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The Vehicle Routing Problem (VRP) is classical problem of combinatorial opti-
mization, in which a fleet of vehicles and a set of locations are given, and the
problem is to route the vehicles to visit the locations at minimum cost. Its dy-
namic counterpart (DVRP) and its variants have received a considerable amount
of research during the past decades, owing to the advancement of information
and communication technologies which have aided the process of vehicle routing.
In a dynamic VRP, the information related to solving the problem is revealed
over time, in contrast to the static VRP, where all information needed to solve
the problem fully is known beforehand.

In this work a variant of the DVRP called the Dynamic Pickup and Delivery
Problem with Time Windows (DPDPTW) is studied, and in particular, how
different solution methods perform in solving instances of it. These methods
consist of five different metaheuristics and four different first solution strategies.
Metaheuristics are the most used solution methods in the literature of VRPs, and
they can be described as high-level strategies that guide lower level heuristics
to obtain better solutions. First solution strategies are simple methods which
provide feasible initial solutions to the VRPs for the metaheuristics to start their
search from.

The main results obtained were that the metaheuristic Guided Local Search
(GLS) outperforms other methods in most scenarios, and that the choice of first
solution strategy has a large impact on the final solution quality but depends
on the problem parameters. Path Most Constrained Arc (PMCA) is the most
reliable first solution strategy out of the ones compared. While the applicability
of the results is somewhat limited, they are generally supported by the literature
and are useful within their context.
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TIIVISTELMÄ
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Ajoneuvon reititysongelma (Vehicle Routing Problem, VRP) on klassinen kom-
binatorisen optimoinnin ongelma, jossa joukko ajoneuvoja ja joukko sijainteja
on annettu, ja ajoneuvoille tulee määrittää reitit siten että jokaisessa pisteessä
käydään vain kerran ja että reittien kokonaiskustannukset minimoidaan. Vastaa-
vaa dynaamista ongelmaa (DVRP) on tutkittu kasvavissa määrin viime vuosi-
kymmenten aikana muun muassa kehittyvän teknologian ansiosta. Dynaamises-
sa ongelmassa ratkaisemiseen liittyvää informaatiota saadaan ajan myötä, toisin
kuin staattisessa ongelmassa, jossa kaikki informaatio on saatavilla etukäteen.

Tässä työssä tutkitaan dynaamista lähettiongelmaa aikaikkunoilla, joka on eräs
ajoreititysongelman variantti. Erityisesti tavoitteena on selvittää miten eri ratkai-
sumenetelmät — jotka koostuvat viidestä metaheuristiikasta ja neljästä konstruk-
tiivisesta heuristiikasta — sopivat ongelman ratkaisemiseen. Metaheuristiikat ovat
yleisin ratkaisumenetelmätyyppi ajoreititysongelmissa, ja niitä voidaan luonneh-
tia korkean tason strategoiksi, jotka ohjaavat matalamman tason heuristiikoita
saavuttaakseen paremman laatuisia ratkaisuja. Konstruktiiviset heuristiikat ovat
yksinkertaisia menetelmiä, jotka etsivät käypiä lähtöratkaisuja metaheuristiikoil-
le.

Keskeisimmät johtopäätökset ovat, että metaheuristiikka Guided Local Search
(GLS) suoriutuu muita paremmin useimmissa olosuhteissa, ja että konstruktii-
visen heuristiikan valinta vaikuttaa vahvasti lopullisen ratkaisun laatuun. Path
Most Constrained Arc (PMCA) on valituista konstruktiivisista heuristiikoista
luotettavin. Olosuhteet, joissa näitä tuloksia voi sellaisenaan soveltaa, ovat jok-
seenkin rajoittuneet, mutta näissä olosuhteissa ne ovat hyödyllisiä.

Asiasanat: Ajoreititysongelma, metaheuristiikka, konstruktiivinen heu-
ristiikka

Kieli: Englanti
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Jari Aronen. Thanks also go to Teemu Lätti for his valuable guidance on
the software side of things. Finally, I thank my supervisor, Professor Antti
Punkka, for his precise and knowledgeable critique and advice on the scientific
and written parts of the work.

Espoo, September 23, 2021

Petri Määttä
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Abbreviations and Acronyms

VRP Vehicle Routing Problem
CVRP Capacitated Vehicle Routing Problem
DVRP Dynamic Vehicle Routing Problem
VRPTW Vehicle Routing Problem with Time Windows
PDP Pickup and Delivery Problem
DPDPTW Dynamic Pickup and Delivery Problem with Time

Windows

TS Tabu Search
GTS Generic Tabu Search
GLS Guided Local Search
GD Greedy Descent
SA Simulated Annealing

LCI Local Cheapest Insertion
PCA Path Cheapest Arc
PCI Parallel Cheapest Insertion
PMCA Path Most Constrained Arc

MS Minimize sum (minimize sum of route lengths)
ML Minimize longest (minimize length of longest route)
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Chapter 1

Introduction

Research on the dynamic vehicle routing problem (DVRP) has seen a great
increase over the last few decades (Psaraftis et al., 2016). During this time,
the advancement of information and communication technologies has facil-
itated the use of more accurate data to aid the process of vehicle routing
(Ritzinger et al., 2016). The vehicle routing problem (VRP) and its variants
are extremely relevant in day-to-day logistics and business. Optimizing ve-
hicle routing via mathematical optimization can give significant savings to a
company by enabling more efficient use of the vehicle fleet and saving work
hours by automating the routing process (Toth and Vigo, 2014). Efficiency
in the use of vehicles naturally also has environmental benefits.

The vehicle routing problem, introduced originally by Dantzig and Ramser
(1959), is a classical NP-hard problem of combinatorial optimization and
integer programming (Toth and Vigo, 2002). It can be summarized as the
following: given a fleet of vehicles and a set of locations to visit, what are the
optimal routes for the vehicles to visit the locations at minimum cost? The
VRP has both a static and a dynamic version. If all the information needed
to route the vehicles is known beforehand and does not change, the problem
is static (also offline). If on the other hand not all information related to
the problem instance is known in advance, the problem is dynamic (also
online or real-time) (Ritzinger et al., 2016). In a DVRP, some information is
received during the execution of the routing plan, that is, while the vehicles
are carrying out their routes. Possible dynamic events are for example the
arrival of new transportation requests, and unknown service times, travel
times or customer demands.

Another classification of VRPs is the stochastic-deterministic division (Toth
and Vigo, 2014). In a stochastic setting, some information about the uncer-
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CHAPTER 1. INTRODUCTION 2

tain elements of the problem is known in the form of probability distributions,
while in a deterministic setting, these distributions are not available, meaning
that nothing is known about future events until they present themselves.

The VRP has many variants that are based on often complex real-world
constraints (Toth and Vigo, 2014). These include for instance the capacitated
VRP (CVRP), where each vehicle has a carrying capacity and customer
visits expend this capacity; VRP with time windows (VRPTW), where each
location needs to be visited within a given time slot; pickup and delivery
problem (PDP), where each transportation request has a separate pickup
location and a delivery location. Of course many more variants exist, and in a
real world setting, the actual problem instance is almost always a combination
of multiple variants.

A large number of solution methods to the VRP and its variants have been
developed over the years. Due to its combinatorial nature, exact solution
methods are generally of limited use, except for simple variants and small
problem instances (Bai et al., 2021). These methods are therefore not usu-
ally applicable to real world instances, which include complex constraints
and large problem sizes. Thus, so-called metaheuristics are the most com-
monly used solution methods in practice (Elshaer and Awad, 2020). These
methods have various strategies of getting out of local optima, but they do
not guarantee global optimality of the solution. However they do provide
solutions fast and usually within a reasonable gap of the global optimum.

In this thesis, we compare different local search based metaheuristic methods
and first solution strategies in their performance of solving a DVRP using
simulations. By this we hope to obtain information on which solution method
one should choose in different VRP scenarios, which we feel is lacking in the
current literature. The compared metaheuristics are Simulated Annealing
(SA), Tabu Search (TS), Generic Tabu Search (GTS) and Guided Local
Search (GLS). The first solution strategies used are Parallel Cheapest Inser-
tion (PCI), Local Cheapest Insertion (LCI), Path Cheapest Arc (PCA) and
Path Most Constrained Arc (PMCA). The problem parameters are varied
in different ways and their effects on the solution characteristics are studied.
Emphasis is especially placed on how the dynamism of the problem affects
the solutions. The problem parameters that are varied are the dynamism of
the problem, objective function, and the problem instance size.

This thesis is limited to the dynamic and deterministic VRP. The variant
studied is a combination of CVRP, VRPTW and PDP with the added relax-
ation that vehicles may start and end in arbitrary locations, as opposed to
starting and ending at a central depot which is most common in the VRP
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literature (Toth and Vigo, 2014). The variant chosen is based on a real-
world case study. The only dynamic element considered is the arrival of
new transportation requests. As the problem type is deterministic, stochas-
tic knowledge of future events is not used. However some knowledge from
the case study is used to select parameters that generate random problem
instances.

The rest of the thesis structured as follows. Chapter 2 gives an overview of
the VRP variant under study and the methods used to solve it. Chapter 3
gives details on how the simulations for comparing the solution methods in
different scenarios were carried out. The results and discussion on them are
presented in Chapters 4 and 5, and the thesis is summarized in Chapter 6.



Chapter 2

Background

2.1 Dynamic Pickup and Delivery Problem

with Time Windows

2.1.1 Overview

The VRP variant studied in this work is the Dynamic Pickup and Deliv-
ery Problem with Time Windows (DPDPTW). This variant models various
real-life scenarios, such as less-than-truckload courier services, food delivery
services or taxi services (Toth and Vigo, 2014), and was chosen for this work
based on a case study. This variant is illustrated in Figures 2.1 and 2.2. The
variant has the basic characteristics of a VRP: a fleet of vehicles and a set
of locations are given and the problem is to find the minimum cost routes
for the vehicles that visit all locations. Additionally the DPDPTW studied
in this work has the following elements (Mitrović-Minić and Laporte, 2004;
Toth and Vigo, 2014).

Dynamic. Not all information related to the routing problem is known ini-
tially but instead new information is received during the execution of the
routing plan. In this case the new information is in the form of immedi-
ate transportation requests – these requests are pairs of pickup and delivery
nodes, which are described below. Here it is assumed that requests arrive one
at a time. Upon the arrival of a new request a new VRP needs to be solved,
for which information about the past events is also needed. This includes the
current cargo in each vehicle, the nodes that have been visited, and the next
destinations for each vehicle, among other details. These dynamic subprob-
lems can however be modeled and solved as essentially static problems that

4



CHAPTER 2. BACKGROUND 5

include extra constraints for the dynamic elements of the problem (which is
the case in this study). A commonly used measure for the dynamic nature
of a DVRP is the degree of dynamism (Larsen, 2000), defined as

d =
Number of dynamic requests

Number of total requests
(2.1)

Other measures for dynamism also exist, which for instance take into account
the urgency of each request (in terms of its time window), but these measures
are not used in this work. For comparison purposes, the static version of each
dynamic problem is simulated as well.

Deterministic. A VRP may be either stochastic or deterministic in terms
of the uncertain information related to the routing problem. If the problem
is stochastic, some information about the uncertain elements of the problem
is known in the form of probability distributions, while if it is deterministic,
these distributions are not available, that is, nothing is known about future
events until they present themselves.

Pickups and deliveries. Each transportation request in the problem con-
sists of exactly two nodes: a pickup node and a delivery node. The two nodes
must be visited by the same vehicle and the pickup node must be visited be-
fore the delivery node. This variant of a Pickup and Delivery Problem (PDP)
is called a one-to-one PDP (Cordeau et al., 2008). Other variants also exist
which differ in, for example, the number of pickup nodes and delivery nodes
per request.

Capacitated. The variant includes capacity constraints for the vehicles,
meaning that each vehicle has a limited capacity to carry cargo, and visits
to nodes expend this capacity. Each visit to a pickup node adds a certain
amount to the load of a vehicle, and each corresponding visit to a delivery
node decreases the load by the same amount.

Time windows. Each node must be visited within a given time window,
and drivers each have an allowed work time window. The time windows
allow for slack, that is, a vehicle can wait at a node if it arrives before the
beginning of the node’s window. The actual visit to the node must still take
place within the window.

Service times. Each visit to a node takes a certain amount of time, during
which the node is being serviced and the vehicle cannot move.

No central depot. In the variant studied in this work, there is no central
depot from which the vehicles depart and where they end their routes, which
is a modification to the more common case of having a depot. Instead each
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vehicle may start its route in an arbitrary location and ends its route at any
delivery node. This is mostly due to the dynamic nature of the problem,
where as a new request arrives, the vehicles are almost certainly in arbitrary
locations outside the depot, but also due to modeling for example the case
where drivers may begin their routes at home, and may also travel directly
home from their last drop-off point. Using this formulation has the added
benefit that the case where all vehicles begin or end at a central depot is
simply a special case and requires no additional modeling.

Figure 2.1: Illustration of a pickup and delivery problem (PDP). Vehicles are
drawn in black while nodes that have to be visited are drawn in blue and all
are drawn in the euclidean plane. Red arrows are drawn from pickup nodes
to their corresponding delivery nodes. The left figure shows the problem to
be solved while the right figure shows a feasible solution.

Figure 2.2: Illustration of a dynamic PDP. The left figure shows the situation
after the solution seen in Figure 2.1 has been executed partway through,
meaning that time has passed and the vehicles have moved along their routes
and both have visited one (pickup) node. It also shows that a new dynamic
request has arrived. The right figure shows a solution to the new problem
and the changed route of vehicle 2.
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Optional nodes. In some simulations, the nodes are optional, meaning
that not visiting them produces a feasible solution to the problem. However,
dropping even a single node adds a large penalty to the objective function,
so the optimal solution is to drop as few nodes as possible.

2.1.2 Mathematical formulation

In general, there are multiple ways of formulating a VRP. Here, a vehicle flow
formulation is presented, adapted from Toth and Vigo (2014). Let the set of
pickup nodes P = {1, ..., n}, the set of delivery nodes D = {n + 1, ..., 2n},
the set of vehicles K = {1, ..., |K|}, and the set of vehicle start locations
S = {2n + 1, ..., 2n + |K|}. Let also V = P ∪ D and N = V ∪ S. We
also introduce a dummy start depot and a dummy end depot, which have a
distance 0 to all locations, with ds = 0 being the start and de = 2n+ |K|+ 1
being the dummy end depot. The optimization problem is then

min
x

∑
k∈K

∑
i∈N

∑
j∈N

tijxijk (2.2)

s.t.
∑
k∈K

∑
j∈V

xijk = 1 ∀i ∈ P (2.3)∑
j∈V

xijk =
∑
j∈V

xn+i, jk ∀i ∈ P, k ∈ K (2.4)

xds,2n+k,k = 1 ∀k ∈ K (2.5)∑
j∈S

xdsjk = 1 ∀k ∈ K (2.6)∑
i∈V

xidek = 1 ∀k ∈ K (2.7)∑
j∈V

xjik =
∑
j∈V

xijk ∀i ∈ V, k ∈ K (2.8)

Tjk ≥ (Tik + si + tij)xijk ∀i, j ∈ V, k ∈ K (2.9)

Qjk ≥ (Qik + qj)xijk ∀i, j ∈ V, k ∈ K (2.10)

Tn+i,k ≥ Tik + si + ti,n+i ∀i ∈ P (2.11)

ai ≤ Tik ≤ bi ∀i ∈ V, k ∈ K (2.12)

max(0, qi) ≤ Qik ≤ min(Qk, Qk + qi) ∀i ∈ V, k ∈ K (2.13)

xijk ∈ {0, 1} ∀i, j ∈ N, k ∈ K (2.14)
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The decision variables are xijk which are 1 if vehicle k goes from node i to
j in the solution and 0 otherwise; tij is the travel time from node i to j;
Tik is the time when vehicle k arrives at node i; si is the service time at
node i; [ai, bi] is the time window for node i; qi is the load to be picked up
or delivered at node i (positive for pickup, negative for delivery); Qk is the
maximum capacity for vehicle k; and Qik is the load of vehicle k after visiting
node i.

Constraints (2.3)–(2.4) ensure that a transportation request is served only
once and that the pickup and delivery nodes are visited by the same vehicle.
Constraints (2.6)–(2.9) ensure that all routes start and end at a dummy de-
pot, while (2.10)–(2.11) ensure the consistency of time and capacity variables.
Constraint (2.12) ensures that the pickup node of a request is visited before
its corresponding delivery node, (2.13) enforces time window constraints, and
(2.14) imposes capacity constraints.

The above objective minimizes the sum of the route lengths. When minimiz-
ing the length of the longest route, the objective function becomes

min
x

max
k∈K

∑
i∈N

∑
j∈N

tijxijk (2.15)

2.2 Solution methods

The sections below describe first solution strategies, local search and meta-
heuristics in the context of solving VRPs. In general, metaheuristics are
the main high-level strategies of solving VRPs, and they use the tools of
local search within them. Some metaheuristics require first solution strate-
gies (also referred to as constructive heuristics) to provide an initial feasible
solution. The implementations used in this work require them, so they are
discussed.

2.2.1 First solution strategies

First solution strategies are heuristic methods which are used to find a fea-
sible initial solution to a VRP instance. This initial feasible solution can
be improved by other methods. First solution strategies are less used today
than in the past since metaheuristic methods nowadays are usually robust
enough to not need a feasible solution to start the search from; instead any
random solution will suffice (Toth and Vigo, 2014). Nowadays most papers
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on VRP solution methods do not mention them at all.

Avdoshin and Beresneva (2019) describe and compare the performance of the
most relevant first solution strategies. They also note that such a comparison
has not been made – this is most likely due to the declining popularity of
first solution strategies. Their findings indicate that first solution strategies
have significant differences in their performance, with the savings algorithm
(Clarke and Wright, 1964) being generally the most efficient. Van Breedam
(2001) compares the Tabu Search (TS) and Simulated Annealing (SA) meta-
heuristics in VRPs and states that the quality of the initial solution and thus
the choice of first solution strategy has a significant impact on final solution
quality, especially for TS. The methods assessed in the paper by Avdoshin
and Beresneva (2019) that are relevant to this work are described below.

Sequential insertion. In this method, routes are constructed one vehicle
at a time. The first step of the method is to initialize a route with a random
unrouted node, such that the vehicle goes from the depot to the node and
back. In the second step, another unrouted node is inserted into the route.
This is done by choosing the node and its insertion position in the route
such that the route length increase is minimized and such that the addition
is feasible according to the constraints of the problem. Step two is then
repeated until no further nodes can be added to the route, at which point
a new route (for a new vehicle) is initialized according to step one, or all
unrouted nodes have been incorporated into the routes.

Parallel insertion. This method is a modification of sequential insertion,
with the routes being constructed in parallel. Step one is to initialize kmin

feasible routes (as in sequential insertion) from the kmin closest unrouted
nodes. Step two is to choose a random unrouted node and insert it into its
best position among all the routes, with best meaning feasible and incurring
the least increase in route length. Step two is then repeated until no node can
be feasibly added into the routes, at which points a new route is initialized,
or all nodes have been incorporated into routes.

Nearest neighbor. In this method routes are constructed one at a time.
In step one, the closest unrouted node to the depot is chosen and a single
route is initialized, going from the depot to the node and back. In step two,
the closest unrouted node to the previously added one is inserted to the end
of the route if it is feasible to do so. Step two is repeated until no new nodes
can be added at the end of the route. A new route is then initialized if all
nodes have not been included in routes.

In this work, four first solution strategies, or first solution strategies, are used
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to find initial feasible solutions which are then improved by metaheuristics.
These methods are very close to the ones described above but with slight
alterations and differing names and they are as follows (Perron and Furnon,
2019).

Local Cheapest Insertion (LCI). This method is essentially equivalent
to the sequential insertion method described above. The cost of insertion is
based on the arc cost function, that is, the travel times between nodes.

Parallel Cheapest Insertion (PCI). This method is essentially equivalent
to the parallel insertion method described above. The cost of insertion is
based on the arc cost function, that is, the travel times between nodes.

Path Cheapest Arc (PCA). This method is essentially equivalent to the
nearest neighbor method described above.

Path Most Constrained Arc (PMCA). This method is similar to PCA,
but the node chosen for addition is not the nearest one but instead the most
constrained one (or rather the most constrained arc, the connection between
two nodes), based on the constraints defined by the problem instance, such
as time windows, node demands, pickups and deliveries, and so on.

The first solution strategies were chosen out of 12 available in the optimiza-
tion software used (Perron and Furnon, 2019) based on performance in the
simulated DPDPTW scenarios. These four performed the best while the
others were deemed not viable to use in further comparison studies.

2.2.2 Local search

Local search is a method for iteratively finding approximate solutions to
combinatorial optimization problems. It has proven to be effective in this
context and many methods build upon it (Voudouris et al., 2010; Groër
et al., 2010). Local search is based on exploring the neighborhood N(x) of
a solution x, where the neighborhood of a solution is defined by local search
operators (also known as moves or improvement heuristics) that transform
the solution x in some way and yield a new solution x′. Figure 2.3 shows two
examples of these operators in a VRP context.

In the context of a VRP, these operators can be divided into two categories:
intra-route operators and inter-route operators (Toth and Vigo, 2014). In an
intra-route operator, the order of nodes is modified within a single vehicle’s
route. Since only a single vehicle is involved, operators that have been devel-
oped for the travelling salesman problem can be readily utilized. A common
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operator of this type is the k-opt exchange, where k edges are removed and
replaced by other edges in the route (Helsgaun, 2009).

In inter-route operators, nodes are exchanged between the routes of two ve-
hicles, and these are necessary for obtaining high quality solutions. Common
operators include the relocate operator, where k consecutive nodes are moved
from one route to another; the swap operator, where consecutive nodes are
swapped between routes; and the 2-opt operator, where two edges are re-
moved from two routes and they are connected in a different way. Iterating
through a complete neighborhood defined by these standard operators re-
quires O(n2k2) operations, so the neighborhood is usually pruned in some
way (Toth and Vigo, 2014).

Figure 2.3: Two examples of local search operators in a VRP context. a)
is the relocate operator and b) is the swap operator. Circles are nodes that
have to be visited by vehicles and arrows indicate the routes of vehicles.

With a minimization problem of

min f(x), x ∈ S (2.16)

where S is the solution space, local search moves from a solution x to a new
solution x′ ∈ N(x) using the neighborhood N(x) given by the local search
operators (Groër et al., 2010). If only improving moves are considered, such
that f(x′) < f(x) always, the search can be considered greedy, as in this way
when the first local minimum is reached the search stops as no more direct
improvements can be made. Worsening moves with f(x′) > f(x) can also be
accepted to expand the search and to escape local minima, and this is the
case with virtually all (local search based) metaheuristic methods (Boussäıd
et al., 2013).
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2.2.3 Metaheuristics

A significant amount of research has been done on metaheuristics in the
context of VRPs and according to Elshaer and Awad (2020) they are the
most popular type of solution method. This is in part due to the fact that
while exact methods are available for some VRP variants, in general they are
computationally unattractive, as VRPs are NP-hard combinatorial problems
and real-life instances are often quite large (Bai et al., 2021).

Metaheuristics are methods which can solve hard optimization problems ap-
proximately without tailoring the method for each specific problem (Boussäıd
et al., 2013). The prefix ”meta” illustrates that the methods are higher
level than problem-specific, low-level heuristics (the term ”metaheuristic”
was coined by Glover (1986)). Mart́ı et al. (2006) describe a metaheuristic
as a ”master strategy that guides and modifies other heuristics to produce
solutions beyond those that are normally generated in a quest for local opti-
mality”. Metaheuristics do not guarantee global optimality, and they do not
use the gradient of the objective function, instead relying on other means
such as local search (Boussäıd et al., 2013).

Metaheuristics can be divided into two categories: local search based meth-
ods (also single solution or trajectory-based methods) and population-based
methods (Talbi, 2009). Population-based methods can be further divided
into evolutionary and swarm intelligence methods. In this work the focus
is solely on local search methods, so population methods are not discussed
further.

A key concept relating to metaheuristics is the balance between intensifica-
tion and diversification (Blum and Roli, 2003). Diversification means that
the solution space is searched in a global, general and expansive way, and
varied solutions are obtained. Randomization can be utilized in this. Inten-
sification on the other hand means the opposite: the search is concentrated
in a small region and one seeks to find local optima. As mentioned above,
global optimality is not guaranteed, but if these two elements are balanced
well, achieving a global optimum becomes more likely.

Elshaer and Awad (2020) state that important local search based methods
include Simulated Annealing (SA), Tabu Search (TS), Large Neighborhood
Search (LNS), Iterated Local Search (ILS), Guided Local Search (GLS), Vari-
able Neighborhood Search (VNS), and Greedy Randomized Adaptive Search
Procedure (GRASP). According to their review, out of these methods TS
and VNS are applied most frequently in solving VRPs; LNS, SA, ILS and
GRASP are used less often; and GLS is rarely used.
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The performance of a metaheuristic depends on the VRP variant (Elshaer
and Awad, 2020). Both local search based methods and population-based
methods work well and are used frequently. Khouadjia et al. (2013) compare
several population-based methods and one local search based method (TS) on
DVRPs and conclude that a multi-population-based method (Multi-Adaptive
Particle Swarm Optimization, MAPSO) outperforms others, which are quite
level with each other.

Guided Local Search has been used and compared to other trajectory-based
methods such as Tabu Search in some papers. Voudouris et al. (2010) com-
pare GLS to TS in Travelling Salesman problems and find that GLS is either
very competitive or much better in all cases. De Backer et al. (1997) compare
GLS to TS in basic VRP settings and find that GLS outperforms TS most of
the time. Zhong and Cole (2005) compare GLS to GRASP in VRPTWs with
backhauls and customer precedence and find that GLS outperforms GRASP
without precedence, while with precedence the opposite is true.

The solution methods of OR-tools are compared in DVRP problems by Abdi-
rad et al. (2021). The problem instance generation and the dynamic problem
modeling and solving are not disclosed however. Not all available first solu-
tion strategies are compared, but no reasons are given for this. According
to their results, there is no clear best metaheuristic or first solution strategy.
Apart from listing the best combination of first solution strategy and meta-
heuristic for each instance, no other data, comment, justification or insight
is provided.

The metaheuristics that are used in this work (SA, TS, GLS) are described
below. In addition to these, a greedy descent method (GD) that is used in
the comparisons is described.

Simulated Annealing. Introduced by Kirkpatrick et al. (1983), this method
is inspired by the physical process of annealing, where a material is brought
to a high temperature, after which the temperature is lowered slowly to bring
the material to a state of minimal energy, thereby avoiding local minima of
energy in the process. In the context of optimization, the objective function
to be minimized corresponds to the energy of the system. The algorithm is
based on probabilistically accepting moves that worsen the objective func-
tion in order to escape local minima. The probability of moving to a worse
solution depends on the temperature T , which is lowered gradually as the
search continues. Therefore, the search is initially quite diverse and the so-
lution space is explored more globally, and as the temperature lowers, the
search becomes more intensified and focused on certain regions of the space.
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Algorithm 1 gives an outline of the method (Boussäıd et al., 2013).

Algorithm 1 Simulated Annealing

1: Generate initial solution x
2: Set initial temperature T
3: while stopping criterion is not met do
4: repeat
5: Generate new solution x′ ∈ N(x)
6: if f(x′) ≤ f(x) then
7: x← x′

8: else
9: x← x′ with probability exp (−f(x′)−f(x)

T
)

10: end if
11: until thermodynamic equilibrium
12: Decrease T
13: end while
14: return best solution found

Tabu Search. This method, developed by Glover (1986), is memory-based
as opposed to the probability-based Simulated Annealing. The central idea
in it is that the features of previously visited solutions are not allowed (are
made ’tabu’) in subsequent solutions for a period of time. This diversifies the
search and prevents the cycling of the same solutions. This is implemented
with a tabu list in which last seen solutions are kept and the same or similar
solutions are not visited again during the time they are in the list.

Algorithm 2 Tabu Search

1: Generate initial solution x
2: Initialize empty tabu list
3: while stopping criterion is not met do
4: Generate new solution x′ ∈ N(x) not in the tabu list
5: x← x′

6: Update tabu list
7: end while
8: return best solution found

The length of time that solutions remain in the list affects how diversifying
or intensifying the search is. A long list leads to a diverse search since a high
number of solutions are disallowed, while a short list intensifies the search
to a narrower region. The length can also be varied during the search. To
enhance the search further, so-called aspiration criteria are used to override
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a solution being disallowed by the tabu list. The method is outlined in
Algorithm 2 (Boussäıd et al., 2013).

Guided Local Search. This method was proposed by Voudouris et al.
(2010). Like Tabu Search, it is memory-based. However, solution cycling is
prevented with soft penalties in the form of an augmented objective func-
tion, instead of hard constraints. GLS uses a local search procedure that
(greedily) finds a local minimum of the augmented objective. Every time a
local minimum is reached, this augmented objective is updated, enabling the
search to escape local minima.

Algorithm 3 Guided Local Search

1: Select features Fi, i = 1, ..., N
2: Initialize penalties pi and costs ci
3: Generate initial solution x
4: while stopping criterion is not met do
5: Find a local minimum x∗ of the augmented objective function using

local search starting from x
6: Compute the utility ui of each feature Fi of x∗

7: j ← arg maxi ui
8: pj ← pj + 1
9: x← x∗

10: end while
11: return best solution found

GLS defines a set of features Fi, i = 1, ..., N and a function Ii(x) which
indicates whether a solution x has the feature i. The features are given
costs ci (which do not change during the search) and penalties pi, which
are initialized to zero and which increase during the search depending on
which solutions are visited. The augmented objective is updated only by
changing the penalties pi, and the feature to be penalized at each iteration is
selected by a utility computation. The utility of penalizing feature i in a local
optimum x∗ is ui(x

∗) = Ii(x
∗)· ci

1+pi
. The purpose of this is to find the features

that are the most impactful in terms of keeping the search from cycling.
The augmented objective is defined as g(x) = f(x) + λ

∑N
i piIi(x), where

f(x) is the unaltered objective function, and λ is a parameter that adjusts
the relative strength of the penalties. A large λ incurs large penalties and
diversifies the search, while a small λ intensifies the search (λ = 0 corresponds
to the unaltered objective). This feature penalization process focuses the
search on promising regions. Algorithm 3 gives an outline (Boussäıd et al.,
2013).
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Greedy Descent. In addition to the metaheuristics described above, a
greedy optimization method (Greedy Descent, GD) is also used in the per-
formance comparisons. In this method one simply moves to the solution in
the neighborhood of the current solution that yields the greatest improve-
ment in the objective function, until a local minimum is reached. Algorithm
4 describes the method.

Algorithm 4 Greedy Descent

1: Generate initial solution x
2: repeat
3: x∗ ← arg minx′∈N(x) f(x′)
4: if f(x∗) < f(x) then
5: x← x∗

6: end if
7: until f(x∗) ≥ f(x)
8: return x



Chapter 3

Simulation study description

3.1 Overview of simulations

In this work we carried out simulations of various DPDPTW scenarios based
on a case study using different solution methods. The term scenario is used
in this work for a particular combination of objective function, problem size
and dynamism for a problem instance. This was done to determine the per-
formance of each solution method in these different routing scenarios. These
performance characteristics can then be used in decision recommendations
on choosing the right solution method for a given problem in real-world VRP
use cases.

We chose 5 different metaheuristics, 4 different first solution strategies and 2
different objective functions to compare in the simulations, including all com-
binations of these. The metaheuristics are: Greedy Descent (GD), Guided
Local Search (GLS), Simulated Annealing (SA), Tabu Search (TS) and Generic
Tabu Search (GTS) (TS and GTS are both tabu search methods but with
different parameters and so they are named differently for convenience; this
is a feature of the software used). The first solution strategies are: Local
Cheapest Insertion (LCI), Parallel Cheapest Insertion (PCI), Path Chepest
Arc (PCA) and Path Most Constrained Arc (PMCA). The objective func-
tions are: to minimize the sum of the lengths of all routes (Minimize Sum,
MS), and to minimize the length of the longest route (Minimize Longest,
ML).

The choice of metaheuristics and first solution strategies was mostly due
to practical reasons and ease of implementation. These methods are read-
ily available in the chosen optimization software which is Google’s OR-tools

17
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(Perron and Furnon, 2019). The metaheuristics used include all of the meta-
heuristics available in OR-tools, while the first solution strategies are a subset
of the 12 available. The first solution strategies were compared in prelimi-
nary simulations which showed that the chosen 4 strategies were most viable,
while most of the others were not usable due to their poor performance in
the simulated problem instances.

In this work we assume that the metaheuristics and first solution strate-
gies are independent of each other; the analyzed quantities are presented by
metaheuristic or by first solution strategy but not by combinations of both.
Interactions between metaheuristics and first solution strategies are possible
but they are assumed negligible and are not studied in this work.

The chosen objective functions model real-world business incentives. With
MS, the motivation is to minimize the total amount of paid work hours of
all drivers, effectively minimizing the operational costs of the vehicle fleet.
This (minimizing route cost) is one of the most common objective functions
(Psaraftis et al., 2016). With ML, the motivation is to find a routing plan
which completes the transportation requests in the shortest real time possi-
ble, disregarding the operational costs that this may incur.

The simulation study consists of two simulation types. The first simulation
type gathers data about the average cost and success rate of the solution
methods. The second type on the other hand gathers data about the pro-
portion of nodes that are not visited when all nodes are optional.

It is important to note that the VRP variant and all of the problem instance
parameters come from a case study. Therefore the goal of this work is not
to study the effect of each parameter in an exhaustive manner, but rather
to find the best performing method in various possible scenarios of the case
study. This is evident for example with the capacities of the vehicles, which
most of the time do not actually constrain the problem at all. This also
means that the results of this study are applicable primarily for the case
study and cannot be generalized for the most part.

3.1.1 Problem instances

For each combination of metaheuristic, first solution strategy and objective
function, the same sets of problem instances were solved. These were custom-
made DPDPTW instances which were designed such that a solution should
practically always exist (although not proven). The problem sizes are shown
in Table 3.1. In the tables, ’seeds’ indicates the number of random instances
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generated for each problem size. For each instance the number of transporta-
tion requests is half of the number of nodes, that is, half of the nodes are
pickup nodes and half are delivery nodes.

Table 3.1: Problem sizes for the simulations.

Nodes Vehicles Seeds
40 4 10
80 8 10
120 12 10
160 16 10
200 20 10

For each problem instance of a given size, a static version and a dynamic
version of the problem was generated. The degree of dynamism was 0.5 for
all of the dynamic simulations.

Custom-made problem instances were used in this study instead of bench-
mark VRP instances, since this work does not present a novel solution
method for VRPs and since the problem parameters come from the case
study. Instead a number of solution methods are compared against each
other in different VRP scenarios to determine which performs best under
which circumstances. It is thus sufficient that the VRP instances are com-
parable to each other and that the range of scenarios is wide enough. If
benchmarks were to be used in this work, they would have to be modified
in some ways, defeating the purpose of using a benchmark. In this study
for example the start and end locations of the vehicles are free, that is, the
vehicles do not start and end at a central depot. This is not common in the
literature and benchmarks for such problem instances do not seem to exist
or at least have been used very little, which again counteracts the usefulness
of benchmarks in this case.

3.1.2 Analyzed quantities

Each analyzed quantity was computed for each combination of metaheuristic,
first solution strategy and objective function. For each problem size there
were multiple random problem instances, and the values were averaged across
these instances to obtain the final values presented.

Static cost. This value is the average best objective function value for the
static version of the problem found by the solution method.
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Dynamic cost. This value is the average best objective function value for
the dynamic version of the problem found by the solution method.

Success rate. This value is the proportion of dynamic problems that are
solved to completion. In dynamic problems, each arrival of a transporta-
tion request creates a new subproblem that has to be solved. If any of the
subproblems are not solved successfully, the simulation run of the dynamic
problem is counted as a failure and the run decreases the success rate of the
specific combination of solution methods.

Static drop proportion. This value is the average proportion of nodes
that are not visited in static problems when all nodes are optional with a
penalty.

Dynamic drop proportion. Same as above but for dynamic problems.

We chose these specific quantities as they measure the reliability and perfor-
mance of the different solution methods. Cost is the main performance metric
in both dynamic and static problems. Success rate is the main reliability met-
ric and it is quite essential since good performance (low cost) is meaningless
if the reliability (success rate) is close to zero. The drop proportion is not
a central measure of performance, but it provides useful information about
the characteristics of the different methods. In a real-world setting it is often
the case that some problems are infeasible in the sense that not all requests
can be serviced, which in turn requires one to drop some requests. Knowing
about the node dropping characteristics of different methods will then help
in choosing the best method for such a situation.

It is common to use the so-called competitive ratio when comparing the
performance of solution methods in static and dynamic problems (Golden

et al., 2008). This ratio is defined as cr = supI
z(I)
z∗(I)

where z(I) is the cost
of a solution found by an algorithm to the dynamic problem instance I and
z∗(I) is the optimal cost to the corresponding static problem. This quantity
shows the effect on algorithm performance by the lack of full information
about the problem. In its exact sense the ratio requires the globally optimal
solution to each problem instance, so it can be used in this sense only in
simple DVRPs. For more complex problems empirical estimations of this
ratio are used.

The ratio is not however used for performance measurements in this study.
Since the computed static cost is not the true optimum, in our case the ratio
could be estimated in two ways for each method: one where the static cost
is the best from the method in question; and one where the static cost is
the best across all methods. In the first case, the competitive ratios are
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not directly comparable across methods, since for example a high static cost
improves the ratio for a given method. In the second case, comparing the
ratios amounts to directly comparing dynamic costs, which is what is done
here.

3.2 Simulation details

3.2.1 Convergence of metaheuristics

The metaheuristics used in this study require a stopping criterion which
can be chosen in way that is most suited to the scenario at hand. In this
case the solution time was chosen as the criterion for computational resource
purposes; otherwise simulation running times can be highly variable and
hard to predict which makes allocating high performance cloud computing
resources more difficult. The amount of time given to solve each problem
instance is based on the time it takes for the methods to roughly converge,
as measured by the objective function value.

Auxiliary simulations were carried out to determine the convergence charac-
teristics of each metaheuristic and how they relate to the problem instance
size. Convergence in general can be defined quite arbitrarily and depends on
the problem, but in these simulations convergence is defined as the objective
function value improving by less than 0.1% (relative to the best known value)
in the previous 10 seconds of computation time.

Table 3.2: Solver time limits for the problem instances.

Nodes Time limit
40 20 s
80 40 s
120 60 s
160 80 s
200 100 s

Based on the auxiliary simulations, the time until convergence seems to scale
roughly linearly. The time limits used in the simulations proper for the static
problems are given in Table 3.2. For the dynamic cases, the advance problems
each have the same time limit as the corresponding static problem of the same
size, while each dynamic subproblem (when each new request arrives) has a
5 second time limit regardless of problem size. Here, an advance problem
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refers to the static part of a dynamic problem, that is, the requests that are
known in advance.

3.2.2 Problem instance generation

The procedure to generate a random DPDPTW instance is given below. This
general problem instance is then used in generating a static-dynamic pair of
problem instances. The chosen parameters aim to model the case study.

General problem instance generation. The parameters required for this
procedure are the number of vehicles k, the total number of nodes to be
visited n (half of which are pickup nodes and half are the corresponding
delivery nodes), and a random seed.

First, locations are assigned to n nodes and k vehicles. The locations are
uniformly random in a 40 by 40 unit square. The speed of a vehicle is 1
length unit in 1 time unit (time units can be considered to be minutes), and
vehicles move in straight lines between nodes (as opposed to by Manhattan
distance, for instance).

Second, time windows are assigned to nodes. The allowed visiting window
for each node is 08:00—16:00 (480—960 in minutes), representing a normal
working day. The vehicles start moving at 08:00 (earliest) and stop moving at
16:00 (latest). The time windows therefore serve the purpose of constraining
the number of working hours for a single driver.

Third, service times are assigned to nodes from a uniformly random distri-
bution. Each node takes 1 to 10 minutes to service during which the vehicle
is not moving; this represents picking up or dropping off a package.

Finally, demands are assigned to nodes. Each pickup node adds 1 unit of
cargo to the vehicle that visits it, and each corresponding delivery decreases
the cargo by 1 unit. The maximum load of a vehicle is 50 units. Since the
capacities of vehicles are large, most of the time they do not constrain the
problem.

Static-dynamic problem pair generation. The degree of dynamism d is
a required parameter. This is the proportion of transportation requests that
are dynamic, that is, arrive during the execution of the routing plan. Only
one dynamic request is added at a time before rerouting, corresponding to 2
nodes (1 pickup node and 1 delivery node).

First, two auxiliary problem instances are generated by the general problem
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instance generation. One contains only the requests known in advance (n ·
(1− d) nodes) and one contains only the dynamic requests (n · d nodes).

Second, the time instants when the dynamic requests become known are
generated. The instants are uniformly random in the interval 08:01—13:00
and are unique — in other words there is at most one dynamic request in each
minute. No dynamic requests arrive during the last 3 hours of the working
day; this is done to make the problem instances very likely to be feasible. For
example an dynamic request arriving at 15:59 would almost certainly make
the problem infeasible.

Now the dynamic version of the problem is one where the dynamic requests
are not known beforehand, and the static version of the problem is one where
the dynamic requests are known beforehand. Thus in the static problem the
advance requests and dynamic requests are combined into one problem where
everything is known in advance.

3.2.3 Cost computation

For the static version of the problem, the cost of the solution is simply the
value minimized by the solver, since all information related to the problem
is known at once. The static costs for each objective are

CMS, static =
K∑
k=1

Lk (3.1)

CML, static = max
k

Lk (3.2)

where K is the number of vehicles and Lk is the route length for vehicle k.
The route lengths are in units of time, in this case minutes.

In the dynamic problem, not all information is known and several subprob-
lems need to be solved which then constitute the overall problem. In general
the purpose of computing the dynamic total cost is to obtain a value that
can be meaningfully compared to the cost of the corresponding static prob-
lem. The final cost is not however simply the sum of the costs of the solved
subproblems.

This is illustrated in Figure 3.1. The bars for each Vi denote the planned or
executed lengths of routes for each vehicle. Each Ti is a time instant when
an dynamic transportation request becomes known, after which the routing
problem is solved again which in turn may change the planned routes. As
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Figure 3.1: A possible assignment of routes to vehicles in a dynamic problem.
The left figure shows the routing plan at time T = 0. At this time vehicle
V1 is planned to visit all the nodes. The right figure shows the plan at time
T = T1, when a new dynamic request has arrived and vehicle V1 has executed
part of its route. The routing plan has then changed and vehicles V2 and V3
have routes while the route of V1 is empty.

time passes between some Ti and Ti+1, the planned routes within that time
interval are executed.

In this work, the overall dynamic cost is the cost from all executed routes
instead of the cost from all planned routes. Idle time of the vehicles (the time
during which a vehicle is not assigned any nodes to visit) is not included in the
cost. The optimization strategy in the dynamic case is to reoptimize using
the previous solution upon the arrival of each new transportation request.

The total dynamic cost with the MS objective is the sum of all executed
routes:

CMS, dynamic =
J∑

j=1

K∑
k=1

min (Lj−1,k , Tj − Tj−1) (3.3)

where J is the number of time instants when dynamic requests arrive, Tj is
the jth such instant, K is the number of vehicles, and Lj, k is the planned
route length for vehicle k at T = Tj (the length is from Tj on, not from T0).

The real-world aim of the ML objective is to complete all transportation
requests as fast as possible. As idle time is not included in the cost, the
dynamic cost consists of the longest executed route for each segment Ti, Ti+1.
In Figure 3.2 this amounts to CML = T ′1 + (T ′2− T1) + (T ′end− T2). In general
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Figure 3.2: A possible assignment of routes to vehicles in a dynamic problem.
The figure shows the executed routes at time T = Tend when all requests have
been completed.

the total dynamic cost with the ML objective is then

CML, dynamic =
J∑

j=1

max
k

(min (Lj−1,k , Tj − Tj−1)) (3.4)

where the notations are as in equation (3.3).

3.2.4 Simulation procedure: cost and success rate

The algorithmic procedure for computing the average static and dynamic
costs as well as success rates is described below. This procedure is carried
out for both objective functions, for each problem size, for each metaheuristic,
for each first solution strategy, and for each random seed (problem instance).
In this simulation all nodes must be visited; dropping even one node makes
the solution infeasible. The problem instance sizes are described in Table
3.1 and they are designed to be feasible with a very high probability. In
this simulation the recorded quantities are the cost of the static problem, the
cost of the dynamic problem and the success or failure to route the dynamic
problem.

Simulation: cost, success rate

1. Generate static-dynamic problem pair

2. Solve static problem and record statistics

3. Solve dynamic problem

3.1. Solve advance problem
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3.2. For each dynamic request:

3.2.1. Advance time according to the request time instant
– This involves moving the vehicles along their planned routes

and visiting nodes
3.2.2. Add the new dynamic request to the problem

– The request consists of adding two new nodes to the prob-
lem: a pickup node and a delivery node

– The two new nodes are added into the previous solution
by assigning the request to the ’most idle’ vehicle, namely
the vehicle with the earliest route end time; the insertion
is done at the end of the route

3.2.3. Solve the subproblem based on the previous solution
– Solution time for each subproblem is 5 seconds regardless

of overall problem size since the amount of new nodes
added is constant

– If the by-hand insertion initial solution is not feasible ac-
cording to the solver, it has to generate a feasible solution
from scratch using a first solution strategy

3.2.4. Increment total cumulative dynamic cost according to equa-
tion (3.3) or (3.4), depending on the objective function

3.3. Record statistics for the dynamic problem

4. Add the statistics of the simulation run to the overall pool of statistics

– If the by-hand insertion and first solution strategy both fail after
some dynamic request, the dynamic problem is not solved and the
run is counted as a failure, which decreases the success rate of the
specific combination of solution methods and objective function;
in this case the obtained cost values are discarded as well

– Otherwise the cost values contribute towards the average cost val-
ues and the success rate is increased

Failures to solve from a previous solution in the dynamic case may sometimes
be due to implementation and software specific details. The initial solution,
where the metaheuristic starts its search, is given in the software only as
the sequences of visited nodes of each vehicle. Other variables pertaining to
the solution, such as visit times and loads of the vehicles, are not given and
have to be inferred by the solver; this is called the propagation of secondary
variables. Occasionally the solver fails to infer the feasibility of an initial
solution even though it may actually be valid. If the propagation fails, the
solver has to start from scratch using a first solution strategy. In the dynamic
case, the first solution strategies can thus be seen as a backup when the
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initial solution fails, either by being actually infeasible or only according to
the solver.

3.2.5 Simulation procedure: node drop proportion

In these simulations, all nodes are optional with a large penalty to the objec-
tive function. For each dropped node, a penalty of 10000 minutes is added
to the objective. The problem instances are the same as for the cost and
success rate simulations. While feasible solutions (solutions where no nodes
are dropped) may be found if all nodes are required, these solutions can be
missed if nodes are optional. The analyzed quantity is the proportion of
nodes that are dropped in the solution. The described procedure is again
done for both objective functions, for each problem size, for each heuristic,
for each first strategy, and for each random seed (problem instance).

Simulation: node drop proportion

1. Generate problem by the general problem instance generation

– Make all nodes optional with a penalty

2. Solve instance

– In the static case this is straightforward

– In the dynamic case, this involves solving each subproblem
as described in the cost simulation

3. Record the total number of nodes that are dropped and add to
the overall pool of statistics

3.2.6 Simulation software and hardware

The software suite OR-tools (Perron and Furnon, 2019) was used to carry
out the optimization computations. This in turn also dictated which meta-
heuristics and first solution strategies were able to be studied in the work.

The parameters used for the metaheuristics were as follows. For SA, the
initial temperature was set to 100 and a Cauchy annealing schedule was used,
where the temperature at iteration i is Ti = T0/i. The relevant parameters
for the two tabu search methods are the ’keep’ list length, the ’forbid’ list
length and the tabu factor. A variable in the ’keep’ list must keep its value
for a given number of iterations and a variable in the ’forbid’ list must not
take its value in the list for a given number of iterations. The tabu factor
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gives the number of violations to the tabu criterion that are allowed; a factor
of 1 means no violations are allowed, and a factor of 0 means all violations
are allowed. For TS, the parameters were: tabu factor 0.8, ’keep’ iterations
10, ’forbid’ iterations 10. For GTS: tabu factor 1, ’keep’ iterations 0, ’forbid’
iterations 100. The value used for the regularization parameter λ for GLS
was 5.

The simulations were ran on the Aalto Triton high performance computing
cluster, using Intel Xeon Gold 6248 2.50GHz processors.



Chapter 4

Simulation study results

4.1 Success rate

Tables 4.1 and 4.2 show the success rates for each problem size and first
solution strategy for both objective functions. These values are for the dy-
namic problems; the success rates for static problems are always 1. Based
on the success rate values, the first solution strategies are more reliable for
the ML objective. This is likely explained by the following. In general, the
ML solutions tend to distribute nodes evenly to all the vehicles since the
goal is to minimize the length of the longest route and giving all nodes to
a single vehicle would counteract this. The MS objective on the other hand
usually does the opposite: it tends to give all nodes to a single vehicle. For
the ML objective subproblems then, generally a large number of vehicles are
constrained to visit at least some nodes which in turn means that only a
small number of nodes are constrained to any given vehicle. This then likely
makes finding a feasible route for a single vehicle easier. For the MS objec-
tive subproblems, the situation is the opposite: most of the nodes are usually
constrained to very few vehicles, which in turn can make finding a feasible
route for a single vehicle more difficult.

Both objectives show a drop-off with increasing problem size which is more
pronounced with the MS objective. This is intuitive since a larger problem
size entails a more complex and difficult problem to solve.

Also for both objectives it is clear that some first solution strategies are more
reliable than others. PCI and PCA are not very robust for large problem
sizes, while PMCA is especially robust. PMCA is clearly the best performing
method as it finds an initial solution 100% of the time for both objectives.
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Table 4.1: Success rate with ML objective by first solution strategy in the
dynamic case.

Nodes 40 80 120 160 200
First solution

LCI 1.00 1.00 0.96 0.56 0.44
PCI 1.00 1.00 0.96 0.58 0.18
PCA 1.00 0.94 0.58 0.00 0.00
PMCA 1.00 1.00 1.00 1.00 1.00

Table 4.2: Success rate with MS objective by first solution strategy in the
dynamic case.

Nodes 40 80 120 160 200
First solution

LCI 0.92 0.44 0.18 0.04 0.00
PCI 0.72 0.08 0.00 0.00 0.00
PCA 0.10 0.00 0.00 0.00 0.00
PMCA 1.00 1.00 1.00 1.00 1.00

PCA is a particularly weak method for the MS objective, even for small prob-
lem sizes. The robustness of PMCA is no doubt due to its most-constrained-
first method of assigning values to variables and thus of finding a solution.
Since the dynamic subproblems can be large and very highly constrained,
methods which assign values to variables in a cheapest-first approach (espe-
cially PCA) often fail to find a solution. This is especially clear with the MS
objective, where as mentioned above there can be a large number of nodes
already constrained to a single vehicle.

4.2 Static cost

Figures 4.1, 4.2, 4.3 and 4.4 show the cost values for static problems from the
simulations. For each figure, the values are the differences to the mean within
each problem size group. The plain cost values are included in Appendix A.

From Figures 4.1 and 4.2 one can see that the relative differences in cost
between metaheuristics decrease as the problem size increases. This result
takes into account the fact that a larger problem requires more time to solve
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to convergence, see Section 3.2.1. One can also see that most of the time,
Guided Local Search (GLS) is the best performing metaheuristic.

Figures 4.3 and 4.4 show the static costs by first solution strategy. With
the MS objective as seen in Figure 4.3, the impact of the strategy seems
to increase with growing problem size, but the differences in cost between
the methods are relatively small. For the ML objective, there seems to
be a drastic difference between a problem with 40 nodes and larger problem
sizes. The variation in cost between methods and also within a single method
between problem sizes is significant. LCI and PCA seem to perform the best,
at least for large problem sizes.

Figure 4.1: Average static cost by metaheuristic with MS objective.
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Figure 4.2: Average static cost by metaheuristic with ML objective.

Figure 4.3: Average static cost by first solution strategy with MS objective.
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Figure 4.4: Average static cost by first solution strategy with ML objective.

4.3 Dynamic cost

Figures 4.5, 4.6, 4.7 and 4.8 show the cost values for dynamic problems from
the simulations. For each figure, the values are the differences to the mean
within each problem size group. In these figures, missing data points indicate
that the success rate for a particular solution method and problem size is too
low to include the cost value as a reliable data point. A cost value is omitted
if the success rate is below 80% for a given combination. The plain cost
values are included in Appendix A.

The data in Figure 4.5 seems very noisy and cannot be interpreted very
clearly. Figure 4.6 shows data that seems more well-behaved and indicates
that GLS is again a well-performing method.

The interpretation of Figures 4.7 and 4.8 is quite clear: PMCA is very robust
in terms of its success rate in dynamic scenarios, while other methods are
not.
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Figure 4.5: Average dynamic cost by metaheuristic with MS objective.

Figure 4.6: Average dynamic cost by metaheuristic with ML objective.
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Figure 4.7: Average dynamic cost by first solution strategy with MS ob-
jective. Missing data points indicate that the success rate for a particular
solution method and problem size is too low (below 0.80) to include the cost
value as a reliable data point.

Figure 4.8: Average dynamic cost by first solution strategy with ML ob-
jective. Missing data points indicate that the success rate for a particular
solution method and problem size is too low (below 0.80) to include the cost
value as a reliable data point.
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4.4 Drop proportion

Tables 4.3 and 4.4 show the drop proportions in the dynamic case. The drop
proportions for the static case are all zero. Since the static success rates are
always one, this is to be expected but it is not entirely self-evident. The drop
proportions differ little when differentiated by metaheuristic so the values are
only shown for the first solution strategies.

We can see that the drop proportions contain very similar information to the
success rates. PMCA is again is a very well performing method, with its drop
proportions being zero in all instances with ML and close to zero with MS.
As the success rates are higher with the ML objective, the drop proportions
are likewise lower with ML.

Table 4.3: Drop proportion in the dynamic case with MS objective.

Nodes 40 80 120 160 200
First solution

LCI 0.00 0.09 0.29 0.37 0.46
PCI 0.03 0.22 0.40 0.49 0.49
PCA 0.00 0.29 0.49 0.49 0.50
PMCA 0.00 0.00 0.02 0.02 0.10

Table 4.4: Drop proportion in the dynamic case with ML objective.

Nodes 40 80 120 160 200
First solution

LCI 0.0 0.0 0.0 0.00 0.32
PCI 0.0 0.0 0.0 0.00 0.40
PCA 0.0 0.0 0.0 0.05 0.45
PMCA 0.0 0.0 0.0 0.00 0.00
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4.5 Aggregated data

Table 4.5 shows the success rate values aggregated by dynamism, objective
and problem size. Tables 4.6 and 4.7 show the aggregated cost values. The
size of the problem has been combined into two categories: small, correspond-
ing to the value for 40 nodes; and large, corresponding to an average of the
values for 80, 120, 160, and 200 nodes. This is primarily for summarization
purposes, but it also represents somewhat of a split in the performance of
the methods across problem sizes, at least for some scenarios (such as those
seen in Figures 4.1, 4.4, 4.7, 4.8 and Table 4.2). Bold values indicate the
best performing method in each scenario, and missing values indicate that
the success rate in that particular scenario is too low (below 0.80) to include
the cost value as a reliable data point. The data from which the aggregation
was done is included in Appendix A.

Table 4.5: Aggregated success rates by first solution strategy in different
scenarios.

Objective Dynamism Problem size PCI LCI PCA PMCA
MS dynamic small 0.72 0.92 0.10 1.00
MS dynamic large 0.02 0.17 0.00 1.00
ML dynamic small 1.00 1.00 1.00 1.00
ML dynamic large 0.68 0.74 0.38 1.00

Table 4.6: Aggregated costs (percentage difference to mean) by first solution
strategy in different scenarios.

Objective Dynamism Problem size PCI LCI PCA PMCA
MS static small 0.60 -0.10 -0.13 -0.37
MS static large -0.54 0.88 -0.30 -0.05
MS dynamic small — 1.84 — 1.06
MS dynamic large — — — 1.87
ML static small -0.19 -0.22 -0.14 0.56
ML static large 7.92 -2.51 -7.32 1.92
ML dynamic small -0.52 1.40 -0.12 -0.76
ML dynamic large — — — 4.70
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Table 4.7: Aggregated costs (percentage difference to mean) by metaheuristic
in different scenarios.

Objective Dynamism Problem size GTS TS GLS SA GD
MS static small 1.47 -1.25 -2.64 0.81 1.61
MS static large 0.33 -0.04 -1.01 0.31 0.41
MS dynamic small 2.74 0.10 -6.88 1.63 2.41
MS dynamic large -1.27 -1.23 -0.21 2.22 1.27
ML static small 1.52 -0.93 -2.61 0.51 1.52
ML static large 0.20 -0.55 -0.31 0.30 0.35
ML dynamic small 0.07 0.44 -1.98 0.63 0.84
ML dynamic large 0.22 0.17 -0.34 -0.20 0.15
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Discussion

5.1 Application of results

The results presented in the previous section have been summarized into
decision recommendations in Table 5.1, based on the aggregated data in
Tables 4.5, 4.6 and 4.7. The problem scenarios are divided into categories by
whether they are static or dynamic, by objective function and by problem
size. The recommendations are purely a broad summary of the results.

Table 5.1: Solution method recommendations for PDPTW scenarios. ’small’
denotes a problem with 40 or fewer nodes and ’large’ a problem with more
than 40 nodes. (*) indicates that the choice is crucial to reliability or perfor-
mance.

Objective Dynamism Problem size First solution Metaheuristic
MS static small PMCA GLS
MS static large PCI GLS
MS dynamic small PMCA GLS
MS dynamic large PMCA* GTS
ML static small LCI GLS
ML static large PCA TS
ML dynamic small PMCA GLS
ML dynamic large PMCA* GLS

These recommendations are based on the success rate and cost of a partic-
ular method, since the drop rates contain similar information to the success
rates. As mentioned in Section 3.1, first solution strategies and metaheuris-
tics are assumed independent and therefore the recommendations for them
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are independent as well. The ’crucial’ recommendations do not have a strict
definition; however, for instance in the large dynamic case with MS objec-
tive it is quite obvious that the PMCA method performs best while other
methods are not very viable.

The recommendations are to be applied principally for the case study, and
possibly other scenarios which are very similar. Generalizing beyond these
circumstances is problematic.

The recommendations assume that the parameters of the VRP scenario, such
as the degree of dynamism and total problem size, are known beforehand. It
is possible for instance that the total number of requests received is unknown,
in which case these recommendations are more difficult to apply. However
it seems more likely that in most real-world use cases the parameters are
known with at least some degree of confidence, owing to the existence of
historical data. However, it is possible to modify the recommendations such
that they are given in terms of the current dynamic subproblem to be solved.
In this way the nature of the overall problem would not be necessary to know
beforehand but instead only the problem at hand.

Overall we can see that Guided Local Search (GLS) is the metaheuristic of
choice for most situations out of the ones compared. The best first solution
strategy depends on the scenario, but PMCA is clearly the most reliable
method. The two methods marked with (*) are the most significant choices;
not choosing the recommended alternatives in these scenarios will likely lead
to worse results.

In general, finding a feasible initial solution to a VRP with time windows
is NP-hard. Naturally this initial solution becomes harder to find with an
increasingly large and complex problem. Based on this work, the method by
which one attempts to obtain a first feasible solution to a DPDPTW is very
important. The choice of first solution strategy has a large impact on, firstly,
whether a solution is found at all; and secondly, what the final value of the
objective function is after optimization by a heuristic.

In dynamic problem settings, there is always a certain amount of real-world
time between the arrival of dynamic requests. If these times are short, in the
order of seconds, utilizing the previous solution is important as this saves the
effort of always computing a feasible solution from scratch to highly complex
problems. If the previous solution is not used, the choice of first solution
strategy is essential. This is because it is then not simply a backup to using
the previous solution but is used for every dynamic subproblem. In these
circumstances it is important to choose a method such as PMCA which will
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in most cases yield a solution even if the dynamic subproblem is large and
highly constrained. It is also possible to switch solution methods on the fly:
for instance one may choose to use the most efficient first solution strategy
as a default and upon its failure switch to a more reliable one.

5.2 Evaluation

This study was a reasonable success all things considered. There are no major
issues that would thoroughly undermine the work, and most of the obtained
results are very useful to the real-world case study which the simulation
parameters were based on.

The results for cost values for different methods seem quite reliable, at least
for the static case. Since the dynamic cost values depend heavily on the
success rate values, the values themselves may not be as informative and
have room for interpretation. Some random noise is always present but this
could be mitigated by increasing sample sizes. The drop rate results again
may have some noise in them but seem quite reliable.

The time window and capacity constraints used in this work constrain the
problem only moderately since they need to model the case study. The capac-
ities especially do not constrain the problem at all. The time windows would
have to be made narrower and the capacities smaller to properly constrain
the problem and to generalize the obtained results.

Some results are more implementation and software specific than others. The
results that relate to the specific performance differences of the first solution
strategies can mostly be applied only if one is using the exact implementa-
tions provided by the OR-tools software package, although they are based
on methods well known in the literature. Still, the conclusion can be drawn
that in any complex VRP one should choose very carefully the method of
finding an initial feasible solution. For the metaheuristics however, all of the
methods studied are very well known and studied, and their performance
differences in this work can be more readily generalized.

5.3 Future work

The expansion of these kinds of simulations would widen the usefulness and
range of applications for their results. As it stands, the results are only
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applicable for the case study. These expansions would naturally consume
significantly more computational resources but we believe this would be a
worthwhile investment. Possible extensions include the following.

No first solution strategies. The implementations of the metaheuristics
required first solution strategies, which is not the norm in the literature. This
makes the obtained results less readily generalizable and more dependent on
the software. A future goal could be to use implementations which are more
standard in the literature, which would allow for more direct comparisons.

More solution methods. Implementing more metaheuristics and first so-
lution strategies would be laborious but fruitful. This would increase the
number of use cases where the results are applicable and enable more com-
prehensive comparisons between methods. As mentioned in Section 3.1, a
possible extension would be to also study the interactions between meta-
heuristics and first solution strategies.

Larger sample sizes. The number of random problem instances for each
combination of problem parameters could be increased, which would make
the results obtained more statistically robust and less prone to random noise.

More variations of problem parameters. This includes for instance
increasing the number of problem sizes, adding different possible time window
configurations, using different node location distributions, or using different
dynamism characteristics for the problem.

Different VRP variants. One could study simpler variants, such as those
without time windows, without vehicle capacities or without pickups and de-
liveries. One could also study even more specialized variants of the DPDPTW.
Results about more general variants would perhaps be more useful: the more
specific the variant, the less real-world use cases there are for the results. Still,
if a very specific use case has simulation data tailored exactly for it, the data
is of course more valuable than more generic VRP simulation data.

Benchmark problem instances. Using benchmarks would require slight
alterations to the parameters of the VRP variant but it would enable more
direct comparison to other similar work in the literature.
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Conclusion

In this work we studied a VRP variant called the Dynamic Pickup and Deliv-
ery Problem with Time Windows (DPDPTW), and in particular, how differ-
ent solution methods perform in different scenarios of this problem variant.
This variant was chosen based on a case study on the subject and includes
time window constraints for each visited node, capacity constraints for each
vehicle and a pickup node – delivery node pair for each transportation re-
quest, among other details.

We compared five metaheuristics and four first solution strategies (which
provide a feasible initial solution for the metaheuristics) with two objective
functions. The metaheuristics were Simulated Annealing (SA), Tabu Search
(TS), Generic Tabu Search (GTS) and Guided Local Search (GLS). The first
solution strategies were Parallel Cheapest Insertion (PCI), Local Cheapest
Insertion (LCI), Path Cheapest Arc (PCA) and Path Most Constrained Arc
(PMCA). The objective functions were: to minimize the sum of the lengths
of all routes, and to minimize the length of the longest route. These meth-
ods were compared in DPDPTW scenarios which differed in the degree of
dynamism and problem size.

The main results obtained were that Guided Local Search (GLS) outperforms
other metaheuristics in most scenarios, and that Path Most Constrained
Arc (PMCA) is the most robust first solution strategy. A key result is also
that the choice of first solution strategy can have a large impact on the
final solution quality, depending on the scenario. These results are mostly
supported by the literature, especially the performance of GLS. First solution
strategies have been declining in popularity in VRPs due to metaheuristic
implementations generally not needing them, so current literature on them
is quite scarce.
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The applicability of the results is limited. Naturally they are most relevant if
the use case is the same as in the study, with metaheuristic implementations
that require first solution strategies, the same VRP variant, similar problem
parameters and so on. Generalizing beyond these circumstances is problem-
atic. However when the circumstances do match the results can potentially
be very useful, such as for the case study which this work was based on. Still,
the result relating to the performance of GLS can tentatively be generalized
across different VRP settings as it has backing in the literature.
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Appendix A

Additional cost data

Table A.1: Cost values by first solution strategy. Omitted values indicate
that no data exists, that is, the success rate is zero.

Objective Dynamism Problem size PCI LCI PCA PMCA
MS static 40 473.8 470.5 470.3 469.2
MS static 80 850.8 853.4 857.2 855.2
MS static 120 1217.4 1243.4 1218.6 1228.5
MS static 160 1570.1 1582.3 1568.1 1564.6
MS static 200 1903.6 1951.2 1908.2 1920.7
MS dynamic 40 620.2 613.0 566.2 608.3
MS dynamic 80 1011.5 1171.9 — 1183.7
MS dynamic 120 — 1864.4 — 1825.9
MS dynamic 160 — 2243.5 — 2559.5
MS dynamic 200 — — — 3404.0
ML static 40 158.9 158.9 159.0 160.1
ML static 80 199.5 168.6 174.7 209.0
ML static 120 382.8 346.5 306.4 328.6
ML static 160 425.9 390.1 383.6 372.0
ML static 200 451.2 427.4 388.3 453.3
ML dynamic 40 319.6 325.7 320.8 318.8
ML dynamic 80 350.6 349.0 351.3 351.0
ML dynamic 120 372.4 376.0 382.0 372.1
ML dynamic 160 382.2 380.1 — 414.8
ML dynamic 200 388.1 388.4 — 475.1
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Table A.2: Cost values (percentage difference to mean) by first solution
strategy. Omitted values indicate that no data exists, that is, the success
rate is zero.

Objective Dynamism Problem size PCI LCI PCA PMCA
MS static 40 0.60 -0.10 -0.13 -0.37
MS static 80 -0.39 -0.09 0.36 0.12
MS static 120 -0.78 1.34 -0.68 0.13
MS static 160 -0.07 0.70 -0.20 -0.43
MS static 200 -0.90 1.58 -0.66 -0.01
MS dynamic 40 3.03 1.84 -5.93 1.06
MS dynamic 80 -10.51 3.68 — 4.73
MS dynamic 120 — 1.16 — -0.93
MS dynamic 160 — -9.14 — 3.66
MS dynamic 200 — — — 0.00
ML static 40 -0.19 -0.22 -0.14 0.56
ML static 80 6.15 -10.31 -7.06 11.22
ML static 120 12.24 1.58 -10.16 -3.65
ML static 160 8.38 -0.71 -2.36 -5.31
ML static 200 4.91 -0.61 -9.71 5.41
ML dynamic 40 -0.52 1.40 -0.12 -0.76
ML dynamic 80 0.03 -0.41 0.23 0.15
ML dynamic 120 -0.84 0.09 1.70 -0.95
ML dynamic 160 -2.58 -3.14 — 5.72
ML dynamic 200 -6.98 -6.89 — 13.87
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Table A.3: Cost values by metaheuristic.

Objective Dynamism Problem size GTS TS GLS SA GD
MS static 40 477.9 465.1 458.6 474.8 478.6
MS static 80 858.2 853.3 841.4 858.2 859.8
MS static 120 1231.5 1227.3 1211.7 1231.4 1233.0
MS static 160 1575.6 1570.4 1559.3 1575.2 1575.9
MS static 200 1925.0 1919.8 1910.5 1924.1 1925.2
MS dynamic 40 618.4 602.5 560.5 611.7 616.4
MS dynamic 80 1125.4 1095.4 1178.7 1126.9 1141.2
MS dynamic 120 1801.0 1820.3 1747.4 1976.0 1822.4
MS dynamic 160 2354.8 2505.2 2550.1 2478.4 2562.5
MS dynamic 200 3480.1 3333.0 3294.4 3458.7 3453.7
ML static 40 161.6 157.7 155.0 160.0 161.6
ML static 80 192.3 182.7 184.8 189.2 190.7
ML static 120 335.9 343.2 342.5 341.9 341.9
ML static 160 392.6 393.0 392.6 393.2 393.2
ML static 200 430.6 429.7 430.4 431.1 428.5
ML dynamic 40 321.4 322.6 314.8 323.2 323.9
ML dynamic 80 351.3 350.7 344.6 352.7 352.9
ML dynamic 120 379.1 375.8 373.3 372.4 377.6
ML dynamic 160 394.2 392.3 394.3 390.0 391.1
ML dynamic 200 414.2 419.7 419.0 417.2 416.0
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Table A.4: Cost values (percentage difference to mean) by metaheuristic.

Objective Dynamism Problem size GTS TS GLS SA GD
MS static 40 1.47 -1.25 -2.64 0.81 1.61
MS static 80 0.47 -0.10 -1.50 0.47 0.66
MS static 120 0.37 0.03 -1.24 0.36 0.49
MS static 160 0.27 -0.06 -0.76 0.25 0.29
MS static 200 0.21 -0.06 -0.54 0.17 0.22
MS dynamic 40 2.74 0.10 -6.88 1.63 2.41
MS dynamic 80 -0.43 -3.09 4.28 -0.30 0.96
MS dynamic 120 -2.28 -1.23 -5.19 7.22 -1.12
MS dynamic 160 -4.63 1.46 3.28 0.37 3.78
MS dynamic 200 2.24 -2.09 -3.22 1.61 1.46
ML static 40 1.52 -0.93 -2.61 0.51 1.52
ML static 80 2.32 -2.77 -1.67 0.66 1.46
ML static 120 -1.53 0.62 0.42 0.25 0.24
ML static 160 -0.09 0.03 -0.09 0.07 0.07
ML static 200 0.12 -0.09 0.09 0.24 -0.36
ML dynamic 40 0.07 0.44 -1.98 0.63 0.84
ML dynamic 80 0.25 0.07 -1.67 0.64 0.70
ML dynamic 120 0.92 0.05 -0.63 -0.86 0.53
ML dynamic 160 0.46 -0.02 0.49 -0.61 -0.32
ML dynamic 200 -0.73 0.60 0.42 -0.00 -0.29
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