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Abstract

As the global energy consumption grows at an accelerating rate, decarbonization

measures and sustainable and reliable energy become increasingly important. Bilateral
Power Purchase Agreements (PPAs) have gained noticeable traction as hedging
instruments in recent years, as firms want to secure electricity at a pre-agreed price
for up to 25 years in advance. However, while bilateral PPAs mitigate market risk that
stems from the volatility and uncertainty of future electricity prices, they introduce
counterparty credit risk, which refers to the risk that either party may fail to meet
their contractual obligations.

Quantifying counterparty credit risk from the perspective of an electricity producer
and retailer is essential to ensure that PPA terms are reasonable and that the PPAs
are ultimately completed without premature terminations. Two common methods
to mitigate this risk are setting a collateral requirement for the counterparty and
including a credit value adjustment (CVA) add-on to the contract price. Determining
the right balance of these requirements is challenging but also critical: too low
requirements expose the electricity producer and retailer to excessive risk, whereas
overly high requirements pose unnecessary financial strain on the counterparty and
may potentially encourage it to turn to competitors.

This thesis presents a decision tree model that probabilistically estimates the
earnings coming from a single bilateral PPA. A case study compares the expected
earnings from accepting the contract to those from declining it, as well as to hypo-
thetical but realistic alternative hedging strategies. The collateral requirement and
the CVA add-on are then used to adjust the earnings to an acceptable risk level. In
the end, a sensitivity analysis of the earnings confidence level is conducted, and both

the model and the case study results are critically evaluated.
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Tiivistelma

Kun globaali energiankulutus kasvaa entista nopeammin, hiilidioksidipaastojen vé-
hentdminen seka kestéivé ja luotettava energia nousevat entista tarkedmmiksi puheen-
aiheiksi. Bilateraaliset eli kahdenvéliset sdéhkonostosopimukset (PPA-sopimukset,
engl. Power Purchase Agreement) ovat viime vuosina yleistyneet sahkén hinnan-
vaihtelun suojauskeinoina, kun yritykset haluavat hankkia sahkoa ennalta sovittuun
hintaan jopa 25 vuodeksi eteenpain. Vaikka sdahkon hinnanvaihteluihin liittyvét riskit
viheneviat PPA-sopimuksien my6téd, ndihin sopimuksiin kuitenkin siséltyy vasta-
puoliluottoriskia. Télla tarkoitetaan riskié siité, ettd jompikumpi osapuoli ei tayta
sopimusvelvoitteitaan.

Sahkontuottajan ja -myyjan nédkokulmasta vastapuoliluottoriskin kvantifiointi on
keskeisessé roolissa, jotta PPA-sopimusten ehdot olisivat kohtuullisia ja sopimukset
onnistuisivat. Kaksi yleista tapaa pienentaa tata riskida ovat vastapuolelta vaadit-
tava vakuus sekd sopimushinnan CVA-lisa (engl. credit value adjustment). Oikean
tasapainon loytaminen on haastavaa mutta myos olennaista: liian alhaiset vaatimuk-
set altistavat sidhkontuottajan ja -myyjan turhan suurelle riskille, kun taas liialliset
vaatimukset voivat rasittaa vastapuolta taloudellisesti ja jopa ajaa sen kilpailjoille.

Tamé diplomityo esittelee padtospuumallin, joka arvioi yksittdisen PPA-sopimuk-
sen tuottoja. Tapaustutkimuksessa hyviksytyn sopimuksen ennustettuja tuottoja
vertaillaan tilanteeseen, jossa se hylattaisiin, seka hypoteettisiin mutta realistisiin
vaihtoehtoisiin suojaussopimuksiin. Taman lisdksi sopimuksen tuotot nostetaan
hyvéksyttaville riskitasolle vakuutta ja CVA-lisda kayttamaélla. Lopuksi tuottojen
luottamustasoa tarkastellaan herkkyysanalyysin avulla, ja paatospuumallia seka

tapaustutkimuksen tuloksia arvioidaan kriittisesti.

Avainsanat Vastapuoliluottoriski, bilateraalinen suojaaminen, energiamarkkinat,

paatospuut
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1 Introduction

The energy sector is one of the most critical infrastructures in our modern society.
Most, if not all, other industries depend on electricity and fuels in some form, which
highlights the energy sector’s importance and the need to keep it resilient and secure.
The electrical power industry forms a key part of the energy sector, and it includes
both the electricity wholesale and retail markets. In the wholesale market, electricity
producers sell electricity in large quantities to electricity providers and large industrial
consumers, such as steel manufacturers and data centers. Conversely, in the retail
market, electricity providers sell electricity to smaller businesses and households.

The global electricity consumption has risen continuously over the past half a cen-
tury. In 2023, global electricity consumption reached 27 000 TWh, and has increased
at a relatively linear rate of approximately 3% annually since 2010 (Statista, 2025).
Recent estimates point towards a similar increasing trend: electricity consumption is
estimated to range between 31 000 and 36 000 TWh by 2030 (increase of 11-33%
from 2023), and between 52 000 and 71 000 TWh by 2050 (increase of 93-163% from
2023) (Statista, 2023). It is clear that a constant growth of electricity consumption
would not be possible without the support of electricity production and electrical
grids; reliable, affordable, and sustainable electricity is needed.

Electricity differs from many other commodities, which introduces a unique
challenge for electricity producers and retailers: electricity cannot be stored. As a
result, electricity markets have to be extremely adaptive and flexible to constant
changes in supply and demand. Whenever supply is greater than demand, prices
increase, and vice versa, causing inherent volatility to electricity. Therefore, sudden
economic disturbances can have a major impact on the price of electricity and the
entire electricity market.

A recent example that highlighted the volatility of electricity markets came during
the COVID-19 pandemic, which started in early 2020. As the virus began to spread
globally, many countries initiated immediate and strict lockdown restrictions. This
slowed down the global economic activity noticeably, which came with decreased
electricity demand and thus a drop in electricity prices. This effect was particularly
noticeable in the European electricity markets, as price drops were the largest
compared to other parts of the world, and the European average electricity price
level was the lowest it had been in six years (Zhong et al., 2020).

Once countries were able to relieve the lockdown measures, transportation and
industrial activity began to approach their normal levels, and there was again a higher

electricity demand. However, due to production cuts and diminished investment
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earlier in the pandemic, the supply side was unable to keep up with the sudden
increase in demand. This supply shortage led to record-high electricity prices in 2021,
and these supply-side challenges were further escalated after the Russian invasion of
Ukraine, which started in early 2022.

This recent global crisis underscored the high volatility of the electricity markets.
Electricity prices can fluctuate immensely as a result of imbalances in supply and
demand during social and geopolitical incidents. Furthermore, wholesale electricity
markets operate on a day-ahead basis, meaning that electricity prices become available
for both buyers and sellers only a day in advance, which adds to the volatility.
Accurately estimating future electricity prices or causes of supply and demand
imbalances is extremely challenging but also very important to prevent such incidents
as effectively as possible.

To minimize financial losses in extreme events where prices could suddenly
plummet, electricity producers have traditionally hedged their future electricity
sales price. Hedging is a common strategy where the goal is to reduce potential
losses by purchasing an investment that offers an opposite position to an existing
investment. A perfect hedge would be exactly inversely correlated with the underlying
investment—when the value of the original investments rises by some amount, the
value of the hedge decreases by the same amount, and vice versa—effectively removing
all risk related to price movement. Electricity producers hedge their future sales
price by selling electricity volumes in advance using financial instruments such as
futures contracts or Power Purchase Agreements (PPAs).

Energy companies have commonly traded and hedged through exchanges such
as Nasdaq or the European Energy Exchange (EEX), where a central clearinghouse
manages all transactions anonymously between buyers and sellers. However, in recent
years, more companies have negotiated hedging agreements as over-the-counter (OTC,
i.e., privately negotiated) derivatives transactions. Such bilateral agreements are
often more flexible than traditional agreements traded in exchanges, because the
contractual terms can be negotiated more freely and be tailored to each unique
customer.

In hedging agreements, both parties agree on the electricity volume and price for
the duration of the contract, which reduces the market risk related to electricity price
volatility. However, while hedging agreements reduce market risk stemming from
electricity price volatility, they give rise to another type of risk: counterparty credit
risk. Counterparty credit risk can be defined as the risk that either contracting party

fails to meet their financial obligations, such as contractual settlements or physical
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electricity delivery. In bilateral trading, both parties are naturally exposed to the
risk that the other party may default. This exposure, known as counterparty credit
exposure, refers to the potential financial losses that may occur in the event of the
other party’s default. It is dynamic because it changes over time, depending on the
financial statuses of both parties and the mark-to-market (MtM) valuation of the
underlying agreement (Canabarro and Duffie, 2003).

There are many ways market participants can mitigate this risk. A common
safeguard is to post a collateral requirement to the contracting counterparty for the
duration of the agreement. This collateral (e.g., funds or assets) acts as security
for the contract duration, such that if either party were to default, the collateral
could then be used to cover the other party’s financial losses. Another strategy from
the seller’s perspective is to include a credit value adjustment (CVA) add-on to the
contract price, which is an additional charge that compensates the seller for the
counterparty credit risk embedded in the contract.

Counterparty credit risk is a topic of extensive discussion in the electrical power
industry, and this trend is especially apparent because bilateral contracts have become
increasingly common in recent years. As more and more decarbonization measures
are implemented worldwide to boost the global clean energy transition, access to
affordable and stable energy is very important. The European Commission underlines
this trend in Europe, as it is, together with the European Investment Bank (EIB),
launching a €500 million pilot programme to support the uptake of corporate PPAs
in small and medium-sized enterprises and energy-intensive industries. As part of this
programme, the EIB will counter-guarantee a portion of the PPAs. The EIB is also
launching a €1.5 billion "Grids manufacturing package", which is intended to boost
production measures in European supply chain businesses. (European Commission,
2025)

The financial strength of the contracting parties, especially in bilateral agreements,
is critical to ensure that the agreements are not terminated prematurely. Similarly,
ensuring that collateral requirements, CVA add-ons, or other financial safeguards
are appropriately set is important; insufficient requirements increase counterparty
credit risk, whereas excessive demands impose unnecessary financial strain and may
drive potential customers to competitors.

In finance, probabilistic risk models can be used to manage counterparty credit
risk and assess appropriate sizes of collateral requirements and CVA add-ons in
bilateral contracts. In these models, risk is quantified by two key characteristics: the

likelihood and impact of an event. Probabilistic risk models simulate different market
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conditions and counterparty default events to produce a distribution of potential
outcomes. This allows organizations to make informed decisions about their future
operations because these decisions will be backed up with realistic market estimations.

This thesis has been written for Fortum Oyj, a large Finnish energy company
that produces electricity and trades both physical electricity and financially settled
electricity derivatives in the Nordic electricity markets. Fortum hedges a portion
of its electricity production to mitigate market risk coming from potential longer
periods of low electricity prices. Some of the hedging agreements Fortum is using
are large long-term PPAs. To mitigate counterparty credit risk emerging from these
PPAs, Fortum may impose additional financial requirements on the contracting
counterparties in the form of collateral requirements and CVA add-ons to secure
these contracts at a risk level considered acceptable by Fortum.

The scope of this thesis considers a single large long-term PPA and its estimated
earnings. The earnings originating from accepting the contract are compared to
those from declining it, and to some alternative hedging strategies. Additionally, the
collateral requirement and the CVA add-on are optimized from Fortum’s perspective,
with the goal to ensure that downside earnings from accepting the contract meet
predefined target risk levels. These target levels also reflect competitiveness aspects:
Fortum wants to limit its financial risk but also offer contractual terms that are
attractive to potential customers. Finally, a sensitivity analysis on the confidence
level is performed to examine how changes in risk attitude affect the optimization.
In this context, the confidence level refers specifically to how much of the lower
(downside) tail of the distribution is taken into account when calculating the downside
earnings.

The thesis builds on a large internally used probabilistic financial simulation
model that estimates the company’s future financial position by simulating various
market conditions and potential counterparty default events within its bilateral
portfolio. As part of this thesis, the model is extended to facilitate the analysis of
earnings from a single PPA over its entire contract horizon.

To support decision-making on whether to accept a presented PPA and under
what terms, the problem is structured as a decision tree with three top-level decision
branches. Two of these represent possible actions that Fortum may take regarding a
contract proposal: either decline the contract and instead hedge the same volume using
a portfolio of smaller contracts with many counterparties, or accept the contract
and the associated counterparty credit risk. On the contrary, the third branch

represents a set of reference alternatives that serve as benchmarks for the original
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contract. These can provide insights into how the earnings would change under
altered assumptions, for example, if the contracting counterparty had a higher credit
rating or if the contract duration was different. The decision tree is then evaluated
using a hypothetical but realistic case PPA, after which the collateral requirement
and the CVA add-on are optimized, and sensitivity to the confidence level (and thus
risk attitude) is analyzed. Finally, the decision tree model and the results of the case
study are critically assessed, and some potential developments for future work are
discussed.

The structure of the thesis is as follows. Section 2 reviews the literature and
research related to the thesis topic. The problem setting of the thesis and the decision
tree model formulation are described in Section 3, while a case study applying the
model is presented in Section 4. Finally, a summary of the overall thesis and the
case study results is provided in Section 5.

In summary, the following research questions will be addressed in this thesis:

Q1: What are the impacts on earnings of different decision alternatives and reference

alternatives regarding a proposed bilateral contract?

Q2: At what levels of collateral requirement and CVA add-on is entering the proposed

contract an attractive option?

Q3: How do different confidence levels for the earnings estimates influence the

collateral requirement and the CVA add-on?
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2 Literature review

This literature review is structured as follows. Section 2.1 explores different types of
credit risk models and their extensions in broader financial applications, as well as
credit risk applications in the power markets. Section 2.2 outlines common strategies
in modeling counterparty credit risk, with a focus on electricity markets. Section 2.3
discusses the use of corporate credit ratings in credit risk analysis, credit rating
agencies that assign these ratings to organizations, and addresses criticism towards
these agencies. Finally, the review is concluded in Section 2.4, which provides an
overview of decision analysis and presents some applications of decision analysis and

decision trees in risk management within the energy sector.

2.1 Credit risk models

McNeil et al. (2011) categorize financial credit risk models into two broader categories:
firm-value models (also known as structural models), and reduced-form models. The
credit risk models in these two categories have one main difference, which is how the
probabilities of default (PDs) of the analyzed firms are determined.

In firm-value models, the PDs are determined internally in the model. These
models assume that default occurs whenever the firm’s asset value falls below some
threshold, and hence, the reasons for the default events can also be analyzed to
some extent. On the other hand, in reduced-form models, the PDs are determined
exogenously from the model, meaning that the models themselves do not capture
any information about potential processes leading to default events (McNeil et al.,
2011). Sections 2.1.1 and 2.1.2 present various firm-value and reduced-form credit
risk models and show how they have been applied and extended in the literature,

and Section 2.1.3 presents credit risk applications specifically in the power markets.

2.1.1 Firm-value models

The Merton model (Merton, 1974), nowadays considered the predecessor of all firm-
value models, is one of the most widely recognized models in credit risk analysis. The
Merton model provides a framework for analyzing the relationships between a firm’s
asset value, debt structure, and default likelihood. Understanding these relationships
is crucial when assessing a firm’s overall financial status.

In the Merton model, it is assumed that the firm’s asset value follows a continuous
stochastic process, typically a geometric Brownian motion. Additionally, the model

assumes that the firm is financed by equity (money coming from shareholders) and
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debt (borrowed money). The debt is represented by a single zero-coupon bond with
a given face value and maturity. It is also assumed that the firm has no additional
liabilities or complicating factors, such as dividend payments or other debt issuers.
The firm is said to default exactly at debt maturity if its asset value falls below the
face value of the zero-coupon bond (debt). This default event is modeled using the
Black-Scholes framework (introduced by Black and Scholes (1973)), where the firm’s
equity is treated as a European option on its assets, such that the default event
corresponds to this option expiring out of the money.

This option-based framework of the Merton model can provide a better under-
standing of shareholder and debtholder dynamics. An example is the incentive for
shareholders to prefer higher asset volatility because this increases the potential
upside, but also the risk, of the investment.

The Merton model has strongly impacted the development of other modern
credit risk models and is an important tool in both academic research and practical
applications even today. Despite its simple assumptions, such as ignoring dividend
payments and modeling default only at bond maturity, the Merton model and its
many extensions are still widely used for corporate liability pricing and corporate
creditworthiness assessments.

One famous extension was presented by Black and Cox (1976), where the limitation
of the Merton model’s stiff default timing was addressed. The authors included a
so-called time-dependent barrier in the model, which helps capture default events
before bond maturity. In this model, a default is assumed to occur whenever the
firm’s asset value falls below a time-dependent threshold. This extension later became
known as the Black-Cox model and allows for more flexible credit risk assessment
compared to its predecessor because firms may naturally face solvency issues well
before debt maturity.

The Black-Cox model has been widely applied in corporate credit risk modeling,
and it has seen various extensions in the literature that build on its foundation. Katz
and Shokhirev (2010) generalized the Black-Cox model by introducing diffusion in
a linear potential with a radiation boundary condition. This extension allows the
model to capture the possibility of a firm avoiding default, even when its asset value
momentarily drops below its liabilities. The authors mention that this improves the
model’s ability to estimate credit risk, especially for shorter time horizons.

The Black-Cox model has also been extended to incorporate recovery risk, as
demonstrated by Cohen and Costanzino (2017), who developed the Stochastic Recov-

ery Black-Cox model. This two-factor firm-value model introduced a second recovery
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risk driver. In their work, the authors were able to separate the default and recovery
risk components, which allows for a more detailed modeling of defaultable bonds and
credit default swaps.

Feldhiitter and Schaefer (2018) introduced a novel calibration method for the
Black-Cox model by including broader historical credit spread data than was used
previously. This enhanced the Black-Cox model’s ability to match real observed credit
spreads. Their approach minimized the distance between historical default rates and
those coming from the model across several maturities and credit ratings. This use
of broader historical data allowed the authors to narrow the variation between model
predictions and historical credit spreads, which improved the Black-Cox model’s
overall predictive power.

Another famous and widely applied extension of the Merton model is the KMV
model (Crosbie and Bohn, 1993). This model was developed by the KMV Corporation
(the abbreviation comes from the surnames of the founders: Stephen Kealhofer, John
McQuown, and Oldfich Vasicek), which was a firm specializing in credit risk analysis
and quantitative modeling in the 1990s, before being acquired by Moody’s in 2002.

The Merton and KMV models have one notable difference: their approach to
determining the PDs of firms. As was discussed previously, the Merton model
determines the PD based on the relationship between a firm’s asset value and its
debt obligations; however, the KMV model instead estimates a firm’s expected
default frequency (EDF), which represents how likely the firm is to default during a
one-year period. In the KMV model, distance to default (DD) measures the number
of standard deviations the firm’s asset value is away from its debt obligations (i.e.,
the default threshold). EDF is then derived using DD and historical default data
and included in place of the Merton model’s default formula. By doing this, the
model better accounts for the firm’s total debt obligations and matches observed
default behavior more accurately. (Crosbie and Bohn, 1993)

The KMV model has seen a lot of use in various applications throughout the
years. With the rise of computational advancements, machine learning methods have
also been applied to the KMV model to improve its predictive power. Li et al. (2023)
integrated convolutional neural networks, long short-term memory networks, and an
attention mechanism into the KMV model. Wu and Wu (2016) studied the KMV
model in conjunction with random forests (RFs) to develop credit rating prediction
models, and demonstrated that the addition of RFs is a beneficial one. A similar
application came from Yeh et al. (2012), who integrated the KMV model’s DD and
EDF with RFs and rough set theory for credit rating predictions.
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One aspect from Yeh et al. (2012) worth noting is the classification accuracy of
credit rating predictions. They mention that combining DD and EDF with financial
variables in their model is a key factor in why it outperforms many of the models that
only use traditional financial variables. This underlines the importance of market
indicators when assessing credit risk. The study also used RFs in a novel way in
the predictive variable selection step, which greatly simplified the feature selection

process and ensured that only relevant variables were ultimately used.

2.1.2 Reduced-form models

In reduced-form models, the credit risk of firms is modeled without any information
about their asset or debt valuations. Instead, observable market data is used for
these valuations, and the firm-specific PDs are determined exogenously from the
model. The Jarrow-Turnbull model (Jarrow and Turnbull, 1995) was one of the first
reduced-form models. The default event is modeled as a Poisson process, controlled
by a stochastic default intensity (also referred to as the hazard rate). This default
intensity is used to determine the firm’s PD at any given time, assuming that no
prior default has occurred. The benefits of using this default intensity stem from its
ability to account for many realistic market factors and to allow random and sudden
changes in default risk.

The key innovation of the Jarrow-Turnbull model compared to earlier firm-value
models came from the stochastic term structures of default-free interest rates and
credit risk spreads, which are given as exogenous input. These capture many aspects
of credit risk that were previously not accounted for. They provide a foundation for
an arbitrage-free pricing framework, and they are key in pricing complex derivatives,
such as options on risky assets. This (at the time) novel feature overcame many of
the limitations of earlier firm-value models because it effectively provided a more
practical approach for pricing risky derivatives while separating the PD modeling
from the firm’s implied financials. (Jarrow and Turnbull, 1995)

The Jarrow-Lando-Turnbull (JLT) model (Jarrow et al., 1997) is an extension
of the Jarrow-Turnbull model, in which the possibility of credit rating transitions
is incorporated with the use of a Markov process. This addition is intuitively very
appealing because the original assumption of a constant credit rating is often not
particularly realistic. This is especially true when modeling credit risk over long time
horizons, which could span decades in many real-life applications. Unlike the default
intensities that were part of the original Jarrow-Turnbull model, the JLT model

treats defaults as discrete-state Markov chains of the underlying credit ratings. This
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allows for realistic and endogenous credit rating migrations of firms, which result in
changes in credit risk and PDs over time. The authors mention that this refinement
in the JLT model produces results that align with observed credit rating data and
helps it better capture realistic credit risk dynamics.

Millossovich (2002) presented a further extension to the JLT model, where a
stochastic recovery rate is included. This recovery rate represents the amount that
one is expected to recover after a default. In the model, the recovery rate depends
on the firm’s rating at the time of default. The default state is expanded into
multiple classes, each corresponding to a different recovery rate based on the firm’s
possible earlier ratings. These classes reflect various bankruptcy outcomes with
their distinct recovery rates. This inclusion allows for a more nuanced treatment of
recovery dynamics because, rather than being a fixed parameter, the recovery rate
is determined by the firm’s credit quality before default. Additionally, the model
accommodates the possibility of firms transitioning between these default states,
which can capture default-related complexities at a finer granularity than before.

A more recent modification to the Jarrow-Turnbull model was proposed by
Krabichler and Teichmann (2024), who analyzed a financial market consisting only
of zero-coupon bonds subject to both credit and liquidity risk. The Jarrow-Turnbull
model was extended by incorporating the relationship between credit and liquidity
risk through a foreign exchange analogy. Their framework included possible delays
in the recovery process that resulted from liquidity squeezes, which can lead to
uncertainty in recovery rates at the time of default. A key feature of this approach
is the introduction of two filtrations: the more idealistic and impractical of the two
represents complete information about the entire financial system (i.e., the full state
of recovery, defaults, and credit quality), while the more realistic one represents
limited, observable market information, such as liquidity squeezes. This extended
model can capture such real-world complexities, where liquidity issues and delayed
recoveries complicate credit pricing.

The Duffie-Singleton model (Duffie and Singleton, 1999) builds upon earlier
reduced-form models. The model has a more generalized structure that models
the default hazard rate, the recovery rate, and the risk-free rate by using a set of
state variables following a Markov process. In this model, defaultable bond prices
are modeled as exponentially affine functions of the state variables. A key feature
in the Duffie-Singleton model is that the recovery rate is assumed to be a fixed
fraction of the bond’s market value. Unlike many earlier models, this model allows

credit spreads and default intensities to be negatively correlated with default-free
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interest rates. This improves its flexibility and computational tractability and makes
it more suitable for both econometric estimation and market calibration. (Schlogl
and Schlégl, 2010)

Takahashi et al. (2001) utilized the Duffie-Singleton model to value convertible
bonds (CBs) with default risk included. They applied the model using data from
the Japanese CB market and compared its performance with other models. They
demonstrated that the model could price different securities, such as CBs, non-
convertible corporate bonds, and equities, issued by the same firm. The authors
modeled the default hazard rate as a function of the underlying stock price and
recognized that PD is often negatively correlated with the stock price. They also
noted that while the model assumed the risk-free interest rates to be deterministic to
keep the model simpler, it could easily be extended to accommodate more complex

term structures.

2.1.3 Credit risk in power markets

Counterparty credit risk can vary considerably between different fields and their
respective markets, depending on the types of market participants and the kinds
of agreements that are common. The power markets are unique in that OTC
derivatives (such as bilateral PPAs) are widely used for both hedging and trading,
which together with the special characteristics of electricity (such as high price
volatility, seasonality, non-storability, and major role of physical delivery) bring their
unique counterparty credit risk challenges to market participants, for example, when
compared to traditional financial markets. These aspects are also visible at the firm
level because geopolitical incidents or other unexpected sudden price fluctuations
can drastically alter the market environment and pose immense financial stress on
individual firms. The increase of renewable energy sources in recent years introduces
further complexities (e.g., different trading horizons and forecast uncertainty) to the
mix. These are just some of the reasons why effective credit risk management is
crucial to maintain the robustness of the energy system.

One does not have to look too far back in history to find an example of extreme
energy market stress. In 2022, the natural gas prices reached record-highs, totaling
approximately three times higher than what the average price had been for the
last few years. The main cause for this incident was geopolitical tensions, which
further escalated during the Russian invasion of Ukraine at the beginning of 2022
and led to large-scale disruptions in the energy supply side. This event caused major

counterparty credit stress and even defaults throughout the European energy markets,
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notably also for large energy firms, which faced immense financial pressure during
this time. Furtuna et al. (2022) also highlighted that another reason for the increased
counterparty credit issues in Europe was the widespread margin calls that were set
off by the extreme price volatility.

Furtuna et al. (2022) also brought up an important and interesting observation.
While the extreme price volatility during this time increased counterparty credit risk
in firms, another major contributor to the financial strain came from the inability to
hedge effectively. In their study, the authors showed how large firm-level exposures
can emerge as a result of sudden price increases in the market. Especially firms that
rely on long-term hedging can experience major liquidity issues in such situations. In
energy sector credit risk management, it is important to account for extreme adverse
situations, which may be unlikely but certainly possible, as the crisis showed. Many
market participants had underprepared for such extreme market conditions, which is
also one contributor to the total impact of the crisis. Their study highlighted the
importance of real-time risk assessment and scenario-based stress testing in credit
risk management processes. Overall, the event demonstrated that risk management
practices may require some readjustment.

Denton et al. (2003) examined credit risk management in the energy sector, with
a focus on the power markets. They highlighted Value at Risk (VaR) as a traditional
risk metric that is commonly used to estimate credit exposure. However, according
to them, VaR has its clear limitations and may not be suitable to fully capture all
the complexities of the electricity markets. The authors noted: "90% of the trades
in large power producers’ books may be physical trades or hedges on them, with only
10% ’derivative’ trades that are deemed speculative and have to be marked to market."
They also emphasized that the main source of credit risk in the energy markets
is related to counterparty risk, whether involving physical delivery obligations or
making contractual payments for agreed trades.

An approach for estimating counterparty credit exposure in long-term PPAs was
presented by Edge (2015). Their method offers a computationally efficient way to
estimate exposures in PPAs because it accounts for varying yearly volumes and
pricing dependencies that are common in PPAs. The author also mentions that their
method takes into account challenges related to long contract horizons and high price
volatility, which adds value to the method. Although they note that the current
model is tailored to evaluate single contracts only, it could be extended, although
with increased computational complexity, to incorporate the accumulation of credit

risk across a portfolio of contracts with the same counterparty.
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Chang et al. (2015) studied collateral requirements in the electricity markets.
They presented a reserve-forecast approach to tackle a common deficiency in collateral
requirement methods, which often relied on static historical data. The method was
then applied in a case study in which ERCOT data with predictive modeling and
changing system conditions were used in credit risk estimation. The case study
revealed a strong correlation between system-wide reserves and real-time electricity
prices and showed that forecasting reserves up to a week ahead noticeably improved
the collateral requirement sizing. Setting these requirements accurately is important
because overly high collateral requirements can cause unnecessary financial strain
on counterparties and thus increase the likelihood of the contracts terminating
prematurely. Chang et al. (2015) also pointed out challenges with this forecast-based
method. As an example, the credit calculations using such methodologies need to be
transparent in order not to allow for strategic market behavior using available credit
estimates.

Mori and Umezawa (2007) incorporated random forests to enhance credit rating
prediction in the energy markets. They trained an RF model on financial data and
demonstrated that their model could predict the credit ratings of 19 Japanese energy
companies. They also showed that the RF model outperformed both of their reference
machine learning models, one of which used multilayer perceptrons and the other
classification and regression trees, by approximately 10% and 5%, respectively. The
good performance of the RF model was largely attributed to its ability to handle
high-dimensional data and capture complexities that the other models were not
able to capture equally well. The authors also drew attention to the RF model’s
robustness against overfitting in the case study, which is an important feature of

robust classification models.

2.2 Modeling counterparty credit risk

Counterparty credit risk plays a central role in all financial and energy markets, where
insufficient risk management practices can lead to significant financial losses and
instability among market participants. Accurate and reliable counterparty credit risk
modeling is particularly important in the energy markets due to the high use of OTC
derivatives for both hedging and trading. Risk models enable market participants to
determine exposures and compare them against limits, estimate and hedge against
market risk more effectively, and meet economic and regulatory capital requirements.
All three of these activities are necessary to prevent and mitigate losses in unexpected

adverse situations.



22

2.2.1 Scenario-based modeling

A general framework for scenario-based counterparty credit exposure modeling is
outlined by Zhu and Pykhtin (2007). In this context, scenarios refer specifically to
different simulated market and counterparty default outcomes. The authors explain
that the scenario-based framework consists of three steps: scenario generation,
instrument valuation, and portfolio aggregation.

In the first step, various potential market conditions and counterparty default
events are simulated for a range of future dates, which are often referred to as time
buckets. The goal of these scenarios is to account for various risk factors (e.g., interest
rates and commodity prices) across a wide range of potential market outcomes to
gain a comprehensive understanding of the general expected turnout while also
accounting for more unlikely and adverse outcomes. They explain that these varying
market conditions are commonly obtained with the use of historical market data and
stochastic processes. Two methods that can be used to generate these scenarios are
discussed in the paper: Path-Dependent Simulation, which accounts for continuous
development of market conditions throughout the simulation horizon, and Direct
Jump to Simulation Date, where conditions for the simulated date are obtained
without using information from previous conditions. (Zhu and Pykhtin, 2007)

In scenario generation, keeping computational constraints in mind is extremely
important. The portfolio of contracts for a firm may be large, and the contract
time horizons may span many years, even several decades. This is why one cannot
simply generate scenarios for all possible combinations of counterparty defaults at
any arbitrary time granularity, because this would lead to an astronomical number
of scenarios and thus computationally infeasible simulation times. Therefore, using
around a few thousand simulated scenarios evaluated at discrete simulation dates
often offers a good balance between modeling accuracy and computational tractability.
(Zhu and Pykhtin, 2007)

After the scenarios have been generated, the next step in the framework is
instrument valuation, where all trades within the firm’s portfolio are evaluated in each
simulated market scenario. Because the number of scenarios is typically very large, it
is important to use simplified valuation models and other suitable approximations to
ensure that the framework captures the most critical characteristics and risk profiles
of the entire portfolio. (Zhu and Pykhtin, 2007)

In the final step of the framework, portfolio aggregation, the various simulated
scenario outcomes are aggregated together with their corresponding probabilities to

produce a distribution of possible outcomes. These distributions enable the calculation
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of key exposure metrics, such as current exposure (CE), expected exposure (EE), and
potential future exposure (PFE), all of which are important statistics in counterparty
credit risk management. The authors note that this framework offers a powerful
and flexible tool to assess counterparty credit risk because it can account for various
market conditions and portfolio structures. (Zhu and Pykhtin, 2007)

Mausser and Rosen (2001) studied portfolio credit risk optimization using a
similar scenario-based approach to the one outlined above. They presented three
different optimization models that focus on restructuring portfolios to improve the
tradeoff between risk and return. The first model creates the trade risk profile and
then optimizes the hedge position of a single asset. The second model considers all
positions simultaneously to minimize the regret factor of the portfolio. The third
model uses parametric programming to construct a credit risk-return efficient frontier.
The authors demonstrated how scenario-based optimization can help mitigate credit
risk in bond portfolios and showed that regret is an attractive risk measure.

In contrast to the framework described by Zhu and Pykhtin (2007), Wang and
Ziegel (2021) studied scenario-based risk metrics, with a focus on economic scenarios
and risk adjustments for expected shortfall (ES, also known as conditional value
at risk, CVaR) at the portfolio level. They presented various risk metrics (such
as Max-ES, Max-VaR, and their variants) and emphasized their reliability under
different market conditions. They also presented a case study based on empirical
data, in which the usefulness of these risk metrics in high-stress economic scenarios
was demonstrated. The results were also linked to Basel III regulatory requirements
to bring attention to the importance of scenario-based analysis in capital buffer
adjustments. Overall, their work contributed to improving resilience against financial
shocks.

In their paper, Skoglund and Chen (2016) examined the impacts of rating mo-
mentum for macroeconomic stress testing and scenario-based analysis for a credit
risk application. According to them, one downside of traditional credit risk models
is their assumption of a Markov property, meaning that changes in credit ratings
depend only on the previous state and not past rating movements. The authors
demonstrated that accounting for past rating movements is crucial to estimate poten-
tial credit loss projections more accurately. They compared their rating momentum
model to standard Markovian models using nine-quarter (CCAR and DFAST) and
twelve-quarter (EBA) macroeconomic stress test scenarios. In the case study, they
showed that disregarding rating momentum led to noticeable underestimation of

losses, especially when considering portfolios consisting mainly of lower credit ratings.
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They highlighted the importance of this effect in regulatory stress testing frame-
works so that more realistic credit rating migrations at the portfolio level would be
accounted for.

A recent computational improvement to the scenario-based modeling approach
was presented by Matsakos and Nield (2024), who incorporated quantum computing
to enhance the simulation of different risk factors. Specifically, they implemented
various firm-value and reduced-form credit risk models and simulated credit rating
migrations and survival probabilities within these models over extended horizons
using quantum circuits. Their findings showed how quantum computing can offer
increased accuracy and new modeling solutions that are impossible with traditional
computers. However, they also highlighted the current limitations of their approach,
such as the available qubits and the depth of the circuit, which may limit the practical
applicability of their methodology in the near future.

2.2.2 Forward curve modeling

Forward curve modeling is common in the energy markets because these curves
are used in a range of applications, such as commodity pricing, risk management
practices, and decision-making processes. The forward curve represents the expected
price evolution of some commodity over time, and it can for example be used to price
a commodity with a future delivery period according to today’s market environment.
Forward curves also naturally have an important role in counterparty credit risk
management. A few examples of their important use cases include valuations of
derivative instruments, calculations of portfolio exposures, and assessments of different
hedging strategies. In their extensive book, Eydeland and Wolyniec (2002) explored
various methods for constructing forward curves and pointed to their importance in
risk management practices.

Among the many methods they discussed, Eydeland and Wolyniec (2002) pre-
sented a single-factor model that relied on geometric Brownian motion with zero
drift. The attractiveness of the model came from its simplicity and applicability
for standard derivative instrument pricing. However, due to its simplistic nature,
the model did not fully capture the relationships between different types of forward
contracts and could not account for the dynamics of the entire forward curve.

With the goal to address these limitations, the authors also explored the Heath-
Jarrow-Morton (HJM) multi-factor model (introduced by Heath et al. (1992)), where
the entire stochastic evolution of the forward curve is accounted for. The HJM

multi-factor model includes several sources of randomness, each represented by their
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deterministic perturbation function, and therefore offers greater flexibility compared
to the single-factor model from earlier. This addition allows for a more well-rounded
analysis of price movements across different maturities.

Another example is the Schwartz—Smith two-factor model (Schwartz and Smith,
2000), in which the logarithm of the forward prices is decomposed into two parts: a
long-term equilibrium level, which represents the evolution of spot prices during longer
time periods, and a short-term deviation, which represents more temporary random
fluctuations. This decomposition gives an intuitive interpretation of the forward curve
because it retains the lognormality of the forward prices and captures key features
(e.g., mean-reversion and term structure dynamics) of common commodity markets.
However, despite its many benefits, the approach presents challenges, particularly in
the energy markets, because estimating the needed parameters can be difficult with
the limited available historical information. (Eydeland and Wolyniec, 2002)

Lucia and Schwartz (2002) studied the unique characteristics of electricity price
movements and their implications on derivatives pricing. They focused on forward
curve modeling in the Nordics (specifically, Nord Pool) and highlighted the important
role of systematic seasonal components in the forward curve creation process. This
seasonality is particularly apparent in the Nordics because business and weather
cycles have significant impacts on the overall electricity demand throughout the year.
The authors analyzed data from Nord Pool and constructed one- and two-factor
models with a specially designed deterministic seasonal component. Both models were
able to account for the high price volatility and storability challenges of electricity.
The authors emphasized the importance of including a sinusoidal component in the
forward curves in the Nordics because it is key to allowing for comprehensive and
accurate electricity forward price modeling.

Audet et al. (2002) proposed a parameterized model for electricity forward curves,
which was specifically tailored for the Nordic electricity markets. Their study ad-
dressed challenges unique to Nord Pool, such as the heavy reliance on hydro and the
distinct seasonal variability caused by changing weather conditions. The parameter-
ized model accounted for time dependency in spot price volatility, maturity effects,
and correlations between forward curves. They also mentioned that their model is
suitable for many practical use cases, such as planning hedging strategies, optimizing
power plant operations, and pricing derivatives, because it offers deep insight into
spot and forward price relationships in the Nordics.

Another study focusing on the Nordic power markets came from Koekebakker

and Ollmar (2005), who explored forward curve dynamics in Nord Pool. In their case



26

study, they used historical futures and forward contract data with maturities up to
two years, traded during the period 1995-2001. The authors analyzed the volatility
structure of forward prices using a multi-factor term structure model within the
HJM framework. In their work, the authors constructed a continuous forward curve
using discrete forward and futures prices. They then applied principal component
analysis to further study the factor structure of the curve. The analysis showed that
the two-factor model was able to explain approximately 75% of the price variation,
which is considerably lower than in other commodity markets, where the value is
often approximately 95%. Furthermore, the correlation between short and long
horizon forward prices is smaller compared to other markets, which is likely a result
of the non-storability of electricity. The authors concluded that modeling the entire
forward curve in the electricity markets may not be as beneficial as in other markets,
and highlighted related challenges, such as hedging long-term commitments with

short-term contracts.

2.2.3 Credit value adjustment

Credit value adjustment (CVA) is a risk measure that accounts for the potential
losses resulting from counterparty defaults when estimating counterparty credit risk.
Zhu and Pykhtin (2007) define CVA as the difference between the portfolio’s risk-free
valuation and its true value (also referred to as the "risk-adjusted" value), which
takes into account the possibility of a counterparty defaulting. In other words, CVA
can be thought of as the market value of counterparty credit risk. The authors
also highlighted the importance of incorporating counterparty risk into portfolio
valuations through CVA. In practice, CVA can be estimated using the risk-neutral
expected value of discounted losses when counterparty risk has been accounted for.
(Zhu and Pykhtin, 2007; Gregory, 2007)

Although the CVA framework is a well-founded and widely used counterparty
credit risk measure, it has certain flaws. Cherubini (2013) introduced an improvement
to the CVA framework, which accounts for the dependencies between credit risk
and underlying asset price. The main focus of the paper was the use of copulas,
which were utilized to study these dependencies. The inclusion of these dependency
structures resulted in a model that accounted for extreme wrong-way risks, such as
perfect positive or negative correlation between the counterparty’s PD and market
movements. This extended approach provided a more well-rounded view of CVA
and emphasized how dependency structures can have a significant impact on risk

profiles, particularly in long-term contracts. The author also presented a case study
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in which the framework was applied to a 30-year swap contract with a BBB-rated
counterparty. The case study showed that counterparty credit risk could be measured
more accurately with the improved framework, as it captured correlations between
credit and market risk.

Another comprehensive framework was introduced by Ballotta et al. (2019), who
studied the CVA of equity and commodity products. They utilized reduced-form
models together with Lévy processes to incorporate risk mitigation strategies such as
collateral and margin requirements. Their model included Monte Carlo simulation
and methods based on Fourier transform for CVA calculations, and captured key
dependencies stemming from counterparty default event timings and underlying
position valuations.

Many other authors have also addressed flaws in the CVA framework in recent
years. An example was presented by Xiao (2015), who employed a Least Square
Monte Carlo method for CVA calculations. They explained that the strength of
the model lay in its default time calculations. Previous models had heavily relied
on a static default time, whereas their model addressed this by accounting for
the probability distribution of various default times. This allowed the model to
better capture CVA-related wrong-way and right-way risks. A similar approach
was adopted by Trinh and Hanzon (2022), who introduced the Monte Carlo-Tree
method for option pricing and CVA calculations. Their approach accurately priced
CVAs for American options and accounted for unilateral and wrong-way risk, using
a combination of Monte Carlo methods and binomial tree methods. Both of the
aforementioned methods (Xiao, 2015; Trinh and Hanzon, 2022) provided effective

solutions for pricing defaultable derivatives.

2.2.4 Industry standards

While theoretical models provide numerous ways to analyze and assess counterparty
credit risk, it is also important to examine models that have been widely applied in
practice. This section provides a short summary of industry standards related to
counterparty credit risk in the energy sector.

The energy sector has many standard practices for different processes, such as
setting collateral requirements and performing CVA calculations, both of which
were discussed in previous sections. However, the exact methodologies vary between
companies, as they often do not disclose their counterparty credit risk management
practices. Nevertheless, some general conclusions can be inferred from the literature

and market guidelines.
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A common theme in such risk management processes is the replacement cost. This
refers to the total cost of replacing a contract with an equally attractive one at current
market prices in a situation where the contracting counterparty defaults or otherwise
fails to fulfill their obligations (Zhu and Pykhtin, 2007). The replacement cost is
strongly linked to counterparty credit risk: if a contracting counterparty defaults,
the other party would naturally seek an equally attractive replacement contracting
opportunity at that time, so that the impact of the default on the anticipated
default-free valuation would be minimal and the realized outcome would resemble the
initial expectation as closely as possible. Additionally, related to commonly used risk
metrics, Capponi (2012) mentions that a 95% confidence level is widely considered
standard market practice in PFE calculations within the energy markets.

Collateralization agreements rely on periodic MtM valuations of the underlying
contracts because these valuations reflect the current market prices of the underlying
assets. In practice, the way in which the MtM valuation is calculated is initially
agreed upon by the involved parties, and then the agreement’s MtM valuation is
evaluated in a consistent manner throughout the contract’s delivery period. If the
total MtM valuation of a contract exceeds some threshold, one party may be requested
to post collateral (e.g., cash or other assets) as a security for the contract (Hull,
2006). In the event of default, the replacement cost for the remaining contract can
also be estimated using the contract’s MtM valuation.

It is clear that the MtM valuation and credit exposure are very closely linked. In
their comprehensive book, Eydeland and Wolyniec (2002) also stated the following:
"if the market moves in the right direction (i.e., the contract ends up being in-the-
money), the contract holder becomes exposed to counterparty credit risk', which
further highlights the connection of the two quantities. Moreover, many regulatory
frameworks, such as the Basel III framework (Bank for International Settlements
(BIS), 2010) and the European Market Infrastructure Regulation (EMIR) (European
Parliament and Council, 2012), are important in shaping the market environment for
individual participants. Transparency is important, and these entities aim to keep

the markets as stable and transparent as possible.

2.3 Credit ratings and credit rating agencies

Credit ratings are evaluations of the creditworthiness of an entity (e.g., a firm or a
government). These ratings are designed to provide an understandable creditwor-
thiness label that can guide investment decisions and aid risk management, so that

investors or institutions do not need to perform independent and extensive bottom-



29

up credit analysis every time they assess a counterparty or consider an investment
opportunity. Publicly available credit ratings are often provided by external agencies
that specialize in credit assessments, but institutions also often have their private
credit assessment processes to support publicly available data.

Credit ratings are often represented with a letter-based scale. In many rating
systems, the highest possible rating is represented by AAA. It is then followed by
AA and A, and then by similar categories for both B and C, and the rating scales
often end at D, which represents the default of the entity. Many rating systems
may also specify further granularity by assigning pluses or minuses after the letters
(e.g., BB+ or CCC—). A high rating (e.g., AA) signifies that the entity is highly
creditworthy with a strong ability to meet its financial obligations, whereas a lower
rating (e.g., C) signifies that the entity is less reliable and has a higher likelihood of
default. (Ng and Mohamed, 2021)

Private agencies that specialize in assigning public credit ratings to various entities
are referred to as credit rating agencies (CRAs). They assign these ratings after
extensively analyzing an entity’s financial stability, its debt structure, and reflecting
these on current market conditions. The three most well-known CRAs globally (also
referred to as the "Big Three") are Standard & Poor’s (S&P Global Ratings), Moody’s
(Moody’s Investors Service, 2025), and Fitch Ratings (Fitch Ratings, 2023), which
dominate the rating agency industry with a collective market share of approximately
95% (Ng and Mohamed, 2021). These CRAs share many similarities, but their
methodologies and rating scales also have notable differences, which is why their
credit rating assessments can result in considerably different credit ratings given for
the same entity.

CRAs have played an important role in financial markets because their credit
ratings have been widely relied on by many market participants throughout history.
However, despite this, CRAs have been criticized for numerous reasons. For one,
as the three major CRAs dominate the market by a considerable margin, it can
be challenging for competitors to gain recognition. The limited competitiveness
aspect can also hinder new innovations within the credit rating industry. Another
common point of criticism towards CRAs is the lack of transparency in their specific
methodologies, which can make it difficult to cross-check or validate the ratings.
(Haspolat, 2015)

There is also an inherent concern with publicly assigned credit ratings that needs
to be addressed. CRAs are private companies with the main service of assessing the

creditworthiness of other entities and assigning credit ratings to them. This structure
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can create inherent conflicts of interest because financial incentives may disturb their
objectivity. Furthermore, CRAs have historically failed to predict financial crises and
caused market instability with overly optimistic ratings and delays in credit rating
downgrades. (Haspolat, 2015)

The 2007-2008 global financial crisis highlighted even more flaws in the credit
rating system. The "Big Three" significantly underestimated the credit risk of
mortgage-backed securities and collateralized debt obligations before mid-2007. Once
this was realized, CRAs quickly downgraded many of these securities, which triggered
concerns among market participants and ultimately led to rapid and widespread
sales in the debt market. This event was later identified as the key driver of the
crisis. As an example, structured finance securities, which accounted for 35% of the
outstanding U.S. bond market debt in December 2008, had predominantly very high
credit ratings, most being rated AAA. However, as market conditions started to
deteriorate, a total of over 36 000 tranches were downgraded, including many of these
previously AAA-rated securities. These failures were attributed to errors in credit
analysis, overreliance on quantitative models, and conflicts of interest within CRAs.
(Benmelech and Dlugosz, 2010; Haspolat, 2015; DeHaan, 2017; Ng and Mohamed,
2021)

Another example of the problematic presence of CRAs in financial markets came
from the 2010 eurozone sovereign debt crisis. Their credit assessments were a major
contributor to shaping the market environment and borrowing costs. Sovereign
spreads (measured relative to the German Bund) were influenced by regional risk,
country-specific credit risk, and spillover effects from Greece. The generally increased
risk-aversion among market participants increased the demand for Bunds, which
widened credit spreads even for fiscally stable countries such as Austria, Finland,
and the Netherlands (De Santis, 2014). For fiscally weaker GIIPS countries (Greece,
Ireland, Italy, Portugal, and Spain), this effect was even stronger. In particular,
Greece’s credit rating deterioration caused widespread financial distress in many
countries. This entire event was further escalated by inconsistencies between credit
ratings assigned by the three major agencies; for example, Fitch issued more favorable
ratings than Moody’s and Standard & Poor’s during this time. (Altdorfer et al.,
2019)
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2.4 Decision analysis and decision trees in energy sector risk

management

Decision analysis spans a wide range of quantitative approaches that can be utilized
to assess the risks, benefits, and implications of decision-making under uncertainty
using mathematical tools. Keeney (1982) summarized the intuition behind decision
analysis nicely in the following way: "/Decision analysis is] a formalization of common
sense for decision problems which are too complex for informal use of common
sense." Decision analysis can be very complicated, especially in large organizations,
because the implications of decisions must be considered with care. Furthermore,
there is rarely a single objectively superior decision alternative in complex decision
problems. For instance, decision problems may have many sources of uncertainty
(e.g., market conditions or regulatory changes), decision-makers and shareholders
may have vastly different risk preferences, and there may be other constraints (e.g.,
financial, operational, reputational, or legal) at play. (Keeney, 1982)

Decision trees (Magee, 1964) are a widely used tool within decision analysis.
A decision tree is a graphical representation of the underlying decision problem,
where different (often sequential) decisions, sources of uncertainty, and potential
decision outcomes can be examined. A decision tree consists of three types of nodes:
decision nodes (squares) represent decisions with certain alternatives to choose
between, chance nodes (circles) represent uncertain events with different outcomes
and probabilities, and terminal nodes (triangles) represent the final outcomes of the
tree, after which no decisions or random events occur. Terminal nodes often have a
monetary value or another type of utility attached to them, which corresponds to
the benefit of ending up at that node. (Rokach and Maimon, 2005).

To construct a decision tree to support decision-making, it is important to first
fully understand all possible decisions, sources of uncertainty, and other nuanced
intricacies related to the decision problem. The tree typically starts from an initial
decision node (e.g., representing whether to proceed with an investment) and then
branches out to subsequent decision and chance nodes. All branches in the tree
eventually terminate at the terminal nodes, which have some known payoffs. By using
these payoffs and the probabilities within the tree, the tree is evaluated backwards
from the terminal nodes: expected value calculations are performed at each chance
node, and at the decision nodes, the decision alternative with the highest expected
monetary value (EMV) or utility is chosen. This procedure is repeated until optimal
strategies have been identified for all decision nodes. Figure 1 presents a simple

decision tree for an investment opportunity and its optimal solution with respect to
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EMV. It is also worth mentioning that while decision trees are versatile quantitative
tools in decision analysis, they are also popular machine learning tools and are used
in a wide range of machine learning applications (Navada et al., 2011; Somvanshi
et al., 2016).

Terminal

Return of 700€
node

Invest in stock A

Decision
node

Terminal
node

Probability 0.6 Return of 1000€

Invest in stock B

Chance
node

Figure 1: A simple decision tree representing an investment opportunity with one

Terminal

Return of 500€
node

Probability 0.4

decision node (square), one chance node (circle), and three terminal nodes (triangles),
which represent the possible outcomes of the investment. The EMV of investing in
stock A is T00€, whereas the EMV of investing in stock B is 0.6 - 1000€ 4 0.4 - 500€ =
800€. Note that stock B is expected to perform better (in terms of EMV) but is also

riskier due to a lower worst-case return.

An interesting application using decision trees in the energy sector risk analysis
was presented by Mosquera et al. (2008), who studied the medium-term risks that
electricity producers face in their operations. They first identified five risk factors:
natural gas prices, coal prices, COy emission prices, demand, and hydro conditions.
They then used these risk factors to generate a large number of market scenarios
using Monte Carlo simulations. The simulation results were then analyzed with
the help of decision trees to gain information about the relationships between the
output variables (such as profits or electricity prices) and the risk factors. The
authors also applied the framework in a case study using data from the Spanish
electrical system in 2006, but they emphasized that the case study is just a numerical
example and should not be taken as the main takeaway from the paper. Instead,
their key contribution was the decision tree framework itself, which can support risk
management and hedging decisions from the perspective of an electricity producer.

Another risk management study in the electricity markets came from Kettunen
et al. (2009), who presented a multistage optimization framework through which

electricity retailers could optimize their hedging portfolio. They constructed a scenario
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tree using the following risk factors: forward prices and forward premiums, expected
future loads, conditional standard deviations and mean reversion parameters of spot
price and load, and correlation parameters. To assess the framework, they presented
a case study where mean-CCFAR (conditional-cash-flow-at-risk) efficient frontiers
were constructed using data from Nord Pool. They demonstrated that different
hedging strategies resulted in different balances of expected procurement costs and
risk exposure, which could help to choose the most suitable strategy based on a
decision-maker’s risk attitude. The authors also highlighted that the inclusion of spot
price and load correlations in their methodology was important because ignoring
these correlations may overlook many extreme scenarios and lead to underestimated
risks.

Another approach that applies scenario trees was presented by Lorca and Prina
(2014). They concentrated on locational electricity prices and their stochastic evolu-
tion over time in the context of portfolio optimization for a power producer. They
constructed a scenario tree based on a time series model of historical electricity prices.
This tree was then used in a stochastic optimization framework to optimize the power
producer’s portfolio structure with respect to a balance of expected profits and risk.
The authors highlighted that it is very important to construct such portfolios with
as many low-correlated elements as possible (that is, diversify the portfolio) because
this considerably reduces its overall risk.

Rocha and Kuhn (2012) presented a similar application, in which they stud-
ied portfolio optimization of an electricity retailer to minimize market risk. They
formulated the problem as a multistage mean-variance optimization model to bet-
ter account for the unpredictable nature of electricity demand and prices. They
also approximated this optimization model using linear decision rules (LDRs) to
reduce computational complexity. The authors presented a case study in which
they constructed mean-variance efficient frontiers and subsequently analyzed the
sensitivity of different risk factors. Based on the results, the LDR approach was a
viable alternative to previous scenario tree methods, and the model’s adaptivity was

especially beneficial in settings with high spot price volatility.
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3 Problem context

This thesis has been written for Fortum Oyj, a large Finnish energy company
that produces electricity and trades both physical electricity and financially settled
electricity derivatives in the Nordic electricity markets. The focus of this thesis is
on assessing the counterparty credit risk that comes with signing a large bilateral
PPA, which serves as a hedge for Fortum. The goal is to evaluate the expected
earnings coming from the bilateral PPA under market and counterparty credit risk,
and analyze whether the earnings are sufficient from a risk management perspective,
specifically from Fortum’s point of view, when compared to alternative hedging
strategies.

The setting of the thesis is as follows. Fortum is planning to generate and sell a
volume Vj, of electricity during a given time period. The entire volume V, could be
sold in the spot market, but as discussed in the literature review in Section 2, this
would expose Fortum to high market risk due to the volatile nature of electricity. As
a risk mitigation procedure, Fortum hedges a portion Vj;, < V; of the total production
through bilateral contracts with a large number of different counterparties.

This study considers a situation where a counterparty has reached out to Fortum
with a contract proposal ¢, which would hedge a portion V. < V}, of the total hedging
target (the specific contractual terms are described in detail in the following sections).
Especially if V, is a significant portion of the total hedging target, Fortum is faced
with a non-trivial decision regarding the proposed contract c¢: whether to decline it
and instead choose to hedge V. through a diversified portfolio of smaller contracts
with various counterparties (later referred to as the portfolio), or accept it and the
counterparty credit risk that comes with it. This decision problem is modeled as a
decision tree.

Before diving into the exact methodology of the decision tree model, we first
discuss the types of risks related to the proposed contract ¢. The first obvious source
of risk in such bilateral agreements is counterparty credit risk, which arises when
either party is unable to fulfill their financial obligations, for example, in the event
of a default. The market risk related to the uncertain spot price of electricity also
plays a crucial role. Some of the contracts in the portfolio are scheduled to be signed
later than the proposed contract ¢, which means that their exact contract prices are
uncertain at that point. Furthermore, if the contracting counterparty defaults, some
of the volume V, will be sold at spot price in the remaining months of the contract
period. Any other types of risks, such as ones related to the liquid reserves of either

party, are not accounted for in this thesis.
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This thesis also considers two types of counterparty credit risk mitigation strategies
that Fortum may employ during the negotiation phase of the PPA. The first method
is a collateral requirement. The collateral requirement is a fixed amount of money
that either party may require from the other for the duration of the contract as a
security for their perceived counterparty credit risk. If either party defaults, this
collateral can be used to cover the other party’s losses. The creditworthiness of the
counterparty plays a key role in sizing the collateral requirement: a counterparty
with high creditworthiness may have higher thresholds before collateral is required,
whereas counterparties with lower creditworthiness may have stricter limits. The
second method is a CVA add-on, which acts as a price adjustment to the proposed
contract price. Fortum could effectively charge a higher electricity price if it estimates
its exposure to counterparty credit risk as too high.

Fortum may also be interested in analyzing alternative situations before deciding
whether to accept the proposed contract ¢ and with what terms. This additional
analysis can help Fortum understand the true value of its product (electricity) better,
and allow it to price the contract accordingly. Numerous alternative situations could
prove insightful if analyzed. For example, how would the expected earnings differ if
the contracting counterparty had a higher credit rating? Or what if Fortum would
hedge only a portion of the volume V. with this counterparty and the remaining
portion with another counterparty or through the portfolio? Additionally, if Fortum
deems the counterparty credit risk associated with signing the proposed contract c
as too high, how can this risk be mitigated or managed to reach an acceptable risk
level?

To address these questions and study different hedging strategies, the contractual
earnings from each strategy are estimated probabilistically. Based on these earnings
estimates, a collateral requirement and a CVA add-on may be included in the
contract and optimized (from Fortum’s perspective) so that the downside earnings
from accepting the contract ¢ increase to an acceptable risk level, making the
contract an attractive decision alternative. Finally, a sensitivity analysis on the
earnings confidence level is performed to see how changes in risk attitude affect
the optimization. Here, the confidence level refers specifically to the width of the
downside tail of the distributions when calculating downside earnings. In later
sections, the decision-maker (Fortum) is referred to as the power producer, and the

probabilistic decision tree model is referred to as the model.
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3.1 Parameters

The following contractual parameters describe the proposed contract c:

V. The total volume of electricity (MWh) in the proposed contract c.

Metart, Mena 1 he start and end months of the proposed contract ¢. The contractual
payments occur once a month (see Section 3.3), meaning that the

contract horizon can be represented at a monthly granularity.

P. The sales price of electricity (€/MWh) in the proposed contract c.

The price is assumed to be constant throughout the contract horizon.

R, The credit rating of the contracting counterparty (determined in-
ternally within Fortum), which is represented as an integer from 0
(lowest credit quality) to 5 (highest credit quality). The credit rating
only reflects the estimated creditworthiness of the counterparty, and
not, for instance, its size or equity. It is assumed that the credit rat-
ing of the counterparty does not change, and Fortum’s methodology

for determining these ratings is not discussed in this thesis.

Unlike the fixed contractual parameters described above, the collateral requirement
and the CVA add-on are decision variables in the problem because they are not
part of the initial proposed contract c. Rather, they are additional requirements
that the power producer may choose to include in the contractual terms during the
negotiation phase, and will be part of the legal contract once both parties have agreed

on the terms. We define:

Ce The collateral requirement (€) issued to the contracting counterparty

to secure the proposed contract c.

CVA. The CVA add-on (€/MWh) that will be added to the sales price
P., such that the final contractual price will be P. + CVA.. The
CVA add-on acts as extra compensation for the power producer’s

perceived counterparty credit risk.

In addition to the contractual parameters and decision variables described above,
we define mgijgn < Mgtare as the month in which the definitive contract is signed by both
parties (i.e., the time of decision) and the legal contractual obligations go into effect.

The month myigy, is also the first month in the contract lifetime, which we define as the



37

set of months Mietime = {Msign, - - - » Mena}. The contract lifetime covers the entire
time horizon that is relevant from the legal agreement’s perspective. Additionally, we
define the delivery period as the set of months Myclivery = {Mstarts - - -, Mena }- This

period includes all months during which electricity is sold and delivered.

3.2 Collateral requirement and CVA add-on impacts

The collateral requirement and the CVA add-on are decision variables from the power
producer’s perspective. Both of these are additional financial requirements the power
producer may add to the contractual terms if it estimates its counterparty credit
risk as too high without them. By including either one or both of these in the final
contractual terms, the power producer can increase its expected earnings to a level
where the counterparty credit risk is acceptable (subject to some reference level). At
first glance, optimizing these decision variables may seem trivial because one can
add arbitrarily large additional requirements to the contractual terms and effectively
increase the expected earnings without any limit. However, the power producer must
naturally offer competitive contractual terms, or otherwise any reasonable customer
would instead negotiate a similar contract with a competitor. Therefore, a good
starting point for the power producer is to have some reference downside risk levels
in mind and size the collateral requirement and the CVA add-on according to these
levels.

The collateral requirement is a fixed amount of money (in reality, it may also
be some other assets) that the counterparty places in a secure bank account for the
duration of the contract when the contract is signed (i.e., in Mgy, ). If the contract is
completed without a premature termination, the counterparty will receive the full
amount after the delivery period has ended. However, if the counterparty defaults
during the delivery period, some or all of the collateral is transferred to the power
producer as compensation for the prematurely terminated agreement. Conversely, the
CVA add-on is simply a fixed price increase that is added to the proposed contract
price P.. The precise ways in which these decision variables affect the earnings are
described in Section 3.3.

In reality, it is possible that the counterparty would also post a collateral require-
ment to the power producer because they are naturally also affected by counterparty
credit risk. However, the financial implications resulting from such collateral require-
ments for the power producer are not modeled in this thesis. Furthermore, the model
does not account for the default risk of the power producer in any way, and hence it

is assumed not to default.
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In the final signed contract, the collateral requirement will be visible and function
in the way described above. However, the same does not hold for the CVA add-on:
in reality, it corresponds to the difference between the final agreed price and the
proposed price P., and is not viewed as its own pricing component. In this thesis,
the proposed contract and the negotiation reactions to it are viewed from the power
producer’s perspective, which is why the proposed price P. and the CVA add-on
CVA, are kept as separate pricing components for the sake of clarity.

In practice, even without initially requesting collateral, the power producer
may receive some of the owed money from the counterparty after a default if the
counterparty later becomes able (and willing) to pay some of its remaining debt. This
phenomenon is referred to as the recovery rate. However, in this thesis, the recovery
rate is assumed to be zero, and therefore, the power producer will not receive any
delayed debt payments after a counterparty default.

Additionally, it is assumed that the collateral retains its full value and does not
gain interest when held in the bank account. Also, unlike in reality, it is assumed
that a collateral requirement can be imposed only once and is secured simultaneously,

and that this collateral requirement occurs in mggy.

3.3 Cash flow analysis of the underlying process

Before formulating the decision tree model, we describe all cash flow sources that
can occur during the delivery period. First of all, any electricity production costs
or other recurring outflows are not considered in the contractual scope because the
focus is on earnings coming from the sales of the contractual volume V.. Furthermore,
the earnings are measured as EBITDA (earnings before interest, taxes, depreciation,
and amortization), and all cash flows occur at a monthly granularity. We introduce

the following additional notation:

H,, The number of hours in month m, which accounts for the impacts of

possible leap years and daylight saving hours.

U, The sales volume (MWh) allocated to month m € Mgelivery. The

monthly volumes are calculated as v,,, = V.- 5 Hoy
mleludelivery

that the monthly volumes are directly proportional to the number of

7> meaning
m

hours the corresponding month has.

PR The spot price of electricity (€/MWh) during hour A in month

h,m

m e Mlifetime .
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Mdefault The default month of the counterparty, if a default occurs.

MtM The mark-to-market (MtM) valuation (€) of the remaining part of

Mdefault
the proposed contract ¢ in the month when the counterparty defaults,

assuming that the proposed contract ¢ has been accepted and signed.

K The set of contracts k € K in the portfolio. It is assumed that there
is no default risk within the portfolio. In reality, the structure of the
portfolio evolves as often as every month and is not tied in any way
to the proposed contract ¢. In this thesis, the portfolio refers to such
a subset of the real-world portfolio whose total volume equals V., so
that it can be used as a comparable hedging strategy when declining

the proposed contract c.

Py, The sales price of electricity (€/MWh) in a contract k£ € IC in month
m. Because some contracts in the portfolio are scheduled to be signed
in a later month than my,,, their contract prices are uncertain at
Msign as they depend on the future market prices in their respective
signing months. Also, just like with the proposed contract ¢, these

prices are assumed to be constant for each contract k.

Vkm, The volume of electricity in a contract & € K in month m. As
mentioned, the total volume of all contracts in the portfolio during

Mdelivery equals ‘/c .

In any given month during the delivery period Mgejivery, the cash flow can originate

from the following sources:

(i) From the portfolio, when the proposed contract c is declined. In the portfolio,
some of the contracts are signed in mg;e, and others are scheduled to be signed

in a later month. In this case, the cash flow in month m is given by

C«Fs’bortfolio — Z Pk,m V- (1)
keK

(ii) From the contractual terms, when the proposed contract ¢ is accepted and the
contracting counterparty has not defaulted. In this case, the cash flow in month
m is given by

CF¢ = (P.+ CVA,) - v 2)
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(iii) From a payment to the contracting counterparty (outflow) or from a collateral
settlement (inflow) in the (possible) month when the contracting counterparty
defaults mgerauy and the contract is therefore terminated prematurely. Whether
this cash flow is an outflow or an inflow depends on the sign of the MtM valuation
of the contract at mgefaue. If the MtM valuation is negative, the power producer
is required to make a payment to the defaulting counterparty, which is equal
to the MtM valuation. However, if the MtM valuation is positive, the power
producer receives a collateral settlement instead, and its size is equal to whichever
is smaller: the MtM valuation or the posted collateral. Therefore, if the power
producer did not include a collateral requirement in the contractual terms, no
money will be received even if the MtM valuation is positive.

In reality, the power producer and the counterparty may not agree on the
exact MtM valuation of the remaining contract at the time of a default event
because there may be a lack of available market data far enough in the future.
Any uncertainty related to this is not accounted for in this thesis, and the MtM
valuations used in the model are estimates by the power producer. Additionally,
both parties may agree upfront not to make any MtM valuation-related payments
to the other party if either were to default. However, this thesis assumes that
these payments are made according to the estimated MtM valuation.

In this case, the cash flow in the default month mgefauy is given by

MtM it MtM <0

C term o Mdefault ? Mdefault (3)

e min{MtMTﬂdef&ult’ CC}’ lf MtMmdefault 2 0
(iv) From the spot market, in the default month mgefau; and the remaining months of
the contract. The spot price changes hourly in the spot market, and the monthly
volume v,, is assumed to be evenly distributed across the hours in that month.

In this case, the cash flow in month m is given by

Hpm,

U
CFsPet = N~ L. pspot 4
m hgl Hm h,m ( )

Given the monthly cash flows in Equations 1-4, we can describe what the
contractual earnings over the entire contract lifetime would be in practice. Related to
this, we define total earnings as the sum of monthly earnings over the delivery period.
Because the total earnings differ depending on whether the contract is declined or

accepted and whether the counterparty defaults or not, we can categorize possible
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total earnings over the contract lifetime into three different categories: i) the contract
is declined, ii) the contract is accepted, the counterparty does not default and hence
the contract is fully completed, and iii) the contract is accepted, but the counterparty
defaults during the contract lifetime. The total earnings in each of the three cases

can be expressed using Equations 1-4 in the following way:

decline __ portfolio
e = > CF , (5)
mEMdelivery
accept, no default __ c
e2ocep = > CF;, (6)
mEMdelivery
Mdefault—1 Mend
accept, default __ c term spot
e - Z OFm + CFmdefault _|_ Z CFm (7)
Mm=Mstart Mm=Mdefault

3.4 Model formulation

In this section, we present the decision tree model in its entirety. The graphical
representation of the decision tree can be seen in Figure 2; however, note that the
specific notation used in Figure 2 has not been defined yet and is instead introduced
in Sections 3.4.1-3.4.3.

The decision tree model has three top-level decision branches, all of which stem
from the initial decision node (see Figure 2). The two main branches, which we refer
to as the decline branch and the accept branch, correspond to decision alternatives
regarding the proposed contract ¢ that the power producer can choose between.
On the other hand, the third top-level branch, the references branch, represents
a collection of n reference alternative branches, denoted reference,, ..., reference,,.
Each of these has an associated reference alternative contract, denoted ¢}, ..., c,,
that can be used as a benchmark to compare against the accept branch total earnings.
The reference alternative contracts ¢/, may differ in terms of contractual parameters
from the proposed contract ¢, so we define the total volume of electricity, the fixed
price of electricity, and the credit rating of the contracting counterparty for reference
alternative contracts c;, as Viz, Pr , and Ry , respectively.

In the model, the total earnings in each reference alternative branch are evaluated
similarly to the total earnings in the decline and accept branches. However, because
these branches represent hypothetical references for the accept branch total earnings,
they are not actual decision alternatives that the power producer can choose between.
Instead, they provide additional information on how the expected earnings may
change under different assumptions, for example, regarding a counterparty with a

higher credit rating or a different delivery period than the one with the proposed
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contract c¢. In this way, the power producer can analyze the impacts of accepting the
contract ¢ from different angles before making any definitive decisions.

Because the references branch is utilized for additional comparisons, the number
of reference, branches may vary between practical PPA case studies, depending on
what the power producer considers valuable to compare against at any given time.
The way in which the total earnings distributions in each branch are obtained is
presented in Section 3.4.3. However, before that, the precise methodology by which
monthly earnings are simulated in the model needs to be introduced, which is done
in Sections 3.4.1 and 3.4.2.

3.4.1 Scenario modeling: spot prices and counterparty defaults

The model considers a set of 135 independent spot price scenarios, denoted as
S={s;|j=1,...,135}, (8)

where each scenario s; consists of a sequence of monthly spot price estimates. These
scenarios are defined exogenously to the model and are used as common market price
estimates throughout the decision tree model, and are thus not tied to any particular
contract or decision tree branch. Unlike the real spot market, which operates at an
hourly granularity as discussed in Section 3.3, these spot price scenarios are instead
defined at a monthly granularity and represent average monthly spot price estimates.

It is assumed that all spot price scenarios are equally likely to be realized and hence

L
135

these spot price scenarios is beyond the scope of this thesis.

their probabilities are given by p,, = for all j. The methodology for determining

The model also accounts for the possibility that a contracting counterparty (either
in the accept or reference, branches) may default during the contract lifetime. In
principle, the time bucketing is not tied to the granularity of the cash flows, but these
default events are modeled at the same monthly granularity for maximum precision.
However, despite the aligned granularity, these are treated differently in the model,
and hence we define a different index set for the default events.

Because any considered counterparty may not default during Mietime, We represent
this special "no default" default event with a special index 5. We can now define the

set of possible default events as

A= {507 5sign7 S 756nd}7 (9)

where 9y represents no default of the counterparty within Mitime, and all other
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non-zero indices d; represent a default in month m; € Miietime.
To properly represent the default events based on this underlying structure, we

define the set of default scenarios as
D ={ds|J € A}, (10)

where ds represents either no default within the contract lifetime (when § = §y), or a
default event within the contract lifetime (when 0 € {Jsign, - - -, enda}). Therefore, the
set D contains exactly one default scenario for each month in the contract lifetime
and an additional "no default" default scenario.

These default scenarios are relevant in the accept and reference,, branches as a
contract (c or ¢,) is signed in these, and hence the default risk of the counterparty
needs to be accounted for. The model uniquely determines the probabilities of
each default scenario ds € D realizing from the credit rating of the contracting

counterparty (R or R, ). Therefore, we define

pd5<Rc), Pds (Rc;l), Vds € D, such that
11
Z pdé(Rc) = 17 Zpd5 (Rc;7> = 1, Vn. ( )

0EA ISTAN

The methodology for determining these default scenario probabilities p,, is outside
the scope of this thesis.

The default scenarios ds € D are not particularly useful by themselves, because
in practice, the financial implications of defaults are largely determined by the
underlying market conditions at that time. The model assumes that the realizations
of spot price and counterparty default scenarios are independent random events. To
integrate the default scenarios with underlying market estimations and capture a
wider range of potential realized market outcomes when a contract is signed, the
spot price and counterparty default scenarios are combined to form a larger set of

combined scenarios:
QAQ=8SxD= {w]'ﬁ = (Sj,d(;) | Sj € S, d§ € D} (12)

Because of the independence assumption of the spot price and counterparty

default scenarios, the probability of a combined scenario wj s is the product of the
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probabilities p,, and py;:

Puw, s (Rc) = Ds; * Dds (Rc)a pwj,g(ch) = Ds; - pd5<Rc’n)7 \V/Sj S S, d5 € D, such that
Z pwj’(g (RC) = 17 Z pwjﬁ (Rdn) = 17 vn

wj s€Q wj,6 €0

(13)

This set of combined scenarios can be used to estimate the total earnings in branches

where a contract is signed statistically more robustly due to a larger total number of
simulated earnings outcomes.

In later earnings calculations in Section 3.4.2; certain subsets of the default month

set A, the default scenario set D, and the combined scenario set {2 will be used.

Therefore, we define the following:

o The subsets that correspond to no counterparty defaults within the contract

lifetime:

Ano default -= {50}7 Dno default = {d60}7 Qno default -=— {(8]‘, d60> ’ Sj € S}
(14)

o The subsets that correspond to a contracting counterparty defaulting before

the delivery period:

Abefore = {5 €A | )€ 5sign7 s 758tart-1}7

(15)
Dbefore = {d5 ‘ S Abefore}a Qbefore = {<3jad5) ‘ Sj € Sa d5 € Dbefore}-
o The subsets that correspond to a contracting counterparty defaulting during

the delivery period:

Aduring = {5 eA ‘ )€ 5start7 cee 75end}7

(16)
Dduring = {d6 ‘ )€ Aduring}7 Qduring = {(Sj7d5) | Sj € Sy d6 S Dduring}~

3.4.2 Monthly cash flows in the model

The spot price scenarios s; and the combined scenarios w; s specify the underlying
simulated uncertain market environment, based on which the total earnings for the
entire delivery period for different market outcomes can be estimated. The model
calculates the cash flows in different situations that the power producer may face in
a very similar way to how they are determined in reality (see Section 3.3).

branch branch

The monthly earnings in any given branch, referred to as e/ or €' in
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month m € Mageivery, are determined from the spot price scenarios s; or the combined
P, ,and Ry ),

as well as the collateral requirement and the CVA add-on, which act as decision

scenarios wj s, the fixed contractual parameters V., P, and R. (Ve ,
variables. As in the real-world case described in Section 3.3, the monthly earnings
in the model can originate from four different sources: from the portfolio when
the proposed contract ¢ is declined, from contractual earnings when the contract
is accepted and no default has occurred, from a payment or collateral settlement
in the month when a default occurs, or from the spot market when the contracting
counterparty has defaulted. The main difference from the real-world case is that the
spot market earnings in the model are not determined by hourly prices. Rather, they
are calculated based on monthly average spot price estimates.

To adapt Equations 1-4 on cash flows to the model’s structure, we first need to
define PSS]I,”‘;,E as the spot price of electricity in spot price scenario s; and month m.
Now, the model’s possible sources of earnings in any month m € Mggivery can be

expressed as:

branch,portfolio __ .
esj»m P - Z Pk,m * Vk,m, vj; m e Mdelivcry;
keKx
(17)
branch,c __ branch,cl, __ .
e m = (P.4+ CVA,) -v,, or e rm = Py - vm, Vj,m € Magivery,
(18)
branch,term __ MtMmdefault’ if MtMmdefault <0 \V/j (19)
- )

Wj §,Mdefault

min{MtM,, ;... Cc},  if MtM >0

Mdefault

branch,spot _ Pspot .

ewj,&m S5, Ums vja m e Mdelivery'

(20)

To formulate the total contractual earnings in these different situations, some
assumptions related to the earnings need to be addressed first. The model estimates
contractual earnings in nominal terms based on available information in the signing
month Mmgg,. This includes the uncertainty factors of the model, which are the
future spot price estimates and the credit rating (R, or R, ) implied default scenario
probabilities. Because this thesis focuses specifically on the counterparty credit risk
aspects of the proposed contract ¢, the model does not discount future earnings.
This assumption affects both estimated contractual earnings and optimization of the
collateral requirement C. and the CVA add-on CVA,, as there are no time preferences

regarding the earnings in the model.
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3.4.3 Earnings distributions and risk measures

The decision tree model estimates the total earnings in each decision branch and
compares the earnings from accepting the contract to those from declining it, and to
other hypothetical but realistic reference hedging strategies. Specifically, because
the power producer is risk-averse, the downside earnings at a certain confidence level
(i.e., how much of the downside tail is included in the downside earnings calculations)
is the focus of this comparison. This reflects the goal of avoiding adverse outcomes
over potentially higher but also riskier returns. The model also supports analyzing
the effects of the collateral requirement and the CVA add-on to the accept branch
earnings.

To calculate the total earnings in each branch, we define finite branch-specific sets
Sbmnch

scens )

of total earnings and probabilities as where branch refers either to the decline,

accept, or any of the reference, branches, and scens refers to the set of spot price
scenarios S or the set of combined scenarios €2, whichever is the source of uncertainty

in the given branch. Each of these sets consists of (total earnings, probability) pairs

branch , branch : : ; :
(egrameh poranch) where scen refers to a single spot price scenario s; or a combined

scenario wj s, depending on the branch.

branch ,,branch branch
scen 1 Pscen )E gscens

These pairs (e define branch-specific discrete probability

distributions. Here e%"" € R is the total earnings resulting from the underlying

spot price scenario or combined scenario, and pbrereh

scen

such that branch — 1 holds. Therefore, the total number of (total earnings,

scen pSCﬁ’I’L

is its corresponding probability,

probability) pairs in any given branch depends on its underlying structure.

To measure and compare the downside earnings of different branches, we first
need to introduce two risk measures used in the model: Value at Risk (VaR) and
Conditional Value at Risk (CVaR). Because the total earnings in any given branch

form a discrete distribution, we define VaR at a confidence level o as

scens

VaR,, (ELmmehy .= inf {x €R

> De > a} : (21)

.ebranch
scen:elnanch<g

Hence, VaR,, corresponds to the smallest total earnings level such that the sum of
probabilities of total earnings less than or equal to it is at least a. In other words,
VaR,, represents a total earnings threshold below which the lowest a-quantile of total

earnings lies.
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Using the definition for VaR,, CVaR at a confidence level a can be defined as

1
CVaRu (gbmnch) — = Z pbmnch . ebmnch. (22)

scens scen scen
.eb h b h
scen:eBranch<VaRq (Ebramch)

The CVaR,, is therefore the weighted average of the lowest a-quantile total earnings.
In this thesis, the risk measure used to compare the total earnings across various
branches is CVaR,, at varying confidence levels. We refer to these downside earn-
ings as C'VaR,-earnings, denoted CVaR>“""¢ CVaR2““*?! and CVaR“**"*“r for the
respective branches.
Next, we present the methodology by which the sets £79%" are formed and how

scens

the corresponding CVaR,-earnings are calculated based on these sets.

(Decline) The first decision branch considers declining the proposed contract c. In
this case, the full volume V, is hedged through the portfolio during the delivery
period, with uncertainty only about future spot prices in the form of the spot
price scenarios. Therefore, we define the set of (total earnings, probability) pairs

in the decline branch as

ggeclme — {(edeclme pdeclme)

55 € S}, where

55 T8
decline ,__ Z decline,portfolio decline ,__ (23)
€y, = €5, m ) s, ‘= Ds;-

meMdelivery

Using this set, CVaR%“""® can be calculated as
CV&Rgede — CV&Ra ((c/'gecline). (24)

(Accept) The second decision branch considers accepting and signing the proposed
contract c. In this case, the same underlying uncertainty about future spot prices
is present. However, there is also uncertainty about whether the contracting
counterparty defaults before the delivery period starts, during the delivery period,
or does not default at all during the contract lifetime. The earnings in these

different cases are computed as follows:

(i) For combined scenarios in which the default occurs before the delivery period

(Qbefore), €ach monthly volume v, is assumed to be sold at spot price in each
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month of the delivery period. This gives the following set:

accept accept accept .
Qbefore - { (ewjﬂabcforc ! wj*abcforc w]yabefore E Qbefore ! Where
accept R accept,sSpot accept R
el = g el i = Du. (R Vo e A .
“i,0hefore Y3 0hefore ;m? pwjv‘sbefore pw]’a ( C> ! before

7716]\4dclivcry

(25)

(ii) For combined scenarios in which the default occurs during the delivery period
(Qduring), the monthly volumes will be sold at the contracted price in months
before default, and at spot price in the default month and months after default.
Furthermore, a payment (outflow) or a collateral settlement (inflow) will occur
in the default month, the size of which depends on the initial collateral
requirement and the MtM valuation of the contract at that time. Let mdauring
be the default month of any given combined scenario w; s, ... € Qduring: This
gives the following set:

accept __ accept accept ) .
Egurng = {(e D ) ‘ W) bquring € Qdurmg}, where

. 9 .
wﬁ’éduring wjﬂéduring

méduring71 Mend
accept . accept,c accept,term accept,spot
6w~p — § ew‘Py m+e pL, b + E eva’pm7
]*5d11ring Jv‘sduring’ Wi g o, Guring J>8during’
M=Mstart J:9during E) .
m=m during
6durin
vm s Mdelivery)
accept o ( ) .
po.rg T pwja Rc ) Vo e Adurlng‘
J,%uring >

(26)

(iii) For combined scenarios in which the contracting counterparty does not
default during the contract lifetime (2,0 defautt), the earnings are determined
from the contractual terms for the entire delivery period. This gives the

following set:

accept _ accept accept .
Qno default {(ewj,Sno default’ wj’ano default w]véno default 6 Qno default ( » Where
eaccept . Z eaccept, c
wjvéno default ) wjv‘sno default !
mEMdelivery
accept o
Dy, 5 . pwj 5 (Rc)7 Vo € Ano default-
J:%no default ’

(27)

We can now formulate £5°?" for the whole accept branch as the union of the
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sets given in Equations 25-27 as follows:

géccept __ ¢gaccept U gaccept U gaccept (28)

- Qbefore Qduring Qno default ’

Using this full earnings distribution for the accept branch, CVaR“?* can be

calculated as:
CVaR2P! — CVaR, (£5°M). (29)

(References) The third references branch consists of a set of hypothetical but realistic
reference alternatives that are used as benchmarks to compare CVaR2“?* against.
This set is case-specific and is constructed to give a better overall representation
of risks related to selling the volume V,, to allow the power producer to study
the earnings under different assumptions. Some examples of realistic reference

alternatives include the following:

« How would the earnings change if the same contract (volume, price, deliv-
ery period) were proposed by a counterparty with either higher or lower

creditworthiness, and this contract were accepted and signed?

o How would the earnings change if the delivery period started at a different

time?

o How would the earnings change if the delivery period were either shorter or

longer?

o How would the earnings change if only a portion of the volume V, were
contracted with the initial counterparty, while the remainder were hedged
through the portfolio?

Because the specific reference alternatives are case-specific by nature, and the
total number of these can vary, the exact total earnings of sets £57“"“" cannot
be comprehensively generalized. However, each reference, branch resembles the
structure of the accept branch because they represent accepting and signing a
contract ¢, with some counterparty and account for the same spot price and
counterparty default uncertainties. The only differences lie in the contractual
parameters of the reference alternative contracts ¢/, and in the potentially different
hedging split.

Therefore, mathematically, the sets £,/ are structured similarly to £a"
given in Equations 25-28, but with modified contractual parameters depending on

what kind of reference alternatives are being analyzed. Therefore, CVaR/¥¢re"%n



50

can be calculated separately for all reference alternatives as
CvaRgeferencen — CVaRa (gsgeferencen)' (30)

The reference alternatives that are used in the case study are introduced in

Section 4.

An overview of the full decision tree is shown in Figure 2.

>< e;ijeclme s ggeclme

decline 5
accept
wjdy

accept

Wi dsign

\ Eaccept
Proposed accept Q

contract ¢

accept

“idend

e reference,
Wjdy

reference,
ew]d .
sign L 57'e/emnccl
0

e reference;
Wjidend

references

reference;

Which
references
to check?

(‘:referenceﬂ

Figure 2: The decision tree for evaluating different decision alternatives regarding a
proposed bilateral contract c¢. The tree consists of three top-level decision branches:
decline, accept, and references; the first two represent actual decision alternatives that
the power producer may choose between, whereas the third is a collection of n reference
alternatives (denoted reference, ..., reference,) that are used as benchmarks to
compare the accept branch total earnings against. The total earnings in each branch
P, ,and R, ), the delivery

period Mgeivery, and either the spot price scenarios s; € S or the combined scenarios

depend on the contractual parameters V,, P., and R, (V.

/
n

wjm € €1, depending on the branch.
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4 Case study

Next, we present a case study to demonstrate how the decision tree model outlined
in Section 3 can support decision-making and negotiations regarding large bilateral
hedging contracts, from the perspective of counterparty credit risk management. The
case study is structured as follows. First, we present hypothetical but realistic input
data for the model in Section 4.1. Using the input data, the decision tree model is
evaluated, and the total earnings distributions from each branch are visualized in
Section 4.2. Subsequently, in Section 4.3, the collateral requirement and the CVA
add-on are optimized with respect to four target levels, and the sensitivity of the
used confidence level is studied. Finally, the decision model and the results of the

case study are critically assessed in Section 4.4.

4.1 Data

We first provide some context on reported PPA specifications in the Nordics, which
will be used as references for the contractual parameters in the case study. Seppala
and Syri (2025) report that in recent years, pay-as-produced PPA prices in Finland
and Sweden have ranged around 50 €/MWh, with solar PPAs priced at 48-53 €/MWh
and wind PPAs at 50-68 €/MWh. The exact prices depend on the specific region
within each country. On the other hand, for baseload PPAs, where the price is tied
to current electricity market prices, the prices are estimated to be approximately
10% higher than those of pay-as-produced PPAs. Furthermore, Pexapark states that
corporate PPA delivery periods typically range from ten to twenty years.

The contractual parameters for the proposed contract ¢ and the reference al-
ternative contracts ¢/, are presented in Table 1. The time of signing the contract
is assumed to be Mg, = Feb 2025. Therefore, the contract lifetime Mifetime =
{Feb 2025, ..., Dec 2039} consists of 179 months, whereas the delivery period
Maelivery = {Jan 2030, ..., Dec 2039} consists of 120 months. The volume V. corre-
sponds to a continuous delivery of 250 MW throughout the delivery period, which,
assuming 8760 hours per year, equals V., = 250 MW x 10 years x 8760 yehar =
21 900 000 MWh. This volume is then distributed across each month of the delivery

period such that the monthly volumes are proportional to the number of hours in

each month. The contractual parameters in Table 1 have been selected to resemble
realistic PPAs while enabling insightful analyses in later sections.
In this case study, the number of reference alternatives is chosen to be n = 2, which

results in two reference alternative contracts ¢j and ¢,. The reference alternative
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contract ¢ is otherwise similar to ¢, with the only difference being a higher credit-
rated counterparty. The reference alternative contract ¢, is also otherwise similar to
¢, but the total volume is split equally between ¢, and the portfolio. The volume

assigned to the portfolio is referred to as Vjortfolio-

‘/c/‘/c;l ‘/portfolio Mistart Mend Pc/Pc;l Rc/Rc’n
(MWh) (MWh) (€/MWh) | (0-5)
Proposed 151 50 000 | 0 Jan 2030 | Dec 2039 | 60 3
contract c
Reference
alternative | 21 900 000 | 0 Jan 2030 | Dec 2039 | 60 4
contract ¢}
Reference
alternative | 10 950 000 | 10 950 000 | Jan 2030 | Dec 2039 | 60 3
contract ¢,

Table 1: Contractual parameters for the proposed contract ¢ and the reference

alternative contracts ¢) and ¢,

As discussed in Section 3.4, the number of spot price scenarios is |S| = 135. On
the other hand, the number of counterparty default scenarios is |D| = 180: one for
each month in the contract lifetime, and one for the "no default" case. Therefore,
the number of combined scenarios is |2] = 135 x 180 = 17 550. We determine the

branch
scens )

size of each decision branch distribution £ that is, how many (total earnings,

probability) pairs each distribution consists of, as follows:

e Decline branch: The only source of uncertainty is the spot price, and hence
the size of the distribution 4" is | S| = 135.

o Accept branch: The sources of uncertainty are the spot price and counterparty
default events. The size of the distribution £5°"" is || = 17 550.

o Reference; branch: Because this branch is otherwise similar to the accept
branch, with the exception of a higher credit-rated counterparty, the size of
the distribution £57°" is |Q] = 17 550.

o Reference, branch: This branch considers a hypothetical situation, where half
of the volume V, is hedged through the large PPA with the same counterparty
as in accept, while the remaining half is hedged through the portfolio. Therefore,
the earnings from both sources are joined by the spot price scenario, and hence
the size of the distribution £,/ is also || = 17 550.
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Finally, the confidence levels used in the CVaR,-earnings calculations in Section 4.3
are a € {5%, 10%, 15%, 20%}.

4.2 FEvaluating the decision tree

The full decision tree can now be evaluated using the input data presented in

Section 4.1. To compare the total earnings in each decision branch, the sets £dectine
t reference
Egccep ’ fv“zeferencelj and gﬂf 5

I

are constructed using the methodology described in
Section 3.4, and the (total earnings, probability) pairs for each set are plotted as
cumulative distributions with cumulative probability on the horizontal axis and total
earnings on the vertical axis. These distributions, along with a default-free hedge
level representing a situation where all earnings uncertainty is eliminated (i.e., a

counterparty that cannot default), are shown in Figure 3.

Max J
wn
QD
=
<
@
)
g ——Accept
= —— Decline
Reference,
——Reference,
—— Default-free hedge
Min
0 0.5 1

Cumulative probability

Figure 3: Cumulative distributions of total earnings in different decision branches,
including an additional default-free hedge level, where all earnings uncertainty is
removed. Note that, contrary to convention, cumulative probability is plotted on
the horizontal axis and total earnings on the vertical axis to emphasize flat regions
corresponding to outcomes with constant total earnings across a range of cumulative

probabilities (i.e., the hedging effect).

Note that for confidentiality reasons, the exact total earnings values and cumulative

probabilities in Figure 3 have been removed. In addition, the distributions have been
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subtly modified from the real data to obscure the true relative scales and shapes of the
distributions. Total earnings are described only in terms of the overall minimum and
maximum values, and for cumulative probabilities, only the minimum, median, and
maximum are shown explicitly. As such, Figure 3 is intended purely as a qualitative
illustration to highlight general trends and obvious differences between the branches.

Figure 3 provides several interesting and useful insights into the behavior of the
different decision branches. The decline branch distribution stays relatively close to
the default-free hedge level throughout the entire distribution. The median value is
very similar to that of the default-free hedge level, whereas the total earnings start to
deviate from this level towards the tails of the distribution. Overall, the distribution
follows a relatively linear shape.

In contrast, the accept branch distribution has a wide flat region around the median
that coincides exactly with the default-free hedge level. This region corresponds to
all total earnings outcomes where the contracting counterparty does not default, and
hence, all earnings come from the completed contract. Outside of this flat region,
some default outcomes produce higher total earnings than the default-free hedge level,
these arise when selling the remaining volume at the spot price after a default is more
favorable than the original contract price P.. Conversely, other default outcomes
produce lower total earnings; these correspond either to less favorable spot prices
for the remainder of the delivery period, or to situations when significant payments
are required to be made to the defaulting counterparty due to a large negative MtM
valuation of the contract at the time of default (see Section 3.2).

The total earnings in the reference; branch, which corresponds to a counterparty
with a higher credit rating, are very similar to the accept branch total earnings. The
effect of the higher creditworthiness is apparent from the distribution shape: the flat
region is slightly wider, and the total earnings at the tails of the distribution are
closer to the default-free hedge level (apart from the absolute extremes, which are
equal between the two branches), indicating a lower probability of default.

On the contrary, the reference, branch can be seen as a middle ground of the
accept and decline branches because the total volume is effectively split equally
between such hedging strategies. This effect is also apparent from the distribution
shape: the tails of the distribution exhibit similarities to the accept branch in both
magnitude of total earnings and also the shape of the distribution. However, in
the region where the accept distribution is flat, the reference, distribution instead
increases approximately linearly from below the default-free hedge level to above

it, which closely resembles the behavior of the decline branch. This part of the
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distribution likely corresponds mostly to such outcomes where the hedge regarding
the large contract is fully complete and uncertainty arises from the volume allocated
to the portfolio. The equal split of the volume between the large contract and the
portfolio is also visible in the extremes of the distribution; notably, the minimum
and maximum total earnings levels of the reference, branch lie approximately in the
middle of those of the decline and accept branches.

Overall, the qualitative performance of the different branches can be summarized
in the following way. On the downside (and similarly on the upside, although downside
earnings are more critical from a risk management perspective and therefore are the
main focus of the study), the decline and reference, branches appear to outperform
the accept branch because their total earnings are closer to the default-free hedge
level. However, around the median, the accept branch performs better because it
has a more reliable hedging effect. The reference, branch outperforms the accept
branch in terms of the hedging effect in all regions where the accept distribution
deviates from the default-free hedge level. However, this is expected because the more
creditworthy counterparty in reference; has a lower probability of default, which

consequently improves the reliability of the hedge.

4.3 Collateral requirement and CVA add-on optimization

In this section, the evaluated decision tree from Section 4.2 is used to optimize the
collateral requirement and the CVA add-on such that CVaR““”* matches predefined

downside earnings target levels. The following target levels will be used:

i) Decline branch CVaR,: This target level reflects the amount of additional re-
quirements for the counterparty, such that the accept branch becomes equally

attractive as the decline branch in terms of downside risk.

ii) Reference; branch CVaR,: At this target level, the accept branch becomes equally

attractive as the reference; branch in terms of downside risk.

iii) Reference, branch CVaR,: At this target level, the accept branch becomes equally

attractive as the reference, branch in terms of downside risk.

iv) Default-free hedge level: This target level represents a counterparty that cannot
default. This target level serves more as a theoretical upper bound, corresponding
to a level of additional requirements that would eliminate all counterparty credit
risk at the given confidence level. Thus, in practice, it would not be used as a

realistic target level for the accept branch downside earnings.
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As a result of this optimization, indifference curves will be constructed using the
optimal pairs of collateral requirement C. and CVA add-on CVA, for each of the
four target levels at each of the confidence levels a € {5%, 10%, 15%, 20%}. These
curves illustrate all combinations of additional requirements that result in the accept
branch achieving CVaR,-earnings which are equal to the corresponding target levels.
The indifference curve corresponding to the initial accept branch (i.e., a level which
equals the total earnings level before any additional requirements are applied) will
also be shown, which by construction always passes through the origin.

To visualize the full shapes of the indifference curves, they will be extended
with negative CVA add-on values, which would correspond to discounts on the
counterparty’s proposed sales price P,.. In practice, Fortum would not voluntarily
offer such discounts on proposed sales prices, so this extension is included solely for
illustrative purposes. The region with non-negative (i.e., realistic) CVA add-ons will
later be referred to as the feasible region, and the region with negative CVA add-ons
as the infeasible region. Note that a similar extension cannot be made for collateral
requirements, as a negative collateral settlement at the time of default is not well
defined.

In the indifference curve figures, the horizontal axis (CVA.) and the vertical
axis (C.) are bounded to reflect realistic contractual terms. The minimum collateral
requirement is set to zero, while the maximum corresponds to the largest positive
MtM valuation of the contract across all spot price scenarios and delivery period
months in the model; a collateral requirement beyond this maximum would not
further improve the accept distribution (see Section 3.2). Conversely, the exact
minimum and maximum values for the CVA add-on axis remain undisclosed, but the
range is limited to values that are considered somewhat reasonable for the contract
outlined in Section 4.1. This is done because the CVA add-on could theoretically be
increased (or decreased) indefinitely, but analyzing excessively high values would not
offer useful insights in contractual negotiations.

The collateral requirement and the CVA add-on optimization and indifference
curve creation are first carried out at a confidence level a = 10%. Subsequently, the
analysis is repeated for three other confidence levels « € {5%, 15%,20%} to perform
a sensitivity analysis and assess how varying degrees of risk aversion (in the sense
of the width of the downside a-quantile used in the CVaR,-earnings calculations)
influence the requirements to meet each target level.

Similar to Figure 3, the exact values of collateral requirements and CVA add-ons

are not shown, apart from the zero values, which represent the defined, realistic
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minimums. However, the indifference curve figures in Sections 4.3.2 and 4.3.3 share
the same scaling to allow for visual comparisons between different confidence levels
a. Note that the introductory indifference curve in the following Section 4.3.1 uses a
different scaling, as it is intended solely for illustrative purposes to present the topic

using simplified data.

4.3.1 An illustrative example

We begin with a simple example to demonstrate how the use of the collateral
requirement and the CVA add-on impacts the accept branch distribution in later
optimizations. Figure 4 shows three side-by-side plots, where the decline and accept
distributions as well as the default-free hedge level are visible for a part of the tail
distribution from Figure 3, and the downside earnings are examined at a confidence
level ae. The leftmost plot is identical to the corresponding portion of Figure 3. In the
middle plot, a collateral requirement has been applied, shifting the accept downside
earnings to match the decline target level. In the rightmost plot, a similar result has
been achieved using a CVA add-on.

Instead of displaying total earnings on the vertical axis as in Figure 3, the vertical
axes in Figure 4 use percentual total earnings, where 0% and 100% correspond to
the absolute minimum total earnings across all branches (i.e., the 0%-quantile in
Figure 3) and the default-free hedge level, respectively. Additionally, the different
total earnings and downside earnings target levels in the later optimizations will be
represented as percentual total earnings in this way.

At the confidence level o in Figure 4, the downside percentual total earnings
of the accept and decline branches are CVaR2“?" = 82% and CVaR2*!"¢ — 88%,
respectively (leftmost plot). The accept CVaR,-earnings are then lifted to 88%
separately with a collateral requirement and a CVA add-on (middle and rightmost
plots, respectively).

The middle and rightmost plots exhibit clear differences in how the collateral
requirement and the CVA add-on change the accept distribution. As discussed
in Section 3.2, the collateral requirement affects only those outcomes where the
counterparty defaults and the MtM valuation of the contract is positive at that time.
It is apparent that with the collateral requirement in place, the tail of the distribution
shifts noticeably towards the default-free hedge level. The flat region of the accept
distribution also becomes marginally wider because some outcomes where the total
earnings were previously slightly below the default-free hedge level due to a default

are now raised to that level by the collateral.
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Probosed contract ¢ Proposed contract ¢ with Proposed contract ¢ with
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100% A/f/ 100% 100% //
88% 88% / 88% /

Accept, CVA add-on
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Figure 4: On the left: Accept and decline distributions as well as the default-free
hedge level, which are identical to those from Figure 3. In the middle: A collateral
requirement is applied to lift CVaR2“*”?* to match CVaR%““"*  On the right: The
same outcome has been achieved by applying a CVA add-on instead. The vertical

axes show percentual total earnings as opposed to total earnings used in Figure 3.

Conversely, while the CVA add-on also shifts the accept distribution tail slightly
closer to the default-free hedge level, the main distinction is that its flat region no
longer aligns with the default-free hedge level. This is because with a higher sales
price given by the CVA add-on, all outcomes where the contract does not terminate
prematurely result in higher total earnings than with the proposed contractual price
P.. Furthermore, although the flat region of the accept distribution is at a different
total earnings level compared to the leftmost plot in Figure 4, its width remains the
same because the CVA add-on does not mitigate default-related losses in the same
way the collateral requirement does.

The collateral requirement and CVA add-on indifference curve can also be plotted
for the decline target level, which can be seen in Figure 5. The three points in
Figure 5 have been labeled as A, B, and C. Point A (the origin) corresponds to the
leftmost plot in Figure 4, where no additional requirements have yet been applied
to the contractual terms, and the percentual total earnings level is at 82%. On the
other hand, points B and C correspond to the middle and rightmost plots in Figure 4,
respectively. Therefore, B corresponds to lifting CVaR2“?* to 88% by applying a
collateral requirement, whereas C achieves the same level by applying a CVA add-on.

As mentioned previously, one can also find combinations of collateral requirements

and CVA add-ons, rather than relying on only one or the other, as was done in this
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Figure 5: Initial percentual total earnings of the accept branch, and the indifference
curve for the decline target level in this introductory example. Points A, B, and C
correspond to the leftmost, middle, and rightmost plots in Figure 4, respectively.
Note that the scaling here differs from that used in Sections 4.3.2 and 4.3.3, where

the figures share the same scaling for the sake of visual comparisons.

introductory example. This is the approach used in the optimizations presented in
Sections 4.3.2 and 4.3.3, where such combinations are identified for the four different
target levels outlined earlier.

In the indifference curves in Sections 4.3.2 and 4.3.3, the higher the percentual
total earnings of a target level is, the closer that target level is to the default-free hedge
level, which has percentual total earnings level of 100% by construction. Similarly,
the larger the difference in percentual total earnings between the CVaR%“?* and a
target level is, the more additional requirements are needed to lift CVaR2“*”" to that
level. Consequently, the corresponding target level indifference curve lies further

from the origin.

4.3.2 Base case: confidence level a = 10%

The results of the collateral requirement and CVA add-on optimization with confidence
level a = 10% are shown in Figure 6. The first observation is that the indifference
curves for the initial accept branch and each of the four target levels are convex
throughout the entire region of the plot. This indicates that at lower CVA add-on
levels, a small increase in the CVA add-on leads to a larger reduction in the needed
collateral requirement to maintain any given downside earnings level. Furthermore,
at large CVA add-on values, particularly those needed to match the decline and

reference; CVaRqp%-earnings, the relationship between the collateral requirement



60

and the CVA add-on appears to become approximately linear with a small negative
slope, such that increasing the CVA add-on yields only marginal reductions in the

needed collateral requirement.

Max - -@ - Initialaccept CVaRyy, e

- -® - Match decline CVaR .
Match reference, CVaR,, N

- “® - Match reference, CVaR,,
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Figure 6: Indifference curves showing combinations of collateral requirement C. and
CVA add-on CVA, needed for the initial accept CVaR gy (red) to match the i) decline
CVaRygg (blue), ii) reference; CVaRjgy (yellow), iii) reference, CVaRygy (purple),
or iv) default-free hedge level (green). The percentage values on the indifference

curves represent percentual total earnings (see Section 4.3.1).

This trade-off between the collateral requirement and the CVA add-on highlights
the advantages of potentially reducing the collateral requirement significantly with a
relatively small CVA add-on. The indifference curves can therefore serve as useful
negotiation tools in commercial settings, where additional requirements may be
tailored for specific counterparties. This is particularly valuable, as the credit ratings
R. and R. do not account for the size or equity of the counterparty. For example,
a large counterparty with substantial equity may estimate its own default risk as
low and hence prefer to post collateral rather than pay a higher total price for the
electricity. On the other hand, a smaller counterparty with less equity may not be
able to post large collateral amounts and instead prefer a slightly higher final sales
price. The indifference curves could also enable the power producer to, for example,
offer the counterparty a counter-offer containing multiple collateral requirement and

CVA add-on combinations to choose from.
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Another observation concerns the percentual total earnings values in Figure 6.
The initial accept CVaRqgg-earnings (81.3%) is lower than all four target levels of
decline CVaRygy, (87.7%), reference; CVaRqgy, (84.1%), reference, CVaRgy (85.4%),
and default-free hedge level (100%), which is also why all target level indifference
curves are at least partly inside the feasible region. We also note that the percentual
total earnings values increase away from the origin with the indifference curves. This
is expected because the closer to the default-free hedge level any given target level is,
the larger additional requirements are needed to increase accept CVaRgy-earnings
to that level.

4.3.3 Sensitivity analysis

The indifference curves for the remaining confidence levels o € {5%,15%,20%}
can be seen in Figures 7, 8, and 9, respectively. Similar to the case a = 10%, all
indifference curves at all remaining confidence levels are convex. However, the slopes
of the curves change noticeably when the confidence level is changed. Specifically,
as « increases (i.e., a wider tail of the distributions is used to calculate the CVaR,,-
earnings), the slopes of the indifference curves decrease; that is, the trade-off between
the collateral requirement and the CVA add-on becomes steeper. Conversely, as
« decreases, the slopes become flatter. Next, we analyze each of the remaining
confidence levels o € {5%, 15%, 20%} separately and make comparisons to the other
previously examined levels throughout the analysis.

Looking at Figure 7 reveals the stiffness of the accept CVaRse-earnings at such
a narrow confidence level. Comparing the percentual total earnings of the accept
CVaRjsy (66.3%) to the decline, reference;, and reference, branches (86.6%, 71.1%,
and 75.7%, respectively) shows that accept CVaRsy is initially significantly below the
target levels. Moreover, the theoretical upper bound of the default-free hedge level
is unreachable within the feasible range of collateral requirement and CVA add-on
values. Only the other three target levels can be reached, and their corresponding
indifference curves are nearly horizontal. This indicates that the CVA add-on has
a negligible effect on the total earnings at confidence level & = 5%, and that the
collateral requirement dominates the impact on the downside earnings.

The flat shape of the indifference curves suggests that many of the downside
earnings outcomes in the worst 5%-quantile are those in which the counterparty
defaults early in the contract lifetime when none or only a small portion of the
contractual obligations have been realized, and the spot price for the remaining

duration is unfavorable. This observation is supported by the fact that the CVA
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Figure 7: Indifference curves at confidence level a = 5%. Note that the indifference
curves are particularly flat at such a narrow confidence level. Furthermore, the curves
are generally further away from the origin, with the default-free hedge level being
outside the feasible region and hence not visible in the plot. As a result, the initial
accept CVaRsy cannot be increased to match the default-free hedge level within

realistic collateral requirement and CVA add-on bounds.

add-on serves only as a minor component of the total earnings compared to the
collateral requirement, meaning that even a large increase in the contract price does
not affect the downside earnings considerably (cf. Figure 4). However, because the
collateral requirement has an upper bound beyond which it does not affect the accept
distribution, and only realistic CVA add-on values are used, the potential to reach
higher total earnings target levels becomes somewhat limited.

Additionally, the (relatively small) number of (total earnings, probability) pairs
in £dectine (135 in total) should be kept in mind when comparing accept and decline
branch total earnings at such a narrow confidence level. In the decline branch, only
seven data points with the lowest earnings fall within the worst 5%-quantile, which
introduces some obvious statistical uncertainty—especially as the number of (total
earnings, probability) pairs in £5°?" is significantly larger (17 750 in total). Although
the variation in the decline branch distribution is not extremely high to begin with
(see Figure 3), this data sparsity can affect the robustness of the comparisons and

should be considered when interpreting the results.
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Overall, the analysis suggests that using such a narrow confidence level may be
impractical in reality because it strongly emphasizes the extreme adverse outcomes
that are statistically more unstable. As many of the outcomes in the worst 5%-
quantile include an early default, the CVA add-on effect becomes negligible and thus
difficult to analyze. A higher o (such as o = 10% from earlier) may provide a more
balanced and realistic view of the downside risks.

Figure 8 presents the indifference curves for confidence level o = 15%. Compared
to the narrower confidence levels presented earlier, these curves are noticeably steeper
and are shifted closer towards the bottom-left corner of the plot. This reflects the
higher percentual total earnings of the initial CVaR{cy"'-earnings. Notably, the
accept CVaRys9 (87.6%) already exceeds the reference, CVaRy59 target level (87.3%)
without any additional requirements. These observations suggest that the accept
CVaRy59 can be more easily increased to the various target levels by applying the

collateral requirement and the CVA add-on.
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Figure 8: Indifference curves at confidence level a = 15%. The indifference curves
are noticeably steeper when compared to those resulting from o = 5% and o = 10%
(see Figures 7 and 6, respectively). Note that the accept CVaRys9 is already higher

than the target level reference, CVaR159 without any additional requirements.

As the confidence level becomes wider, more total earnings outcomes with a
nearly or fully complete hedge are included in the tail of the distribution. The

increased steepness of the curves supports this interpretation: when a larger portion
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of outcomes within the worst a-quantile result in most of the volume sold at the
contractual price, the effectiveness of the CVA add-on on the downside increases
relative to that of the collateral requirement. In these outcomes, the collateral
requirement has a minimal impact on the total earnings, whereas the CVA add-on
significantly improves expected total earnings when the contract is not terminated
prematurely (see Figure 4). However, as is illustrated by the default-free hedge level
indifference curve in Figure 8, increasing the CVA add-on beyond some point to
cut down on the collateral requirement becomes less beneficial, which suggests that
including a moderate collateral requirement in addition to a CVA add-on may yield
more balanced overall additional requirements for the counterparty.

Interestingly, the ordering of the indifference curves (based on the percentual total
earnings) is different when compared to those observed at the narrower confidence
levels from earlier. At both o = 5% and a = 10%, the curves follow the ascending
order (based on the percentual total earnings of each curve): accept, reference,
referencey, decline, and default-free hedge level. However, with o = 15%, the ordering
is instead reference,, accept, decline, reference;, and default-free hedge level. This
reflects the unique shapes of the distributions (see Figure 3) and that there is no
absolute objectively superior hedging strategy (apart from the hypothetical reference,
being always favored over accept).

This shift gives insights into the differences in the shapes of the total earnings
distributions. At this wider confidence level, when looking at the downside tails of
the distributions, the accept branch performs nearly equally well as the reference,
branch. In contrast, the extreme low total earnings downside outcomes in the decline
and reference, branches lie at noticeably higher total earnings levels (see Figure 3)
because both include the portfolio either fully or partially. Furthermore, because
a larger portion of the distribution tail is captured at wider confidence levels, the
consistently better hedging effect of the reference; makes its target level more difficult
to reach with additional requirements when compared to the decline and reference,
branches.

Finally, Figure 9 presents the indifference curves for confidence level o = 20%. The
curves are once again steeper than those from earlier. Notably, the percentual total
earnings level of the accept CVaRyyy is the highest among all analyzed confidence
levels, reaching 90.7%. This high initial level results in the accept CVaRagy exceeding
both the decline and reference, target levels without any additional requirements,
meaning that the indifference curves for both of these target levels lie fully within

the infeasible region.
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Figure 9: Indifference curves at confidence level o = 20%. Note that the accept
CVaRyy is higher than target levels decline CVaRaggy, and reference, CVaRggy

without additional requirements.

As discussed in the case a = 15% previously, increasing the value of a (i.e.,
considering a wider tail of the distribution) includes more total earnings outcomes in
which the hedge is nearly or fully complete. The steepness of the curves at o = 20%
suggests that the CVA add-on dominates the effect of the collateral requirement for
improving the downside earnings, meaning that for a relatively small CVA add-on,
the collateral requirement can be lowered significantly while remaining at the given
target level. In contrast, the impact of the collateral requirement is limited, as
when widening the confidence level, a smaller relative portion of the total earnings
outcomes in the accept branch a-quantile are ones considerably affected by the
collateral requirement. This is because in many of these outcomes, the contract
is completed without a premature termination due to default, and hence, the full
collateral amount is returned to the counterparty. Thus, as the confidence level widens,
the CVA add-on becomes the main driver for improving the downside earnings.

However, this observation highlights a potential drawback. As the goal of the
model is to capture a wide range of total earnings outcomes (including adverse ones)
and mitigate the related downside risk, a confidence level as wide as o = 20% may be
too wide for practical use. When the probability mass of nearly and fully complete

hedging outcomes begins to dominate the rarer adverse outcomes, the usefulness of



66

the downside risk measure CVaR,, may diminish beyond practical applicability.
Overall, based on the indifference curves at varying confidence levels as depicted
in Figures 6-9, the confidence levels a = 10% and a = 15% appear to be the most
appropriate ones for practical use with this model. They are sufficiently robust to
capture the relevant downside outcomes without being too sensitive to extreme low
total earnings outcomes, as observed with o = 5%, or diluting the CVaR,-earnings
with too many nearly or fully complete hedging outcomes, as in the case a = 20%.
This balance of trade-offs should always be carefully analyzed to ensure that the
resulting risk assessment can guide decision-making as realistically and tractably as
possible, and that the relationships between the collateral requirement and the CVA

add-on are properly understood to support commercial PPA negotiations.

4.4 Critical reflections and potential future development

The decision tree model outlined in Section 3 relies on many assumptions and
simplifications that need to be highlighted and critically assessed. Some of these stem
from input data availability, others from computational limitations, and some are
made up to simplify complex real-world relationships for the sake of computational
tractability. This section addresses these assumptions and simplifications and points
towards potential future development of the model. Furthermore, other general
challenges regarding real-life PPAs (and their modeling) are brought up and discussed.

One obvious potential limitation of the model is the number of spot price scenarios
(135 in total). This becomes especially relevant when calculating CVaR,-earnings
under highly narrow confidence levels in the decline branch, where counterparty
defaults do not play a role in the estimated earnings. In such cases, the number
of total earnings outcomes within the a-quantile, from which the CVaR,-earnings
are subsequently computed, is small (potentially too small for statistical reliability),
and the results should therefore be interpreted with caution in mind. However, this
limitation is less critical with wider confidence levels «, and generally in branches
where counterparty defaults are included, as the number of total earnings outcomes
is considerably larger (e.g., 135 x 180 = 17 550 in this case study), resulting in
sufficiently accurate CVaR,-earnings calculations.

The assumption of independence between spot price and counterparty default
scenarios is a computational simplification that does not necessarily hold in reality.
For instance, if the contracting counterparty is a major electricity consumer, its sudden
default may have a significant impact on the total electricity demand on a national

or Nordic scale, and hence also on the market price of electricity. However, modeling
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such dependencies between the spot market and individual market participants
realistically and reliably would be extremely challenging, and the modeling of such
dependencies was therefore excluded from the scope of this thesis.

Another assumption that does not hold in real-life PPAs is the unilateral treatment
of collateral requirements. In practice, it is perfectly realistic that the contracting
counterparty, through its own risk management process, would post a collateral
requirement to Fortum as compensation for its perceived counterparty credit risk. As
a consequence, this collateral amount would be effectively tied up and unavailable for
investments or operational use, and would impact Fortum’s total financial flexibility
to some extent. Furthermore, related to this, there is also naturally a possibility
that Fortum itself may default, which would have major financial implications on a
much larger scale than what the model is designed to capture. However, because
the model currently only considers the earnings from a single PPA and assumes no
internal default, extending the model to incorporate these aspects would be tricky
and, therefore, also excluded from the scope of the thesis.

Some of the current model assumptions and simplifications can be relaxed with
relative ease. One simple extension would be to allow for fluctuations in the PPA
pricing. For instance, if a counterparty proposes a 10-year PPA with one price for
the first five years and another price for the remaining five, the current model cannot
accommodate this kind of pricing (technically, one could treat such agreements
as separate contracts with different prices, simulate their earnings separately, and
sum these afterwards, but even this would require many additional manual steps).
Similarly, uneven yearly volumes across the delivery period cannot be modeled
currently, but their addition would account for more realistic and flexible agreement
terms. Both of these features can be incorporated without major changes to the
model formulation.

Another relatively straightforward addition to the model would be to incorporate
discounting of future cash flows. This would be particularly relevant when the yearly
price or volume is uneven, as discussed above. Accounting for the time value of money
(meaning that money is more valuable the sooner it is available) would allow for
representing the present value of earnings coming from a PPA, if the decision-maker
were interested in assessing their discounted value.

The model could also be extended to account for counterparty defaults within
the portfolio. While modeling the default of each counterparty in the portfolio K at
a monthly granularity, as is currently done with the contracts ¢ and ¢, in the model,

would be computationally infeasible, a simplified approach using broader time and
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counterparty bucketing could be implemented. For example, yearly default scenarios
could be defined for predefined subsets of the portfolio I, which would enable the
model to capture some counterparty-related risks in the decline branch and hence
increase the number of total earnings outcomes in the decline distribution from the
current 135 to something much more statistically robust.

Another relatively straightforward improvement would be to introduce time-
dependency in the credit ratings of contracting counterparties. The contract lifetime
in the case study spans nearly 15 years—a duration that is not uncommon in
real long-term PPAs. Over such long time horizons, changes in creditworthiness
are more than likely. To reflect these aspects, a credit rating transition matrix
could be incorporated into the model, which would specify (for instance) the annual
probabilities of migrating from one credit rating to another. Moreover, as was also
highlighted in the literature review in Section 2, defaults are often preceded by
gradual creditworthiness deterioration, which suggests that credit ratings and default
events have a clear dependency relationship in reality.

A further refinement of the model relates to the remaining unsold volume after a
counterparty default event. In reality, in such a situation, especially before or early
in the delivery period, it is somewhat unrealistic to assume that the full remaining
volume would be sold solely on the spot market for the remaining delivery period, if
the preferred way would instead be to hedge it in some way. In practice, soon after
a counterparty default, the remaining volume could possibly either be re-hedged
through the portfolio, similar to what is currently assumed in the decline branch,
or sold as a large PPA to another counterparty, should one become interested in
contracting a PPA at the time. This addition would provide more realistic total
earnings estimates in all branches that involve a contracting counterparty.

One opportunity for larger future development is to extend the scope of the
earnings impact. The model could be extended to consider a portfolio of bilateral
contracts with the same counterparty, instead of a single contract as is currently
done. The model could also be extended to consider a portfolio of bilateral contracts
with many different counterparties. Both of these extensions would bring their own
challenges, both conceptually and computationally, even with additional simplifica-
tions to the model. Nonetheless, these extensions would add value in terms of the
model’s scope and are left as opportunities for future work.

The model could also be extended with alternative references where the decision
to sign a contract is postponed rather than made in mygg,. This would not only

account for the earnings structure of the current reference, branches, but also the
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uncertainty related to finding future opportunities at a later time. For example,
the decision-maker may pose the question: "If we decline the proposed contract and
wait for a year or two, what is the probability that similar contract opportunities
would arise? Furthermore, if such opportunities were to arise, with what probability
would they produce more favorable earnings than the current proposed contract?" This
kind of feature could be incorporated using consecutive decisions (for example) at a
yearly granularity, such that this new alternative reference branch would resemble the
secretary problem (Freeman, 1983) and could be solved in a similar way, using both
historical data and expert judgment to estimate these probabilities. Some further
simplifications and assumptions would likely have to be included in the model to
support this structure, but this extension could potentially capture more thorough
supply and demand dynamics related to large PPAs.

Real PPAs also bring other challenges and risks that should be considered when
negotiating contractual terms. One such risk is the cancellation risk of the counter-
party. For instance, a start-up may seek to contract a PPA for a project, but if the
project ultimately gets canceled, then the power producer may be left without a buyer
for the volume of electricity. This risk is different from traditional counterparty credit
risk and is not captured in the credit ratings used in the model. As such, case-specific
additional qualitative assessment is needed to build confidence in whether to decline
or accept a proposed PPA, particularly when dealing with start-up counterparties.

As noted earlier, the credit ratings used in the model do not account for the
size or equity of the counterparty. Therefore, some additional processes to support
the total earnings distributions coming from the model may be required to fully
evaluate the proposed contract and its risks in their entirety. Additionally, the model
currently focuses on earnings from a single PPA and does not consider potential
existing agreements with the same counterparty. In reality, there may be some
counterparty-specific limits related to credit, number of contracts, or total contracted
volume, which should be taken into account outside of the model.

Another relevant risk that is not captured in the model is renegotiating risk.
In reality, if market prices were to suddenly drop significantly, the contracting
counterparty may be reluctant to continue paying the agreed price and may instead
try to renegotiate more favorable terms. Additionally, potential reputation risks
should be kept in mind; contracting PPAs with shady companies may be more
harmful than beneficial in the long run. While these kinds of risks are difficult to
quantify, their existence should nonetheless be acknowledged, and they should be

mitigated accordingly.
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5 Conclusions

This thesis developed and presented a probabilistic decision tree model to estimate
earnings associated with a bilateral PPA from the perspective of a power producer
and retailer (Fortum Oyj). Once the underlying context had been explained and
the model was formulated, it was then applied to a case study, where expected
earnings from accepting a hypothetical yet realistic PPA were compared to those
from declining it. In addition, the earnings were also compared to two reference
hedging strategies. While these references do not represent real decision alternatives
for the power producer, they provide insightful comparisons to better understand
the counterparty credit risk associated with the PPA.

This procedure addressed the first research question Q1 related to the expected
earnings of different decision and reference alternatives. The total earnings distri-
butions from each alternative were plotted together with a default-free hedge level,
which revealed their distinct shapes and risk profiles. The hedging effect of the PPA
was also apparent from the plot because, in many cases, the simulated earnings
remained constant for wide portions of the cumulative distributions.

The case study was designed so that accepting the contract would initially not be
the most favorable option in terms of downside earnings among the alternatives. This
was done to demonstrate the model’s full capabilities, where the contractual collateral
requirement and CVA add-on are optimized in response to an initially unattractive
contract proposal. Suppose a proposed contract would not sufficiently cover the
counterparty credit risk from the power producer’s perspective. In such a case, the
power producer could, in practice, mitigate this risk by posing a collateral requirement
to the counterparty or by including a CVA add-on to the contracted price. These
additional requirements allow the power producer to increase the downside earnings
to an acceptable level while keeping the requirements reasonable and justified.

This collateral requirement and CVA add-on optimization addressed the second
research question Q2 related to finding suitable combinations of these two components
to lift the contractual downside earnings to an acceptable risk level. This part of the
model resembles the first round of negotiations between the parties, where the power
producer reacts to an initial offer by potentially requesting additional compensation.
Here, indifference curves for four different earnings target levels were plotted. These
represent all pairs of collateral requirement and CVA add-on for which the downside
earnings match the corresponding target levels, and provide useful insights into
both the relationships between these requirements and the relationships between the

different hedging strategies.
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The thesis also analyzed the choice of confidence level for expected earnings
to find out how changes in the distribution downside tail width (and thereby, the
power producer’s risk attitude) affect the collateral requirement and CVA add-on
optimization. This sensitivity analysis addressed the third research question Q3.
Altogether, four different confidence levels were studied, which provided interesting
information about the earnings distribution shapes of each decision and reference
alternative. Based on the results, confidence levels o = 10% and o = 15% appeared
to be the most suitable ones for practical use because they were not overly sensitive
to extreme adverse outcomes, while not diluting the worst a-quantile of total earnings
with excessively many nearly or fully complete hedging outcomes.

Finally, this thesis critically assessed the model’s assumptions and computa-
tional limitations and outlined a few directions for future development. Some of the
limitations stem from inherent challenges of modeling complex energy market and
counterparty credit risk dynamics both realistically and accurately, while others arise
from the need to keep the model computationally tractable. Similarly, many assump-
tions were made to simplify the model for tractability reasons, even though they
may not fully align with reality. Overall, while the model offers useful quantitative
insights, it should be supported with other qualitative risk processes. For instance,
the model does not currently account for the counterparty’s size or equity, nor any
existing trades with the counterparty, all of which are key factors in a comprehensive
counterparty credit risk assessment.

In conclusion, this thesis contributes to a growing need for structured quantitative
tools to evaluate counterparty credit risk in bilateral PPAs. The presented model is
structured as a decision tree to reflect possible decision alternatives that the power
producer may choose between regarding a proposed contract. While the model does
not fully capture all aspects contributing to contractual risks, it provides a solid
foundation for quantitative risk assessment and PPA negotiation support. Future
work can build on the model by, for example, introducing more flexible pricing
structures, discounting of long-term earnings, and considering portfolio-level impacts
of the proposed contract, such as the combined effects of all active agreements with

the same counterparty or across all existing counterparties.
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