing order. In such cases, the upper floor values could simply be sorted in
ascending order to restore feasibility. In contrast, chromosomes were penalized when
they contained duplicate upper floors. The same types of infeasible chromosomes
could also result from mutations in either the tags or the genes, and these cases were
handled in the same way as those arising from crossover.

To improve computational efficiency, a gene bank was implemented to store previously
computed fitness values. If a chromosome was encountered during evaluation and
was already present in the gene bank, its fitness value was retrieved directly through
a lookup. This significantly reduced the computational burden of the algorithm, as
the evaluation of the fitness function – being the most expensive part of the process –
could often be skipped, especially in convergence phase of the algorithm. The gene
bank approach was inspired by Tyni and Ylinen (1999), who reported a 65% reduction
in CPU time through a similar mechanism.

The optimal values for the maximum zone count 𝑍max, population size 𝑁𝑃, crossover
probability 𝑝𝑐, and mutation probabilities for both tags and genes (𝑝𝑚,𝑡 and 𝑝𝑚,𝑔,
respectively) were determined through an extensive grid search, similar to the hyper-
parameter tuning process used for SA. Table 5 details the candidate values considered
during the grid search.

Hyperparameter Values
Maximum zone count (𝑍max) {8, 12, 16, 20}
Population size (𝑁𝑃) {300, 500, 1000, 3000}
Crossover probability (𝑝𝑐) {0.7, 0.85, 0.9, 0.95}
Tag mutation probability (𝑝𝑚,𝑡) {0.01, 0.02, 0.05, 0.1}
Gene mutation probability (𝑝𝑚,𝑔) {0.01, 0.02, 0.05, 0.1}

Table 5: Ranges of values used for each hyperparameter in the HGGA grid search. The
parameters include the maximum zone count (𝑍max), population size (𝑁𝑃), crossover
probability (𝑝𝑐), tag mutation probability (𝑝𝑚,𝑡), and gene mutation probability (𝑝𝑚,𝑔)

The hyperparameter grid shown in Table 5 was tested on a representative subset of
instances, defined by the key parameters of the problem for stacks: the building’s floor
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count, and the population per floor. The tested floor count values were 10, 20 . . . 80,
and the tested population per floor values were 25, 50, . . . , 200. Similarly to the SA
hyperparameter grid, each combination of hyperparameters and problem instances
was run using 10 different random number generator seeds. For each case, the mean
and standard deviation of the objective function were computed across the resulting
sample.

The optimal hyperparameter configuration for each instance was identified by sorting
the configurations in ascending order according to the following priority: (1) mean
objective value, (2) standard deviation of the objective value, (3) population size
(𝑁𝑃), and (4) maximum zone count (𝑍max). As with SA, a mapping structure was
developed to generalize the optimal hyperparameter selection to unseen instances,
including those not present in the original grid. The rule used to map any instance to
its corresponding hyperparameters – by rounding up to the nearest instance in the grid
– is identical to the one described in the previous subsection for SA.

Table 6 presents the optimal HGGA hyperparametrizations for floor counts 20, 40,
and 60 and population per floor values 50, 100, 150, and 200.

FC Pop 𝑍max 𝑁𝑃 𝑝𝑐 𝑝𝑚,𝑡 𝑝𝑚,𝑔

20 50 4 300 0.7 0.01 0.01
20 100 4 300 0.7 0.01 0.01
20 150 4 300 0.7 0.01 0.01
20 200 8 300 0.7 0.01 0.01

40 50 4 300 0.7 0.01 0.01
40 100 8 300 0.9 0.1 0.1
40 150 8 1000 0.7 0.01 0.1
40 200 8 300 0.7 0.01 0.01

60 50 4 300 0.7 0.01 0.01
60 100 8 1000 0.85 0.02 0.1
60 150 12 3000 0.9 0.01 0.05
60 200 20 3000 0.9 0.01 0.1

Table 6: Optimal HGGA hyperparametrizations for selected representative instances.
The table is organized by floor count (FC) and population per floor (Pop), with
the HGGA hyperparameters displayed to the right: maximum zone count (𝑍max),
population size (𝑁𝑃), crossover probability (𝑝𝑐), tag mutation probability (𝑝𝑚,𝑡), and
gene mutation probability (𝑝𝑚,𝑔). Optimal hyperparameters were chosen by ranking the
hyperparameter combinations on aggregated results over 10 random number generator
seeds with the following priority (1) mean objective value (2) standard deviation of the
objective value (3) the population size (𝑁𝑃) and (4) the maximum zone count (𝑍𝑚𝑎𝑥)

The table shows that the optimal value of 𝑍max increases with both floor count (FC)
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and population per floor (Pop). For a 20-story stack, 𝑍max is 4 when the population
per floor is below 200, and increases to 8 when the population reaches 200. In the
largest instances – a 60-story stack with population per floor values of 150 and 200 –
the optimal values of 𝑍max are 12 and 20, respectively.

A similar trend is observed in the population size 𝑁𝑃: for the smallest instances, good
results were achieved with a population size of 300, while for the largest instances, the
best performance required the maximum considered size of 3000 chromosomes.

For the crossover probability 𝑝𝑐, 0.7 is the most frequent optimal value, although for
the two largest instances, the optimal value is 0.9. For the mutation probability of tags
𝑝𝑚,𝑡 , 0.01 is clearly the most common value. In contrast, for the mutation probability
of genes 𝑝𝑚,𝑔, the optimal value varies across the considered range of 0.01 – 0.1.

4.3.3 Method Validation

In the proposed hybridization method for solving the zoning problem with sky lobbies,
it is essential that the inner-level problem of finding the optimal zoning arrangement
for individual stacks is solved effectively to ensure the overall quality of the outer-level
solutions. Therefore, the effectiveness of the HGGA in solving the stack-level zoning
problem was validated by benchmarking its results against those obtained using the
dynamic programming method presented in Ruokokoski et al. (2018).

To ensure comparability of solutions, a few adjustments were made to both method-
ologies. In their method, the constraint requiring that the number of elevators between
the largest and smallest (in terms of elevator count) elevator group must differ by
no more than two was removed. In the proposed methodology, the lobby area was
excluded from the evaluation of a zone’s core area. In other words, Equation (20)
was used to compute the core area of a stack. Furthermore, only elevator cars with a
capacity of 21 passengers were considered, consistent with the setup in Ruokokoski
et al. (2018).

Table 7 summarizes the benchmarking results by reporting both the absolute and relative
optimality gap between the solutions of the HGGA and the dynamic programming
method.

Table 7: Summary statistics of the absolute and relative differences for the sample.
Columns represent the minimum (Min), first quartile (Q1), median, mean, third quartile
(Q3), maximum (Max), and standard deviation (Std). The first row corresponds to
absolute differences, and the second row to relative differences in percentages

Min Q1 Median Mean Q3 Max Std

Absolute difference 0.00 0.00 0.00 6.76 0.00 317.30 27.91
Relative difference (%) 0.00 0.00 0.00 0.06 0.00 2.38 0.22

The results in Table 7 show that the HGGA successfully found the globally optimal
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zoning arrangement in more than 75% of the instances. When suboptimal solutions
occurred, the optimality gaps were generally small.

The mean and standard deviation of the absolute optimality gap were 6.76 m2 and
27.91 m2, respectively. For the relative optimality gap, the corresponding values were
0.06% and 0.22%. The largest observed absolute optimality gap was 317.30 m2, while
the largest relative optimality gap was 2.38%.

An analysis of the optimality gaps revealed that the relative optimality gap tends
to increase with the floor count of the stack. This relationship is illustrated in
Figure 14, which plots the relative optimality gap between the HGGA and the dynamic
programming method of Ruokokoski et al. (2018) as a function of floor count. To
highlight only those cases where the HGGA failed to find the exact solution, the figure
includes only instances in which the solutions differed.
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Figure 14: Relative optimality gap between the HGGA and the dynamic programming
method of Ruokokoski et al. (2018) as a function of the floor count of the stack. Only
instances where the HGGA solution differed from the exact solution are included

The results indicate that the heuristic’s performance deteriorates in relative terms as
the floor count increases or when the search space becomes very large. Nevertheless,
even in these cases, the optimality gap typically remains within 1%. Moreover, in
practice, it is unlikely that stacks in optimal solutions would exceed 60 floors, as
introducing sky lobbies reduces the elevator core area and often results in smaller
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stack sizes. Overall, the HGGA demonstrates strong performance and appears to be a
suitable method for determining the optimal zoning configuration for stacks.

4.4 Computational Infrastructure

This subsection provides an overview of the computational environment and methods
used to solve the nested optimization problem in this thesis. The hybrid metaheuristic
approach of combining Simulated Annealing (SA) and Hidden Genes Genetic Algo-
rithms (HGGA) relies on multiple strategies to reduce the time required for objective
function evaluations. The subsections below explain each strategy and conclude with
an acknowledgment of the high-performance computing (HPC) resources that were
used.

4.4.1 Overview of Computational Techniques

The computational model described in Section 4.3 follows a nested structure, in
which both the outer and inner levels involve extensive computation. Running the full
optimization procedure in a naive manner – without any dedicated effort to reduce
computational overhead – would render the study infeasible due to excessive runtime.
The nested nature of the approach implies that the computational cost incurred at the
inner level is magnified at the outer level. For this reason, efforts to reduce runtime
were initiated from the innermost components of the model.

4.4.2 Precomputation of Zone and Shuttle Solutions

On the inner level of the model, the HGGA is responsible for identifying the optimal
zoning arrangement within each stack. In a naive implementation, every proposed
zone would require an explicit evaluation, including the computation of round trip
time (RTT), which profiling showed to be the primary contributor to total runtime. To
address this bottleneck, a relational database was constructed to store precomputed
results for individual zones.

Each row in the database corresponds to a unique zone, defined by a combination of
four instance-specific parameters: the lower and upper floor numbers, the population
per floor, and the floor height. In addition to these, each entry includes four solution-
specific parameters: the core area, the elevator car size, the elevator count, and the
elevator velocity. This structure enables rapid retrieval of precomputed core area
values for any zone configuration encountered during optimization.

A similar table was constructed for shuttle elevator configurations required when
evaluating stacks served by a sky lobby. In this case, the lower floor column was
replaced with a sky lobby floor field, and the car size field was omitted, as only a
single shuttle car size (26-person capacity) was considered.

During chromosome evaluation in the HGGA, where up to 𝑍𝑚𝑎𝑥 zones may be active,
each zone’s contribution to the objective function can be retrieved through a simple
database lookup. This approach substantially reduced evaluation time as thousands of
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chromosomes had to be evaluated during a single run of the HGGA. Furthermore, it
was crucial for scaling the inner-level optimization to the outer level, where hundreds
to thousands of HGGAs were initiated during a single run of full computational
model.

4.4.3 Runtime Optimizations

In addition to the precomputation steps described previously, several runtime optimiza-
tions were implemented to reduce computational effort during execution. First, a gene
bank in the HGGA stored the fitness values of previously encountered chromosomes,
thus avoiding repeated evaluations and accelerating convergence. A stagnation limit
was also introduced, which terminated the algorithm if no improvement in fitness had
been observed for a specified number of consecutive generations. This was particularly
beneficial for smaller problem instances, where good solutions were often found within
only a few iterations.

At the outer level, the SA procedure employed a similar stagnation limit and maintained
a solution bank that stored both the objective value (often referred to as the “energy”)
and the corresponding zoning solutions for previously visited sky lobby configurations.
If the same configuration reappeared, the solution bank provided an immediate lookup
of the objective value, circumventing the need for a new evaluation. A further
optimization allowed the SA algorithm to reset to the best solution found so far
whenever no improvement was observed for 100 consecutive iterations. This reset
mechanism helped the search escape unproductive trajectories and converge more
rapidly.

4.4.4 Caching Stack and Shuttle Solutions

As explained earlier, a single run of the outer-level SA may trigger thousands of HGGA
evaluations. During each iteration, the 𝑘 sky lobby floors proposed by SA divide the
building into 𝑘 +1 stacks, for which the HGGA is used to determine the optimal zoning
configuration. Although the use of precomputed zone and shuttle solutions, and the
various runtime optimizations (such as gene banks and stagnation limits) significantly
reduced the CPU time of individual HGGAs, each evaluation still required several
seconds – occasionally up to 20 seconds – due to the scale of computation that was
involved. When accumulated over many iterations, these evaluation times became a
bottleneck in the convergence of the outer-level SA.

To address this, a second layer of precomputation was introduced in the form of stack
and shuttle solution caches. For stack solutions, the optimal zoning configurations
were computed in advance for all combinations of stack size (ranging from 8 to 80
floors) and population per floor (spanning 10 to 200 in increments of 10). For each such
pair, the HGGA was executed using 10 different random number generator seeds, and
the resulting solutions were stored in serialized format using Python’s pickle module.
A corresponding cache was also constructed for shuttle elevator configurations. In this
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case, solutions were generated for all combinations of sky lobby floor, upper floor9,
and population per floor, again storing the results in pickle files.

When the SA algorithm evaluated a new set of sky lobby floors, the resulting stacks
could be mapped to entries in the stack and shuttle caches. The corresponding
zoning and shuttle configurations were then retrieved directly, bypassing the need
to rerun the HGGA. This mechanism reduced the evaluation time of a single full
model iteration to approximately 20 milliseconds, making it feasible to perform a
large-scale hyperparameter grid search and to compute aggregate final results within a
few hours.

4.4.5 High-Performance Computing Resources

Despite the reductions in CPU time achieved through the computational innovations
described in the previous subsections, the computational scale of the study remained
too large to be tractable on a single processor. Therefore, high-performance computing
(HPC) resources provided by the Aalto University School of Science’s “Science-IT”
project were employed for the most computationally demanding parts of the thesis.
Specifically, the HPC cluster Triton10 was used.

Triton was first employed for the hyperparameter tuning of the HGGA. A representative
and comprehensive batch of instances was run to explore the sensitivity of the
objective value to different hyperparameter values. After identifying the most critical
hyperparameters and defining the corresponding hyperparameter grid, Triton was used
again to perform a full grid search. This was implemented as an array job, with each
job allocated to a single CPU node and 800 MB of memory.

Triton was also used for the hyperparameter tuning of SA, following the same procedure
as with HGGA. A representative batch of instances was used to identify the most
influential hyperparameters, after which a full grid search was conducted. As before,
the search was implemented as an array job. Each job was allocated to a single CPU
node, with 2 GB of memory due to higher memory requirements.

Third, Triton was used to compute and populate the cache for stack and shuttle solutions
across all combinations of floor counts, population counts, and seeds. This step,
described in Section 4.4.4, was again implemented as an array job, with each job
requiring one CPU node and 800 MB of memory.

Finally, Triton was utilized to compute the final results. A large batch of instances
was defined, covering all combinations of floor counts, population per floor values,
and seeds. Due to the use of the precomputed stack and shuttle solutions from the
previous step, the final results batch could submitted as a single job allocated to one
CPU node and 4 GB of memory.

9The upper floor is relevant because shuttle elevators were assumed to serve the population from
the sky lobby to the top of the stack.

10A technical overview of the cluster is available at https://scicomp.aalto.fi/triton/overview/
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Following the guidance of research engineers at Aalto Scientific Computing, each
job in the array was designed to require 1 – 10 hours of runtime. This duration was
optimal for the SLURM queuing system used to allocate jobs across available CPU
nodes. Since most batch jobs involved different combinations of problem parameters,
job durations were estimated by trial runs. The results were used to group problem
combinations such that the execution time per job aligned with the recommended time
window.

Before concluding this subsection, Table 8 provides an overview of the most computa-
tionally intensive steps executed on Triton. For each array job, we report the CPU time
requested per job, the memory requested per job, the total number of jobs in the array,
and finally, the total runtime both in hours and in days (with Runtime (h) = Time ×
Jobs and Runtime (d) = Runtime (h)/24).

Table 8: Summary of computational steps executed on Triton, detailing the CPU time
and memory requirements for a single job, the number of jobs in the array, and the
total runtime of the array job in both hours and days. The “Total” row reports the sum
of “Jobs” and the sum of the total runtime, illustrating the overall HPC usage

Step Time (h) Mem (GB) Jobs Runtime (h) Runtime (d)

HGGA Grid Search 1 0.8 256 256 10.67
SA Grid Search 5 2 90 450 18.75
Precomputation 3 0.8 10 30 1.25
Final Results 2 4 1 2 0.08

Total – – 357 738 30.75

The SA grid search required the greatest total runtime (450 hours), making it the most
computationally demanding step. In contrast, the final results calculation, benefiting
from extensive caching, required only 2 hours in total and was therefore the least
time-consuming.

When aggregated, these tasks required a total of 738 CPU hours (approx. 31 days).
Executing them on a single CPU core would have required a month of dedicated
runtime, whereas Triton’s distributed resources allowed these tasks to be completed in
parallel and thus in a fraction of the wall-clock time. This clearly justifies the use of
HPC resources for this thesis.

65



5 Results

The results section is organized as follows. Finally, Section 5.1 defines the scope of
the problem and outlines the main assumptions in this work. Section 5.2 examines the
optimal number of sky lobbies across a range of building heights and population den-
sities, highlighting general trends and outlier configurations. Section 5.3 investigates
the optimal placement of sky lobbies for different combinations of floor count and
population per floor, under two- and three-lobby configurations. Section 5.4 quantifies
the relative core area savings achieved through the use of sky lobbies by comparing
optimized solutions to baseline cases without them. Finally, Section 5.5 evaluates
the elevator core efficiency by analyzing the ratio of elevator core area to total office
area, offering practical insight into the impact of different sky lobby configurations on
usable space. Finally, Section 5.6 provides results on runtime.

5.1 Scope and Assumptions

Before computing results, a set of assumptions had to be made to scope the problem
and to make it computationally tractable. Furthermore, ISO standards set restrictions
on the zoning problem. What follows is a list of assumptions that was made for the
generation of the computational results hereinafter.

1. The building type is an office building.

2. The traffic type is up-peak traffic.

3. The building has 0 – 3 sky lobbies.

4. The floor height is 3.3 m.

5. The building population is assumed to follow a uniform distribution (population
per floor is a constant number).

6. The floor count of a stack is between 8 – 80 floors.

7. Each elevator stack has an entrance floor that all elevators in the stack serve.
For the first stack, the entrance floor is floor 0. For all subsequent stacks, the
entrance floor is the respective sky lobby.

8. Zones within a stack only share the entrance floor.

9. Zones within a stack are contiguous.

10. All elevators are single-deck.

11. The maximum allowed rated speed for any elevator is 10 m/s.

12. Possible kinematic values (nominal speed, acceleration, and jerk) for elevators
are presented in Table 9.

13. Elevator door and transfer timings are presented in Table 10.
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14. Elevator car sizes follow ISO standards and the set of considered elevator sizes
are presented in Tables 11 and 12.

15. Shuttle elevators have a rated capacity of 26 persons.

16. RTT is calculated with the method by Roschier and Kaakinen (1978).

17. Elevators within the same elevator group share the same characteristics (capacity
and nominal speed).

Table 9 presents the possible kinematic parameter combinations for elevators, as
defined in KONE’s Building Traffic Simulator (BTS). These parameters include
nominal speed, acceleration, and jerk, which together characterize the velocity profile
of an elevator. The choice of kinematic parameters directly affects the travel time of
elevators and thereby influences key traffic performance indicators such as RTT, INT,
and NTT.

Table 9: Kinematic parameter options for elevators used in KONE’s Building Traffic
Simulator (BTS). The table lists feasible combinations of nominal speed, acceleration,
and jerk values, which define the elevator velocity profiles and influence travel times

Nominal speed [m/s] Acceleration [m/s2] Jerk [m/s3]
1.0 0.8 1.2
1.6 0.8 1.2
2.0 0.8 1.2
2.5 1.0 1.6
3.0 1.0 1.6
3.5 1.0 1.6
4.0 1.0 1.6
5.0 1.0 1.6
6.0 1.0 1.6
7.0 1.0 1.6
8.0 1.0 1.6
9.0 1.0 1.6
10.0 1.0 1.6

To simplify presentation, two groups of elevators based on their capacity (in persons)
are defined:

𝐸1 = {13, 17, 18, 21},
𝐸2 = {24, 26}.

For each elevator group, the door closing time, door opening time, passenger transfer
time, photocell delay, and start delay are identical. These parameters directly influence
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the RTT and INT of the groups, and thus play a key role in determining the feasibility of
assigning a given elevator group to a zone. Table 10 summarizes the shared parameter
values for each group.

Table 10: Door operation and transfer timing parameters for elevator groups 𝐸1 =

{13, 17, 18, 21} and 𝐸2 = {24, 26}, as used in KONE’s Building Traffic Simulator
(BTS). These parameters influence the total transfer time per stop and, consequently,
the RTT and INT of each elevator group

Parameter 𝐸1 𝐸2

Door closing time [s] 3.1 3.4
Door opening time [s] 1.4 1.4
Passenger transfer time [s] 1.0 0.95
Photocell delay [s] 0.9 0.9
Start delay [s] 0.7 0.7

In addition, the shaft and car dimensions for elevator groups 𝐸1 and 𝐸2 are presented in
Tables 11 and 12, respectively. These dimensions influence the core area calculations
and thus affect the car size selected by the algorithm for the elevator group assigned to
a given zone.

Table 11: Shaft and car dimensions for the elevators in group 𝐸1

Parameter 13 pers. 17 pers. 18 pers. 21 pers.
Shaft area [m2] 5.28 5.98 6.4925 6.75
Shaft width [mm] 2400 2600 2650 2700
Shaft depth [mm] 2200 2300 2450 2500
Car width [mm] 1700 2000 2000 2100
Car depth [mm] 1400 1400 1500 1600

Table 12: Shaft and car dimensions for the elevators in group 𝐸2

Parameter 24 pers. 26 pers.
Shaft area [m2] 7.5 7.8
Shaft width [mm] 3000 3000
Shaft depth [mm] 2500 2600
Car width [mm] 2350 2350
Car depth [mm] 1600 1700

In the next section, results are presented from solving the optimization problem in
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Equation (42). The problem is solved using the computational model introduced in
Subsection 4.3. All results are obtained under the assumptions outlined above.

5.2 Sky Lobby Count

One of the key design questions when using sky lobbies in high-rise buildings is
determining their optimal number. Naturally, this depends on several factors. Among
these, the two most critical are the total floor count of the building and the population
per floor.

To investigate this, the optimal number of sky lobbies was determined for different
combinations of floor count and population density by comparing the resulting core
areas of solutions with varying numbers of sky lobbies against a baseline solution
without sky lobbies. Figures 15, 16, and 17 present the results for buildings with 40 –
80, 80 – 140, and 140 – 200 floors, respectively.

In each heatmap, the cells correspond to a specific combination of floor count and
population per floor. The optimal sky lobby count is indicated by the number shown
within each cell and is further highlighted using color coding for visual clarity.

Figure 15 reveals several patterns regarding the optimal number of sky lobbies in
buildings with 40 to 80 floors. The optimal sky lobby count ranges from zero to three,
depending on key parameters. It generally increases withbothfloorcount andpopulation
density, although population density appears to have a greater influence.

For instance, when the population per floor reaches 200, three sky lobbies are optimal
across the entire range of floor counts. In contrast, even at the maximum of 80 floors,
fewer (one or two) sky lobbies may suffice if the population density is moderate.
These findings underscore that population density can outweigh building height when
determining how many sky lobbies are needed.

When the population per floor is very low (10–20 persons), sky lobbies are not always
necessary. For instance, with a population of 10 persons per floor, sky lobbies become
beneficial only in buildings with more than 75 floors. However, a small increase in
population density changes this. At 20 persons per floor, sky lobbies become advisable
from 50 floors upward. When the population per floor reaches 40 or more, sky lobbies
should be used in all cases.

The figure exhibits several outlying solutions. For the floor count – population per
floor pairs (46, 70), (52, 60), and (56, 50), the optimal solution includes three sky
lobbies, even though the neighboring configurations suggest only two. Another notable
exception is the solution for a 78-story building with a population of 10 persons per
floor: it recommends two sky lobbies, while the adjacent instances – 76 floors and
80 floors – suggest zero and one sky lobby, respectively, for the same population
density.

One possible explanation is that these outliers correspond to local minima. Another is
that they reflect the discrete and non-smooth nature of the search space, where small
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Optimal Sky Lobby Count for Buildings with 40-80 Floors

Figure 15: Optimal number of sky lobbies for buildings with 40 – 80 floors, as
a function of floor count and population per floor. The number in each cell was
determined as the mode of the solutions obtained across 10 runs with different random
seeds

input changes can lead to abrupt shifts in the solution. For example, the addition of a
single person on one floor might necessitate an extra elevator in a group, resulting in
a substantial increase in core area and thus a significantly worse objective function
value. As a result, globally optimal solutions may sometimes exhibit unintuitive
behavior.

Figure 16 illustrates how the optimal number of sky lobbies varies with population
per floor and total floor count in buildings with 80 – 140 floors. With a very low
population per floor (10 persons), one sky lobby is preferred up to approximately 86
floors, after which two sky lobbies are optimal up to around 130 floors, followed by
three sky lobbies beyond that. When the population per floor increases to 20, two sky
lobbies are generally optimal up to 110 floors, after which three are required. For
a population of 30 persons per floor, the switch to three sky lobbies occurs earlier,
at around 90 floors. From a population of 40 persons per floor and above, three sky
lobbies are optimal across the entire considered range of floor counts.

Some exceptions to these general trends can be observed. For instance, the solution
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Optimal Sky Lobby Count for Buildings with 80-140 Floors

Figure 16: Optimal number of sky lobbies for buildings with 80 – 140 floors, as
a function of floor count and population per floor. The number in each cell was
determined as the mode of the solutions obtained across 10 runs with different random
seeds

for 88 floors and a population of 20 persons per floor recommends three sky lobbies,
even though the next instance with the same population requiring three sky lobbies
does not appear until 112 floors. Another outlier is the solution for 140 floors and 10
persons per floor, which suggests two sky lobbies, despite the previous three instances
(134, 136, and 138 floors) recommending three sky lobbies for the same population
density.

Figure 17 shows the optimal number of sky lobbies for various combinations of floor
count and population per floor in buildings with 140 to 200 floors. Almost all solutions
suggest three sky lobbies. The only exceptions are a few instances with a population
of 10 persons per floor and floor counts between 140 and 166, where two sky lobbies
are occasionally preferred. Among these, there are some outlying solutions that revert
to three sky lobbies, indicating that the objective values for configurations with two
or three sky lobbies are very close among these instances. These alternations further
suggest that small differences in input parameters can lead to shifts between nearly
equivalent optima.
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Figure 17: Optimal number of sky lobbies for buildings with 140 – 200 floors, as
a function of floor count and population per floor. The number in each cell was
determined as the mode of the solutions obtained across 10 runs with different random
seeds

Overall, based on the above results in Figures 15, 16, and 17, a few generalizations can
be made. Buildings with very low population per floor (10–20 persons) do not always
require a sky lobby. Furthermore, they can be served with one to two sky lobbies up to
more than 100 floors. Buildings with relatively low population density (60 persons per
floor or less) typically benefit from having two sky lobbies. Buildings with very high
population density (190 – 200 persons per floor), or those with more than 60 floors
and a moderate to high population density (60+ persons per floor), should always have
three sky lobbies. This last observation suggests that four or more sky lobbies could
be advantageous for very tall buildings with large populations.

As noted in Section 2.3.3, a wide range of recommendations has been made regarding
when sky lobbies should be introduced. Barney and Al-Sharif (2015) stated that
buildings up to 60 floors can be served using single-deck elevators without the need
for sky lobbies. Similarly, Fortune (1985) claimed that sky lobbies become necessary
only beyond 60 floors. While these statements may reflect feasibility in terms of
performance criteria, the results of this thesis suggest otherwise. Specifically, for
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60-floor buildings, two to three sky lobbies are optimal whenever the population per
floor exceeds 10, which is is practically always the case. Therefore, these findings
indicate that sky lobbies may need to be introduced at lower building heights than
commonly assumed.

Among the reviewed sources, Schroeder (1989) proposed the lowest threshold, sug-
gesting that sky lobbies should be considered for buildings between 40 and 50 stories.
The results of this study lend support to Schroeder’s position. Unless population
density is exceptionally low, two to three sky lobbies are recommended even for
buildings starting at 40 floors.

5.3 Sky Lobby Placement

After determining the number of sky lobbies for a building, the next design question
concerns their placement. It remains an open question which floors are optimal
for locating sky lobbies. Current industry practice relies heavily on the designer’s
expertise and informal rules of thumb. In the worst cases, architects may decide the
placement without consulting the elevator manufacturer (Viita-aho, 2019). The key
parameters influencing the optimal placement of sky lobbies are the building’s floor
count and the population per floor. Therefore, the optimal placement was studied
across various combinations of these parameters.

As shown in Figure 15, the optimal number of sky lobbies in smaller buildings with
40 to 80 floors varies significantly, ranging from zero to three. However, the majority
of solutions recommend either two or three sky lobbies. Consequently, the optimal
placement was assessed under two configurations: (i) two sky lobbies, and (ii) three
sky lobbies. For the two-lobby case, population per floor values of 20, 40, 60, and 80
were used. For the three-lobby case, population values of 20, 50, 100, and 200 were
selected. These values were chosen to illustrate the variability in optimal placement
patterns.

Figure 18 shows the optimal floor locations for two sky lobbies in buildings with 40 to
80 floors. The population per floor increases across the subfigures, starting from 20
persons per floor in the top-left and proceeding to 40, 60, and 80 persons per floor in
reading order (left-to-right, top-to-bottom).

The figure reveals several noteworthy patterns in the placement of sky lobbies. First,
the lowest sky lobby is generally placed at a relatively low level in the building,
regardless of population density. For example, when the population per floor is 20, the
first sky lobby is located around floor 10 across the entire range of floor counts. Even
when the population per floor reaches the maximum considered value of 80 persons,
the first sky lobby remains relatively low – for instance, near floor 20 in an 80-story
building.

Second, a distinct shift in the placement of the first sky lobby occurs when the total
floor count exceeds approximately 60 – 65 floors. For example, in the bottom-left
subfigure (population per floor of 60), the first sky lobby is located at about floor
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Figure 18: Optimal sky lobby floor locations for buildings with 40 to 80 floors with
two sky lobbies. The subfigures correspond to increasing population per floor: 20
(top-left), 40 (top-right), 60 (bottom-right), and 80 (bottom-left) persons per floor

10 when the building has 60 floors, but it jumps to floor 20 when the floor count
increases to 65. Beyond this point, its position remains roughly constant up to 80
floors. A similar jump can be observed in the top-right and bottom-right subfigures as
well.

Third, the vertical distance between the first and second sky lobbies tends to increase
with floor count. In the top-right subfigure (population per floor of 40), the spacing
between the first and second sky lobbies is approximately 15 floors for buildings with
40 and 45 floors, but increases to nearly 30 floors when the building has 70 floors.
This trend is also visible in the other subfigures.

Finally, the placement of the second sky lobby does not follow a strictly increasing
pattern with respect to floor count. For instance, in the top-right subfigure with a
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population of 40 persons per floor, the second sky lobby is placed on floor 47 in a
65-story building. However, for the next considered floor count of 70, it is positioned
on floor 38 – representing an almost 10-floor downward shift. After this, the second
sky lobby floor increases again with floor count, but does not return to the previous
maximum level of 47.

Figure 19 shows the optimal floor locations for three sky lobbies in buildings with 40
to 80 floors. The population per floor increases across the subfigures: 20, 100, 150,
and 200 persons per floor, starting from the top-left and proceeding left-to-right and
top-to-bottom.
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Figure 19: Optimal sky lobby floor locations for buildings with 40 to 80 floors with
three sky lobbies. The subfigures correspond to population per floor values of 20
(top-left), 100 (top-right), 150 (bottom-right), and 200 (bottom-left) persons per floor

Similar trends are observed as in Figure 18, where two sky lobbies were used. There
appears to be a cutoff point around 60 – 65 floors, beyond which the placement of
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sky lobbies changes significantly. For example, in the top-left subfigure (population
per floor of 20), the third sky lobby shifts from approximately floor 30 to floor 40,
while the first and second sky lobbies remain relatively stable across the floor count
range. In contrast, at the highest considered population per floor of 200 (bottom-right
subfigure), all three sky lobbies increase in height as the floor count grows. At 60
floors, the first, second, and third sky lobbies are located approximately at floors 10,
25, and 40, respectively. By 80 floors, these placements have risen to about floors 20,
40, and 62.

Another observation is that the first sky lobby is generally placed very low in the
building, except in cases where both the floor count exceeds 70 and the population per
floor reaches the maximum of 200. In these cases, the first sky lobby shifts upward –
from around floor 10 to floors 16, 20, and 22 for buildings with 70, 75, and 80 floors,
respectively. This suggests that at sufficiently high population densities, sky lobbies
must be placed higher in the building, despite the associated increase in core area due
to taller elevator shafts.

As in the previous figure, some outlying solutions are present, where sky lobby floor
levels do not increase monotonically with floor count. For instance, in the top-right
subfigure, the configuration for a 60-floor building places the second and third sky
lobbies on floors 30 and 47. However, in the 65-floor configuration, they are positioned
lower – on floors 20 and 39 – even though the building is taller by five floors.

As demonstrated in Figures 16 and 17, buildings with more than 80 floors predominantly
require three sky lobbies in the optimal solutions. Therefore, only configurations with
three sky lobbies were considered for the taller building classes. Population per floor
values of 20, 100, 150, and 200 were selected to capture variability in the solutions.
Since total building population can vary substantially, these cases offer a representative
set of examples for different practical scenarios and audiences.

Figure 20 shows the optimal floor locations for three sky lobbies in buildings with 80
to 140 floors. The subfigures correspond to increasing population per floor values of
20, 100, 150, and 200 persons, starting from the top-left and proceeding left-to-right
and top-to-bottom.

The figure illustrates that in buildings with 80 to 140 floors, the placement of sky
lobbies generally increases with floor count across all considered population densities.
However, under low population density (20 persons per floor), the first sky lobby
is consistently placed very low in the building – around the minimum of 8 floors –
regardless of total floor count. This reflects the principle that, when feasible within
performance criteria, sky lobbies should be positioned as low as possible to avoid
excessively tall elevator shafts.

For higher population densities (100 and 200 persons per floor), the patterns in sky
lobby placement are more regular. The sky lobby floors increase steadily with floor
count, and the vertical spacing between sky lobbies expands as the building height
increases. When the population per floor is 200, the placement closely follows the
structure of the initial solution, in which sky lobbies divide the building into evenly
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Figure 20: Optimal sky lobby floor locations for buildings with 80 to 140 floors with
three sky lobbies. The subfigures correspond to population per floor values of 20
(top-left), 100 (top-right), 150 (bottom-right), and 200 (bottom-left) persons per floor

spaced stacks using the rule 𝑆𝑖 · 𝑁/(𝑘 + 1), where 𝑁 is the floor count, 𝑘 is the number
of sky lobbies, and 𝑆𝑖 ∈ {1, . . . , 𝑘} denotes the index of the sky lobby. For example,
in a 60-floor building, the first, second, and third sky lobbies align closely with the
respective values (20, 40, 60). Similarly, for a building with 140 floors and a population
of 200, they are located near (35, 70, 105).

In contrast, for lower population densities (10 and 50 persons per floor), some outlying
configurations are observed. For instance, in the top-right subfigure (population per
floor of 50), there is a marked shift in sky lobby placement between 120 and 125
floors, particularly for the second and third sky lobbies. At 120 floors, these are located
around floors 55 and 92, but at 125 floors, both shift downward to approximately floors
40 and 75. They then remain near these levels up to 135 floors, before the 140-floor
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configuration returns to a pattern more similar to that seen at 115 floors—despite a
25-floor increase. A potential explanation is that with lower population densities, there
are more local minimums in different regions of the search space.

Figure 21 shows the optimal floor locations for three sky lobbies in buildings with 140
to 200 floors. The subfigures correspond to increasing population per floor values of
20, 50, 100, and 200 persons, starting from the top-left and proceeding left-to-right
and top-to-bottom.
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Figure 21: Optimal sky lobby floor locations for buildings with 140 to 200 floors
with three sky lobbies. The subfigures correspond to population per floor values of 20
(top-left), 50 (top-right), 100 (bottom-right), and 200 (bottom-left) persons per floor

The figure demonstrates that sky lobby placement patterns become more pronounced
as the building height increases to the largest class of 140 to 200 floors, and there
are less outlying solutions. In general, the first and second sky lobbies are positioned
relatively low in the building. Rather than shifting the lower sky lobbies upward with
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increasing floor count, the adjustment is primarily made by moving the third sky lobby
higher. This effect is particularly evident at lower population densities. For instance,
when the population per floor is 20 (top-left subfigure), and the floor count increases
from 160 to 200, the first sky lobby remains fixed at floor 20, while the third sky lobby
moves upward from approximately floor 85 to 122 – a shift of nearly 40 floors. Similar
trends can be observed in the other subfigures.

As in earlier figures, when the population per floor is 200, sky lobby placements
tend to align closely with the initial solution based on evenly divided stacks. For
example, at the maximum floor count of 200, the first, second, and third sky lobbies are
located almost exactly at floors 50, 100, and 150, respectively. This suggests that, as
population density increases, the optimal placements of sky lobbies converge toward
evenly spaced stacks.

5.4 Core Area Savings

In this subsection, the potential core area savings from using sky lobbies is evaluated
in two distinct ways. First, the resulting core area of a building with sky lobbies is
compared to that of a single-stack configuration optimized using the HGGA. Second,
this result is compared to a configuration derived from industry rules of thumb proposed
by practitioners.

5.4.1 Comparison to a Single Stack

The primary motivation for introducing sky lobbies in a building is their potential
to reduce the elevator core area. However, as discussed earlier, the extent of these
potential savings has remained an open question. To address this, the core area of
optimal solutions with sky lobbies was compared to that of solutions without sky
lobbies, and the relative savings were computed across various combinations of floor
count and population per floor. Figure 22 illustrates the results for population counts
of 20, 50, 100, and 200 persons per floor.

The figure demonstrates that core area savings range from approximately −50% to
+32%. This implies that a well-designed sky lobby configuration can reduce the core
area by nearly one-third. In practice, the savings potential is likely even greater, as
most buildings are not equipped with optimally zoned elevator systems to begin with.
On the other hand, if sky lobbies are misconfigured – for example, by introducing an
excessive number of them in buildings where they are not beneficial – the required
elevator core space can increase by up to 50%. All in all, it is crucial to identify a
suitable configuration depending on parameters of the building.

In the top-left figure, representing a population per floor of 20, introducing sky lobbies
becomes advantageous only after approximately 50 floors—marking the point where
core area savings first become positive for some configurations. Before this, the
inclusion of sky lobbies increases the required core area. For instance, at around 40
floors, the core area is approximately 10%, 13%, and 50% greater than the baseline
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Figure 22: Relative savings in elevator core area for configurations with varying
numbers of sky lobbies. Each line represents a different number of sky lobbies,
indicated by color: black (one sky lobby), blue (two sky lobbies), and red (three sky
lobbies). The savings are calculated as the relative difference in core area between the
optimal solution with sky lobbies and the corresponding optimal solution without sky
lobbies

(no sky lobbies) when using one, two, and three sky lobbies, respectively. By the
80-floor mark, all sky lobby configurations achieve core area savings exceeding 10%,
with the greatest savings – around 12% – achieved using two sky lobbies.

When the population per floor increases to 50 (top-right figure), sky lobbies become
beneficial for all floor counts except in the case of three sky lobbies, which only begin
to yield savings after approximately 45 floors. Once the floor count exceeds 70, the
configuration with three sky lobbies outperforms the two-lobby configuration and
becomes the most effective. At 80 floors, the core area savings for one, two, and three
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sky lobbies are approximately 13%, 22%, and 24%, respectively.

In contrast to the previous cases, when the population per floor is 100, the configuration
with one sky lobby is the least effective from the outset, offering only about 5% savings.
Initially, the two-lobby configuration performs best, with savings of around 14%.
However, the configuration with three sky lobbies quickly surpasses it and becomes
the dominant option beyond 45 floors. Core area savings increase steadily with floor
count for all three configurations, reaching approximately 13%, 28%, and 32% for
one, two, and three sky lobbies, respectively, at 80 floors.

When the population per floor is very high (200 persons), the three-lobby configuration
is dominant from the beginning, offering a core area savings of about 23% already at
40 floors. The two-lobby configuration follows closely, with 22% savings at the same
floor count. The one-lobby configuration again performs worst, with savings starting
around 7% and remaining at that level across all considered floor counts. As the floor
count increases, savings for both the two- and three-lobby configurations continue to
grow, reaching approximately 24% and 33%, respectively.

Direct comparison with earlier studies is challenging due to differing assumptions,
such as the use of double-deck elevators and varying design criteria. The closest
benchmark is Schroeder (1989), who examined a 40-story building with a population
per floor of 100. In their Configuration A – single-deck shuttles combined with
single-deck local elevators – they reported core area savings of 28% using a single
sky lobby. In contrast, the savings potential observed in this study for a comparable
setting was only around 6%. However, the benchmark study imposed a higher handling
capacity requirement (15%), applied different constraints to shuttle elevators, and
did not clearly specify whether the elevator lobby area was included in the core area
calculation. Most importantly, their reference case without sky lobbies was based
on an arbitrary zoning arrangement whereas the present study uses optimally zoned
configurations. Thereby, the core area savings in my study are conservative and
provide a lower bound. The scarcity of comparable results in the literature highlights
the need for more standardized studies to evaluate the benefits of sky lobbies under
consistent modeling assumptions.

5.4.2 Comparison to Rules of Thumb

Another way to assess the core area savings potential is to compare a solution produced
by the hybrid metaheuristic to a configuration based on heuristic rules used in the
industry. According to Al-Sharif et al. (2017), “it is unusual to have more than four
zones in a building. Thus, the number of zones for a zoned building could range from
two to four.” Furthermore, Barney and Al-Sharif (2015) state that, typically, up to 60
floors can be served without a sky lobby.

In addition, rules of thumb also exist for allocating the building population across zones
(Al-Sharif et al., 2017). For two zones, 57% of the population is typically assigned
to the lower zone and 43% to the upper zone. For three zones, the recommended
allocation is 43% to the lower zone, 30% to the middle zone, and 27% to the upper
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zone. For four zones, the population shares are 29%, 27%, 22%, and 22% from the
lowest to the highest zone, respectively.

To illustrate this comparison, consider a building with 100 floors and a population of
100 people per floor. Following the rules of thumb, a single sky lobby is assumed to
be placed on floor 60, and the number of zones in the stacks ranges from two to four.
The corresponding rule-of-thumb configurations are presented for the first and second
stack in Tables 13 and 14, respectively.

Table 13: Rule-of-thumb zone configurations for Stack 1 (Floors 0 – 60). Pop. share
indicates the percentage of total population allocated to each zone

Zone Pop. share Lower floor Upper floor

i) 2 zones

1 57% 0 35
2 43% 36 60

ii) 3 zones

1 43% 0 26
2 30% 27 44
3 27% 45 60

iii) 4 zones

1 29% 0 18
2 27% 19 35
3 22% 36 49
4 22% 50 60
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Table 14: Rule-of-thumb zone configurations for Stack 2 (Floors 61 – 100). Pop.
share indicates the percentage of total population allocated to each zone

Zone Pop. share Lower floor Upper floor

i) 2 zones

1 57% 61 83
2 43% 84 100

ii) 3 zones

1 43% 61 77
2 30% 78 89
3 27% 90 100

iii) 4 zones

1 29% 61 72
2 27% 73 83
3 22% 84 92
4 22% 93 100

These configurations are then compared to the solution generated by the hybrid
metaheuristic, with a focus on the resulting core area. The results are summarized
in Table 15. The optimal solution produced by the metaheuristic has a core area of
17,748.5 (𝑚2), with the sky lobby placed on floor 49. The lower and upper stacks,
spanning floors 0 – 49 and 50 – 100, respectively, each contain seven zones – a
substantially higher number than the 2 – 4 zones recommended for a building (or
stack) based on industry rules of thumb.

The benchmark configurations based on these rules of thumb result in considerably
larger core areas. The configuration with the lowest core area among them is RoT
(4L, 3U), with a core area of 24,066.5 (𝑚2), which is 36% higher than that of the
metaheuristic solution. The configuration with the highest core area is RoT (2L,
2U), with a core area of 28,793.3 (𝑚2), representing a 62% increase compared to the
metaheuristic solution.

Overall, these results lend further support to the conclusion that if core area is to be
minimized, sky lobbies should be introduced for lower buildings than is currently
assumed in the industry. A second conclusion is that it appears to be beneficial to
introduce more than 2 – 4 zones per stack.

In comparison to the results presented in the previous section, the core area savings
potential appears even greater when an optimized sky lobby configuration is compared
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to a configuration based on rules of thumb. It is likely that these savings would increase
further in taller buildings (e.g., with 200 floors) or in configurations with multiple sky
lobbies. In such cases, it is conceivable that the optimized core area could be less than
half of that resulting from a poorly chosen configuration. The economic implications
of core area savings of this magnitude would be substantial.

Table 15: Resulting elevator core area (in 𝑚2) for a building with 100 floors, a
population of 100 persons per floor, and one sky lobby. Elevator configurations were
determined either using the (hybrid) metaheuristic or the rules of thumb proposed by
Al-Sharif. Method indicates the solution approach; Config. ID provides a descriptive
label for each Rule-of-Thumb configuration (e.g., RoT (4L,3U) indicates 4 zones in
the lower stack and 3 zones in the upper stack); 𝑍𝐿 and 𝑍𝑈 denote the number of
zones in the lower and upper stacks, respectively; SL denotes the sky lobby floor; CA
denotes the resulting core area; and CA% denotes the core area relative to that of the
configuration produced by the hybrid metaheuristic. The first row corresponds to the
metaheuristic solution, while the subsequent rows (sorted in ascending order of core
area) correspond to Rule-of-Thumb (RoT) configurations

Method Config. ID 𝑍𝐿 𝑍𝑈 SL CA (𝑚2) CA%

Metaheuristic – 7 7 49 17,748.5 100

Rule of Thumb RoT (4L,3U) 4 3 60 24,066.5 136
Rule of Thumb RoT (4L,4U) 4 4 60 24,310.0 137
Rule of Thumb RoT (4L,2U) 4 2 60 25,029.5 141
Rule of Thumb RoT (3L,3U) 3 3 60 25,273.1 142
Rule of Thumb RoT (3L,4U) 3 4 60 25,516.6 144
Rule of Thumb RoT (3L,2U) 3 2 60 26,236.2 148
Rule of Thumb RoT (2L,3U) 2 3 60 27,830.3 157
Rule of Thumb RoT (2L,4U) 2 4 60 28,073.8 158
Rule of Thumb RoT (2L,2U) 2 2 60 28,793.3 162

5.5 Elevator Core Efficiency

In office buildings, any reduction in elevator core area due to the introduction of one
or more sky lobbies translates into additional rentable office space. To quantify this,
the ratio of elevator core area to total office area (core-office ratio) was computed
for the optimal configurations across various combinations of total floor counts and
population per floor. The office area per person was assumed to be 15 m2, following
Schroeder (1985). Figure 23 presents the results for population densities of 20, 50,
100, and 200 persons per floor.

The figure shows that as the population per floor increases, the configuration with
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Figure 23: Ratio of elevator core area to total office area, assuming 15 m2 of office
space per person. The colored lines correspond to different numbers of sky lobbies:
black represents configurations with one sky lobby, blue with two sky lobbies, and red
with three sky lobbies. The plotted values are based on the optimal solutions across
varying building heights and population densities

three sky lobbies becomes increasingly attractive, as reflected in lower core-to-office
ratios. When the population per floor is 20 (top-left figure) and the floor count is at
the minimum of 40, the three-lobby configuration performs the worst, yielding a core-
to-office ratio of approximately 18%. In contrast, the best-performing configuration
– one sky lobby – has a ratio of around 14%. However, by approximately 70 floors,
the one-lobby configuration begins to underperform relative to the others. Up to 200
floors, the two- and three-lobby configurations yield very similar results, with the
three-lobby configuration slightly outperforming, reaching a core-to-office ratio of
about 33% at the 200-floor mark.
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At a population per floor of 50 (top-right figure), the one-lobby configuration is no
longer optimal at the outset. Instead, the two-lobby configuration performs best at
40 floors, with a core-to-office ratio of approximately 8%, while the three-lobby
configuration lags slightly behind at around 9%. As the floor count increases,
however, the three-lobby configuration becomes more favorable. By around 80
floors, it outperforms the other configurations. At higher floor counts, the one-
lobby configuration performs significantly worse than both the two- and three-lobby
configurations. For example, at 140 floors, the difference is 4 – 5 percentage points.
At 200 floors, the two- and three-lobby configurations reach core-to-office ratios of
20% and 22%, respectively.

When the population per floor increases to 100 (bottom-left figure), the three-lobby
configuration quickly becomes the most effective. At 40 floors, it already yields a low
core-to-office ratio of 5%, increasing steadily to approximately 16% at 200 floors.
From 120 floors onward, it consistently outperforms the other configurations, with a 1
– 2 percentage point advantage over the two-lobby configuration and a 3 – 5 percentage
point advantage over the one-lobby configuration between 100 and 140 floors. Slightly
lower core-to-office ratios are observed when the population per floor is 200, but the
overall trends remain qualitatively similar.

Schroeder (1985) produced a similar graph, in which the core-to-office ratio for
single-deck elevators (both local and shuttle) with a single sky lobby ranged from
approximately 14% (50 floors) to 38% (142 floors), assuming a population per floor of
100. In comparison, the corresponding results in this study are approximately 7% and
17%, suggesting a substantially lower core-to-office ratio. However, several differences
in modeling assumptions must be noted. In Schroeder (1985), the 5-minute handling
capacity requirement was set at 15%, necessitating a greater number of elevators.
Furthermore, their study used arbitrarily selected sky lobby floors and non-optimized
zoning arrangements, which contributed to a higher elevator core area. Once again,
these findings highlight the need for more standardized studies with aligned modeling
assumptions to advance the understanding of elevator core efficiency.

5.6 Runtime

As described in Section 4.4, the computational overhead of this study was substantially
reduced through an extensive set of precomputation steps, caching mechanisms, and
other runtime optimizations. Table 16 reports the final overall runtime statistics for the
outer-level simulation procedure after these optimizations were applied. Notably, the
marginal runtime for each full model iteration was reduced to well under one second
on average.

Despite the initially high computational complexity, the final runtime across all
instances and seeds remained relatively low, reflecting the successful integration of
caching, runtime optimization, and HPC resources. Using a naïve approach, optimal
hyperparameters could not have been determined, and a single iteration of the full model
would likely have taken hours or even days. Compared to such an implementation,
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Table 16: Aggregate statistics for runtime (in ms) over all problem instances. Columns:
’Min (ms)’ is the minimum runtime, ’Q1 (ms)’ is the first quartile (25th percentile),
’Med (ms)’ is the median runtime, ’Mean (ms)’ is the average runtime, ’Q3 (ms)’ is
the third quartile (75th percentile), ’Max (ms)’ is the maximum runtime, and ’Std
(ms)’ is the standard deviation of the runtime

Min (ms) Q1 (ms) Med (ms) Mean (ms) Q3 (ms) Max (ms) Std (ms)

25.69 39.72 42.51 45.67 46.48 1572.63 18.18

these measures reduced the runtimes by several orders of magnitude.

Although the reported runtimes may appear trivial in light of the problem’s large
scale, they are the result of a carefully optimized computational infrastructure and the
efficient use of HPC resources. Consequently, there is relatively little to elaborate on –
once all optimizations were in place, runtime ceased to be a limiting factor.
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6 Conclusions

This thesis has demonstrated that the problem of determining the optimal placement
of sky lobby floors in high-rise buildings can be formulated as a nested optimization
problem. A hybrid metaheuristic approach was found to be effective in solving this
problem for general office buildings. Results suggest that sky lobbies should be
introduced for lower building heights than currently assumed in industry practice.
Specifically, for buildings of 40 floors or more, the use of sky lobbies significantly
reduces elevator core area in most cases.

The placement of sky lobbies in solutions was found to depend primarily on the
number of floors in the building and its population per floor. For buildings with low
population per floor, the first sky lobby tends to be located near the base, whereas for
very tall buildings with high population per floor, the sky lobbies tend to be evenly
spaced, forming building stacks of equal floor length. Core area reductions of up
to one-third were observed in buildings with 80 floors or fewer. For high-density
buildings, the ratio of elevator core area to rentable area can be reduced to 3–14%,
depending on the number of floors.

To ensure computational tractability, several practical techniques were employed
in this thesis. These include the precomputation of partial solutions to accelerate
objective function evaluation, the implementation of gene banks and cached solutions
to improve runtime, and the execution of a large-scale hyperparameter grid search on
a high-performance computing cluster. Without these measures, the problem would
likely have been intractable. Future work should be mindful of these computational
challenges and may benefit from the methodological techniques detailed in Section
4.4.

Several novel contributions to the literature arise from this work. First, it provides a
formal mathematical formulation for the problem of optimal sky lobby configuration,
which has not previously been established. While earlier studies typically investigated
a limited number of configurations, this study analyzed a broad range of instances,
enabling the identification of general patterns. To date, questions such as when to
introduce sky lobbies, how many to use, where to place them, and the magnitude
of potential core area savings had not been systematically addressed. This thesis
offers comprehensive answers to these questions and underscores the importance of
population density as a design parameter, which has received limited attention in prior
studies.

In addition to its contributions to the elevator systems literature, this thesis also
advances the field of metaheuristics. The proposed heterogeneous high-level relay
hybrid, combining evolutionary algorithms (EAs) with simulated annealing (SA),
demonstrates that single-solution-based metaheuristics can effectively be employed at
the outer level of a hybrid framework—contrary to the common practice of assigning
this role to EAs.

Further contributions are made to the emerging literature on Hidden Genes Genetic
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Algorithms (HGGA), a relatively underexplored concept. The results support the
use of HGGA for complex problems with variable-sized design spaces. Instead of
relying on an iterative and systematic search, the HGGA approach can yield effective
solutions in a single run. Moreover, the thesis shows that a binomial distribution can
be employed to generate an initial population that is both diverse and focused, which
is critical for performance in genetic algorithms.

The extensive hyperparameter grid search conducted for both the HGGA and SA
methods provides valuable insights into effective parameter settings, offering a useful
foundation for future research in elevator zoning and other related optimization
problems. Due to the hybrid nature of the algorithm, the number of tunable parameters
is considerable. While most were optimized through grid search, some were tuned based
on empirical experimentation, which constitutes a limitation of this study. However, the
scale of the grid search conducted here is uncommon in the literature, and extending it
to include all parameters would have been computationally prohibitive. This limitation
is inherent in many studies employing metaheuristics or other approximate methods.
Developing exact methods remains an important direction for future research, as such
approaches would also enable a more rigorous validation of the current results –
particularly in understanding whether apparent outliers in the solution space are due
to local optima or reflect true properties of the problem’s discrete structure.

A simplifying assumption throughout this study was the use of a constant population
per floor. While practical for computational purposes, this assumption may not hold
in real-world mega high-rise buildings, which often include mixed-use functions such
as retail, hotel, residential, and office spaces. These different functions imply hetero-
geneous population distributions. Accounting for this variation would have rendered
precomputation infeasible and likely made the problem computationally intractable.
In practice, however, solving a single instance is computationally manageable, and
real-time solutions are typically not required in zoning problems.

Although elevator core area was used as the primary objective, other objectives
such as system cost are also important in practice. Prior work has suggested that
minimizing core area and system cost are generally aligned objectives. Nevertheless,
future work could benefit from extending the current model into a multi-objective
framework, incorporating additional criteria such as evacuation time, which has
become increasingly relevant since the events of 9/11.

In this study, the sizing of the shuttle elevator groups was based on uppeak traffic
conditions. However, some studies have proposed more conservative sizing guidelines.
For example, Schroeder (1984) suggests that shuttle elevator groups should be 40 –
50% larger than what an uppeak analysis alone would indicate. This recommendation
stems from the observation that local elevator groups are typically capable of handling
40 – 50% more traffic during downpeak conditions. If the shuttle elevator group
is undersized in such scenarios, sky lobbies may become congested and create a
bottleneck in the system. Consequently, future studies should validate the solutions
produced by the presented method through simulation-based analysis.
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Previous studies on elevator zoning have typically considered only the shaft area of
elevators, while neglecting the lobby area required for each elevator. In contrast, lobby
area was explicitly included in this study, thereby preventing the underestimation of
the additional core area resulting from the introduction of new elevators. A sensitivity
analysis on the impact of lobby area assumptions was beyond the scope of this thesis.
However, it would be valuable to examine whether the results would differ substantially
if lobby area were excluded or determined using an alternative rule. Such an analysis
is recommended for future research.

Finally, this thesis focused on single-deck elevator systems for the sake of simplicity.
However, double-deck systems are widely used in practice and offer further potential
for core area savings. Extending the current formulation to include double-deck
elevators would be a natural and important avenue for future research, requiring careful
attention to how building populations are segmented and served by distinct elevator
configurations.
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A Tag Evolution Mechanisms in HGGA

The Hidden Genes Genetic Algorithm (HGGA) enables genes to be conditionally
excluded from evaluation using binary tags. These tags evolve over generations
using dedicated mechanisms. Two general classes of mechanisms are proposed by
Abdelkhalik and Darani (2018): logical evolution and stochastic evolution.

A.1 Logical Evolution of Tags

In logical evolution, the tags of the offspring are computed directly from the tags of
the parents using fixed logical rules:

• Logic A (Mixed Logic):

– Child 1: Hidden-OR — a gene is hidden if it is hidden in either parent.

– Child 2: Active-OR — a gene is active if it is active in either parent. This
is equivalent to Hidden-AND.

• Logic B: Hidden-OR is applied to both children.

• Logic C: Active-OR is applied to both children.

A.2 Stochastic Evolution of Tags

In stochastic evolution, tags are treated as discrete binary variables that evolve via
mutation and/or crossover. Eight mechanisms have been proposed:

• Mechanism A: Tags are stored separately from the chromosome and updated
using mutation with a fixed mutation probability. No crossover is applied to the
tags.

• Mechanism B: Tags are appended to the design variables in the chromosome
and evolve via both mutation and crossover. This increases the chromosome
length, but not the cost function complexity.

• Mechanism C: Tags evolve via crossover only. They are treated as discrete
variables in the chromosome, with mutation disabled.

• Mechanism D: Tags evolve via mutation only. As in Mechanism C, tags are
included in the chromosome but only undergo mutation.

• Mechanism E: Tags and genes undergo independent crossover. Mutation is
applied to tags before crossover. This creates a two-dimensional crossover
operator.

• Mechanism F: A fitness-guided arithmetic crossover is used. Intermediate
offspring are generated from single-point crossover on genes and Active-OR on
tags. Final offspring is chosen based on the fitness of the intermediates.
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• Mechanism G: Arithmetic crossover is applied using a modified cost function
biased toward parents with more hidden genes. The cost function becomes:

𝑓modified(𝑋) = 𝑓 (𝑋) −
𝑀∑︁
𝑖=1

flag𝑖

• Mechanism H: Similar to Mechanism G, but biased toward fewer hidden genes:

𝑓modified(𝑋) = 𝑓 (𝑋) +
𝑀∑︁
𝑖=1

flag𝑖

For full technical details, see Abdelkhalik and Darani (2018) and Abdelkhalik and
Darani (2016).
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