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Abstract
An accurate modeling of option prices is important for many financial applica-
tions, such as hedging, or estimation of the underlying asset return distribution.
For European options in particular, there exist many parametric pricing mod-
els. Many of these models have been developed in an attempt to improve
the previous ones, for instance, by allowing a non-Gaussian distribution for
the log returns of the underlying asset, or by assuming a non-constant asset
volatility. The parameters of the models are selected to match the observed
option market prices as well as possible, using some optimization method.
This process is known as model calibration. Each option contract and time
step can be calibrated separately, or the same parameter values can be used
for multiple contracts and/or time steps.
In the so-called inverse map approach, one not only obtains the implied model
parameters, but also a mapping from the relevant market variables to the
unobservable model parameters. After the inverse map has been learned, it
can be used to obtain the implied parameters and price predictions of future
observations. In this thesis, the inverse map is modeled as a simple feedforward
neural network, and the approach is applied to four parametric option pricing
models. For calibration, the European SPX options are used. The models are
evaluated using multiple metrics and time periods. Moreover, to account for
the stochastic training of the neural networks, each calibration process is also
repeated multiple times using different random seeds.
The overall results are promising. By using neural networks with two hidden
layers and ten units per hidden layer, and by calibrating to calls and puts
separately, over 50% of the out-of-sample price predictions land between the
bid and ask prices of the options, in the case of all four models. Moreover,
for the best version (seed) of each model, the average out-of-sample pricing
error relative to the bid-ask spread is well below one. However, the results are
not identical between different option maturities and strike prices, and time
periods. In particular, the relative pricing errors are the largest for out of
the money and short maturity options. Moreover, the models have the worst
out-of-sample performance during the turbulent market year 2020.
Keywords option pricing, model calibration, neural networks, optimization,

mathematical finance



Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Diplomityön tiivistelmä

Tekijä Peetu Luotonen
Työn nimi Eurooppalaisten optiohinnoittelumallien kalibrointi neuroverkkojen

avulla
Koulutusohjelma Matematiikka ja operaatiotutkimus
Pääaine Sovellettu matematiikka Pääaineen koodi SCI3053
Työn valvoja Prof. Ahti Salo
Työn ohjaaja DI/KTM Sakari Malka
Päivämäärä 17.4.2023 Sivumäärä 63+4 Kieli Englanti
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Optioiden hintojen realistinen mallinnus on tärkeää monissa finanssialan
sovelluskohteissa, kuten investointien suojaamisessa tai kohde-etuuden tuot-
tojakauman estimoinnissa. Erityisesti eurooppalaisille optioille on kehitetty
monia parametrisia hinnoittelumalleja. Monet näistä malleista pyrkivät paran-
tamaan vanhempien mallien ominaisuuksia esimerkiksi sallimalla muuttuvan
kohde-etuuden volatiliteetin tai muun kuin normaalijakauman kohteen loga-
ritmisille tuotoille. Käytännössä mallien parametrit valitaan niin, että mallien
antamat hintaestimaatit vastaavat optioiden markkinahintoja mahdollisimman
hyvin. Tämä mallien kalibrointi voidaan tehdä jokaiselle optiolle ja ajanhet-
kelle erikseen tai usealle optiolle ja/tai ajanhetkelle samaan aikaan.
Kun käytetään niin kutsuttua käänteisfunktio-lähestymistapaa, opitaan mal-
lien implikoimien parametrien lisäksi kuvaus markkinamuuttujista mallien
parametreihin. Tämän jälkeen käänteisfunktiolla voidaan tuottaa myös tule-
vien optioiden hinta-arviot, ja optioiden implikoimat parametrit. Tässä työssä
käänteisfunktiota mallinnetaan yksinkertaisena eteenpäin kytkettynä neuro-
verkkona, ja lähestymistapaa sovelletaan neljään eri optiohinnoittelumalliin.
Mallit kalibroidaan eurooppalaisilla SPX-optiolla, ja mallien suorituskykyä
arvioidaan eri mittareiden ja ajanjaksojen avulla. Lisäksi jokainen kalibrointi
toistetaan monta kertaa, koska neuroverkkojen opetusprosessi on osittain
satunnainen.
Saadut tulokset ovat yleisellä tasolla lupaavia. Kun neuroverkoissa käyte-
tään kahta piilotettua kerrosta ja kymmenen yksikköä per kerros, ja kun
mallit kalibroidaan osto- ja myyntioptioihin erikseen, yli 50% testijaksojen hin-
taennusteista osuu option tarjoustasojen väliin kaikkien mallien tapauksessa.
Lisäksi jokaisen mallin paras satunnaisversio saavuttaa testijaksoilla osto- ja
myyntitasojen väliseen etäisyyteen suhteutetun hinnoitteluvirheen, jonka arvo
on selvästi alle yksi. Tulokset eivät kuitenkaan ole samanlaisia eri aikajaksojen,
maturiteettien tai toteutushintojen välillä. Tarkemmin sanottuna, suhteelli-
set hinnoitteluvirheet ovat suurimpia korkean totetutushinnan osto-optioille,
matalan toteutushinnan myyntioptioille, sekä lyhyen maturiteetin osto- ja
myyntioptioille. Lisäksi mallien testitulokset ovat heikoimpia poikkeuksellisen
markkinavuoden 2020 aikana.
Avainsanat optioiden hinnoittelu, mallien kalibrointi, neuroverkot, optimointi,

rahoitusmatematiikka
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1 Introduction
Options are popular financial instruments. In 2022, over 10.3 billion total
contracts were cleared by the Options Clearing Corporation, the largest equity
derivatives clearing organization in the United States [OCC, 2023]. This was
a change of about +4.5% from 2021, +38% from 2020, and +140% from 2017.
While options have traditionally been used by large financial institutions,
they have also attracted many retail investors in recent years. In addition
to being great hedging instruments, options offer large potential profits due
to leverage, although they are very risky for the same reason. Therefore, a
good understanding of options is important for practitioners and investors
alike. The mathematics of option pricing can be rather involved, even for
the relatively simple European options. Still, realistic and accurate option
pricing models can be valuable for not only hedging, but also risk analysis,
forecasting, and other financial applications.

Starting from the work of Black and Scholes [1973], many different models
have been proposed for the pricing of European options. While revolutionary
at the time, and still in widespread use today, the Black-Scholes model has
shortcomings. Namely, its assumptions of constant volatility and log-normal
returns for the underlying asset are inconsistent with the observed market
prices. In particular, stocks and stock indices tend to have short-term (log-
arithmic) return distributions with negative skewness and positive excess
kurtosis, which the Black-Scholes model is unable to capture. To address
this, many alternative models, which do not rely on these assumptions, have
been developed. Examples include expansions of the normal density to allow
nonzero skewness and excess kurtosis [Corrado and Su, 1996; León et al.,
2009], q-Gaussian return distributions [Borland, 2002; Borland and Bouchaud,
2004], jump-diffusion models [Merton, 1976; Kou, 2002], stochastic volatility
models [Hull and White, 1987; Heston, 1993], stochastic volatility models
with jumps [Bates, 1996], and pure jump processes [Madan et al., 1998]. All
these models have a set of parameters which cannot be directly observed,
such as the volatility of the underlying asset, and these parameters can be
chosen such that an optimal fit to the market option prices is obtained. This
model calibration is typically achieved by minimizing some error, such as the
mean-squared error, between the model prices and the market prices.

An alternative, and a more recent, approach is to directly obtain a fit to
the market prices without the use of parametric option pricing models. In this
non-parametric data-driven approach, the model attempts to ‘learn’ a mapping
from the relevant market variables to the option prices. Neural networks (NN)
are promising candidates for this task, because they can learn highly nonlinear
relationships (which are frequent in financial data) between the features and
the labels. Additionally, the availability of high-level machine learning libraries,
such as TensorFlow developed by the Google Brain research team, makes
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it easy to train and deploy the models. Ruf and Wang [2020] provide an
extensive review of NN option pricing in the literature. In some cases, the NN
models can outperform the parametric ones in terms of prediction error, but
they have some drawbacks. First, the models lack some interpretability due to
the black-box nature of neural networks. Second, the non-parametric models
are rarely arbitrage-free, and often do not produce realistic Greeks (partial
derivatives of the option price with respect to different variables). Specific
precautions can be made [Itkin, 2019], but this may complicate the training
process, and weaken the prediction performance as a result.

In this thesis, the interpretability and no-arbitrage properties of parametric
option pricing models are combined with the universal approximation capa-
bilities of neural networks. Following the framework proposed by Andreou
et al. [2010], networks are used to calibrate parametric models to S&P 500
index (SPX) European options. More specifically, each network outputs the
unobservable model parameters which are then fed into the corresponding
pricing formula as inputs. The weights of the network are selected by mini-
mizing some error between the pricing formula outputs and the market prices.
Due to the automatic differentiation feature of neural networks, it is easy to
compute the gradient of the option price with respect to the network weights,
which makes the fitting process straightforward. This feature also provides
an automatic computation of the Greeks. Moreover, the framework makes
it possible to calibrate multiple models with relatively little extra work, as
only the pricing formula needs to be changed between different models. After
the calibration process, the model outputs (price predictions, parameters and
Greeks) are available for further use, such as the calculation of hedging ratios
and implied return distributions.

This thesis is structured as follows. Chapter 2 contains a brief introduction
to options (Section 2.1) and presents the option pricing models that have
been selected for use in this thesis (Sections 2.2-2.5). The sections outline
the derivations of the option pricing formulas for each model and give some
additional remarks. Then, Chapter 3 gives a quick rundown of neural networks
and general model calibration methods, and describes the model calibration
setup. Additionally, it presents details about the model training and offers
considerations about the implementation in TensorFlow. Chapter 4 gives in-
formation about the data, presents the model evaluation results using different
metrics, visualizes the model outputs and discusses the model limitations.
Finally, Chapter 5 concludes the thesis.
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2 Option Pricing Theory

2.1 Basics
An option is a financial contract that gives its holder the right to buy or sell a
certain amount of an asset at a specific time and price. These two types of
option contracts are called calls and puts, respectively. The two most popular
styles of options are the American options, which give the right to exercise
the option at any time before or at the expiration, and the European options,
which can only be exercised at the expiration. This thesis focuses on the
European options that have exact closed-form pricing formulas.

In general, the variables that affect the price of the option are the underlying
asset price S0, strike price K, time to expiration (or maturity) T , risk-free
rate of return r and the dividend yield of the underlying asset q. The actual
dividends of assets are discrete, but here they are approximated by a continuous
yield. In addition, the option price is affected by parameters of the underlying
asset distribution. An example of this is the asset volatility σ, when the asset
log returns Xt := ln(St/S0) are assumed to be normally distributed.

The variables above can have different effects on the option price depending
on whether the option is a call or a put. For instance, as the difference between
the underlying price and the strike price (S0 − K) increases, the price of a
call increases, while the price of a put decreases. A call (put) option is said
to be in the money (ITM) when S0 > K (S0 < K), at the money (ATM)
when S0 = K, and out of the money (OTM) when S0 < K (S0 > K). At the
time of expiration, an out of the money (or at the money) option is worthless,
while an in the money option is worth its intrinsic value, ST − K for calls and
K − ST for puts. Here, ST is the underlying price at the expiration time T .
Figure 1 shows an example of the profit for both contract types as a function
of ST − K. Other variables that affect the price of calls and puts differently
are the risk-free rate r and the dividend yield q. An increase in r tends to
increase the value of calls and decrease the value of puts, while q tends to
have the opposite effect on both contract types.
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Figure 1: Profit in dollars as a function of ST − K for a call worth
5 dollars and a put worth 10 dollars.

The time to expiration T usually increases the price of both calls and puts,
but this need not be the case for European options. For example, a large future
dividend may make a call option expiring before the ex-dividend date more
valuable than the one expiring after it. Finally, the distribution parameters
tend to make both calls and puts more expensive when the distribution becomes
‘wider’ (e.g., when σ increases), and less expensive when the distribution is
more ‘narrow’. This is due to the fact that wider distributions imply the
possibility of larger price changes in either direction. As option payoffs are
asymmetric with unlimited upside, they are more valuable in turbulent markets.
On the other hand, a skewed distribution may have a different effect on the
prices of calls and puts. For instance, an underlying distribution with negative
skewness increases the price of OTM puts (as this increases the likelihood of
them ending up in the money), but decreases the price of OTM calls.

An important relationship between the prices of European calls and puts
with the same strike price and maturity is the put-call parity

c + Ke−rT = p + S0e
−qT , (1)

where c and p are the prices of the call and put, respectively. This result can
be derived by constructing two portfolios; one with the call and a risk-free
asset, and the other with the put and the underlying asset, and noting that
both will provide the same payoff at the time when the call and the put expire.
In the absence of arbitrage, these portfolios must then be worth the same
today, and the equality in Equation (1) follows. The put-call parity is a very
useful property for European options, as one needs to only derive the call price
c under the specific option pricing model. The price of the corresponding put
should then satisfy

p = c + Ke−rT − S0e
−qT .
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Due to market frictions, such as bid-ask spreads and other transaction costs,
this relationship does not hold exactly in practise, but Equation (1) is still a
good approximation in liquid markets.

Next sections present the option pricing models used in later parts of the
thesis. We start from the famous Black-Scholes model, and then move on to
more complex models. Additionally, the concept of risk-neutral valuation is
briefly introduced. For each model, we briefly motivate the reasons for its
development, demonstrate the effect of its parameters on the underlying asset
distribution, and present methods for sampling from the distribution. Finally,
we give a fair price for a European call under the model assumptions. This
suffices, since the corresponding put price can be recovered using the parity
in Equation (1).

2.2 The Black-Scholes Model
Black and Scholes [1973] introduced the first parametric option pricing model
that does not rely on subjective risk preferences of investors. The Black-Scholes
model assumes a geometric Brownian motion for the underlying price

dSt

St

= µdt + σdWt, (2)

where dWt = ϵ
√

dt is a Wiener process with ϵ ∼ N(0, 1). That is, the log
return Xt = ln(St/S0), where t is the duration in years, is assumed to be
normally distributed with a mean µ and a standard deviation σ. The parameter
σ is known as the volatility of the asset, as mentioned in Section 2.1. It then
follows that the return of the asset Rt is log-normally distributed, that is,

Rt := St/S0 = exp(Xt) ∼ Lognormal(µ, σ2).

Under the assumption of geometric Brownian motion, Rt can be sampled
by directly discretizing Equation (2) as

∆St

St

= µ∆t + σϵ
√

∆t, (3)

where ∆St = St+∆t − St, and in the limit ∆t → 0, the continuous process
is recovered. However, it is advisable to sample the logarithm of the price
instead, since (3) may lead to negative prices. Any deterministic function
ft = f(St, t) of the underlying asset follows the stochastic process given by
Ito’s lemma [Itô, 1951]

df =
(︄

∂f

∂S
µS + ∂f

∂t
+ 1

2
∂2f

∂S2 σ2S2
)︄

dt + ∂f

∂S
σSdW, (4)
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where the subscript t has been dropped for simpler notation. Now applying
(4) with f(S, t) = ln S yields

ln
(︃

St

S0

)︃
= Xt =

(︄
µ − σ2

2

)︄
dt + σdWt,

and thus, Rt is given by

Rt = exp
{︄(︄

µ − σ2

2

)︄
t + σϵ

√
t

}︄
. (5)

Figure 2 illustrates rate of returns Rt−1 that have been sampled from Equation
(5) using different volatilities.

Figure 2: Yearly rate of return densities with different volatilities
σ and a fixed expected (log) return µ = 0.1.

We now derive a fair European call price under the Black-Scholes model.
Let f = f(S, t) be a function that gives the price of a financial derivative,
where S is the underlying asset price. Then, f follows a stochastic process
given in Equation (4). Now, a partial differential equation for f can be
derived using concept of replication. That is, we construct a portfolio from
the underlying asset and the risk-free asset such that the coefficients of the
portfolio with respect to dt and dW match those of the derivative given by
(4). In other words, changes in the values of the derivative and the replicating
portfolio will be the same for infinitesimal changes in time and underlying
price. Assuming that there are no arbitrage opportunities, the price of the
derivative must then equal that of the replicating portfolio. This leads to the
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Black-Scholes equation

∂f

∂t
+ ∂f

∂S
(r − q)S + 1

2
∂2f

∂S2 σ2S2 = rf. (6)

For a European call, the boundary conditions are

f(S, T ) = max(S − K, 0),
f(0, t) = 0.

From these conditions, the price c of the call under the Black-Scholes model
is given by [Black and Scholes, 1973]

c = S0e
−qT N(d1) − Ke−rT N(d2), (7)

where

d1 = ln(S0/K) + (r − q + σ2/2)T
σ

√
T

, (8)

d2 = d1 − σ
√

T (9)

and N is the standard cumulative normal distribution function. By the put-call
parity from Equation (1), the price of a European put is then

p = Ke−rT N(−d2) − S0e
−qT N(−d1). (10)

For simplicity and analytic tractability, the Black-Scholes model assumes
a log-normal distribution for the underlying asset returns. However, the
prices observed in the market often contradict this assumption. In particular,
log return distributions of stocks often exhibit negative skewness and excess
kurtosis in short time intervals. To illustrate this, Figure 3 shows an empirical
weekly log return distribution for the S&P 500 index. From the figure, it is
evident that the distribution is non-Gaussian. To address the discrepancy
between the empirical data and the model assumptions, the underlying price
process in Equation (2) should be modified. Before that, we discuss the
concept of risk-neutral valuation.
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Figure 3: Weekly log return distribution of the S&P500 index
between the years 2012 and 2022. The empirical distribution has
negative skewness and positive excess kurtosis. The returns have
been computed by taking the (log) difference between consecutive
Friday closing prices.

2.2.1 Risk-Neutral Valuation

In general, the prices of European options can be calculated in two ways. The
first way is to obtain a partial differential equation (such as the one in Equation
(6)) via replication, and to solve it with suitable boundary conditions. The
second approach is to compute the discounted expected payoff of the option,
or

c = e−rTEQ[max(ST − K, 0)]

= e−rT
∫︂ ∞

K
(ST − K)p(ST )dST ,

(11)

where Q is a risk-neutral measure, or equivalent martingale measure, with the
risk-neutral probability density function p. Under Q, the discounted asset
price ST e−(r−q)T is a martingale, i.e., a stochastic process with zero drift term
(µ = 0 in Equation (2)). The technique of pricing options using Equation (11)
is known as risk-neutral valuation.

The risk-neutral measure is unique if and only if the markets are complete,
that is, an Arrow-Debreu security can be constructed for all possible future
states. An Arrow-Debreu security for a given state is a security that pays
a unit amount in that state, and nothing in all other states. The prices of
these securities (‘state prices’) are called risk-neutral probabilities, since they
satisfy the axioms of probability, namely non-negativity and summing up to
one. However, the equivalent martingale measure Q is not equal to the ‘true’
probability measure P that controls the price changes of the underlying asset.
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Informally, a change from P to Q is achieved by the addition of a drift term
[Baxter et al., 1996; Mitra, 2011]

dWQ = dW P + λ(t)dt, (12)

where WQ and W P are Wiener processes under Q and P, respectively, and λ(t)
is known as the market price of risk. This is known as the Girsanov theorem.
For complete markets, only the choice λ = (µ − r)/σ leads to ST e−(r−q)T

being a martingale. Thus, the market price of risk (and therefore also Q)
is unique, and the expectation in (11) is unambiguously defined. The value
λ = (µ − r)/σ is also called the Sharpe ratio [Sharpe, 1966]. For incomplete
markets, there exist multiple λ (and Q) for which the discounted asset price
is a martingale. In this case, there exist multiple fair prices c corresponding
to different risk-neutral measures. However, the existence of some measure Q,
along with the absence of arbitrage, allow the use of Equation (11) as if the
markets were complete [Duffie et al., 2000].

Let F0 := S0e
(r−q)T be the forward price of the underlying asset. Equation

(11) can now be expressed as

c = e−rT
∫︂ ∞

K
ST p(ST )dST − Ke−rT

∫︂ ∞

K
p(ST )dST ,

= F0e
−rT

∫︂ ∞

K
[ST /F0] p(ST )dST − Ke−rT

∫︂ ∞

K
p(ST )dST

= S0e
−qT P1 − Ke−rT P2, (13)

where

P1 =
∫︂ ∞

K
[ST /F0] p(ST )dST ,

P2 =
∫︂ ∞

K
p(ST )dST .

This is a general formula for the price of a European call, where the risk-
neutral probabilities P1, P2 ∈ [0, 1] depend on the risk-neutral measure Q. The
property P1 ∈ [0, 1] follows from the fact that ST /F0 is always nonnegative,
and

P1 = 1
F0

∫︂ ∞

K
ST p(ST )dST ≤ 1

F0

∫︂ ∞

0
ST p(ST )dST = EQ[ST ]

F0
= 1.

From Equation (7), it can be seen that P1 = N(d1) and P2 = N(d2) under
the Black-Scholes model.
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2.3 The Corrado-Su Model
To relax the Black-Scholes assumption of normally distributed log returns,
many models have been proposed in the literature. One way to obtain non-
Gaussian distributions is to expand the normal density to allow non-zero
skewness and excess kurtosis for ln(St/S0). A popular example is the Gram-
Charlier type A series expansion

f(x) =
∞∑︂

n=0
cnHen(x)ϕ(x), (14)

where ϕ is a normal density function, Hen are (probabilist’s) Hermite polyno-
mials

Hen(x) =
(︄

x − d
dx

)︄n

,

and cn are the moments of the cumulative distribution function F (x) =∫︁ x
−∞ f(x)dx. In practice, it is common to only include the terms in (14) up

to n = 4. Using this series truncation, Corrado and Su [1996] obtain the
risk-neutral density for the standardized log returns

g(z) = n(z)
[︃
1 + µ3

3! He3(z) + µ4 − 3
4! He4(z)

]︃
, (15)

where µ3 and µ4 are the standardized skewness and kurtosis for ln(St/S0),
respectively,

z = ln(St/S0) − (r + q − σ2/2)T
σ

√
T

(16)

is the standardized log return with E(z) = 0, E(z2) = 1, E(z3) = µ3 and
E(z4) = µ4,

n(z) = (2π)−1/2 e−z2/2

is the standard normal density, and He3(z) = z3−3z and He4(z) = z4−6z2+3
are the 3rd and 4th Hermite polynomials, respectively.

To obtain log return samples under the Gram-Charlier expansion, one
can draw samples from the density in (15), and then transform them into
ln(St/S0) using Equation (16). The sampling from the density g(z) can be
achieved using techniques, such as rejection sampling. However, in this thesis,
a simple discretization of g(z) is used instead. More specifically, we compute
the density di at nB equally spaced points pi in the range [−5, 5], and calculate
the empirical cumulative values C0 = 0 and Ci =

(︂∑︁i
j=1 di

)︂
/
(︂∑︁nB

j=1 di

)︂
for

i = 1, ..., nB. Then, we draw ns samples from a uniform distribution on the
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unit interval, and assign each sample u ∈ [0, 1] to the bin j ∈ {1, ..., nB} such
that Cj−1 ≤ u < Cj. Finally, for each j, we obtain the sampled point z by
uniformly sampling between the points pj−1 and pj . Figure 4 shows log returns
that are sampled using this method, with different values for µ3 and µ4.

Figure 4: Empirical densities for log returns ln(St/S0) with different
values for the skewness µ3 and the kurtosis µ4. Here r = 0, σ = 0.2
and T = 1/252 (approximately one trading day). The density in
yellow corresponds to a normal distribution, i.e., the Black-Scholes
model.

Using the risk-neutral density g(z) in Equation (15), a fair value for a
European call can be obtained using the general risk-neutral valuation formula
from Equation (11). Corrado and Su [1996] and Brown and Robinson [2002]
show that the price of the call is given by

c = cBS + µ3Q3 + µ4Q4, (17)

where cBS is the Black-Scholes call price given by Equation (7), and

Q3 = 1
6S0σ

√
T
[︂
P3(d)n(d) + σ2TN(d)

]︂
,

Q4 = 1
24S0σ

√
T
[︂
P4(d)n(d) + σ3T 3/2

]︂
,

where d = d1 from Equation (8), and

P3(x) = 2σ
√

T − x,

P4(x) = x2 − 3xσ
√

T + 3σ2T − 1.

By using the no-arbitrage condition EQ[ST ] = F0 = S0e
(r−q)T for the risk-
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neutral measure Q under the assumption that g(z) is the probability density
for the standardized log returns, Jurczenko et al. [2004] provide a modification
to Equation (17), and obtain

c = c∗
BS + µ3Q

∗
3 + µ4Q

∗
4, (18)

where

c∗
BS = S0e

−qT N(d∗) − Ke−rT N(d∗ − σ
√

t)

is the Black-Scholes call price evaluated at

d∗ = ln(S0/K) + (r − q + σ2/2)T − ln(1 + ω)
σ

√
T

,

and

Q∗
3 = [6(1 + ω)]−1 S0σ

√
TP3(d∗)n(d∗),

Q∗
4 = [24(1 + ω)]−1 S0σ

√
TP4(d∗)n(d∗),

with

ω = µ3

6 σ3T 3/2 + µ4 − 3
24 σ4T 2.

Since the formula in Equation (18) satisfies the no-arbitrage condition, we
use it instead of the formula in Equation (17), although the two formulas give
very similar values in most situations [Jurczenko et al., 2004]. In this thesis,
the model that prices calls according to Equation (18) is referred to as the
Corrado-Su model.

We note that special care must be taken when using the density in (15),
since g(z) may exhibit multimodality and/or negative values for some pairs
(µ3, µ4). The latter property is especially problematic, for the density would
not define any probabilty distribution. To avoid this, the polynomial

p4(z) := 1 + µ3

3! He3(z) + µ4 − 3
4! He4(z)

can be restricted to positive values, so that g(z) = n(z)p4(z) > 0 for all z.
Jondeau and Rockinger [2001] derive the equations

1 + µ3

6 He3(z) + µ4 − 3
24 He4(z) = 0, (19)

µ3

2 He2(z) + µ4 − 3
6 He3(z) = 0, (20)

that define the boundary (or the envelope) for which p4(z) is zero for a given
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z. The set D ⊂ R2 delimited by this boundary contains the pairs (µ3, µ4) for
which g(z) is positive for all z. The boundary is drawn on the (µ3, µ4)-plane
in Figure 5.

Figure 5: The boundary for which the polynomial p4(z) is zero for
different |z| ≥

√
3. The skewness µ3 and kurtosis µ4 corresponding

to each z are solved using equations (19) and (20). The area
delimited by the boundary contains all pairs of µ3 and µ4 for which
the density (15) is positive for all z.

Jondeau and Rockinger [2001] also present an ad-hoc method for mapping
the unconstrained (µ̃3, µ̃4) ∈ R2 into constrained (µ3, µ4) ∈ D by

µ4 = f(µ̃4, 3, 7),
µ3 = f(µ̃3, −s(µ̃4), s(µ̃4)),

(21)

where

f(x; a, b) = a + (b − a)(1 + e−x)−1 (22)

is the scaled sigmoid function, and

s(k) = aj + bj(k − 3),

with

ai = si(ki+1 − 3) − (ki − 3)si+1

ki+1 − ki

,

bi = si+1 − si

ki+1 − ki

,

where ki and si form a fine grid of kurtosis and skewness for i = 1, ..., N ,
respectively. The index j for each k = µ̃4 is selected such that kj < k ≤ kj+1.
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For each ki, the corresponding si can be determined by solving the equations
(19) and (20) for µ3 = si and |z| ≥

√
3 with a fixed µ4 = ki. The bisection

algorithm is suitable for solving these equations.

2.4 The Heston Model
In the previous section, the Gram-Charlier expansion was used to add nonzero
skewness and excess kurtosis to the underlying asset distribution, thus resulting
in the Corrado-Su model. However, both the Black-Scholes model and the
Corrado-Su model assume constant volatility for the underlying asset, which
is rarely the case for stocks and stock indices. In fact, empirical volatilities
tend to exhibit clustering and mean reversion, as seen in an example given in
Figure 6.

Figure 6: 10-day (non-overlapping) moving volatility of daily
S&P500 prices between 2015 and 2019. The volatilities tend to
cluster due to the autocorrelation between consecutive absolute
price changes (large changes tend to follow large changes, and vice
versa). Additionally, the volatilities tend to revert back to their
long-term average.

When the volatility of an asset is modeled as a separate stochastic process,
we obtain the popular class of stochastic volatility models. Perhaps the most
widely used stochastic volatility model is the Heston model [Heston, 1993]

dS = µSdt +
√

V SdW (1), (23)
dV = κ(θ − V )dt + ω

√
V dW (2), (24)

dW (1)dW (2) = ρdt, (25)

where V = σ2 is the variance of the underlying asset, θ is the long-term
variance, κ is the mean-reversion coefficient indicating how fast V reverses to
θ, ω is the volatility of volatility, and ρ is the correlation between the Wiener
processes W (1) and W (2). Additionally, there exists an additional parameter,
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namely the initial variance V0. The parameters κ, θ and V0 control the overall
level of volatility, negative (positive) correlation ρ leads to a return distribution
with negative (positive) skewness, and an increase (decrease) of ω increases
(decreases) the kurtosis of the distribution. The Heston model stands out from
other stochastic volatility models, since there exists an analytical solution
for European options such that the correlation between the asset price and
the volatility is taken into account (see Mitra [2011] for a review of different
volatility models).

When sampling from the process (23), it is advisable to sample ln S instead
of S by using the discretization

ln St+∆t = ln St + (µ − Vt/2)∆t +
√︂

Vt∆W
(1)
t . (26)

Moreover, the variance V in process (24) can become negative when discrete
time steps are used, and these negative values have to be fixed in some way.
Common fixes are the absorption, where negative variances are set to zero,
and reflection, where negative variances are set to their opposites [Lord et al.,
2010]. These two methods can also be combined. Lord et al. [2010] show that
the full truncation scheme

Ṽ t+∆t = Ṽ t + κ(|Ṽ t|+ − θ)∆t + ω
√︂

|Ṽ t|+∆W (2),

Vt+∆t = |Ṽ t+∆t|+,
(27)

where | · |+ = max(·, 0) and Ṽ 0 = V0, gives the smallest bias among different
simulation schemes. Using (26) and (27), one can then sample asset prices
from the processes (23)-(24). The Wiener process samples are given by

∆W (1) = ϵ1
√

∆t,

∆W (2) =
(︃

ρϵ1 +
√︂

1 − ρ2ϵ2

)︃√
∆t,

where ϵ1, ϵ2 ∼ N(0, 1) for independent ϵ1 and ϵ2. Figure 7 shows log return
samples with different parameters.
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Figure 7: Empirical densities for log returns ln(St/S0) under the
Heston model with different values of ρ and ω. The samples were
drawn with constants µ = 0, V0 = θ = 0.04, κ = 1, t = 5/252
(approx. 5 trading days) and ∆t = t/200 (approx. 10 trading
minutes). The samples show the effect of ρ and ω on the shape of
the distribution.

The risk-neutral versions of the processes in (23)-(24) are given by

dS = rSdt +
√

V SdW (1), (28)
dV = [κ(θ − V ) + λ(S, V, t)] dt + ω

√
V dW (2), (29)

where λ(S, V, t) represents the price of volatility risk (analogous to the market
price of risk from Section 2.2.1). Due the second source of randomness
introduced by W (2), the markets are incomplete under the model, so there is
no unique risk-neutral measure. Thus, a suitable price of volatility risk must
be chosen. On economic justifications, Heston [1993] chooses λ(S, V, t) = λV

for a constant λ. Bollerslev et al. [2011] show that λ can be estimated as

λ = γρσ, (30)

where γ ̸= 1 is the risk aversion coefficient of the isoelastic utility function

u(x) = x1−γ − 1
1 − γ

. (31)

By change of variables

κ∗ = κ + λ,

θ∗ = κθ/(κ + λ),
(32)
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(28)-(29) can be written in the same form as (23)-(24):

dS = rSdt +
√

V SdW (1), (33)
dV = [κ∗(θ∗ − V )] dt + ω

√
V dW (2). (34)

From now on, we denote κ = κ∗ and θ = θ∗ for simpler notation, but the risk-
neutral parameters can always be transformed from and to the real parameters
using the equations in (32).

From (33), (34) and (25), the partial differential equation for the derivative
price f can again be derived using the replication method from Section 2.2.
However, now one must also consider the sensitivity of f to the asset variance
V . The result is [Heston, 1993]

1
2V S2 ∂2f

∂S2 + ρωV S
∂2f

∂S∂V
+ 1

2ω2V
∂2f

∂V 2

+ (r − q)S ∂f

∂S
+ κ(θ − V ) ∂f

∂V
+ ∂f

∂t
= rf.

(35)

By guessing a solution f of the same form as in Equation (13), Heston [1993]
derives the price of the call option from (35) by applying a Fourier inversion
to the characteristic functions of the risk-neutral probabilities P1 and P2, and
obtains

c = S0e
−qT P1 − Ke−rT P2, (36)

where

Pj = 1
2 + 1

π

∫︂ ∞

0
fj(u)du (37)

for i = 1, 2. The functions fj are given by

f1(u) = Re
[︄

e−iu ln(K)ϕ(u − i)
iuF0

]︄
,

f2(u) = Re
[︄

e−iu ln(K)ϕ(u)
iu

]︄
,

(38)

where F0 = S0e
(r−q)T is the forward price of the underlying asset, as before.

The characteristic function ϕ is given by [Cui et al., 2017]

ϕ(u) = exp

⎧⎨⎩iu(ln S0 + rT ) + κθ

ω2

[︄
(ε + d)T − 2 ln

(︄
1 − g1e

dt

1 − g1

)︄]︄

+ V0

ω2 (ε + d) 1 − edt

1 − g1edt

⎫⎬⎭,

(39)
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with

ε = κ − ωρiu,

d =
√︂

ε2 + ω2(u2 + iu),

g1 = ε + d

ε − d
.

The integrals in Equation (37) cannot be simplified, but they can be evaluated
numerically. In this thesis, we use the Gauss-Legendre quadrature

∫︂ 1

0
f(x)dx ≈

n∑︂
i=1

wif
(︃

xi + 1
2

)︃
, (40)

where xi is the i:th root of the Legendre polynomial Pn(x) of degree n, and wi

is given by

wi = 1
(1 − x2

i )[P ′
n(xi)]2

,

for i = 1, ..., n. To use this approximation, the limits of the integration in
Equation (37) should be changed to the unit interval. By using the change of
variable u(x) = − ln x/C∞ with [Kahl and Jäckel, 2005]

C∞ =
√

1 − ρ2

ω
(V0 + κθT ),

Equation (36) can transformed to

c = e−rT
∫︂ 1

0

[︄
1
2(F0 − K) + F0f1(u(x)) − Kf2(u(x))

πC∞x

]︄
dx (41)

which can now be approximated by Equation (40).
Kahl and Jäckel [2005] note that evaluating the functions in Equation (38)

is not straightforward, since the characteristic function ϕ (Equation (39)) can
contain discontinuities in its current form. Moreover, an analytical gradient
∇θc with respect to the parameter vector θ = (κ, θ, V0, ω, ρ) is not available
when using the representation in (39) [Cui et al., 2017]. To fix these issues,
Cui et al. [2017] provide an alternative representation

ϕ(u) = exp
{︄

iu(ln S0 + rT ) − Tκθρiu

ω
− V0A + 2κθ

ω2 D

}︄
, (42)
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where

A = (u2 + iu) sinh(dt/2)
d + cosh(dt/2) + ε sinh(dt/2) , (43)

B = ln d + (κ − d)T
2 − ln

(︄
d + ε

2 + d − ε

2 e−dt

)︄
.

Due to the more attractive properties, we use the representation in (42) instead
of the one in (39).

2.5 The Bates Model
Due to the stochastic volatility component, the Heston model is more flexible
than the Black-Scholes model, and is able to obtain a better fit to the market
prices across multiple maturities and strikes. However, even the Heston model
is insufficient in some situations. Namely, the diffusion processes (23)-(25) are
unable to explain option prices that imply the possibility of very large price
changes in a very short amount of time. To explain these sudden moves, one
can add jumps to the underlying asset process. An extension of the Heston
model that introduces these jumps is the Bates model [Bates, 1996]

dS

S
= (µ − λJµJ)dt +

√
V dW (1) + kdQ, (44)

dV = κ(θ − V )dt + ω
√

V dW (2), (45)
dW (1)dW (2) = ρdt,

P(dQ = 1) = λJdt. (46)

Here λJ is the annual frequency of jumps, µJ is the mean relative jump size,
k is the random (conditional) jump size with a log-normal distribution

ln(1 + k) ∼ N(ln(1 + µJ) − σ2
J , σ2

J), (47)

with the standard deviation σJ , and Q is a Poisson random variable with the
rate parameter λJ . In total, the Bates model contains 8 parameters: the 5
Heston parameters plus λJ , µJ and σJ . With the addition of the jump term,
the model is able to fit short-term OTM options better than the models with
only a diffusion component, since these options often imply the possibility of
large price changes in short amount of time. Negative (positive) jumps lead
to a return distribution with more negative (positive) skewness. Moreover, a
large jump component tends to increase the kurtosis of the distribution.

Due to the added jump component kdQ, it is no longer straightforward
to sample ln S as in the case of the Heston model. Thus, we use a direct
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disretization of (44):

St+∆t = St[1 + (µ − λJµJ)∆t +
√︂

Vt∆W
(1)
t + kt∆Qt], (48)

where kt is sampled from (47), and ∆Qt is sampled from a Poisson distribution
with a rate parameter λJ∆t. On the other hand, since the variance V is
independent of the jumps, it can still be sampled using the full truncation
scheme in Equation (27). Figure 8 shows samples of ln(St/S0) with different
parameters.

Figure 8: Empirical densities for log returns ln(St/S0) under the
Bates model with different values of ρ, ω and λJ . The cases
where λJ = 0 (yellow and red) correspond to the densities of
same colors in Figure 7, since a Bates model without jumps is
equivalent to the Heston model. The samples were drawn with
constants µ = 0, V0 = θ = 0.04, κ = 1, µJ = −0.05, σJ = 0.05,
t = 5/253 (approx. 5 trading days) and ∆t = t/200 (approx. 10
trading minutes). The case λJ = 5 (brown) shows the effect of the
(negative) jumps on the return distribution.

The risk-neutral version of the processes (44) and (46) are given by

dS

S
= (µ − λ∗

Jµ∗
J)dt +

√
V dW (1) + k∗dQ∗, (49)

P(dQ∗ = 1) = λ∗
Jdt, (50)

where k∗ is distributed as

ln(1 + k∗) ∼ N(ln(1 + µ∗
J) − σ2

J/2, σ2
J)

(i.e., with the same variance σ2 as the real jumps), and dQ∗ has a rate
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parameter λ∗
J . In addition, the risk-neutral process for V is again given by

(34). The risk-neutral parameters λ∗
J and µ∗

J can be estimated as [Bates, 1996]

λ∗
J = λJE [1 + uJ ] ,

µ∗
J = µJ + Cov(k, uJ)

E [1 + uJ ] ,
(51)

where uJ is a relative change in the marginal utility function ux(x) := du(x)
dx

when a jump of relative size k occurs. For the isoelastic utility in Equation
(31), the marginal utility is ux(x) = x−γ, so

uJ = [x(1 + k)]−γ

x−γ
− 1 = (1 + k)−γ − 1.

When converting the risk-neutral parameters from and to the real parameters
using Equation (51), numerical (sampled) estimates of E[1+uJ ] and Cov(k, uJ)
can be used.

The call price solutions to the Heston model and the Bates model can be
computed in a very similar fashion, because the Fourier inversion technique
(Equation (37)) in the former can also be applied to the latter [Bates, 1996].
In fact, one only needs to modify the characteristic function ϕ(u); all the other
parts remain the same. Thus, a fair call price under the Bates model is given
by

c = e−rT
∫︂ 1

0

[︄
1
2(F0 − K) + F0f

B
1 (u(x)) − KfB

2 (u(x))
πC∞x

]︄
dx, (52)

with

fB
1 (u) = Re

[︄
e−iu ln(K)ϕB(u − i)

iuF0

]︄
,

fB
2 (u) = Re

[︄
e−iu ln(K)ϕB(u)

iu

]︄
.

Here, the modified characteristic function ϕB(u) is [Date and Islyaev, 2015]

ϕB(u) = ϕH(u) exp {E(u)T} , (53)

where

E(u) = λJ

[︂
exp

(︂
iuαJ − u2σ2

J/2
)︂

− 1
]︂

− λJ iu
[︂
exp

(︂
αJ + σ2

J/2
)︂

− 1
]︂

,

with αJ = ln(1 + µJ) − σ2
J/2, and ϕH(u) is the Heston characteristic function

from Equation (42).
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3 Model Calibration

3.1 Calibration Methods
Option pricing models, such as the ones presented in Sections 2.2-2.5, attempt
to explain market option prices by assuming certain asset price dynamics, from
which a fair option value can be derived using either the generalized Black-
Scholes equation or risk-neutral valuation. Many of these models have been
proposed in an attempt to improve the previous ones, either by lifting some
unrealistic restrictions (e.g. normality of log returns or constant volatility),
or by adding new features (e.g. jumps). In doing so, the models become
increasingly complex, but also more flexible. However, even the most complex
models have shortcomings, and this is evident by the fact that no model can
produce perfectly accurate price estimates in all market situations with a fixed
(time independent) set of parameters. Still, the models can provide valuable
insight about the option markets.

It is possible to only consider option pricing models in the forward direction
(set model parameters, then predict the prices), but arguably a more interesting
consideration is the reverse backward direction (observe market prices, then
infer the model parameters). In the latter approach, one can investigate
what the market prices tell about the underlying asset dynamics, or more
specifically, what are the market expectations for these dynamics. By doing this
for multiple time steps, one can also examine how these expectations change
with time. Of course, this inference is done under the hypothesis that a given
model is correct, which is never truly the case, but some models can be fairly
good approximations to the true market dynamics. The process of obtaining
the model parameters from the market prices is called model calibration, and
the obtained parameters are called implied parameters (because, as the name
suggests, they are implied by the current market prices).

The goal of model calibration is to obtain the parameters which give the
best possible fit to the market prices. One approach is to find the parameters
separately for each available option contract such that the model prices exactly
match the market prices. This can be achieved using some root-finding
algorithm. Let θ ∈ Sθ be a m-dimensional parameter vector of the pricing
model, where Sθ ⊆ Rm is the set of allowed parameter combinations. Table 1
lists the parameter vector θ for different models. Mathematically, the goal is
to find the set of parameters θ∗

i ∈ Sθ such that

f(xi; θ∗
i ) = yi, ∀i ∈ [n], (54)

where n is the number of observations (different option contracts and time
steps), [n] := {1, ..., n}, yi are the market prices of the observations for i ∈ [n],
f is the pricing function, and xi ∈ Sx ⊆ Rk, i ∈ [n], are vectors of other
variables required by the pricing function. For European options, the variable
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vector is typically

x = (S0, K, T, r, q, b) ∈ Sx, (55)

where b is a binary variable indicating whether the contract is a call or a put.
However, this need not be the case. For instance, q can be dropped when the
underlying asset does not pay dividends, b can be omitted if only calls or puts
are considered, or some parameters in θ can be fixed and included in x as
constants (here θ contains only parameters that are varied across different
contracts or time steps).

Table 1: Set of parameters for different option pricing models.

Model θ

Black-Scholes σ

Corrado-Su σ, µ3, µ4
Heston κ, θ, V0, ω, ρ

Bates κ, θ, V0, ω, ρ, λJ , µJ , σJ

Under the Black-Scholes model in particular, we have θi = (σi), where
σi ∈ R+ is the implied volatility given by the i:th observation. When plugged
back into the pricing formula in Equation (7) (or Equation (10) in the case of
puts), this volatility produces a price equal to the market price. Since there
is only a single parameter to be calibrated in this case, θ∗

i can be found for
each contract and time step using a simple line search method, such as the
bisection method. When σ∗

i are solved for multiple strikes and expirations, we
obtain the so-called implied volatility surface. In a general case, an implied
parameter surface is obtained. The downside of the root-finding approach is
that the process has to be repeated for each contract. Moreover, when the
model has multiple parameters, simple line search methods cannot be used.

Alternatively, the model calibration can be formulated as an optimization
problem of the form

θ∗ = arg min
θ

∑︂
i∈[n]

wiℓ(yi, f(xi; θ)), (56)

where ℓ : R+ × R+ → R is some loss function, and wi are the contract
weights for i ∈ [n]. When the loss function ℓ(y, ŷ) = (y − ŷ)2 is selected with
uniform weights wi = n−1 for i = 1, ..., n, the objective function becomes
the familiar mean squared error (MSE). The optimization problem in (56)
differs slightly from the root-finding problem in (54): instead of trying to find
suitable parameters for each contract and time step separately, the goal is to
find one set of parameters that fit multiple observations as well as possible.
This calibration can be done over multiple time periods at the same time, or
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it can be repeated at each time step, thus producing different θ∗
t for each t.

The problem in (56) can be solved with many optimization algorithms, most
of which require the gradient, and sometimes the Hessian, of the objective
function with respect to θ.

Another approach, and the approach used in this thesis, is the inverse map
method in which one tries to solve the optimization problem

w∗ = arg min
w

∑︂
i∈[n]

wiℓ(yi, f(xi; g(xi, yi; w))), (57)

where g : Rk+1 → Rm is a function parameterized by the weight vector w.
That is, the goal is find a mapping θi := g(xi, yi; w) from all possible weights
w such that the pricing function f produces an optimal fit to the market
prices. The optimal weights w∗ are typically chosen using some iterative
algorithm, such as the stochastic gradient descent (SGD) in the case of neural
networks (see Section 3.2). It should be noted however, that the problem
in (57) is generally non-convex, so a non-global minimum can be obtained
from the optimization process. The parameters θi can vary between different
contracts and time steps, but only one set of weights, w∗, is needed for the
whole dataset. After the model has been fitted, subsequent contracts can be
priced by evaluating g and f so that re-calibration is not necessary (assuming
that the model generalizes well). The function g is usually restricted to be
a member of some function class, such as the class of continuous functions.
Figure 9 presents a diagram of the inverse map approach.

Figure 9: Inverse map diagram. The boxed and unboxed symbols
denote functions and variables/parameters, respectively. The mar-
ket price y, the vector of other variables x (such as in Equation
(55)) are fed into the inverse map function g parameterized by
the set of weights w. The output of this function is then fed into
the pricing formula f along with x, thus producing an estimate
ŷ := f(x; g(x, y; w)) for the market price y. The goodness of this
estimate is assessed by passing y and ŷ to the loss function ℓ. Fi-
nally, the weights w can be updated based on the resulting loss.
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3.2 Neural Network Approach
Due to their universal approximation property [Hornik et al., 1989] and relative
ease of use, neural networks (NN) are widely used in many fields, including
finance. In recent years, their popularity has only increased due to faster
computation, increased memory capacity, machine learning libraries such as
TensorFlow, and advancements in research areas such as board games [Silver
et al., 2017] and computer vision [Rombach et al., 2022].

Starting from the work of Hutchinson et al. [1994], NNs have also been
applied to option pricing. In this area, the bulk of prior research has focused
on the forward direction approach [Ruf and Wang, 2020], i.e., the prediction of
market prices from the relevant variables. This approach can be useful when
the underlying price process is unknown, or when one wants to avoid making
too many assumptions about the process. Moreover, domain knowledge can
be applied to make the NN models more robust. An example of this is
the ‘homogeneity hint’ proposed by Garcia and Gençay [2000]. A possible
drawback of the NN forward direction approach is lack of interpretability,
since the effects of different inputs and parameters on the resulting price can
be tedious to understand. (Because of this, NNs are often referred to as ‘black
boxes’.) Additionally, the NN models are not arbitrage-free in general, i.e.,
they do not satisfy the conditions [Itkin, 2019]

∂c

∂T
≥ 0,

∂c

∂K
≤ 0 and ∂2c

∂K2 ≥ 0 (58)

for calls, and

∂p

∂T
≥ 0,

∂p

∂K
≥ 0 and ∂2p

∂K2 ≥ 0 (59)

for puts. The conditions correspond to requirements that calendar spreads,
vertical spreads and butterfly spreads should have nonnegative prices, respec-
tively, so that free profit cannot be made by holding these positions. The
above conditions can be taken into account by introducing soft constraints
[Itkin, 2019], or by restricting the NN function class [Dugas et al., 2009]. Like
in any constrained optimization however, the in-sample fit may become worse
as a consequence.

In this thesis, we are mainly interested in the backward direction approach,
since the goal is to recover the parameters of different pricing models. However,
when using the inverse map approach given in Equation (57), we also recover
the price predictions from the pricing function f . It is important that these
predictions are sufficiently accurate, for the obtained parameters would not be
reliable otherwise. If the model parameters are treated as constants for each
contract and time step, the conditions in (58) and (59) are guaranteed to be
satisfied, since the pricing models used (Black-Scholes,Corrado-Su,Heston and
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Bates) are arbitrage-free. Next, we outline the inverse map approach using
neural networks.

In this thesis, we follow the framework proposed by Andreou et al. [2010]
and model the inverse map g as a multilayer perceptron (dense feedforward
neural network, abbreviated as MLP)

g(X; W) = hl(XlWl + Bl), (60)

where X ∈ Rn×(k+1) is a dataset of n contracts with k+1 variables each (market
price yi plus the other variables xi), l is the number of non-input layers in the
network (l − 1 is the number of hidden layers), and W = {W1, ..., Wl} is the
set of network weight matrices, where Wi ∈ Rki−1×ki for i ∈ [l] with k0 = k + 1
and kl = m. Moreover, Xj is defined recursively as

Xj = hj−1(Xj−1Wj−1 + Bj−1),

with the base case X1 = X. Finally, for all i ∈ [l], hi and Bi are the activation
function and the bias matrix for the i:th layer, respectively, with

Bi =
[︂
bT

i , ... , bT
i

]︂T
∈ Rn×ki

consisting of the bias vector bi ∈ Rki broadcasted across the first dimension
(batch dimension). Here, we exploit the fact that g is able to output values
for multiple contracts simultaneously (hence the input matrix X instead of
the individual rows xi, and the bias matrices Bi instead of the vectors bi).
When computing the loss function ℓ, a weighted sum of single losses is taken
across the batch dimension. It is assumed that both the loss function and the
pricing function f are able to handle batch data, which is often automatically
achieved when using machine learning library functions.

Since the inverse map g in Equation (60) outputs parameters of a given
pricing model, and since reasonable ranges for these parameters are typically
known in advance, the final activation functions hl are restricted to be scaled
sigmoid functions given by Equation (22). A suitable range [ai, bi] depends
on the parameter θi. Here we have selected ranges that seem to give good
empirical results for the SPX options. The parameter ranges are listed in
Table 2. It should be noted however, that different ranges may be required
when using other underlying assets. In the case of the Corrado-Su kurtosis
µ4, the range is determined by the envelope in Figure 5. For the Corrado-Su
skewness µ3, Table 2 gives the range before applying the mapping in Equation
(21). The final range after the mapping varies approximately between −0.9
and 0, depending on the value of the kurtosis. Futhermore, we make the
assumption of nonpositive skewness for the underlying log return distribution,
so µ3, the Heston correlation ρ and the Bates jump mean µJ are restricted to
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be nonpositive. Finally, both the Black-Scholes/Corrado-Su volatility σ and
the Heston/Bates initial volatility

√
V0 are restricted to the range [0.05, 0.8].

Table 2: Final layer sigmoid ranges for different parameters.

Model Parameter Lower Bound Upper Bound
Black-Scholes/Corrado-Su σ 0.05 0.8
Corrado-Su µ3 -2.5∗ -0.5∗

Corrado-Su µ4 3 7
Heston/Bates κ 1 5
Heston/Bates θ 0.01 0.09
Heston/Bates V0 0.0025 0.64
Heston/Bates ω 0 1
Heston/Bates ρ -0.95 0
Bates λJ 0 10
Bates µJ -0.02 0
Bates σJ 0 0.02

∗before applying the mapping in (21)

In the neural network setting, problem (57) can be reformulated as

W∗ = arg min
W

wT ℓ(y, f(X; g(Z; W))), (61)

where g is given by Equation (60), w ∈ Rn and y ∈ Rn are vectors of
observation weights and market prices, respectively, and Z ∈ Rn×(kz+1) is a
matrix containing variables derived from y and X. The weights W are obtained
using an iterative optimization method, such as the stochastic gradient descent.
It is important to note that Z need not contain all variables present in X,
and vice versa. The construction of Z is a matter of preference: the variables
can be selected based on trial-and-error experiments, or some prior knowledge.
In this thesis, X contains the variables in (55), and Z contains the variables

z = (FM , T, ȳ, b) , (62)

where

FM = S0e
(r−q)T − K

S0e(r−q)T

is the forward moneyness for calls, ȳ = y/S0 is the market price normalized by
the underlying price, and b is the put-call binary flag (1 for puts, 0 for calls),
as before. The put-call flag is used only if the models are fitted using calls
and puts simultaneously, otherwise we set z = (FM , T, ȳ). A diagram of the
‘full network’ (the map from X to Z plus the map from Z to θ = g(Z; W)) is
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given in Figure 10.

Figure 10: Diagram of the full network in the case of a single
hidden layer and five hidden units. First, the vector of variables
x = (S0, K, T, r, q) and the market price y are converted to the
preprocessed variables z = (ȳ, FM , T, b). Then, these variables are
passed as inputs to the MLP (dense network) that outputs the
parameters θ = (θ1, ..., θm) of a given pricing model. (Technically,
the preprocessing step can be considered as part the inverse map
g, but here g contains only the MLP part.)

3.3 Model Training
There are a lot of choices to be made when implementing and training the
inverse map g. First, one should choose the preprocessed variables z and
suitable parameter ranges for the final sigmoid activation functions, which
we have already done. There is also the choice of the activation functions
for the hidden layers. Additionally, the loss function and the optimization
method should be decided for the training process. Finally, there are sev-
eral hyperparameters associated with the network structure and the training
process. For the network, the number of layers and the number of units for
each layer must be selected. For the training process, one needs to specify the
number of epochs (passes trough the entire training set), batch size (number
of observations for which the stochastic gradient is computed at each time),
sample weights w in Equation (61), and the learning rate for the optimization
algorithm.

First, for the network structure, the hidden layer activation functions are
selected to be hyperbolic tangent functions (tanh, ranged between -1 and 1).
The Leaky ReLU (Leaky Rectified Linear Unit) activation is also tried, but
this results in worse model performance. Moreover, the number of units in
hidden layers are restricted to be the same, i.e., k1 = ... = kl−1 = k for some
constant k. Now, for each model, we try different values for the number of
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non-input layers l and the number of units k, and select the values which give
best out-of-sample results. More specifically, we select the pair (l, k) ∈ Sl × Sk

from all combinations l ∈ Sl and k ∈ Sk, such that some metric is minimized
or maximized over multiple validation splits. Here, we set Sl = {2, 3} (1 or 2
hidden layers) and Sk = {6, 8, 10}. Thus, the number of total weights in the
network ranges between 31 and 248, depending on the model and whether the
put-call flag is used (see Table 3). The network is restricted to be relatively
small, because this results in faster convergence during training, while still
obtaining a good fit to the market prices. This is of great interest to us,
since the training process is run for multiple models, option types (only calls,
only puts, and both puts and calls), time splits and initial network weights.
Finally, the problem of overfitting does not seem to be severe for the number
of weights used here. Hence, regularization techniques, such as weight decay
and dropout, are not employed in this thesis.

Table 3: Minimum and maximum number of network weights for
each model, when the network inputs in (62) are used. The values
in parentheses correspond to the case where the put-call flag is
dropped.

Model Min. #weights Max. #weights
Black-Scholes 37 (31) 171 (161)
Corrado-Su 51 (45) 193 (183)
Heston 65 (59) 215 (205)
Bates 86 (80) 248 (238)

For the loss function in Equation (61), we choose the quadratic loss
ℓ(y, ŷ) = (y − ŷ)2, and for the sample weights, we select

wi = 1
n

√
yi

,

where n is again the number of contracts (in a single batch), and yi is the
market price of the i:th observation. Thus, for a market price vector y ∈ Rn

and a price estimate vector ŷ := f(X; g(Z; W)), the total loss L is given by

L = 1
n

n∑︂
i=1

(yi − ŷi)2
√

yi

, (63)

which is the mean squared error (MSE) weighted by the inverse square root
of prices y

−1/2
i . This weighting (partly) compensates for the fact that the

absolute difference |yi − ŷi| tends to increase as yi increases, which leads to less
expensive options contributing less, and more expensive options contributing
more, to the total MSE loss. In other words, the MSE is ‘biased’ towards
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ITM and long maturity options which are generally pricier than OTM and
short maturity options. Since the loss is quadratic, the weights y

−1/2
i do not

eliminate this bias. To achieve that, squared inverse prices y−2
i could be used

as weights instead. Alternatively, we could replace the weighted MSE by the
mean absolute percentage error (MAPE)

MAPE = 100% · 1
n

n∑︂
i=1

⃓⃓⃓⃓
⃓yi − ŷi

yi

⃓⃓⃓⃓
⃓ . (64)

However, both alternatives seem to result in worse overall model performance.
Moreover, the inverse price weights y−1

i seem to result in more erratic loss
trajectories during training, so those weights are not used either. Thus, we
settle for the loss in Equation (63).

For optimization, the popular Adam algorithm, presented by Kingma
and Ba [2014], is used. When updating the network weights W, the Adam
optimizer approximates both the first and the second moments of the gradients,
which can lead to faster and better convergence during training. Indeed, we
find that the Adam optimizer is superior to the SGD optimizer for solving
the problem in Equation (61). Furthermore, by periodically reducing the
learning rate of the optimizer, λL, a better fit to the data is obtained. When a
constant learning rate is used during the training process, the loss seems to get
stuck at a higher value than what would be achieved if the learning rate was
lowered. Additionally, if too large of a learning rate is used at the beginning
of training, the Heston and the Bates models can suffer from the exploding
gradient problem. Hence, a short warm-up period is employed at the start of
each training process. That is, we start with a relatively small learning rate,
linearly increase it during the first few epochs, and then gradually reduce the
rate during the remaining epochs. For all (4) models, we start with the rate
λL = 0.02, linearly increase it to λL = 0.2 during the first 20 epochs (increase
by 0.02 after every other epoch), and then reduce the value by 20% after every
20th epoch. In total, 200 epochs are run for each training process (one model
and one training split). For each batch, we sample 32 different time steps, and
for each time step, include 42 contracts with predetermined maturities and
strikes (see Section 4.1). Thus, the effective batch size is 1134. The number
of time steps per training set is at least 375 (see Section 4.2), so the number
of batches per epoch is at least 11.

It should be noted that since the training is partly stochastic due to the
random batches and initial network weights, different local minima of Equation
(61) can be found by repeating the training process. Therefore, for each model,
training split and set of hyperparameters (l and k), the model is trained
multiple times using different batches and initial weights. Here, the non-bias
weights are initialized using the Xavier (uniform) initialization [Glorot and
Bengio, 2010], and the bias weights are initialized to zero. The randomness
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is controlled by setting a different seed at the start of each run. This allows
us to investigate the sensitivity of the results to the random training process,
while also being able to reprocude the results.

Finally, we find that network input normalization is important for achieving
convergence during training. Because of this, the variables in (62), with the
exception of the put-call flag, are converted to their z-scores by

ẑi = zi − z̄i

si

,

where z̄i and si are the sample mean and standard deviation of the i:th variable
zi, respectively. For a single train-validation-test split, z̄i and si are calculated
from only the training set, after which the z-scores are computed for the
training, validation and test sets using these fixed values. Table 4 summarizes
the choices made in this chapter.

Table 4: Summary of the choices regarding the network structure
and the training process.

Category Factor Choice
Network type multilayer perceptron

inputs FM , T, ȳ, (b)
input normalization z-score
final activation scaled sigmoid
hidden activations tanh
hidden layers 1 or 2
units per hidden layer 6,8 or 10

Training loss MSE weighted by the inverse
square root of market prices

optimizer Adam
initial learning rate 0.02
learning rate schedule increase by 0.02 every other epoch

until epoch 20, reduce by 20% every
20th epoch after that

weight initialization Xavier (non-bias weights),
zero (bias weights)

regularization -
epochs 200
batch size 1134 (32 time steps w/ 42 contracts)
batches per epoch ≥ 11
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3.4 Implementation Considerations
The above framework is quite flexible, and suitable for many option pricing
models. A benefit of the framework is that most parts of the implementation,
such as the code for model training and testing, remain the same between
different pricing models. In fact, when introducing a new pricing model, only
the pricing function and suitable parameter ranges need to defined.

A key requirement for a given pricing function f is that the network weights
W can be optimized by minimizing the loss given by the loss function ℓ. In
the neural network context, this practically means that the gradient of f (and
ℓ) with respect to W can be computed. The TensorFlow (TF) library and its
extension TensorFlow Probability (TFP) provide the necessary functions, and
the gradients of these functions, for implementing the option pricing formulas
from Chapter 2. In this thesis, we use version 2.10.0 of TF and version 0.18.0
of TFP. The models are implemented using the programming languague R,
and the TF/TFP functions are accessed using the reticulate package.

Assume that the TF and TFP packages have been imported in Python
as tf and tfp, respectively. In the case of the Black-Scholes and Corrado-Su
models, the call prices can be computed using basic elementary operations
(tf.add, tf.subtract, tf.multiply and tf.divide), square root (tf.sqrt),
exponentiation (tf.exp), logarithm (tf.math.log), and the normal density
and cumulative distribution function (methods prob and cdf of the TFP class
tfp.distributions.Normal, respectively). Moreover, the Gram-Charlier ad-
hoc mapping from Equation (21) can be implemented by precomputing the
skewness-kurtosis pairs (si, ki) which can then be used to calculate the grid
points aj and bj (in non-tensor form). Then, the skewness can be scaled using
the sigmoid function (tf.sigmoid). By Table 2, the kurtosis is already in the
valid range.

In the case of the Heston and Bates models, the hyperbolic functions re-
quired in Equation (43) are available in TF (tf.math.sinh and tf.math.tanh).
Moreover, TF handles the computations between complex numbers automati-
cally, provided that the real-valued tensors have been converted to complex
tensors using the tf.complex function. The numerical integrals in Equations
(41) and (52) are easily obtained by precomputing the Gauss-Legendre nodes
and weights, and then calculating the weighted sum in Equation (40) using
tf.reduce_sum. We find that 30 nodes and weights are enough for sufficient
convergence. Finally, we set the inverse map to output the long-term and
initial volatilities

√
θ and

√
V0 instead of the variances θ and V0. This change

of variables seems to give more reasonable values for θ and V0.
The availability of the pricing function f and its gradients is not enough

to obtain a satisfactory solution to the problem in (61). Namely, the pricing
function and the gradients should be numerically stable, so that the iterative
optimization method is able to convergence. For the same reason, it is desirable
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that the magnitude (norm) of the gradients is not too big or small. The option
pricing models in Chapter 2 have been selected partly because they satisfy these
requirements. For the opposite reason, some alternative models are excluded
from consideration in this thesis. For instance, the Borland-Bouchaud model
[Borland and Bouchaud, 2004] produces fairly good results to the problem in
(61), but it is a bit too unstable numerically, and requires more supervision
than the other models during training. Additionally, we experiment with the
Constant Elasticity of Variance (CEV) [Cox, 1997] and the Variance Gamma
(VG) [Madan et al., 1998] models, but find no satisfactory solution using
TensorFlow. In particular, the computational challenges are caused by the
non-central Chi-squared distribution in the case of the CEV model, and the
modified Bessel function of the second kind in the case of the VG model.
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4 Numerical Results

4.1 Data
In this thesis, the neural network models are calibrated to the S&P 500
index (SPX) options, issued by the Chicago Board Options Exchange (Cboe).
The SPX options are selected, since the market for them is extremely liquid,
which results in relatively small bid-ask spreads. Furthermore, the options are
European, so their prices can be estimated by the pricing models presented
in Chapter 2. Hence, SPX options provide a good testing ground for the NN
framework introduced in Section 3.2.

The options data is obtained from the Cboe DataShop [Cboe, 2023], It
contains quotes from the ‘SPX’ options chain between January 2012 and
January 2023. The SPX options chain consists of the standard options (root
ticker ‘SPX’) which expire on the 3rd Friday of each month, and the weekly
and end-of-month options (root ticker ‘SPXW’) which can expire on different
days of the week. The former options are settled in the morning of the
expiration date, the latter at the close of the market in the afternoon (Easter
Standard Time). The time frequency of the data is one quote per hour, so
there are about 6-7 daily observations (quotes) for each option contract. Each
observation consists of the following fields:

• quote timestamp t
• underlying price S0
• expiration time τ
• strike price K
• bid b
• bid size nb

• ask a ≥ b
• ask size na

By taking the difference between the expiration date and the timestamp, we
obtain the time to maturity T := τ − t in years. Moreover, when training and
testing the models, the option market price y is defined as the mid price of
the bid and ask, y := (b + a)/2.

In addition to the options data, the option pricing models require estimates
for the risk-free rate r and the dividend yield q of the S&P 500 index. In this
thesis, the risk-free rate is calculated from the US Treasury Security yields
at different constant maturities. These yields are collected from the Federal
Reserve Economic Data [FRED, 2023]. We use the 1 month (‘DGS1MO’), 3
month (‘DGS3MO’), 6 month (‘DGS6MO’) and 1 year (‘DGS1’) maturities.
For each option contract, r is calculated by interpolating the fixed maturity
yields at the contract’s maturity. Here, yield extrapolation is not permitted, so
option maturities are restricted between 1 and 12 months. For interpolation,
a cubic spline is used (see Figure 11). The daily dividend yield is collected
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from the GuruFocus website [GuruFocus, 2023]. The values are obtained by
averaging the yields of the companies in the the S&P 500 index, weighted
by the market capitalization of each company. The dividend yield of each
company is the ratio of the last yearly dividend and the current share price.
Figure 12 shows the percentage yield between the years 2012 and 2022.

Figure 11: Cubic spline fit to the fixed maturity yields at 1, 3,
6 and 12 months (black points). For a option contract with a
maturity of 9 months (red point), the risk-free rate r is estimated
by interpolation. Here, we obtain the rate r ≈ 3.39%.

Figure 12: Combined daily dividend yield of the companies in the
S&P500 index from 2012 to 2022.

Before the model training process, the option data is filtered using the
following rules. First, we remove the observations for which either the bid size
nb or the ask size na is zero. Additionally, we only consider the observations
that satisfy the arbitrage restrictions

yc ≥ max(0, FIV),
yp ≥ max(0, −FIV),

where

FIV = S0e
−qT − Ke−rT
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is the ‘forward intrinsic value’ of the call option, and yc and yp are the market
(mid) prices for the call and the put, respectively. Since the payoff from an
option is always nonnegative, the restrictions yc ≥ 0 and yp ≥ 0 are obvious.
When FIV > 0 (FIV < 0), the restriction yc ≥ FIV (yp ≥ −FIV) follows
from the put-call parity in Equation (1). Since the option pricing models
from Chapter 2 assume frictionless markets (markets with unlimited funding,
lending and shorting, and no transaction costs), they are not well-equipped
to handle options that do not satisfy these restrictions. Acknowledging these
limitations, we remove such options from the final dataset.

After the above rules, the data is further filtered by forming a NT × NK

grid of NT different maturities and NK different strikes for each time step t.
The same grid is constructed for calls and puts separately, so each time step
contains 2 · NT · NK observations. This is done for couple of reasons. First,
it ensures that equal number of options from different categories (puts/calls,
short/long maturities, ITM/ATM/OTM strikes) are used during the training
and testing of models. Second, it enables the construction of discrete implied
parameter surfaces for each time step. To normalize the grid, we work with
the option moneyness

M = dM · S0 − K

S0

instead of the strike K, where dM = 1 for calls and dM = −1 for puts. Let G be
the target grid of maturity-moneyness pairs. For each t and pair (T̄ , M̄) ∈ G,
we first find the set of contracts with time to maturity T such that the distance
T − T̄ is minimized subject to T̄ ≤ T ≤ T̄ + δ(T̄ ), where δ(T̄ ) is a threshold
function. Then, from this set of contracts, we select the one with moneyness
M such that the absolute difference

⃓⃓⃓
M − M̄

⃓⃓⃓
is minimized. If no contract is

found for all pairs (τ̄ , M̄) ∈ G using these rules, the time step t is discarded
entirely, because we are only interested in complete grids. However, the
necessary contracts are found for the majority of all time steps. Finally, to
reduce the number of observations for faster training, we only include the last
time step of each trading day.

In this thesis, we use a 6 × 7 grid visualized in Figure 13. The vector of
target maturities (in days)

GT = (30, 60, 90, 120, 180, 270)

has been selected to obtain sufficient number of complete grids for different
time steps. As can be seen from Figure 13, the moneyness range is widened
as the target maturity T̄ ∈ GT increases. For each index j ∈ [6] of T̄ in GT ,
the vector of target moneyness levels is given by

GK(j) = kj (−3, −2, −1, 0, 1, 2, 3)
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for a constant vector

k = 10−2 · (1.33, 1.83, 2.33, 2.67, 3.33, 4.00)

The relationship between kj and T̄ is approximately kj ∼
√

T̄ , so kj scales
linearly with the total asset volatility σ

√
t. Moreover, k is scaled so that the

furthest ITM and ATM options have moneyness of approximately ±4% for
the shortest maturities, and ±12% for the longest maturities. In order, the
(6) maturity levels are labeled t1,t2,t3,t4,t5 and t6, and the (7) moneyness
categories are labeled otm3,otm2,otm1,atm,itm1,itm2 and itm3.

Figure 13: The maturity-moneyness grid.

Finally, for the maturity threshold function, we use

δ(30) = 20, δ(60) = 20,

δ(90) = 20, δ(120) = 50,

δ(180) = 80, δ(270) = 90,

to ensure small gaps (10 days) between the maturity levels, but also to ensure
that the grid is not too sparse in the (T, M)-space. Additionally, the last
threshold is used to obtain an upper bound of approximately one year. Figure
14 shows the data points that have been obtained using the grid described
above. The final dataset contains 2015 time steps with 2 · 6 · 7 = 84 data
points each, so the number of total data points is 169260, half of which are
calls/puts.
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Figure 14: The final data points in the (T, M)-space.

4.2 Model Evaluation
In this section, we evaluate the performance of the Black-Scholes (B-S),
Corrado-Su (C-S), Heston and Bates models, when applied to the neural
network inverse map framework presented in Section 3.2. For each model, the
evaluation is carried out using (i) only calls, (ii) only puts, and (iii) both calls
and puts. When evaluating the pricing accuracy of the models, the following
metrics are used: the (i) Root Mean Squared Error RMSE =

√
MSE, (ii) the

MAPE from Equation (64), (iii) the absolute error relative to the bid-ask
spread

errSpread := 1
n

n∑︂
i=1

|yi − ŷi|
ai − bi

, (65)

where bi and ai are the bid and ask prices of observation i, respectively, and
(iv) the percentage of predictions inside the spread

pSpread := 100% · 1
n

n∑︂
i=1

I(bi ≤ ŷi ≤ ai),

where I is the indicator function. The metrics above are selected for the
following reasons. First, the RMSE is closely related to the weighted MSE
loss that is used during training. We use the RSME instead of the MSE,
because the values of the former are in dollar scale. Moreover, since the RMSE
considers the squared pricing errors, it is sensitive to large absolute errors.
However, it is also biased towards expensive options, as mentioned in Section
3.3. Thus, to better examine the relative pricing errors, we also include the
MAPE in our study. The downside of the MAPE is that it does not take



39

into account the bid-ask spreads of the options. For this, the errSpread and
pSpread metrics are included. Here, we consider the price predictions inside
the spread to be ‘ideal’, in the sense that even market participants cannot
agree on a fair price between the bid and ask prices. Hence, the pSpread
metric gives the percentage of ‘ideal’ predictions. An errSpread score of 0.5 is
considered to be excellent, because this is the value that would be achieved if
the model gave predictions identical to the bid or ask prices in the market.

To assess the performance of the models in different market conditions,
the models are tested on multiple time intervals. More specifically, we use
10 train-validation-test splits, listed in Table 5. The first split starts from
July 2015, and for each subsequent split, the time window is slid forward
6 months. Each 2-year long train interval is followed by a 5-month long
validation interval, followed by a 6-month long test interval. The validation
and test intervals are non-overlapping, and the last test interval ends at the end
of 2022. Additionally, a 14 day gap is left between each train and validation
interval, and each validation and test interval. This is done to mitigate possible
underestimation of the out-of-sample error due to autocorrelations between
consecutive observations. The validation intervals are used to select the best
version of each model, i.e., the best pair of hyperparameters (l, k) (number of
non-input layers, and number of units for each hidden layer, respectively). This
is done by averaging some metric over all validation intervals and seeds that
control the random training process, and then selecting the hyperparameters
corresponding to the best value. Here, we choose (l, k) which minimize the
errSpread metric from Equation (65). For each model, training interval and
pair of hyperparameters, the training process is repeated using 5 different
seeds. Finally, the best version of each model is evaluated on the test intervals.

Table 5: Train-validation-test splits in ‘DD/MM/YY’ format.

Train Valid. Test
1 01/07/15 - 30/06/17 15/07/17 - 17/12/17 01/01/18 - 30/06/18
2 01/01/16 - 31/12/17 15/01/18 - 16/06/18 01/07/18 - 31/12/18
3 01/07/16 - 30/06/18 15/07/18 - 17/12/18 01/01/19 - 30/06/19
4 01/01/17 - 31/12/18 15/01/19 - 16/06/19 01/07/19 - 31/12/19
5 01/07/17 - 30/06/19 15/07/19 - 17/12/19 01/01/20 - 30/06/20
6 01/01/18 - 31/12/19 15/01/20 - 16/06/20 01/07/20 - 31/12/20
7 01/07/18 - 30/06/20 15/07/20 - 17/12/20 01/01/21 - 30/06/21
8 01/01/19 - 31/12/20 15/01/21 - 16/06/21 01/07/21 - 31/12/21
9 01/07/19 - 30/06/21 15/07/21 - 17/12/21 01/01/22 - 30/06/22

10 01/01/20 - 31/12/21 15/01/22 - 16/06/22 01/07/22 - 31/12/22

At minimum, the train, validation and test intervals contain 375,64 and
78 complete time steps (time steps for which a complete grid of contracts can
be constructed, see Section 4.1), respectively. Since each time step contains
6 × 7 = 42 contracts, the minimum number of data points is 15750 for train
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intervals, 2688 for validation intervals, and 3276 for test intervals. Table 6
summarises the number of observations. Moreover, Figure 15 shows the price
path of the S&P 500 index during the test intervals.

Table 6: Minimum, maximum and average number of observations,
and the total number of unique data points, across all time splits.

Train Valid. Test
Min. 15750 2688 3276
Avg. 17686 3713 4423
Max. 18774 4326 5124
Total 56322 37128 44226

Figure 15: S&P500 index (SPX) prices during test intervals. The
non-overlapping intervals are separated by vertical lines.

Next, we summarise the results that have been obtained by fitting the
pricing models to calls only. This is done for a couple of reasons. First, we
omit the examination of the puts only case, because this section would be
too lengthy otherwise, and more importantly, because the overall results are
quite similar to the ones presented here. However, a notable exception is
the case of OTM contracts, where a smaller percentage error is obtained for
puts than for calls. This is because OTM calls tend to be cheaper than OTM
puts (implying a negatively skewed log return distribution), which makes the
pricing of OTM calls more challenging using the loss in Equation 63. Overall,
the results are slightly better for puts than they are for calls. Appendix A
lists selected evaluation results for puts.

Second, we find that better results are obtained when the models are fitted
to calls and puts separately. In theory, the models should be able to handle
both contract types simultaneously due to the put-call parity, but in practice,
this results in worse performance both in-sample and out-of-sample. It is
possible that the choices regarding the network structure and the training
process (that were made in Chapter 3) are partly responsible for this, and
that a different conclusion would be reached with alternative choices, such as
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a different set of network inputs. Nevertheless, here we also omit the results
corresponding to both calls and puts.

Table 7 shows the errSpread values for all pairs of (l, k), averaged over all
validation splits and (5) seeds. The bottom row gives the average value for
each pair (over all models), and the rightmost column shows the average value
for each model (over all pairs). From the table, it is clear that larger networks
produce superior results compared to the smaller networks. In the case of
all four models, the hyperparameter pair (3, 10) gives the smallest validation
error. Moreover, it seems that a single hidden layer (l = 2) is unable to fully
capture the behaviour of the inverse pricing formula across multiple maturities
and strikes, since the error is considerable larger than in the case of two hidden
layers (l = 3). From the table, it can also be seen that the Black-Scholes model
has the largest, and the Bates model has the smallest, average validation error.
However, the Heston model has the smallest validation error when only the
best hyperparameters are considered.

Table 7: Relative spread errors (errSpread) for different pairs of
hyperparameters l (number of non-input layers) and k (units per
hidden layer), averaged over all validation splits and random seeds.
The errors are colored from red (largest) to green (smallest).

Model l=2
k=6

l=2
k=8

l=2
k=10

l=3
k=6

l=3
k=8

l=3
k=10 Avg.

Black-Scholes 3.318 2.912 2.242 1.303 1.042 0.956 1.962
Corrado-Su 2.394 1.999 2.131 1.418 0.958 0.863 1.627
Heston 2.025 1.834 1.617 1.172 1.002 0.725 1.396
Bates 1.878 1.459 1.274 1.052 0.930 0.802 1.233
Avg. 2.404 2.051 1.816 1.236 0.983 0.837 1.554

From now on, we only consider the best hyperparameter version (that is,
the case l = 3, k = 10) of each model. Additionally, we run each version with
7 more random seeds, so the total number of seeds per model and split is 12.
Table 8 shows the model metrics averaged over the train, validation and test
intervals, and the random seeds. For the train intervals, the order from the
best to the worst model is the same in all four categories (metrics): (1) Bates,
(2) Heston, (3) Corrado-Su, (4) Black-Scholes. Thus, more complex models
produce better train metrics across the board. In the validation and test case
however, the order is not so clear. For the validation intervals, the Bates model
is the best in three categories (MAPE, errSpread and pSpread), and the C-S
model has the best RMSE. On the other hand, the Bates model has the worst
validation RMSE, while the B-S model has the weakest validation results in
the remaining categories. For the test intervals, the Bates and C-S models
are the best in two categories each (MAPE and errSpread, and RMSE and
errSpread, respectively). Conversely, the B-S model gives the least accurate
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results in three categories (MAPE, errSpread and pSpread), and the Heston
model has the worst test RMSE. Overall, the B-S model seems to have the
weakest results. The remaining models are a bit more evenly matched, with
the Bates and C-S models having a slight edge over the Heston model.

Overall, the metrics are worse for the validation and test intervals than
they are for the train intervals, with the exception of the MAPE. Hence,
the models seem to slightly overfit to the training sets. With that said, the
overfitting is not too severe, because all the models give fairly good out-of-
sample predictions. For instance, the out-of-sample predictions land inside
the spread over 50% of the time in the case of all models, and both validation
and test intervals. Additionally, the average out-of-sample relative spread
error satisfies errSpread < 1, with the exception of the B-S test value. This
means that the average predictions are not too far from the actual bid or
ask prices, although the errors are larger than the ‘ideal’ errSpread score of
0.5. On average, the test results are slightly worse than the validation results,
which suggests a slight performance decay as time passes. This indicates that
a single calibration does not suffice indefinitely, and that the models should
be re-calibrated as enough time has passed from the training set. However, a
suitable calibration frequency is likely less than that of the constant parameter
setting (problem in (56)), where the models are often re-calibrated daily.

Table 8: Average model metrics over train, validation and test sets.
For each metric, the model giving the best test result is colored
green, and the model corresponding to the worst test result is
colored red.

Model RMSE MAPE errSpread pSpread

Black-Scholes
train : 0.80
valid : 2.35
test : 2.79

train : 2.61
valid : 2.81
test : 1.74

train : 0.60
valid : 0.93
test : 1.01

train : 65.51
valid : 53.95
test : 50.24

Corrado-Su
train : 0.70
valid : 2.11
test : 2.07

train : 2.37
valid : 2.50
test : 1.45

train : 0.52
valid : 0.81
test : 0.83

train : 70.29
valid : 57.99
test : 55.11

Heston
train : 0.66
valid : 2.86
test : 3.17

train : 1.74
valid : 2.10
test : 1.42

train : 0.43
valid : 0.81
test : 0.88

train : 74.54
valid : 62.05
test : 58.51

Bates
train : 0.63
valid : 2.90
test : 3.08

train : 1.58
valid : 1.96
test : 1.34

train : 0.40
valid : 0.78
test : 0.85

train : 76.50
valid : 63.86
test : 59.70

Table 9 shows the average model metrics for different test years. From the
rightmost column, it is clear that the average model performance does not
stay the same from year to year. In particular, the performance is by far the
worst during the year 2020, where the Heston and Bates models suffer the
largest drop in performance. This is not very surprising, since 2020 was a very
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abnormal and volatile market year due to the start of the COVID-19 pandemic
(see Figure 15). In other words, the models seem to perform the worst during
the most extreme market conditions, at least in this particular test period. In
addition, more complex models are more prone to overfitting due to the larger
number of model parameters, which can explain the underwhelming results of
the Bates and Heston models during 2020. This performance drop-off is of
course undesirable, but also to be expected, since the preceding training data
does not contain such extreme market conditions. In any case, it is important
to acknowledge the limitations, and not to blindly trust the outputs, of the
models. On the other hand, the best test results are achieved for multiple
metrics during the other bad market years, namely 2018 and 2022. Hence, it
cannot be concluded that the models do not work in all market downtrends.
Table 9 also shows that 2020 has a significant negative impact on the average
test metrics in Table 8, and that the average test performance is noticeably
better during the more ‘normal’ market years. For instance, when 2020 is
excluded, the average test errSpread of the Bates model is an excellent 0.49.

Table 9: Average test metrics for different years. For each test
period (row) and metric, the models are ranked using numbers from
1 to 4. Then for each row, the model with the smallest average
rank is colored green, and the model with the largest average rank
is colored red. In the case of a tie, both models are colored. For
brevity, the results are presented annually, even though the test
intervals are 6 months long.

Black-Scholes Corrado-Su Heston Bates Avg.

2018

RMSE : 0.80
MAPE : 1.77

errSpread : 0.52
pSpread : 66.12

RMSE : 0.69
MAPE : 1.57

errSpread : 0.45
pSpread : 70.67

RMSE : 0.65
MAPE : 1.28

errSpread : 0.38
pSpread : 76.11

RMSE : 0.63
MAPE : 1.19

errSpread : 0.36
pSpread : 77.72

RMSE : 0.69
MAPE : 1.45

errSpread : 0.43
pSpread : 72.66

2019

RMSE : 0.75
MAPE : 1.90

errSpread : 0.81
pSpread : 54.14

RMSE : 0.71
MAPE : 1.72

errSpread : 0.74
pSpread : 56.60

RMSE : 0.60
MAPE : 1.36

errSpread : 0.60
pSpread : 62.28

RMSE : 0.55
MAPE : 1.18

errSpread : 0.54
pSpread : 65.62

RMSE : 0.65
MAPE : 1.54

errSpread : 0.67
pSpread : 59.66

2020

RMSE : 9.87
MAPE : 3.03

errSpread : 2.22
pSpread : 24.50

RMSE : 6.89
MAPE : 2.29

errSpread : 1.72
pSpread : 28.51

RMSE : 12.69
MAPE : 3.09

errSpread : 2.32
pSpread : 28.25

RMSE : 12.34
MAPE : 2.99

errSpread : 2.27
pSpread : 28.52

RMSE : 10.45
MAPE : 2.85

errSpread : 2.13
pSpread : 27.44

2021

RMSE : 1.42
MAPE : 1.49

errSpread : 0.99
pSpread : 42.19

RMSE : 1.22
MAPE : 1.26

errSpread : 0.82
pSpread : 47.28

RMSE : 1.16
MAPE : 1.03

errSpread : 0.71
pSpread : 50.30

RMSE : 1.12
MAPE : 1.01

errSpread : 0.70
pSpread : 50.55

RMSE : 1.23
MAPE : 1.20

errSpread : 0.80
pSpread : 47.58

2022

RMSE : 1.12
MAPE : 0.51

errSpread : 0.53
pSpread : 64.26

RMSE : 0.85
MAPE : 0.41

errSpread : 0.41
pSpread : 72.49

RMSE : 0.74
MAPE : 0.35

errSpread : 0.37
pSpread : 75.62

RMSE : 0.76
MAPE : 0.35

errSpread : 0.37
pSpread : 76.09

RMSE : 0.87
MAPE : 0.40

errSpread : 0.42
pSpread : 72.11

Avg.

RMSE : 2.79
MAPE : 1.74

errSpread : 1.01
pSpread : 50.24

RMSE : 2.07
MAPE : 1.45

errSpread : 0.83
pSpread : 55.11

RMSE : 3.17
MAPE : 1.42

errSpread : 0.88
pSpread : 58.51

RMSE : 3.08
MAPE : 1.34

errSpread : 0.85
pSpread : 59.70

RMSE : 2.78
MAPE : 1.49

errSpread : 0.89
pSpread : 55.89
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Tables 10 and 11 present the test metrics for different levels of maturity
and moneyness, respectively. In both tables, the levels (rows) are labeled using
the labeling from Section 4.1. From the tables, it can be seen that the relative
errors (MAPE and errSpread) tend to decrease, and the absolute error (RMSE)
tends to increase, with maturity and moneyness. The latter observation is not
surprising, because the prices of options tend to also increase with maturity
and moneyness. The increasing relative errors can be attributed to the biased
loss in Equation (63), but also to the fact that the pricing of ITM options is
often easier than the pricing of OTM options. An accurate pricing of ITM
options in terms of percentage error is relatively easy, because as the moneyness
of the option increases, the price of the option approaches its intrinsic value
(the probability of the option expiring worthless becomes negligibly small).
Conversely, the value of a deep OTM option can be close to zero, which makes
it difficult to produce price predictions with small percentage error.

Table 10: Average test metrics for different maturity levels. Here,
we use the same ranking system for coloring as in Table 9.

Black-Scholes Corrado-Su Heston Bates Avg.

t1

RMSE : 1.88
MAPE : 3.56

errSpread : 1.52
pSpread : 30.50

RMSE : 1.85
MAPE : 3.14

errSpread : 1.29
pSpread : 35.86

RMSE : 2.53
MAPE : 2.71

errSpread : 1.23
pSpread : 39.08

RMSE : 2.39
MAPE : 2.49

errSpread : 1.15
pSpread : 40.95

RMSE : 2.16
MAPE : 2.98

errSpread : 1.30
pSpread : 36.60

t2

RMSE : 1.71
MAPE : 1.55

errSpread : 1.03
pSpread : 45.86

RMSE : 1.44
MAPE : 1.34

errSpread : 0.84
pSpread : 51.43

RMSE : 2.53
MAPE : 1.45

errSpread : 0.99
pSpread : 51.64

RMSE : 2.50
MAPE : 1.38

errSpread : 1.00
pSpread : 53.29

RMSE : 2.04
MAPE : 1.43

errSpread : 0.97
pSpread : 50.55

t3

RMSE : 1.94
MAPE : 1.37

errSpread : 0.94
pSpread : 53.18

RMSE : 1.46
MAPE : 1.15

errSpread : 0.76
pSpread : 57.18

RMSE : 2.55
MAPE : 1.14

errSpread : 0.84
pSpread : 61.23

RMSE : 2.48
MAPE : 1.06

errSpread : 0.81
pSpread : 61.93

RMSE : 2.11
MAPE : 1.18

errSpread : 0.84
pSpread : 58.38

t4

RMSE : 2.28
MAPE : 1.28

errSpread : 0.99
pSpread : 53.13

RMSE : 1.64
MAPE : 1.02

errSpread : 0.79
pSpread : 57.57

RMSE : 2.77
MAPE : 1.05

errSpread : 0.87
pSpread : 62.44

RMSE : 2.66
MAPE : 0.97

errSpread : 0.81
pSpread : 63.30

RMSE : 2.34
MAPE : 1.08

errSpread : 0.87
pSpread : 59.11

t5

RMSE : 3.02
MAPE : 1.24

errSpread : 0.96
pSpread : 58.10

RMSE : 2.14
MAPE : 0.99

errSpread : 0.76
pSpread : 61.95

RMSE : 3.32
MAPE : 1.04

errSpread : 0.83
pSpread : 66.23

RMSE : 3.19
MAPE : 1.00

errSpread : 0.81
pSpread : 67.81

RMSE : 2.92
MAPE : 1.07

errSpread : 0.84
pSpread : 63.52

t6

RMSE : 4.29
MAPE : 1.44

errSpread : 0.64
pSpread : 60.66

RMSE : 2.96
MAPE : 1.06

errSpread : 0.51
pSpread : 66.65

RMSE : 4.31
MAPE : 1.15

errSpread : 0.52
pSpread : 70.45

RMSE : 4.24
MAPE : 1.13

errSpread : 0.52
pSpread : 70.92

RMSE : 3.95
MAPE : 1.19

errSpread : 0.55
pSpread : 67.17

Avg.

RMSE : 2.52
MAPE : 1.74

errSpread : 1.01
pSpread : 50.24

RMSE : 1.92
MAPE : 1.45

errSpread : 0.83
pSpread : 55.11

RMSE : 3.00
MAPE : 1.42

errSpread : 0.88
pSpread : 58.51

RMSE : 2.91
MAPE : 1.34

errSpread : 0.85
pSpread : 59.70

RMSE : 2.59
MAPE : 1.49

errSpread : 0.89
pSpread : 55.89
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Table 11: Average test metrics for different strike/moneyness levels.
The same ranking system is used for coloring as in Tables 9 and
10.

Black-Scholes Corrado-Su Heston Bates Avg.

itm3

RMSE : 3.06
MAPE : 0.58

errSpread : 0.76
pSpread : 65.49

RMSE : 2.52
MAPE : 0.47

errSpread : 0.62
pSpread : 68.61

RMSE : 4.13
MAPE : 0.68

errSpread : 0.81
pSpread : 69.30

RMSE : 4.11
MAPE : 0.66

errSpread : 0.78
pSpread : 70.82

RMSE : 3.46
MAPE : 0.60

errSpread : 0.74
pSpread : 68.56

itm2

RMSE : 2.74
MAPE : 0.61

errSpread : 0.77
pSpread : 61.32

RMSE : 2.23
MAPE : 0.51

errSpread : 0.67
pSpread : 64.96

RMSE : 3.68
MAPE : 0.71

errSpread : 0.81
pSpread : 65.93

RMSE : 3.58
MAPE : 0.68

errSpread : 0.78
pSpread : 67.00

RMSE : 3.06
MAPE : 0.63

errSpread : 0.76
pSpread : 64.80

itm1

RMSE : 2.79
MAPE : 0.76

errSpread : 0.87
pSpread : 56.57

RMSE : 2.07
MAPE : 0.59

errSpread : 0.71
pSpread : 61.09

RMSE : 3.30
MAPE : 0.78

errSpread : 0.84
pSpread : 63.17

RMSE : 3.19
MAPE : 0.75

errSpread : 0.80
pSpread : 65.12

RMSE : 2.84
MAPE : 0.72

errSpread : 0.81
pSpread : 61.49

atm

RMSE : 2.76
MAPE : 1.00

errSpread : 0.97
pSpread : 51.35

RMSE : 1.91
MAPE : 0.74

errSpread : 0.74
pSpread : 58.29

RMSE : 2.93
MAPE : 0.90

errSpread : 0.84
pSpread : 60.14

RMSE : 2.89
MAPE : 0.88

errSpread : 0.84
pSpread : 60.58

RMSE : 2.63
MAPE : 0.88

errSpread : 0.85
pSpread : 57.59

otm1

RMSE : 2.62
MAPE : 1.46

errSpread : 1.06
pSpread : 44.16

RMSE : 1.85
MAPE : 1.17

errSpread : 0.85
pSpread : 49.48

RMSE : 2.61
MAPE : 1.13

errSpread : 0.83
pSpread : 57.14

RMSE : 2.57
MAPE : 1.10

errSpread : 0.83
pSpread : 58.14

RMSE : 2.41
MAPE : 1.22

errSpread : 0.89
pSpread : 52.23

otm2

RMSE : 2.29
MAPE : 2.51

errSpread : 1.15
pSpread : 40.88

RMSE : 1.62
MAPE : 2.05

errSpread : 0.92
pSpread : 47.62

RMSE : 2.36
MAPE : 1.91

errSpread : 0.90
pSpread : 52.10

RMSE : 2.23
MAPE : 1.86

errSpread : 0.90
pSpread : 51.29

RMSE : 2.12
MAPE : 2.08

errSpread : 0.97
pSpread : 47.97

otm3

RMSE : 2.25
MAPE : 5.27

errSpread : 1.50
pSpread : 31.89

RMSE : 1.68
MAPE : 4.61

errSpread : 1.29
pSpread : 35.69

RMSE : 2.23
MAPE : 3.85

errSpread : 1.11
pSpread : 41.81

RMSE : 2.05
MAPE : 3.47

errSpread : 1.03
pSpread : 44.95

RMSE : 2.05
MAPE : 4.30

errSpread : 1.23
pSpread : 38.59

Avg.

RMSE : 2.64
MAPE : 1.74

errSpread : 1.01
pSpread : 50.24

RMSE : 1.98
MAPE : 1.45

errSpread : 0.83
pSpread : 55.11

RMSE : 3.03
MAPE : 1.42

errSpread : 0.88
pSpread : 58.51

RMSE : 2.95
MAPE : 1.34

errSpread : 0.85
pSpread : 59.70

RMSE : 2.65
MAPE : 1.49

errSpread : 0.89
pSpread : 55.89

From Tables 10 and 11, it can be seen that, in terms of relative error,
the Heston and Bates models produce better predictions for short maturity
and OTM options than the B-S and C-S models. Hence, on average, the
inclusion of stochastic volatility (SV) and jumps seems to be beneficial for the
pricing of these options. This can also be seen in Table 12 which presents the
errSpread test values for all pairs of maturity and moneyness levels. However,
the opposite is generally true for the RMSE which is more sensitive to outliers.
This hints that the Heston and Bates models may occasionally produce the
worst price predictions, even though they are accurate on average. This notion
is also supported by Table 9, where these models perform the worst during
2020. In the case of long maturity and ITM options, the SV models lose
consistently to the C-S model, and occasionally to the B-S model. The RMSE
is biased towards these options, so this can also explain why the SV models
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have the worst out-of-sample RMSE. Overall, the addition of SV and jumps
does not seem as beneficial for the pricing of long maturity and (especially)
ITM options.

Table 12: Test errSpread values for different levels of maturity and
moneyness. Each cell contains the value for each model separately,
and the average value over all models. Here, the model names are
abbreviated to the first letter of the last name of each author. The
cells are colored based on the average value: smaller values are
colored green, and larger values are colored red.

t1 t2 t3 t4 t5 t6 Avg.

itm3

B-S : 1.09
C-S : 0.95
H : 0.88
B : 0.91

Avg. : 0.96

B-S : 0.62
C-S : 0.48
H : 0.81
B : 0.75

Avg. : 0.66

B-S : 0.70
C-S : 0.50
H : 0.74
B : 0.68

Avg. : 0.66

B-S : 0.80
C-S : 0.61
H : 0.80
B : 0.69

Avg. : 0.72

B-S : 0.78
C-S : 0.67
H : 0.96
B : 0.94

Avg. : 0.84

B-S : 0.59
C-S : 0.53
H : 0.69
B : 0.70

Avg. : 0.63

B-S : 0.76
C-S : 0.62
H : 0.81
B : 0.78

Avg. : 0.74

itm2

B-S : 1.14
C-S : 1.02
H : 0.98
B : 0.96

Avg. : 1.02

B-S : 0.71
C-S : 0.57
H : 0.78
B : 0.81

Avg. : 0.72

B-S : 0.75
C-S : 0.60
H : 0.77
B : 0.73

Avg. : 0.71

B-S : 0.79
C-S : 0.66
H : 0.87
B : 0.76

Avg. : 0.77

B-S : 0.69
C-S : 0.64
H : 0.89
B : 0.81

Avg. : 0.76

B-S : 0.58
C-S : 0.50
H : 0.60
B : 0.59

Avg. : 0.57

B-S : 0.77
C-S : 0.67
H : 0.81
B : 0.78

Avg. : 0.76

itm1

B-S : 1.16
C-S : 0.99
H : 1.11
B : 1.00

Avg. : 1.07

B-S : 0.84
C-S : 0.71
H : 0.88
B : 0.92

Avg. : 0.84

B-S : 0.82
C-S : 0.68
H : 0.81
B : 0.75

Avg. : 0.77

B-S : 0.92
C-S : 0.75
H : 0.89
B : 0.83

Avg. : 0.85

B-S : 0.91
C-S : 0.64
H : 0.86
B : 0.81

Avg. : 0.81

B-S : 0.59
C-S : 0.46
H : 0.50
B : 0.49

Avg. : 0.51

B-S : 0.87
C-S : 0.71
H : 0.84
B : 0.80

Avg. : 0.81

atm

B-S : 1.25
C-S : 0.94
H : 1.21
B : 1.05

Avg. : 1.11

B-S : 0.99
C-S : 0.81
H : 0.95
B : 1.03

Avg. : 0.94

B-S : 0.89
C-S : 0.70
H : 0.78
B : 0.79

Avg. : 0.79

B-S : 0.98
C-S : 0.79
H : 0.89
B : 0.90

Avg. : 0.89

B-S : 1.06
C-S : 0.73
H : 0.77
B : 0.81

Avg. : 0.84

B-S : 0.64
C-S : 0.45
H : 0.45
B : 0.45

Avg. : 0.50

B-S : 0.97
C-S : 0.74
H : 0.84
B : 0.84

Avg. : 0.85

otm1

B-S : 1.58
C-S : 1.29
H : 1.24
B : 1.09

Avg. : 1.30

B-S : 1.12
C-S : 0.94
H : 1.01
B : 1.06

Avg. : 1.03

B-S : 0.90
C-S : 0.77
H : 0.79
B : 0.79

Avg. : 0.81

B-S : 1.05
C-S : 0.82
H : 0.82
B : 0.83

Avg. : 0.88

B-S : 1.05
C-S : 0.78
H : 0.69
B : 0.76

Avg. : 0.82

B-S : 0.65
C-S : 0.51
H : 0.43
B : 0.45

Avg. : 0.51

B-S : 1.06
C-S : 0.85
H : 0.83
B : 0.83

Avg. : 0.89

otm2

B-S : 2.18
C-S : 1.81
H : 1.56
B : 1.49

Avg. : 1.76

B-S : 1.22
C-S : 0.99
H : 1.07
B : 1.03

Avg. : 1.08

B-S : 0.91
C-S : 0.74
H : 0.84
B : 0.89

Avg. : 0.85

B-S : 0.97
C-S : 0.72
H : 0.79
B : 0.83

Avg. : 0.83

B-S : 0.97
C-S : 0.75
H : 0.68
B : 0.71

Avg. : 0.78

B-S : 0.64
C-S : 0.51
H : 0.45
B : 0.42

Avg. : 0.51

B-S : 1.15
C-S : 0.92
H : 0.90
B : 0.90

Avg. : 0.97

otm3

B-S : 2.26
C-S : 2.01
H : 1.65
B : 1.56

Avg. : 1.87

B-S : 1.73
C-S : 1.42
H : 1.43
B : 1.38

Avg. : 1.49

B-S : 1.60
C-S : 1.34
H : 1.14
B : 1.02

Avg. : 1.28

B-S : 1.43
C-S : 1.21
H : 1.00
B : 0.84

Avg. : 1.12

B-S : 1.24
C-S : 1.12
H : 0.92
B : 0.84

Avg. : 1.03

B-S : 0.77
C-S : 0.63
H : 0.53
B : 0.52

Avg. : 0.61

B-S : 1.50
C-S : 1.29
H : 1.11
B : 1.03

Avg. : 1.23

Avg.

B-S : 1.52
C-S : 1.29
H : 1.23
B : 1.15

Avg. : 1.30

B-S : 1.03
C-S : 0.84
H : 0.99
B : 1.00

Avg. : 0.97

B-S : 0.94
C-S : 0.76
H : 0.84
B : 0.81

Avg. : 0.84

B-S : 0.99
C-S : 0.79
H : 0.87
B : 0.81

Avg. : 0.87

B-S : 0.96
C-S : 0.76
H : 0.83
B : 0.81

Avg. : 0.84

B-S : 0.64
C-S : 0.51
H : 0.52
B : 0.52

Avg. : 0.55

B-S : 1.01
C-S : 0.83
H : 0.88
B : 0.85

Avg. : 0.89



47

From Table 12, it is clear that the errSpread metric is not constant across
different maturities and strikes. In particular, the average values are larger
for short maturity and OTM options, which is at least partly caused by the
loss used during training. Section 4.4 discusses more about this.

Finally, we investigate the effect of the random training process on the
performance of the models. The best hyperparameter version of each model is
run with 12 different random seeds, which provides some (albeit small) amount
of statistics. Figure 16 shows the effect of the random seed on the average
metrics for different models and spilt types (train,validation,test). With the
exception of the MAPE, the validation and test metrics are worse than the
train metrics, as also shown in Table 8. Moreover, the validation and test
metrics tend to vary more than the train metrics, especially in the case of the
RMSE and errSpread. The C-S model seems to be the least sensitive, and the
Heston model the most sensitive, to the random training process. Overall, the
effect of the random seed is definitely not insignificant. For instance, the test
errSpread metric for the Heston model varies between 0.60 and 1.30 which
is a very wide range. In fact, the Heston model produces the best validation
and test results for a single seed in three categories, as shown by the boxplot
whiskers in Figure 16.

Figure 16: Boxplots for different metrics and models, separately
for training, validation and test intervals. For each model and split
type, the box describes (from bottom to top) the minimum, the
first quartile, the median, the third quartile and the maximum of
the values over all random seeds. For each seed, the values are
averaged over all time splits.
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Now, the question is how to choose the best version of each model from
the different seeds. Table 13 shows the correlations of the metrics over the
seeds between different split types. From the table, it can be seen that the
correlations between the training and the validation intervals, and the training
and the test intervals, are clearly positive on average. This suggests that a
suitable strategy would be to simply choose the model version (seed) with the
best train metrics. On the other hand, the correlations between the validation
and the test sets are more strongly positive. Therefore, before deploying the
models in real time, it could be worthwhile to evaluate the versions of each
model on a short validation interval, and choose the version with the best
validation metrics.

Table 13: Correlations of the metrics over the random seeds between
(a) the train and the validation intervals, (b) the train and the test
intervals, and (c) the validation and the test intervals.

(a) train-validation

Model RMSE MAPE errSpread pSpread Avg.
B-S 0.203 0.950 0.766 0.963 0.721
C-S 0.343 0.691 0.604 0.886 0.631
H 0.298 0.808 0.677 0.960 0.686
B -0.214 0.840 0.618 0.951 0.549
Avg. 0.157 0.822 0.666 0.940 0.646

(b) train-test

Model RMSE MAPE errSpread pSpread Avg.
B-S 0.188 0.732 0.629 0.967 0.629
C-S 0.340 0.545 0.579 0.883 0.587
H 0.132 0.495 0.551 0.944 0.531
B -0.237 0.207 0.370 0.924 0.316
Avg. 0.106 0.495 0.533 0.929 0.516

(c) validation-test

Model RMSE MAPE errSpread pSpread Avg.
B-S 0.472 0.843 0.780 0.973 0.767
C-S 0.808 0.712 0.841 0.875 0.809
H 0.885 0.839 0.942 0.964 0.907
B 0.921 0.447 0.848 0.965 0.795
Avg. 0.772 0.710 0.853 0.944 0.820
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4.3 Model Parameters
In this section, we present the parameters of the models. As before, we only
consider call options and the best hyperparameters of each model. Table
14 lists the parameter averages over all contracts and time splits, and the
standard deviations over the (12) random seeds, separately for train, validation
and test intervals. The volatility parameters σ,

√
θ and

√
V0 have similar

values in the case of all models, which not surprising. In the case of the C-S
model, the skewness and the kurtosis deviate slightly from those of the normal
distribution. Still, even the small amounts of negative skewness and positive
excess kurtosis seem to have a positive impact on the prediction performance
of the C-S model, as shown in Section 4.2. For the Heston and Bates models,
the five mutual parameters (κ,θ,V0,ω,ρ) are quite similar, but there are also
small differences. Most notably, the volatility of volatility ω is on average
larger in the case of the Bates model. Additionally, the initial volatility

√
V0

is slightly larger in the case of the Heston model. Finally, the averages of all
the Bates jump parameters lie somewhere in the middle of the ranges defined
in Table 2.

By Table 14, most of the parameters have a relatively large standard
deviations relative to the average values. The most notable exception is the
B-S volatility which varies very little between different seeds. This is not
surprising, because the B-S model has only a single parameter, so the volatility
cannot be varied much without weakening the pricing accuracy. Additionally,
the C-S volatility varies noticeably less than the volatility parameters of
the SV models. The large variations of the remaining parameters can be
explained by the fact that the corresponding models have multiple parameters.
Thus, different combinations of the parameters can produce similar price
estimates. Consequently, it is not advisable to examine the parameters of
a model separately, as only the combined effect of the parameters can be
considered meaningful.
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Table 14: Average parameter values for train,validation and test
intervals. For each parameter, the percentage standard deviation
(relative to the average value) over the random seeds is listed after
the ‘±’ symbol.

Param. Black-Scholes Corrado-Su Heston Bates

σ
train : 0.162 ± 0.0%
valid : 0.178 ± 0.5%
test : 0.191 ± 0.5%

train : 0.166 ± 2.3%
valid : 0.183 ± 2.7%
test : 0.195 ± 2.9%

µ3

train : -0.151 ± 40.8%
valid : -0.153 ± 45.4%
test : -0.152 ± 46.3%

µ4

train : 3.529 ± 15.5%
valid : 3.522 ± 15.5%
test : 3.535 ± 17.0%

κ
train : 4.312 ± 11.7%
valid : 4.358 ± 11.3%
test : 4.426 ± 10.1%

train : 4.281 ± 10.1%
valid : 4.331 ± 9.6%
test : 4.404 ± 8.4%

√
θ

train : 0.179 ± 7.8%
valid : 0.188 ± 8.3%
test : 0.195 ± 8.4%

train : 0.173 ± 9.1%
valid : 0.182 ± 9.6%
test : 0.189 ± 9.7%

√
V0

train : 0.166 ± 9.0%
valid : 0.187 ± 8.9%
test : 0.202 ± 8.3%

train : 0.156 ± 9.9%
valid : 0.176 ± 9.9%
test : 0.191 ± 9.4%

ω
train : 0.452 ± 29.6%
valid : 0.457 ± 28.3%
test : 0.463 ± 26.6%

train : 0.506 ± 29.4%
valid : 0.509 ± 27.8%
test : 0.514 ± 26.5%

ρ
train : -0.339 ± 51.8%
valid : -0.330 ± 55.0%
test : -0.318 ± 59.5%

train : -0.339 ± 41.8%
valid : -0.331 ± 44.8%
test : -0.317 ± 49.7%

λJ

train : 6.965 ± 32.6%
valid : 7.218 ± 32.5%
test : 7.399 ± 32.1%

µJ

train : -0.013 ± 38.3%
valid : -0.013 ± 38.6%
test : -0.013 ± 37.6%

σJ

train : 0.010 ± 42.2%
valid : 0.011 ± 40.5%
test : 0.011 ± 40.7%

Tables 15, 16 and 17 show the average parameter values for different years,
maturities and strikes, respectively. From the tables, it is evident that a single
set of parameters for all time steps, maturities and strikes is not sufficient in
the case of any model. By Table 15 for instance, higher values of the volatility
parameters (σ, θ and

√
V0) are required during 2020 and 2022 than during the

other test years. Moreover, in the case of call options, the average volatilities
increase with maturity and moneyness, as seen in Tables 16 and 17. This
well-known phenomenon is known as the volatility smile. Figure 17 shows an
example of the B-S volatility smile, visualized in three dimensions.
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Table 15: Average parameter values for each test year.

Param. 2018 2019 2020 2021 2022

σ
B-S : 0.151
C-S : 0.153

B-S : 0.148
C-S : 0.150

B-S : 0.240
C-S : 0.244

B-S : 0.178
C-S : 0.185

B-S : 0.234
C-S : 0.243

µ3 -0.095 -0.114 -0.094 -0.205 -0.244
µ4 3.409 3.249 3.465 3.732 3.806

κ
H : 4.239
B : 4.209

H : 4.212
B : 4.145

H : 4.500
B : 4.424

H : 4.591
B : 4.627

H : 4.600
B : 4.626

√
θ

H : 0.171
B : 0.163

H : 0.173
B : 0.171

H : 0.228
B : 0.218

H : 0.188
B : 0.181

H : 0.216
B : 0.211

√
V0

H : 0.155
B : 0.144

H : 0.149
B : 0.135

H : 0.257
B : 0.250

H : 0.192
B : 0.179

H : 0.255
B : 0.245

ω
H : 0.382
B : 0.477

H : 0.383
B : 0.450

H : 0.427
B : 0.482

H : 0.565
B : 0.577

H : 0.559
B : 0.583

ρ
H : -0.278
B : -0.306

H : -0.285
B : -0.353

H : -0.367
B : -0.328

H : -0.333
B : -0.312

H : -0.335
B : -0.291

λJ 7.329 7.434 8.283 6.761 7.207
µJ -0.014 -0.014 -0.016 -0.011 -0.012
σJ 0.011 0.011 0.013 0.011 0.01

Table 16: Average parameter values for different maturity levels.

Param. t1 t2 t3 t4 t5 t6

σ
B-S : 0.177
C-S : 0.180

B-S : 0.186
C-S : 0.189

B-S : 0.190
C-S : 0.194

B-S : 0.193
C-S : 0.198

B-S : 0.197
C-S : 0.204

B-S : 0.200
C-S : 0.208

µ3 -0.122 -0.129 -0.143 -0.155 -0.173 -0.188
µ4 3.358 3.413 3.48 3.543 3.657 3.761

κ
H : 4.287
B : 4.226

H : 4.415
B : 4.368

H : 4.451
B : 4.417

H : 4.469
B : 4.449

H : 4.475
B : 4.483

H : 4.458
B : 4.482

√
θ

H : 0.183
B : 0.176

H : 0.194
B : 0.187

H : 0.198
B : 0.191

H : 0.199
B : 0.193

H : 0.199
B : 0.193

H : 0.200
B : 0.193

√
V0

H : 0.190
B : 0.182

H : 0.195
B : 0.186

H : 0.198
B : 0.189

H : 0.202
B : 0.191

H : 0.210
B : 0.196

H : 0.219
B : 0.204

ω
H : 0.454
B : 0.503

H : 0.449
B : 0.503

H : 0.454
B : 0.508

H : 0.460
B : 0.514

H : 0.474
B : 0.524

H : 0.486
B : 0.533

ρ
H : -0.411
B : -0.431

H : -0.349
B : -0.360

H : -0.321
B : -0.325

H : -0.300
B : -0.297

H : -0.273
B : -0.256

H : -0.255
B : -0.232

λJ 6.696 7.259 7.457 7.574 7.684 7.725
µJ -0.012 -0.013 -0.014 -0.014 -0.014 -0.014
σJ 0.01 0.011 0.012 0.012 0.012 0.012
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Table 17: Average parameter values for different moneyness levels.

Param. itm3 itm2 itm1 atm otm1 otm2 otm3

σ
B-S : 0.236
C-S : 0.241

B-S : 0.220
C-S : 0.226

B-S : 0.205
C-S : 0.210

B-S : 0.189
C-S : 0.194

B-S : 0.173
C-S : 0.178

B-S : 0.160
C-S : 0.164

B-S : 0.151
C-S : 0.154

µ3 -0.21 -0.186 -0.163 -0.145 -0.131 -0.118 -0.11
µ4 3.849 3.711 3.596 3.506 3.429 3.356 3.301

κ
H : 4.495
B : 4.473

H : 4.514
B : 4.503

H : 4.511
B : 4.509

H : 4.482
B : 4.477

H : 4.416
B : 4.396

H : 4.318
B : 4.279

H : 4.244
B : 4.193

√
θ

H : 0.221
B : 0.216

H : 0.213
B : 0.206

H : 0.202
B : 0.195

H : 0.192
B : 0.184

H : 0.183
B : 0.175

H : 0.178
B : 0.172

H : 0.180
B : 0.175

√
V0

H : 0.262
B : 0.249

H : 0.237
B : 0.224

H : 0.214
B : 0.201

H : 0.194
B : 0.182

H : 0.177
B : 0.166

H : 0.167
B : 0.158

H : 0.166
B : 0.159

ω
H : 0.423
B : 0.446

H : 0.427
B : 0.461

H : 0.431
B : 0.479

H : 0.439
B : 0.500

H : 0.460
B : 0.528

H : 0.503
B : 0.569

H : 0.555
B : 0.618

ρ
H : -0.183
B : -0.147

H : -0.210
B : -0.178

H : -0.244
B : -0.218

H : -0.286
B : -0.272

H : -0.345
B : -0.355

H : -0.431
B : -0.469

H : -0.530
B : -0.578

λJ 7.935 7.838 7.697 7.508 7.271 6.977 6.569
µJ -0.014 -0.014 -0.014 -0.014 -0.013 -0.013 -0.013
σJ 0.012 0.012 0.012 0.011 0.011 0.01 0.011

Figure 17: Black-Scholes volatility surface in the afternoon of
2022-02-01 as a function of the time to maturity T (in years) and
the moneyness M .

In Figure 18, the average short maturity volatilities are compared to Cboe’s
Volatility Index (VIX) which is calculated from the prices of 30-day constant
maturity SPX options [Cboe, 2022]. The VIX index is a useful baseline,
because it is often used as a proxy for the expected market volatility. Here,



53

we use only a single random seed for each model, and the values are computed
for the aggregate test period. As can be seen from the figure, the average
volatility parameters and the VIX move very similarly. This is a desirable
result, for different behaviours would raise suspicions about the reliability of
the models. However, the VIX tends to exhibit slightly larger values for the
majority of the test period. This may be due to the fact that VIX is not
calculated in the same way as the implied volatilities of the parametric models
(in fact, VIX is computed without any model asssumptions; see [Cboe, 2022]
for more details). Additionally, VIX is calculated from options that are not
identical to the ones used in this thesis.

Figure 18: The volatility parameters σ (Black-Scholes,Corrado-Su)
and

√
V0 (Heston,Bates) from 2018 to 2022, averaged over different

contract strikes. Here, a logarithmic scale is used. The average
parameter values are compared to the VIX index, shown in black.
Since the VIX index is calculated using options with a maturity
of 30 days, the volatility parameters are only computed using the
contracts of the first maturity level (t1).

Finally, we demonstrate the effect of the model parameters on the implied
log return distribution of the underlying asset. For each model, we draw
samples using the techniques presented in Chapter 2. Additionally, the samples
are drawn from the risk-neutral densities, so the risk aversion coefficient γ

from Equation (31) is set to zero. Furthermore, we assume that the expected
rate of return is zero, which can be a reasonable approximation for short
time horizons. Figure 19 shows 10-day log returns that have been sampled
from the distributions determined by the average short maturity (t1) model
parameters. By Figure 19(a), the C-S, Heston and Bates implied distributions
are visibly different from the normal distribution given by the B-S model.
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In particular, the C-S, Heston and Bates distributions all have nonnegative
skewness (−0.26, −0.43 and −0.61, respectively) and positive excess kurtosis
(0.63, 0.28 and 0.66, respectively). The effect of this can be seen in Figures
19(b) and 19(c), where the tails of the three aforementioned models are thicker
on the left, but thinner on the right, compared to the B-S model. Hence,
the three distributions are more realistic than the B-S distribution, in the
sense that the empirical short-term log returns are known to have negative
skewness and positive excess kurtosis (see Figure 3). For example, if the
implied distributions are used as an aid in risk management, the fatter left
tails can provide more realistic and conservative estimates of the possible
losses.

Figure 19: Implied 10-day log return distributions sampled from
the average model parameters of the t1 maturity level options in
the afternoon of 2022-04-01. For each model, N = 2·105 log returns
are drawn from the implied (risk-neutral) distribution. Here, we
assume an expected rate of return of zero. The subplots show (a)
the empirical log return density, and (b) the left and (c) the right
tails of the empirical cumulative distribution function.
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4.4 Discussion
Overall, the results from Section 4.2 are promising, but the models still
have some limitations in their current form. First, the models exhibit some
degree of overfitting, as shown by Table 8 and Figure 16. This could be
mitigated using standard regularization techniques for neural networks, such
as weight regularization (either L1 or L2), or dropout. These techniques are
not investigated in this thesis, but they could be beneficial, especially for
larger networks. However, the use of regularization has some caveats. First,
one must choose suitable regularization hyperparameters, such as the weight
regularization (L1 and L2) coefficients and the dropout rate, which increases
the computational burden. Second, the addition of regularization can make it
challenging to obtain a good in-sample fit during training. By Table 13, train
performance correlates positively with the validation and test performances,
so a good fit to the training data is important. Finally, the regularization
techniques do not guarantee a better out-of-sample performance.

In addition to slight overfitting, the choice of the loss function could also be
scrutinized. Here, we use the loss in Equation (63) which partly compensates
for the MSE bias (in terms of relative error) towards more expensive options.
However, this choice does not eliminate the bias, as seen in Table 12. We
select the loss with the inverse square root prices y

−1/2
i as weights, because this

loss seems to be more well-behaved during training than the losses with either
y−1

i or y−2
i as weights. Good results may be achieved with the latter weights,

but this may require more supervision during training (e.g., custom learning
rates and number of epochs for different models and/or training intervals).
Nevertheless, a different loss function or weighting scheme may be required
when fitting the models to very short maturity (less than a month) options,
in which case the MSE bias would be even worse. Alternatively, to reduce
the bias, the models could be fitted to only short term and/or OTM options.
However, multiple versions of each model would then be needed to fit the
entire maturity-moneyness grid.

One limitation of the models is that the parameter ranges have to be fixed
beforehand when using the sigmoid activation functions. On one hand, this
results in faster training, and prevents unreasonable parameter values, even
out-of-sample. On the other hand, the models cannot produce parameter
values outside the predetermined ranges, even when the market prices would
imply such values. For example, if the implied volatility of the options were to
rise above 0.8, or shrink below 0.05, the models would not be able to produce
accurate price estimates when using the ranges in Table 2. Moreover, the
models will likely have trouble extrapolating the parameter values outside of
the training set ranges. For instance, if the maximum implied volatility in the
training set was σ0, the models would likely struggle in a test set containing
several implied volatilities above σ0. Indeed, this type of problem can be
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observed during the test year 2020 (see the third row in Table 9). Therefore,
in practice, it is advisable to include wide ranges of parameters (i.e., different
types of market conditions) in the training set, so that possible extrapolation
is kept at a minimum. Due to the possible performance decay of the models
with time (see Table 8 and Figure 16), it could also be beneficial to either (i)
omit the validation period entirely, or (ii) include a validation period shorter
than the 5-month long period used in Section 4.2. For the same reason, the
14-day gap between the train and validation/test intervals (that was used
in Section 4.2) should be removed. As Figure 16 and Table 13 suggest, it
is recommended to train the models with multiple random seeds, and then
select the version with either the best train performance (if validation period
is omitted) or the best validation performance.

With the exception of the Black-Scholes model, the option pricing models
studied have multiple parameters, which presents some challenges. First of
all, this can complicate the training process, as it is more difficult to find a
good local minimum for multiple parameters simultaneously. Moreover, the
resulting parameters are highly sensitive to the randomness of the training
process, and the initial network weights in particular, as seen in Table 14.
This especially affects the Bates and Heston models, because these models
have the largest number of parameters, and they seem to be the hardest to
fit to the training data. As in the previous paragraph, the randomness can
be taken into account by repeating the training process for multiple random
seeds. Additionally, it is possible to fix a subset of the parameters before
training, which can reduce the variation in the remaining free parameters.

In Section 4.1, we select estimates for the risk-free rate and the dividend
yield of the S&P500 index, and these estimates obviously have an effect on
the final results. For the risk-free rate, we use US Treasury Security yields
of constant maturities, and interpolate these yields using the cubic spline
interpolation. Alternatively, we could have used different proxies for the
risk-free rate, such as rates for interest rate swaps. Moreover, the choice
of the interpolation scheme affects the risk-free rate estimates in between
the constant maturities. For dividends, we use a pre-calculated yield from
GuruFocus. In reality however, the dividends of the companies in the S&P500
index are discrete, which means that the continuous yield approximation
can be rather crude, especially for short maturity options. Instead of using
a continuous yield, one could adjust the underlying asset price for discrete
dividends, which could result in more accurate price estimates. However, the
use of the continuous yield is more convenient, and in the case of the S&P500
index, the discrete dividends of a single company do not have as much of an
impact.

The work of this thesis could be continued in several ways. For example,
the existing models could be applied to other underlying assets, such as other
indices, or individual stocks. Additionally, the inverse map framework could be
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applied to other option pricing models. The neural network approach may limit
the choice of models (see the end of Section 3.4), but the models considered
here are certainly not the only applicable ones. Furthermore, one could also
investigate the use of larger networks, or even different network types. Table
7 suggests that the validation error can be lowered even more by increasing
the number of hidden layer units and/or layers. For the larger networks in
particular, it could also be beneficial to study the effects of regularization.
On the other hand, regularization techniques could also be applied to the
existing networks in order to check whether the observed overfitting could be
mitigated.

In Section 3.3, multiple choices are made regarding the network structure
and the training process. Therefore, these choices could be modified to further
study their effect on the results. For example, the network inputs defined in
(62) could be changed. This would be especially interesting in the case where
calls and puts are fitted simultaneously. It is also possible that larger networks
are required when both calls and puts are used. It should be emphasized that
many of the choices made in Section 3.3, including the final sigmoid ranges for
the model parameters, can be suboptimal for underlying assets other than the
SPX. Therefore, some caution should be exercised when fitting the models to
the options of other assets.

An interesting consideration is the application of the inverse map framework
to American options. Although exact pricing formulas for these options are
not available, there exist approximations, such as the one presented by Barone-
Adesi and Whaley [1987]. Moreover, the value of an American options can be
decomposed into two parts: the value of the corresponding European option,
and the early exercise premium. The former part can be determined using
European option pricing formulas, while the latter part can be estimated in a
nonparametric fashion.

Finally, the usefulness of the model outputs could be further investigated.
For instance, each set of model parameters, such as (σ, µ3, µ4) in the case
of the Corrado-Su model, implies a certain risk-neutral distribution for the
underlying asset. It is not clear however, how informative these distributions
are in practice. Before assessing that, the risk-neutral distribution should
be converted to the ‘real’ distribution, which corresponds to a change of
probability measure from Q to P (see Equation (12)). For the Heston and
Bates models, this means that the risk-neutral parameters should be converted
to the real ones using Equations (32) and (51). Additionally, in the case of all
models, the risk-free rate r should be replaced by the real expected rate of
return µ. Analogously to the capital asset pricing model, this can be done
with the transformation µ = r + λσ, where σ is the current volatility (σ
for Black-Scholes and Corrado-Su,

√
V0 for Heston and Bates), and λ is the

market price of risk (not equal to the price of volatility risk λ from Equation
(30)).
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In addition to the implied distributions, the models can also compute the
Greeks of the options. In a neural network setting, this is straightforward
thanks to automatic differentiation. The most important application for the
Greeks is hedging. In a typical scenario, a call option is sold, and shares of
the underlying asset are bought to hedge the option position. The goal is
to minimize the variance of the portfolio consisting of the option and the
underlying asset. The quality of the hedge can then be assessed by computing
the realized portfolio variance over multiple time steps. By doing this for
multiple option pricing models, one can then determine which model produces
the best hedging strategy.1 However, the examination of hedging performances
is omitted in this thesis.

1Note that under the Bates model, a theoretically perfect hedge is not possible due to
the jump component in the underlying price process.
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5 Conclusions
Many tasks in finance, such as hedging, or calculation of implied asset return
distributions, require accurate modeling of option prices observed in the
market. For this, many parametric pricing models have been proposed in the
literature. Most models have been developed for European options, because
exact closed-form solutions can be found for these options. To estimate their
parameters, some error is typically minimized between the model prices and
the market prices. This estimation process is called model calibration.

In this thesis, the option pricing models considered are (i) the Black-Scholes
(B-S) model, (ii) the Corrado-Su (C-S) model, (iii) the Heston model and
(iv) the Bates model. The Black-Scholes model is the simplest, as it assumes
a constant volatility and log-normal returns for the underlying asset. The
remaining models extend the B-S model to allow nonzero skewness and excess
kurtosis for the log return distribution. Additionally, the Heston and Bates
models treat the asset volatility as a random variable, and the Bates model
adds jumps to the underlying price process.

The goal of this thesis is to calibrate the above option pricing models using
neural networks. That is, the aim is find the unobservable model parameters
that produce the best fit to the market prices. In a neural network setting, the
network takes in market variables as inputs, and outputs the model parameters.
These parameters are then passed to the corresponding pricing formula, and
the resulting prices are compared to the market prices by evaluating some loss
function. Using the gradients of the loss with respect to the network weights,
the parameter values can be updated until a satisfactory solution is found. In
this thesis, the above calibration framework is referred to as the inverse map
approach.

The inverse map approach has several advantages. First, rather than
directly estimating the option prices using neural networks, the final price
predictions are given by the parametric models. This is beneficial, because
the parametric models are (i) more interpretable and (ii) arbitrage-free by
construction. Due to the second property, separate arbitrage restrictions need
not be imposed during training. Second, compared to traditional calibration
methods, where the goal is to only find the parameter values, one also learns
the inverse pricing formula. Thus, after the calibration process, the model can
price future observations without the need to re-calibrate at every time step.
Finally, due to the automatic differentiation ability of neural networks, it is
straightforward to calculate the Greeks of the option pricing models.

In this thesis, we apply the inverse map approach to the European SPX
options from 2015 to 2022. To evaluate the models, multiple train-validation-
test splits are used, and the evaluation metrics are averaged over these splits.
For evaluation, we use four metrics that assess different aspects of the model
price predictions. Moreover, to account for the randomness in the training
process, we run each model and time split for multiple random seeds. The
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validation splits are used to select the hyperparameters that control the size
of the neural network (number of layers and units), and the test intervals are
used to evaluate the best hyperparameters of each model.

Section 4.2 presents the model evaluation results that are obtained using
only call options. In the case of all models, the largest allowed network (2
hidden layers and 10 units per hidden layer) produces the best in-sample and
out-of-sample results. Moreover, the models are able to produce good overall
results. For the best version (best hyperparameters and seed) of each model,
the average pricing error relative to the option bid-ask spread is well below
one for both validation and test intervals. Furthermore, more than half of
the out-of-sample predictions land inside the bid-ask spread in the case of
all models. However, we find that such results are achieved only when the
models are fitted to calls and puts separately. For the train intervals, the
rank order of the models is (1) Bates, (2) Heston, (3) C-S, (4) B-S. That is,
more complex models achieve better train metrics. For the validation and test
intervals however, the order is not as clear. Overall, the Bates and C-S models
seem to have the strongest, and the B-S model the weakest, validation and
test results, when the metrics are averaged over all random seeds. However,
the Heston model has the best validation and test metrics for a single seed.
Overall, the results for puts are slightly better than the above results for calls
(see Appendix A).

The performance of the models is not identical for different time splits,
maturities and strikes. In particular, the models have the worst out-of-sample
performance during the year 2020. Additionally, relative pricing errors are
larger for short maturity and OTM options than they are for long maturity
and ITM options. The varying percentage errors (MAPE) between different
strike prices are especially noticeable for call options. By training the models
for multiple random seeds, we observe that on average, there is a clear positive
correlation between the train, validation and test metrics. Therefore, train
and validation metrics seem to be good indicators for future performance of
the models.

In addition to the pricing performance, we study the parameters produced
by the models. We find that some parameter values can vary significantly
between different random seeds. Thus, it may not be meaningful to interpret
the parameters of a model separately. Moreover, the average parameter values
vary between different time periods, maturities and strikes, as expected. We
also find that the average volatility parameters behave very similarly to the
VIX index throughout the aggregate test interval.

In future work, the inverse map approach could be applied to other underly-
ing assets and option pricing models, and even other option types. Additionally,
the neural network, and the associated training process, could be modified in
order to find better results. Finally, it would be interesting to investigate the
usefulness of the implied return distributions and hedging strategies produced
by the models.
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A Model Evaluation for Puts
This section lists the main evaluation results for puts in a similar way as the
results for calls in Section 4.2. As before, we only consider the best hyperpa-
rameters of each model, and each training process is repeated 12 times using
different random seeds. As in the case of calls, the best hyperparameters for
each model are 2 hidden layers and 10 units per hidden layer. For comparison,
the corresponding call option tables from Section 4.2 are also included.

Table A1: Average model metrics over train, validation and test
sets.

(a) Puts

Model RMSE MAPE errSpread pSpread

Black-Scholes
train : 1.40
valid : 2.81
test : 2.92

train : 0.98
valid : 1.18
test : 1.06

train : 0.50
valid : 0.80
test : 0.88

train : 68.95
valid : 58.36
test : 55.37

Corrado-Su
train : 1.39
valid : 2.74
test : 2.96

train : 0.87
valid : 1.05
test : 0.97

train : 0.46
valid : 0.73
test : 0.82

train : 71.27
valid : 60.88
test : 57.10

Heston
train : 1.18
valid : 3.34
test : 3.15

train : 0.70
valid : 1.07
test : 0.94

train : 0.38
valid : 0.74
test : 0.79

train : 77.11
valid : 65.26
test : 61.34

Bates
train : 1.14
valid : 2.92
test : 2.90

train : 0.65
valid : 0.96
test : 0.86

train : 0.35
valid : 0.67
test : 0.73

train : 78.77
valid : 67.58
test : 63.68

Avg.
train : 1.28
valid : 2.95
test : 2.98

train : 0.80
valid : 1.07
test : 0.96

train : 0.43
valid : 0.74
test : 0.80

train : 74.02
valid : 63.02
test : 59.37

(b) Calls

Model RMSE MAPE errSpread pSpread

Black-Scholes
train : 0.80
valid : 2.35
test : 2.79

train : 2.61
valid : 2.81
test : 1.74

train : 0.60
valid : 0.93
test : 1.01

train : 65.51
valid : 53.95
test : 50.24

Corrado-Su
train : 0.70
valid : 2.11
test : 2.07

train : 2.37
valid : 2.50
test : 1.45

train : 0.52
valid : 0.81
test : 0.83

train : 70.29
valid : 57.99
test : 55.11

Heston
train : 0.66
valid : 2.86
test : 3.17

train : 1.74
valid : 2.10
test : 1.42

train : 0.43
valid : 0.81
test : 0.88

train : 74.54
valid : 62.05
test : 58.51

Bates
train : 0.63
valid : 2.90
test : 3.08

train : 1.58
valid : 1.96
test : 1.34

train : 0.40
valid : 0.78
test : 0.85

train : 76.50
valid : 63.86
test : 59.70

Avg.
train : 0.70
valid : 2.55
test : 2.78

train : 2.08
valid : 2.34
test : 1.49

train : 0.49
valid : 0.83
test : 0.89

train : 71.71
valid : 59.46
test : 55.89
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Table A2: Average test metrics for different years.

(a) Puts
Black-Scholes Corrado-Su Heston Bates Avg.

2018

RMSE : 1.37
MAPE : 1.13

errSpread : 0.55
pSpread : 69.48

RMSE : 1.21
MAPE : 0.92

errSpread : 0.43
pSpread : 72.19

RMSE : 1.06
MAPE : 0.74

errSpread : 0.35
pSpread : 79.89

RMSE : 1.03
MAPE : 0.70

errSpread : 0.33
pSpread : 81.35

RMSE : 1.17
MAPE : 0.87

errSpread : 0.42
pSpread : 75.73

2019

RMSE : 1.18
MAPE : 1.00

errSpread : 0.75
pSpread : 55.36

RMSE : 0.97
MAPE : 0.80

errSpread : 0.60
pSpread : 60.20

RMSE : 0.74
MAPE : 0.59

errSpread : 0.44
pSpread : 69.76

RMSE : 0.71
MAPE : 0.55

errSpread : 0.43
pSpread : 70.87

RMSE : 0.90
MAPE : 0.73

errSpread : 0.56
pSpread : 64.05

2020

RMSE : 9.91
MAPE : 2.23

errSpread : 1.92
pSpread : 33.13

RMSE : 10.36
MAPE : 2.21

errSpread : 1.88
pSpread : 34.04

RMSE : 11.85
MAPE : 2.47

errSpread : 1.99
pSpread : 36.29

RMSE : 10.88
MAPE : 2.27

errSpread : 1.89
pSpread : 38.31

RMSE : 10.75
MAPE : 2.29

errSpread : 1.92
pSpread : 35.44

2021

RMSE : 1.26
MAPE : 0.58

errSpread : 0.73
pSpread : 50.21

RMSE : 1.30
MAPE : 0.53

errSpread : 0.68
pSpread : 51.87

RMSE : 1.30
MAPE : 0.58

errSpread : 0.75
pSpread : 49.52

RMSE : 1.15
MAPE : 0.50

errSpread : 0.63
pSpread : 54.78

RMSE : 1.25
MAPE : 0.55

errSpread : 0.70
pSpread : 51.60

2022

RMSE : 0.86
MAPE : 0.36

errSpread : 0.45
pSpread : 68.67

RMSE : 0.97
MAPE : 0.38

errSpread : 0.48
pSpread : 67.20

RMSE : 0.80
MAPE : 0.32

errSpread : 0.42
pSpread : 71.25

RMSE : 0.73
MAPE : 0.30

errSpread : 0.39
pSpread : 73.08

RMSE : 0.84
MAPE : 0.34

errSpread : 0.43
pSpread : 70.05

Avg.

RMSE : 2.92
MAPE : 1.06

errSpread : 0.88
pSpread : 55.37

RMSE : 2.96
MAPE : 0.97

errSpread : 0.82
pSpread : 57.10

RMSE : 3.15
MAPE : 0.94

errSpread : 0.79
pSpread : 61.34

RMSE : 2.90
MAPE : 0.86

errSpread : 0.73
pSpread : 63.68

RMSE : 2.98
MAPE : 0.96

errSpread : 0.80
pSpread : 59.37

(b) Calls
Black-Scholes Corrado-Su Heston Bates Avg.

2018

RMSE : 0.80
MAPE : 1.77

errSpread : 0.52
pSpread : 66.12

RMSE : 0.69
MAPE : 1.57

errSpread : 0.45
pSpread : 70.67

RMSE : 0.65
MAPE : 1.28

errSpread : 0.38
pSpread : 76.11

RMSE : 0.63
MAPE : 1.19

errSpread : 0.36
pSpread : 77.72

RMSE : 0.69
MAPE : 1.45

errSpread : 0.43
pSpread : 72.66

2019

RMSE : 0.75
MAPE : 1.90

errSpread : 0.81
pSpread : 54.14

RMSE : 0.71
MAPE : 1.72

errSpread : 0.74
pSpread : 56.60

RMSE : 0.60
MAPE : 1.36

errSpread : 0.60
pSpread : 62.28

RMSE : 0.55
MAPE : 1.18

errSpread : 0.54
pSpread : 65.62

RMSE : 0.65
MAPE : 1.54

errSpread : 0.67
pSpread : 59.66

2020

RMSE : 9.87
MAPE : 3.03

errSpread : 2.22
pSpread : 24.50

RMSE : 6.89
MAPE : 2.29

errSpread : 1.72
pSpread : 28.51

RMSE : 12.69
MAPE : 3.09

errSpread : 2.32
pSpread : 28.25

RMSE : 12.34
MAPE : 2.99

errSpread : 2.27
pSpread : 28.52

RMSE : 10.45
MAPE : 2.85

errSpread : 2.13
pSpread : 27.44

2021

RMSE : 1.42
MAPE : 1.49

errSpread : 0.99
pSpread : 42.19

RMSE : 1.22
MAPE : 1.26

errSpread : 0.82
pSpread : 47.28

RMSE : 1.16
MAPE : 1.03

errSpread : 0.71
pSpread : 50.30

RMSE : 1.12
MAPE : 1.01

errSpread : 0.70
pSpread : 50.55

RMSE : 1.23
MAPE : 1.20

errSpread : 0.80
pSpread : 47.58

2022

RMSE : 1.12
MAPE : 0.51

errSpread : 0.53
pSpread : 64.26

RMSE : 0.85
MAPE : 0.41

errSpread : 0.41
pSpread : 72.49

RMSE : 0.74
MAPE : 0.35

errSpread : 0.37
pSpread : 75.62

RMSE : 0.76
MAPE : 0.35

errSpread : 0.37
pSpread : 76.09

RMSE : 0.87
MAPE : 0.40

errSpread : 0.42
pSpread : 72.11

Avg.

RMSE : 2.79
MAPE : 1.74

errSpread : 1.01
pSpread : 50.24

RMSE : 2.07
MAPE : 1.45

errSpread : 0.83
pSpread : 55.11

RMSE : 3.17
MAPE : 1.42

errSpread : 0.88
pSpread : 58.51

RMSE : 3.08
MAPE : 1.34

errSpread : 0.85
pSpread : 59.70

RMSE : 2.78
MAPE : 1.49

errSpread : 0.89
pSpread : 55.89
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Table A3: Average test metrics for different maturity levels.

(a) Puts
Black-Scholes Corrado-Su Heston Bates Avg.

t1

RMSE : 2.35
MAPE : 1.95

errSpread : 1.30
pSpread : 36.99

RMSE : 2.37
MAPE : 1.63

errSpread : 1.09
pSpread : 41.32

RMSE : 2.44
MAPE : 1.42

errSpread : 0.97
pSpread : 49.38

RMSE : 2.39
MAPE : 1.33

errSpread : 0.90
pSpread : 50.32

RMSE : 2.39
MAPE : 1.58

errSpread : 1.07
pSpread : 44.50

t2

RMSE : 2.28
MAPE : 0.88

errSpread : 0.85
pSpread : 52.15

RMSE : 2.58
MAPE : 0.87

errSpread : 0.86
pSpread : 54.17

RMSE : 2.65
MAPE : 0.85

errSpread : 0.85
pSpread : 56.14

RMSE : 2.53
MAPE : 0.81

errSpread : 0.81
pSpread : 59.69

RMSE : 2.51
MAPE : 0.85

errSpread : 0.84
pSpread : 55.54

t3

RMSE : 2.49
MAPE : 0.80

errSpread : 0.80
pSpread : 59.10

RMSE : 2.71
MAPE : 0.80

errSpread : 0.81
pSpread : 58.87

RMSE : 2.76
MAPE : 0.76

errSpread : 0.78
pSpread : 63.05

RMSE : 2.62
MAPE : 0.72

errSpread : 0.73
pSpread : 66.01

RMSE : 2.65
MAPE : 0.77

errSpread : 0.78
pSpread : 61.76

t4

RMSE : 2.77
MAPE : 0.85

errSpread : 0.89
pSpread : 59.51

RMSE : 2.87
MAPE : 0.81

errSpread : 0.85
pSpread : 59.58

RMSE : 2.98
MAPE : 0.77

errSpread : 0.79
pSpread : 64.76

RMSE : 2.78
MAPE : 0.72

errSpread : 0.75
pSpread : 67.16

RMSE : 2.85
MAPE : 0.79

errSpread : 0.82
pSpread : 62.75

t5

RMSE : 3.20
MAPE : 0.92

errSpread : 0.87
pSpread : 60.03

RMSE : 3.04
MAPE : 0.82

errSpread : 0.78
pSpread : 61.39

RMSE : 3.46
MAPE : 0.89

errSpread : 0.82
pSpread : 65.25

RMSE : 3.04
MAPE : 0.78

errSpread : 0.74
pSpread : 66.66

RMSE : 3.19
MAPE : 0.85

errSpread : 0.80
pSpread : 63.33

t6

RMSE : 3.56
MAPE : 0.95

errSpread : 0.57
pSpread : 64.45

RMSE : 3.47
MAPE : 0.88

errSpread : 0.51
pSpread : 67.28

RMSE : 3.89
MAPE : 0.96

errSpread : 0.51
pSpread : 69.48

RMSE : 3.33
MAPE : 0.83

errSpread : 0.46
pSpread : 72.22

RMSE : 3.56
MAPE : 0.90

errSpread : 0.51
pSpread : 68.36

Avg.

RMSE : 2.77
MAPE : 1.06

errSpread : 0.88
pSpread : 55.37

RMSE : 2.84
MAPE : 0.97

errSpread : 0.82
pSpread : 57.10

RMSE : 3.03
MAPE : 0.94

errSpread : 0.79
pSpread : 61.34

RMSE : 2.78
MAPE : 0.86

errSpread : 0.73
pSpread : 63.68

RMSE : 2.86
MAPE : 0.96

errSpread : 0.80
pSpread : 59.37

(b) Calls
Black-Scholes Corrado-Su Heston Bates Avg.

t1

RMSE : 1.88
MAPE : 3.56

errSpread : 1.52
pSpread : 30.50

RMSE : 1.85
MAPE : 3.14

errSpread : 1.29
pSpread : 35.86

RMSE : 2.53
MAPE : 2.71

errSpread : 1.23
pSpread : 39.08

RMSE : 2.39
MAPE : 2.49

errSpread : 1.15
pSpread : 40.95

RMSE : 2.16
MAPE : 2.98

errSpread : 1.30
pSpread : 36.60

t2

RMSE : 1.71
MAPE : 1.55

errSpread : 1.03
pSpread : 45.86

RMSE : 1.44
MAPE : 1.34

errSpread : 0.84
pSpread : 51.43

RMSE : 2.53
MAPE : 1.45

errSpread : 0.99
pSpread : 51.64

RMSE : 2.50
MAPE : 1.38

errSpread : 1.00
pSpread : 53.29

RMSE : 2.04
MAPE : 1.43

errSpread : 0.97
pSpread : 50.55

t3

RMSE : 1.94
MAPE : 1.37

errSpread : 0.94
pSpread : 53.18

RMSE : 1.46
MAPE : 1.15

errSpread : 0.76
pSpread : 57.18

RMSE : 2.55
MAPE : 1.14

errSpread : 0.84
pSpread : 61.23

RMSE : 2.48
MAPE : 1.06

errSpread : 0.81
pSpread : 61.93

RMSE : 2.11
MAPE : 1.18

errSpread : 0.84
pSpread : 58.38

t4

RMSE : 2.28
MAPE : 1.28

errSpread : 0.99
pSpread : 53.13

RMSE : 1.64
MAPE : 1.02

errSpread : 0.79
pSpread : 57.57

RMSE : 2.77
MAPE : 1.05

errSpread : 0.87
pSpread : 62.44

RMSE : 2.66
MAPE : 0.97

errSpread : 0.81
pSpread : 63.30

RMSE : 2.34
MAPE : 1.08

errSpread : 0.87
pSpread : 59.11

t5

RMSE : 3.02
MAPE : 1.24

errSpread : 0.96
pSpread : 58.10

RMSE : 2.14
MAPE : 0.99

errSpread : 0.76
pSpread : 61.95

RMSE : 3.32
MAPE : 1.04

errSpread : 0.83
pSpread : 66.23

RMSE : 3.19
MAPE : 1.00

errSpread : 0.81
pSpread : 67.81

RMSE : 2.92
MAPE : 1.07

errSpread : 0.84
pSpread : 63.52

t6

RMSE : 4.29
MAPE : 1.44

errSpread : 0.64
pSpread : 60.66

RMSE : 2.96
MAPE : 1.06

errSpread : 0.51
pSpread : 66.65

RMSE : 4.31
MAPE : 1.15

errSpread : 0.52
pSpread : 70.45

RMSE : 4.24
MAPE : 1.13

errSpread : 0.52
pSpread : 70.92

RMSE : 3.95
MAPE : 1.19

errSpread : 0.55
pSpread : 67.17

Avg.

RMSE : 2.52
MAPE : 1.74

errSpread : 1.01
pSpread : 50.24

RMSE : 1.92
MAPE : 1.45

errSpread : 0.83
pSpread : 55.11

RMSE : 3.00
MAPE : 1.42

errSpread : 0.88
pSpread : 58.51

RMSE : 2.91
MAPE : 1.34

errSpread : 0.85
pSpread : 59.70

RMSE : 2.59
MAPE : 1.49

errSpread : 0.89
pSpread : 55.89
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Table A4: Average test metrics for different strike/moneyness levels.

(a) Puts
Black-Scholes Corrado-Su Heston Bates Avg.

itm3

RMSE : 3.37
MAPE : 0.77

errSpread : 0.67
pSpread : 64.70

RMSE : 3.41
MAPE : 0.75

errSpread : 0.67
pSpread : 64.51

RMSE : 3.12
MAPE : 0.64

errSpread : 0.58
pSpread : 70.49

RMSE : 2.96
MAPE : 0.59

errSpread : 0.52
pSpread : 73.85

RMSE : 3.22
MAPE : 0.69

errSpread : 0.61
pSpread : 68.39

itm2

RMSE : 2.64
MAPE : 0.69

errSpread : 0.62
pSpread : 64.60

RMSE : 2.73
MAPE : 0.65

errSpread : 0.59
pSpread : 67.21

RMSE : 2.74
MAPE : 0.56

errSpread : 0.54
pSpread : 72.04

RMSE : 2.57
MAPE : 0.53

errSpread : 0.50
pSpread : 74.19

RMSE : 2.67
MAPE : 0.60

errSpread : 0.56
pSpread : 69.51

itm1

RMSE : 2.51
MAPE : 0.73

errSpread : 0.76
pSpread : 58.94

RMSE : 2.69
MAPE : 0.71

errSpread : 0.71
pSpread : 60.78

RMSE : 2.72
MAPE : 0.61

errSpread : 0.63
pSpread : 66.31

RMSE : 2.56
MAPE : 0.59

errSpread : 0.61
pSpread : 68.26

RMSE : 2.62
MAPE : 0.66

errSpread : 0.68
pSpread : 63.57

atm

RMSE : 2.59
MAPE : 0.86

errSpread : 0.85
pSpread : 53.95

RMSE : 2.73
MAPE : 0.84

errSpread : 0.83
pSpread : 53.99

RMSE : 2.91
MAPE : 0.78

errSpread : 0.75
pSpread : 61.09

RMSE : 2.70
MAPE : 0.75

errSpread : 0.73
pSpread : 61.59

RMSE : 2.73
MAPE : 0.81

errSpread : 0.79
pSpread : 57.65

otm1

RMSE : 2.66
MAPE : 1.12

errSpread : 0.99
pSpread : 50.51

RMSE : 2.68
MAPE : 1.01

errSpread : 0.90
pSpread : 53.99

RMSE : 3.05
MAPE : 1.04

errSpread : 0.91
pSpread : 55.94

RMSE : 2.72
MAPE : 0.93

errSpread : 0.83
pSpread : 58.01

RMSE : 2.78
MAPE : 1.03

errSpread : 0.91
pSpread : 54.61

otm2

RMSE : 2.75
MAPE : 1.40

errSpread : 1.05
pSpread : 50.36

RMSE : 2.67
MAPE : 1.21

errSpread : 0.93
pSpread : 52.26

RMSE : 3.15
MAPE : 1.30

errSpread : 0.99
pSpread : 54.51

RMSE : 2.79
MAPE : 1.17

errSpread : 0.91
pSpread : 57.10

RMSE : 2.84
MAPE : 1.27

errSpread : 0.97
pSpread : 53.56

otm3

RMSE : 2.89
MAPE : 1.84

errSpread : 1.22
pSpread : 44.53

RMSE : 2.82
MAPE : 1.61

errSpread : 1.08
pSpread : 46.97

RMSE : 3.42
MAPE : 1.65

errSpread : 1.12
pSpread : 49.02

RMSE : 3.06
MAPE : 1.50

errSpread : 1.03
pSpread : 52.76

RMSE : 3.05
MAPE : 1.65

errSpread : 1.11
pSpread : 48.32

Avg.

RMSE : 2.77
MAPE : 1.06

errSpread : 0.88
pSpread : 55.37

RMSE : 2.82
MAPE : 0.97

errSpread : 0.82
pSpread : 57.10

RMSE : 3.01
MAPE : 0.94

errSpread : 0.79
pSpread : 61.34

RMSE : 2.77
MAPE : 0.86

errSpread : 0.73
pSpread : 63.68

RMSE : 2.84
MAPE : 0.96

errSpread : 0.80
pSpread : 59.37

(b) Calls
Black-Scholes Corrado-Su Heston Bates Avg.

itm3

RMSE : 3.06
MAPE : 0.58

errSpread : 0.76
pSpread : 65.49

RMSE : 2.52
MAPE : 0.47

errSpread : 0.62
pSpread : 68.61

RMSE : 4.13
MAPE : 0.68

errSpread : 0.81
pSpread : 69.30

RMSE : 4.11
MAPE : 0.66

errSpread : 0.78
pSpread : 70.82

RMSE : 3.46
MAPE : 0.60

errSpread : 0.74
pSpread : 68.56

itm2

RMSE : 2.74
MAPE : 0.61

errSpread : 0.77
pSpread : 61.32

RMSE : 2.23
MAPE : 0.51

errSpread : 0.67
pSpread : 64.96

RMSE : 3.68
MAPE : 0.71

errSpread : 0.81
pSpread : 65.93

RMSE : 3.58
MAPE : 0.68

errSpread : 0.78
pSpread : 67.00

RMSE : 3.06
MAPE : 0.63

errSpread : 0.76
pSpread : 64.80

itm1

RMSE : 2.79
MAPE : 0.76

errSpread : 0.87
pSpread : 56.57

RMSE : 2.07
MAPE : 0.59

errSpread : 0.71
pSpread : 61.09

RMSE : 3.30
MAPE : 0.78

errSpread : 0.84
pSpread : 63.17

RMSE : 3.19
MAPE : 0.75

errSpread : 0.80
pSpread : 65.12

RMSE : 2.84
MAPE : 0.72

errSpread : 0.81
pSpread : 61.49

atm

RMSE : 2.76
MAPE : 1.00

errSpread : 0.97
pSpread : 51.35

RMSE : 1.91
MAPE : 0.74

errSpread : 0.74
pSpread : 58.29

RMSE : 2.93
MAPE : 0.90

errSpread : 0.84
pSpread : 60.14

RMSE : 2.89
MAPE : 0.88

errSpread : 0.84
pSpread : 60.58

RMSE : 2.63
MAPE : 0.88

errSpread : 0.85
pSpread : 57.59

otm1

RMSE : 2.62
MAPE : 1.46

errSpread : 1.06
pSpread : 44.16

RMSE : 1.85
MAPE : 1.17

errSpread : 0.85
pSpread : 49.48

RMSE : 2.61
MAPE : 1.13

errSpread : 0.83
pSpread : 57.14

RMSE : 2.57
MAPE : 1.10

errSpread : 0.83
pSpread : 58.14

RMSE : 2.41
MAPE : 1.22

errSpread : 0.89
pSpread : 52.23

otm2

RMSE : 2.29
MAPE : 2.51

errSpread : 1.15
pSpread : 40.88

RMSE : 1.62
MAPE : 2.05

errSpread : 0.92
pSpread : 47.62

RMSE : 2.36
MAPE : 1.91

errSpread : 0.90
pSpread : 52.10

RMSE : 2.23
MAPE : 1.86

errSpread : 0.90
pSpread : 51.29

RMSE : 2.12
MAPE : 2.08

errSpread : 0.97
pSpread : 47.97

otm3

RMSE : 2.25
MAPE : 5.27

errSpread : 1.50
pSpread : 31.89

RMSE : 1.68
MAPE : 4.61

errSpread : 1.29
pSpread : 35.69

RMSE : 2.23
MAPE : 3.85

errSpread : 1.11
pSpread : 41.81

RMSE : 2.05
MAPE : 3.47

errSpread : 1.03
pSpread : 44.95

RMSE : 2.05
MAPE : 4.30

errSpread : 1.23
pSpread : 38.59

Avg.

RMSE : 2.64
MAPE : 1.74

errSpread : 1.01
pSpread : 50.24

RMSE : 1.98
MAPE : 1.45

errSpread : 0.83
pSpread : 55.11

RMSE : 3.03
MAPE : 1.42

errSpread : 0.88
pSpread : 58.51

RMSE : 2.95
MAPE : 1.34

errSpread : 0.85
pSpread : 59.70

RMSE : 2.65
MAPE : 1.49

errSpread : 0.89
pSpread : 55.89
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