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Abstract
Financial institutions are required to perform credit loss provisioning under the Inter-
national Financial Reporting Standard 9 (IFRS 9) accounting standard by calculating
expected credit losses (ECL). ECL is calculated using three risk parameters: the
probability of default (PD), loss given default (LGD) and exposure at default (EAD).
This thesis focuses on LGD, which describes the percentage loss when the coun-
terparty goes into default. The objective of the thesis is to develop a framework for
calibrating internal-ratings based LGD models for non-defaulted exposures to IFRS 9
ECL calculations.

The calibration of the LGD model to IFRS 9 realized loss levels is discussed, and
two methods for incorporating point-in-time macroeconomic scenario adjustments
are presented. The first method models the loss rate time series with ordinary least
squares (OLS) regression, and compares the loss rate scenario forecasts to the long-run
average losses to obtain scenario scalars, which are used to directly adjust the LGD
estimates. The second method models the growth rates of collateral values using OLS
and expert judgement. The collateral values are typically used as input for the LGD
model, because LGD is highly dependent on the ratio of the exposure and collateral
values. The collateral values are adjusted for macroeconomic scenarios to indirectly
adjust the LGD estimates.

The framework is tested using simulated data sets that aim to describe the behaviour
of a real residential mortgage portfolio. The results discuss how the presented models
can be developed and incorporated into ECL calculations. The loss rate model
adjustments perform well when the loss rates are influenced by macroeconomic
factors. If the loss rate model is not applicable, the collateral value adjustments can
be used instead. The effectiveness of the latter approach, however, depends on the
underlying LGD model structure and the performance of collateral value forecasts.
In summary, the framework can be used for calibrating LGD models into real ECL
applications, and it can be also extended for other portfolios, defaulted exposures, and
alternative modelling techniques.

Keywords Loss given default, international financial reporting standard 9,
calibration, regression, macroeconomic scenarios
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Tiivistelmä
Rahoituslaitosten on tehtävä luottotappiovarauksia laskemalla odotettuja luottotappioi-
ta (ECL) International Financial Reporting Standard 9 (IFRS 9) tilinpäätösstandardin
mukaisesti. ECL lasketaan käyttämällä kolmea riskiparametria: maksukyvyttömyyden
todennäköisyyttä (PD), tappio-osuutta (LGD) ja vastuun määrää maksukyvyttömyyden
hetkellä (EAD). Tämä opinnäytetyö keskittyy LGD-parametriin, joka kuvaa prosentu-
aalista tappiota, kun vastapuolesta tulee maksukyvytön. Opinnäytetyön tavoitteena
on kehittää viitekehys, jossa terveiden vastuiden sisäisiin luottoluokituksiin tarkoi-
tettuja LGD-malleja kalibroidaan IFRS 9 ECL-laskentoihin, missä hyödynnetään
makrotaloudellisia skenaarioita.

Viitekehyksessä LGD-malli kalibroidaan vastaamaan IFRS 9:n mukaisia luotto-
tappioita, ja kahta menetelmää tutkitaan makrotaloudellisten skenaarioden sisällyttä-
misestä LGD-estimaatteihin. Ensimmäisessä menetelmässä tappio-osuus aikasarjaa
mallinnetaan lineaarisella regressiolla, ja mallin tuottamia skenaarioita verrataan pitkän
aikavälin tappio-osuuksiin, joista saadaan kertoimet eri skenaarioille. Kertoimilla kor-
jataan LGD-estimaatteja suoraan. Toisessa menetelmässä mallinnetaan vakuusarvojen
kasvuasteita regressiolla ja asiantuntĳaperusteisesti. Vakuusarvot toimivat tyypillisesti
LGD-mallien syötteenä, koska LGD on vahvasti riippuvainen vastuun määrän ja
vakuusarvojen suhteesta. Vakuusarvoja korjataan erilaisiin skenaarioihin, joka näkyy
epäsuorasti LGD-estimaateissa.

Viitekehystä testataan käyttämällä simuloitua dataa, joka pyrkii kuvaamaan todel-
lista asuntolainasalkun käyttäytymistä. Tuloksissa kuvataan esitettyjen mallien kehitys
ja soveltaminen ECL-laskennoissa. LGD-estimaattien korjaukset tappio-osuus aika-
sarjamallin avulla toimivat hyvin, kun tappioista löytyy riippuvuus makrotalousellisiin
tekĳöihin. Vakuusarvojen korjauksia voidaan käyttää, mikäli toimivaa aikasarjamallia
tappio-osuudelle ei löydy. Vakuusarvojen korjausten tehokkuus kuitenkin riippuu
LGD-mallin rakenteesta ja vakuusennusteiden toimivuudesta. Yhteenvetona voidaan
todeta, että viitekehystä voidaan käyttää LGD-mallien kalibroimiseen ECL laskentoi-
hin, ja jatkokehittää kattamaan erilaisia lainasalkkuja, maksukyvyttömiä vastuita sekä
erilaisia menetelmiä.
Avainsanat Tappio-osuus, IFRS 9, kalibrointi, regressio, makrotaloudelliset

skenaariot
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1 Introduction
Granting loans is core business for banks. Similarly as making investments into stocks
or bonds, lending money can be viewed as a long- or short-term investment, which
relies on the customers ability to pay back the borrowed amount with interest. Lending
exposes banks to credit risk, which is a type of risk where the bank might not receive
payments on the made investments because the counterparty goes into default (McNeil
et al., 2015). Default events can result into small or large credit losses depending on
the recovery process. Hence, banks need to perform credit loss provisioning in their
financial reporting by creating a capital reserve to cover the losses.

Credit loss provisioning has previously been practiced under the IAS 39: Finan-
cial Instruments: Recognition and Measurement (IAS 39) standard adopted by the
International Accounting Standards Board (IASB) in 2001 (IASB, 2014). The IAS 39
standard used the incurred loss model in provisioning, which allowed to recognize
and provision for credit losses only when there was objective evidence of losses being
incurred on the balance sheet date, and it was not allowed to include expected future
losses (Novotny-Farkas, 2016). The financial crisis revealed that the incurred loss
model under the IAS 39 was a weakness in the global financial system, as the delayed
recognition of credit losses was seen to have hidden systemic costs (Gubareva, 2021).
To combat these issues, the IASB issued a new standard called International Financial
Reporting Standard 9 (IFRS 9) in 2014 to replace the preceding IAS 39. The new
standard was fully adopted in January 2018. IFRS 9 establishes principles that financial
institutions and banks can use in their financial reporting regarding assets and liabilities
(IASB, 2014). The novelty in terms of credit risk and provisioning was to replace the
incurred loss model with a new expected loss model, which quantifies expected credit
loss (ECL) over the life of the financial instruments using forward-looking estimates
(Miu and Ozdemir, 2017).

The calculation of ECL is based on three risk parameters: Probability of Default
(PD), Loss Given Default (LGD) and Exposure at Default (EAD) (Gubareva, 2021,
Miu and Ozdemir, 2017). The same risk parameters are also used in the regulatory
capital calculations under the advanced internal ratings-based approach (A-IRB) (Miu
and Ozdemir, 2017, Stephanou and Mendoza, 2005), which was introduced by the
Basel Committee of Banking Supervision (BCBS) in the Basel II accord (BCBS,
2006).

This thesis focuses on the LGD risk parameter, which is the percentage amount
of loss from the exposure at default that is determined from the received discounted
payments from the default recovery process (Kellner et al., 2022). The general
predictability of LGD is usually challenging due to complex and long recovery
processes, and distributions with typically high probability masses around zero and
one values (Kellner et al., 2022). Many modelling approaches for LGD under A-IRB
approach have been studied, which include regression and multi-stage models (Tanoue
et al., 2017), survival analysis models (Joubert et al., 2018, Witzany et al., 2010),
and more advanced models such as neural networks and support vector machines
(Loterman et al., 2012, Qi and Zhao, 2011). In practice, models such as linear or logistic
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regression are usually employed due to their simplicity and ease of interpretation.
Appropriate risk quantification is further ensured by calibrating the LGD model

estimates to correspond long-run average LGD (EBA, 2017). Furthermore, the
A-IRB models tend to follow though-the-cycle (TTC) rating philosophy, i.e., they
are unconditional to the macroeconomic environment (Miu and Ozdemir, 2017).
However, the average levels of LGD can in reality vary through time depending on
the macroeconomic circumstances. Therefore, the IFRS 9 standard calls for point-
in-time (PIT) risk rating philosophy, meaning that estimates should be sensitive and
conditioned to the expected macroeconomic environment (Miu and Ozdemir, 2017).
The TTC and PIT ratings usually differ in the stability of the risk quantification over
time such that the PIT ratings tend to be more volatile and cyclical (Novotny-Farkas,
2016).

In IFRS 9, there are no specific or strict methodologies for calculating ECL, and
thus, financial institutions often choose to adapt already developed A-IRB models into
the IFRS 9 ECL framework (Gubareva, 2021). This approach aims to be consistent
with the risk management operations, and in terms of resources in model development
and maintenance it aims to reduce workload (Miu and Ozdemir, 2017). The alternative
approach would be to develop entirely new IFRS 9 risk parameter models. The former,
while being lighter, requires identifying the most crucial methodological differences
between A-IRB and IFRS 9 and applying adjustments in correct and consistent manner
to obtain proper PIT estimates. Incorporating macroeconomic conditions to the IFRS
9 LGD models via PIT adjustment techniques are not widely present in literature, but
still there are studies that cover the most reasonable methodologies.

The first PIT adjustment method is to directly adjust the calibrated LGD estimates,
i.e., adjusting the outputs of the model. An example was presented in Joubert et al.
(2021), where a separate error correction model (ECM) was applied on top of the
developed survival analysis based LGD model. The ECM was fitted to the average
LGD estimate time series with exogenous macroeconomic factors. The ECM outputs
were then used to calculate adjustment scalars for different macroeconomic scenarios,
which were used to adjust individual LGD estimates. Joubert et al. (2021) also
proposed to study the use of regression models with time series errors for the same
application.

The second method is to incorporate macroeconomic conditions into the risk
drivers (explanatory variables) used in the LGD model, i.e., adjusting the inputs of
the model. An example was presented in Miu and Ozdemir (2017), where LGD was
estimated by applying a regression model for forecasting annualized growth rates
of collateral values. This is an intuitive approach, because collateral values can be
assumed to follow the macroeconomic conditions. However, the research of Miu and
Ozdemir (2017) used a relatively simple model, where it was assumed that the total
recovery rate could be approximated in terms of collateral value and the exposure at
default. Thus, there is room for development by generalizing the methodology for
regression type of models, and also to alternative risk drivers.

Both adjustment types can be modelled with similar methodologies which take
into account time series theory. The objective is to model how the observed loss
rate time series and the growth rates of risk drivers depend on the macroeconomic
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conditions. The main modelling method that will be considered is ordinary least
squares (OLS) regression. This is a simple method as it is easy to interpret and it
enables the use of different model configurations by including the effects of multiple
macroeconomic factors with or without lags using different time series variable
transformation techniques. Furthermore, it can be extended to a regression with time
series errors model if the error terms exhibit autocorrelated behaviour, see, e.g., Tsay
(1984).

This thesis presents a framework for converting an A-IRB LGD model into the
IFRS 9 expected credit loss regime. The framework describes methodology for
calibrating the LGD estimates to the IFRS 9 LGD realization level for proper risk
quantification. This thesis assumes that the risk differentiation obtained from the
A-IRB model can be applied for IFRS 9 purposes as well to keep synergy between the
two, and there is no need to re-estimate the model. The main topic in the framework is
to present PIT adjustment methods to obtain forward-looking LGD estimates for the
ECL calculations. This consists of identifying the impact of macroeconomic factors to
the LGD realizations and risk drivers using OLS time series modelling and applying
the developed macroeconomic models to adjust the LGD estimates. Furthermore, the
PIT adjusted LGD model is evaluated by testing the model performance on separate
testing data. Additionally, the models are backscored to historical data to see how
responsive the models are to macroeconomic fluctuations. The LGD modelling and
PIT adjustment framework focuses on non-defaulted secured residential mortgages.
The consideration of defaulted assets and other types of loans is left for future research
although similar methods can be employed for those as well.

As a restriction, the model development and analysis is conducted on simulated
data sets, because actual data cannot be used in this thesis due to data privacy
policies. Via simulated data, the results are also easier to be generalized for alternative
studies. Simulation introduces the possibility to test different types of macroeconomic
structures w.r.t risk drivers and LGD to give better understanding how the different PIT
adjustment techniques work, and how the performances depend on the macroeconomic
conditions. However, it is noted that simulations can cause bias in the modelling and
interpretation of the results, and it is not an accurate representation of reality. The
simulation algorithm is based on simulating LGD realizations and risk drivers via
Gaussian copulas as described in McNeil et al. (2015), and incorporating risk driver
distribution changes according to macroeconomic factors which are sourced from
Statistics Finland.

The thesis is structured as follows: Section 2 reviews the expected credit loss
framework and discusses the definition of loss given default along with background
on used risk drivers and modelling techniques. Section 3 presents the point-in-time
adjustment framework, which comprises of calibrating the A-IRB LGD model to IFRS
9 loss levels, OLS time series modelling for loss rates, developing a risk driver model
for collateral values, and the evaluation of the PIT adjustments. It also describes the
simulation algorithm and macroeconomic data. Section 4 presents detailed analysis of
the results and shows examples on how the methods can be used. Section 5 provides
discussion and conclusions.
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2 Background

2.1 Expected Credit Loss Framework

2.1.1 Stage Allocation

The new expected loss model in IFRS 9 introduces a three-stage impairment framework
to recognize ECL, where assets are allocated into three different stages according to
the changes in the assets credit quality since the initial recognition (Beerbaum and
Ahmad, 2015). The stages are illustrated in Figure 1.

Figure 1: The IFRS 9 asset stages according to Beerbaum and Ahmad (2015).

Stage 1 includes assets that have no significant increase in credit risk observed up
to the reporting date compared to the origination date, or they have low credit risk
in general at the reporting date (Novotny-Farkas, 2016). The stage 1 assets can be
named as “performing”, and the financial institution can assume to obtain an adequate
compensation to the risk it has taken (Gubareva, 2021). For these assets the ECL is
recognized on 12-month horizon, meaning expected credit losses that can occur from
possible defaults up to 12-months after the reporting date (Novotny-Farkas, 2016). In
stage 1 assets the interest revenue is calculated using the assets gross carrying amount
(Beerbaum and Ahmad, 2015).

In case significant increase in credit risk is identified, but no objective evidence of
impairment is observed, then assets are moved to stage 2 (Novotny-Farkas, 2016). In
this stage assets are called “under-performing”, but are not considered as defaulted.
However, the risk related to holding the assets is assumed not to be anymore compen-
sated by the banks generated proceeds, and thus, lifetime ECL is recognized (Gubareva,
2021). Lifetime ECL stands for expected credit losses which are calculated on the
entire remaining lifetime of the assets. Lifetime ECL aims to reflect the present value
of possible default losses that can occur during all periods in the assets remaining
lifetime, and it is essentially a weighted average over all periods with probabilities of
default as weights (Gubareva, 2021). As in stage 1, the interest revenue is calculated
on the gross carrying amount of the asset (Beerbaum and Ahmad, 2015).

Lastly, the stage 3 assets in the three-stage approach comprise of assets where
objective evidence of credit impairment exists at reporting date (Novotny-Farkas,
2016). Hence, these assets are called “non-performing” or “defaulted”. For these
assets, lifetime ECL is recognized as in stage 2. Compared to stage 1 and 2, however,
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the interest revenue is calculated on the net carrying amount of the asset (Beerbaum
and Ahmad, 2015).

The IFRS 9 staging approach aims to have forward-looking and timely assessment
of potential losses, which was lacking in the IAS 39 standard. For example, the stage
3 assets in IFRS 9 can be interpreted in similar way as in IAS 39, but now the stage 1
and 2 exposures replace those that would be assessed together for impairment under
the IAS 39, and hence, the recognition of lifetime ECL will now occur earlier due to
the stage 2 allocations (Novotny-Farkas, 2016). In this thesis the focus is on the stage
1 and 2 assets, as both represent non-defaulted assets, and can essentially be modeled
using the Basel A-IRB models for performing exposures.

2.1.2 Expected Credit Loss

The expected credit loss in IFRS 9 framework is calculated using the probability of
default (PD), loss given default (LGD) and exposure at default (EAD) risk parameters,
and the general formula for ECL can be expressed as follows:

ECL = PD × LGD × EAD. (1)

Thus, the ECL formula is a way to quantify the underlying credit risk, the expected
value of losses, where PD can be interpreted as the probability of the event of interest
(default) and LGD × EAD can be interpreted as the consequence of the event. For the
complementary event, i.e., no default, the losses can be assumed to be zero.

The ECL formulation is considered in detail. Let 𝑡 ∈ {1, 2, . . . , 𝑇𝑀} be a time
interval that reflects monthly, quarterly or yearly frequencies with respect to a reporting
date, i.e., ECL calculation date. The last time point 𝑇𝑀 is determined for each asset
with respect to the stage allocation and the remaining maturity, i.e., 𝑇𝑀 is at maximum
12-months for stage 1 assets, and the remaining lifetime of the assets in stages 2 and 3
(Joubert et al., 2021). Note that the frequency of the forward-looking calculations can
vary depending on how the financial institution seeks to address expected credit losses.
In the context of converting A-IRB models to IFRS 9 format, it may be convenient
to use yearly based ECL calculations as the Basel regulatory capital is calculated on
one-year horizon (Miu and Ozdemir, 2017).

Consider the PD risk parameter. The PD gives the probability that an asset will be
in default at some point in the upcoming time horizon. For stage 1 assets, for example,
the PD gives the probability that the asset will be in default in the next 12-months after
the current estimation moment. For stage 2 assets, the PD gives the probability that
the asset defaults at some point during its remaining lifetime. For stage 3 assets the
PD equals to one, because there is no more uncertainty regarding the default event. A
default essentially means that the asset is not able to satisfy its obligations to repay
the loan. In IFRS 9 there is no strict definition of default, but the definition should be
aligned and consistent with the definition used for internal credit risk management,
see, e.g., IASB (2014) par. B5.5.37.

The PD for the entire time horizon may also be characterized in terms of individual
time intervals using marginal PD:s. A marginal PD gives the probability that the asset
survives to time 𝑡 − 1 and then defaults in time period 𝑡 (Joubert et al., 2021). This
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illustrates the term structure of credit risk, which can be defined as the behaviour of
credit spread on the varying maturity of assets (Fons, 1994). Mathematically, the
marginal PD can be expressed as

PD(𝑡 − 1, 𝑡) = PD(𝑡) · SR(𝑡 − 1),
where PD(𝑡) is the probability of default in the time interval 𝑡 and SR(𝑡 − 1) is the
survival rate at time interval 𝑡 −1 (Gubareva, 2021). The marginal PD can equivalently
be expressed in terms of the cumulative probability of default CPD(𝑡) as is described
in Gubareva (2021), i.e., PD(𝑡 − 1, 𝑡) = CPD(𝑡) − CPD(𝑡 − 1).

Next, the LGD and EAD risk parameters are considered. In contrast to PD, these do
not exhibit a probabilistic term structure. Instead, LGD is measured over the lifetime
of the loan exposure (BCBS, 2015), which essentially means that the LGD estimate is
always related to the entire recovery process. Thus, the LGD can be expressed just as
an expected value of a percentage loss, when the asset defaults in time interval 𝑡. This
can be noted as LGD(𝑡). The LGD parameter is described more in detail in Section
2.2.

The EAD depends only on the amount of exposure at the time of default, which
can be deterministic according to a pre-defined payment plan, which is common for,
e.g., housing loans. There can also be stochastic variation in EAD if the loan has limit
that can be withdrawn or that pre-payments occur, see, e.g, Miu and Ozdemir (2017).
The EAD can thus be expressed as EAD(𝑡) = Exposure(𝑡) in deterministic case, and
EAD(𝑡) = 𝐸 [Exposure(𝑡)] in stochastic case.

The IFRS 9 expected credit loss model requires the use of the effective interest
rate (EIR) for discounting future cash flow recoveries (Beerbaum and Ahmad, 2015).
The EIR is either the effective interest rate determined at the initial recognition of the
asset, or the current effective interest rate if the instrument has varying interest rate
(IASB, 2014, par. B5.5.44.). Further, the ECL is discounted to the reporting date and
not some other date like expected default date (IASB, 2014, par. B5.5.44.). The idea
of the discounting is to address the time value of money in the ECL calculation, i.e.,
the cash flows occurring in the future are not of same value as currently obtained cash
flows.

Finally, the ECL formula can be formalized in similar way as is done, for example,
in Schutte et al. (2020), Gubareva (2021) and Joubert et al. (2021). Consider a
portfolio 𝑃 = 𝑃1 ∪ 𝑃2, which consists of both performing assets 𝑃1 (stage 1) and
under-performing assets 𝑃2 (stage 2). The ECL for an asset 𝑖 ∈ 𝑃 is given by

ECL𝑖 =
𝑇𝑀,𝑖∑︁
𝑡=1

PD𝑖 (𝑡) · SR𝑖 (𝑡 − 1) · LGD𝑖 (𝑡) · EAD𝑖 (𝑡)
(1 + EIR𝑖)𝑡

, (2)

where EIR𝑖 is the effective interest rate of the asset 𝑖, and 𝑇𝑀,𝑖 is the maximum time of
ECL calculation depending if the asset 𝑖 is in stage 1 or 2.

The formula (2) applies mainly for stage 1 and stage 2 assets, which are not
defaulted. When an asset is in default, then the PD becomes one. The only uncertainty
that lies in the recovery process is the amount of cash flows the institution is going to
recover. Thus, the expected losses are calculated w.r.t the exposure amount which is
outstanding at the reference date.

14



2.1.3 Comparison to Basel Accord

The main purpose of the IFRS 9 ECL framework is credit loss provisioning, which
aims to cover expected losses. The ECL is assessed at each reporting date and the
projected values of ECL are recognized in the profit and loss statement (Temim, 2019).
Usually, when banks are subject to IFRS 9 they are also subject to the Basel III Accord
capital requirements (Temim, 2019).

The Basel framework aims for credit measurements to calculate regulatory capital,
which is the minimum capital requirement for banks to hold as buffer (Tobback et al.,
2014) in order to cover for unexpected losses (Temim, 2019). The illustration of
expected and unexpected losses is shown in Figure 2.

Figure 2: An illustration of the credit loss distribution and how expected and
unexpected losses are seen.

The requirements are defined by the Basel Committee of Banking Supervision
(BCBS), and the regulatory capital is calculated based on risk weighted assets (RWA)
such that the total regulatory capital must be no lower than 8% of the RWAs (BCBS,
2006, King and Tarbert, 2011, Stephanou and Mendoza, 2005). The regulatory capital
calculations are currently guided through the third Basel Accord (Basel III), see, e.g.,
BCBS (2011). Basel III was taken into full implementation in January 2023 in EU
institutions.

The Basel accord provides two approaches to calculate regulatory capital: the
standardized approach (SA) and the internal ratings-based approach (IRB). In the SA
the banks use risk weights given by external credit assessments, while in IRB the banks
can use internal models for RWA calculations (Temim, 2019). The IRB-approach can
further be divided into two alternatives: “foundation” and “advanced”. The differences
between these is that in the foundation approach institutions can use internal models
only for PD calculations, while in advanced approach all PD, LGD and EAD risk
parameters can be calculated using internal models (Temim, 2019). Hence, for the
rest of the thesis when IRB is mentioned it always indicates the advanced approach.

In terms of LGD models, IRB and IFRS 9 have some fundamental differences
which are described next according to Temim (2019). First, the intention of the
LGD estimate in the Basel IRB case is a “downturn” estimate that reflects adverse
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economic conditions, while in IFRS 9 the estimate reflects “current”, best estimate
and forward-looking economic conditions. Second, in terms of collection costs, both
direct and indirect costs associated with the collection of the exposure are considered
in Basel, but in IFRS 9 only directly attributable costs to the collection of recoveries
are considered. Third, Basel and IFRS 9 discount cash flows differently, see Section
2.2.1 for details. Lastly, in IFRS 9 there is no requirement on the data period used for
modelling purposes, but Basel requires a minimum of five years of data to be used
in modelling for retail exposures and seven years for sovereign, corporate and bank
exposures.

In terms of rating philosophies the Basel and IFRS 9 have a different view. Point-
in-time (PIT) rating philosophy is an essential concept in the IFRS 9 ECL framework.
The main target of PIT philosophy is to capture the conditions of the current and
expected macroeconomic environment and reflect them in risk parameter calculations.
The through-the-cycle (TTC) rating philosophy aims in stable in risk parameter
calculations regardless of the macroeconomic conditions. A hybrid approach is a
combination of PIT and TTC rating philosophies, where current economic conditions
are incorporated in long-run calibrated risk parameters (Novotny-Farkas, 2016). An
illustration of rating philosophies for LGD, similarly as for PD in Novotny-Farkas
(2016), is shown in Figure 3.

Figure 3: Example of LGD cyclicality between the rating philosophies.

There is no specific or strict quantitative definition on what is considered PIT,
TTC or hybrid. Rather, it is a combination of testing and empirical evaluation of the
risk parameter models to assess if the models are PIT or TTC. Typically, TTC models
are stable over time and overestimation is seen during good economic cycles while
underestimation is seen in bad economic cycles. PIT models on the contrary react to
the fluctuations in the economic cycle, and hence, over time there should be less over-
or underestimation. As seen in Figure 3 the PIT estimate goes from high to low while
the TTC estimate is stable over time.

With these differences between Basel and IFRS 9 in mind it is possible to use the
Basel models for IFRS 9 purposes. The requirement is that significant adjustments are
made to the regulatory components like indirect costs, PIT corrections for the TTC
estimates, and adjusting the estimates to be either 12-month or lifetime (Temim, 2019).
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2.1.4 Scenarios

Scenario analysis is an important part of the IFRS 9 ECL framework, which aims to
incorporate macroeconomic scenarios into the ECL calculations. As Miu and Ozdemir
(2017) describe, it is common practice to incorporate macroeconomic conditions
into the risk parameters via probabilistic measures in order to quantify the “expected
economic outlook”. In IASB (2014) par. 5.5.17(a) it is stated that expected credit loss
estimation should reflect unbiased and probability-weighted amounts evaluated with a
range of possible outcomes. In the most recent EBA (2023) IFRS 9 monitoring report,
emphasis was put on the incorporation of macroeconomic scenarios, especially for
PD and LGD.

Consider the simple notation for the ECL formula in (1), and suppose that each
risk parameter PD, LGD and EAD is conditional to a macroeconomic factor 𝑀.
Moreover, let there be a set of scenarios 𝑆 = {1, 2, . . . , 𝑁𝑆}, where 𝑁𝑆 is the total
number of scenarios. The macroeconomic factor can obtain a different values 𝑀 = 𝑚𝑠

for all 𝑠 ∈ 𝑆. The scenarios are assigned with probabilities 𝑝(𝑠) ∈ [0, 1] for all 𝑠 ∈ 𝑆
such that

∑︁
𝑠∈𝑆 𝑝(𝑠) = 1. The scenario based ECL can be written as the probability

weighted sum

ECL =
∑︁
𝑠∈𝑆

𝑝(𝑠) · PD(𝑀 = 𝑚𝑠) · LGD(𝑀 = 𝑚𝑠) · EAD(𝑀 = 𝑚𝑠),

where PD(𝑀 = 𝑚𝑠), LGD(𝑀 = 𝑚𝑠) and EAD(𝑀 = 𝑚𝑠) are the risk parameter
values conditional on the macroeconomic factor 𝑀 = 𝑚𝑠. There can be more than one
macroeconomic factors that influence the PD, LGD and EAD risk parameters, and
they can also be different with respect to the risk parameters.

One must be aware of potential non-linear effects in terms of risk parameters and
macroeconomic conditions. For example, calculating the LGD conditional to the
expected value of the macroeconomic factor 𝐸 [𝑚] = ∑︁

𝑠∈𝑆 𝑝(𝑠) · 𝑚𝑠 can lead to the
following inequality: LGD(𝑀 = 𝐸 [𝑚]) ≠ ∑︁

𝑠∈𝑆 𝑝(𝑠) · LGD(𝑀 = 𝑚𝑠), because the
conditional risk parameters are not necessarily linear functions (Miu and Ozdemir,
2017).

The IFRS 9 standard does not specify the number of scenarios to be evaluated.
However, in accordance to par. 5.5.18 and par. B5.5.42 in IASB (2014), the institutions
must consider both the possibilities that credit losses occur or do not occur even if the
possibility for credit losses is low, and therefore, there should be at least two different
scenarios if it is identified that scenarios can impact the timing and amounts of cash
flows. One way to specify scenarios is to evaluate three distinct scenarios: baseline
(expected scenario), strong (optimistic scenario) and weak (pessimistic scenario)
(Joubert et al., 2021). These cover the full range of bad, expected and good outcomes.

2.2 Loss Given Default

2.2.1 Definition

Loss given default is defined as the percentage amount of loss from the exposure at
default which is determined from the recovered cash flows in the recovery process
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(Kellner et al., 2022). The recovery process is assessed individually for all defaulted
assets, and these processes can be very complex. Furthermore, the realized LGD can
only be calculated based on recovery processes of defaulted assets (Witzany et al.,
2010), because only then the recovered cash flow information is available. This creates
the conditional relationship to PD.

The recovery processes can end in different ways, i.e., they become complete.
For example, an asset can “cure” from the default by going back to performing stage
after remedying actions. In these cases usually no collection actions need to be taken,
and the realized LGD values are generally low. In most severe cases very few cash
flows are recovered, and the collection and liquidation process of the collateral might
not cover all of the outstanding net exposures. Hence, these unsecured exposures are
eventually written-off, potentially causing larger LGD realizations.

Some recovery processes can last for extremely long times, even many years. Thus,
in EBA (2017) par. 156, it is stated that institutions should define a maximum length
for the recovery process. Once the recovery process length reaches the maximum
length, then the institution considers the recovery process as complete, and does
not expect any further cash flows. Recovery processes that are not completed with
some criteria such as cure, write-off or reaching the maximum recovery length are
considered as incomplete. In the IFRS 9 context, however, application of maximum
recovery process length can introduce conservatism to loss calculations, which is not
in line with the IFRS 9 view on unbiased estimation of losses IASB (2014) par. 5.5.17.
Hence, the maximum recovery process length is not be required in IFRS 9, but it
could be acceptable if it is deemed that the maximum length is sufficiently long such
that it takes nearly all cash flows into account without biasing loss levels, because
the assumption is that most recent and unbiased information yields more accurate
calibration.

The realized LGD calculation for a defaulted asset can be expressed as follows.
Let the recovery process of a defaulted asset have a length 𝐾 ∈ (0, 𝑇𝑚𝑎𝑥], where
𝑇𝑚𝑎𝑥 is the maximum length of the recovery process. Moreover, consider a partition
0 < 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 < · · · < 𝑡𝐾 < 𝑇𝑚𝑎𝑥 , where 𝑡0 is the time of default (González
et al., 2018). Next, let 𝐶𝐹𝑡𝑘 be the recovered net cash flow amount at time 𝑡𝑘 . The net
cash flows must be discounted with a proper interest rate 𝑒 with respect to a reference
point, e.g., the time of default 𝑡0 to calculate the realized loss from the full recovery
process. Thus, according to Witzany et al. (2010), the discounted cash flow 𝐷𝐶𝐹 at
time 𝑡𝑘 is calculated by

𝐷𝐶𝐹𝑡𝑘 =
1

(1 + 𝑒)𝑡𝑘𝐶𝐹𝑡𝑘 .

The total discounted cash flow 𝑇𝐷𝐶𝐹 is obtained by summing all discounted cash
flows after the default moment 𝑡0 by

𝑇𝐷𝐶𝐹 =

𝐾∑︁
𝑘=1

𝐷𝐶𝐹𝑡𝑘 .

According to Witzany et al. (2010) the total recovery rate (RR) of the recovery process
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can be defined in terms of the total discounted cash flow and the EAD amount by

RR =
𝑇𝐷𝐶𝐹

EAD
.

Finally, the realized LGD value can be viewed as the complementary value of the
recovery rate (Witzany et al., 2010). Hence, the realized LGD of the entire recovery
process is

LGD = 1 − RR.

The logic of calculating the realized LGD for the entire recovery process can also
be generalized in a way that the realized LGD is calculated with respect to a time point
𝑡 𝑗 > 𝑡0, which is used for modelling how much losses can still occur after an asset has
been in default up to 𝑡 𝑗 . The new calculation is done by discounting the cash flows
obtained at 𝑡𝑘 with respect to the time point 𝑡 𝑗 , where 𝑡 𝑗 < 𝑡𝑘 . The total cash flow
is calculated by summing all discounted cash flows after 𝑡 𝑗 . Additionally, instead of
using the EAD amount to calculate the recovery rate, the exposure at reference (EAR)
is used. This is defined similarly as in González et al. (2018) via EAD and realized
cash flows by EAR𝑡 𝑗 = EAD −∑︁ 𝑗

𝑖=1𝐶𝐹𝑡𝑖 .
To clarify the use of the realized LGD calculations, for performing and under-

performing (stage 1 and 2) assets, the dependent variable used in LGD modelling is
the realized LGD calculated in terms of the default date, which takes into account
the entire recovery process. For LGD modelling of defaulted assets (stage 3) the
dependent variable is the realized LGD with respect to the reference date in the default
period, i.e., the loss is assessed in terms of the current outstanding exposure where
already realized cash flows are taken into account.

For incomplete defaulted cases, it is not possible to calculate the final realized
LGD that reflects the outcome of the entire recovery process. Instead, it is only
possible to calculate the LGD in terms of the so-far recovered cash flows using the
same calculation logic described above.

Generally, the realized LGD can be assumed to lie in the interval [0, 1], i.e., there
are very small losses or the entire exposure amount is lost. However, in practice,
the phenomenon of LGD is much more complicated and the realized LGD is not
restricted between zero and one. This can be due to different sizes of exposures, cost
components, and the effects of the discounting rate can cause extreme realized LGD
observations to show up in the data, i.e., values significantly above one or below zero.
Figure 4 shows an example visualization of a potential realized LGD distribution that
is restricted between zero and one. The distribution is obtained by sampling from
a Beta-distribution with parameters 𝛼 = 0.2 and 𝛽 = 0.5. The key takeaway is the
bimodal effect in the distribution, where most of the probability mass is located around
zero and one values.

Cash flows can be defined in various ways, depending on the processes of the
institution as well as the underlying modelling regime, e.g., A-IRB or IFRS 9. For
example, Joubert et al. (2021) uses cash flows defined as the difference between the
assets current exposure and the assets exposure in the previous month, adding the fees
and interest, and subtracting the written-off amount. In Tanoue et al. (2017) the cash
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Figure 4: Example of a realized LGD distribution.

flows are defined as just a single amount, the total write-off amount of the recovery
process. Qi and Yang (2009) define total cash flows as the sum of accrued interest,
foreclosure expenses, property maintenance expenses and net recoveries.

In EBA (2017) par. 144 it is stated that institutions should include all direct and
indirect costs related to the recovery process. According to EBA (2017) par. 145,
direct costs should be directly traceable to the collection process of an exposure,
such as costs of collection services, legal costs, or the cost of hedges and insurances.
Moreover, EBA (2017) par. 146, states that indirect costs include overheads, costs
related to the running of the recovery process, costs that are related to the collection
procedures but that cannot be traceable to a specific exposure, and overall costs of
collection services that are not part of direct costs. As indirect costs are not traceable
to individual exposures, the IFRS 9 cash flow calculations will exclude these (Miu and
Ozdemir, 2017).

The discounting rate is an essential part of the realized LGD calculation to address
the time value of money, and therefore, it can have a large impact on the LGD
realizations. In the Basel IRB approach the LGD is viewed as an “economic loss”,
while in IFRS 9 the LGD is viewed as an “accounting loss” (Miu and Ozdemir, 2017).
Hence, the discounting approach is different.

The Basel discounting rate is composed of the primary inter-bank offered rate with
respect to the moment of default, and an add-on of 5%-points, see, e.g., EBA (2017)
par. 143. The primary inter-bank offered rate should be the 3-month Euribor (Euro
Interbank Offered Rate) or some other comparable liquid interest rate, see, e.g., EBA
(2017) par. 143. In the consultation paper EBA (2016) par. 122 it is discussed that
the primary inter-bank offered rate can also be the 12-month Euribor, and that the
5%-add-on describes the average level of risk premium. Thus, the Basel discounting
rate is

𝑑𝐵𝑎𝑠𝑒𝑙 =
1

1 + PIB + 5%
,

where PIB is the primary inter-bank offered rate.
In IFRS 9 the discounting rate should be based on the effective interest rate of the

asset, which is either the effective interest rate at the moment of origination or the
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current effective interest rate for assets with varying interest rate (IASB, 2014, par.
B5.5.44.). The effective interest rate is essentially the reference rate plus the margin
determined by the bank. The reference rate can be for example the 12-month Euribor.
Depending on the reference rate, the effective interest rate is revised from time to time.
For example, in the case of 12-month Euribor the revision is done every 12-months.
The interest rate margin is determined by the bank via pricing policies. There can be
many ways to do it. For example, according to Witzany et al. (2010) the interest rate
margin should cover the expected loss PD × LGD besides other components such as
administrative costs or minimum profits. The IFRS 9 discounting rate can be expressed
as

𝑑𝐼𝐹𝑅𝑆9 =
1

1 + EIR
,

where EIR = REF+ IM is the effective interest rate calculated as a sum of the reference
rate (REF) and the interest rate margin (IM).

2.2.2 Risk Drivers

Loss given default can be characterized and modelled via a set of explanatory variables
called risk drivers. Qi and Yang (2009) express that commonly known characteristics
that impact LGD include information from contract information, borrower information,
industry conditions and types, and macroeconomic factors. In retail loans, Matuszyk
et al. (2010) describe that LGD is driven by a mixture of uncertainty about the
customers willingness and ability to pay and the decisions made by the institution
regarding collection processes.

One common risk driver that has been identified to impact LGD in secured retail
portfolios is loan-to-value (LTV), see, e.g., Qi and Yang (2009). The LTV is a financial
ratio that describes the proportion between the loan and collateral value. The collateral
value can be defined in many ways, either taking only into account the collateral value
of residential properties which could be reasonable for residential loans portfolios or
a combinations of different values that can be deemed as collateral. The exposure
amount could also be measure according to the loan origination or the reporting date.
The location of the collateral may drive the level of losses as well, because it can affect
the collateral valuation.

Qi and Yang (2009) define LTV in two ways. The first definition regards original
LTV which is calculated as the ratio of the original loan amount and original property
value. The second definition regards current-LTV which is calculated as the ratio of
unpaid balance at default and the broker’s opinion of the collateral value at default
adjusted with house price index. Qi and Yang (2009) identified that the current-LTV
has significant impact on LGD.

Other potentially important risk drivers can be, for example, arrears related risk
drivers and the age of the loan until defaulting (Matuszyk et al., 2010). Moreover,
information on the borrower such as the wealth, education and income can explain the
level of losses (Qi and Yang, 2009).

Macroeconomic factors can have large impact on LGD as well. For example,
Tobback et al. (2014) obtain improved performance by including macroeconomic
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factors in the LGD model, which were in line with business cycle intuition and
other studies. Also Bellotti and Crook (2012) obtain improved predictive power
when macroeconomic factors were included in the modelling data. Moreover, the
current-LTV in Qi and Yang (2009) shows that the house price index corrected LTV
explains the LGD better.

In summary the LGD is impacted by a mixture of risk drivers and macroeconomic
factors. Out of all possible information the institution has available there can be a
set of risk drivers that are proven to explain LGD in the best way according to some
modelling techniques. Moreover, there can be a set of macroeconomic factors that
impact LGD directly or indirectly in economic cycles, while the macroeconomic
factors can also affect risk drivers such as collateral values.

2.2.3 Modelling Techniques

The common approach to model LGD is to use parametric linear models due to their
simplicity and ease of interpretation. Non-parametric models like regression trees
are used as well, because they are able to find non-linear effects while still being
explainable. Multi-stage modelling, where a combination of modelling techniques such
as logistic and linear regression models is used to tackle bimodal LGD distributions to
boost predictive performance while being easy to understand (Tanoue et al., 2017).
More complex non-linear models like neural networks and support vector machines
have been tested in benchmark studies, and they have shown to give significantly better
performances compared to traditional methods (Loterman et al., 2012). However,
complex non-linear models are often “black boxes”, meaning that their outputs are
hard to explain, if they are explainable at all. Credit risk models are required to be
explainable as they are used as tools for, e.g., risk management, business decisions
and setting risk limits.

One common modelling technique is the ordinary least squares (OLS) linear
regression model due to its simplicity and relatively good performance compared to
more complex models. However, the OLS model assumes linear relationship between
the dependent and independent variables, which can be a strong assumption. Moreover,
the normality assumption of the error terms in OLS modelling can be violated as
the LGD distribution is often not normally distributed (Bellotti and Crook, 2012).
This is not, however, a major problem as the non-normality of the error terms mainly
affects the estimators for standard errors, which affect, e.g., confidence intervals and
hypothesis tests (Chatterjee and Simonoff, 2013). Bootstrapping methods can be used
to cope with this challenge (Bellotti and Crook, 2012).

Distribution transformations prior to OLS estimation can be performed to tackle
this issue of bimodal distributions, for example. One can apply, e.g., beta-distribution
or Box-Cox transformation to the LGD prior to estimating the OLS coefficients
(Loterman et al., 2012). However, Loterman et al. (2012) found that these types of
transformation perform consistently worse than OLS, and the reason was argued to be
that these approaches also have trouble dealing with point densities in LGD and the
transformations can introduce bias. Risk driver transformation techniques can also
be used to boost OLS performance. For example, Matuszyk et al. (2010) shows that

22



a weights of evidence binning approach with linear regression improves predictive
performance compared to standard linear regression. OLS has also an advantage that
the values of LGD are not needed to be restricted on any particular interval, e.g., [0, 1],
which is not feasible for real LGD distributions. For example, the beta-transformation
OLS approach requires LGD values to be in (0, 1), which requires clipping of the
LGD distribution, potentially losing information.

A disadvantage in OLS and other statistical models is that they require the use of
complete recovery process information, i.e., the models are always fitted to realized
LGD values which are obtained from complete recovery processes. Therefore,
incomplete defaults cannot be used in model fitting as the currently-realized LGD
values for those defaults can bias the model. However, this topic is tackled in model
calibration where LGD values for incomplete defaults need to be estimated.

One technique that is able to take into account also incomplete recovery processes
in model estimation is the survival analysis approach, see, e.g., Witzany et al. (2010),
Joubert et al. (2018), Joubert et al. (2021). This technique can be extremely effective
for LGD modelling with small data sets where all available information about cash flow
recoveries are crucial. Witzany et al. (2010) show that the survival analysis approach
produce better predictive performance compared to OLS using a fairly small data set
of 4000 observations. However, the modelling approach in Witzany et al. (2010) has
its pitfalls as strong assumptions for cash flows must be made. For example, the cash
flows need to be non-negative and the total cash flows never exceed the exposure at
default amount. Some aspects to tackle these assumptions were presented in Joubert
et al. (2018).

Overall, the general consensus in the LGD modelling literature is that the model
performances are typically quite poor, having coefficient of determination (𝑅2) values
around 10% (Witzany et al., 2010), but depending on the modelling data or technique
used the 𝑅2 values can range from 4% to 43% as was shown in the benchmark study
of Loterman et al. (2012). Loterman et al. further shows that non-linear models
significantly outperform linear models, suggesting that the relationship between LGD
and risk drivers may be non-linear. All in all the LGD methodology literature indicates
that LGD is an exceptionally complex phenomenon to model.
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3 Methods

3.1 Loss Given Default Model
This section presents a summary of the LGD model development. The model
development process of an IRB LGD model generally consists of two phases: the
model estimation for risk differentiation purposes and model calibration for risk
quantification purposes (EBA, 2017). These include defining training and testing
data, estimating the model parameters, testing the model performance, and finally
calibrating the model to long-run average loss levels.

Data from defaulted observations is required with which the full recovery process
of the default is observed. For modelling LGD of non-defaulted assets, the realized
LGD is calculated with respect to the default date and EAD. In EBA (2017) p. 28
and p. 30 it is stated that the information about risk drivers should be consistent with
the LGD estimation and the application of estimates, and therefore, for non-defaulted
exposures the institution should use risk driver values before the moment of default
that is, e.g., within one year before the default.

The data is typically split into three samples: in-sample (IS), out-of-sample (OOS),
and out-of-time (OOT). The IS sample is used for estimating the model parameters,
while the OOS and OOT samples are used for testing the model performance. The
OOT sample includes defaults that are resolved after a specified time period (Tanoue
et al., 2017). The IS and OOS samples include defaults that are resolved before the
specified OOT time period. The IS and OOS samples can be split randomly with, e.g.,
a 80%-20% ratio, respectively. Furthermore, an additional calibration sample (CAL)
is defined, which is used for the model calibration to long-run average. According to
EBA (2017) par. 147 the calibration sample should be a historical observation period,
as broad as possible, which includes different economic circumstances.

In this thesis the LGD is modelled using linear regression with ordinary least
squares (OLS) estimation as it has been found to be a generally well performing model
(Bellotti and Crook, 2012). The LGD model is described in a summarizing manner as
the main focus of this thesis will be on the point-in-time adjustments in Section 3.2.

The linear regression model is expressed as

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + . . . 𝛽𝑝𝑥𝑝𝑖 + 𝜖𝑖,

where 𝑖 ∈ {1, . . . , 𝑁} is the observation (defaulted asset), 𝑦𝑖 is the dependent
variable (realized LGD), 𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑝𝑖 are the independent variables (risk drivers),
𝛽0, 𝛽1, . . . , 𝛽𝑝 are unknown model parameters (coefficients), 𝑝 is the number of risk
drivers, and 𝜖𝑖 is a random error term (Chatterjee and Simonoff, 2013). Using matrix
notation, the linear regression model can be expressed as

𝒚 = 𝑿𝜷 + 𝝐 , (3)
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where the elements are given by

𝑿 =
⎛⎜⎜⎝
1 𝑥11 · · · 𝑥𝑝1
...

...
...

1 𝑥1𝑁 · · · 𝑥𝑝𝑁

⎞⎟⎟⎠ , 𝒚 =
⎛⎜⎜⎝
𝑦1
...

𝑦𝑁

⎞⎟⎟⎠ , 𝜷 =

⎛⎜⎜⎜⎜⎝
𝛽0
𝛽1
...

𝛽𝑝

⎞⎟⎟⎟⎟⎠
, 𝝐 =

⎛⎜⎜⎝
𝜖1
...

𝜖𝑁

⎞⎟⎟⎠
(Chatterjee and Simonoff, 2013). The coefficients 𝜷 are estimated by minimizing the
sum of squared errors, i.e., ˆ︁𝜷 = arg min

𝜷

𝑁∑︁
𝑖=1

𝜖2
𝑖 .

The solution to this problem is given byˆ︁𝜷 = (𝑿⊤𝑿)−1𝑿⊤𝒚. (4)

The fitted values can be obtained by ˆ︁𝒚 = 𝑿ˆ︁𝜷, and the model residuals are obtained
byˆ︁𝝐 = 𝒚 −ˆ︁𝒚. The estimatesˆ︁𝒚 are called OLS estimates as they minimize the sum of
squared residuals (Chatterjee and Simonoff, 2013).

Before the parameter estimation, the variables 𝑿 should be be pre-processed and
transformed in an appropriate way. In this thesis only continuous and binary risk
drivers are considered, and it is assumed that no missing values are present in the data.
The continuous variables are standardized using the training sample (IS) mean and
standard deviation as was done in Loterman et al. (2012). Specifically, the continuous
variables are standardized by

𝑋∗
𝑗 =

𝑋 𝑗 − ` 𝑗
𝜎𝑗

,

where 𝑋 𝑗 ∈ 𝑿 is a continuous variable 𝑗 , ` 𝑗 is the mean value of 𝑋 𝑗 and 𝜎𝑗 is the
standard deviation of 𝑋 𝑗 . The binary variables are labeled with zeros and ones.

The model can be fitted directly to the LGD values or to the recovery rate (RR)
which is the complement of LGD. For example, in Bellotti and Crook (2012) and
Yao et al. (2017) modelling was conducted to the recovery rate rather than to the
LGD directly. In this thesis, the LGD model is specified as LGD = 𝑿𝜷 + 𝝐 . After
estimating the model parameters according to (4), the continuous LGD estimates are
given by ̂︄LGD = 𝑿ˆ︁𝜷. To avoid negative values or excessively large values above
one, the estimates can be bounded between zero and one by min[0,max[̂︄LGD, 1]]
following Yashkir and Yashkir (2013).

The EBA (2017) par. 161 states that institutions should calibrate the LGD estimates
to correspond the long-run average (LRA) loss rates such that the calibration is done
either on grade level, or on calibration segment level for direct LGD estimates. In the
case of direct estimates, the institutions are required to compare the average LGD
estimates to the calculated LRA LGD, and to correct the individual estimates for
application portfolio accordingly based on, e.g., a scaling factor (EBA, 2017, par.
161). Moreover, according to EBA (2017) par. 149 and 153, the institutions should
use information from all defaults that fall into the historical observation period such

25



that relevant information from incomplete defaults is included in a conservative way.
The methods for considering incomplete cases is left outside the scope of this thesis,
and the illustrative effect of adjusting incomplete cases is obtained via simulation.

3.2 Point-in-Time Adjustment Framework
The framework for calibrating the LGD model for IFRS 9 using point-in-time (PIT)
adjustments consists of the following steps: 1) calibrating the IRB LGD model to
IFRS 9 realized loss level after applying appropriate changes to data, 2) developing
a macroeconomic module for loss rates or risk drivers to adjust the LGD estimates
for different macroeconomic scenarios, and 3) testing the performance and PIT
appropriateness of the model. An overview of the framework is shown in Figure 5.

Figure 5: Overview of the IFRS 9 point-in-time adjustment framework.

3.2.1 Estimation Logic

Prior to the calibration and PIT adjustments it is convenient to understand how the
LGD estimates are applied for stage 1 and stage 2 assets in ECL calculations. Suppose
that the reporting date of the ECL calculations is 𝑡𝑅 and the LGD estimates for time
points 𝑡𝑅 + 𝜏 are given by a function LGD𝑖,𝑡𝑅+𝜏 = 𝑓 (𝑋𝑖,𝑡𝑅+𝜏−1) for all 𝜏 = 1, . . . , 𝑇𝑀,𝑖
where 𝑇𝑀,𝑖 is the maturity of the asset 𝑖 (e.g., in years), and 𝑓 (·) is a parametric or
non-parametric function that maps a given set of risk driver information 𝑋𝑖,𝑡𝑅+𝜏−1
projected to 𝑡𝑅 + 𝜏 − 1 into a real valued LGD estimate for the time point 𝑡𝑅 + 𝜏. This
is shown in Figure 6.

Note that the function 𝑓 (·) produces the LGD estimate for 𝑡𝑅 + 𝜏 according to
the risk driver information at 𝑡𝑅 + 𝜏 − 1. As described in Section 3.1, the risk driver
information should be obtained prior to the default such that the model estimation
and the application of the estimates are aligned. Hence, for stage 2 calculations it is
important that the risk drivers are projected to the future time points of the maturity.
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Figure 6: The stage 1 and stage 2 LGD estimate visualization on yearly frequency
with respect to the reporting date 𝑡𝑅 and the maturity 𝑇𝑀 .

The estimation or approximation of risk driver values requires both qualitative and
quantitative assessment. For example, some risk drivers can be assumed to be constant
for the remaining lifetime of the asset. Such risk drivers are, for example, the location
of the collateral or some more complex payment behaviour characteristic type variable,
e.g., the number of arrears, which can be hard to forecast. For some risk drivers, e.g.,
residential collateral values, a macroeconomic factor based forecast model is possible
to be incorporated. A collateral forecast model for LGD was presented in Miu and
Ozdemir (2017) and more discussion is provided in Section 3.2.4.

Consider an example where the LGD is estimated with a linear regression model
with two risk drivers, the loan-to-value (LTV) and the collateral location. The LTV
is a numerical risk driver, which is calculated as the ratio between the current loan
amount and the residential collateral value allocated to the loan contract. The LTV
changes over time depending on the loan amount and the collateral value. The loan
amount can be approximated according to a re-payment schedule and the collateral
value can be modelled using house price indexes. The collateral location is a binary
variable which indicates if the collateral is placed in the a capital region or not. Thus,
the location risk driver can be fairly well assumed to be constant for the remaining
lifetime of the asset.

The example estimation equation is ̂︄LGD𝑖,𝑡𝑅+𝜏 = ˆ︁𝛽0 + ˆ︁𝛽1 · LTV𝑖,𝑡𝑅+𝜏−1 + ˆ︁𝛽2 ·
LOC𝑖,𝑡𝑅+𝜏−1, where the estimated coefficients are ˆ︁𝛽0 = 0.002, ˆ︁𝛽1 = 0.43 and ˆ︁𝛽2 =

−0.02. An example for calculating the LGD for stage 1 and stage 2 is shown in Table
2. It can be seen that due to the increasing collateral value and the decaying loan
amount, the LGD estimates change over time.

Table 2: Example of applying the model ̂︄LGD𝑖,𝑡𝑅+𝜏 = 0.002 + 0.43 · LTV𝑖,𝑡𝑅+𝜏−1 −
0.02 · LOC𝑖,𝑡𝑅+𝜏−1 to an asset with five years of remaining lifetime both for the case of
stage 1 and 2 allocations.

Date Stage Loan Collateral LTV Location LGD
𝑡𝑅 - 1000 1300 0.769 1 -

𝑡𝑅 + 1 1, 2 800 1350 0.593 1 0.313
𝑡𝑅 + 2 2 600 1400 0.429 1 0.237
𝑡𝑅 + 3 2 400 1450 0.276 1 0.166
𝑡𝑅 + 4 2 200 1500 0.133 1 0.101
𝑡𝑅 + 5 2 0 1550 0 1 0.039
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The next subsections describe methodology on how the IRB LGD model can be
calibrated for IFRS 9 purposes and how point-in-time adjustments are introduced to
the through-the-cycle or hybrid estimates. In other words, the LGD estimates in Table
2 need to be either adjusted using and output module, which scales the estimates up
or down according the macroeconomic scenarios. Alternatively, the macroeconomic
model is based on modelling the risk drivers for different scenarios such that the
changes is risk drivers yield varying LGD estimates depending on the macroeconomic
scenarios.

3.2.2 Calibration

The LGD model must be calibrated to the IFRS 9 realized loss levels, because the
realized losses in IRB are generally higher compared to IFRS 9. Relevant adjustments
to realized LGD calculations are applied such as removal of indirect costs, applying the
effective interest rate in the cashflow discounting, and to reconsider the maximum length
of recovery process again if needed in order to minimize conservatism. Furthermore,
adjusted incomplete defaults may be included for the calibration similarly as for the
long-run average calibration of the IRB model.

The main assumption for re-calibrating the LGD estimates is that the rank ordering
model estimated for IRB purposes allows for approximately same risk differentiation
for IFRS 9 purposes. The intuition is straight forward. If there is a high risk asset in
IRB, it will be a high risk asset also in IFRS 9 (RiskQuest, 2020). Same applies for
low risk assets. This approach allows to keep synergy between the IRB and IFRS 9
models.

In the case of continuous LGD estimates for a particular portfolio, the calibration
may be done by scaling the estimates with a scaling factor or by applying linear
regression as a mapping function. Let LGD∗

𝑖 be the realized LGD for asset 𝑖 calculated
on the basis of the IFRS 9 standard such that incomplete defaults are also considered
in an appropriate manner. Let ̂︄LGD𝑖 be the non-calibrated LGD estimate for asset 𝑖
given by the IRB LGD model. The mapping equation is

LGD∗
𝑖 = 𝛾1 · ̂︄LGD𝑖 + 𝛾0 + b𝑖, (5)

where 𝛾1 and 𝛾0 are unknown regression parameters and b𝑖 is a random error. The
coefficient 𝛾1 can be seen as a scaling factor and 𝛾0 can be seen as a correction after
the scaling, i.e., the mean value of the IFRS 9 LGD estimate given that the IRB LGD
estimate is zero. The parameters are estimated according to (4). Furthermore, the
calibrated estimates ̂︄LGD

∗
𝑖 = ˆ︁𝛾1 · ̂︄LGD𝑖 + ˆ︁𝛾0 can be bounded between zero and one by

min[0,max[̂︄LGD
∗
𝑖 , 1]] (Yashkir and Yashkir, 2013).

In the case of discrete LGD grades the calibration may be done by re-calculating
the LRA LGD values for each grade using the IFRS 9 realized loss data. This is,
however, left for future research as the thesis focuses on the continuous calibration
approach.
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3.2.3 Loss Rate Model

In this section, the theory on loss rate modelling is presented. The loss rate model is
used to incorporate PIT adjustments to the LGD estimates for different scenarios in
the ECL calculations. The PIT adjustments to the LGD estimates can be seen as an
“output adjustment”. The macroeconomic model is based on finding correlation and
causal relationships between the loss rates over time and the macroeconomic factors.
This section includes theory on how the observed loss rate is defined and how the
loss rate forecasts can be used to adjust the LGD estimates. Moreover, time series
modelling with ordinary least squares regression theory and the model development
process is presented.

Let the time horizon for the loss time series be 𝑡 = 1, . . . , 𝑇 , where each 𝑡 denotes
the time of default with a specified frequency, e.g., quarterly. Note that the specified
time period may include incomplete defaults which are adjusted for future cash flows
with appropriate methodology. The portfolio level average LGD, or observed loss
rate, can be calculated for all 𝑡 such that

LGD𝑡 =
1
𝑁𝑡

𝑁𝑡∑︁
𝑖=1

LGD𝑖,𝑡 , (6)

where 𝑁𝑡 is the number of defaults at time 𝑡 and LGD𝑖,𝑡 is the realized LGD for asset 𝑖
which defaulted at 𝑡. As the average value is not a robust metric, it might get influenced
by extreme values of LGD realizations. Thus, these observations, when present, need
to be investigated and handled properly.

Equation (6) can be seen as a PIT LGD time series, and it is similar to, e.g.,
the EAD weighted average LGD estimates over time in Joubert et al. (2021). The
question is, how can the forecasts for this series be used to adjust LGD estimates for
different scenarios? Assuming that the LGD model already exhibits PIT properties
via collateral risk drivers for example, the loss rate time series can be forecasted for
the different scenarios and the estimates are adjusted according to the deviations with
respect to the baseline scenario as was done in Joubert et al. (2021).

In Joubert et al. (2021) an error correction model was built for the LGD estimate
time series, which was used to forecast LGD for the baseline, weak and strong scenarios
for𝑇 𝑓 forecasting time points. The adjustment scalars for the weak and strong scenarios
were then calculated as the ratio of the average weak or strong forecasts and the average
baseline forecasts. The scalars for the weak and strong scenarios were then used to
adjust the LGD estimates for the scenarios accordingly.

This thesis uses the same approach, but rather than modelling the time series for
the estimated LGD time series, the modelling is conducted to the observed loss rate
(6), and the scenario scalars are calculated on the basis of the stage allocation of the
asset and its remaining maturity.

Let LGD𝜏,𝑏𝑎𝑠𝑒, LGD𝜏,𝑤𝑒𝑎𝑘 , LGD𝜏,𝑠𝑡𝑟𝑜𝑛𝑔 be the forecasts for the average LGD at
time 𝜏 = 1, . . . , 𝑇 𝑓 for the baseline, weak and strong scenarios, respectively. The final
forecast time 𝑇 𝑓 will be determined by the stage allocation and maturity of the asset.
For example, in stage 1 the forecast window is one year, which on quarterly frequency
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would require a window of four quarters. Modifications for the forecasts need to be
incorporated in the case of different time frequencies between the LGD model and
the loss rate model. Suppose the LGD model is defined on a yearly frequency and
the loss rate model is on quarterly frequency. Hence, the quarterly loss rate forecasts
should be aggregated to obtain a yearly scenario forecast such that the aggregation is
aligned with the maturity of the asset at each time point during the maturity. Various
aggregation methods for this task can be applied such as averaging the quarterly values
for the particular forecasting year together. If the loss rate model is built on the same
frequency as the LGD model is specified, then no adjustments are required for the
forecasts.

Assuming that the loss rate forecasts are aggregated on the correct frequency with
respect to the LGD model, for each 𝜏 = 1, . . . , 𝑇 𝑓 , the scalars can be calculated by

𝛿𝜏,𝑠 =
LGD𝜏,𝑠

LGD𝜏,𝑏𝑎𝑠𝑒

, 𝑠 ∈ {𝑤𝑒𝑎𝑘, 𝑠𝑡𝑟𝑜𝑛𝑔}, (7)

as in Joubert et al. (2021). Furthermore, as in Joubert et al. (2021) the scenario scalars
are used to adjust the individual LGD estimates for the weak and strong scenarios for
all 𝜏 = 1, . . . , 𝑇 𝑓 such that̂︄LGD𝑖,𝑡𝑅+𝜏,𝑠 = 𝛿𝜏,𝑠 · ̂︄LGD𝑖,𝑡𝑅+𝜏, 𝑠 ∈ {𝑤𝑒𝑎𝑘, 𝑠𝑡𝑟𝑜𝑛𝑔}. (8)

The problem in this type of scalar calculation is that the baseline scenario estimates
will not be affected by any macroeconomic factors via the loss rate model. In
some situations this is perfectly reasonable if the LGD estimates implicitly contain
information about a baseline scenario via risk drivers, e.g., collateral values. However,
a simple method can be introduced to overcome this issue. Assume that the observed
loss rate series fluctuates around a LRA LGD value for a particular portfolio. The
LRA LGD is calculated by

LGD =
1
𝑁

𝑁∑︁
𝑖=1

LGD𝑖 . (9)

Thus, the LRA LGD is just the default weighted average of the all realized losses in the
portfolio over time. Hence, rather than comparing the loss rate forecasts in the weak
and strong scenarios to the baseline forecast as in (7), the comparison can be done
such that all scenarios are compared to the long-run average value (9). Specifically,

𝛿𝜏,𝑠 =
LGD𝜏,𝑠

LGD
, 𝑠 ∈ {𝑏𝑎𝑠𝑒, 𝑤𝑒𝑎𝑘, 𝑠𝑡𝑟𝑜𝑛𝑔}. (10)

This approach makes it possible to calculate how much the forecasts deviate from the
long-run average and apply the scalars 𝛿𝜏,𝑠 to individual forecasts as in (8), but now
for the set of scenarios 𝑠 ∈ {𝑏𝑎𝑠𝑒, 𝑤𝑒𝑎𝑘, 𝑠𝑡𝑟𝑜𝑛𝑔}.

When forecasting the loss or default rates it is common for the institutions to define
a forecasting period. According to the IFRS 9 Implementation by EU institutions
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monitoring report EBA (2023) par. 82 institutions usually use forecasts up to three
years. According to EBA (2023) par. 83 institutions also consider gradual reversion of
macroeconomic factors to the long-term macroeconomic conditions at the end of the
forecasting period. This is applied to avoid the use of excessively long forecasts in the
ECL calculations. Hence, for stage 2 assets where maturities go beyond, e.g., the three
years forecasting period, it is required to ensure that the LGD estimate adjustments
also follow the mean reversion.

3.2.3.1 Regression

The observed loss rate series can be modelled using ordinary least squares (OLS)
regression method which was described in Section 3.1. The OLS time series model is
an intuitive approach for modelling the loss rates over time. The main assumptions
is that the loss rates over time fluctuate around a long-run average value, and the
deviations from the average can be captured by the changes in the macroeconomic
environment. The time series OLS model is specified as

𝑧𝑡 = 𝛼0 +
𝐽∑︁
𝑗=1
𝛼 𝑗𝑀 𝑗 ,𝑡 + 𝑢𝑡 , (11)

where 𝑧𝑡 is the dependent time series, 𝑀 𝑗 ,𝑡 is the 𝑗 :th macroeconomic factor, 𝛼 𝑗 is the
coefficient for the factor 𝑗 , 𝛼0 is the intercept and 𝑢𝑡 is a random error. The model
parameters can be estimated using the Equation (4) to obtain ˆ︁𝛼0,ˆ︁𝛼1, . . . ,ˆ︁𝛼𝐽 .

For OLS time series modelling, it is important that both the dependent and
independent time series are stationary to correctly model the dynamics and correlations.
This further relates to the topic of “spurious regression”, which should be avoided.
Spurious regression is a phenomenon where two series 𝑎𝑡 and 𝑏𝑡 appear related,
for example via similar trend, but in reality they have nothing to do with each other
(Hyndman and Athanasopoulos, 2021). Spurious regression is often associated with
non-stationarity of 𝑎𝑡 and 𝑏𝑡 . However, Granger et al. (2001) showed that spurious
relationship can be present even if the variables are stationary. Therefore, the results
of the estimated models should always be analyzed carefully.

Stationarity of time series is usually defined in terms or weak stationarity, as strict
stationarity is often not feasible in practice because it requires a common distribution
function that does not change over time (Kirchgässner et al., 2012). Let {𝑤𝑡}𝑇𝑡=1 be a real
valued sample from a stochastic time series process. According to Kirchgässner et al.
(2012) the process {𝑤𝑡}𝑇𝑡=1 is weak stationary when the following conditions are met: the
mean does not change over time, i.e., 𝐸 [𝑤𝑡] = `𝑡 = ` for all 𝑡 = 1, . . . , 𝑇 , the variance
of the process is constant and finite over time, i.e., 𝑉𝑎𝑟 [𝑤𝑡] = 𝐸 [(𝑤𝑡 − `𝑡)2] = 𝜎2,
and the covariance function 𝐶𝑜𝑣 [𝑤𝑡 , 𝑤𝑠] = 𝐸 [(𝑤𝑡 − `𝑡) (𝑤𝑠 − `𝑠)] depends only on
the distance between two random variables and not the time point 𝑡.

The stationarity of time series can be determined with statistical tests. Two common
tests are the Dickey-Fuller test, which tests the unit root null hypothesis, and the
Kwiatkowski–Phillips–Schmidt–Shin test, which tests the stationarity hypothesis,
see, e.g., Kirchgässner et al. (2012). However, these tests should be interpreted
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with caution, see, e.g., Cochrane (1991). If the stationarity tests give unintuitive
results, then one can assume stationarity of a time series by making assumptions
about the order of integration. The order of integration 𝐼 (𝑑) means that the series
has to be differenced 𝑑 times in order to make the series stationary (Kirchgässner
et al., 2012). However, in some modelling data sets it might be that differencing
has to be applied due to non-stationary behaviour in a particular subset, even if
the series can be argued to be 𝐼 (0), for example. Differencing can be done by the
backward difference operator ∇ = (1 − 𝐵), where 𝐵 is a backward shift operator
𝐵𝑤𝑡 = 𝑤𝑡−1 (Box and Jenkins, 1976). Hence, a first order differenced series is obtained
by ∇𝑤𝑡 = (1 − 𝐵)𝑤𝑡 = 𝑤𝑡 − 𝑤𝑡−1. Other related transformations are the growth rate
transform (𝑤𝑡 − 𝑤𝑡−1)/𝑤𝑡−1 and the log-difference transform log(𝑤𝑡) − log(𝑤𝑡−1)
(Kirchgässner et al., 2012). The differencing can also be done with respect to lags
larger than one, i.e., ∇𝑙𝑤𝑡 = (1 − 𝐵𝑙)𝑤𝑡 = 𝑤𝑡 − 𝑤𝑡−𝑙 (Box and Jenkins, 1976).

The error term 𝑢𝑡 in the regression Equation (11) is assumed to be a white
noise process. A white noise process is a stationary time series process that has the
properties 𝐸 [𝑢𝑡] = 0, 𝑉𝑎𝑟 [𝑢𝑡] = 𝜎2 for all 𝑡 = 1, . . . , 𝑇 and 𝐶𝑜𝑣 [𝑢𝑡 , 𝑢𝑠] = 0 for all
𝑡 ≠ 𝑠 (Kirchgässner et al., 2012). This requires that the following OLS assumptions
need to be checked: the error terms have zero mean and constant variance, and the
errors terms are not autocorrelated. It is also convenient to check if the residuals
are normally distributed and unrelated to the independent variables (Hyndman and
Athanasopoulos, 2021).

3.2.3.2 Model Development

In developing a macroeconomic regression model, the dependent time series must be
first defined as in Equation (6). Second, the macroeconomic factors are specified and
stationarity is assessed for all series. Required variable transformations are applied to
reach stationarity. Third, analysis of appropriate lags for the stationary macroeconomic
factors is conducted. Finally, the model is to be estimated using a proposed set of
stationary, potentially lagged, macroeconomic factors. The model estimation includes
model selection, residual diagnostic checking, and analysis of the model structure and
statistical properties of the estimated parameters.

Appropriate lags for the macroeconomic factors can be assessed with the cross-
correlation function as proposed by Box and Jenkins (1976). In Box and Jenkins the
estimate for the cross-correlation function for the input sequence 𝑥𝑡 and the output
sequence 𝑦𝑡 is defined as

𝑟𝑥𝑦 (𝑘) =
𝑐𝑥𝑦 (𝑘)
𝑠𝑥𝑠𝑦

, 𝑘 = 0,±1,±, 2, · · · ,

where 𝑘 is a lag, 𝑐𝑥𝑦 (𝑘) is the estimate for the cross-covariance and 𝑠𝑥 and 𝑠𝑦 are the
estimated standard deviations for the sequences 𝑥𝑡 and 𝑦𝑡 , respectively. The estimate
for cross-covariance 𝑐𝑥𝑦 (𝑘) is defined as

𝑐𝑥𝑦 (𝑘) =
{︄

1
𝑇

∑︁𝑇−𝑘
𝑡=1 (𝑥𝑡 − 𝑥) (𝑦𝑡+𝑘 − 𝑦) 𝑘 = 0, 1, 2, . . .

1
𝑇

∑︁𝑇+𝑘
𝑡=1 (𝑦𝑡 − 𝑦) (𝑥𝑡−𝑘 − 𝑥) 𝑘 = 0,−1,−2, . . . ,
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where 𝑇 is the number of time points, and 𝑥 and 𝑦 are the average values of sequences
𝑥𝑡 and 𝑦𝑡 , respectively (Box and Jenkins, 1976). The largest absolute lag of the
cross-correlation function can indicate towards a suitable lag to be used for the
macroeconomic factors in the OLS model. Box and Jenkins (1976) note that in practice
at least 50 observations are required to get useful estimates for the cross-correlation.
Furthermore, the selected lags should be in a reasonable range. Too large lags can
affect the economical sensibility of the model, reduce the number of data for model
estimation, and introduce application related issues to ECL calculation in a way that
scenarios might not influence the results as the macroeconomic information is used
from history to forecast future loss rates. Negative lags 𝑘 < 0 are also known as
“leads” and they can also be present in the model as was described in Bellotti and
Crook (2012).

Once suitable macroeconomic factors have been identified a variable selection
procedure can take place. If the total number of factors 𝐽 (including lags or leads) is not
too large, it is easy to estimate all possible model configurations. If 𝐽 is large, then more
advanced forward or backward selection algorithms can be incorporated. However,
depending on the amount of data it might be reasonable to restrict the maximum number
of variables to be included in the model. Moreover, macroeconomic factors have
often high correlation, which can cause issues related to multicollinearity. This can be
tackled by including only few different factors that cover different macroeconomic
aspects.

The chosen model selection criteria is the corrected Akaike Information Criterion
(AIC𝑐). The model configuration that minimizes the AIC𝑐 is selected for further
analysis. The AIC𝑐 is defined as

AIC𝑐 = −2 log( �̂�) + 2𝑇
𝑇 − 𝑛 − 1

𝑛,

where 𝑛 is the number of estimated parameters in the model, 𝑇 is the number of data
points in the time series and �̂� = 𝑝(ˆ︁Θ | D) is the maximized likelihood function value
obtained via ˆ︁Θ = arg maxΘ log 𝑝(Θ | D) (Stoica and Selen, 2004). Here, 𝑝(Θ | D) is
the likelihood function of the model, Θ is the parameter vector and D is a data vector.
For details, see, Stoica and Selen (2004). With small sample size 𝑇 the AIC𝑐 is more
suitable than the standard AIC = −2 log( �̂�) + 2𝑛, because the penalty term is larger,
and hence, AIC𝑐 has smaller risk of overfitting (Stoica and Selen, 2004). For OLS,
the likelihood function is obtained from the normal distribution as the error term is
assumed to be normally distributed with zero mean and constant variance. Thus, the
likelihood is defined as

𝐿 =

𝑇∏︂
𝑖=1

1
√

2𝜋𝜎2
exp(−1

2
𝑢2
𝑖

𝜎2 ),

where 𝑢2
𝑖

is the squared error term in the regression equation and 𝜎2 is the variance of
the error terms 𝑢𝑖.

The corrected AIC is not the only criterion that can be used in the model evaluation
and selection. To accompany the AIC𝑐 criterion one can analyze the coefficient of
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determination (𝑅2) or its more suitable variant, the adjusted coefficient of determination
(𝑅2

𝑎), which takes into account the number of variables in the regression equation.
According to Chatterjee and Simonoff (2013) the coefficient of determination is

𝑅2 = 1 −
∑︁𝑇
𝑖=1(𝑧𝑖 −ˆ︁𝑧𝑖)2∑︁𝑇
𝑖=1(𝑧𝑖 − 𝑧)2

where 𝑧 is the mean value of 𝑧𝑖, and further, the adjusted 𝑅2 is

𝑅2
𝑎 = 𝑅

2 − 𝑇

𝑇 − 𝑛 − 1
(1 − 𝑅2).

Once the model with the minimum AIC𝑐 is found, then the model assumptions and
the model structure are analyzed. The OLS assumptions are verified by performing
diagnostic checks for the residuals ˆ︁𝑢𝑡 = 𝑧𝑡 − ˆ︁𝑧𝑡 , where ˆ︁𝑧𝑡 is the fitted value. The
zero mean assumption of the residuals is trivial in the case of OLS estimates, as
the OLS minimizes the sum of squared residuals, which implies that the sum of the
residuals is zero. The normality of residuals is tested by calculating the Shapiro-Wilk
test, which tests the null hypothesis that the data comes from a normal distribution,
see, e.g., Shapiro and Wilk (1965). Additionally, normality is verified by plotting
the histogram of residuals or the quantile-quantile plot (Chatterjee and Simonoff,
2013). According to Hyndman and Athanasopoulos (2021) the constant variance of
the residuals, i.e., homoscedasticity, can be tested by plotting the residuals against
time, against fitted valuesˆ︁𝑧𝑡 and against macroeconomic factors 𝑀 𝑗 ,𝑡 . Non-linearities
in the scatter plots may suggest that there are non-linear effects present in the data
which are not captured by the linear model. To test autocorrelation of the residuals the
estimated autocorrelation function (ACF) is visualized. The estimate for the ACF is
defined as

𝑟𝑘 =
𝑐𝑘

𝑐0
,

where 𝑐𝑘 is the estimated autocovariance for lags 𝑘 = 0, 1, . . . , 𝑘∗ defined as

𝑐𝑘 =
1
𝑇

𝑇−𝑘∑︁
𝑡=1

(𝑤𝑡 − 𝑤) (𝑤𝑡+𝑘 − 𝑤),

where 𝑘∗ < 𝑇 , and 𝑤 is the mean of the time series 𝑤𝑡 (Box and Jenkins, 1976).
The approximate 95% confidence interval for the estimated ACF is given by ±2/

√
𝑇

(Kirchgässner et al., 2012). Additionally, the Breusch-Godfrey test (BG-test) is applied
for multiple lags to test the null hypothesis that the residuals are not autocorrelated up
to a specified lag (Uyanto, 2020).

After performing the diagnostics tests, two hypothesis tests regarding the OLS
regression are conducted. The F-test is conducted to test overall significance of the
model and 𝑡-tests are conducted for each estimated regression coefficient to check if
the particular macroeconomic factor gives additional predictive power (Chatterjee
and Simonoff, 2013). The confidence level of the hypothesis tests is set at 5%. For
the reliability of the t-test and calculation of confidence intervals it is important that
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the residuals are normally distributed as otherwise the results can be misleading
(Chatterjee and Simonoff, 2013).

If the OLS model includes multiple macroeconomic factors, it is required to
test if there is multicollinearity present. Chatterjee and Simonoff (2013) explain
that multicollinearity is a phenomena where some explanatory variables are highly
correlated with each other, and it can result to instability of regression coefficients.
Multicollinearity can be detected with the variance inflation factor (VIF), which is
defined as VIF 𝑗 = 1/(1 − 𝑅2

𝑗
), where 𝑅2

𝑗
is the coefficient of determination of the

factor 𝑗 which is estimated by OLS using the other factors (Chatterjee and Simonoff,
2013). A cut-off value for VIF is usually set to 5 or 10 (Craney and Surles, 2002).
Other model dependent cut-off values have also been studied, see, e.g., Craney and
Surles (2002). Moreover, the correlation between the macroeconomic factors can be
calculated to complement the VIF analysis.

The loss rate model should have the following properties: 1) it is economically
plausible, 2) it satisfies statistical properties, and 3) it has good predictive power. Hence,
the development might require iterative steps. For example, some model configuration
might optimize a selected performance criterion and satisfy OLS assumptions, but the
economical intuition of the model is not good, e.g., due to wrong signs of the estimated
coefficient which imply contradicting behaviour to the loss rates. Thus, in the end,
it is better to select a model that is economically plausible but with lower predictive
power rather than a model that is not economically plausible but has good predictive
power. This logic relates to stress testing applications, where according to Malone
and Wurm (2017), a level of “realism” needs to be present, which not only considers
the accuracy of the macroeconomic model, but also the objective of replicating the
behaviour of a variable conditional to the stressed macroeconomic scenarios.

3.2.4 Risk Driver Model

A method for adjusting the LGD estimates to be dependent on the macroeconomic
conditions is to use a risk driver based model that aims to exploit the influence of
macroeconomic to risk drivers, which impact the risk associated to the losses. Assuming
that the LGD model includes risk drivers which are sensitive to the macroeconomic
conditions, such as collateral values, this model is applicable regardless of how
macroeconomic factors seem to impact the observed losses.

This type of method was presented in Miu and Ozdemir (2017), where the IFRS
9 LGD was modelled by estimating the recovery cash flows based on projections of
collateral values according to a macroeconomic model for annualized growth rates of
the collateral. The forecasted cash flow recoveries were compared against the exposure
at default (EAD) to obtain the expected LGD. Specifically, the LGD estimation
equation presented by Miu and Ozdemir (2017) is

𝐸𝑡𝑅 [LGD𝑡𝑅+𝜏] = 1 −
𝜙 · 𝑉𝑡𝑅 · exp(𝜏 · 𝐸𝑡𝑅 [𝑟𝑉𝑡𝑅 ,𝑡𝑅+𝜏])

𝐸𝑡𝑅 [EAD𝑡𝑅+𝜏]
, (12)

where 𝑡𝑅 is the reporting date, 𝜏 is the time point after the reporting date (e.g., in
years), 𝐸𝑡𝑅 [EAD𝑡𝑅+𝜏] is the expected EAD if the asset defaults at 𝑡𝑅 + 𝜏, 𝜙 is a fraction
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that describes the present value of net recoveries obtained from the collateral value
at the time of default, 𝑉𝑡𝑅 is the collateral value at reporting date and 𝐸𝑡𝑅 [𝑟𝑉𝑡𝑅 ,𝑡𝑅+𝜏] is
the expected value of the annualized growth rate for the collateral from 𝑡𝑅 to 𝑡𝑅 + 𝜏.
The 𝑟𝑉𝑡𝑅 ,𝑡𝑅+𝜏 is modelled with a linear regression model using macroeconomic factors
(Miu and Ozdemir, 2017). The described approach is intuitive. However, the Equation
(12) does not follow the regression-like structure for LGD in Section 3.1. Hence, an
adaptation of the model is required.

As in Section 3.2.1, the LGD for each time point in the remaining maturity of the
asset is estimated by calculating the LGD estimate based on risk driver information
one-year prior to the assumed default moment. However, just updating the risk driver
values for the future years will result into a problem: for the stage 1 there will be
no differences in the LGD estimates for different scenarios, because the risk driver
information is taken at reporting date 𝑡𝑅 to obtain the LGD estimate for 𝑡𝑅 + 1. Thus,
the risk driver information should be taken from the time of default such that the risk
driver value at reporting date is forecasted to the time of default with respect to the
macroeconomic scenarios as in Miu and Ozdemir (2017).

Consider the loan-to-value (LTV) risk driver. At reporting date the LTV is

LTV𝑡𝑅 =
𝐿𝑡𝑅

𝑉𝑡𝑅
,

where 𝐿𝑡𝑅 is the loan amount at 𝑡𝑅 and 𝑉𝑡𝑅 is the collateral value at 𝑡𝑅. In accordance
with Miu and Ozdemir (2017), the collateral value and the loan amount should be
estimated for the time of default. Thus, the forward-looking LTV for 𝑡𝑅 +𝜏 is expressed
by

LTV𝑡𝑅+𝜏 =
EAD𝑡𝑅+𝜏
𝑉𝑡𝑅+𝜏

.

The EAD at 𝑡𝑅 +𝜏 is estimated with a separate EAD model or according to the payment
plan of the loan, see, e.g., Miu and Ozdemir (2017). The collateral value 𝑉𝑡𝑅+𝜏 is
estimated by updating the collateral value 𝑉𝑡𝑅 with a model using macroeconomic
factors such as house price indexes (Miu and Ozdemir, 2017).

Another problem arises if the risk driver information is forecasted to the default
date and used in the ECL calculations. Suppose that the ECL is calculated for stage 1
assets, and the LTV explains the loss risk in a way that a larger LTV is riskier than a
low LTV. Let the LTV at reporting date be LTV𝑡𝑅 = 𝐿𝑡𝑅/𝑉𝑡𝑅 = 1000/1300 = 0.769,
the loan amount estimate at default date be EAD𝑡𝑅+1 = 800 (loan is paid 200 units back
during one year), and the estimated collateral value be 𝑉𝑡𝑅+1 = 1350 (the collateral
value increases 50 units due to increasing house prices). The LTV at the time of default
is LTV𝑡𝑅+1 = 𝐿𝑡𝑅+1/𝑉𝑡𝑅+1 = 800/1350 = 0.593, which is considerably lower than
the value at reporting date due to decreasing nominator and increasing denominator.
Hence, this potentially results in a lower LGD estimate compared to the reporting date
LTV if no adjustments are made, which can cause a calibration related issue compared
to historically observed losses because the LTV distribution shifts.

To overcome this problem for the continuous LGD estimates, there are several
options. For example, the LGD model presented in Section 3.1 uses standardized
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continuous risk drivers. Hence, if the LTV distribution at default times is known,
then the standardization parameters can be calculated again to standardize the default
date LTV to zero mean and unit variance. Thus, the model can be then applied as
is. Another approach is that the calibration mapping function (5) is estimated again
such that the default date risk driver information is used in the model input. This will
impact the mapping function parameters 𝛾1 and 𝛾0 in Equation (5). If there is no
default date LTV data available or the distribution is identical to the reporting date
distribution, then it is possible to simulate the default date LTV values by applying the
risk driver model to historical data.

Collateral values can be modelled with different methods and granularity can be
introduced with respect to the collateral types and locations, for example. The easiest
way to incorporate collateral value forecasts is to use collateral valuation models
used by the institution. Other methods can be to approximate collateral values using
macroeconomic factors or by developing entirely new models. Miu and Ozdemir
(2017) model the annualized growth rates of collateral values with annualized growth
rates of macroeconomic factors. A similar approach can be employed, which aims to
model only the time frequency specific growth rates, e.g., quarterly or yearly.

Let 𝑉𝑖,𝑡𝑅 and 𝑉𝑖,𝑡𝐷 be the collateral value at reporting date and default date of asset
𝑖, respectively. Let the time frequency be set to quarterly. The complete growth rate
from reporting date to default date is calculated by ˜︁𝑉𝑖,𝑡𝐷 = (𝑉𝑖,𝑡𝐷 − 𝑉𝑖,𝑡𝑅 )/𝑉𝑖,𝑡𝑅 . The
complete growth rates can be converted to quarterly or yearly rates by assuming equal
growth in each quarter from 𝑡𝑅 to 𝑡𝐷 . Note that the growth rate is not defined if the
quarterly difference from 𝑡𝑅 to 𝑡𝐷 is zero. Let the number of quarters between 𝑡𝑅 and
𝑡𝐷 be 𝑞𝑖 ∈ [1, 2, 3, 4]. The quarterly growth rate is given by 𝑣𝑄

𝑖,𝑡𝐷
= (1 + ˜︁𝑉𝑖,𝑡𝐷 )1/𝑞𝑖 − 1,

and the yearly growth rate is given by 𝑣𝑌
𝑖,𝑡𝐷

= (1 + 𝑣𝑄
𝑖,𝑡𝐷

)𝑞𝑖 − 1.
Using the loss rate model theory in Section 3.2.3, an OLS model for the quarterly

or yearly growth rates can be defined as

𝑣
𝑓 𝑟𝑒𝑞
𝑡 = 𝛼0 +

𝐽∑︁
𝑗=1
𝛼 𝑗𝑀 𝑗 ,𝑡 + 𝑢𝑡 ,

where 𝑓 𝑟𝑒𝑞 ∈ {𝑄,𝑌 } is the applied growth rate frequency, 𝑣 𝑓 𝑟𝑒𝑞𝑡 is the average growth
rate at 𝑡 and 𝑀 𝑗 ,𝑡 is a macroeconomic factor that aims to explain the collateral value
growth. Similar OLS model diagnostics and tests are applied in this type of model as
well.

After developing the model with, e.g., yearly growth rates using yearly growths in
macroeconomic factors to be in line with the yearly ECL calculations, the collateral
values are updated for individual assets by

𝑉𝑖,𝑡𝑅+𝜏 = 𝑉𝑖,𝑡𝑅 ·
𝜏∏︂
𝑘=1

(1 + 𝑣𝑌𝑘 ).

Depending on the quality or availability of data, as well as the collateral types in
the portfolio, this type of model is challenging to be developed. In some situations a

37



particular macroeconomic factor can be deemed as a realistic approximation of the
collateral value behaviour by expert judgement, and thus, it is possible to directly
approximate the collateral value growth rates using some macroeconomic factor. For
example, residential collateral values can be directly updated by the growth rate of the
house prices in according locations.

3.2.5 Testing

In the context of IFRS 9 and PIT estimates there is no common way in literature to
explicitly assess whether the PIT LGD estimates are suitable or sensitive enough to the
macroeconomic conditions. Thus, in this thesis the following aspects are evaluated:

1. Predictive power: the PIT LGD estimates, in theory, should have better predictive
power compared to the TTC LGD estimates.

2. Backscoring: the PIT LGD estimates are backscored to historical data to
empirically determine if they react more to the macroeconomic environment
compared to the TTC or hybrid LGD esimates.

3. Economic impact: the impact of macroeconomic scenarios is intuitive in terms
of the PIT LGD estimates.

The idea behind these testing aspects come from the general credit risk modelling and
stress testing perspectives. The developed models should be as accurate as possible
and at the same time they should behave in an intuitive manner such that they can be
used for decision making.

The tests are done both for the calibration data set (used for calibration) and the OOS
and OOT samples extracted from the calibration data set (used only for testing). For
predictive power, the used metrics aim to evaluate the “calibration” and “discriminatory
power” performance of the model (Loterman et al., 2012). As in Loterman et al. the
calibration performance is tested with the coefficient of determination 𝑅2, the root
mean squared error (RMSE) and the mean absolute error (MAE). These RMSE and
MAE are are defined as

RMSE =

⌜⃓⎷
1
𝑁

𝑁∑︁
𝑖=1

(LGD𝑖 − ̂︄LGD𝑖)2,

MAE =
1
𝑁

𝑁∑︁
𝑖=1

| LGD𝑖 − ̂︄LGD𝑖 |,

where LGD𝑖 are the realized values, ̂︄LGD𝑖 the estimated values. The discriminatory
power is tested with the Pearson’s correlation, the Spearman’s rank correlation and the
Kendall’s tau as in Loterman et al. (2012). These performance metrics are used to
understand how the model performs more broadly instead of focusing on just one or
two metrics.
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3.3 Data Simulation

3.3.1 Descriptions

This section presents the data used for LGD data simulation and model development.
The data is composed of macroeconomic factors gathered from Statistics Finland and
risk drivers that are assumed to impact realized LGD values in a residential mortgage
portfolio. Four risk drivers are selected for the data simulation and model development
purposes, and they are defined in the following list:

1. Loan-to-Value: The ratio of loan amount and the residential collateral value
at reporting date. The impact for LGD is assumed to be direct. Larger LTV
implies larger losses as a large LTV implies low collateralization of the contract.

2. Location: A binary variable that describes if the location of the residential
collateral. Two locations are specified according to Statistics Finland. The
locations are 1. greater Helsinki (value = 1), and 2. whole country excluding
greater Helsinki (value = 0). The impact for LGD is assumed to be direct.
The residential collaterals located in greater Helsinki are assumed to be more
valuable, implying lower losses.

3. Arrears: The average number of months in arrears in the past 12-months.
Assumed to have a direct impact on LGD. More arrears can imply worse
payment capability, which implies larger risk of collateral liquidation and losses,
although Matuszyk et al. (2010) found an counter-intuitive opposite impact to
LGD using this risk driver.

4. Income: The monthly income. Assumed to have opposite impact on LGD.
Larger salaries can imply better payment capabilities, and therefore, lower losses.

These are not the only risk drivers or even the best risk drivers to explain LGD in a
residential mortgage portfolio. These are chosen mainly for the illustrative purposes
of the thesis and the intuitive relation in terms of LGD. The macroeconomic factors
are shown in the following list:

1. Consumer price index (CPI) (StatFin, 2023a). Assumed to have direct impact
on LGD as high inflation can lower payment capabilities.

2. 12-month Euribor interest rate (EUR12) (SuomenPankki, 2023). Used in cash
flow discounting. Assumed to have direct impact on LGD as high interest rates
can lower payment capabilities.

3. Gross domestic product (GDP) (StatFin, 2023b). Assumed to have indirect
impact on LGD as a good economy can imply lower losses.

4. House price index (HPI) of old dwellings (whole country, greater Helsinki,
whole country excluding greater Helsinki) (StatFin, 2023c). Assumed to have
direct impact to the residential collateral values in these regions and indirect
impact on LGD.
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The sourced macroeconomic factors are in quarterly frequency, and they are illustrated
in Figure 7. The time horizon for the macroeconomic factors and the simulation study
is set from 2005 Q1 to 2019 Q4, which gives 15-years of data, i.e., 60 quarters. This
is a decent amount of data for modelling purposes, although ideally there would be
even more data available.

For the sake of simplicity, the CPI, GDP and HPI series are assumed to be 𝐼 (1)
series, i.e., they are required to be differenced once to reach stationarity. This is
assumed due to their linearly growing trend over time and stochastic nature. By the
same reasoning, the series for EUR12 and LGD are assumed to be 𝐼 (0) series, as their
values can be assumed to be bounded and to fluctuate around some long-run average
over time. However, this is not always true in a subset of a series. For example, the
12-month Euribor trends downwards in the specified time period, which forces the
series to be differenced once to remove the trend. Thus, the quarter-to-quarter growth
rate transformation (𝑀𝑡 − 𝑀𝑡−1)/𝑀𝑡−1 is applied for CPI, GDP and HPI, and the first
difference 𝑀𝑡 − 𝑀𝑡−1 is applied to EUR12. The transformed series are in Figure 8.

Figure 7: Visualizations of sourced quarterly macroeconomic factors from 2005 Q1
to 2019 Q4.

3.3.2 Algorithm

The data is simulated by generating random variables according to a pre-defined
correlation structure using Gaussian copulas as described, e.g., in McNeil et al. (2015)
and Li et al. (2013). The over time distribution for the realized LGD and risk drivers
is guided via linear relationships to macroeconomic factors. The distribution choices
for the LGD and risk drivers are presented in Table 3.

The Gaussian copula simulation algorithm according to McNeil et al. (2015) is
briefly described. The idea is to first simulate random variables𝒀 from the multivariate
normal distribution 𝑁𝑝 (𝝁,𝚺), where 𝑝 is the number of variables. To simulate 𝒀 ,
variables 𝒁 are first generated independently from a standard normal distribution,
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Figure 8: Visualizations of transformed quarterly macroeconomic factors from 2005
Q1 to 2019 Q4.

Table 3: Loss given default and risk driver distributions.

Variable name Distribution
Loss given default (LGD) LGD𝑡 ∼ 𝐵𝑒𝑡𝑎(𝛼𝑡 , 𝛽 = 0.5)
Collateral location (LOC) LOC ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝 = 0.3)
Loan-to-value (LTV) LTVLOC

𝑡 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑘𝑡 , \ = 0.1)
Arrears (ARR) ARR𝑡 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (` = 0.01, 𝜎 = 0.7)
Income (INC) INC𝑡 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑘 = 10, \ = 350)
Months in default (MID) MID𝑡 ∼ 10 · 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (` = 0, 𝜎 = 0.6)
Exposure at default (EAD) EAD𝑡 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑘 = 1, \ = 70000)

and the Cholesky decomposition is applied for the matrix 𝚺 to obtain a Cholesky
factor 𝑳 (McNeil et al., 2015). Details for the Cholesky decomposition can be found,
e.g., in Higham (1990). The normally distributed variables are obtained by setting
𝒀 = 𝝁 + 𝑳𝒁. Here, 𝝁 is set as a zero vector and a positive definite correlation matrix
is used a a covariance matrix by assuming unit variance in each variable. Hence,
the variable 𝒀 will have a distribution of 𝒀 ∼ 𝑁𝑝 (0,𝚺). The Gaussian copula 𝑼 is
applied to the variables 𝒀 , i.e., the cumulative distribution function Φ(·) of a standard
normal distribution is applied for each variable in 𝒀 . The copula 𝑼 will have uniform
marginal distributions 𝑼 ∼ 𝑈 (0, 1).

After the copula simulation is completed it is possible to generate random variables
𝑿 with any desireddistribution according to the propositions forquantile andprobability
transformations presented in McNeil et al. (2015). The propositions state that: Let
𝐹 be a cumulative distribution function (CDF) and let 𝐹−1(𝑦) = inf{𝑥 : 𝐹 (𝑥) ≥ 𝑦}
be the generalized inverse function. For quantile transformation, if 𝑈 ∼ 𝑈 (0, 1)
has a standard uniform distribution, then 𝑃(𝐹−1(𝑈) ≤ 𝑥) = 𝐹 (𝑥). For probability
transformation, if 𝑌 has a continuous univariate CDF, 𝐹, then 𝐹 (𝑌 ) ∼ 𝑈 (0, 1).
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(McNeil et al., 2015)
The correlation matrix 𝚺 that will be applied for the copula simulation is presented

in Figure 9. Only moderate correlations are considered in order to simulate the
generally low predictive power of the LGD models. Moreover, it is assumed that the
risk drivers are not correlated with each other.

Figure 9: Input correlation matrix for the simulation algorithm.

In addition to the risk driver and LGD simulations, few other variables are simulated.
Random default dates are generated for each sample by generating uniformly random
monthly end dates between a specified time horizon [𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑]. The default dates
are used to join macroeconomic data. Additionally, monthly end reporting dates are
generated by randomly selecting one to twelve months prior to the default date.

The distributions for LGD and LTV have included macro-dependency. The
dependency is seen via the mean values of the variables 𝐸LOC [LGD𝑡] and 𝐸LOC [LTV𝑡]
at time 𝑡 and location variable LOC. The LGD is assumed to be Beta-distributed and
the mean value is simulated with a linear model of form

𝐸LOC [LGD𝑡] = 𝛽1 · GDP𝑡 + 𝛽2 · CPI𝑡 + 𝛽3 · HPI𝑡,LOC + 𝛽4 · EUR12𝑡 + 𝛽5 · 𝑡 + 𝛽0 + 𝜖𝑡 .

Note that here each macroeconomic factor stands for the transformed factor, e.g., GDP𝑡
is the quarterly growth rate of GDP. Once the expected value of the LGD distribution
at time 𝑡 is simulated, then the distribution for LGD at 𝑡 is obtained by updating the
parameter 𝛼𝑡,LOC for the Beta-distribution such that

𝐸LOC [LGD𝑡] =
𝛼𝑡,LOC

𝛼𝑡,LOC + 𝛽 =⇒ 𝛼𝑡,LOC =
𝐸LOC [LGD𝑡] · 𝛽
1 − 𝐸LOC [LGD𝑡]

.

For LTV, the simulation works similarly. The expected value of the distribution is
simulated via

𝐸LOC [LTV𝑡] =
𝐸LOC [LTV𝑡−1]
𝛽1 · HPI𝑡,LOC + 𝛽0

+ 𝜖𝑡 .
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The parameter update for the Gamma-distribution is done by

𝐸LOC [LTV𝑡] = 𝑘𝑡,LOC · \ =⇒ 𝑘𝑡,LOC = 𝐸LOC [LTV𝑡]/\.

After generating random samples, the variable distributions are treated for non-
realistic values and outliers. The months in default (MID) values are converted to
integers by rounding to the closest integer. All distributions are winsorized to the 0.999
quantile. The collateral value risk driver at default date is also calculated from the sim-
ulated EAD and default date LTV risk drivers by Collateral𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 = EAD/LTV𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 .
For reporting date values, the exposure amount risk driver (Exposure) at reporting
date is simulated by increasing the EAD amount uniformly randomly by 0 to 10%.
The collateral value at reporting date is simulated by multiplying the values with
HPILOC

𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔/HPILOC
𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡

, which are calculated on quarterly frequency between the
reporting and default date. Here the HPI is the index value instead of the growth rates.
Moreover, a random error is added to the reporting date collateral values by generating
from 𝑁 (0, 𝜎 = 0.3) for the cases where the quarterly difference between the reporting
date and default date is not zero, and the growth rates are restricted between ±5%. For
zero quarterly difference the collateral value is assumed to be the same. Winsorization
is applied for the newly calculated variables. The location, income and arrear risk
drivers are assumed to be the same on reporting date and default date.

The second phase of the simulation generates the recovery process cash flows to
calculate the IFRS 9 LGD realizations from the simulated IRB LGD realizations.
First, the algorithm calculates the IRB recovery amount by EAD · (1−LGD). Second,
the cash flows are simulated as a single write-off amount from default date to the
months in default date. As the calculated recovery amount is already assumed to be
discounted, then the non-discounted cash flow is obtained by multiplying the recovery
amount by (1 + EUR12 + 5%)MID, where EUR12 is the 12-month Euribor at the
default date and the 5% is the IRB add-on. Third, the non-discounted cash flow still
includes the indirect costs which are removed by decreasing the non-discounted cash
flow uniformly 0 to 5%. The effective interest rate (EIR) is simulated by generating a
uniformly random interest rate margin between 0.1% and 5% which is added to the
12-month Euribor at default date. The IFRS 9 recovery rate can be now calculated by
dividing the non-discounted cash flow without indirect costs with (1 + EIR)MID. To
avoid excessive recovery amounts going above the original EAD, the IFRS 9 recovery
amounts are set to be at most the EAD amount. The IFRS 9 LGD realization can be
now computed.

The third and final phase of the simulation is to generate the model development
samples (IS, OOS, OOT) and calibration samples (CAL). From all simulated
observations 50% is randomly sampled for the calibration data sets and the other
50% is used for the IS, OOS and OOT. All incomplete cases are removed from the
development data set sampling. The OOT sample is created by taking all observations
that get resolved after a specified 𝑇𝑂𝑂𝑇 time point (Tanoue et al., 2017), which is set
to 31-12-2018 in this simulation. The IS and OOS samples are simply created by
randomly dividing the data to 80% IS and 20% OOS from the remaining observations.
The calibration samples are treated in almost similar way. Now the incomplete defaults
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are not removed, and the simulated realized LGD values simulate the estimation of the
realized LGD for incomplete cases. The calibration data is randomly sampled with
80%-20% ratio, where the 80% is used for model calibration sample (CAL), which is
assumed to entail the requirements explained in EBA (2017). The 20% is split to OOS
and OOT samples such that the OOT sample includes incomplete defaults and resolved
defaults after 31-12-2018. The OOS calibration set are the remaining observations.
Note that for model calibration the OOT sample works more like a “recent time” OOS
sample, because the CAL sample used for the model calibration includes also the most
recent information. This can give insights to the model performance on most recent
data rather than just using one OOS sample from the entire calibration time horizon.
To avoid confusion with the development samples, the out-of-sample and out-of-time
samples for calibration purposes are abbreviated as OOSC and OOTC, respectively.
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4 Results

4.1 Data
Two data sets are simulated. In the first data set, no trend is introduced to the LGD
time series, which illustrates a situation where the observed loss rates of a financial
institution fluctuate around the LRA LGD value and the deviations from this LRA
LGD are mainly caused by the macroeconomic conditions. In the second data set,
a trend component is introduced to the LGD time series which causes the observed
losses to get smaller over time. This illustrates a situation where the credit portfolio
quality gets better over time due to, e.g., business related reasons, but the trend is not
clearly caused by macroeconomic conditions. Moreover, given that the modelling
period is restricted, the trend imposes uncertainty for the future, i.e., it is not known
whether the observed losses stabilize or start to increase, which relates to the context
of economic cycles.

Table 4: The parameters for time series simulations.

GDP CPI HPILOC=0,1 EUR12 const. time error
LGD 1 -0.9 0.5 -1, -1 0.0005 0.2 - N(0,0.01)
LGD 2 -0.9 0.5 -1, -1 0.0005 0.3 -0.003 N(0,0.01)
LTV 1 - - 0.6, 0.6 - - - N(0,0.001)
LTV 2 - - 0.6, 0.6 - - - N(0,0.001)

For both data sets 100000 samples are simulated such that the time interval for
the macroeconomic factors is considered on between quarter one of 2005 and fourth
quarter of 2019. The parameters used in the LGD and LTV time series simulations for
both data sets are shown in Table 4. For LTV the initial expected value is set to 0.6,
which gives the parameter value 𝑘0 = 0.6/0.1 = 6.

The simulated distributions for risk drivers in the first data set are displayed in
Figure 10, while the simulated LGD distributions for both IRB and IFRS 9 cases are
displayed in Figure 11. The simulated correlation structure of the first data set is in
Figure 12. The same visualizations for the second data are almost identical with only
very minor differences, and therefore, they are not displayed here.

The calibration sample is anlyzed. The LGD time series both for the IRB and IFRS
9 realizations levels for the first data set is shown in Figure 13. The IFRS 9 realization
level is lower compared to the IRB realizations due to the use of a different cash flow
discounting factor and removal of indirect costs, and the LGD series does not have
down or up going trend. Figure 14 shows the LGD time series of the second data
set. The figure is otherwise similar, but a downward trend is seen, which is obtained
by simulating a trend component. In reality, the trend can be due to various reasons
related to business or data, for example. Furthermore, the risk driver time series in
the calibration sample of the first data set are visualized in Figure 15, where the key
takeaway is to see the downward trend of LTV risk driver due to increasing house
prices. Same behaviour is present in the second data sets risk drivers.
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Figure 10: Simulated risk driver distributions for all samples in the first data set.

Figure 11: The IRB and IFRS 9 LGD distributions for all samples in the first data set.

The number of observations in the development and calibration samples are
displayed in Table 5. The numbers are same for both data sets. The number of
observations is generally large compared to studies with only 4000 observations
(Witzany et al., 2010). The simulation illustrates the data amounts for large portfolios
with data available for multiple years.

Table 5: The observation sizes for the different samples.

Sample Number of observations
Development IS 34620

Development OOS 8654
Development OOT 3284
Calibration CAL 40000
Calibration OOS 8690
Calibration OOT 1310
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Figure 12: Output correlation structure for all samples in the first data set.
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Figure 13: Data set 1. Monthly observed loss rate over time in the simulated
calibration sample. Both IRB (top) and IFRS 9 (bottom) realizations are displayed
with a 12-month centered moving average smoothed line.

Figure 14: Data set 2. Monthly observed loss rate over time in the simulated
calibration sample. Both IRB (top) and IFRS 9 (bottom) realizations are displayed
with a 12-month centered moving average smoothed line.

Figure 15: Data set 1. The risk driver time series for the calibration sample.
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4.2 Model Estimation and Calibration
The IRB model parameters are estimated using the development IS sample using the
four risk drivers and the IRB LGD realization as a target variable. The parameter
estimation results for the linear regression model for both data sets are in Table 6.
The results indicate that the estimated parameters are intuitive with respect to the
coefficient signs. Specifically, an increase in LTV or ARR will increase LGD, while an
increase in INC or having the collateral location in greater Helsinki (LOC=1) decrease
LGD.

Table 6: The estimated IRB LGD model parameters for data sets 1 and 2.

Risk driver Data set 1 estimates ˆ︁𝛽 Data set 2 estimates ˆ︁𝛽
constant ˆ︁𝛽0 = 0.2016 ˆ︁𝛽0 = 0.2086

LTV ˆ︁𝛽1 = 0.0846 ˆ︁𝛽1 = 0.0886
ARR ˆ︁𝛽2 = 0.0483 ˆ︁𝛽2 = 0.0492
INC ˆ︁𝛽3 = −0.0395 ˆ︁𝛽3 = −0.0403
LOC ˆ︁𝛽4 = −0.0344 ˆ︁𝛽4 = −0.0328

The IRB LGD estimates for these models are restricted between zero and one.
Table 7 shows the performance metrics of the IRB LGD model in both data sets. The
results show that the models perform well also in the OOS and OOT samples which
were not used for estimating the parameters. Moreover, the coefficient of determination
(𝑅2) values are in line with the findings in literature. However, the 𝑅2 in the second
data set OOT sample is really low, which is due to the LGD distribution skewing
towards zero. These models are used as a basis for the IFRS 9 model calibration with
the assumption that the models have been tested and validated for IRB or other internal
modelling purposes.

Table 7: The IRB LGD model performances for data sets 1 and 2.

Sample 𝑅2 RMSE MAE Pearson Spearman Kendall
1. IS 0.1226 0.2881 0.2189 0.3502 0.401 0.2781

1. OOS 0.1379 0.2931 0.2218 0.3729 0.421 0.2929
1. OOT 0.1275 0.2866 0.2131 0.3577 0.42 0.2923

2. IS 0.1271 0.2919 0.2235 0.3565 0.4041 0.2804
2. OOS 0.1415 0.2971 0.2275 0.3777 0.4238 0.2949
2. OOT 0.0108 0.2571 0.2017 0.3176 0.3985 0.2863

The models are calibrated to the IFRS 9 realization level using the mapping
function (5). To recap, the mapping function is estimated by using the IFRS 9
LGD realizations as target variable and the non-calibrated IRB LGD estimate as an
explanatory variable. The estimated mapping function parameters for both data sets
are in Table 8. From the estimated parameters ˆ︁𝛾1 it can be seen that they are below
one, i.e., the IRB LGD estimates are scaled on a lower level. This also implies that
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Table 8: The IFRS 9 LGD mapping function parameters for data sets 1 and 2.

Variable Data set 1 estimate ˆ︁𝛾 Data set 2 estimate ˆ︁𝛾
constant ˆ︁𝛾0 = −0.0318 ˆ︁𝛾0 = −0.0359̂︄LGD ˆ︁𝛾1 = 0.873 ˆ︁𝛾1 = 0.844

the IFRS 9 LGD estimates increase by ˆ︁𝛾1 if the IRB LGD estimates increase by one
unit. The constant term in the mapping function ˆ︁𝛾0 ensures proper linear calibration,
i.e., it functions as the mean value of IFRS 9 estimate if the IRB LGD estimate is
zero. The final mapping function estimates are restricted between zero and one. This
calibration step can be seen as a non-PIT calibration as the PIT adjustments are not
yet applied. The performance metrics for the calibration samples for both data sets are
in Table 9. The results are good, as the coefficient of determination values remain
around 10% and the other performance metrics have similar magnitudes compared to
the IRB LGD model performances in Table 7. According to the findings in Loterman
et al. (2012), the correlation metrics (Pearson, Spearman, and Kendall) are decent as
they are approximately in the range of 0.25 to 0.3.

Table 9: The IFRS 9 calibrated LGD model performance for data sets 1 and 2.

Sample 𝑅2 RMSE MAE Pearson Spearman Kendall
1. CAL 0.1047 0.2725 0.1892 0.3237 0.3215 0.249

1. OOSC 0.1014 0.2623 0.1833 0.3209 0.3019 0.2346
1. OOTC 0.1146 0.2867 0.2009 0.344 0.3363 0.2596
2. CAL 0.1070 0.2697 0.1853 0.3272 0.3229 0.2506

2. OOSC 0.1051 0.2672 0.1843 0.3243 0.3113 0.2413
2. OOTC 0.0617 0.2364 0.168 0.3152 0.2922 0.2315

The portfolio level LRA LGD values are calculated for both data sets using all
available observations in the calibration sample by calculating the average of all IFRS
9 realized losses. Here it is assumed that the incomplete defaults are already properly
addressed in the calibration sample. The LRA LGD results are in Table 10. The LRA
LGD values can be used in calculating the adjustment scalars for individual LGD
estimated in the case of the loss rate model. The results show that for IFRS 9 the
average losses are around 13% while for IRB the average losses are approximately
19%. The impact of the discounting factor in realized loss calculations is notable.

Table 10: The LRA LGD values for both simulated data sets calculated using the
calibration sample.

Data set IRB LRA LGD IFRS 9 LRA LGD
1 0.1947 0.1346
2 0.1894 0.1313
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4.3 Point-in-Time Adjustments
This section discusses the point-in-time adjustments for the LGD estimates. The
models for the two data sets are considered separately. First putting emphasis on the
data set without trending LGD and then focusing on the second data set with trending
LGD over time. The loss rate modelling is discussed first and the application of
“output adjustments” to adjust the LGD estimates for different scenarios are presented
with examples. Lastly, the risk driver model is discussed and the application of “input
adjustments” is presented with and example.

4.3.1 Loss Rate Model for Data Without Trend

The first data set is analyzed. The observed loss rate time series is calculated on
quarterly frequency according to Equation (6), where the default dates are converted
to quarterly frequency. Similar time series aggregation is performed for the non-PIT
LGD estimates to see how the average estimates behave over time. Figure 16 shows
the observed and estimated loss rates. The observed loss rate tends to fluctuate around
the LRA LGD value without trends. Thus, the observed loss rate is stationary and
no differencing or other treatments are required to be applied. The estimated series
is rather stable over time which implies that the LGD estimates do not capture the
macroeconomic fluctuations as much as seen in the observed loss rates. However,
the effect of changing LTV distribution is seen as the estimate series slightly trends
down. This suggests that the estimates react to the changes in the collateral values,
and hence, they are more hybrid than through-the-cycle.

Figure 16: Data set 1 modelling. The quarterly aggregated observed loss rate (Avg.
LGD) and the LGD estimates.

The next step is to make the initial selections and stationary treatments for the
macroeconomic factors. In this thesis only four factors are considered and the stationary
transformations are the quarterly growth rates for GDP, CPI and HPI, while the EUR12
is transformed with a quarterly difference. The cross-correlation coefficients between
the input sequences (stationary macroeconomic factors) and the output sequence
(stationary observed loss rate) are calculated and the results are in Figure 17. The first
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row in the figure shows the estimated cross-correlation coefficients for all lags and the
second row shows the coefficients for -4 to 4 quarter lags in order to restrict the lag
numbers to a one-year horizon with respect to the default date.

Figure 17: Data set 1 modelling. The cross-correlation results.

The lags are selected such that the cross-correlation is maximized or minimized
with respect to the prior economical intuition of how the macroeconomic factor impacts
LGD. For the GPD and the whole country HPI the impact to LGD is assumed to be
indirect, and hence, the lag with minimal cross-correlation selected. The lag zero
minimized the cross-correlation for both GDP and HPI. Thus, no operations are
required for GDP and HPI. The result indicates that the changes the macroeconomic
factors impact immediately the loss rates at default dates. For CPI and EUR12 the
impact to LGD is assumed to be direct, and hence, cross-correlation is maximized.
The lags 𝑘 = 4 and 𝑘 = 2 maximize the cross-correlation for the factors CPI and
EUR12, respectively. The lags indicate that the changes in previous quarters with
respect to the default date impact the LGD at default date.

Once the lags (or leads 𝑘 < 0) have been selected and applied for each macroe-
conomic factor, the model selection can be performed. It is possible to calculate all
possible model configurations as there are only four macroeconomic factors, which
gives a total of 15 model configurations. The model configuration with minimal
corrected AIC is selected. Two other conditions are also used. All coefficients (except
the intercept) are required to be statistically significant and the F-test should reject the
null hypothesis. The confidence level for these test is set to 5%. The candidate model
structure is in Table 11, which includes the parameter estimates, the standard errors,
t-test statistics, t-test p-values and the 95% confidence intervals. The performance
results and other statistical tests are in Table 12.

From the model structure it can be seen that the coefficient signs are correct, i.e.,
they are negative for GDP and HPI, meaning that an increase in those factors indicates
a decrease in the losses. All coefficient estimates ˆ︁𝛼 are significant according to the
t-tests. However, as there is not much data available (only 60 observations) it is seen
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Table 11: Data set 1 modelling. Loss rate OLS model structure and statistics.

Variable Estimate ˆ︁𝛼 𝑗 Std. error t-stat p-value 95% conf. int.
constant 0.1395 0.002 69.202 0.000 [0.135, 0.143]

GDP -0.8511 0.154 -5.531 0.000 [−1.159,−0.543]
HPI -0.4473 0.149 -3.007 0.004 [−0.745,−0.149]

Table 12: Data set 1 modelling. Statistical tests and performances.

Criterion Value Test Statistic p-value
AIC𝑐 -336.0439 F-test 27.2242 0.0000
𝑅2
𝑎 0.4706 Shapiro-Wilk 0.9892 0.8734

that the confidence intervals for the coefficients are wide for GDP and HPI. The
constant parameter is in line with the LRA LGD value of LGD = 0.1346. Furthermore,
the adjusted 𝑅2 value is approximately 47%, which can be considered decently good.

The diagnostic plots are in Figure 18. The residuals are normally distributed
according to the histogram, quantile-quantile-plot and the Shapiro-Wilk test that gives
a p-value of 0.8734, not rejecting the null hypothesis of normality. The residuals are
homoscedastic, as the residuals over time have only slight changes in variance. The
scatter plot of fitted values and residuals does not indicate any notable non-linear
patterns, and the scatter plots between the macroeconomic factors and residuals in
Figure 19 are also scattered equally and non-linearities are not seen. The residuals
are not autocorrelated as the ACF plot shows only small autocorrelation values for all
lags that are under the 95% confidence, and the Breusch-Godfrey (BG) test for 1 to
12 qaurterly lags also indicates that no autocorrelation is present as none of the lags
reject the null hypothesis (p-values are larger than 5%). Multicollinearity is analyzed
as there are more than one factors in the regression equation. The VIF values for both
GDP and HPI are 1.1355 (lower than threshold 5) and the Pearson correlation is 0.299.
Hence, no multicollinearity is present is statistical terms. However, economically the
GDP and HPI exhibit correlated patterns. In summary, all diagnostic tests are satisfied.

The predicted loss rates against the observed loss rates are displayed in Figure
20. The historical predictions capture the fluctuations in the loss rate. However, the
predictions are only fitted values with the data used in the model training.
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Figure 18: Data set 1 modelling. Diagnostic plots for the observed loss rate OLS
model.

Figure 19: Data set 1 modelling. Scatter plots of residuals and macroeconomic
factors.

Figure 20: Data set 1 modelling. The observed and predicted loss rates.
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The PIT adjustment scalars are calculated according to Equation (10) by comparing
the predictions against the LRA LGD value of the portfolio LGD = 0.1346. The
scalars are used to adjust the LGD estimates by multiplying the IFRS 9 calibrated LGD
estimate with the scalar associated with the default date. The comparison between
the non-PIT and PIT IFRS 9 LGD estimate time series is in Figure 21. The PIT
estimates are much more volatile compared to the non-PIT estimates and they react to
the economic conditions. Table 13 shows the performance metrics for PIT adjusted
estimates for the CAL, OOSC and OOTC samples. The results show that the PIT
adjusted estimates are slightly better in all metrics and samples compared to the
non-PIT adjusted results in Table 9. Only in the OOTC sample the MAE is better for
the non-PIT estimates compared to the PIT estimates. As the PIT adjustments did not
weaken the overall LGD model performance and the loss rate model is reasonable in
both statistical and economical sense, the LGD model with the PIT adjustments can
be used in ECL calculations.

Figure 21: Comparison between the non-PIT and PIT average LGD estimates over
time.

Table 13: The IFRS 9 calibrated and PIT adjusted LGD model performance for data
set 1.

Sample 𝑅2 RMSE MAE Pearson Spearman Kendall
CAL 0.1078 0.2721 0.1888 0.3284 0.3264 0.2528

OOSC 0.104 0.2619 0.1829 0.3252 0.307 0.2385
OOTC 0.1181 0.2861 0.2017 0.3479 0.3379 0.2611

An example of using this model in application is presented. Suppose that the
reporting date is at the beginning of the year. Let the baseline forecasts for GDP and HPI
growth rates for the end of the current year be GDP𝑏𝑎𝑠𝑒 = 0.01 and HPI𝑏𝑎𝑠𝑒 = 0.02.
Moreover, let the weak and strong scenarios be GDP𝑤𝑒𝑎𝑘 = −0.02, GDP𝑠𝑡𝑟𝑜𝑛𝑔 = 0.04,
HPI𝑤𝑒𝑎𝑘 = −0.03 and HPI𝑠𝑡𝑟𝑜𝑛𝑔 = 0.05. Assume that the quarterly growths are equal
in each quarter. The quarterly rates are given by ˜︁𝑀𝑄 = (1 + ˜︁𝑀𝑌 )1/4 − 1, where ˜︁𝑀𝑌 is
the yearly growth rate of the macroeconomic factor. Note that if the factors are lagged
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or the reporting date is at, e.g., the second quarter of the year, then the forecasts of next
years or previous realizations need to be used as well. The quarterly forecasts are given
by LGD𝑡 = ˆ︁𝛼1 · GDP𝑡 + ˆ︁𝛼2 · HPI𝑡 + ˆ︁𝛼0. For all 𝜏 = 1, 2, 3, 4 quarters the forecasts are

LGD𝑡𝑅+𝜏,𝑏𝑎𝑠𝑒 = −0.8511 · 0.0025 − 0.4473 · 0.005 + 0.1395 = 0.1351
LGD𝑡𝑅+𝜏,𝑤𝑒𝑎𝑘 = −0.8511 · (−0.005) − 0.4473 · (−0.0076) + 0.1395 = 0.1471

LGD𝑡𝑅+𝜏,𝑠𝑡𝑟𝑜𝑛𝑔 = −0.8511 · 0.0099 − 0.4473 · 0.0123 + 0.1395 = 0.1256.

Averaging the forecasts for all 𝜏 = 1, 2, 3, 4 in each scenario gives the yearly forecast.
Diving these forecasts with the LRA LGD value presented in Table 10 the adjustment
scalars become 𝛿𝑡𝑅+1,𝑏𝑎𝑠𝑒 = 0.1351/0.1346 = 1.0037, 𝛿𝑡𝑅+1,𝑤𝑒𝑎𝑘 = 0.1471/0.1346 =

1.093 and 𝛿𝑡𝑅+1,𝑠𝑡𝑟𝑜𝑛𝑔 = 0.1256/0.1346 = 0.9329. If the non-PIT LGD estimate
for a stage 1 asset is ̂︄LGD

∗
𝑖,𝑡𝑅+1 = 0.1, then the different scenario adjustments givê︄LGD

∗
𝑖,𝑡𝑅+1,𝑏𝑎𝑠𝑒 = 𝛿𝑡𝑅+1,𝑏𝑎𝑠𝑒 · 0.1 = 0.1004, ̂︄LGD

∗
𝑖,𝑡𝑅+1,𝑤𝑒𝑎𝑘 = 𝛿𝑡𝑅+1,𝑤𝑒𝑎𝑘 · 0.1 = 0.1093

and ̂︄LGD
∗
𝑖,𝑡𝑅+1,𝑠𝑡𝑟𝑜𝑛𝑔 = 𝛿𝑡𝑅+1,𝑠𝑡𝑟𝑜𝑛𝑔 · 0.1 = 0.0933. If the LGD estimates are already

assumed to be PIT or hybrid, then the method in Joubert et al. (2021) can be applied.
Here, the baseline forecast stays as ̂︄LGD

∗
𝑖,𝑡𝑅+1,𝑏𝑎𝑠𝑒 = 0.1, but the adjustment scalars

become 𝛿𝑡𝑅+1,𝑤𝑒𝑎𝑘 = 0.1471/0.1351 = 1.089 and 𝛿𝑡𝑅+1,𝑠𝑡𝑟𝑜𝑛𝑔 = 0.1256/0.1351 =

0.9294. This same idea can be extended for stage 2 assets for yearly 𝑡𝑅 + 𝜏 time points.

4.3.2 Loss Rate Model for Data With Trend

Similar analysis is carried out for the second data set where a trend is seen in the
observed loss rate. The original observed loss rate for the second data set is in Figure
22. The observed loss rate has down going trend, and the estimated series has similar
behaviour as with the previous data set, i.e., it is stable but moderate fluctuations are
present due to the changing LTV risk driver.

Figure 22: Data set 2 modelling. The quarterly aggregated observed loss rate (Avg.
LGD) and the LGD estimates.

Different modelling options can be conducted. The first option is to conduct
modelling for the loss rate series without any transformations, as LGD is assumed to
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be an 𝐼 (0) series. However, depending on the amount of data and the macroeconomic
factors, the results can become spurious. A second option is to remove the trend
from the time series by estimating the linear or polynomial trend. This requires
the assumption that the loss rates are stationary around a trend, which is not a
very reasonable assumption. Moreover, it can cause challenges in application as
the time component should also be included. A third approach is to conduct the
modelling on the differenced time series data, i.e., the target variable becomes
∇LGD𝑡 = LGD𝑡 − LGD𝑡−1. Log-differences and four-quarter (yearly) differences can
also be applied. This step ensures stationarity for the model estimation phase, given
that the LGD time series is not stationary in a particular time period. The differenced
loss rate is in Figure 23. No trend is now observed and the series is stationary.

The cross-correlation analysis is performed as previously. The GDP and HPI are
assumed to have indirect impact on LGD, i.e., cross-correlation is minimized. For
CPI and EUR12 direct impact is assumed, and thus, cross-correlation is maximized.
The results are in Figure 24. For GDP and HPI lags 𝑘 = −4 and 𝑘 = 0 are selected,
respectively, as they minimize the cross-correlation. For CPI and EUR12 the lags
𝑘 = −2 and 𝑘 = 1 are selected, respectively, as they maximize the cross-correlation.
Negative lags are called are leads, which indicate that the future values of these factors
with respect to the default date impact the LGD at default date.

Figure 23: Data set 2 modelling. The differenced observed loss rate.

The model selection is performed by minimizing the corrected AIC and selecting
configurations with only significant coefficients for the macroeconomic factors. Only
configurations that pass the F-test are considered. The best model is the uni-variate
OLS model with the HPI factor. Before going into further details, the model diagnostics
are shown in Figure 25. The diagnostic plots for the ACF and the BG-test clearly
indicate that significant residual autocorrelation is present in the model, which violates
the OLS assumptions. Hence, the model is not applicable.

There are multiple options to overcome the residual autocorrelation problem in
OLS modelling. The easiest option is to try out alternative variable transformations
for the dependent time series, for example. If autocorrelation is still present, then
other modelling methods should be investigated. If autocorrelation is seen to be
significant only at the first lag of residuals, i.e., first order autocorrelation, then the
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Figure 24: Data set 2 modelling. The cross-correlation results for the differenced loss
rate output.

Figure 25: Data set 2 modelling. Diagnostic plots for the differenced loss rate OLS
model.

Cochrane-Orcutt or Prais-Winsten procedure can be applied (Chatterjee and Simonoff,
2013). These procedures adjust the estimated OLS parameters in a way that the
first order autocorrelation is addressed. Another approach is to estimate a regression
with time series error model as is presented in Tsay (1984). Here, the OLS model
entails its straightforward interpretation but the residual series is considered as an
autoregressive and moving average process. In this model the parameters can be
estimated simultaneously and multiple autoregressive orders can be considered. A
third alternative is to extend the OLS model such that the regression equation includes
lagged observations of the dependent variable. This type of model is also known
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as an “autoregressive distributed lag” (ADL) model, see, e.g., Hassler and Wolters
(2006). The downside of this model, however, is that the regression coefficients for the
macroeconomic factors change meaning, while this is not the case in the regression
with time series errors model.

Testing of alternative modelling methods is left for further research, although they
can be easily incorporated by following the framework and methodology presented
in this thesis. Instead, an alternative variable transformation for the observed loss
rate is tested. The yearly difference ∇4LGD𝑡 = LGD𝑡 − LGD𝑡−4 is applied. The new
transformation is in Figure 26. The trend is again removed and stationarity is assumed.

Figure 26: Data set 2 modelling. The yearly differenced observed loss rate.

Figure 27: Data set 2 modelling. The cross-correlation results for the yearly differenced
loss rate output.

The cross-correlation results are in Figure 27. The results change slightly compared
to the previously used quarter to quarter differenced loss rate. The minimal cross-
correlations for GDP and HPI are found at lags 𝑘 = −1 and 𝑘 = 0, respectively. The
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maximal cross-correlations for CPI and EUR12 are found at lags 𝑘 = 3 and 𝑘 = 2,
respectively.

The model selection follows similar structure as previously. Table 14 shows the
model candidate that minimizes the corrected AIC and has satisfactory statistical
properties. The model structure is plausible as the parameter for GDP is negative
and the parameter for EUR12 is positive. The coefficients are statistically significant,
except for the intercept which is expected to be close to zero. The negative sign of the
intercept is due to the decreasing losses over time. The 95% confidence intervals are
also quite wide for the coefficients which is due to the low amount of data. Note that
here the number of data points is 53 which is smaller compared to the number of data
points in data set one which had 60. The reduction of data points is due to taking the
yearly difference for the loss rate which removes four data points, and also lagging the
GDP and EUR12 by -1 and 2, respectively, which removes another 3 data points. Thus
one must be cautious when applying these types of variable transformations because it
reduces the amount of data to be used for model estimation.

The model performance results and other statistical tests are displayed in Table 15.
The results indicate that this model is also decently good as the adjusted 𝑅2 values is
approximately 45%.

Table 14: Data set 2 modelling. Yearly differenced loss rate model structure and
statistics.

Variable Estimate ˆ︁𝛼 𝑗 Std. error t-stat p-value 95% conf. int.
constant -0.0034 0.003 -1.143 0.259 [−0.009, 0.003]

GDP lead 1 -1.1206 0.230 -4.880 0.000 [−1.582,−0.659]
EUR12 lag 2 0.0304 0.008 4.023 0.000 [0.015, 0.046]

Table 15: Data set 2 modelling. Statistical tests and performances.

Criterion Value Test Statistic p-value
AIC𝑐 -255.2902 F-test 22.0436 0.0000
𝑅2
𝑎 0.4473 Shapiro-Wilk 0.9724 0.2553

The diagnostic plots are in Figure 28. The residuals are normally distributed
according to the histogram and Shapiro-Wilk test p-value of 0.2553. The quantile-
quantile-plot implies normality as well, but the left tail of the residual distribution
seems to be skewed. The residuals are homoscedastic as the over time plot is stable.
The fitted values and residuals are uniformly scattered and do not show non-linear
patterns. The scatter plots between the macroeconomic factors and the residuals
in Figure 29 indicate that there are no non-linear patterns present. The residual
autocorrelation is also removed according to the ACF plot and BG-test for 1 to 12
lags. Thus, this model configuration can be assumed to satisfy the OLS assumptions.
Additionally, the VIF values for both macroeconomic factors are 1.0125 and Pearson
correlation is -0.0942. Hence, no multicollinearity is assumed to be present.
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Figure 28: Data set 2 modelling. Diagnostic plots for the yearly differenced loss rate
OLS model.

Figure 29: Data set 2 modelling. The scatter plots between the residuals and
macroeconomic factors.

The predictions for the yearly differenced and original LGD series are in Figures
30 and 31, respectively. The predictions fit well to the data and the trends and
macroeconomic fluctuations in the loss rates are captured. As the predictions are done
as in one-step, i.e., the loss rate value four quarters previously is known when the next
one is predicted. When forecasting, the results can be based only to the latest known
observations.

As done previously, the PIT adjustment scalars are calculated by dividing the
predictions for the loss rates with the LRA LGD value of LGD = 0.1313. The scalars
are applied adjust the non-PIT LGD estimates. Comparison between the PIT and
non-PIT estimate time series is in Figure 32. The performance metrics Table 16 are
calculated to compare the PIT and non-PIT estimates. The metrics for the non-PIT
estimates are displayed again as they are different from the ones in Table 9 due to a
slightly different number of data points in the calibration data, as the loss rate model
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Figure 30: Data set 2 modelling. The observed and predicted yearly difference of
loss rates.

Figure 31: Data set 2 modelling. The observed and predicted loss rates.

included differencing and lags which remove data points. The results show that for all
samples and all performance metrics the PIT adjusted estimates are better compared
to the non-PIT estimates.

Figure 32: Data set 2 modelling. Comparison between the non-PIT and PIT average
LGD estimates over time.
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Table 16: Data set 2 modelling. The IFRS 9 calibrated, both non-PIT and PIT
adjusted, LGD model performance.

Sample 𝑅2 RMSE MAE Pearson Spearman Kendall
CAL 0.1044 0.2663 0.1823 0.3234 0.3185 0.2475

CAL (PIT) 0.1128 0.265 0.177 0.3366 0.3361 0.2609
OOSC 0.1023 0.2638 0.1812 0.3203 0.307 0.2384

OOSC (PIT) 0.1076 0.2631 0.1806 0.333 0.3235 0.2517
OOTC 0.0583 0.2377 0.1687 0.3108 0.2837 0.2249

OOTC (PIT) 0.0962 0.2329 0.1368 0.325 0.2871 0.2277

In conclusion, the model for the yearly differenced loss rate can be used for ECL
applications to adjust the LGD estimates for different macroeconomic scenarios as the
macroeconomic model satisfies statistical properties, it is economically intuitive, and
the PIT adjusted estimates are better compared to the non-PIT estimates.

In comparison to the model developed for the first data set some aspects need to be
addressed when the yearly differenced loss rate model is applied. Let 𝜏 be a discrete
step forward in time in quarterly frequency. The loss rate forecast for 𝑡𝑅 + 𝜏, where 𝑡𝑅
is the reporting date quarter, is calculated by LGD𝑡𝑅+𝜏 = ∇4LGD𝑡𝑅+𝜏 + LGD𝑡𝑅+𝜏−4.
Hence, forecasting the next four quarters for stage 1 assets, for example, requires
that the loss rates LGD𝑡𝑅−3, LGD𝑡𝑅−2, LGD𝑡𝑅−1 and LGD𝑡𝑅 are known. This is a
challenge, because the latest observed loss rates can be biased. The bias is usually
due to most recent defaults that have not yet been resolved as the recovery processes
for defaults can take several years. Thus, the most recent realized losses are typically
addressed with a method that estimates the losses for the incomplete defaults as was
discussed in Section 3.1. However, it can also be possible that the most recent loss
rates are representative and unbiased. If it is not possible to use most recent loss rates
for forecasting, then a pragmatic approach can be incorporated. For example, it can be
assumed that the best approximation for recent loss rates are equal to the LRA LGD,
which implies that the forecasts for the differenced losses indicate how much deviation
will be seen from the LRA LGD value in a particular macroeconomic scenario.

For example, consider the same yearly forecasts for GDP as presented in the
example for the first data set, i.e., GDP1,𝑏𝑎𝑠𝑒 = 0.01. Additionally, it is required
that there is a forecast for the second year for GDP due to the lead of 1 quarter.
Let the second year GDP forecast be GDP2,𝑏𝑎𝑠𝑒 = 0.02. The quarterly growths are
GDP1,𝑏𝑎𝑠𝑒 = 0.0025 and GDP2,𝑏𝑎𝑠𝑒 = 0.005. Let the quarterly differences for EUR12
for the first year forecast be EUR121,𝑏𝑎𝑠𝑒 = 0.02 and the quarterly differences in
the previous year (due to lagged factor) be EUR120,𝑏𝑎𝑠𝑒 = 0.05. The percentage
point differences are assumed to be equal in each quarter. Assume that the loss
rate values four quarters previously are equal to the LRA LGD value in Table 10,
i.e., LGD = 0.1313. The differenced loss rate forecasts are given by the equation
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∇4LGD𝑡 = ˆ︁𝛼1 · GDP𝑡+1 + ˆ︁𝛼2 · EUR12𝑡−2 + ˆ︁𝛼0. The next four quarters forecasts are

∇4LGD𝑡𝑅+1 = −1.1206 · 0.0025 + 0.0304 · 0.05 − 0.0034 = −0.0046
∇4LGD𝑡𝑅+2 = −1.1206 · 0.0025 + 0.0304 · 0.05 − 0.0034 = −0.0046
∇4LGD𝑡𝑅+3 = −1.1206 · 0.0025 + 0.0304 · 0.02 − 0.0034 = −0.0055
∇4LGD𝑡𝑅+4 = −1.1206 · 0.005 + 0.0304 · 0.02 − 0.0034 = −0.0083.

The loss rate forecasts for the next four quarters are

LGD𝑡𝑅+1 = ∇4LGD𝑡𝑅+1 + LGD𝑡𝑅−3 = 0.1267
LGD𝑡𝑅+2 = ∇4LGD𝑡𝑅+2 + LGD𝑡𝑅−2 = 0.1267
LGD𝑡𝑅+3 = ∇4LGD𝑡𝑅+3 + LGD𝑡𝑅−1 = 0.1257
LGD𝑡𝑅+4 = ∇4LGD𝑡𝑅+4 + LGD𝑡𝑅 = 0.123,

where LGD𝑡𝑅−3 = LGD𝑡𝑅−2 = LGD𝑡𝑅−1 = LGD𝑡𝑅 = LGD = 0.1313 are set to the
LRA LGD value. The average of there forecasts is 0.1255, which can be used as the
yearly forecast. Comparing this number to the LRA LGD value gives the one-year
adjustment scalar 𝛿𝑡𝑅+1,𝑏𝑎𝑠𝑒 = 0.1255/0.1313 = 0.9559, which can be used to adjust
the individual LGD estimates for the baseline scenario. Similar logic can be used
for the weak and strong scenarios as well. Moreover, for stage 2 assets, the quarterly
forecasts 𝑡𝑅 + 𝜏 where 𝜏 > 4, the forecasts are dynamically updated by using the
produced forecasts LGD𝑡𝑅+𝜏−4.

Another challenge is the incorporation of synergy between the mean reversion
of macroeconomic factors and through-the-cycle reversion of the risk parameters as
described in EBA (2023) par. 82 and 83. Specifically, after the forecasting period it
might be that the macroeconomic factors converge to their long-term values in each
scenario, but it still needs to be ensured that the loss rate forecast also converge to
the long-run averages. The investigation for the optimal methods regarding these
challenges is left for future research.

4.3.3 Risk Driver Model for Data With Trend

This section covers the input adjustment results using the risk driver model in Section
3.2.4. The risk driver model can be used to forecast risk driver values such that the
macroeconomic scenarios are incorporated into the ECL calculations for both stage 1
and 2 assets. Alternatively, if a loss rate model is used as an output adjustment, the
risk driver model can be used for simply updating the risk driver values in stage 2
calculations. In situations with no clear correlation with respect to the loss rates and
macroeconomic factors, the risk driver model can be used instead. The justification
for the use of the risk driver model should be based on the macro-sensitivity of the
risk drivers, which consequently make the LGD model macro-sensitive.

To illustrate the risk driver model development process and application, only the
second simulated data set with trend is used. The reason for this is that the development
process and application is exactly similar as it would be for the first data set without
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trend, and the effect of the risk driver model is seen for a slightly more complex data
set.

The first step of the process is to understand the LGD model structure, i.e., what
are the risk drivers, how the risk drivers are transformed, what is the underlying LGD
model, and what are the outputs of the model. The LGD model has four risk drivers:
loan-to-value (LTV), location, income and arrears. The collateral location can be
assumed to be stable over time, unless the collateral is changed in the loan contract to
another collateral. In terms of the income risk driver it could be possible to develop a
model which follows, e.g., an earnings level index and unemployment rates. However,
the model can easily become complex as income can depend on multiple factors such
as the job, job location, and industry. The arrear risk driver is also fairly complex to
model as the number of arrears can be a cause of, e.g., income or payment behaviour
related characteristics. Hence, the modelling will focus on the LTV risk driver as
the collateral values can be modelled with macroeconomic factors and the exposure
amount can be modelled with, e.g., a separate exposure at default (EAD) model (Miu
and Ozdemir, 2017).

The collateral value growth rates are first calculated by comparing the default
date and reporting date values with each other. The dates are converted to quarterly
frequency. Only observations where the quarterly difference between the reporting
date and default date is greater or equal to one are considered. In this calibration data
set, there are 34359 observations to be used for calculating the collateral growth rates.
The other 5641 observations defaulted in the same quarter as the reporting date, and
thus, there is no difference in the collateral values. According to Section 3.2.4, the
calculated collateral growth rates are first converted to quarterly rates by assuming
equal growth in each quarter, and further, the growth rates are converted to yearly
growth rates. To add granularity into the model the yearly collateral growth rates can
be modelled with respect to the collateral location if there is such macroeconomic
information available.

The yearly collateral and house price index (HPI) growth rates are visualized for
the two different locations in Figure 33, where it can be seen that the growth rates
seem to behave similarly, but with a small lag. The cross-correlation analysis reveals
that for both locations a lag 𝑘 = −1 maximizes the cross-correlation, i.e., the increase
in HPI increases collateral values as expected. Hence, a lead of one quarter is applied
to the yearly HPI growth rates.

Two OLS models are estimated, where the location based yearly collateral value
growth rates are modelled with the location based yearly HPI growth rates with a one
quarter lead. The estimated models for both locations are in Table 17. The models
indicate reasonable economical behaviour as the coefficients are positive, i.e., the
collateral value growth rates increase when the HPI increases. The intercepts are also
positive, which indicate that the collateral values increase even if the HPI growths are
zero. A negative intercept would indicate depreciation of the collateral values (Miu and
Ozdemir, 2017). The performance metrics and statistics are in Table 18. The collateral
value model for the whole country excluding greater Helsinki (LOC=0) performs
reasonably well with an adjusted 𝑅2 of approximately 32%, while the collateral value
model for greater Helsinki (LOC=1) has an adjusted 𝑅2 of approximately 19%.
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Figure 33: The yearly collateral and HPI growth rates for two locations on quarterly
frequency.

Table 17: Risk driver model structure and statistics for both locations LOC=0 and
LOC=1.

Variable Estimate ˆ︁𝛼 𝑗 Std. error t-stat p-value 95% conf. int.
constant 0.0058 0.001 5.498 0.000 [0.004, 0.008]

HPI0 lead 1 0.1610 0.03 5.289 0.000 [0.100, 0.222]
constant 0.0061 0.002 3.404 0.001 [0.003, 0.010]

HPI1 lead 1 0.1293 0.034 3.775 0.000 [0.061, 0.198]

Table 18: Statistical tests and performances for risk driver models.

Model Criterion Value Test Statistic p-value
LOC=0 AIC𝑐 -410.5313 F-test 27.9740 0.0000

𝑅2
𝑎 0.3174 Shapiro-Wilk 0.9755 0.2785

LOC=1 AIC𝑐 -361.5324 F-test 14.2532 0.0004
𝑅2
𝑎 0.1886 Shapiro-Wilk 0.9781 0.3775

The diagnostic plots for both whole country excluding greater Helsinki model
and greater Helsinki models are displayed in Figures 34 and 35, respectively. In the
diagnostic plots for the LOC=0 model the OLS assumptions are mostly satisfied, i.e.,
the residuals are not autocorrelated and the residuals are homoscedastic. According to
the Shapiro-Wilk test the residuals are normally distributed, but the histogram and
quantile-quantile-plot show that residuals are skewed. This can make the statistical
tests of the model parameters unstable. Moreover, slight non-linearity is present in the
scatter plot of fitted values and residuals.

For the LOC=1 model all other assumptions are satisfied, but according to the
BG-test there is autocorrelation present for lags 2 and 3. This is not necessarily a
problem as there is no first order autocorrelation present according to the BG-test and
the ACF plots. Moreover, all lags above 3 do not indicate autocorrelation. Thus, it
could be argued that this model can still be used in application.

The exposure at default has to be also forecasted to properly forecast the LTV
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Figure 34: Diagnostic plots for the whole country excluding greater Helsinki collateral
value model (LOC = 0).

Figure 35: Diagnostic plots for the greater Helsinki collateral value model (LOC = 1).

values at default date. A very simple model to forecast EAD is employed. The model
calculates an average conversion factor 𝐶 from exposure at reporting date to EAD
by first calculating the ratio between EAD and exposure at reporting date for all
calibration samples and then taking the average. Thus, the EAD for asset 𝑖 is forecasted
by ̂︄EAD𝑖 = ˆ︁𝐶 · Exposure𝑖, where Exposure𝑖 is the exposure at reporting date andˆ︁𝐶 = (1/𝑁) ·∑︁𝑁

𝑖=1 EAD𝑖/Exposure𝑖 is the estimated conversion factor. The conversion
factor is quantified to be ˆ︁𝐶 = 0.9579. Hence, the EAD is on average approximately
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4.2% smaller compared to the exposure at reporting date.
The next topic to consider is the calibration correction of the IFRS 9 LGD model.

As discussed in Section 3.2.4, a risk of consistently under- or overestimating losses
can occur if the default date LTV values are used and no corrections are made to the
model calibration. The risk is caused from the LTV distribution shift, as the general
trend in collateral values and exposures leads to decreasing LTV values. In the model
setting used in this thesis there are two options how the risk of LTV distribution shift
can be addressed. The first option is to fit a new calibration mapping function (5)
such that the scores from the IRB LGD model are calculated by applying the default
date LTV values and the existing standardization parameters. The second approach
is to re-fit the standardization parameters ` and 𝜎 for the standardization function
𝑋∗ = (𝑋 − `)/𝜎 using the default date LTV values. The second approach scales
the default date LTV values to zero mean and unit variance, which allows use the
calibrated IFRS 9 LGD model as it is. Thus, the second approach will be used as it
only changes the parameters associated with the LTV risk driver.

The mean and variance of the LTV at default date in the calibration data are
calculated. The default date mean is `𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 = 0.5164 and the default date variance is
𝜎2
𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡

= 0.0518. Both of these are lower compared to the LTV at reporting date in
the development IS sample, which gave `𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 = 0.5418 and 𝜎2

𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔
= 0.0572.

The default date LTV is standardized by LTV∗
𝑖 = (LTV𝑖 − `𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡)/𝜎𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 . The over

time LGD estimates are in Figure 36, which shows that the non-PIT estimates and the
corrected PIT estimates using the newly standardized LTV values are overlapping. The
PIT estimates where the default date LTV has been applied using the old standardization
parameters shows that the time series mean is consistently under the non-PIT adjusted
estimates. The performance metrics for the corrected PIT estimates are in Table 19,
which indicate that they are better compared to the non-PIT estimates in the CAL
and OOSC samples for all metrics expect the MAE. For the OOTC sample only the
Spearman and Kendall metrics are better. Note that the performances are calculated
by applying the known default date LTV values and not the forecasted default date
LTV values.

Figure 36: Comparison of the IFRS 9 calibrated LGD estimates for the risk driver
forecast model.
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Table 19: The IFRS 9 calibrated LGD model performance with both non-PIT and
PIT adjusted using default date LTV.

Sample 𝑅2 RMSE MAE Pearson Spearman Kendall
CAL 0.107 0.2697 0.1853 0.3272 0.3229 0.2506

CAL (PIT) 0.1082 0.2695 0.1855 0.3292 0.324 0.2514
OOSC 0.1051 0.2672 0.1843 0.3243 0.3113 0.2413

OOSC (PIT) 0.1069 0.2669 0.1843 0.3271 0.3144 0.2438
OOTC 0.0617 0.2364 0.168 0.3152 0.2922 0.2315

OOTC (PIT) 0.0598 0.2367 0.1687 0.3141 0.2924 0.2317

The collateral value and EAD models are now developed and the calibration
corrections are in place. Thus, it is possible to backscore the exact model to historical
observations, which simulates stage 1 yearly LGD estimates using the known location
based yearly growth rate HPI information one year after the reporting date. Specifically,
the one-year forward-looking LTV values from reporting date 𝑡𝑅 are

ˆ︃LTV𝑖,𝑡𝑅+1,LOC =
̂︄EAD𝑖,𝑡𝑅+1ˆ︁𝑉𝑖,𝑡𝑅+1,LOC

=
ˆ︁𝐶 · Exposure𝑖,𝑡𝑅

(1 +ˆ︁𝑣𝑌
𝑡𝑅+1,LOC) · 𝑉𝑖,𝑡𝑅 ,LOC

,

whereˆ︁𝑣𝑌
𝑡,LOC = ˆ︁𝛼1,LOC · HPI𝑌

𝑡+1,LOC + ˆ︁𝛼0,LOC is the yearly growth rate of the collateral
in location LOC ∈ {0, 1}, HPI𝑌

𝑡,LOC is the yearly growth of HPI in location LOC, and
𝑉𝑖,𝑡𝑅 ,LOC is the residential collateral value at reporting date.

To get a broader sense of the developed collateral value models, it is also tested
to directly update the collateral values according to the yearly growth of HPI in the
different locations by 𝑣𝑌

𝑡,LOC = HPI𝑌
𝑡,LOC. The direct updating of collateral values

based on the HPI illustrates a situation where it is deemed by expert judgement that
the HPI sufficiently enough represents the behaviour of the residential collaterals in
the portfolio.

The backscores and the observed loss rate are in Figure 37. It can be seen that
the PIT adjusted estimates using the developed collateral value and EAD modules
are almost identical to the non-PIT adjusted estimates. The PIT adjusted estimates
using directly the HPI growths are slightly more volatile, but they seem to also overlap
with the non-PIT estimates in the latest years. Thus, the estimates are not as volatile
compared to the loss rate model adjustments, but the collateral value forecasting
approach is still applicable.

For example, consider the collateral value model developed for the greater Helsinki
area. Table 20 shows calculations for an asset for the next four years of maturity.
The other risk driver values are set to ARR = 1, LOC = 1 and INC = 3000 for all
time points. The exposure, or EAD, is calculated by Exposure𝑡𝑅+𝜏 = 𝐶

𝜏 · Exposure𝑡𝑅 .
The standardization parameters for the ARR and INC risk drivers are `ARR = 1.289,
`INC = 3497.881, 𝜎2

ARR = 0.976 and 𝜎2
INC = 1225581.221. The IRB LGD model and

the IFRS 9 mapping function parameters for the second data set are in Tables 6 and 8,
respectively.
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Figure 37: The risk driver model backscores to historical data.

Table 20: Example IFRS 9 LGD estimate calculations for the next four years using
example yearly HPI scenario forecasts, the developed collateral value model (1) and
the expert based HPI update model (2).

𝑡𝑅 𝑡𝑅 + 1 𝑡𝑅 + 2 𝑡𝑅 + 3 𝑡𝑅 + 4
HPI𝑌

𝑡,𝑏𝑎𝑠𝑒
- 0.02 0.02 0.01 0.01

HPI𝑌
𝑡,𝑤𝑒𝑎𝑘

- -0.04 -0.03 0.0 0.0
HPI𝑌𝑡,𝑠𝑡𝑟𝑜𝑛𝑔 - 0.04 0.03 0.02 0.02
𝑣𝑌
𝑡,𝑏𝑎𝑠𝑒

- 0.0087 0.0087 0.0074 0.0074
𝑣𝑌
𝑡,𝑤𝑒𝑎𝑘

- 0.0010 0.0022 0.0061 0.0061
𝑣𝑌𝑡,𝑠𝑡𝑟𝑜𝑛𝑔 - 0.0113 0.0100 0.0087 0.0087
Exposure 60000 57477 55060 52744 50526
(1) 𝑉𝑡,𝑏𝑎𝑠𝑒 80000 80697 81400 82004 82612
(1) 𝑉𝑡,𝑤𝑒𝑎𝑘 80000 80076 80256 80748 81242
(1) 𝑉𝑡,𝑠𝑡𝑟𝑜𝑛𝑔 80000 80904 81713 82425 83143
(2) 𝑉𝑡,𝑏𝑎𝑠𝑒 80000 81600 83232 84064 84905
(2) 𝑉𝑡,𝑤𝑒𝑎𝑘 80000 76800 74496 74496 74496
(2) 𝑉𝑡,𝑠𝑡𝑟𝑜𝑛𝑔 80000 83200 85696 87410 89158
(1) LTV𝑡,𝑏𝑎𝑠𝑒 0.75 0.7123 0.6764 0.6432 0.6116
(1) LTV𝑡,𝑤𝑒𝑎𝑘 0.75 0.7178 0.686 0.6532 0.6219
(1) LTV𝑡,𝑠𝑡𝑟𝑜𝑛𝑔 0.75 0.7104 0.6738 0.6399 0.6077
(2) LTV𝑡,𝑏𝑎𝑠𝑒 0.75 0.7044 0.6615 0.6274 0.5951
(2) LTV𝑡,𝑤𝑒𝑎𝑘 0.75 0.7484 0.7391 0.708 0.6782
(2) LTV𝑡,𝑠𝑡𝑟𝑜𝑛𝑔 0.75 0.6908 0.6425 0.6034 0.5667
(1) ̂︄LGD

∗
𝑖,𝑡,𝑏𝑎𝑠𝑒 - 0.18 0.1682 0.1573 0.1469

(1) ̂︄LGD
∗
𝑖,𝑡,𝑤𝑒𝑎𝑘 - 0.1818 0.1714 0.1606 0.1503

(1) ̂︄LGD
∗
𝑖,𝑡,𝑠𝑡𝑟𝑜𝑛𝑔 - 0.1794 0.1674 0.1562 0.1456

(2) ̂︄LGD
∗
𝑖,𝑡,𝑏𝑎𝑠𝑒 - 0.1774 0.1633 0.1521 0.1415

(2) ̂︄LGD
∗
𝑖,𝑡,𝑤𝑒𝑎𝑘 - 0.1919 0.1888 0.1786 0.1688

(2) ̂︄LGD
∗
𝑖,𝑡,𝑠𝑡𝑟𝑜𝑛𝑔 - 0.173 0.1571 0.1442 0.1322
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The example shows that using this method it is possible to obtain LGD estimates
for the different scenarios without explicitly adjusting the outputs of the LGD model.
The direct use of yearly HPI growth forecasts yields larger differences between the
scenarios compared to the developed collateral value model. Hence, it terms of estimate
volatility the expert based model is better. However, it must be noted that in terms of
both input and output PIT adjustments, the resulting estimates are always dependent
on the used scenarios in the ECL calculations. Arguing that the differences between
the LGD estimates in each scenario are “too low” or “too high” is not reasonable.
It is more convenient to ask first what is a proper range for LGD estimates in terms
of ECL and how the model reacts to stressed scenarios. Scenarios should be then
assessed whether they are specified correctly. If no changes in scenarios are made,
then alternative modelling methods can be investigated. Ultimately, expert judgement
can be incorporated as overlays to address deficiencies in the IFRS 9 models.

To summarize, the risk driver model based on collateral values does not exceed
as well as the loss rate models presented previously. The performance metrics using
known default date LTV data are only slightly better compared to the non-PIT estimates
and in some cases slightly worse. Additionally, the backscoring of the developed
model revealed that over time the estimates are not so responsive to the macroeconomic
fluctuations. This is due to the fact that only the HPI is used, and the effects are seen
in the LTV value directly, but only partially in the LGD estimates. Moreover, the
developed linear models had a positive intercept, which diminishes the influence of
decreasing HPI growth rate scenarios.

The results should not be interpreted to mean that the presented risk driver model
is not a convenient choice, because the model is still able to exploit the macroeconomic
environment in terms of collateral values, which quantify the risk related to LGD.
The risk driver model is a reasonable choice in the case when it is not possible to
apply a loss rate model for a particular portfolio. Furthermore, even if this risk driver
model is not used for forecasting LGD estimates for different scenarios for stage 1
and 2 assets, it can still be used for risk driver lifetime updates purely in stage 2.
Combinations of the risk driver and loss rate models can be used as well, i.e., the risk
driver forecast model is first applied to get scenario forecast via risk drivers and then
an output adjustment is applied according to the loss rate model. However, depending
how the models perform this can result in “double counting” of scenario effects.

4.4 Simulation and Model Risk
This section discusses the scope of using simulated data and the risks related to the
simulation algorithm, which can have impact on the modelling results. Moreover, the
PIT adjustments are analyzed and improvement suggestions are proposed.

Data simulation was conducted due to the sensitive nature of financial data
regarding losses. The scope was to simulate approximately realistic LGD and risk
driver data that could be seen in a residential mortgage portfolio. Due to the complex
nature of default recovery processes the simulation algorithm is not able to provide
perfectly realistic data, but the data is realistic enough to obtain the similar model
performances as with real data and to test the PIT adjustment framework. Hence,
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making the algorithm even more realistic by considering more granular cash flow
simulations, the effect of default rates, varying lengths of recovery processes, and
non-linear effects in data will mostly impact the modelling results rather than the
developed framework and the PIT adjustment methods.

The simulation algorithm is based on generating random samples from a multi-
variate normal distribution using a predefined correlation structure and transforming
the generated samples to proper distributions using Gaussian copulas. Hence, the
choice of the copula and the correlation structure can affect the results by making
the LGD model better or worse, e.g. in terms of 𝑅2. Missing values are not added
to the random samples and the distributions were designed and treated in a way that
no significant outliers are present. In practice, LGD data typically contains missing
values and outlying observations due to various reasons. Negative values and values
much larger than one can be also present in LGD data. These data quality aspects
mostly impact the choices of risk driver transformations and outlier treatments, which
can be relevant when developing risk driver models for input adjustments.

The expected values of LGD and LTV over time are simulated using linear models
and macroeconomic factors. Using a linear model is a strong assumption, because in
reality the effects can be non-linear. Moreover, the effects are simulated for the entire
modelling time horizon, but in reality it may be possible that the macroeconomic
shocks in terms of losses are seen only in very bad economic conditions. Losses can
also have high correlation with the observed default rates, and thus, default rates could
be also used in modelling the loss rates. Furthermore, the effects of macroeconomic
factors were designed in a way that they directly impact the loss rates at a specified
default date, and thus, the potential effect of lags or leads was not introduced in the
simulation. In terms of LGD the lags or leads can be very important, because the
realized LGD is calculated from recovered cash flows obtained, e.g., from payments
or liquidating collaterals. Hence, in an economical perspective the cash flows obtained
from liquidating residential collateral can be affected by the house price indexes at the
liquidation date. This is the same idea as the current-LTV calculation in Qi and Yang
(2009).

The handling of maximum recovery length defaults was left out from the simulation
by assuming that there are no excessively long defaults in the data, and to be in line
with the unbiased view of IFRS 9. In addition, the handling of incomplete defaults
was left outside the scope of this thesis as there is not much, if any, public literature
available on the methods and they can be very institution specific. Hence, these
maximum recovery length and handling of incomplete cases could be studied more as
those can have impact to the observed loss rate time series, which can then affect the
OLS time series modelling results. Moreover, simulating the interest rates could be
investigated more closely, which relates to the discounting factor differences between
IRB and IFRS 9 that affect the observed loss levels.

In terms of the developed IRB LGD model there could be room for improvement
such that different model structures could be tested as they can have impact on, e.g.,
how the input adjustments work or how the output adjustments are developed. For
example, output adjustments could be also developed for write-off ratios and zero-loss
rates using the methods provided in this thesis. In terms of calibration methodology this
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thesis focused on continuous scale calibration. Thus, discrete LGD grade calibration
could be also studied. For LGD grades the loss rate time series modelling methods
can be applicable with minor modifications, because the updating of LGD estimates
is based on how much over or under the LRA LGD the losses will go based in the
scenarios. In terms of the risk driver model one must ensure that the distributions of the
LGD grades is in line with the historically observed loss rates when forward-looking
information is incorporated.

The parameters of the loss rate models are heavily dependent of the simulation
algorithm. Tuning the linear model simulation parameters can lead to substantially
different results, which is something that one needs to be aware. Moreover, as described
before, the treatment of incomplete defaults and long recovery processes can also
impact the results. Therefore, it is important that the model development process, final
results and decisions can be justified in statistical, economical and business terms. For
example, the loss rate model for the data set with trending loss rates, the GDP and
Euribor were selected to be the final macroeconomic factors. This was surprising as
the simulation algorithm gave very small weight on the differenced Euribor factor.
Hence, the OLS results may be spurious, and it could have been driven by the large
drop around 2009-2010 in the yearly differenced loss rate as a similar large drop was
seen also in the differenced Euribor. However, the results were intuitive in economical
sense and the statistical properties were also satisfied. Thus, the model could be used
in application. Additionally, the developed time series models should be monitored
and constantly re-calibrated when time goes by.

The testing of the predictive performance of the OLS time series models was
performed only for the calibration sample which was used for fitting the model. The
reason for this is that the number of quarterly data points in a time period of 15-years
is very small, and hence, removing data points for testing purposes is not ideal. If
more time series data would be available, then predictive performance testing could be
done for an out-of-time time series sample. In practice the amount of data can be even
smaller that 15-years, as the IRB model development requires at least five years of data
to be used for retail exposures (Temim, 2019). IFRS 9 does not have this requirement,
but usually the amount of data is the same as was used in the IRB model development.

The risk driver model considered the modelling of the collateral values as was
done in Miu and Ozdemir (2017) in order to update the LTV values. The LTV was the
most impacting risk driver in the model according to the regression coefficients and
simulated correlation structures, and the collateral values are macro-sensitive. Hence,
applying the LTV forecasts as an input adjustment is justified. However, similar risk
driver models can be applied for other macro-sensitive risk drivers as well to introduce
additional macroeconomic conditionality to the LGD estimates. Modelling alternative
risk drivers can be, however, more challenging depending on the definition of the risk
driver.

Simulating reporting date collateral values and reporting date exposures have direct
impact on the differences between the reporting date and default date LTV values,
which have large impact on the resulting risk driver models presented in Section 3.2.4.
The simulation algorithm was designed to restrict the growth rates of reporting and
default date collateral values to a specific range in order to not be too consistent with
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the HPI growths. As the coefficients in the collateral value models were estimated to
be much smaller than one, it could be argued that it would be better to use the expert
based model that directly updates collateral values according to the HPI growth rates.
The expert based model gave also slightly more volatile LGD estimates over time. The
use of the expert based model, however, should be explicitly justified. For example,
as the collateral values in this study were assumed to be residential collateral values,
then the use of HPI can be appropriate. One needs to still be careful about how the
particular HPI is defined, i.e., which types of houses it considers. If the collateral
values used in the LTV calculations include also other types of securities such as
guarantees or valuable items, then one needs to investigate if there are macroeconomic
factors that are able to model these types of collaterals.

The continuous risk drivers were normalized to zero mean and unit variance.
This had a major advantage in terms of incorporating forward-looking information of
risk drivers as model input. If the forward-looking distribution is known or can be
approximated by utilizing known macroeconomic factors, then new standardization
parameters can be estimated. This allows to use the IFRS 9 calibrated LGD model as
because the shift in the risk driver distribution is corrected. However, if very strong
shifts in the variance of the risk driver occur, for example, then the approach might
become infeasible. Using other variable transformation techniques such as binning
with weights of evidence values as in Matuszyk et al. (2010), the same calibration
correction may not work, unless the risk drivers were standardized prior to the binning.
Instead, one could possibly try re-estimating the mapping function used for IFRS 9
calibration by applying the forward-looking information and the binning structure of
the risk driver.
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5 Conclusions
This thesis has presented a framework for calibrating loss given default (LGD) models
used in regulatory capital calculations under the internal ratings-based (IRB) approach
to be compliant with the IFRS 9 accounting standard in the calculation of expected
credit losses (ECL). The scope was restricted to non-defaulted secured residential
mortgages, but the methods can be extended to other portfolios and defaulted assets as
well. For testing the framework, a simulation algorithm was developed for generating
LGD data with macroeconomic dependencies. The IRB LGD was modelled using
linear regression, which served as a basis for the methods presented in the framework.

The IFRS 9 accounting standard calls for point-in-time (PIT) and forward-looking
estimates, meaning that the LGD estimates a required to be conditioned on the expected
macroeconomic environment, which is an opposite philosophy compared to IRB,
where estimates aim to be through-the-cycle (TTC), i.e., not dependent on the macroe-
conomic environment. The PIT estimates are used in scenario probability weighted
ECL calculations. Hence, the estimates are calculated for different macroeconomic
scenarios. The framework presented two methods for applying PIT adjustments to
the LGD estimates. The PIT adjustments were divided into “output” and “input”
adjustments. Output adjustments aim to directly adjust the LGD estimates. A similar
method was presented in Joubert et al. (2021), where an error correction model was
used to adjust the LGD estimates. Input adjustments aim to adjust the risk drivers
(explanatory variables) used in the LGD model, which are then reflected in the LGD
estimates. The method was built upon the study of Miu and Ozdemir (2017), where
the IFRS 9 LGD was estimated by forecasting collateral values.

An ordinary least squares (OLS) model for the observed loss rate time series
was used as an output adjustment method. The calculation of the observed loss rate
time series, using the loss rate forecasts to adjust the LGD estimates for different
macroeconomic scenarios, and the OLS model development process were considered
in detail. The OLS time series model is a simple and flexible approach to model
dependencies between macroeconomic factors and loss rates over time. Various
variable transformation techniques can be employed to address non-stationarity of
time series and also non-linearities. For example, quarterly or yearly differencing can
be incorporated remove trends and seasonality. Moreover, to address non-linearities
one could apply log-transformations or include polynomial macroeconomic factors
in the regression equation (Hyndman and Athanasopoulos, 2021). Overall, the OLS
model for loss rates was reasonable for both trending and non-trending loss rates, and
examples were provided how those models could be incorporated for ECL calculations.
However, the OLS does not address situations were the residuals are autocorrelated,
but the methodology can be easily extended to, e.g., regression with time series errors
as in Tsay (1984).

Methods were provided for using the forecasts of the loss rate model to adjust
individual LGD estimates for macroeconomic scenarios. The methods were built
upon the study of Joubert et al. (2021), where adjustments for weak and strong
scenarios were calculated by comparing the weak and strong scenarios forecasts to the
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baseline scenario forecasts. This way of calculating the adjustment scalars, however,
assumes that the LGD estimates are already PIT or hybrid, and it does not introduce
adjustments for the baseline scenario. A variation of calculating the adjustment scalars
was presented, which essentially compares the loss rate forecasts in all scenarios to
the portfolio specific long-run average (LRA) LGD value, which aims to describe
how much in each scenario the loss rates go below or above the LRA LGD. The
variation allows to incorporate adjustments also for the LGD estimates in the baseline
scenario. Furthermore, the adjustment scalars were calculated such they correspond
to the particular time point in the maturity of the asset. For stage 1 assets a one year
forecasts is used. For stage 2 assets with, e.g., two years of remaining maturity, the
forecasts for the first and second year are used to adjust the LGD estimates in the two
time points of the assets maturity, respectively. The aim is to keep synergy between
the LGD estimates and the loss rates which were aggregated to the default dates. In
Joubert et al. (2021) only one fixed forecasting period was specified and the average
of the scenario forecasts over that period was used to compute the adjustment scalars.

The second PIT adjustment method was a risk driver model, which focused on
forecasting the collateral values used in the most relevant risk driver of the LGD model
that is the loan-to-value (LTV). LTV has been identified in literature to be one of
the most important risk driver for modelling LGD, see, e.g., Qi and Yang (2009).
The risk driver model was built on the study of Miu and Ozdemir (2017), where a
similar model was presented, which relied on the forecasting of collateral values using
a macroeconomic linear regression model. However, the LGD estimation technique
was different compared to traditional regression models. Hence, this thesis presented
an adaptation of the approach used in Miu and Ozdemir (2017) to be used in a linear
regression model for LGD. Aspects to make additional corrections to the calibration
of the LGD model were discussed to use the forecasted risk driver values consistently
in the LGD model. The main idea in the input adjustment method is to incorporate
scenario based forward-looking information of risk drivers to the LGD model such
that the LGD estimates do not have to be explicitly adjusted. Moreover, this model can
be used for updating risk driver values for stage 2 assets in the case it is not needed to
be used for stage 1 assets.

The risk driver model did not perform as well as the loss rate model according to
many performance metrics on testing samples, and the resulting LGD estimates over
time were not as volatile. However, it should be noted that the performance metrics
were only marginally better or worse in the loss rate and risk driver model based PIT
adjustments, respectively. The risk driver model can be used as a valid alternative to
the loss rate model in the case that a proper macroeconomic model is not found for
the loss rate. Not finding a proper loss rate model is plausible due to the complex
behaviour of realized losses that depend on the recovered cash flows from the default
recovery processes. Additional research can be done for the risk driver model, where
the focus could be in incorporating adjustments to alternative risk drivers and using
different variable transformation techniques. Moreover, in terms of discrete LGD
grades, the possible grade distribution changes caused by the adjustments in the risk
driver values could be studied in more detail.

Before applying the PIT adjustments, the calibration of the IRB LGD rank ordering
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model to correspond the realized losses calculated on the basis of IFRS 9 was applied
to keep synergy between the IRB and IFRS 9 such that the risk differentiation stays
the same, but the risk quantification is different. The calibration of continuous LGD
estimates was performed using linear regression as a mapping function to set the IRB
LGD scores to a lower level. In IFRS 9, the realized losses are generally lower than
those for IRB, due to a lighter cash flow discounting factor, not using indirect costs
associated with collection procedures, and taking into account all cash flows for an
unbiased view. The calibration of discrete LGD grades was not studied in detail, but
a possible method was mentioned such as estimating the LRA LGD values for each
grade using the IFRS 9 realized loss data.

Future research can focus on various topics which can be incorporated into the
presented framework. For example, the LGD model structure can be analyzed more
closely, taking into account different variable transformations techniques, multi-stage
models and complex non-linear models. Closer attention can also be provided for
different secured or unsecured portfolios with various types of collaterals. The loss rate
time series modelling can focus on more advanced methods to address autocorrelation
issues, see, e.g., Tsay (1984). Synergy between the scenarios and the developed
PIT adjustment models can be investigated more closely, because the used scenarios
drive the results of the ECL calculations. Macroeconomic scenarios can exhibit mean
reversion of the macroeconomic factors, but it still needs to be ensured that the loss
rate and LGD forecasts also converge to the TTC values after the specified forecasting
period.

The focus of this thesis was on non-defaulted assets that fall into the stage 1 and 2
allocations in ECL calculations. Hence, the defaulted assets (stage 3) can be considered
further research. The main difference in stage 3 compared to the stages 1 and 2 is that
the assets are defaulted, i.e., the probability of default is one. This does not allow for
similar calculation of ECL, where the marginal probability of default is used at each
time point of the assets remaining maturity. Moreover, for defaulted observations the
exposure at default date is not relevant, as the focus is in the current exposure amount.
The methods presented in this thesis can be used for stage 3 modelling as well, e.g., in
terms of the loss level calibration. However, additional modifications may need to be
introduced such as using the reference dates instead of default dates and taking into
account the time in default of the asset and the possible transitions from the stage 3 to
stages 1 or 2.

Overall, the topics of modelling LGD for regulatory capital and IFRS 9 ECL
purposes are very broad and various aspects need to be taken into account, not just
selecting the best modelling methods. The concept of IFRS 9 LGD has not been
discussed as extensively in literature compared to IRB modelling. Thus, the framework
presented in this thesis opens up various methodological aspects in modelling IFRS 9
LGD with the IRB LGD models used as a basis. The framework can be applied in
real ECL calculations for provisioning, used for stress testing exercises, and it can be
enhanced by adding granularity to the modelling methods and modifying the method
to be applicable for defaulted assets as well.
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