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Abstract
The Nordic electricity market has significantly changed during the past years. The
rapid increase of renewable generation, through wind and solar power, the opening of
the largest nuclear reactor in Europe, and the phase-out of fossil fuels has coincided
with historic levels of price volatility in Finland. Simultaneously, inflation has caused
investment costs to rise sharply while interest rates have seen their highest peak in
over a decade. Amidst these changes, renewable generation and consumption have
faced challenges in sustaining the rapid buildout seen during the past few years, which
is essential in reducing greenhouse gas emissions and transitioning to a low-carbon
society.

The objective of this thesis is to propose a stochastic dual dynamic programming
tool to support the operation of a renewable power market portfolio, consisting of
variable renewable generation and a dynamically operated electrolyser. The markets
considered are the day-ahead market, the intraday market and the manual Frequency
Restoration Reserve (mFRR) balancing energy market. The agent faces uncertainties
regarding both their own renewable generation and the market price in different
stages. Despite multi-market optimisation being a widely documented problem in the
literature, this thesis is one of the first contributions to optimise decision-making at
discrete time points in a Finnish context. Furthermore, research on the optimisation
of renewable fuels of non-biological origin (RFNBO hydrogen) remains limited,
especially in a context concerning price uncertainty.

Experimental results indicate that the profit improvement was 4.18% for the optimal
model when compared to a baseline strategy emulating the default operation of a
market participant. The main driver of the profit improvement was the more strategic
overbuying- or selling of energy, with the intention of covering the opened positions
at a later market stage, resulting in the agent finding profitable opportunities more
often and allocating generation more efficiently. The profit improvement is not directly
applicable to an actual participant in the same markets as the agent of this thesis.
Nevertheless, the results suggest that a bidding model such as the model presented in
this thesis can significantly improve market profits for a renewable portfolio.

Keywords SDDP, renewable energy, electricity markets
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Tiivistelmä
Pohjoismainen sähkömarkkina on muuttunut merkittävästi viime vuosina. Uusiutuvan
tuuli- ja aurinkotuotannon kasvaneen määrän, Euroopan suurimman ydinreaktorin
käyttöönoton sekä fossiilisten tuotantomenetelmien sulkemisen myötä markkinavolati-
liteetti on kasvanut ennätykselliselle tasolle. Samalla inflaatio ja kasvaneet korkokulut
ovat lisänneet investointikustannuksia merkittävästi, mikä on hidastanut uusiutuvan
tuotannon ja kulutuksen rakentamista. Tämä kehitys vaikeuttaa kasvihuonepäästöjen
vähentämistä ja siirtymistä vähähiiliseen yhteiskuntaan.

Tämän diplomityön tarkoituksena on tarkastella uusiutuvan sähkömarkkinaportfo-
lion optimointia stokastisen ohjelmoinnin avulla. Työssä luodaan työkalu tukeemaan
uusiutuvan tuotantoportfolion markkinakaupankäyntiä. Tarkasteltu portfolio koostuu
tuuli- ja aurinkovoimasta sekä dynaamisesta uusiutuvan vedyn tuotantolaitoksesta,
ja se toimii kolmella eri sähkömarkkinalla: vuorokausi-, intraday- ja reservimarkki-
noilla. Muodostettu malli käy kauppaa neljässä diskreetissä aikapisteessä. Vaikka
sähkömarkkinaoptimointia on tutkittu laajasti, markkinatuoton sekä uusiutuvan ve-
dyntuotannon kokonaistuotannon optimointi suomalaisen yrityksen näkökulmasta on
jäänyt vähemmälle huomiolle.

Kokeelliset tulokset osoittavat, että kokonaistuotto vuoden 2024 ensimmäisellä
puoliskolla käyttäen optimaalista strategiaa parani 4,18% verrattuna tyypillistä ope-
rointilogiikkaa edustavaan verrokkistrategiaan. Parannus johtui erityisesti strategisesta
yli- tai alimyynnistä aiemmilla markkinavaiheilla, tavoitteena sulkea positio myö-
hemmillä markkinoilla paremmalla hinnalla. Lisäksi optimoitu malli allokoi omaa
tuotantoa tehokkaammin kuin verrokkistrategia. Vaikka kokonaistuoton paraneminen
ei ole täysin verrattavissa todellisuuteen, työ osoittaa kuitenkin markkinaoptimoinnin
potentiaalin uusiutuvan markkinaportfolion kannattavuuden tavoittelussa.

Avainsanat SDDP, uusiutuva energia, sähkömarkkinat
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Symbols and abbreviations

Abbreviations
SDDP stochastic dual dynamic programming
SDDiP stochastic dual dynamic integer programming
VPP virtual power plant
VRE variable renewable energy
TSO transmission system operator
RFNBO renewable fuel of non-biological origin
LC low-carbon
Non-RFNBO low-carbon and fossil based
DA day-ahead market
IDA1 intraday auction one
IDA2 intraday auction two
IDA3 intraday auction 3
mFRR manual frequency restoration reserve
aFRR automatic frequency restoration reserve
FCR-N frequency containment reserves for normal operation
FCR-D frequency containment reserves for disturbances
SDAC Single Day-Ahead Coupling
CHP combined heat and power
SMR steam-methane reformation
SAF synthetic air fuel
PEM photon exchange membrane
SOEC solid oxide electrolysis
D & D-1 on specific day and day before
EET Eastern European time
EU European Union
UK United Kingdom
CWE Central Western Europe
FI Finland power price area
SE1 - SE4 Sweden power price areas
NO1 - NO5 Norway power price areas
MW megawatt
GW gigawatt
TW terawatt
MWh megawatt hour
CPU Central Processing Unit

8



Symbols

Sets

U Set of control variables
G Generation scenarios for the agent’s own generation
S Price forecast scenarios for the three final stages
M Scenarios for regulation state in mFRR market

Variables

𝑢𝑏 Control variable representing buy trade volume
𝑢𝑠 Control variable representing sell trade volume
Λ Power balance state variable
P Total available power variable
Δ+ Positive imbalance
Δ− Negative imbalance
𝐺 Value of agent generation
𝑀+ Theoretical upper bound for positive imbalance
𝑀− Theoretical upper bound for negative imbalance
𝛿 Auxiliary binary variable to enforce imbalance variable exclusivity
𝐸 Electrolyser capacity
𝑅 RFNBO generation
𝛾𝑧 Capacity of a single generation asset
𝜓𝐷𝐴 Random residual of day-ahead forecast
𝜌 Forecasted intraday price
𝜀𝐼𝐷𝐴𝑘

Maximum obtainable market volume at 𝑘-th IDA auction
𝜀𝑚𝐹𝑅𝑅 Maximum obtainable market volume at mFRR stage
𝑟+ Binary indicator variable for up-regulation hour
𝑟− Binary indicator variable for down-regulation hour
𝜇𝑆𝑢𝑟 𝑝𝑙𝑢𝑠 Penalisation variable for surplus of power

Parameters

𝐸𝑚𝑎𝑥𝑖𝑚𝑢𝑚 maximum electrolyser capacity
𝛼 RFNBO percentage of price area
𝑚𝑝𝑅𝐹𝑁𝐵𝑂 marginal non-electricity profit of RFNBO hydrogen
𝑚𝑝𝑁−𝑅𝐹𝑁𝐵𝑂 marginal non-electricity profit of non-RFNBO hydrogen
𝑐1 constant penalisation parameter for negative imbalance
𝑐2 constant penalisation parameter for positive imbalance
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1 Introduction

The European power market has encountered significant change during the past
decade. Political efforts to decrease carbon emissions amid growing concerns over
climate change have resulted in an explosive increase of variable renewable generation.
Simultaneously, a subsequent phase-out of fossil-powered assets has occurred, partly
as a result of more renewable generation. Additionally, the electrification of society
has accelerated, with power demand forecasted to increase substantially in the coming
years. All these factors have significantly altered the central dynamics of producing
and consuming energy. Furthermore, geopolitical tensions such as the Russian offense
on Ukraine have changed the characteristics of the European power market for good.
Thus, instead of a relatively stable and predictable market price, price fluctuations
are common and sometimes even extreme, reaching prices close to the minimum or
maximum market level.

One such European country that has commonly exhibited extreme price fluctuations
has been Finland. In 2023, the Finnish power market was one of the most volatile
electricity markets in the world. On one hand, Finland had the largest cumulative
amount of negative hours in Europe, totalling 467 hours. However, in January of 2024,
the Finnish day-ahead market reached a new record high of 1896 =C/MWh when a
cold spell and subsequent increase in demand coincided with low wind generation and
plant shutdowns. [1]

There are many underlying factors for the increase in volatility. The variable
renewable (VRE) generation capacity has reached a high of nearly 7.4 GW for wind
(as of June 2024), while solar capacity has risen to over 1 GW [2, 3]. This high
penetration of VREs affects volatility in multiple ways. Since the opening of the
third largest nuclear reactor in the world, Olkiluoto 3, in March of 2023, the amount
of stable baseload power has increased significantly. Thus, even a relatively normal
amount of wind and solar generation may cause the residual load, i.e., the demand
subtracted by the total nuclear, hydro, wind and solar generation, to become negative,
which subsequently depresses prices due to an oversupply of zero marginal cost power.
In contrast, this decreases the number of operational hours for fossil-powered assets,
which are further down the merit order compared to low-carbon alternatives. Thus, to
recoup the value of lost generation, prices are increased during the remaining hours of
generation. The result is a large increase in day-ahead market volatility. [4, 5]

Furthermore, the importance of different markets in addition to the day-ahead
market has increased significantly. Increasing amounts of power are traded in intraday
markets and TSO-operated ancillary markets, which are central in enabling the
continuous balancing of supply and demand. Volatility spills over to these markets as
well; forecasting errors can cause significant deviation from day-ahead commitments,
resulting in price peaks potentially hundreds of euros higher than day-ahead prices.
The effect of VREs is also evident in Fingrid’s ancillary markets, which have reached
a whole new level of importance during the past decade.

Though volatility is a key instrument in providing incentives for consumers and
generators, extreme volatility remains problematic from a government, consumer and
grid operator perspective. Negative prices may be an indicator of inefficiencies in the
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power market, extremely high prices disproportionately affect consumer well-being,
and grid operators face challenges in maintaining grid stability in the midst of large
changes in supply and demand. Furthermore, price uncertainty makes investment
in low-carbon generation more challenging. Indeed, renewable generation and other
decarbonisation efforts have encountered strong headwinds amid a significantly
changed market environment. With the simultaneous increase in uncertainty regarding
power price levels, accompanied by high investment costs and the highest interest
rates seen in a decade, many consumption and generation projects are not reaching
final investment decisions or are being scrapped entirely [6]. A lack of new renewable
generation via primarily wind and solar, and the slow buildout of flexible, green
consumption — such as renewable hydrogen — may open the door for the return of
fossil-powered assets when power demand accelerates amid electrification.

Though actors may not be able to fully remedy high interest rates or investment
costs, actions can be taken to decrease or reduce the effects, of price volatility.
The government can subsidise flexible forms of generation, and TSO operators can
improve internal transmission and interconnections to neighbouring zones, which
decreases the effect of localised intermittencies in generation. Consumers can engage
in load-shifting, i.e., decreasing consumption during high-price periods and increasing
consumption during low-price periods. Similarly, producers can utilise flexible
generation to increase and decrease production when needed, or by optimising bidding
patterns in different electricity markets. Operating in multiple markets with different
characteristics can provide significant excess profits compared to the traditional strategy
of selling a majority of power via the day-ahead market. Renewable projects may even
reach final investment decisions when accounting for these increased market profits.
Crucially, the optimised bidding patterns of a single actor are even beneficial from a
system perspective, given that in a competitive market price signals provide incentives
as to where generation or consumption is most needed in the market.

Thus, the objective of this thesis is to develop a multi-market optimisation stochastic
dual dynamic optimisation (SDDP) model for maximising the profit of a Finnish power
market company, which operates a renewable power market portfolio consisting of both
variable generation and flexible consumption amid price and generation uncertainty.
The market portfolio contains two separate wind farms in different locations, a single
solar farm and a dynamic hydrogen plant, which converts electricity and water to
hydrogen via electrolysis. The created model will operate in three different markets,
the day-ahead, the intraday and the manual Frequency Restoration Reserve (mFRR)
balancing energy market. In the intraday market, the company will participate in two
auctions, intraday auction 1 and 2, which function similarly to the day-ahead auction
and have been operational since June 15𝑡ℎ 2024. Thus, each hour has four different
stages where a decision is made. The created model involves separately optimising the
24-hour period traded for in the day-ahead market. The granularity of the model is on
the hourly level with every hour modelled independently of other hours.

This thesis is structured as follows: in Section 2, we provide a deeper context
of the Finnish power market, multi-market participation, hydrogen and stochastic
dual dynamic programming. In Section 3, we discuss relevant literature and the
contributions of this thesis. Section 4 presents the methodology used in this thesis. We

11



provide the rationale for relevant modelling choices and background for relevant data.
Furthermore, we describe the formulation of the mathematical optimisation problem
constructed to solve the problem of optimal market participation for the agent. Section
5 presents the results in two main subsections: the model outputs for a single use case,
as well as a case study to calculate and compare generated profits using the model in
six months between January and June of 2024 using the created model and a naive
trading strategy. Sections 6 and 7 conclude the work with a discussion on potential
limitations and improvements followed by a conclusion.



2 Background

2.1 The European Power market

The objective of this thesis is to optimise trading decisions made under production
and price-related uncertainty. To realistically optimise trading in these markets, it is
imperative to understand the background of different European electricity markets,
especially regarding the typical market behaviour and price formation. Thus, this
subsection provides an in-depth description of each of the markets analysed in this
thesis. Though this section describes the general European power market, the focus is
on the Nordic region, especially Finland.

In Finland, power is typically traded in four main market categories: the financial
market, the day-ahead market, the intraday market and Fingrid-operated ancillary
markets. The chronological order of the market opening times and closing times is
shown in the timeline of Figure 1. The market with the longest-term perspective is the
financial market, where derivatives — often futures — of power can be traded. Most
often, derivatives traded in the financial market do not include the physical delivery
of power, i.e., the contract is purely financial. The futures market is generally used
to hedge power market exposure or speculate on long-term swings in market prices
[7]. Though the operator of a VPP can, and most likely should, engage in hedging
activities in the financial market, we disregard the financial market in this thesis. The
motivation for this is the drastic difference in the time frame between the financial
market compared to subsequent markets. After the futures market is the mFRR
capacity market, which is intertwined with the mFRR balancing energy market. In the
capacity market, Fingrid procures reserve capacity per EU regulations. The capacity
market is followed by the day-ahead market, which is the market where a vast majority
of total power is traded. The intraday market lies between the day-ahead market and
the ancillary markets, which operate within minutes before physical delivery.

2.1.1 The Day-Ahead Market

The day-ahead market, often also referred to as the spot market, is the most important
electricity market in Europe with regard to market volume. In 2023, the day-ahead
market accounted for over 92% of the total traded volume in the Nord Pool electricity
markets [9]. Nord Pool is one of the main European electricity market exchanges. It
operates across the Nordic, Baltic, UK, Western and Central European markets [9].
The Nordic day-ahead market is part of the European Single Day-ahead Coupling
(SDAC) initiative which allows market participants in the Nordic and Baltic regions,
the UK and Central Western Europe (CWE) to trade power across borders [10].

The primary objective of the Nord Pool day-ahead market is to find a market
clearing price for all participating bidding zones, referred to as an area price. A
country can have multiple bidding zones, for example, Norway is split into 5 bidding
zones (NO1 - NO5) and Sweden into four bidding zones (SE1-SE4). Typically a
country is split into multiple bidding zones due to transmission capacity constraints
related to geographical, or other, factors. [11]
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2 CHAPTER 1. INTRODUCTION
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Figure 1.1: An example of electricity market timeline illustrating different markets
with some of the companies involved. Source: [1]

tracts, the producers/consumers reduce the risk of the volatile price and in-
stead obtain a fixed price for their agreed generation/consumption. This
market takes into account the financial trading up to several years in advance
of the physical delivery of electricity. More details can be found in [5].

• Day-ahead market: The major market where most of the electricity is traded
in Europe is in the day-ahead (DA) electricity market. It is the market that
is cleared one day before the delivery of electricity. The buyers and sellers
submit their price-volume curves which are then combined and cleared based
on merit-order dispatch mechanism where the intersection point of the supply
and demand curves sets the market-clearing price. As this is a uniform pricing
mechanism, all the buyers and sellers that are cleared in the market get the
same price.

• Intraday market: Intraday electricity markets allow market participants to
modify their day-ahead commitments based on their updated production/con-
sumption forecasts. The major role of the intraday markets is to avail an
avenue for the traders to balance their own balancing group as much as pos-
sible such that any potential imbalance costs are minimized. Imbalance costs
result from the deviation of the market commitment from the actual gen-
eration/consumption. As the flexibility in the system is on a rise, intraday
markets allow the system to better utilize this flexibility to increase overall
social welfare and stability.

The intraday markets in Europe are organized based on continuous clearing
or discrete auctions. With the Single intraday coupling (SIDC) platform,
the ID markets in 25 European countries as of December 2022 are coupled
through a single platform. The market clearing in this platform takes place
according to the continuous clearing mechanism which follows a pay-as-bid

Figure 1: The chronological timeline for trading electricity for a single delivery hour.
The figure is from [8].

The day-ahead market functions as a centralised auction, where market participants
submit bidding curves at 12:00 D-1, representing the ability to consume or generate
power at a certain price point. Each market participant submits bidding curves for each
hour. This is referred to as a bidding curve. An operator may also submit block bids
spanning across multiple hours in the case that they can not flexibly be powered up or
down, however, this is out of the scope of this thesis. According to market regulations
[12], each market participant must price sold power according to the marginal cost or
the opportunity cost of production. The term opportunity cost refers to the potential
benefit lost by choosing one option over another. Figure 2 is an illustration of how the
most common generation assets marginal or opportunity costs of the most common
generation assets. In general, solar and wind power offer generation at zero marginal
cost [13], while coal and gas price generation at the marginal cost derived from
emissions and fuel prices [14]. Plants where shutdowns are costly typically offer their
generation at the minimum price of -500 =C/MWh, as shutting down or restarting the
plant generally would cost more than producing power at a negative price.

Crucially, an opportunity cost also refers to the expected value captured in
subsequent markets after the day-ahead market. Thus, a generator is allowed to bid
less than the maximum available, or forecasted, power into the day-ahead market with
the expectation of selling the power in later markets at a potentially higher price.
However, this requires that the generator must have a credible expectation for the
price of power to be higher in later markets. Furthermore, this power must be bid
in subsequent markets. Withholding available power from all markets is against EU
market regulations. [12]

Similarly to the supply side, consumers also submit bidding curves for each hour
indicating their willingness to consume power at different price points. Ordinary
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generation.

consumers do not participate in the day-ahead market. Instead, companies selling
electricity to consumers make bids based on the predicted consumption at different
price points.

After the day-ahead market bidding period closes, all generation and consumption
bids are combined into supply and demand curves. The generation bids are organised
in a merit order, such that the cheapest bid is at the top of the merit order, the most
expensive bid is at the bottom and the bids between them are in ascending order with
regards to price [15]. Similarly, the demand curve has increasing demand when the
market price decreases. Figure 3 represents a hypothetical merit order for various
generation methods.

In a hypothetical day-ahead market consisting of only one bidding zone, the hourly
market price would simply be the equilibrium of the supply and demand curves, i.e.,
the price where the supply and demand curves intersect (Figure 4). However, in reality,
the price formation is significantly complicated by transmission connections between
different bidding zones and a multitude of different order types in addition to the
simple hourly bids explained above. The prices are determined using EUPHEMIA, an
algorithm developed for SDAC. The exact workings of EUPHEMIA are out of the scope
of this thesis, however, the determination of each bidding zone hourly price is chosen
such that it maximises the total welfare, i.e., the sum of the consumer and producer
surpluses, and the congestion rent, while simultaneously satisfying transmission
constraints [16]. Congestion rent occurs in a situation where two neighbouring bidding
areas are decoupled, i.e., have different market prices. In this situation, the total
congestion rent is the difference in market prices multiplied by the transmission in the
day-ahead market. The congestion rent is paid to the transmission system operators
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Figure 4: The supply (red curve) and the demand (blue curve) are represented in a
Volume - Price coordinate system. The equilibrium price is located at the intersection
of the supply and demand curves.

(TSOs) [17].
The resulting market prices determined by EUPHEMIA for each bidding zone are

constrained between a minimum of -500 =C/MWh and 4000 =C/MWh. Market prices in
neighbouring bidding zones are the same if the transmission capacity between these
zones is not exceeded. If the transmission capacity interconnection is at maximum
flow capacity, the prices in neighbouring zones differ.
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2.1.2 The Intraday Market

The intraday market opens after the day-ahead market is cleared and its outcome
published. In the intraday market, producers and consumers of power can conduct
trading in a continuous manner. In Finland, the operator of the intraday market is
Nordpool. Nordpool’s intraday market consists of 16 countries, encompassing the
Nordics, the Baltics and a large portion of the Central European power market, most
notably Germany and France [18]. Trading in the intraday market happens between
the announcement of the day-ahead market prices and the physical delivery of power.
Trades can be made across borders provided the maximum capacity of transmission
between the two zones has not been reached. Intraday market trading is done only on
a power basis, meaning that different subsidies, guarantees of origin or other external
factors do not affect market prices. Trades can be made in different time frames: 15
minutes, 30 minutes or 1 hour [19].

The intraday market is different in many ways from the day-ahead market. Histori-
cally, the key difference to the day-ahead market has been the lack of a centralised
auction. Instead of combining generation and consumption bids of individual operators
to find the intersection of the supply and demand curves, the intraday market prices are
determined by a “pay-as-bid” process, which is equivalent to the price formation of the
financial stock market: the current market price for the intraday market is determined
by the trade price of the previous trade made [19]. Thus, instead of a common area
price, intraday prices are characterised by different statistics: typically the hourly
volume-weighted average, lowest and highest trade prices. Price spreads between
the day-ahead market and the intraday market can often be significant, especially in
Finland (Figure 5).
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Figure 5: Boxplots of the price spreads for 2023 (ID volume-weighted average price
- spot price) for the Finnish (FI), German (DE) and two Swedish price areas (SE1,
SE3). Subplot (a) represents the boxplots with an absolute axis. Subplot (b) has a
logarithmic axis.

In addition to the continuous intraday market, Nord Pool introduced three new
intraday auctions in June 2024. In this thesis, we refer to these auctions as IDA1,
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IDA2 and IDA3. The auctions for IDA1 and IDA2 are at 15:00 and 22:00 on the day
before delivery (D-1) respectively. Buyers and sellers of power can submit offers for
every traded hour. On the other hand, the gate closure for IDA3 is at 10:00 am on the
day (D), after a portion of the day has already passed. Thus, trading power in IDA3
is only possible for the period 12:00 - 24:00. Intraday auctions operate on the same
fundamental principle as the day-ahead auction. Operators submit their offers, and
the EUPHEMIA algorithm solves a market area price which maximises the system
welfare in the same manner as the day-ahead market. The only key change to the
mechanism is that instead of having full cross-border transmission capacity, only the
unfilled or unallocated transmission capacity can be traded in these auctions. [20]

Historically, intraday markets have been used to primarily balance deficits or sur-
pluses of power resulting from the forecasting errors of variable renewable generation.
Reducing imbalances in the intraday market before ancillary markets can be thought
of as hedging against volatile and uncertain imbalance prices. Balancing renewable
energy production is important, as renewable generators submit their day-ahead bids
in relation to the day-ahead generation forecast. The intraday market enables the
balancing of forecasting errors before the uncertain and volatile balancing market,
which not only reduces the market risk of the generator but also reduces strain on the
balancing markets [21]. As a large portion of renewable generation also operates in the
intraday market, the importance of the market has increased simultaneously with the
higher penetration of variable renewables. This can be seen in a significant increase
in the total yearly traded volumes between 2012 and 2024 (Figure 6). In 2012, the
total yearly volume was 0.5 TW, while in 2024 the traded volume is potentially going
increase to over 3 TW.
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Figure 6: The total yearly traded volume for Finland in the intraday market between
the years 2012 - 2024.

As a counterweight to traders attempting to balance power deficits resulting from
forecasting errors, intraday markets can bring significant amounts of additional revenue
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to generators operating flexible generation assets. Typically, the hourly high prices
are higher than the corresponding day-ahead price for that hour. Correspondingly, the
hourly low prices are cheaper than the day ahead price (Figure 5). Thus, an operator
with flexible generation assets might purchase power at a price below their short-run
marginal cost if they have committed to producing in the day-ahead market, thus
profiting by an amount equal to the difference in MWh between the trade price and
marginal cost. Furthermore, producers can also increase output if the trade price in
the intraday market exceeds the marginal cost. The opposite is also true for flexible
consumption. [21]
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Figure 7: The day-ahead and intraday market prices for the second week of January
2023, with the shaded area in between representing the spread between the intraday
high and low prices.

In the context of this thesis, modelling the continuous intraday market presents sig-
nificant challenges regarding high volatility, random price formation and computational
challenges. On the other hand, intraday auctions present an opportunity to include
intraday trading in multi-market optimisation, by providing a clearly defined decision
point. However, due to the introduction of intraday auctions being so recent, the traded
volumes in Finland remain small, which is an obstacle to meaningful modelling of
the drivers of price variation between different electricity markets in Finland. Thus,
as a proxy with similar functionality to the intraday auctions, we split continuous
intraday trades into two different datasets, one for trades made before 18:00 EET D-1
and the other for trades made between 18:00 – 24:00 EET D-1. The used auction
price is the final trade price made before the intraday auction period. By making
this simplification, we can discretise the continuous nature of the intraday market
into singular decision points, simplifying the mathematical approach significantly.
Furthermore, this simplification allows the use of data before June 2024 in the analysis
of the potential profitability of the constructed multi-market optimisation model.

2.1.3 Finnish Balancing Markets

Transmission System Operators (TSOs) have the increasingly challenging job of
constantly maintaining grid frequency, by balancing the supply and demand of
electricity. This is a critically important process from a societal welfare perspective.
Most electrical grids worldwide operate at a frequency of 50 Hz, and even a 0.5 Hz
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deviation can put the electricity grid at immediate risk of blackouts [22]. Not only is
restarting the grid after a blackout exceptionally challenging, but in the meantime, it
also causes significant humanitarian damage, in addition to millions, if not billions, in
monetary damages.

Nonetheless, the increase in variable renewable energy has made this task even
more challenging. However, TSOs are not without means to maintain grid stability.
The Finnish TSO, Fingrid, operates a large number of reserve power plants, which are
never operational in a market where regular supply and demand are in balance. They are
only turned on when a drop in grid frequency requires them to be used. However, the
most important method for TSOs to keep the grid frequency within the required tight
limits is via the operation of multiple balancing, also referred to as ancillary, electricity
markets. In Finland, the TSO Fingrid operates various reserve markets, which operate
at different time frequencies. In addition to differing in the operational timeframe, the
markets vary in their role in the stabilising of grid frequency. Figure 8 summarises
the different Fingrid-operated ancillary markets and their different activation speeds.
In practice, all ancillary markets operate under the same core principles: providers
of flexibility offer either up-regulation or down-regulation capacity at a certain price
point. Up-regulation refers to an increase in generation (or decrease in consumption),
while down-regulation refers to a decrease in generation (or increase in consumption).
[23]Reserve market places in Finland
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5 Reserves

Figure 8: A figure representing all the Finnish ancillary markets. The figure is from
[24].

The slowest, and largest, ancillary market is the Manual Frequency Restoration
Reserve (mFRR) balancing capacity and energy market. Its primary use is to act as
a balancing market in the case of large deviations in supply or demand, for example
when a large power plant encounters unanticipated problems. In practice, it operates
as two separate markets – the capacity and balancing energy market. The capacity
market operates before the day-ahead market, with a closing time of 36 hours before
delivery. The capacity market is where Fingrid procures the needed amount of
balancing capacity according to Article 3(1) (109) of the System Operator regulation.
In practice, the article states that Fingrid must procur reserves totalling the “highest
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expected instantaneously occurring active power imbalance within an LFC block
in both positive and negative direction” [25]. The mFRR capacity market has a
market-clearing mechanism similar to the day-ahead market. Flexible generation and
consumption submit bids regarding the expected marginal or opportunity cost of an
increase or decrease in capacity. These offers are then ranked in a merit order, and the
resulting clearing price is the cheapest bid where the supply equals Fingrid’s need
for flexible capacity. In the capacity market the procured capacity is in power, i.e.,
megawatts, instead of energy. When a capacity bid is accepted, it requires the producer
to submit a bid in the balancing energy market closer to physical delivery. This bid
may or may not be activated. If it is, the operator receives both the capacity payment,
and the potential balancing energy fee. If the bid is not activated, the producer is still
remunerated for the uphelded capacity. In the case of the provider not being able to
fulfil their promised capacity commitment, the asset provider is sanctioned by a price
of the maximum of the day-ahead and mFRR capacity market price multiplied by
three for that hour. [26]

An operator can also only bid energy in the mFRR balancing energy market, which
is conducted within 15 minutes of physical delivery. In general, the mFRR balancing
energy market is maintained for large variations in supply and demand, for which
there is not enough available flexible capacity procured from the capacity market.
Thus, in the case of a need for additional generation, Fingrid purchases additional
energy from flexible assets. Correspondingly, when there is a surplus of generation,
Fingrid sells electricity to flexible consumption or generation. The flexible asset
then decreases generation capacity, or in the case of consumption, increases capacity.
The mFRR balancing energy has the same market clearing process as the capacity
market. However, in this case, the flexible asset is only remunerated for activations.
Furthermore, the owner is paid for the total delivered energy, instead of capacity. [26]

Other ancillary markets, in order of time frame, include the Automatic Frequency
Restoration Reserve (aFRR), the Frequency Containment Reserve forNormal Operation
(FCR-N), the Frequency Containment Reserve for Disturbances (FCR-D), and the Fast
Frequency Reserve (FFR). These markets operate between a 5-minute (aFRR) and
multiple-second (FFR) time frame. All of these ancillary markets are operated on a
capacity basis, meaning that remunerations are based on available capacity or power
instead of delivered energy. [24]

One closely related concept to ancillary markets, which is relevant to the agent in
the case of this thesis is the imbalance settlement. Imbalance settlements take place
after the physical delivery of electricity and involve a payment from the TSO to the
agent in the case of an agent surplus, or a payment from the agent to the TSO in the
case of a power deficit. The magnitude of the imbalance is the difference between the
net commitments in electricity markets and the realised generation. Since November
2021, the Finnish imbalance price has been equal in the case of a surplus or deficit.
In Finland, the imbalance price is the maximum price of the mFRR market and the
hourly volume weighted average price of the aFRR market. In practice, the imbalance
payment can be thought of as the same mechanism as the balancing energy market.
However, the key difference is that the imbalance is settled after delivery. In the case
of a deficit of power, the operator responsible for the imbalance must pay Fingrid the

21



maximum of the day-ahead price or the up-regulating price, for each megawatt of
imbalance. In the case of a surplus of power, the operator receives the day-ahead price
or, if the hour is down-regulating, the down-regulating price. The imbalance settlement
scheme makes it risky to amount significant deficits of generation at physical delivery,
whereas a surplus of generation can easily be curtailed or offered to the grid. [27]

Ancillary markets are inherently random in nature. Modelling the exact price
formation is exceptionally challenging without real-time estimates of generation for
a majority of power assets. However, analysis in this thesis made for modelling
mFRR market prices indicates that some phenomena clearly influence balancing
market prices. Similarly to the intraday market, one notable driver of ancillary market
prices is renewable generation. Forecasting errors in renewable generation can affect
both up- and down-regulation prices [28]. In the case of overforecasting, a sudden
drop in renewable generation causes an increase in up-regulation prices. However,
renewables can often generate more energy than is forecasted. Though many modern
renewable assets have the capability to curtail production, many actors ei ther lack the
capabilities or the incentives to do so. This results in a need for decreasing generation,
corresponding to down-regulation prices lowering, i.e., it becomes cheaper for actors
to purchase power from Fingrid and then curtail their own generation. The exact price
point where this occurs depends on the method of generation. For fossil-powered
plants, the down-regulation marginal cost is the marginal cost of generation, whereas
for VREs the decreased generation becomes profitable when the down-regulation price
is negative.

Another key driver of ancillary market prices, also related to the generation of
renewable assets, is the availability of residual load. The residual load refers to
the demand subtracted by the sum of all zero marginal cost, and nuclear-powered,
generation. A negative or low residual load pushes fossil generation out of the merit
order, whereas a positive one often results in operational gas-powered assets —
or other assets, such as combined heat and power (CHP) assets. In general, when
operational these fossil-based assets depress balancing market prices in both up and
down directions, due to the increase in flexible capacity in the grid. Other drivers of
ancillary market prices are typically more random, for example, unexpected drops
in available transmission capacity, or the sudden malfunction of a large power plant.
However, many other price drivers exist, which are beyond the scope of this work.

The only ancillary market modelled in this thesis is the mFRR balancing energy
market. The reasoning behind disregarding others is threefold. The first and main
reason is purely to maintain a tractable computational model. The inclusion of several
ancillary markets would increase the complexity and size of the optimisation problem,
increasing solving times. The second reason is the above-stated clear correlation
between balancing energy market prices and large-scale forecasting errors. This
opens the door for the agent in this thesis to operate strategically: does the imperfect
correlation between large-scale renewable forecasting errors and inaccuracies in the
forecasts for production of the agent’s own assets result in it being optimal to over- or
under-commit in previous markets? The third reason for modelling only the mFRR
balancing energy market is simple: curtailing wind and solar generation is generally
a straightforward process. However, the reaction time in older turbines may be
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significantly slower compared to newer models. Thus, the only ancillary market an
older wind farm may be able to operate in is the mFRR market.

2.2 Hydrogen

Hydrogen (H) is the most abundant substance in the entire universe, representing nearly
75% of all standard matter. It is the primary element of all stars, including the sun of
our solar system. Although it is the most abundant chemical in the universe, on Earth
it is rare in its elemental form. Instead, hydrogen is primarily found as a constituent of
water (𝐻2𝑂) or some other organic material, such as various hydrocarbon molecules
[29]. During the past decade, global interest in hydrogen as a source of clean energy
for industry and generation alike has surged. Green hydrogen, produced from water
using renewable electricity, stands out as a valuable and low-carbon alternative to
traditional fossil fuels in typically hard-to-decarbonise processes [30].

Historically, the two main ways to extract hydrogen from water or another chemical
compound have been steam-methane-reformation (SMR) and electrolysis. SMR
involves producing hydrogen through a reaction of methane, or some other hydrocarbon,
and water. It is an emissions-intensive process, as the carbon dioxide produced as
a side-product of the reaction is generally released into the atmosphere. SMR is
currently the most cost-effective and widely used option for producing hydrogen,
representing over 95% of global hydrogen production [31]. The hydrogen produced by
SMR is referred to as grey hydrogen, whereas hydrogen produced by SMR together
with carbon capture is called blue hydrogen [32].

The alternative to producing hydrogen via emissions-intensive processes is pro-
ducing hydrogen via electrolysis. Electrolysis is not a new technology. Water was first
electrolysed in 1806 by British scientists William Nicholson and Anthony Carlisle.
The process occurs in an electrolyser, which contains two electrodes, an anode and a
cathode. They are both immersed in an electrolyte, which in the case of hydrogen is
water. A chemical reaction is induced when an electric current is passed through the
water. At the anode, this causes water molecules to lose electrons and form oxygen gas
and protons. At the cathode, protons gain electrons to form hydrogen gas. Hydrogen
produced by electrolysis is renewable, provided the electricity used is from a renewable
source. We use green hydrogen as a synonym for renewable hydrogen. [33]

Renewable hydrogen provides significant potential for the decarbonisation of heavy
transport, which may prove challenging to electrify due to the large distance between
destinations. Long travel distances mean that it is unfeasible to utilise a large enough
battery for continuous electric transport, meaning that several charging locations would
be needed along the way. In the case of flying, the weight of a sufficiently large battery
to power long-distance flight would make generating enough lift for sustained flight
challenging. Thus, the synthesis of hydrogen into various e-fuels, such as e-methane
or synthetic air fuel (SAF), is a potential solution. E-methane and synthetic air fuel are
chemically the same compounds as the current corresponding fossil-based molecules,
meaning that no new transportation infrastructure is needed, reducing the need for
excess investment on behalf of the operating companies. [30]

In the other main usage case, industrial processes are often emissions-intensive,
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as they typically rely on burning fossil fuels. The use of green hydrogen to replace
the burning of these fossil fuels is a viable alternative. For example in the production
of green steel, hydrogen is used to reduce iron ore pellets to direct-reduced iron,
replacing coke — a form of coal — in the process. This change has the potential to
reduce ironmaking emissions by over 95% [34]. In addition to these sectors, hydrogen
is often cited to provide an opportunity for other industries to decarbonise. It has been
mentioned as an option to store power or as a vital component in ammonia production.
However, in all cases, the cost-competitiveness of renewable hydrogen remains to be
seen, as the current market, cost and regulatory developments have incurred additional
challenges for the rapid deployment of green hydrogen production. [30]

The European Union has defined regulation defining a definition for renewable
fuels of non-biological origin (RFNBOs). This legislation is key in defining when
hydrogen produced via electrolysis is characterised as renewable, or RFNBO, in the
European Union. According to EU regulation, RFNBO hydrogen must fulfil the
following criteria [35]:

• Additionality: Hydrogen production must not use existing renewable generation.
"The additionality condition referred to in Article 4(4), first subparagraph
shall be considered complied with if fuel producers produce an amount of
renewable electricity in their own installations that is at least equivalent to the
amount of electricity claimed as fully renewable, or have concluded directly, or
via intermediaries, one or more renewables power purchase agreements with
economic operators producing renewable electricity in one or more installations
for an amount of renewable electricity that is at least equivalent to the amount
of electricity that is claimed as fully renewable and the electricity claimed is
effectively produced in this or these installations, provided that the following
criteria are met:
(a) The installation generating renewable electricity came into operation not
earlier than 36 months before the installation producing the renewable liquid
and gaseous transport fuel of non-biological origin.
(b) The installation generating renewable electricity has not received support
in the form of operating aid or investment aid, excluding support received by
installations before their repowering, financial support for land or for grid
connections, support that does not constitute net support, such as support that is
fully repaid and support for installations generating renewable electricity that
are supplying installations producing renewable liquid and gaseous transport
fuel of non-biological origin used for research, testing and demonstration." [35]

• Temporal and geographic correlation: Hydrogen should be produced when
renewable electricity is available.
"Until 31 December 2029 the temporal correlation condition referred to in
Article 4(2) and (4), shall be considered complied with if the renewable liquid
and gaseous transport fuel of non-biological origin is produced during the same
calendar month as the renewable electricity produced under the renewables
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power purchase agreement or from renewable electricity from a new storage asset
that is located behind the same network connection point as the electrolyser...
From 1 January 2030, the temporal correlation condition shall be considered
complied with if the renewable liquid and gaseous transport fuel of non-biological
origin is produced during the same one-hour period as the renewable electricity
produced under the renewables power purchase agreement or from renewable
electricity from a new storage asset that is located behind the same network
connection point as the electrolyser or the installation generating renewable
electricity, that has been charged during the same one-hour period in which the
electricity under the renewables power purchase agreement has been produced.
Following a notification to the Commission, Member States may apply the rules
set out in this paragraph from 1 July 2027 for renewable liquid and gaseous
transport fuel of non-biological origin produced in their territory." [35]

Furthermore, EU regulation lists some exemptions regarding adherence to these
criteria. The main exemption concerns two situations regarding the portion of
renewable generation in the bidding area, as well as the carbon intensity of the grid.
For price areas with a renewable generation of over 90%, producers of hydrogen are
exempt from both the additionality and the temporal and geographical correlation
requirements. However, the combined production of hydrogen must not exceed the
share of renewable generation in the price area. The second condition concerns the
carbon intensity: if the grid intensity is less than 18 𝑔𝐶𝑂2𝑒𝑞/𝑀𝐽, the producer is
exempt from the additionality requirement.

In the context of this thesis, we assume that the wind and solar farms in question
represent the underlying power purchase agreement (PPA) portfolio for the electrolyser.
We assume that the carbon intensity is less than 18 𝑔𝐶𝑂2𝑒𝑞/𝑀𝐽, which is a roughly
realistic assumption regarding the potential Finnish carbon intensity within a few years
(the current intensity for 2023 is approximately 25.6 𝑔𝐶𝑂2𝑒𝑞/𝑀𝐽 [36]). Currently, the
EU does not recognise electricity from intraday markets as RFNBO. However in this
thesis, we assume intraday power to have the same RFNBO percentage as electricity
sourced from the day-ahead market. Furthermore, in addition to RFNBO regulation,
the EU currently has ongoing efforts to draft regulation concerning hydrogen produced
using nuclear power, classified as low-carbon. Both low-carbon and RFNBO hydrogen-
derived products are to have a price significantly higher than hydrogen classified
as neither. Though the exact interpretation of these regulations is still unclear, the
methodology for determining the RFNBO and low-carbon percentage of produced
hydrogen is determined by the following logic:

• Available unsold generation of own solar and wind assets is larger than maximum
electrolyser capacity → hydrogen is 100% RFNBO

• Unsold generation is less than maximum electrolyser capacity and the remainder
of used capacity is sourced from day-ahead market → hydrogen RFNBO
percentage is determined by the weighted average of used PPA power (100%
RFNBO) and grid renewable percentage (52% for Finland in 2023). The
remainder of the produced hydrogen is low-carbon or black hydrogen.
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• No PPA generation → produced hydrogen is RFNBO according to grid percent-
ages (52% RFNBO, 92% low-carbon and 8% fossil fuel generation for 2023 on
average)

An electrolyser can both be operated in steady and variable states. Steady-state
electrolysis is typically utilised in industries where constant hydrogen offtake is needed,
such as when producing green steel or when the hydrogen is further synthesised to
another molecule, which is typically a less flexible process. On the other hand, flexible
electrolysis can significantly enhance the profitability of a hydrogen investment. When
operating variably, hydrogen is produced when the power purchased is cheap or the
availability of renewable energy is high. This means that flexible electrolysis not only
avoids excess costs during periods of high prices but can generate significant excess
profits when it is combined with a well-chosen pay-as-produced portfolio. Furthermore,
because of a decrease in production during high prices and a corresponding increase
during low prices, flexible hydrogen production balances the electricity grid when
there is surplus electricity in the grid. This is often the case in countries with a high
penetration of variable renewables.

There are multiple different types of electrolyser technology. The main three are
alkaline, photon exchange membrane (PEM) and solid oxide electrolysis (SOEC). All
these technologies have different ramp speeds and shutdown times. However, the most
flexible alkaline and PEM electrolysers can alter output in minutes, or even seconds.
This makes it suitable for operation in multiple markets. [37]

In the case of this thesis, we include a dynamic PEM electrolyser producing
hydrogen according to market price signals. It can ramp production up or down
within minutes without constraints and the incurred ramp-down cost is assumed to be
negligible. It has a minimum capacity of 0 MW and a maximum capacity of 60 MW.
We disregard downstream processes such as the synthesis of the produced hydrogen to
another molecule, and challenges in the offtake of dynamically produced hydrogen.
The focus is purely on power market optimisation. Though this approach may not be
fully realistic and practical from an industry standpoint, the objective is to demonstrate
the potential for a flexible electrolyser in power markets.

Utilising an electrolyser in this fashion can provide significant additional value
for the agent. It enables the implementation of riskier trading strategies by acting as
a fail-safe for the agent: in cases where there is a large surplus or deficit of power,
instead of selling it to the market, the operator can decide to increase or decrease
electrolyser output: the worst case result is only encountered if the imbalance exceeds
the room for flexibility in the electrolyser. Thus, strategies where the agent buys a
large excess of electricity in earlier stages with the intention of potentially selling it
for a higher price in a subsequent market is a valid strategy, because the electrolyser is
hedging the market risk.

2.3 Stochastic Dual Dynamic Programming

This thesis uses stochastic dual dynamic programming (SDDP) to optimise the bidding
strategy of an agent operating a power portfolio in multiple power markets. The
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problem can be formulated as a multi-stage optimisation problem with stagewise
stochastic elements. In this section, we briefly present the main basic concepts and
theory required to understand the implemented SDDP model. The SDDP-related
methodological concepts outlined in this section are based on [38] and [39].

In multistage stochastic optimisation problems, an agent makes decisions which
affect the state of the system over time. Each decision point is referred to as a node.
The term node is generally synonymous with the term stage, however, we use node
as there can be multiple different nodes at a certain point in time. Indeed, the model
formulated in this thesis has multiple nodes for each stage. At each node, the modelled
agent makes a decision affecting the state, i.e., the current situation, of the system.
This decision is referred to as a control variable. A control variable is denoted by the
letter 𝑢. Similarly, the state of the system is tracked from node to node by a set of
state variables. Each state variable represents a property of the modelled system. The
incoming value for the state variable is denoted as 𝑥, whereas the outgoing variable is
denoted as 𝑥′. For example in the case of a milk producer, a control variable could be
the amount of powdered milk sold to the market for each node 𝑡. Thus, one logical
state variable would be the cumulative amount of sold milk during the entire year.

In addition to state and control variables, an inherent property of stochastic
multistage optimisation problems is the presence of random elements. We refer to the
stagewise stochasticity as random variables. An example of a random variable from
the perspective of the same milk producer in the previous paragraph would be the total
amount of rain in millilitres for a week 𝑡. Possible realisations of random variables are
denoted by 𝜔, which are drawn from the sample space Ω. In SDDP, random variables
can be the same for each node, or they can be node-dependent.

At any node i, the three variables discussed above are connected by a transition
function. The transition function links the incoming state variable x, the chosen control
variables 𝑢𝑖 and the random variables 𝜔 by the function 𝑥′ = 𝑇𝑖 (𝑥, 𝑢, 𝜔). When the
agent enters a node i with the initial state x, it selects the control variables such that
the stagewise cost function, or in the case of this thesis the stagewise profit function,
𝐶𝑖 (𝑥, 𝑢, 𝜔) is minimised.

Control variables are chosen by the agent with a decision rule 𝑢 = 𝜋𝑖 (𝑥, 𝜔), which
links the incoming value of the state and the realisation of the random variable to the
chosen control. The chosen control is constrained by a set of constraints, denoted
by 𝑈 (𝑥, 𝜔). Figure 9 is an illustration of how the incoming state and realisation of a
random variable are mapped to an outgoing state by a chosen control.

Each node is related to each other by a policy graph, which represents how each
node is connected. There can be multiple types of policy graphs - a linear policy
graph refers to a connected graph with only one node per stage. On the other hand, a
Markovian policy graph is a graph with multiple nodes for each stage. Each node 𝑖 of
a stage in time 𝑡 has a certain transition probability to transition to another node 𝑗 at
time 𝑡 + 1. Additionally, policy graphs can have cycles, which allows the modelling of
a problem with an infinite horizon. Figure 10 is an illustration of a Markovian policy
graph with two distinct states. This thesis also models the multi-market problem using
a Markovian policy graph, however the number of states is significantly larger.

In the case of a policy graph with more than one node per decision point, the nodes
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This control must satisfy some feasibility requirements .

Here is a schematic which we can use to visualize a single node:

Policy graphs

Now that we have a node, we need to connect multiple nodes together to form a multistage
stochastic program. We call the graph created by connecting nodes together a policy graph.

The simplest type of policy graph is a linear policy graph. Here's a linear policy graph with three nodes:

Here we have dropped the notations inside each node and replaced them by a label (1, 2, and 3) to
represent nodes i=1 , i=2 , and i=3 .

In addition to nodes 1, 2, and 3, there is also a root node (the circle), and three arcs. Each arc has an
origin node and a destination node, like 1 => 2 , and a corresponding probability of transitioning from
the origin to the destination. Unless specified, we assume that the arc probabilities are uniform over
the number of outgoing arcs. Thus, in this picture the arc probabilities are all 1.0.

State variables flow long the arcs of the graph. Thus, the outgoing state variable  from node 1
becomes the incoming state variable  to node 2, and so on.

u ∈ U ​(x,ω)i

x′

x
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Figure 9: A diagram representing how the controls, incoming state and outcoming
state are connected by the transition function. Source [39].

We denote the set of nodes by , the root node by , and the probability of transitioning from node
 to node  by . (If no arc exists, then .) We define the set of successors of node  as 

.

Each node in the graph corresponds to a place at which the agent makes a decision, and we call
moments in time at which the agent makes a decision stages. By convention, we try to draw policy
graphs from left-to-right, with the stages as columns. There can be more than one node in a stage!
Here's an example of a structure we call Markovian policy graphs:

Here each column represents a moment in time, the squiggly lines represent stochastic rainfall, and
the rows represent the world in two discrete states: El Niño and La Niña. In the El Niño states, the
distribution of the rainfall random variable is different to the distribution of the rainfall random
variable in the La Niña states, and there is some switching probability between the two states that can
be modelled by a Markov chain.

Moreover, policy graphs can have cycles! This allows them to model infinite horizon problems. Here's
another example, taken from the paper Dowson (2020):

N R

i j p ​ij p ​ =ij 0 i i =+

{j ∈ N ∣p ​ >ij 0}
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Figure 10: A policy graph representing a Markovian policy graph with two different
Markov states. Source [39].

are related to each other by a transition matrix. The transition matrix represents the
probability of transitioning from one node to another when moving from time 𝑡𝑡−1 to
time 𝑡.

In SDDP, the goal of the agent is to reach a set of optimal decision rules for each
stage, i.e., the set of decision rules minimising the expected cost (or maximising the
expected profit). A set of decision rules is referred to as a policy. Thus, the optimal
decision rules are referred to by the term optimal policy. The optimal policy is reached
by minimising the expected cost when starting from the root node with an initial
condition 𝑥𝑅. From there, the agent moves from node to node along probabilistic
paths until reaching the "zero" node, i.e., a node without any outgoing probability
arcs. Thus, the function to be minimised for a problem with 𝑖 stages is of the form

E𝜔1∈Ω1

[︃
min
𝑢1

{︃
𝐶1(𝑥1, 𝑢1, 𝜔1) + E𝜔2∈Ω2

[︃
min
𝑢2

{𝐶2(𝑥2, 𝑢2, 𝜔2)

+E𝜔3∈Ω3

[︃
min
𝑢3

{𝐶3(𝑥3, 𝑢3, 𝜔3) + E(. . . )}
]︃}︃]︃}︃]︃ (1)

The SDDP algorithm operates through two distinct phases:

• Forward pass: in the forward pass, scenario realisations are sampled sequentially
from the initial stage to the final stage. For each state, approximate subproblems
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are solved using the cost-to-go function. The cost-to-go function is approximated
from the cutting planes of previous iterations.

• Backward pass: in the backward pass, the cost-to-go function approximations
are improved by incorporating new cuts into the subproblem, by following
Kelley’s algorithm. Given that the cost-to-go function is assumed to be convex
concerning state variables, this results in an under-approximation of the true
minimum cost-to-go (and thus the overall optimisation function). [39]

The combination involving a forward and backward pass refines a lower bound for
the solution iteratively. After completing the iteration, an upper bound for the policy
is estimated by sampling the scenario space and solving related problems with the
cost-to-go function updated during the earlier iteration. The algorithm continues until
it reaches convergence, or until the desired number of iterations is achieved. This
thesis uses an implementation of SDDP called SDDP.jl, which is a package for solving
stochastic dual dynamic problems in the Julia programming language. [38]
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3 Literature Review

3.1 Research on Optimal Energy Market Strategy

Historically, the European power sector was vertically integrated and monopolised,
with only a handful of companies responsible for the generation, transmission and
distribution of produced power generators. Thus, there was no need for the widespread
trade of power. However, electricity markets underwent gradual liberalisation during
the 1990s, first beginning with the liberalisation of the Chilean power market in 1980
[40]. The liberalisation of the European power market resulted in the day-ahead market,
which remains the market where a majority of produced electricity is traded. Already
in the 1990s, it was shown that in an efficient day-ahead market auction it is always
optimal for a generator to bid at their known marginal cost [41]. However, power
markets have developed significantly since then. In the Nordics, a generator can operate
in as many as eight power markets, each exhibiting different behaviour and market
price formation mechanisms. According to European Union regulation REMIT article
number 5, a generator may price power differently to the marginal cost if they have a
"reasonable economic, technical or regulatory justification for not offering the capacity,
or offering it above marginal cost". Generally, an opportunity cost is considered a
reasonable economic justification. Thus, in a setting with multiple markets, a producer
may, and should, price power according to the expected profit available in subsequent
markets after that market. Furthermore, uncertainty in renewable generation is also a
valid justification. Therefore, instead of a singular power market where a generator
with full control of its assets can sell power, a modern producer of power must consider
both the uncertainty regarding variable power generation, as well as the opportunity
cost of making decisions in a market, given potential price developments in subsequent
power markets. [12]

In this thesis, the modelled power portfolio consists of two wind farms, a solar farm
and a dynamic electrolysis unit. In the literature, a portfolio consisting of multiple
different assets is generally referred to as a virtual power plant (VPP). The optimal
bidding strategy of a VPP has been researched in multiple studies using various
methods and with a focus on both single or multiple power markets. For example, [42]
and [43] optimise the day-ahead patterns of a VPP using two different methods. In
[42] the cost of a VPP consisting of renewable generation and a battery storage device
under demand, price and generation uncertainty is minimised by using a meta-heuristic
optimisation algorithm. On the other hand, [43] proposes a bilevel optimisation
framework to optimise market profits, which is then transformed into a mixed integer
linear programming problem.

In addition to trading power in the day-ahead market, this thesis also takes the
intraday and balancing markets into account. Trading of a VPP, or often a singular
power storage unit, in intraday electricity markets can modelled with various different
approaches [44, 45, 46]. Using a similar methodology to this thesis, [44] and [45]
model the optimal participation of a VPP comprising of wind, hydro and thermal
power in a cross-border continuous intraday market using a multistage stochastic
integer programming problem. The resulting problem was solved using stochastic
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dual dynamic integer programming (SDDiP). The research shows that risk aversion
and available transmission capacity affect potential profits for a VPP in continuous
cross-border markets. Similarly, [45] uses SDDiP to model the trading of a VPP
consisting of wind, hydro and thermal units in two different order clearing methods.
On the other hand, continuous intraday trading of a battery storage unit was modelled
using a deep reinforcement learning framework by presenting the decision-making as
a Markov decision process.

In [47], the trading strategy of a VPP consisting of only intermittent renewable
energy sources is optimised using a portfolio allocation strategy for splitting forecasted
renewable generation across day-ahead and intraday markets. The authors find that
the proposed portfolio allocation method would have resulted in an improvement of
20% in profits generated from the European Power Exchange (EPEX). In a similar
study, [48] show that a wind power producer can substantially increase revenues by
participating in the intraday market by using a simple algorithm considering intraday
trade prices and forecasted up- and down-regulation prices. The authors also show that
revenues are dependent on the market liquidity of the Elbas intraday market, which is
the predecessor of the current cross-border intraday market.

Many research studies also take potential balancing market revenues into account.
The authors in [49] find the optimal scheduling strategy for a VPP in day-ahead
and balancing markets by modelling the VPP as a price taker. Focusing on the
optimal offering of a VPP for maximisation of day-ahead profits while simultaneously
minimising imbalance costs, [50] shows that a stochastic bi-level optimisation for
offering strategy increased VPP profits by nearly 5% in the Greek power market in
2016. A common theme for most balancing market analyses is the incorporation of
renewable generation-related uncertainty in the optimisation of the VPPs offering
strategy [51], [52]. The authors in [53] present a multistage approach for the optimal
bidding of variable renewable energy in day-ahead, intraday and balancing energy
markets in the Iberian electricity market. The authors use a linear programming (LP)
formulation to solve the optimal bidding strategy of a VPP aggregating wind, solar and
a battery system. The added value of participating in all markets analysed is shown to
be 10.1% in 2022.

In studies concerning the optimal offering and trading strategies of a VPP, the VPP
often consists of some form of intermittent renewable generation some type of energy
storage or consumption application as well as potentially a hydropower or thermal
power plant. In the case of the VPP modelled in this thesis, the component of the
VPP capable of consuming power is the dynamic electrolyser. Optimising market
trading strategies for an electrolyser is a less widely documented phenomenon. Though
the optimal control of an electrolyser has various existing studies, these often have
a primary focus on the physical restraints of the electrolyser instead of maximising
electricity market profits. For example, articles concerning optimal electrolyser control
[54], [55] and [56] all consider a setting where electricity prices are known before
deciding the electrolyser production schedule, which is inapplicable for the setting of
this thesis, as it involves four auction processes where prices are unknown at bidding
times.

31



3.2 Relevant Applications of SDDP

Stochastic dual dynamic programming was first presented as a methodology for solving
multistage stochastic optimisation problems in 1991 by [57], who demonstrated its
effectiveness by obtaining the optimal scheduling of a 39-reservoir hydro valley.
Since then, it has been widely used in different energy optimisation problems ranging
from energy expansion problems to the market optimisation of VPPs in multiple
markets given stochastic elements regarding price or production uncertainties. In this
subsection, we survey relevant research concerning problem applications similar to
the problem of this thesis, with a focus on how the various stochastic elements are
modelled and solved.

A majority of optimal offer strategy research using SDDP concerns the optimal
dispatch of pumped hydro or other storage resources. For example, the authors in
[58] apply SDDP to a hydrological facility amidst multiarea renewable production
uncertainty. The authors present a multiplicative autoregressive process to model
renewable generation uncertainty. The alternative to modelling generation uncertainty
with an autoregressive process is via discretising the uncertainty into different Markov
states or by a scenario tree generation. For example, [59] models the optimal scheduling
or a renewable energy-based park power system using SDDP, where uncertainties are
discretised into Markov chains with different transition probabilities.

Modelling of price-related uncertainty using SDDP can also be modelled either by
discretising the price into different Markov states or by modelling the price process as
an autoregressive process. The authors in [60] present a new algorithm for solving
multistage stochastic programming problems with stochastic elements within the
objective function, which does not require discretisation of the price process. They
show that the algorithm converges with near certainty, and demonstrate an application
for the algorithm in a hydro-bidding example by modelling the day-ahead price process
using an autoregressive process. However, modelling the price process in this fashion
has several drawbacks. In the case of this thesis, the main drawback is the independence
of the price process to all additional variables in the model [61]. In [62], the decision
process of a dairy farmer in New Zealand is optimised over a year-long period, with the
objective function uncertainty regarding prices modelled as a scenario tree describing
a stochastic process.

3.3 Thesis Contribution

As stated in the previous two sections, a significant amount of research has been
conducted concerning the optimal participation of a VPP in multiple electricity
markets. This thesis contributes to this research by developing a multi-market strategy
optimisation model for optimising the bought and sold volumes of power for a VPP.
However, in contrast to other studies and due to the relative novelty of intraday auctions,
this thesis is one of the first models combining intraday auction characteristics to
optimise optimal trading strategies in the intraday market. It is most similar in nature
to [53], which focuses on the Iberian power market. Furthermore, the techniques for
scenario generation techniques are similar in nature, employing clustering techniques
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to categorise large amounts of simulated data points into representative scenarios. This
is still noteworthy, as a problem setting with a combination of a day-ahead market, the
intraday market, as well as a balancing energy market, has not gained much attention
in earlier research [63], especially in a Nordic context. Furthermore, in contrast to
studies examining the optimal control of an electrolyser, such as [54], [55] and [56],
the problem formulated for this thesis is a setting where price realisations are observed
only after deciding the electrolyser capacity. The inclusion of a perspective including
the value of RFNBO-certified hydrogen is also a noteworthy contribution.
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4 Modelling Foundations and Mathematical Formu-
lation

This work examines the benefits of trading with a VPP in multiple power markets,
at discrete time points, with a combination of two wind farms, a solar farm, and
a dynamic hydrogen facility. We assume the generation assets function as a PPA
portfolio for the electrolyser. This section presents the methodological component of
this thesis: the exact methods in creating the underlying assumptions and predictive
models used as inputs for the SDDP model, the SDDP model itself, and the derivation
of meaningful results from the output policy of the model.

The objective of this thesis is to find a coordinated trading strategy for a VPP trading
in the day-ahead, intraday and mFRR balancing energy markets, that is operating
under generation and price uncertainty. The problem is modelled by considering a
policy graph representing the possible observable states the agent can be in at a certain
point in time. An example policy graph for the model is presented in Figure 11. It
represents a simplified variant of our model, containing only 10 states per final three
stages instead of 80.

Starting at the root node on the left, the decision-making progresses to the first
stage, the day-ahead market. This stage is divided into two separate consecutive
nodes 𝑡1,1 and 𝑡1,2, the reasoning for which will be discussed in Section 4.2. After
the day-ahead market, the agent must decide on controls for the first intraday auction,
followed by the second auction. The intraday auction stages each have 80 different
nodes, or states. These states represent different realisations of forecasted generation
for the agent’s own generation assets. Additionally, each state has an associated
price level. After the intraday auctions, the producer makes their final decision in the
mFRR balancing energy market. Similarly to the intraday market, this stage is also
divided into the same 80 separate nodes as in previous stages. However, in addition
to having the same associated price and production values, each state also has an
associated binary variable, representing if the state in question is up-regulating or
down-regulating. The exact methodology for determining the characteristics in these
states is discussed in Section 4.2. Each hour is examined independently from the
perspective of the model, meaning that the policy graph is unique for each hour.

Thus, to meaningfully model the setting of the agent in this problem, one must
be able to quantify three sources of uncertainty: the price, production and market
volume-related uncertainties. Therefore, in this section, we present the methodology
behind uncovering the relevant characteristics of these uncertainties. First, we present
a short description of the computational setup. Sections 4.2 and 4.3 present the
modelling choices for price and production-related uncertainty. After presenting the
sources of uncertainty, we present the resulting mathematical formulation of the SDDP
model.
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1st stage
Day-ahead bought/sold 
volume determined

2nd stage
Day-ahead residual 
error term observed

3rd stage
State changes, IDA1 
decisions made

4th stage
State changes, IDA2 
decisions made

5th stage
State changes, mFRR 
decisions made and 
generated profit observed

Figure 11: A simplified policy graph of the modelled problem. The circles represent
nodes and the lines represent transition probabilities between the two nodes.

4.1 Computational Setup of the Problem

The problem modelled in this thesis is analysed using two different programming
languages. Furthermore, the two main phases of the modelling workflow are executed
in two different computational environments.

The first phase of the modelling workflow involves the simulation of the SDDP
model states and transition matrix — referred to as the data generation phase —
passed as inputs to the SDDP model. This phase is executed in a local setting using
the Python programming language (Version 3.12.2). One iteration, representing one
hour, takes approximately 5 minutes on a laptop with a 1.4 GHz 12-core Intel Core
Ultra processor and 16 GB of RAM. This process is parallelisable, as each hour is
independent of other hours.

The second phase concerns solving the optimal policy for each hour using SDDP.
The model is created using the SDDP.jl modelling framework [38]. Furthermore, the
random elements of the model utilise the Distributions.jl package [64]. It is solved
in a Julia environment (Version 1.11.1) using the Gurobi optimiser (Version 11.0)
[65]. A single hour of the solution can be obtained in a local setting in approximately
3 - 10 minutes, depending on the individual characteristics of the hour in question.
Additionally, the maximum amount of iterations is set to 4000.
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It is computationally infeasible to obtain all the solutions in a local setting in a
reasonable time when validating the results across a period spanning the first half of
2024. Thus, in this case, all solutions were obtained using computer resources within
the Aalto University School of Science “Science-IT” project. In using these resources,
obtaining solutions was parallelised to use multiple CPUs per task in multiple nodes.
Thus, the total solution time was less than 6 hours

The main intended usage application for the model presented in this thesis is to
determine optimal strategies for the entire 24-hour period traded for in the day-ahead
market. As the model workflow can be parallelised, solutions for the next 24 hours can
be obtained within 30 - 45 minutes. Though this is close to the upper limit of solution
time for an agent making decisions in these markets, it is still rapid enough to remain
suitable in assisting decision-making.

4.2 Market Price and Volume Uncertainty

4.2.1 The Day-Ahead Market

The first decision made by the agent is the amount of volume sold or purchased in the
day-ahead market. The day-ahead market has a modelling approach that is significantly
different from subsequent stages. In the day-ahead market, the agent is assumed to
be a price-taker. Thus, any control decision regarding bought volume does not affect
the eventual price level from the perspective of the producer. It can purchase or sell
as much power as possible, with some practical restraints to restrict trade volumes
within acceptable limits from a risk perspective. These stagewise constraints will be
presented in Section 4.5.

In addition to being the only market stage with no market volume-related un-
certainty, the day-ahead stage is the only part of the model which uses an external
price model prediction. This prediction is a time series model originating from the
SKM Market Predictor platform [66]. It has hourly data granularity, i.e., it has one
market price prediction for each hour. The specific forecasted model was chosen by
comparing the mean-squared errors of 15 different time series models for 2023 and
choosing the best-performing model.

Each day-ahead price forecast of the chosen model has a randomly distributed
residual. Thus, in the day-ahead stage of the model, the stagewise random variable
is randomly sampled from the distribution of empirical residuals of the forecasting
model. The distribution is chosen by fitting a distribution to the data using the Python
Fitter package [67]. The best fitting distribution is the Cauchy distribution, with
parameters (𝜇 ≈ 0.81, 𝜎 ≈ 1.4). To keep the model from becoming too large, only 30
values are sampled from the distribution for the model to randomly sample one from
in the decision-making process.

SDDP.jl handles any stagewise-dependent uncertainty, i.e., a random variable
within the model, as a hazard-decision subproblem. The term hazard-decision refers
to the agent first observing the realisation of the random variable, after which the
agent makes a decision. However, this is not realistic in the case of a producer bidding
in day-ahead markets, where the realised price is observed after making the bidding
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decision. Thus, to make the stage a decision-hazard instead of a hazard-decision
subproblem, the day-ahead market stage is divided into two separate nodes 𝑡1,1 and
𝑡1,2. In node 𝑡1,1 the agent makes a deterministic decision without any stochastic
elements based only on the forecast for the day-ahead price (in addition to other
relevant variables). In node 𝑡1,2, the producer observes the realisation of the random
variable, i.e., the percentage error sampled from a distribution of empirical residuals.
The decision made in this node is constrained such that it must be the same as the
decision made in the earlier stage. Thus, no actual decision is made in node 𝑡1,2,
instead, the hazard-decision subproblem is converted into a decision-hazard one. In
a later context, we refer to these two separated stages collectively as the day-ahead
stages.

4.2.2 Intraday and mFRR Balancing Energy Markets

Price and volume-related uncertainties are modelled differently in the three remaining
stages. However, all three stages are quantified using a similar methodology. Addi-
tionally, the final mFRR stage has a minor methodological addition concerning market
uncertainty. The price uncertainty in these markets is modelled using 80 unique
representative states. Each state has six relevant metrics from the perspective of the
model: the forecasted market price (=C/MWh) and the forecasted generation (MW)
of the two wind farms and one solar farm operated by the agent. Additionally, each
state node contains a value for the forecasted macrolevel wind and solar generation.
Furthermore, in the mFRR ancillary market binary variables are associated with
each state depending on if the state is up- or down-regulating. The volume-related
uncertainty — representing the maximum capturable market volume — is addressed
by sampling from a distribution for each of the final three stages in the SDDP model.

The maximum capturable market volume is the more simplistic of the modelled
uncertainties in this stage. We include a stagewise random variable in the model as a
proxy to represent the amount of capturable liquidity in the market, which is assumed
to be randomly distributed. Furthermore, the distributions for the market volume are
separate for every hour and every market, as often traded volumes are significantly
higher during peak times and in timeframes closer to delivery. The distributions are
obtained by using the Python Fitter package to fit distributions for each hour. The data
used for the intraday market stages is the cumulative trade volumes in the continuous
intraday market for each delivery hour, in the time between each stage. This decision
is motivated by the lack of trading volumes in the intraday auctions in the present, as
discussed in Section 2.1.2. Figure 12 illustrates the data and fitted distributions for
hours 05:00 (a) and 20:00 (b) in the three considered markets. Each SDDP iteration
samples a value from the fitted distributions for each market stage. The sampled values
are then multiplied by a constant scaling factor of 0.15. Some of the fitted distributions
have a non-zero probability of obtaining values nearing infinity. Thus, we limit the
value of the maximum capturable market volume to be at most 125. The obtained
market volume represents an assumption regarding the possible capture of market
volume, while still assuming that the agent’s actions would not affect the price of the
market. As this thesis has no information available regarding the market sensitivity of

37



the auction setting, 15% is assumed to be the standard assumption, which is deemed
realistic for a large operator in Finland.
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Figure 12: Fitted distributions and data for market volume in the IDA1, IDA2 and
mFRR stages for 05:00 (a) and 20:00 (b).

The market prices for each state are obtained by simulating 2000 iterations of a
stochastic process, which progresses from the day-ahead stage to the mFRR stage.
The primary random elements are the large-scale forecasting errors concerning wind
and solar. Furthermore, these forecasting errors are correlated with the generation of
the agent’s assets. The stochastic process has a price variable, which is obtained by
predicting the change in price level from the previous price, given the random change
in forecasted generation. The resulting prediction for the market price of each stage in
the 2000 iterations is obtained by training an Extreme Gradient Boosting (XGBoost)
regression model using historical data from 2023 until August 2024.

The XGBoost model for each intraday auction stage considers twelve features
for each hourly data point, some of which were listed as price variation drivers in
Section 2. The mFRR price model is given only eight features. For all models, the
main features are the changed wind forecast 𝑊𝐹 from stage t-1 to t, the forecasted
residual load R, and the price 𝑃𝑡−1. Furthermore, we include three temporal variables
to capture the different behaviour on an hourly, daily and monthly level, as well as the
allocated transmission to neighbouring price zones after the day-ahead market. The
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mFRR model has the same features, however without the transmission constraints,
and with the solar forecasting error included as an additional predictor. The label
for all three models is the market price for the current stage 𝑃𝑡 . The models were
trained using a training split of 90/10, a learning rate 𝜆 = 0.1 and 100 estimators with
a maximum depth of 5.

The wind forecast data for each stage, provided by Fingrid, represents the forecasted
wind power at 15:00 D-1 for IDA1, and 22:00 D-1 for IDA2. In these two auctions, the
power is traded for the entire 24 hours of the day in question. Thus, the accuracy of
each forecast is different due to different proximities to physical delivery. Therefore,
the stochastic element is sampled 24 times, for each hour, from a distribution fit using
the historical data for the corresponding hour at 15:00 and 22:00. As stated in the
previous section concerning intraday auctions, we do not use actual intraday auction
data for the price forecasting, or modelling. Instead, the used metric is the final trade
made before 15:00 D-1 (EET) for IDA1 and 22:00 D-1 (EET).

The most satisfactory model accuracy was seen for models concerning the final
trade prices for IDA1 and IDA2. They achieve R-squared values of 0.93 for IDA1
and 0.92 for IDA2 (Figure 13(a) and 13(b)). On the other hand, in the prediction
model for mFRR, the balancing energy forecasting was less satisfactory (Figure 13(c)),
achieving an R-squared score of approximately 0.54. However, this is unsurprising,
as markets with shorter time periods until delivery often exhibit a wider variety of
random elements, making sufficient modelling challenging. All subfigures in Figure
13 contain a sample of the first 75 model predictions plotted against the corresponding
test set.

Possible decisions made in the mFRR market are primarily determined by the
current needs of Fingrid for the increase, or curtailment, of power. The simultaneous
purchase and sale of power on behalf of Fingrid in the mFRR market is not possible
during the same market period. Every hour can be one of three: up-regulating,
down-regulating or neither. However, in the SDDP model, the residual of the spot price
is observed within the model, meaning it is challenging to infer the mFRR state inside
the model, as this would require tracking the residual of the day-ahead price forecast
and comparing it to the mFRR state price forecast. Thus, to account for the uncertainty
regarding up- and down-regulation states, without tracking the realisation of the random
day-ahead price within the model, we separately determine two binary variables 𝑟+
and 𝑟−. These binary variables are included in each subproblem’s stagewise objective
function, where they determine if the agent is able to sell or produce power for that
corresponding state. They are given as inputs to the SDDP model.

The binary variables for each state were determined using a random forest classifi-
cation model, a common supervised learning-based model used for classification tasks.
As the classification was performed outside the SDDP model, only data available at
the root node or when making mFRR decisions was used in the training phase of
the model. The features of the model are thus the day-ahead price forecast, and the
change in wind and solar forecasted at the day-ahead decision compared to the actual
production (assumed to be equal to the forecast at the mFRR decision). Additionally,
the hour, day, month and forecasted residual load are included as features. Training
data was available from the beginning of 2023 until August 2024. The label of the
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classification model was determined based on the realised day-ahead prices:

• mFRR price > Day-ahead price → Upregulating

• mFRR price < Day-ahead price → Downregulating

• mFRR price = Day-ahead price → Neither

The trained classification model has a test set classification overall accuracy of
approximately 0.70. The precision, recall and f1-scores are all 0.74 or higher for down-
regulating hours (Table 1). For up-regulating hours, the precision, recall and f1-scores
are slightly lower but remain above 0.7. The poorest classification performance is in
the case of hours which are neither up- or down-regulating. The lower classification
scores for up-regulation hours compared to down- may be caused by the extent of
the training data, which only extends from January 2023 to June 2024. Spring and
summertime tend to be more common for down-regulation, whereas up-regulation
is more common during winter. Thus, the training data has more realisations of
down-regulation than up-regulation hours.

From the perspective of power markets, the most costly classification error for
the agent is when up-regulation hours are mistakenly classified as down-regulation
hours. This classification could result in larger-than-ideal power deficits, potentially
resulting in significant losses. However, the classification model tends to incorrectly
classify up- and down-regulation hours in neither direction instead of in the opposite
direction (Figure 14). Thus, the combination of the binary variables and the mFRR
price prediction model is satisfactory for the scope of this thesis.

Class Precision Recall F1-Score
Down 0.74 0.79 0.76
Neither 0.63 0.61 0.62
Up 0.75 0.71 0.73

Table 1: Precision, recall, and F1-scores for the trained mFRR classification model in
classifying the test data as down-regulation, up-regulation, or neither.

These price models are used in the data generation phase, while the capturable
market volume restricts the decisions made in the SDDP model. However, in addition
to the price models, the data generation phase requires information on another central
source of uncertainty in the problem: the production-related uncertainty.
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Figure 13: The first 75 values for the XGBoost model prediction and actual values in
the test dataset for the IDA1 (a), ID2 (b) and mFRR (c) stages.
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Figure 14: The confusion matrix displaying the model accuracy in predicting up- or
downregulation.
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4.3 Production Uncertainty

Renewable generation via wind and solar power is inherently unpredictable. At each
decision point, the agent faces uncertainty regarding two renewable-related metrics:
Finland’s renewable generation in its entirety and the agent’s own generation, which
is correlated with the national renewable generation. The extent of the correlation
between the agent’s generation and the national total generation is pivotal, as it may
allow the agent to act strategically in certain situations. We assume that the DA, IDA1
and IDA2 stages each have a forecasted generation value. In the mFRR node, which is
only 15 minutes before generation, we assume that the forecast is perfectly accurate,
i.e., the actual renewable generation.

Renewable generation forecasting errors are assumed to be randomly distributed.
Furthermore, changes in forecasted generation between consecutive decision stages,
for example between IDA1 and IDA2, are also assumed to be randomly distributed.
Renewable generation uncertainty for the Finnish level is quantified using data obtained
from Fingrid. Three different forecast datasets are assembled, representing forecasted
generation for the entirety of day D at 12:00 D-1, 15:00 D-1 and 22:00 D-1. In general,
forecasting errors are dependent on the time between the forecast and physical delivery.
Thus, each hour has a different distribution the random change in forecast is sampled
from.

Figure 15 represents the fitted distributions for the relative changes in forecasted
generation at 12:00 for the periods between each decision: DA - IDA1, IDA1 - IDA2
and IDA2 - mFRR. As seen, the first two distributions are strongly centred around 0,
i.e., the average change in forecasted generation between stages is relatively small.
However, the final change in the forecast, i.e., the change from IDA2 to mFRR, clearly
exhibits larger changes in forecasted generation. These phenomena are unsurprising, as
the change in forecasted generation is highly dependent on the time between decision
points [68]. The intervals between the first three stages are 3 and 7 hours, however the
time interval from the IDA2 stage to physical delivery is 14 hours for the 12:00 case.

In the case of solar generation, the methodology is slightly different. Fingrid
currently does not collect data in the same fashion for solar and wind, and thus
forecasted generation at the IDA1, IDA2 and mFRR times are unavailable. However,
ENTSOE collects data for the solar forecast at different time points, labelled "day-
ahead", "intraday" and "current" [70]. Thus, we assign the "intraday" forecast to
the IDA1 stage, and the "current" forecast to the IDA2 stage. Slight inaccuracies
resulting from this assumption are not critical, as the effect of solar generation on price
variation between stages is significantly smaller than the effect of wind [71]. Figure 16
represents the data and fitted distributions for the relative changes in forecasted Fingrid
generation. As seen in the Figures, the general fit is relatively accurate. However, one
notable difference to wind is the polarisation of changes in forecasted generation. In
the case of solar, the forecasted generation can change from significant generation
to exactly zero. Forecasting solar generation for days with partial cloud cover ahead
of time can provide significant challenges, which could be one explanation for this
phenomenon.

A different methodology is used for uncertainty regarding the agent’s own gen-
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Figure 15: The data and fits for the relative changes in Fingrid’s forecasted wind
generation between nodes: DA-IDA1 (a), IDA1-IDA2 (b) and IDA2 - mFRR (c). The
x-axis extent is [-0.5,0.5] in (a) and (b), and [-1, 1] in (c).

eration. Forecasting errors are once again assumed to be random for the agent’s
own generation. However, in this case, the important metric is the relation between
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Figure 16: The data and fits for the relative changes in Fingrid’s forecasted solar
generation between nodes: DA-IDA1 (a), IDA1-IDA2 (b) and IDA2 - mFRR (c). The
x-axis extent is [-1, 1] in all figures.

the national forecasting error 𝐸𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 compared to the error in own generation
forecasting error, referred to as 𝐸𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟 . We assume that the relationship ℜ can
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be modelled by examining the percentage difference between forecast errors, i.e.,
ℜ = 𝐸𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟/𝐸𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 . To obtain the forecast data for these stages, we fit a distribu-
tion for the relative difference in errors between the agent’s and Fingrid’s day-ahead
forecast. We can then simulate possible realisations of the agent’s own generation
forecast, while maintaining correlation with the large-scale forecast, with:

𝑔 𝑓𝑡+1 = 𝑔 𝑓𝑡 (1 + 𝐷𝑠𝑎𝑚𝑝𝑙𝑒 · 𝐸𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙), (2)

where 𝐷𝑠𝑎𝑚𝑝𝑙𝑒 represents a sampled value from the fitted distribution and 𝑔 𝑓𝑡+1 is the
generation forecast at stage 𝑡 + 1. The best fitting commonly used distribution is the
Cauchy distribution with parameters 𝜇 ≈ 0.06 and 𝜎 ≈ 0.60 for wind park 1 (W1), and
the Cauchy distribution with parameters 𝜇 ≈ 0.07 and 𝜎 ≈ 0.57 for wind park 2 (W2).

For this thesis, data is available for two wind park day-ahead forecasts and actual
wind generation for most of 2024. However, forecast data for the two intraday stages
is unavailable. Thus, synthetic datasets are constructed by applying the same data
relationship to each time period between decision points. Though this is not strictly
realistic, the data does not affect any other part of the model — it can be replaced with
actual data if it is available.

Figure 17 represents the data and fitted distributions for the two wind parks with
available data 𝐸𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟,1/𝐸𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 and 𝐸𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟,2/𝐸𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 . In the case of the agent’s
own solar generation, there is a lack of small-scale solar farm data. Thus, we use the
third of the Swedish bidding areas (SE3) solar forecast and generation profiles for the
day-ahead forecast and mFRR generation, because it is located at a similar longitude
to Helsinki. For the stages in between, we assume that the agent’s change in forecasted
solar generation is related to the Fingrid solar generation according to the uniform
distribution between -0.5 and 1.

4.4 Clustering and the Transition Matrix

At the current stage of the model workflow, 8000 (2000 x 4 stages) iterations of
independent stochastic processes and the associated changes in price have been
simulated. However, according to our preliminary experimentation, the proposed
SDDP model requires a maximum of 100 - 300 nodes per stage to remain solvable
within a reasonable time. Therefore, we aim to categorise the 8000 independent
price iterations into 80 unique states, which capture different possibilities in price and
generation realisations as accurately as possible. For this we use K-means clustering.

For the clustering phase, we combine the independent realisations for the IDA1,
IDA2 and mFRR stages. Thus, the K-means algorithm is given a total of 8000
datapoints, which are to be grouped into 80 distinct clusters. We use the centroid of
each cluster to represent a distinct state in the SDDP model. Each datapoint, and thus
centroid, contains 6 different metrics: the market price, the forecasted generation for
our agent (W1, W2 and S) and the forecasted national generation for wind and solar.
The sizes of each cluster can vary significantly, as seen in Figure 18.

The final step of preprocessing before solving the resulting stochastic optimisation
problem is calculating the transition matrix. This is relatively straightforward:
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Figure 17: The data and fitted distributions describing the relative difference in
forecasting errors for the agent’s and Fingrid’s generation forecasts.

beginning from the day ahead stage, 2000 stochastic independent realisations of the
next market price and renewable generation are simulated. Each of the resulting
realisations is then categorised using the same K-means grouping algorithm as above.
The resulting transition probability to an arbitrary node can be calculated by dividing
the amount of realisations grouped as belonging to that node by the total amount of
simulations. This process is then repeated for every node of every stage.

4.5 SDDP Model Formulation

The primary goal of the agent is to generate the maximum amount of profit in all
the considered markets, by choosing a set of control variables U. The maximised
function is thus the expected profit given a set of chosen control variables (Equation
1). The objective of the model is to return a policy dictating the amount of power
bought and sold at each market stage, with each hour independent. The agent does not
generate any offer curves in the SDDP model, instead, the only two control variables
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Figure 18: The price forecast and total agent generation of the clustered datapoints.
Only the first three clusters are displayed.

for each of the four stages are the 𝑢𝑏 and 𝑢𝑠 variables, which represent the amount of
power bought and sold in the market for each stage in MWh. In practice, the problem
concerns the optimal allocation of available production. In this section, we present the
mathematical formulation for the SDDP model.

The model has one state variable, which tracks the cumulative sum of bought and
sold power. This variable is referred to with the term power balance (and denoted
by Λ). The outgoing power balance value is mapped to the incoming value and the
control variables by the function

Λ′
𝑖 = Λ𝑖 + 𝑢𝑏,𝑖 − 𝑢𝑠,𝑖, ∀𝑖 ∈ {1, 2, 3, 4, 5} (3)

The power balance term can take both negative and positive values. It is linked
to two imbalance variables, Δ+ ≥ 0 and Δ− ≥ 0, and another variable referred to as
power P. The imbalance variables represent the cumulative positive and negative
imbalance, while power is the sum of these imbalances and the agents generation at
that node:

P = Λ′
𝑖 + 𝐺𝑖, 𝑗 = Δ+

𝑖 − Δ−
𝑖 + 𝐺𝑖, 𝑗 , ∀𝑖 ∈ {2, 3, 4, 5}, (4)

where 𝐺𝑖, 𝑗 represents the value of the generation at stage 𝑖 and node 𝑗 . Furthermore,
as the imbalance can either be positive or negative at one point of time, we apply the
constraints

Δ−
𝑖 ≤ 𝑀− · (1 − 𝛿) (5)

Δ+
𝑖 ≤ 𝑀+ · 𝛿, (6)
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where 𝛿 ∈ {0, 1} is a binary auxiliary variable and 𝑀−, 𝑀+ represent upper bounds
for the cumulative negative and positive imbalances. This constraint ensures that only
one of the positive and negative imbalance terms are active at one stage.

The other state variable affecting the objective function is the electrolyser capacity,
denoted by 0 ≤ 𝐸 ≤ 𝐸𝑚𝑎𝑥𝑖𝑚𝑢𝑚. 𝐸𝑚𝑎𝑥𝑖𝑚𝑢𝑚 represents the maximum electrolyser
capacity, which we assume to be 60 MW in this model. The outgoing value for the
electrolyser capacity is determined in the final stage by

𝐸′ = 𝐺𝑖, 𝑗 + Δ+
𝑖 − Δ−

𝑖 , ∀𝑖 ∈ {5}, 𝑗 ∈ G, (7)

where G represents the set of possible generation scenarios for the agent.
The electrolyser can produce RFNBO-certified, low-carbon or fossil hydrogen.

The RFNBO generation can be between 0 and the current electrolyser capacity:

0 ≤ 𝑅 ≤ 𝐸′ (8)

The RFNBO component is determined from the electrolyser state value with

𝑅 = 𝑝𝑖, 𝑗 + 𝛼 · Δ+
𝑖 + 𝑠, ∀𝑖 ∈ {5}, 𝑗 ∈ G (9)

where 𝛼 represents the RFNBO percentage of the bidding area in question and 𝑠

represents a slack variable to relax the constraint in the case where the positive
imbalance has a value higher than the maximum electrolyser capacity. For the sake
of simplicity, we aggregate all non-RFNBO hydrogen to the same quantity. This
hydrogen is referred to as non-RFNBO.

4.6 Day-ahead stage

Recall from Section 4.2.1 that the day-ahead stage is split into two separate nodes,
allowing the node to be converted into a decision-hazard node, instead of a hazard-
decision node. For this node, the stagewise objective is

𝑢𝑠,1𝜌𝐷𝐴, 𝑗 − 𝑢𝑏,1𝜌𝐷𝐴, 𝑗 , (10)

where 𝜌𝐷𝐴 is the forecasted day-ahead price. Furthermore, the control variables are
constrained to discourage extreme deficits and surpluses compared to the scale of
generation

0 ≤ 𝑢𝑠,1 ≤ Σ3
𝑧1
𝛾𝑧 (11)

0 ≤ 𝑢𝑏,1 ≤ Σ3
𝑧1
𝛾𝑧, (12)

where the term Σ3
𝑧1
𝛾𝑧 represents the sum of maximum generation capacities for

the agent’s own assets. These constraints ensure that the model policy remains at
acceptable risk levels considering the agent’s portfolio size.

The agent does not observe the realisations of the price uncertainty until the next
node. Decisions made for this stage must equal the previous node’s controls. In this
node, the stage objective is

𝑢𝑠,2𝜓𝐷𝐴 − 𝑢𝑏,2𝜓𝐷𝐴, (13)

49



where 𝜓𝐷𝐴 represents the randomly distributed residual for the day-ahead price
prediction. Furthermore the control variables 𝑢𝑠,2 and 𝑢𝑏,2 are constrained to be equal
to the controls in the previous stage:

𝑢𝑠,1 = 𝑢𝑠,2, 𝑢𝑏,1 = 𝑢𝑏,2. (14)

4.6.1 Intraday stages

Similarly to the day-ahead stage, in the IDA1 and IDA2 stages (nodes 3 and 4), the
stage objective is

𝑢𝑠,𝑖𝜌 𝑗 ,𝐼𝐷𝐴𝑘
− 𝑢𝑏,𝑖𝜌 𝑗 ,𝐼𝐷𝐴𝑘

, 𝑖 ∈ {3, 4}, 𝑗 ∈ S, 𝑘 ∈ {1, 2}, (15)

where 𝑢𝑠,𝑖 and 𝑢𝑏,𝑖 represent the amount of power bought or sold at stage 𝑖, 𝜌 𝑗 ,𝐼𝐷𝐴𝑘

represents the forecasted intraday price for IDA stage 𝑘 and scenario 𝑗 and S represents
the set of possible price scenarios.

Furthermore, in both stages, the controls are constrained to be less than the
randomly distributed volume:

0 ≤ U𝑖 ≤ 𝜀𝐼𝐷𝐴𝑘
, 𝑖 ∈ {3, 4}, 𝑘 ∈ {1, 2}, (16)

where 𝜀𝐼𝐷𝐴 𝑗
represents the randomly distributed market volume parameter. This

market volume represents the maximum traded power for that stage while assuming
that the agent is in a price-taker position. This constraint is not exactly realistic, as in a
real situation bidding can not be determined by an assumed capturable market volume.
However, a constraint such as this is needed in the validation of the model, which
is done based on historical data on the market volume. To ensure that the generated
revenue is realistic considering the actual market characteristics, the volume constraint
is applied.

4.6.2 mFRR stage

The mFRR stage is different in nature to earlier stages. Power can still be traded,
however, each hour is either up-regulating, down-regulating or neither. In the case
of up-regulating, power can only be sold, whereas in a down-regulating market,
power can only be bought. Furthermore, the final mFRR stage is where the effect
of the cumulative power balance is observed. Additionally, the hourly RFNBO and
non-RFNBO generation for the electrolyser is determined. Furthermore, the objective
function contains two penalty terms, which discourage the accumulation of significant
negative imbalances of power. Thus, the objective function for the mFRR stage is of
the form

𝑢𝑠,5 · 𝜌 𝑗 ,5 · 𝑟+𝑗 − 𝑢𝑏,5 · 𝜌 𝑗 ,5 · 𝑟−𝑗 + 𝑅 · 𝑚𝑝𝑅𝐹𝑁𝐵𝑂 + (𝐸′ − 𝑅) · 𝑚𝑝𝑁−𝑅𝐹𝑁𝐵𝑂

− 𝑐1 · Δ−
5 · 𝜆 − Δ−

5 · 𝑢𝑠,5 · 𝜌 𝑗 ,5 + 𝑐2 · 𝜇𝑆𝑢𝑟 𝑝𝑙𝑢𝑠, (17)
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where 𝑟+
𝑗

and 𝑟−
𝑗

are binary indicator variables, representing if the hour is up-regulating
or down-regulating (or neither) and 𝑐1 and 𝑐2 are constant terms. The variables
𝑚𝑝𝑅𝐹𝑁𝐵𝑂 and 𝑚𝑝𝑁−𝑅𝐹𝑁𝐵𝑂 represent the non-electricity marginal profit excluding
power for RFNBO hydrogen and the non-electricity weighted-average marginal profit
for low-carbon and fossil hydrogen. The two final terms are the penalty terms: the term
including 𝜆 is a general term for penalising excessive deficits in normal operation. The
second term is only active when the hour is up-regulating. This strongly discourages
deficits when the final hour in question may be up-regulating, as this can coincide with
significant losses in revenue. Furthermore, 𝜇𝑆𝑢𝑟 𝑝𝑙𝑢𝑠 is a term only active in situations
where the day-ahead price is negative. In this case, it penalises a surplus according to

𝜇𝑆𝑢𝑟 𝑝𝑙𝑢𝑠 = 𝜌 𝑗 ,5 · Δ+
5 . (18)

Similarly to the intraday stages, the control variables for traded volume are
constrained by a random market volume term. This is done to ensure that the bought
and sold volumes are within acceptable and realistic values., i.e.,

0 ≤ U5 ≤ 𝜀𝑚𝐹𝑅𝑅 . (19)

4.7 Collecting the Optimal Policy

The SDDP model returns an optimal policy for the agent, given a certain incoming
state, which governs the amount of power bought and sold for each stage. However,
these policies are determined based on the value of the predicted market price at that
stage, while the realisation of that price is not observed within the model. Thus, purely
relying on the outputs of the base SDDP model could potentially lead to situations
where the agent buys or sells power irrelevant to the realised price, which could turn
out to be significantly smaller or larger than the prediction. Thus, to account for this
we construct a decision tree structure, which enables us to incorporate price offer
thresholds into the optimal policy.

The optimal control in a certain stage depends on three components: the realised
scenario, i.e., the node, the incoming state and the noise realisation. Regardless of the
state of the agent in our market, the noise realisation and the node, or the scenario
observed, are the same for that stage. Thus, as the only state variable affecting model
decisions is the cumulative sum of bought and sold power, i.e., the power balance state
variable, we can construct the binary tree presented in Figure 19. Each node has two
children, representing the situations where either the offer is declined or accepted. In
the case where the offer is accepted, the outgoing state is updated with the offered
volume by the policy. Otherwise, the outgoing power balance remains the same. The
power balance at any given node is thus just the cumulative sum of its parent nodes
with accepted offers.

This structure allows the agent to determine price thresholds for each stage by
assigning an upper bound in the case of buying power, and a lower bound in the case
of selling power. This is applied to the DA, IDA1 and IDA2 stages. The allowed
percentage change is inversely proportional to the magnitude of the predicted price. We
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perform sensitivity analysis for this in the next section. In the validation of the policy,
we disregard the optimal model policy of the final stage because of market regulation.
Instead, we assume that the agent must offer all available regulation capacity to the
market at the encountered marginal cost.
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mFRRa
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Figure 19: The decision tree structure representing the possible obtained policies
depending on offer success or failure.
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5 Results

In previous sections, we have presented the methodology for constructing a model
for the optimisation of trading with a VPP in multiple electricity markets at discrete
time points. In this section, we present the results from the model. We first present
a visualisation of the policy for a single hour. This policy represents the output of
the first stage of the model, which only determines the buy and sell volumes for each
stage. Then, to assess the suitability of our model, we compare the generated profits of
the model from January to June 2024 to a baseline strategy. Of the examined period,
24 hours were excluded because of data issues. These include the entirety of the 27𝑡ℎ
of June, and 23 hours across the rest of the time interval. Thus, the final length of the
time interval is 4292 hours.

5.1 Model output for a single hour

The output of a single model iteration is a policy, determining the optimal decision
given an incoming state and a noise realisation. The first stage decision is made based
on the forecasted price and generation levels. However, subsequent decisions not only
depend on the random noise realisation representing available market volume but also
on the decisions and random realisations of previous stages and the incoming state.

The output of a single SDDP solution for January 1𝑠𝑡 01:00 is displayed in the
Figures 20 and 21. Figure 20 represents the power bought and sold in each stage, As
stated before, the first and second-stage decisions, representing the day-ahead nodes,
only contain one possible decision. However, the decisions afterwards can contain
significant deviations depending on the incoming state and realisation of the random
noise variable. Each Figure contains a solid line, representing the median decision.
The shaded areas represent the 0-100, 10-90 and 29-75 percentiles. As seen in the
Figure, both the buy and sell control variables can differ significantly, ranging from 0
to 120 MW.

For this hour, the agent in question sells a large portion of available forecasted
power in the day-ahead market. In the first intraday auction stage, the median decision
involves selling a small amount of power. However, in some of the realisations, the
optimal decision is for the agent to buy generation, whereas in other scenarios the
optimal is to sell power. In the second intraday stage, the median decision is to buy
approximately 5 MW of power. However, in some scenarios, the agent sells significant
amounts of generation, nearing 80 MW.

The eventual available power is a function of the cumulative sum of applied control
variables for each stage and the generation at each possible node. This can differ
significantly, as seen in Figure 21, which displays the total power available and the
power balance parameter. We see that the median available power at the final stage
is between 40 and 50 MW. However, in some scenarios, the power available is at
a deficit of a similar magnitude. Furthermore, the largest surplus scenarios reach
approximately 70 MW. These surpluses may occur in situations where the second
intraday auction stage has a very low price, resulting in the agent buying a significant
amount of generation based on the opportunity for significant profit in certain scenarios
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Figure 20: A plot of 300 simulations for the control variable decisions for buy and
sell across each stage.

in the mFRR market.

Figure 21: The corresponding 300 scenarios for total available power and power
balance at each stage, dependent on the control variables buy and sell.
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5.2 Comparison with the baseline strategy

Each optimal policy for an hour in the examined period returns buy and sell decisions
given an input state. We then derive a scenario tree of all the potential decisions, given
a price threshold determining if the offer is accepted or declined (such as in Figure
19). Applying this decision tree to each stage of each hour, we can determine the
generated revenue over the entire period. This generated revenue is then compared to
a naive strategy.

The time period for the comparison overlaps with the training data for the price
models. However, this should not affect results much, as the price models are given
features based on randomly sampled values for wind forecasting errors. Furthermore,
as the 80 states are the same across all stages, the effect of the overlap between the
training data and this comparison on the result should be low. However, it should be
kept in mind when examining results. Additionally, the data used to examine profits
generated is not the actual intraday action data, instead is based on the continuous
intraday market trading data. This is discussed in the final paragraph of Section 2.1.2.

The naive strategy involves a different agent, possessing the same information
regarding forecasted generation. In the naive strategy, the agent prioritises the
electrolyser capacity. If the market price is below the non-electricity marginal profit
of producing RNFBO and non-RFNBO hydrogen, the agent purchases power until
the electrolyser is at full capacity. All residual forecasted generation is offered to the
day-ahead market at any price. In the case of the price being higher than the marginal
profit of RFNBO hydrogen, the agent offers all of its forecasted generation to the
market. For later stages, the agent operates in a similar fashion, however, decisions are
restricted by the same market volume parameter as in the SDDP case. In the event of
imbalances stemming from forecasting errors, the agent purchases or sells power to
keep the net difference of power between the current stage and the day-ahead stage as
low as possible. Additionally, when the price at any stage increases over the marginal
profit of RFNBO-produced hydrogen, the agent sells as much generation as possible.
If the electricity price exceeds the marginal profit of non-RFNBO hydrogen, the agent
sells as much grid-sourced electricity as possible, while keeping the RFNBO-certified
power from its own assets. In the mFRR stage, the agent offers all available capacity
at marginal cost for both up-regulation and down-regulation. In the case of a surplus
of generation and all available market volume sold as down-regulation, the residual is
curtailed if possible.

In the case of the optimal policy, all decisions in the day-ahead and intraday stages
are made based on the SDDP model outputs. However, in the final stage, the logic for
operation is the same as in the case of the naive strategy. If the electricity price exceeds
the marginal profit of non-RFNBO hydrogen, the agent sells as much grid-sourced
electricity as possible, while keeping the RFNBO-certified power from its own assets.
In the mFRR stage, the agent offers all available capacity at marginal cost for both
up-regulation and down-regulation. In the case of a surplus of generation and all
available market volume sold as down-regulation, the residual is curtailed if possible.
This similarity between the two strategies stems from the fact that the situation in the
mFRR market involves only one market without any subsequent opportunity costs.

55



Thus according to the market regulation in Section 2, both agents must offer generation
at their encountered marginal cost.

5.2.1 Profit Generated by Each Strategy

The agent making decisions according to the optimal SDDP strategy, combined with
the price thresholds thresholds, generates a profit of 14.13 M=C in the first half of 2024.
This is a relative increase of approximately 4.18% compared to the naive strategy,
which generated approximately 13.54 M=C in the same period. The profit generated
from each market and hydrogen sales for both strategies are displayed in Table 2. As
seen in the table, the optimal and baseline strategies differ significantly in where profit
is generated. The agent operating with the optimal strategy generates significantly
more profit in the day-ahead market than with the baseline strategy. Furthermore, the
net results from other power market stages are larger, with both IDA stages seeing
significantly more activity. The baseline strategy generates more profit from RFNBO,
especially from Non-RFNBO hydrogen sales.

(M=C) DA IDA1 IDA2 mFRR RFNBO N-RFNBO Imbalance
Optimal 2.52 0.23 -0.11 0.81 10.22 0.85 -0.43
Base -3.88 0.07 -0.03 0.43 11.64 7.78 -0.40

Table 2: Net profit generated from each individual source for the optimal and baseline
strategies. The numbers are rounded to two decimal places with the unit (M=C).

On average, the optimal strategy is a net seller in the day-ahead market by -3.9 MW.
This is the opposite behaviour to the baseline strategy, which purchases a total of 26.7
MW from the day-ahead market on average (Figure 22). To cover for the overbuying,
the optimal strategy is a net purchaser in the IDA2 and mFRR markets. Slightly
counterintuitively, the optimal strategy has a positive imbalance on average, whereas
the baseline has a negative imbalance. This discrepancy is due to a small number
of hours where the optimal model overbuys in the day-ahead market at considerably
cheaper prices, with the intention of potentially profiting at a later stage. However,
when the residual power is unable to be offloaded, the agent ends up with a positive
imbalance. In general, these hours occur simultaneously with a large amount of the
agent’s own generation, resulting in the residual available power showing up in the
imbalance, instead of the electrolyser generation. The baseline strategy produces more
hydrogen by over 20 MW compared to the optimal strategy.

Further differences in trading behaviour between the two strategies are evident
when examining the volume-weighted average prices (VWAP) for purchased and sold
power (Figure 23). In general, the optimal strategy has a significantly lower purchase
price compared to the baseline strategy, especially in the day-ahead market and the
first intraday auction. Here, the volume-weighted average purchase price is more than
40 =C/MWh higher for the baseline strategy. This phenomenon is less significant in
later markets, however it is still clearly present.

On the other hand, the baseline strategy has much higher volume-weighted average
prices when examining sold power in each market. The largest difference is in the first
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Figure 22: The average change in position, i.e., average sale, generation or purchase,
for each profit generating source. The electrolyser contains both RFNBO and Non-
RFNBO hydrogen.

and second intraday auctions, where the captured sale price is more than double for the
baseline strategy compared to the optimal strategy. The smallest difference between
the two strategies is in the mFRR stage, however, even here the baseline strategy has a
significantly higher volume-weighted average sale price.

Though the significantly higher VWAP for the baseline strategy may seem opposite
to the expected behaviour, the situation becomes clearer when examining the total
traded volumes in each market across the entire period (Table 3). The optimal strategy
has a day-ahead total volume amounting to less than 50% of the traded power in the
baseline strategy. However, the optimal strategy trades approximately 30 times more
power in the IDA1 stage and 15 times more in the IDA2 stage compared to the baseline
strategy. Additionally, the mFRR trade volume is nearly twice as large in the optimal
strategy.

Strategy DA IDA1 IDA2 mFRR
Optimal 55900 MW 8900 MW 14600 MW 23200 MW
Baseline 127700 MW 300 MW 1000 MW 12700 MW

Table 3: The sum of all traded volumes rounded to the closest hundred in all four
market stages for both strategies.

Thus, combining the information of Figure 23 and Table 3, the optimal strategy is
significantly more active in finding profitable trading situations. However, the baseline
strategy only modifies its position in the market when the situation is profitable, i.e.,
when the price is above the non-electricity marginal profit of hydrogen. Thus, the
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Figure 23: The volume-weighted average prices (VWAP) for the optimal and baseline
strategies in all four market stages.

VWAP for sold power is significantly higher, because the value only captures the
highest price peaks. The optimal strategy may have a smaller VWAP for sold power in
each market, but the model is able to find more profitable positions more often.

The optimal policy generates more profit in the power market, using the electrolyser
as a backup in situations where the surplus or deficit of generation can not be covered.
This can be seen in the average hourly profit generated from each source (Figure 24).
The optimal policy on average generates 2.2 k=C more profit from the DA, IDA1,
IDA2 and mFRR stages. On the other hand, the profit generated from RFNBO and
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non-RFNBO hydrogen is higher for the baseline policy, especially in the case of
non-RFNBO hydrogen. However, the optimal strategy is able to capture nearly the
same amount of profit from RFNBO hydrogen sales.
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Figure 24: The average hourly profit for all profit sources for the optimal and baseline
strategy.

In addition to the metrics above, another key difference between the two strategies
is related to the variety of offered volumes in different markets. The optimal strategy
has a wider distribution of traded volumes in all markets, most notably in the day-ahead
market and the second intraday auction stage. On the other hand, the baseline strategy
is more conservative in its trades, with a much narrower distribution of trade volumes
in all markets. Furthermore, the optimal strategy has significantly more outliers. These
characteristics reinforce the suggestion of the optimal strategy being more aggressive
in trades, while the baseline strategy is more conservative.
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(a)

(b)

Figure 25: Boxplots representing the distribution of trade volumes across the entire
time period for the optimal (a) and baseline (b) strategies. The red lines (a) and black
lines (b) represent the median, the box the 25 - 75 percentiles and the whiskers the 0
and 100 percentiles, excluding outliers. The axis is logarithmic in both (a) and (b).
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6 Discussion

The experimental results indicate that a stochastic dual dynamic programming (SDDP)
model can increase the generated profit for a VPP consisting of variable renewable
generation, operating under price and generation uncertainty. The increase in profit
for the first half of 2024 was approximately 4.18%. The main driver of the increased
profit was the more aggressive behaviour in the market stages, especially in the first
and second intraday auctions. Furthermore, typical behaviour in the day-ahead market
was different between the two strategies, with the optimal strategy being a net seller
on average, while the baseline strategy was a net buyer. In the case of the optimal
strategy, a key phenomenon potentially increasing the profit compared to the baseline
strategy was the aggressive and speculative overselling or overbuying of generation in
earlier markets. In these situations, the model typically anticipates a scenario, where it
can rebuy or sell power at a low cost. Though these situations may not always generate
a profit, when it does the profits can be significant.

The stages used in this model were the day-ahead market, the first two intraday
auctions and the mFRR balancing energy market. These markets were used as decision
points because they provided discrete time points, and trading power was available
for all hours. Notably, IDA3 was left out of the problem for simplification, due to
power trading only being allowed for hours after 12:00 D. However, this introduced
a phenomenon where the intraday auctions were close in time to each other (15:00
and 22:00). However, the mFRR stage for the evening hours could be up to 23 hours
after the second intraday auction. Thus, including the third intraday auction, or some
other discrete time point could introduce more possibilities for the trading strategy,
and potentially improve model performance.

The model has some notable areas of improvement. One clear area concerns the
unrealistic assumptions regarding the capturable market liquidity. In an actual setting,
the offered amounts are not restricted, and instead, the agent must consider the effects
of their own offered generation on the realised price. This is especially relevant in
settings such as intraday auctions, which have not seen very high trading volumes
since their establishment. However, one possible solution for an agent using this
model in practice is always offering all their generation in the model forecasted price
(or a similar price level). In this case, the offered volume is either fully or partially
activated, or not at all. However, this is most likely ineffective in the case of trying to
find optimal allocations of power. The use of an external market volume prediction
model in combination with the SDDP model of this thesis is another option. The
trading volumes in the continuous intraday market will likely be highly correlated
with volumes at each auction point. Thus, creating an accurate model for predicting
market volume realisations and their probabilities may be possible.

Another area for potential improvement is the accurate penalisation of situations
where the model has a deficit or surplus of power. In this thesis, deficits were penalised
by subtracting the deficit multiplied by the up-regulating price from the objective
function at the final stage. However, as the imbalance settlement is settled by the
maximum of the volume-weighted average price in the aFRR market and the hourly
mFRR price, the model does not adjust for the aFRR effect. In this thesis, to account
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for the effect of the aFRR market on prices, another penalty factor was subtracted
from the objective function to further disincentivise deficits. However, including a
realistic heuristic for the effect of the aFRR price on the imbalance settlement would
be a key area for improvement.

The model faces some other shortcomings in addition to the market volume issue.
SDDP is generally suitable for the modelling and optimisation of linear problems
with stochastic elements. However, the power market exhibits nonlinear behaviour in
multiple situations, which presents challenges for SDDP. The solution in this thesis
was to simulate independent stochastic realisations for the nonlinear elements of the
problem. This however presented its own problems, mainly concerning the dimension
of information given as input to the SDDP model. In the case of this model, each
state had six different data points. The amount of states is restricted to be 80 due
to computational constraints. Thus, as the amount of states is relatively small, the
differences between different scenarios could be significant, and potentially none can
be suitable representatives for that actual realised state. Thus, the reality of the actual
situation faced by the agent could be lost in the data generation phase of the model,
even though the SDDP model itself could converge to an optimal solution.

In general, employing more sophisticated methods for the data generation would
most likely improve model performance. The accuracy of price models, especially in
the mFRR stage could potentially be significantly improved by including additional
data and new predictors. Additionally, the training datasets are regrettably small.
Furthermore, energy markets tend to exhibit black swan events from time to time, i.e.,
significant outlier periods, especially in markets after the day-ahead market. Combined
with a small dataset, this results in significant challenges for predicting the most severe
outlier events. Though the chosen models perform at a satisfactory level from the
perspective of this thesis, in practice the accuracy of these models is integral in profit
generation.

Furthermore, the methodology for creating possible scenarios for a single hour —
by first simulating the stochastic elements of the problem and then categorising using
a clustering algorithm — could also be refined. For example, applying importance
weights for the most important metrics, price and the agent’s generation, could be a
possible solution for ensuring that these metrics cover the possible sample space at
regular enough intervals.

However, SDDP may not simply be entirely suitable for a problem involving
both generation and price uncertainty, which are both correlated with each other.
Other models, involving neural networks or reinforcement learning applications may
outperform the model presented in this thesis. Furthermore, the Nordic power market
will transition to a 15-minute time interval, instead of an hour-long time interval in
2025 [72]. This will increase the number of hours requiring a solution from 24 to
96, increasing computation time significantly. Though parallelising this process is
relatively simple, this still may not be computationally tractable for a trader, who
would most likely want to make decisions rapidly.

Finally, the experimental results of this thesis may not reflect actual obtainable
profits. The used electrolyser is assumed to be a perfect source of demand, meaning
that increases or decreases in generation are independent of decisions in other hours.
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Furthermore, no costs are associated with shutdowns, and no minimum or maximum
capacity constraints are applied. Furthermore, the profits gained in intraday auctions
may not prove to be as large, as the model does not use actual auction data. Instead,
the data used is aggregated from the continuous intraday market for the time periods
between each auction time point. This modelling decision was made due to intraday
auctions being a new phenomenon in Finnish energy markets. Traded volumes are
low — the median trade volume is 0 MW — though constantly increasing. Thus, the
market price is nearly always coupled in the entire Nordic region. The challenge in
low trading volumes and a coupled Nordic price from the perspective of this thesis is
that the relationship between local forecasting errors in Finland and intraday auctions
becomes muddled, with forecasting errors in other Nordic bidding zones, or other
factors, becoming dominant drivers of prices. However, a central assumption for this
modelling choice is that traded volumes in intraday auctions are to increase in the
future, resulting in more frequent decoupling of Nordic bidding zones in intraday
auctions. This would strengthen the correlation between local forecasting errors and
intraday auction prices becoming more evident, making the model of this thesis nearly
directly applicable to actual intraday auctions.
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7 Conclusion

This thesis developed a model for optimising the trading behaviour of a wind, solar
and renewable hydrogen portfolio. The agent operated in the day-ahead, intraday
auctions 1 and 2 and the mFRR balancing energy market. The thesis first presented a
methodology for generating a transition matrix and 80 scenarios via simulation of a
stochastic process. These were then used by a stochastic dual dynamic programming
(SDDP) model to solve the amount of traded volume in each market stage, To include
simple price thresholds in these offers, a binary tree representing the state of the agent
in the case of an offer being accepted or rejected was collected.

The improvement for the SDDP-derived solution was 4.18% for the first half of
2024 when compared to a baseline strategy, representing the strategy of an agent
trading power according to a predefined heuristic. The baseline strategy was not
a poor strategy, however it did not allow for any strategic overbuying or -selling,
instead emulating the operation logic of an agent with a reasonable power market
understanding. The main drivers of the increased profit for the optimal policy were the
aggressive overbuying and -selling in profitable situations, the higher trading volumes
in all three markets and the more monetarily efficient allocation of power in the market
stages. The optimal strategy produced a significantly lower amount of Non-RFNBO
hydrogen, instead using this capacity as a hedge to allow speculative trading in earlier
market stages.

The limitations identified in this model concerned the generation of accurate
and realistic scenarios, the computational efficiency and the constraints for traded
volumes representing the random market volume assumptions. A direction for further
research would involve the fine-tuning of the scenario generation and price prediction
models. Furthermore, evaluating the potential for the inclusion of two external models
— representing offer thresholds and a market volume prediction — to be used in
combination with the SDDP model is another area for further research,

However, all models make assumptions and simplifications regarding the trading
of a market operator. The assumptions made in this model are moderately realistic,
and the model could certainly be used in assistance of an agent operating a VPP.
As shown in this thesis, strategic bidding can generate excess profits compared to a
more naive strategy. The improved profits would not only increase the buildout of
renewable projects but also increase system efficiency by allocating power based on
market signals.
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