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Abstract
Increases in conflict, economic instability, and accelerating climate change, coupled
with a decrease in humanitarian funding is causing a rise in global hunger. Conse-
quently, more efficient humanitarian supply chains are needed in order to decrease
costs and ultimately deliver more aid to more people. Demand forecasting is crucial in
efficient supply chain management, ultimately enabling better supply planning and
inventory optimization. However, literature on long-term demand forecasting within
the humanitarian sector is scarce. This thesis aims to fill this gap by analyzing various
forecasting methods for predicting food commodity demand with a horizon of 12
months in collaboration with the United Nations World Food Programme. In this thesis
we implemented and evaluated naive, statistical, judgmental, and machine learning
methods. Moreover, for the machine learning methods, various feature engineering
methods and exogenous data points were tested. Finally, since the uncertainty of the
forecast is key to informed supply chain management decision-making, a quantile
forecasting model based on the point-forecasting model was proposed and evaluated.
This thesis found statistically significant accuracy gains in LightGBM models
when compared to naive and statistical models such as moving average, Auto-ARIMA,
and Holt-Winters exponential smoothing models. The machine learning models were
tuned using cross-validation, and testing was performed in an expanding window
backtesting fashion to ensure the robustness and stability of the models. We found that
a LightGBM direct model with normalized data had the best performance as compared
to all other models. Quantile forecasting with LightGBM predicted quantiles with
less error compared to models that assumed a Gaussian distribution, however with
the upper quantiles being unstable. These findings demonstrate that machine learning
methods can increase the accuracy of humanitarian demand forecasting as compared
to naive and statistical approaches.

Keywords Humanitarian logistics, Demand forecasting, LightGBM, Grouped time
series, Probabilistic forecasting, Judgmental forecasting
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Sammandrag

Okande konflikter, ekonomisk instabilitet och accelererande klimatforandring med en
minskande humanitér finansiering leder till en 6kning i1 global hunger. Foljaktligen
behovs effektivare humanitira leveranskedjor for att minska kostnader och i slutiindan
leverera mer bisténd till fler ménniskor i nod. Efterfrdgeprognoser ér viktiga for en
effektiv hantering av leveranskedjor, vilket i slutindan mojliggor bittre leveranspla-
nering och lageroptimering. Litteratur inom lédngsiktiga efterfrigeprognoser i den
humanitira sektorn saknas. Syftet med denna avhandling dr att utoka litteraturen
pa efterfrigeprognoser i den humanitéra sektorn. Detta gjordes genom att analysera
olika prognosmetoder for att forutspa efterfrgan av livsmedelsravaror for 12 manader
framét i samarbete med Forenta Nationernas World Food Programme. For denna
analys implementerades olika naiva, statistiska, bedomningsbaserade och maskinin-
larningsmetoder (ML) for att evalueras. For ML metoderna anvindes olika exogena
datapunkter och data transformationer for att 6ka noggrannheten av prognoserna.
Osikerheten 1 prognosen ar avgorande nér beslut fattas baserat pd dem, sérskilt 1
volatila miljoer. Déarfor har maskininldarningsmodellerna utvidgats for att dven kunna
uppskatta prognosernas kvantiler.

Denna avhandling fann att LightGBM ML-metoder hade statistiskt signifikant hdgre
noggrannhet &n statistiska, naiva och bedomningsbaserade metoder. ML-metoderna
var finjusterade med korsvalidering och testades vid flera tidpunkter for att sikerstilla
modellens robusthet och stabilitet. LightGBM med en direkt prognosmetod och
normaliserad data presterade béttre dn alla andra modeller. Vi fann att kvantilprognos
med LightGBM presterade bittre in metoder med antagande om gaussisk distribution,
dock fann vi de hogre kvantilprognoserna ostabila. Dessa resultat visar att ML-metoder
kan 6ka noggrannheten i prognoser inom humanitir livsmedelsravarefterfrigan jaimfort
med statistiska och naiva metoder.

Nyckelord Humanitir logistik, Efterfrigeprognoser, , LightGBM, Grupperade
tidsserier, Probabilistisk prognostisering, Bedomningsbaserad
prognostisering
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Symbols and abbreviations

Symbols

Symbols that remain constant during the entire document are introduced here, other
symbols are specified within their given context.

Residual

Explanatory/target variable
Exogenous variable/feature
Loss function

Forecast horizon

Time

Last time point of training set
Number of features

Quantile

Set of quantiles

Set of segments (country, commodity, activity type) where s € S

NI AT N SNR< M

Abbreviations

ARIMA AutoRegressive integrated moving average
CO Country office

ES Exponential smoothing

GBDT Gradient boosting decision tree

HO Humanitarian organization

IASC Inter-Agency Standing Committee

IP Implementation plans

IPC Integrated food security phase classification
LightGBM Light gradient boosting machine

MA Moving average

MAE Mean absolute error

ML Machine learning

MSF-OCA Operational Center Amsterdam of Medecins Sans Frontieres
PL Pinball loss

RMSE Root mean squared error
UN United Nations
WEFP World Food Programme



1 Introduction

Demand forecasting is critical when designing an optimal supply chain within hu-
manitarian operations [1]. Leveraging methods such as prepositioning and optimal
commodity procurement can have substantial cost savings for humanitarian organiza-
tions [2]. These strategies can be improved via demand time series forecasting [3].
However, the literature on demand forecasting within humanitarian logistics is limited
[1]. To address this gap, this thesis will develop and naive, statistical and machine
learning (ML) models for forecasting food commodity demand, validated through a
United Nations (UN) World Food Programme (WFP) case study.

1.1 Motivation

In 2015, the UN Sustainable Development Goal 2 was established, with the goal of
ending world hunger by 2030 [4]. However, progress has been slow and stagnated
since the Covid-19 crisis [5]. According to UN organizations [5], around 733 million
people experienced hunger in 2023, which is approximately 150 million more than in
2019. The impact of these crises are profound, encompassing not only the immediate
loss of life but also long-term health implications that extend across generations
[6]. Recognizing these costs, humanitarian organizations (HOs) have provided aid
to areas affected by crises [5], following the humanitarian principles of humanity,
neutrality, impartiality, and independence [7, p. 20], [8]. Upholding these principles,
particularly humanity and impartiality, depends on the logistical capability to deliver
aid consistently to those most in need. This requires robust supply chains where
service levels are high and stock is managed effectively to prevent interruptions [7,
p- 20-25]. Large HOs rely on complex supply chains to deliver timely aid, the aid
delivery process is known as humanitarian logistics [7].

Laan, Brito, Fenema, et al. [9] defines humanitarian logistics as "the process of
planning, implementing and controlling the flow and storage of goods and materials
as well as related information, from point of origin to point of emergency, for the
purpose of meeting the end beneficiary’s requirements". Additionally, Holguin-Veras,
Pérez, Jaller, et al. [10] expanded the definition by optimizing the movement of goods
to ensure "the greatest good for the greatest number of people". Humanitarian supply
chains need to be agile and adaptable, with the ability to respond quickly and efficiently
to volatile needs in different parts of the world [7, p. 7-8]. This means that supply
planning and inventory optimization are crucial for minimizing costs and delivering aid
quickly. A commonly used strategy in supply planning involves procuring and storing
commodities in advance, known as prepositioning, which enables shorter delivery
times and purchasing at more favorable prices [2]. Choosing optimal prepositioning
volume requires forecasts of future demand as overstocking can lead to high inventory
costs and risk of waste, tying up capital that could be used elsewhere [11]. Conversely,
under-stocking not only leads to higher last-minute procurement costs and slower
deliveries but, more critically, it directly threatens service levels. A stock-out can mean
a disruption in aid, forcing beneficiaries to go without essential food and undermining
the core mission of the organization [12].



While the available forecasting literature in humanitarian logistics focuses almost
exclusively on short-term, post-disaster predictions, longer-term operations require
longer-term planning. This need for longer-term planning and, therefore, longer-
term forecasting is driven by multiple reasons, two important ones being optimal
procurement prices and geographical constraints. First, significant seasonal price
variability allows for strategic procurement. For example, a Gilbert, Christiaensen, and
Kaminski [13] analysis of 13 commodities in 7 African countries revealed seasonal
price gaps of up to 68%, highlighting the cost-saving potential of purchasing goods
when prices are low. Moreover, for more protracted crises it is generally more cost
efficient to allow for longer lead-times. Efficient procurement has large cost-saving
potential since HOs procurement costs account for approximately 60% of the annual
budget [2]. Second, logistical constraints can render prepositioning essential for
ensuring continuous aid. For instance, the eastern part of South Sudan is inaccessible
during the rainy season, requiring food supplies to be placed well in advance (see
Figure 1) [14].! Moreover, the prepositioning of supplies shortens lead-times during
crises, ensuring faster distribution of aid.

Port Sudan

Djibouti

Accessible all s
year round

B envyrort g?;; LArghop ﬁ
Transhipment Guiu
(ff Points W rain Huvs Coumtey Oea /' ﬂ@
O suwomee &
—» Land Transport R e i Tororo & Dar-es-
.............. » Air Transport - Rwanda & Kampala i
= = = =P River Transport Tanzania

Figure 1: Overview of the UN World Food Programme supply network in South
Sudan, highlighting the need for prepositioning [14].

"Port Sudan is currently not in use for deliveries to South Sudan due to conflict, therefore this figure
is illustrative and does not reflect the current supply chains.
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Demand forecasting within the humanitarian sector is limited; however, there is
plenty of literature in the for-profit world [15]. Demand in the for-profit sector is
consumer-driven, in contrast humanitarian demand, is primarily donor-driven and
supply-constrained. As a result, humanitarian demand is often unknown until a crisis
unfolds, changes rapidly with sudden peaks, and is inherently more volatile, presenting
a fundamentally different forecasting problem [7, p. 9-16]. Therefore, to improve
accuracy, demand forecasts within HOs should incorporate relevant exogenous data
such as donor funding, climate models, and macroeconomic indicators, an approach
shown to increase accuracy in forecasting literature [16]—[18].

Large HOs such as WFP have developed data platforms, these are systems with
the purpose of storing and analyzing large amounts of data [14]. The development of
such platforms enable data driven analysis methods such as ML-based forecasting.
ML-based forecasting is a modeling approach used to identify complex temporal
relationships in data [15]. This approach helps generate forecasts without requiring
the specification of the interactions between input variables, which enables fast
development and comparison of different models [15], [16]. Moreover, ML methods
can leverage data in a cross-learning fashion, being able to draw trends and patterns from
different timeseries increasing accuracy [18]. Despite the advantages of ML, traditional
statistical models such as auto-regressive integrated moving average (ARIMA) [19] can
still outperform more complex models [15]. Therefore, traditional statistical models
should be used as benchmarks when comparing the performance of ML models [15].

Among the rise of ML-based models, gradient boosting decision trees (GBDTs)
have seen promise in complex demand forecasting tasks [15], [18]. GBDTs achieve
high performance on complex data while generally being faster to develop and less
computationally intensive than other ML models like long-short term memory (LSTM)
[17] or transformer based models like TFT [20]. Notably, recent studies, including the
M5-forecasting competition [18], have shown that Light gradient boosting machine
(LightGBM) [21], a contemporary version of GBDT, compares favorably to various
other models and is recognized as a valid approach for addressing complex forecasting
tasks.

Alongside quantitative forecasting techniques (e.g., naive, statistical, and machine
learning models), human expertise can enhance predictive accuracy [15]. This
approach, formally known as ’judgmental forecasting’, relies on human expertise
and can be utilized as a standalone method for inferring future demand. Moreover,
hybrid methods that integrate quantitative models with human judgment are common,
and these have shown to yield accuracy improvements when compared to purely
judgmental or quantitative approaches in some cases [22].

This thesis aims to develop and analyze demand forecasting models for large
HOs, with the UN WFP serving as a case study. The focus will be on predicting the
demand for various commodities, countries, and distribution types. This presents a
hierarchical forecasting task, requiring the prediction of multiple time series within a
structured hierarchy. This timeseries structure, similar to the M5-competition [18], has
the potential of utilizing cross-learning when developing forecasting models which
is one of the motivations of using ML-based methods. Furthermore, research in
both humanitarian and commercial sectors has demonstrated the benefits of incor-
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porating exogenous data in forecasting tasks [16]-[18]. Moreover, by utilizing WFP
implementation plans as judgmental forecasts and data features for the ML models, a
combination of quantitative and judgmental forecasts can be produced. Consequently,
this thesis will employ ML-based methods, particularly LightGBM, to predict demand,
aiming to improve strategic prepositioning, optimize stock management, and ultimately
enhance the service levels provided to beneficiaries. To ensure a robust evaluation of
these methods, their performance will be benchmarked against established naive and
statistical forecasting models.

1.2 Research Questions

The goal of this thesis is to develop and study models that improve long-term demand
forecasting for a large HOs. More specifically, implementing different versions of
LightGBM and compare these to naive and statistical models fitted on historical
data. The models developed in this thesis should have the capability of incorporating
exogenous data, since there is strong evidence that funding, climate and other external
factors correlate with humanitarian operations [16], [17]. There is also strong evidence
that points to the improved accuracy with exogenous data from the for-profit sector
[18]. However, to keep the scope of this thesis, the exogenous variables will be few
and will serve as a proof of concept for future development. To further keep a sound
scope, this thesis will not evaluate the performance of LightGBM to other state of the
art models such as LSTM [17] or TFT [20], but seeks to give insight into the use of
LightGBM in this context and different implementations of LightGBM. This is not to
say that the choice of using LightGBM is arbitrary, the motivation for this model will
be further discussed in Section 4.

Ultimately, demand forecasting models are used in decision making, therefore the
stability and accuracy of the predictions are important. In light of this, this thesis
will study the reliability and explainability of the models using SHAP values [23]
and backtesting [15]. For robust and well-informed decisions to be made based on
forecasting, the uncertainty of the forecast is crucial [24], especially in volatile time
series such as humanitarian demand. Therefore, this thesis will implement probabilistic
forecasts with LightGBM models by predicting quantiles. More specifically, this thesis
seeks to answer the following research questions:

1. How accurately can baseline forecasting methods, including naive, statistical,
and judgmental models, predict funding-constrained humanitarian demand?

2. Can LightGBM models improve the accuracy as compared to the baseline
methods and what variation of the chosen model is the most accurate based on
the chosen evaluation metrics?

3. How reliable and interpretable are the LightGBM model predictions, as assessed
through cross-validation and SHAP analysis?

4. How effectively can quantile forecasts from the LightGBM models characterize
the uncertainty associated with constrained humanitarian demand?

12



This thesis is developed within the operational context of the WFP and aims to support
and enhance existing demand forecasting efforts. By presenting a proof of concept
model as a case study, the work provides a foundation for practical implementation and
highlights opportunities for further development. The findings have the potential to
improve the efficiency and accuracy of WFP’s current forecasting processes, ultimately
contributing to more effective operational planning. Moreover, the goal is to provide a
study from which the HO or other organizations can further iterate on. In addition
to maintaining accuracy, the model must also be adaptable by including or omitting
external data. It should accommodate the inclusion or exclusion of time series, as
new commodities might be introduced, and old ones decommissioned or operations
paused. Moreover, this model is expected to be retrained and produce new forecasts
continuously so the most up to date forecasts can be used in supply planning. In
the future, the model should support the development of a probabilistic framework.
Incorporating these features will allow for a flexible model that can also model the
uncertainty of the forecasts with the goal of aiding supply chain planning within
humanitarian logistics.

1.3 Structure

As a research framework, Design Science Research Methodology (DSRM) within
information science will be used [25]. DSRM is composed of six activities from
problem definition and motivation, model design and finally communication of
findings, these activities will guide the general structure of this thesis. The thesis will
be structured as follows. Section 1 provides the motivation and defines the research
problem and questions. Section 2 provides an overview of humanitarian logistics and
subsequently reviews the existing literature within demand forecasting. In Section 3,
the theory and methods used in the study will be introduced. In Section 4, the case
study will be introduced and the implementation formulated. In Section 5, the results
from the case study will be shown , as well as compared with existing literature. In
Section 6, this thesis’s results will be discussed, and potential future research directions
will be explored. Lastly, Section 7 will give a summary of the research problem, the
methodologies used, and the results of this thesis.

13



2 Background

This section introduces the concept of humanitarian logistics, with a specific focus
on food aid. It then reviews the relevant literature on forecasting in the humanitarian
sector and contrasts these findings with research from the for-profit sector.

2.1 Humanitarian Logistics

Ultimately, logistics is concerned with bringing items from point A to point B. In
the humanitarian context, this usually means bringing aid from a source (warehouse,
factory, or farm) to beneficiaries in need [7]. In this thesis, the terms aid, commodities,
or items specifically refer to food aid unless noted otherwise. It is not enough that food
is delivered, since this can be done in many ways. When referring to humanitarian
logistics these must adhere to the humanitarian principles, humanity, neutrality,
impartiality, and independence [7, p. 20], [8]. The principle of humanity includes
addressing human suffering wherever it is found, especially for the most vulnerable.
Neutrality entails offering help without siding with parties in disputes or armed
conflicts. Impartiality ensures that aid is provided without discrimination, based
solely on the need. Independence requires that such actions remain separate from any
political, economic, or military objectives.

Humanitarian logistics seeks to alleviate suffering in humanitarian crises. These
crises can be divided into sudden and slow-onset crises [1]. The objective of
humanitarian operations is to mitigate the damage of such crises, this is called
the disaster management cycle, which can be split into four phases: mitigation,
preparedness, response and recovery [11]. The phases before a crisis, including
mitigation and preparedness, are essential to reduce the damage from a crisis. The
best results in preparation and mitigation are achieved with slow-onset crises, as
these can be anticipated, allowing meaningful preparations to be implemented [1].
However, with sudden-onset crises such as earthquakes which are near-impossible
to predict, preparedness is difficult and mitigation sometimes impossible [1]. With
large sudden-onset crises, sometimes the preparedness is not sufficient to meet the
needs of the affected, this is when a large response quickly is needed. These quick and
large responses are also known as Humanitarian System-Wide Scale-Up Activation (or
Scale-Ups) are needed [26]. Scale-Ups do not just affect one HO but are coordinated
between multiple relevant organizations by the Inter-Agency Standing Committee
(IASC) [26]. When analyzing demand curves, scale-ups are sudden and the magnitude
of demand large. This brings difficulties in forecasting and traditional methods are
usually not sufficient [27]. In scale-ups Ouchtar, t’Serstevens, and Rahman [27]
recommend using different methods for forecasting such as scenario-based planning.
Forecasting and modeling crises is essential however a key problem is the lack of
structured and up to date data.

14



2.2 Food Aid

There are different types of aid, for this thesis the focus will be on food aid. Food aid
is driven by food insecurity, food insecurity is the condition when the fundamental
dimensions of food security are disrupted, namely availability, access, utilization, and
stability [5]. Food security can be classified into chronic and acute, these concepts,
while overlapping have some key distinct characteristics. Chronic food insecurity is
when food insecurity persists over time. This type is largely driven by structural causes
such as poverty, marginalization, and inadequate access to basic services [6]. Leading
causes of food insecurity are inflation, climate change and regional conflict [5]. Food
security can be measured using the integrated food security phase classification index
(IPC), which is a scale of 1 (minimal/none) to 5 (famine). The food demand within
a HO seeks to match this insecurity, the most common bottleneck is funding and
therefore is one of the key drivers of demand [7, p. 6]. Food assistance is delivered
through two primary modalities: in-kind food distribution and cash-based transfers [2],
[28]. The choice is highly context-dependent; cash-based transfers are used when a
local economy is developed enough to allow beneficiaries to purchase food [S]. When
local markets are not functional or food is unavailable, in-kind food commodities
are distributed directly. While cash-based transfers are a significant portion of aid,
for the WFP, in-kind food distribution currently constitutes a slight majority of its
assistance portfolio [5]. Most of the funding for large HOs comes from contributions
from governments [14]. These are usually monetary, however sometimes direct food
donations are given, these are called in-kind contributions [7, p. 138].

With a considerable decline in funding, food aid response has ever more focused
on meeting beneficiaries urgent nutrition and food needs, this is in contrast to earlier
when larger amount was focused on development work and education [28]. Currently
about 70% of funds go to better peoples urgent food needs. A large part of this goes
to crisis response with about 75% of funding, with 22% to resilience building and
3% going to trying to solve root causes. In 2024 conflict was the main driver of food
insecurity, with approximately 65% of acute food security in fragile or conflict-affected
situations [29]. Other drivers of food security are restrictions to humanitarian access,
driven by conflict and political inaction [29]. Economic factors is another major driver
of food insecurity, with records set in global public debt, increases in interest rates and
high food inflation rates [29]. Most of these crises are slow-onset and can be prepared
for by building resilience and prepositioning aid, the largest constraint currently is
funding [5]. The needs are generally well known, at least the current levels with
advancements in needs forecasts [16], however funding can be volatile and therefore
drive the volatility of funding constrained demand [5].

2.3 Forecasting in Humanitarian Logistics

Laan, Dalen, Rohrmoser, et al. [30], did a study on the accuracy of long term demand
planning, analyzing Operational Center Amsterdam of Medecins Sans Frontieres
(MSF-OCA) long term aid project planning. This is a relevant study to draw parallels
with food demand since both medicine and food are perishable items and therefore
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require careful planning. The forecasts produced by MSF-OCA are made on a project
level and based on yearly average consumption and current consumption levels. Based
on these assessments, future plans are made. Laan, Dalen, Rohrmoser, et al. [30]
analyzed 19 projects and found that there is a significant positive bias in the forecasts.
This makes sense since some level of overstocking is needed for risk mitigation in case
of a sudden spike in demand. However, this also comes at a higher cost since medical
supplies are perishable items. No study was found that proposed a forecasting model
for long-term humanitarian demand, which underscores the importance of this thesis.

The literature on immediate and short-term demand forecasting is richer and
more in-depth. Herteux, Raeth, Martini, et al. [16] showed that food insecurity
can be computed with a large dataset of exogenous variables, utilizing reservoir
computing. Data points, such as Ramadan and climate-related indices showed promise
in producing accurate forecasts for a horizon of 60 days. Food insecurity is a measure
of how much a population is in need of food assistance. Food insecurity significantly
influences humanitarian needs, making the results of this study relevant to this thesis.
Nonetheless, the forecast horizons used is considerably smaller than the one in this
thesis. The study highlights the importance of using exogenous data in complex
forecasting tasks within the humanitarian sector. They also showed that their model
could be expanded to quantile forecasting.

Fuqua and Hespeler [17] proposed a novel approach to forecast fuel demand in
specific humanitarian crises. Pairing robust principal component analysis with a LSTM
model, they were able to outperform traditional statistical methods by a significant
margin when evaluating with root mean squared error (RMSE). They also showed the
importance of using exogenous variables for accurate predictions, using 8 exogenous
datasets. However, they only validated the accuracy for one- and two-step forward
accuracies. Moreover, this study focuses on creating forecasts with sparse datasets and
rapid training, which are important in the immediate aftermath of a disaster, which is
not applicable to our study.

Giedelmann-L, Guerrero, and Solano-Charris [11] proposed a method of modeling
food inventory planning with a system dynamics approach. The focus was on the
immediate aftermath of a crisis using a case study based on the 2017 Mocoa landslide
in Colombia. They showed that the dynamics post-disaster are extremely volatile and
dependent on the affected population, environment, and actors involved. The key
takeaways were more on supply chain management than relevant factors for a forecast
model.

During the writing of this thesis, Ouchtar, t’ Serstevens, and Rahman [27] published
areport on time-series forecasting for demand planning within the humanitarian sector,
forecasting medical items. The authors focused on an undisclosed HO that provides
medical, food, and other services. The analysis included pre-processing of data, which
included outlier removal and grouping items to remove volatility. The forecasting
methods used were statistical and included different versions of moving average,
exponential smoothing, ARIMA, and Croston’s method. They concluded that simple
statistical methods deliver good results as opposed to more complex methods, and
the importance of being able to quickly iterate models, which gives an advantage to
simpler models. Moreover, appropriate aggregations of items usually yield better
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results as opposed to predicting individual items. Seasonality and trend was also
analyzed, finding seasonality of 1, 2 and 4 quarters in the timeseries. Most of the
demand patterns where erratic without any clear patterns. Other items, such as food
commodities where also analyzed, however were not predicted since most of them
where in-kind donations, therefore having a smaller need to do demand planning on
their side.

Ultimately, demand forecasting matches supply with demand, lowering delivery
times, as well as inventory and procurement costs [1]. This is analogous to the for-profit
world where demand forecasting plays a similar role; therefore, similar methods can
be used in the humanitarian sector. It is, however, worth keeping in mind that the
humanitarian food-relief sector is bounded by funding-constraints, poor transport
links, and extremely volatile demand. This makes it generally more difficult to forecast
demand in the humanitarian sector than in the for-profit world [1].

2.4 Demand Forecasting in the For-Profit Sector

Similarly to the humanitarian sector, in the for-profit sector demand forecasts are
needed for efficient supply chain management [1]. Using historical sales data to
produce demand forecasts is a common way to plan supply and optimize inventory
based on these forecasts.

Statistical and ML models have long been used in demand forecasting, this
is usually combined with expert judgment to produce the final supply plans [22].
Baecke, De Baets, and Vanderheyden [22] showed that leveraging these two ways in a
quantitative method yielded accuracy improvements across the board. Two-methods,
were employed where one method integrated expert judgment from managers as a
feature into the models. The other method used the judgmental data as a restrictive post-
processing step to the statistical forecasts. The integrated model generally provided
improved results across the board. Older studies have generally used statistical models
such as ARIMA or exponential smoothing models, however with larger computational
performance, more complex ML methods have gained promise [15].

Overall within forecasting literature the Makridakis- or M-competitions [18]
have provided good benchmarks for the state of the art forecasting models. The
M-competition is a forecasting competition that has been hosted since 1982 [18].
There are other forecasting competitions, but the M-competitions are among the most
established with the largest prize pools. Consequently, they are frequently regarded as
the benchmark of forecasting competitions.

The most recent M5 competition [18] is a relevant study for this thesis since
the proposed problem was a hierarchical demand problem similar to this thesis.
Earlier competitions have seen the dominance of statistical models, however, M5 saw
the clear advantage of machine-learning based methods. Notably, the top 5 teams
all used variations of LightGBM models combining them in different ways, also
known as ensembles. The top performer of the M5 competition used an ensemble
of LightGBM models, trained on different levels of the hierarchy. In addition, the
forecasts were reconciled afterwards; however, the reconciliation method was not
mentioned. Hierarchical time series reconciliation [31, ch. 11] is a method of
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producing coherent forecasts from base forecasts. This has shown promise in many
fields where hierarchical or grouped forecasts are common [32]. Cross-learning was
another key takeaway from the M5 competition [18]. Cross-learning is the ability for
one model to learn dependencies between multiple time series and is a key advantage
of ML methods as opposed to statistical models [15]. Other notable takeaways were
the strength of ensemble models, where multiple models were combined to produce
more accurate forecasts, sometimes simply using average predictions between multiple
models.

Given the need for probabilistic forecasting, another M5-competition was held,
specifically for probabilistic forecasts [24]. Here again, the top contributions used
LightGBM models. Different methods such as directly predicting the quantiles were
used. However, some methods also derived uncertainty intervals with point-prediction
residuals from the in-sample set.
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3 Methodology

This section will give an overview of the methodology and theory used in this thesis.
Firstly, the research methodology will be covered, after which time series forecasting
theory and models will be introduced.

3.1 Research Methodology

The primary research methodology chosen for this thesis is design science research
methodology (DSRM), specifically for information systems research [25]. This thesis
falls well within the square of information science, since we are using a data-driven
approach to solve business problems for a HO. Moreover, the solution of building a
model to solve this problem is a design science approach. More formally, "Design
science creates and evaluates IT artifacts intended to solve identified organizational
problems" [25]. IT artifacts encompass methods, models, instantiations, and constructs.
In this thesis, the produced artifacts will be forecast models. DSRM has been widely
cited and is a well-established research methodology used in the field of information
science. As defined in DSRM [25], this thesis will be split into six activities as outlined
in Figure 2.

Process lteration
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Figure 2: DSRM processes model [25].

These activities are defined in an "nominal process sequence", this means that this
is a logical sequence structure for DSRM. However, Peffers, Tuunanen, Rothenberger,
et al. [25] note that it does not have to be strictly followed and there are multiple
entry points. Research entry points are where a study can start, for instance, if a
clear problem has been identified, one can directly define objectives for the research.
The authors have defined four different entry points. These entry points are based
on the context of the research. This thesis will cover all activities and is therefore a
"problem-centered initiation".

The first activity, Identify Problem & Motivate, defines a research problem. This
serves as the starting point for the creation of artifacts which will serve as the solution.
Moreover, the identification and motivation should motivate the reader and researcher
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to pursue a solution. This activity should also give relevant context in the field
which enforces the need for a solution. In this thesis, the problem of long-term food
demand forecasting is introduced in Section 1; moreover relevant context is given
in Section 2. RQ1 also serves to give more motivation to the problem and gives a
baseline for the existing solutions. The second activity is, Define Objectives of a
Solution. The objectives are what the artifact should accomplish; this should be tied
to the organizational problem we would like to solve, defined in the first activity. In
the case of this thesis, our objective is a higher accuracy for forecasts compared to our
benchmark. The objectives are defined in Section 1. Choosing appropriate evaluation
metrics is also part of this activity, the evaluation metrics will be defined in Section 3.

The third activity, Design & Development, is the development of the artifact used
to solve the defined problem. This is arguably the core of this work and encompasses
RQ2. In sections 3, we introduce the theory used to build artifacts, i.e. GBDT
forecasting models. The theory will be used for solving the problem of demand
forecasting within a HO. The application of theory will be introduced in Section 4.
Demonstration is the fourth activity and should show the usability of the artifact. For
this thesis, we will demonstrate the solution as WFP case study in Section 4. This is
also a part of RQ2. In the fifth activity, Evaluation, we compare the performance of the
artifacts; this can be done in many ways but usually includes some quantitative metrics.
For this thesis, models are compared to each other with relevant accuracy metrics.
Moreover, the robustness and explainability of the model will also be tested, seeking
to answer RQ3. Finally, Communication is the last and sixth activity; it compromises
how the findings are shared and communicated with relevant parties. The entire thesis
serves as the main medium of communication and is therefore also structured as per
DSRM activities. Moreover, the findings and implementation are also shared as code
to the HO; however, since this is classified information, the specifics will not be shared
publicly.

As stated earlier, DSRM is not strictly a linear structure but more often than not
iterates through steps based on findings. For instance, in this thesis when developing
models, activities 3-5 are repeated based on evaluation findings. Through this robust
and well-defined models can be presented based on some level of "trial and error".
The iterative steps will be discussed in Section 4. The study will be done based on
relevant timeseries and ML literature presented in the following section.

3.2 Time Series Forecasting

The idea that past and present values can be made to predict the future is the basis of
time series forecasting. In practice, this means finding and identifying patterns in data
that can be used to predict future values. In this thesis, the notation by Petropoulos,
Apiletti, Assimakopoulos, et al. [15] is used, time series will be notated as a sequence
of values Y = {y; : t € 1,...,T}, where T is the number of occurrences. Based on
these values, we want to predict future values in time 7 + &, where / is the number of
horizons in the future we want to predict. Predictions are notated as y,,. Predictive
methods are referred to as models f, for instance, a simple moving average (SMA)
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model predicts future values by,

. 1
Y741 = fsma(Y, k) = p Z Vi,

where k is the number of time steps from which the mean is calculated, k is known as
a parameter.

Multi-step ahead forecasting reefers to the practice of forecasting more than one
horizon i.e. & > 1 [15]. Generally, this can be done by directly predicting a certain
horizont € [T + 1, T + h], known as direct forecasting, or by recursively predicting
each horizon, known as recursive forecasting.

3.2.1 Direct Forecasting

A direct forecasting approach predicts multiple steps in the future by fitting one model
to each forecasting horizon t € [T + 1, T + h], this means a direct forecasting model
will consist of 4 different models.

741 = fre1(Y)
: (D)
Sr4n = fren(Y).

3.2.2 Recursive Forecasting

Recursive forecasting uses a general model to predict one step in the future based on
previous predictions.

j}T+l = f({19 s ,}’T})

j}T+2 = f({l’ s ’yT’j}T+1})
: (2)

Sr4n = fHL, .. VT VTls - - - ’)A’T+h})-

3.2.3 Time Series Characteristics

A time series can exhibit many characteristics, these are inherent properties of the
time series which influence its behavior. The simplest models decompose a time series
into three components: trend, seasonal and residual [15]. The trend is the smooth
underlying change in mean of the timeseries, trends can be split into non-linear and
linear trends. For instance if a humanitarian crisis is coming to an end the demand
has a negative trend because aid supplies are needed less, where as a humanitarian
scale-up might have a exponential positive trend. A time series where a pattern is
repeated every "season" has a seasonal component. The season can have varied lengths
depending on the data, for instance food prices can have a annual seasonal component,
where they are cheaper at harvest [13]. The residual is the inherent randomness of

21



the time series and can be thought of as noise, this is very hard if not impossible to
predict [15].

A important concept within time series forecasting is stationarity. A time series
is stationary if it is homoscedastic and does not have a trend (constant mean).
Homoscedasticity implies a constant variance, the opposite being heteroscedastic.
Stationarity is important when identifying whether or not a time series exhibits trends
over a longer period of time; moreover, some models require the assumption of
stationarity. Non-stationary time series contain a unit root, which exists when || = 1
in

Y=y te€.

A commonly used test for stationarity is the Augmented Dickey-Fuller (ADF) [33]
test, which tests the existence of a unit root. The null hypothesis being the |@| = 1 and
alternative hypothesis being |a| # 1.

A common way to characterize demand timeseries is to use a four-way classification
method based on average demand interval (ADJI) and coeflicient of variation (CV?).
Where ADI is the average time between demand nonzero values and CV? is the
variation divided by the mean squared of a timeseries. Introduced by Syntetos, et al.
[34], this method categorizes timeseries into smooth, intermittent, lumpy and erratic
timeseries based on ADI and CV? where the thresholds are visualized in Figure 3.
This classification method was originally proposed to choose appropriate statistical

Ccv?

A

Erratic Lumpy

0.49 A

Smooth Intermittent

: » ADI
1.32

Figure 3: Decision regions for demand pattern classification.

demand forecasting models. For this thesis, the same classification is employed as a
description of the data. Since this classification model is widely used, it will serve
as a comparison between other demand datasets, such as the ones used in Ouchtar,
t’Serstevens, and Rahman [27].

3.2.4 Exogenous Variables

Forecasting is dependent on past data of the variable predicted; however, accuracy
can be increased by adding other data points, called exogenous variables [15].
These data points are not being predicted but are added on the assumption that they
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correlate with the variable being predicted and thus increase the model accuracy. For
instance, Herteux, Raeth, Martini, et al. [16] showed that adding weather data and
macroeconomic features increased the accuracy of the models. Adding exogenous
data to models is not trivial and therefore not all models are able to incorporate this
type of data. Moreover, usually preprocessing is needed to transform the data into a
usable format; this is also known as feature engineering.

Feature engineering is the process of creating new features from existing data.
This can include creating lagged values, i.e. using certain past values with a specified
lag to predict future values. Features can also be combined to create new interaction
terms, for example by calculating ratios or sums. Additionally, features can be altered
or created via transformations; a common transformation is to normalize features
with different scales. Taking the logarithm is also a way to generate less skewed
data. Transforming heteroscedastic to homoscedastic data is an example of feature
engineering for statistical methods such as ARIMA [15]. When fitting or training
predictive models on timeseries, it is important to keep in mind the inherent time
constraint. This means not "leaking" future values into the past during training. For
instance, normalizing by the entire dataset can constitute time-leakage; therefore,
when normalizing timeseries, it is common to use a rolling normalization factor of
past values [15].

3.3 Machine Learning in Timeseries Forecasting

Machine learning can be defined as a framework for estimating functions on a training
sample. In this thesis, the definition of Friedman [35] is used. Consider the response
variable Y = {y1,...yr} € R” and explanatory variables x = {xi,...,xy} € R?*T,
the training set is defined as {y,,xt}f of known values. The goal is to create an
approximation f (x) of the function f*(x) mapping X to y. This is done by minimizing
a pre-defined loss function L(y, f(x)) over all (y, x). This can be formalized as

fr= al‘gm}nEL(y,f(X)) 3)

Since this problem assumes known response variables also referred to as "ground
truth", this constitutes a supervised problem. Supervised methods are models where we
can directly compare predictions with response variables with respect to a loss function
L, as opposed to unsupervised methods where the response variable does not exist
[36, p. 29]. Given the availability of historical response variables, most time series
prediction problems, including those in this thesis, are treated as supervised learning
problems. Furthermore, ML methods can be split into regression and classification
tasks, depending on the need and structure of the data. Classification methods seek to
assign y to a specific number of predefined classes. Regression methods, in contrast,
predict real-valued numbers V. In this thesis, only regression methods are considered,
since we seek to predict numerical demand volumes. Data is generally split into three
different subsets, train, validation, and test, when considering a ML problem. Models
are trained on the train sets and iterated based on the accuracy of the validation set. To
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avoid overfitting the model to a certain dataset, the final accuracy is measured based
on the test set [36, ch. 2].

ML methods usually have many parameters that need to be set before training, these
are called hyperparameters and can include learning rate, sampling, regularization,
complexity of model and more. There are methods of optimizing for hyperparameters
by iterating over the validation set accuracy. This process, often called hyperparameter
tuning, can increase the model’s predictive accuracy. However, there is a risk of
overfitting to the validation set; this occurs when the model becomes too tailored to
the validation data, potentially leading to a decrease in performance on the test set,
even if validation set accuracy remains high. Most ML models have parameters to
decrease the risk overfitting, one widely used method is regularization, notably L
(lasso) and L, (ridge) [36, p. 61-73]. These work by adding a regularization term to
the loss function which penalizes feature weights

n n
Ly =Loss+Ag, Z wil, Lp=Loss+ A1y, Z wl.z,
i=1 i=1

where A are the regularization parameters, one can also include both L; and L,
regularization [36, p. 61-73].

ML methods usually require large amounts of training data. Therefore, forecasting
small and complex time series will usually result in sub-optimal results. Statistical
methods are commonly fitted to individual time series; in contrast, ML methods can be
applied in a cross-learning way, where one model is trained on multiple different time
series. Cross-learning not only offers a larger training dataset, but can add relationships
not seen in some datasets to others, making the model in some cases more accurate
[18].

3.3.1 SHAP for Model Explainability

A major drawback with ML methods is their "black-box" nature. Since ML methods
are unstructured and highly complex, it is difficult to know "why" a certain output was
produced. Moreover, the stability and robustness are more difficult to infer than more
traditional methods [23]. A popular method for describing the relationships between
data for an ML model is SHAP values. SHAP is a framework for interpreting model
predictions by calculating feature importance using Shapley values [37]. Shapley
values are based in game theory and tell us how to fairly distribute a payout among
players based on a total payout or value. This value is defined by a value function
v, and given a subset of players S, the total value or worth of these players can be
computed by v(S). The Shapley values then explain how much of this total payout
should be given to each player. In the case of machine learning, the value function is
the model and players are features. Note v(0) = 0. The Shapley value for feature j,
given a value function v is

gy = S BE2EBIED g0 g v,
sSSP} P
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where § is the subset of players, i.e. features used in our model. Shapley [37] defines
a fair payout when it satisfies the properties of Efficiency, Symmetry, Dummy, and
Additivity. Let N be the set of all players.

Efficiency: The sum of all Shapley values of players equals the value function
of the total coalition }};cy ¢;(v) = v(N).

Symmetry: Given two players j and i, where v(S U {i}) = v(S U {j}) for all
JE€Nandi€ N wherei ¢ Sand j ¢ S, then ¢;(v) = ¢;(v).

Dummy: If a player j does not change the value function, regardless of which
coalition it is added to, then ¢;(v) = 0.

Additivity: For a game with combined value functions v* and v, the Shapley values
are ¢ + ¢;T, Vj e N.

A major downside is the computational cost of Shapley values, more precisely
the computational complexity grows by O(2"). Therefore, the values have to al-
most always be approximated [38, ch. 18]. A common tool for calculating these
approximations is the SHAP framework [23]. This is called a local model agnostic
method, meaning it can be applied to any model for specific predictions. However a
global overview can be visualized by plotting all local Shapley values for instance in a
beeswarm plot [38, ch. 18].

3.4 Statistical Models

In this thesis, models are categorized into naive, statistical and ML methods. Lines
between these are not trivial to draw and the convention of [15] will be used. Naive
methods are models that are very simple and range from simply predicting future
values as the last seen values to moving averages. Statistical methods use predictive
models based on sets of predefined mathematical formulations, examples of this are
ARIMA and exponential smoothing models. Finally, ML models are defined as models
that do not generate data based on a set of equations, thus allowing for the automatic
learning of relationships between data. In this thesis, GBDT models are categorized
as ML models.

3.4.1 Exponential Smoothing Models

This subsection introduces the exponential smoothing method, introduced by P. R.
Winters and C. C. Holt [39], [40]. Building upon SMA, they introduced a model
which predicts future values as weighted averages of past values, by decreasing each
past value exponentially via parameter a € [0, 1]

Vo1 = @y + (1 =)y “4)
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If we want to predict for multiple horizons in the future, the future horizon 4 can be
predicted iteratively by

Yo =aPppg + (1 =) 9pr- (5)

Equation (5) can be further expanded by adding a seasonal and trend component;
these can be added communicatively or additively. In this thesis the additive model is
used. This is done by decomposing the model into a smoothing, trend and seasonal
component known as Holt-Winters’ additive exponential smoothing (ES) model. This
can be formulated as

j}t+1 =L+ D+ Sty1-m»

U= a(y; — Si—m) + (1 —a) ({1 + bi—1)
by=p —ti—1) + (1 = B)bi—
S;=yYi = b1 = b)) + (1 =¥)Si-m

where b, is the estimate of the trend (slope) of the time series, 8 € [0, 1] is the
smoothing parameter of the trend, s; is the seasonal component with a smoothing
parameter y € [0, 1]. m refers to the seasonal time between each seasonal pattern.
Similarly, as in Equation (5), ES can forecast multiple time horizons iteratively.

The parameters of all exponential smoothing methods can be fit by minimizing the
sum of squared errors or SSE. Where

T

T
SSE= (=¥ =) &, (6)
=1

=1

this is a non-linear minimization problem that can be solved via different optimization
algorithms.

3.4.2 ARIMA

Auto regressive integrated moving average (ARIMA) introduced by Box, Jenkins,
Reinsel, et al. [19] is a popular forecasting model using a combination of autoregressive
and moving average models to predict future values. ARIMA is a generalization of
the ARMA model which seeks to predict stationary time series. The autoregressive
model can be formulated as

Vi=CH+P1y1+ oy o+ +dpyip + &, (7

where p is the order i.e. how many values in the past we will include in the model,
€ is the white noise at time 7, ¢1, ..., ¢, being the fitted parameters and ¢ being a
constant (mean) of the time series.

The moving average model predicts future values by taking the weighted sum of
past errors, formulated as

Vi=c+016_1+brg 2+ - +0,6_4, (8)
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where ¢ is the order i.e. how many errors in the past we will include in the model, ¢ is
the white noise at time 7, 61, . . ., 6, being the fitted parameters and ¢ being a constant
(mean) of the time series.

Summing Equation (7) and Equation (8) yields the ARMA model defined as

Vi=c+Oi16_ 1+ o+ -+ 06 g+ P1yim1 Hd2yi o+ +Ppyip+ €&, (9)

which can be fitted to a stationary time series by setting the parameters p and g. The
ARMA model can furthermore be generalized to non-stationary time series by first
creating a stationary time series, predicting the values and inverting the differencing by
what is here called integration. Differencing removes trends by taking the difference
of consecutive values, written as

Vi =Yt —=Yi-1 =y: —By; = (1= B)y;,

where B is defined as a backward shift operator, introduced for easier notation. Creating
a stationary time series can require consecutive differencing, depending on the data.
Multiple differencing can be expressed as

Vi = Y=y
= ()’t - )’t—l) - (Yt—l - Yz—z)
=Yt = 2Y-1+ Y12
=(1-B-B)y
=(1- B)z)’t-

In general, differencing of order d can be expressed as (1 — B)?y,.

The trend of a time series can be removed via differencing, but the data may still
be heteroscedastic. Heteroskedasticity can be removed by taking the logarithm of
the time series. In conclusion, a time series can generally be made stationary by
differencing and log operations. Combining differencing and Equation (9) yields the
ARIMA model defined as

Vi=c+0i6 1+ 0o+ 046 g+ D1y, + D2y, o+ + q’)py;_p +¢. (10)
Equation (10) is formulated by lag operators as
(1-¢1B—---—¢,B")(1-B)y,=c+(1+60;B+---+6,Be,

when fitting ARIMA models the convention of ARIMA(p, d, q) is used. Auto-ARIMA
is a algorithm which automatically fits p, d, ¢ based on the timeseries. It first identifies
the appropriate order of differencing d using unit-root tests. Where after different p
and d are iterated through choosing the most appropriate ones based on Akaikes’s
Information Criterion [41].
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3.5 Decision Tree Models

GBDT models seek to minimize the loss function by partitioning the features space x
into J disjoint sets Ry, ..., Ry such that y; is predicted as based on the region R; to
which x; belongs [36, p. 305-308]. In the context of a regression tree, this yields a
piecewise linear equation f. This can be defined by a linear combination:

J
f(x):ijl(xeRj), (11)
j=1

0 x¢R; . . :
X RJ is the indicator function determining if x is within a
X € R;
J

where 1(x € R;) = {
given set. {b j}{ are the weights, and {R j}{ represent the constant prediction value in
each respective region x. The set of regions {R j}{ and coeflicients {b; }{ constitute
the parameters fitted from the training data. The regions R; are formed by recursive
partitioning of the input space Xx. Initially, the entire input space represents a single
region, this is also called the root node of the tree. From this, new child regions R;
are created by optimally splitting the earlier parent region. These splits are optimally
chosen by minimizing a predefined loss function over the region R;. The splitting
is continued until a certain stopping criterion is met, the last regions are called leaf
nodes. For instance, the parameters max_depth and num_leaves are two such stopping
conditions. max_depth sets the maximum number of splits from the root node to a leaf
node. num_leaves specifies the number of end nodes or leaves. Highly complex trees
with large depth or number of leaves can lead to overfitting, and conversely shallow
trees to underfitting. One way to control the overfitting is to set a min_data_in_leaf
parameter. This parameter sets the minimum number of training samples in a leaf, if
this minimum set is reached, no further splits are performed [36, p. 305-308].

3.5.1 Gradient Boosting Decision Tree

This section introduces a variant of decision tree models called gradient boosting
decision tree (GBDT). This is a multi-tree model consisting of M weak learners which
are iteratively calculated based on a loss function. The iterations follow the steepest
descent with respect to the gradient of the loss function. GBDT was introduced by
Friedman [35], where the problem is defined as a "predictive learning problem".

GBDT estimates f* formalized in 3 by only considering a set of parameterized
functions f(x, P), where P = {Py,...,P;}. These functions can be used in an
"additive expansion"

M
FO6 B and]) = D Buh(X;am), (12)
m=1

where & is a general function parametrized by the parameter vector a = {a, as, ... }.
However, in practice, when using a finite data sample {y;, x,}lT, one cannot accurately
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estimate E,[-[x] for each x;. For this, a method of parametrized optimization is
proposed where 12 is expanded to

N M
in, ), L0 ), Bhix;.a),)). (13)
a m=1

{Bunsan}y = arg
By o

Equation (13) defines a complex and large optimization problem; solving this directly
can be infeasible, especially with a large number of additive components M and
depending on the nature of the loss function L. One possible solution is using a
"greedy stagewise" approach

N
(B> am) = arg min = Z} Lyi. fut (%) + Bh(%i, ).

where the estimated function can be computed as

fm(x) = fm—l(x) +ﬁmh(xa a,).

Here fj, is the final additive model, where fj is called the "base learner" and each
additive step B, h(x, a,;,) is called a "boost". One can reach a local optimum by
iteratively calculating f,,, and minimizing the loss L(y;, f;,—1(X;)). This can be done
by computing the unconstrained gradient defined as

_OL(yis fm-1(Xi)
of(x)

which gives the steepest descent direction —g,,. However, the gradient is only defined
at data points {xl-}llv and therefore is not defined for other x-values. One can solve this
by choosing a h(x; a,,) that is most parallel to —g,,, which generalizes the solution to
all x by

—gm(x;) =

N
(B» ) = argrgiﬁn;—gm(x,-) — Bh(x;;a))>.

From this, a generalized steepest descent search can be formulated, also known as the
unconstrained line search

N
pm = argmin 3 L(yi. fy-1(%) + ph(Xi:ap)).
i=1
After which the estimated function can be updated as

Sn(X) = fin-1(X) + pmh(X; ap,).

For this algorithm, any differentiable loss function can be used. Most commonly
standard least squares is used, due to its computational efficiency. & can in principle
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be generalized to any parametrization function; in this case, in this case we apply it to
regression decision trees as defined in 11, yielding

J
Fn(X) = fu1 (%) + pm D bj1(x € Ry), (14)
j=1
where b; and R; are the parameters to be fitted. Solving directly for 14 works
well for the training set, but this can quickly lead to overfitting which reduces the
generalizability of the model. To counter this, it has been found that regularization is a
good approach by

J
S (X) = fo1(X) +v - ppy ijl(x € Rj)a
J=1

where v has been added to 14 which can be tuned for 0 < v < 1. Where v is commonly
referred to as learning_rate, a higher v can lead to overfitting and conversely a smaller
v can lead to underfitting. Another parameter that is commonly tuned in GBDT is M
which is the number of decision trees in the model, also known as num_estimators.

3.5.2 LightGBM

Proposed by Ke, Meng, Finley, et al. [21], LightGBM is a GBDT model that introduces
novel features to traditional GBDT to increase efficiency and accuracy. LightGBM
expands upon GBDTs by adding two features: Gradient-based One-Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB). Ke, Meng, Finley, et al. [21] showed
that utilizing GOSS and EFB sped the training process by up to a factor of 20 while
retaining similar accuracies on multiple public datasets.

Sampling is a commonly used strategy in ML to reduce overfitting and increase
training speeds [21], by only using a subset of the training set for an iteration of
training (boost in GBDT). However, within GBDT there is no inherent weight given
to a feature. To introduce sampling to GBDT Ke, Meng, Finley, et al. [21] propose a
way of measuring "importance" of a feature based on their corresponding gradients in
the training process. Where larger gradients, which will ultimately lead to the largest
loss minimization, are kept and features with a smaller gradient are not included. The
logic being that features with small gradients are already "learned" or "trained" and
high gradient features are "under-learned" [21]. This method of keeping high gradient
features and randomly dropping "learned" or low-gradient features is called GOSS.

The other novel approach introduced in LightGBM is EFB. EFB introduces a
nearly lossless way of bundling certain features, which effectively reduces the number
of features in training. Since there are usually sparse features that are seldom non-zero
at the same time, these features can be combined into one. This can greatly speed up
training times without loss of information.

3.5.3 Loss Functions

Different loss functions can be used, such as squared loss, or simply absolute error
[42]. Loss functions have a large influence on the model training since they define

30



the gradient by which the model will be optimized. Therefore, careful selection of
loss functions should be considered [42]. Squared losses optimize for the mean and
absolute error loss for the median. For squared losses, large values have a bigger
impact than losses based on the absolute error; therefore squared losses are generally
more influenced by outliers. Losses such as Huber loss or log-cosh have a tradeoff
where for small values a squared loss is applied and larger values a linear absolute
error-like value is taken [42]. For instance, the Huber loss is defined as

EEERE if |(y -9 <6 s
e (|(y -9 - %6) otherwise (15)
where a ¢ is defined beforehand. The loss functions should be similar to the evaluation
metrics of the model, however this alignment is not always possible. For instance, for
some GBDT models such as LightGBM the hessian and gradient have to be calculated,
therefore a loss function which does not have a easily calculated gradient or hessian is
suboptimal.

3.6 Evaluation and Benchmarking

When developing forecasting models or methodologies, there is usually a need to
measure its success. One should be vigilant when benchmarking models since it is
common to choose metrics that exacerbate the proposed model’s performance. This
thesis follows the a benchmarking methodology proposed by Petropoulos, Apiletti,
Assimakopoulos, et al. [15] which is defined by the following five steps:

1. New methods should be compared to a larger set of suitable benchmark methods.
2. Methods should be compared with a diverse set of metrics.

3. Testing should take into account if differences are statistically significant.

4. Methods should be tested with a rolling sample window.

5. It is advised that the code be produced with a open-sourced programming
language such as R or Python.

3.6.1 Point Forecasting Evaluation

In this thesis, we define quantitative measures of success evaluation metrics. One
model can have and arguably should have multiple evaluation metrics to get a good
overview of the behavior of the forecasts. There are a variety of evaluation metrics for
different purposes. The most simple metric is the residual of the model, this is simply
the difference between the predicted and true value for a specific timestep ¢

€& =9 =i (16)
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Summing this yields the total of the residuals of a time series, this is sometimes

referred to as the bias,
T+h

BIAS = D e
hi=
The bias provides an indication of whether the model tends to underpredict or
overpredict, but it does not quantify accuracy because positive and negative errors can
offset one another. The mean absolute error (MAE) addresses this issue

1 T+h
MAE = E;'G’l' (17)

MAE is a widely used metric for model accuracy, one caveat is that it optimizes for
the median [31, sec. 5.8]. In many cases, it might be preferable to optimize for the
mean. For instance for intermittent demand data containing a large amount of zeroes,
the median would be very low, however one might want to keep a "mean" stock and
therefore predict higher values, corresponding to the mean. Optimizing for the mean
can be done by evaluating forecasts with squared errors such root mean squared error
(RMSE) [31, sec. 5.8]

Metrics like MAE or RMSE give a good sense of accuracy for the model, however,
when comparing multiple time series with different scales a relative or scaled error is
commonly used. This is so that larger timeseries do not dominate the error metric, given
that we want to measure the relative accuracy of all timeseries equally. A common
approach has been dividing the residual by the actual value yielding a percentage-based
error. Percentage-based errors work for time series with small nonzero values, but
this metric fails when the actuals are zero. To solve this Hyndman and Koehler [43]
proposed a scaled error which scales a given metric by a naive model error, scaling
RMSE would yield RMSSE,

% ZT+h 2

RMSE =T &

RMSEnaive = 1 T
\/T 2

RMSSE = .
zz(yz - yl—1)2

Scaled errors have been widely used, especially in intermittent time series with many
zeros [18], [43]. Scaled errors also take into account the variability of historical
data, by weighing stable series less giving them higher losses. This makes sense
since constant series should be easier to predict and therefore be penalized more.
Additionally, scaled errors exhibit greater stability compared to metrics like relative
errors, which may exhibit infinite variance [43].

It is crucial that evaluation metrics align with business requirements, and the
metric’s explainability is also a key factor, especially for a non-technical audience
[15]. Sometimes these criteria align but most often not. For instance, MAE is much
more logical than RMSE for most people to understand. For this reason, it is usually
needed to use several metrics for different purposes.
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3.6.2 Probabilistic Forecasting Evaluation

For evaluating probabilistic forecasting, one cannot simply just look at one point,
but should account for the predicted distribution. For quantile predictions, one can
calculate the score for each quantile, known as the quantile loss, or pinball loss (PL)
[31, sec. 5.9]

T(y - fl,T)’ Y2 fir

(I-7)(fiz =), ¥ < fir
Where 7 is the quantile and f; - is the predicted level for quantile 7 at time 7. PL gives
the accuracy metric for one quantile, to get a general metric for a predicted distribution

over all quantiles one can simply take the mean pinball loss (MPL) over all quantiles
[24]

PL:(fir,y) = { (18)

1
MPLy,y = = > PLe(fir¥), (19)
n
T€eQ
where 7 is the number of quantiles and Q is the set of all quantiles. Another metric
related to quantiles is referred to as coverage. This metric evaluates the proportion of
values that fall below a given quantile; values that are near the quantile are considered
favorable.

3.6.3 Significance Testing

Simply taking the mean of the metrics are a good way to get a sense of difference
between the models. However, this method can sometimes be flawed and these
differences could simply be different by chance. A common approach in testing
the statistical significance between two timeseries is the Diebold Mariano test [15].
However this can not be applied to grouped timeseries data as is, moreover this test is
best used with a long prediction horizon. More generic testing can also be done by
simply looking at the differences in error metrics. One such test is the permutation
test. The permutation test is a non-parametric test to see if two metrics are derived
from the same distribution ie. same model [44]. The test has the following hypothesis.

* Hy: Prediction errors from both models have equal distributions.
* H;: Prediction errors from both don’t models have equal distributions.

The test works as follows, let ¢ 4 be the errors from model A and ez errors from model
B.

1. Calculate d; = es; —ep;,Vi=1,...,n
2. Calculate the observed mean difference 7, = % ?z 1 di
3. Repeat m times:

a) Flip signs of d; randomly foralli=1,...n

b) Calculate T = % oy di
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4. Calculate the significance level p = —k_ where k is the rank of |T,ps| among

m+1?
all |T'| ordered from low to high

3.6.4 Evaluation Data

Evaluating a model is an iterative process of trial and error, especially when evaluating
ML models which can be optimized with hyperparameter tuning. The best practice
is to always keep one part of the data outside of validation and training; this will be
referred to as the test set sometimes called the hold-out set [31, sec. 5.8]. For some
models, for instance ARIMA models, a sufficient split is train/test data, where the
model is fitted on the train set, evaluated and then finally when parameters are chosen,
tested on the test set. However, models such as GBDTs usually need another set,
the validation set. Where models are trained on the train set, then the model is used
to predict the validation set, accuracy is measured, and hyperparameters are tuned
accordingly. This is done until a sufficient accuracy is reached. Then the models are
finally tested on the test set. This kind of split minimizes the risk of overfitting the
model to a specific time.

A common method in ML to reduce overfitting and expand the train/validation set
is to use cross-validation [15]. Where the train/test set are permuted and retrained,
the average accuracy is then calculated and the model evaluated. Usually, random
permutations are sufficient; however, in time series, where there is a temporal order
constraint, this is not possible, since the train set always needs to be before the
validation or test set. Multiple time series specific cross-validations have been
introduced by keeping the temporal order. Expanding-window cross-validation keeps
the same training start time but moves the end training period forward for each
fold (see Figure 4). This is the most common time series cross-validation strategy;
however, other cross-validations can also be used. Cross-validation is crucial to
building robust and accurate models and this was one of the key takeaways from
the M5 accuracy competition [ 18], where all top teams tuned their models using an
undisclosed cross-validation strategy.
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Figure 4: Expanding window cross-validation train/test sets [31, sec. 5.10]. Blue
dots are within the train set, orange test set and grey are kept out.
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4 Case Study

This thesis presents a case study on forecasting food commodity demand to support
and enhance the World Food Programme’s (WFP) global supply chain planning. This
has been done in collaboration with WFP’s Supply Chain Planning & Optimization
Unit. To estimate demand, historical data of "handovers to cooperating partners’
will be predicted. Handovers are the amount of particular commodities that WFP
delivered to its cooperating partners consisting of local and international non-profit
organizations. These cooperating partners are then responsible for the distribution
to beneficiaries. This data is categorized by ’activity type’, which includes different
WEFP activity categories like general food assistance, malnutrition prevention, and
school feeding, among others.

The data is per country office (CO), commodity, activity type and period. More in
depth explanation of the target data is introduced in Section 4.2.1. This section gives
an overview of the case and also how the study will be conducted in practice. An
overview of the data is given, after which the model selection process is introduced.
Then the evaluation process is described, this process has the aim of answering RQ1
and RQ2. After which, the methods analyzing the robustness and explainability of
the models is introduced, this is aimed at answering RQ3. Finally, a probabilistic
modeling approach will be implemented based on the chosen model to answer RQ4.

4.1 Overview

In WFP, COs can purchase commodities directly from suppliers or prepositioned WFP
corporate inventory. Moreover, COs can also receive direct commodity contributions,
known as in-kind contributions. These commodities are then handed over to cooperating
partners, who then distribute the aid to beneficiaries. Implementations can happen
through various channels, including programs such as school feeding, crisis response,
resilience building, and others. These are collectively referred to as activity-types. A
simplified overview of the WFP distributional network for one country office has been
visualized in Figure 5.
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Figure 5: WFP country office simplified supply chain aid distribution network, the
actual network is much larger.

COs make plans for how much food they expect to distribute for each month in
the future known as implementation plans (IPs). These plans are based on the needs
of beneficiaries and take into account funding and operational constraints to reach a
realistic IP. No food is assumed to be needed if no plan is submitted. Food commodities
can be stored in local inventories, therefore implementations and purchases can have
a time lag depending on the local inventory levels and prepositioning strategies by
the countries. While following an overarching framework, these plans are generally
developed independently by each country office, with variations in structure and
approach reflecting the specific contexts and practices of each CO. This is also
apparent in the difference in the profiles of implementation plans between countries.
Note that these are not used directly as demand forecasts for the purpose of corporate
inventory prepositioning. This is due to the IPs having varying accuracy across
different countries and are on average positively biased.

Corporate prepositioning can decrease the lead time for COs from when they
receive donor funds to the final distribution. This is opposed to procuring from
food suppliers after funding is received. It also facilitates cost savings, especially
through purchasing in bulk at lower prices and by positioning supplies in corporate
inventories, accessible to multiple COs [28]. COs cannot always directly purchase
and preposition food due to funding and inventory constraints. However, this can be
done at a corporate level in anticipation of CO purchases. Moreover, since funding
and needs are uncertain, the future plans and purchases are also uncertain. Therefore,
corporate stock prepositioning and upstream supply chain optimization are highly
dependent on demand forecasts and their probability distributions. Some demand
profiles are assumed to share characteristics between countries. Therefore, a general
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forecasting model is proposed, that can "learn" from multiple commodities, countries,
and activity types. This creates a grouped multi-horizon forecasting problem.

IPs provide much information about the demand in the future, in particular on
planned scale-ups and scale-downs of operations. However, some events leading to
scale-ups or scale-downs are unpredictable. Therefore the related changes in demand
are not captured in advance in the IPs, nor in any other exogenous data available.
Examples of such sudden and unforeseen events can be political shifts, coups, new
conflict or natural hazards. The choice has been made to treat these events similarly to
other data. In practice, it is not really possible to remove such data, since these events
are not clearly defined with a start and end date. Furthermore, scale-ups can restructure
the operations, thus permanently changing the nature of the demand data. Ouchtar,
t’Serstevens, and Rahman [27] proposed treating events such as scale-ups differently
by, for example scenario planning. Scenario planning would be a interesting avenue of
future research, however it is out of the scope of this thesis.

4.2 Data

This section introduces the datasets used for model training. The target data is
predicted on country, commodity and activity type granularity, these target timeseries
are referred to as segments s € S, where S is the set of all segments. The segments have
been anonymized via a mapping with prefixes ISO for countries, CO for commodities,
and AC for activities. So when a specific segment is referred to, it is of the form
(ISO0X, CO0X, ACOX), where X is the anonymization mapping number. The data
being used is from January 2016 to March 2025, the periods are monthly and will
be shown in month/year format and referred to as Period. The choice of external
data points is based on availability and earlier research, notably [3], [16], [17]. The
LightGBM model will be trained on historical handover data. To improve accuracy
and test the adding of exogenous variables more features will be added. Since there
is a rich historical dataset of IPs, these will be included. Moreover, IPC data [6],
macroeconomic indicators including GDP growth and inflation indices per country
[45]. WFP internal features such as inventory levels and corporate level funding data
will also be included.

4.2.1 Handover Data

The target data that we are seeking to forecast is the actualized demand in metric tons
(MT), this data is available for the periods 01/2018-04/2025. In Figure 6, the total
aggregated demand is shown; this includes all summed segments.
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Figure 6: Total demand aggregated over countries, commodities and activities.

Each segment has its own "life-cycle"; this is a distinction between when a segment
is active or inactive. Inactive segments refer to the period when a specific commodity
in a particular country is not utilized for a given purpose. These pertain to segments
without active IPs during that timeframe. Examples of segment life-cycles are shown
in Figure 7. The number of unique segments are displayed in Table 1, the amount of
unique active segments during the test set (04/2024-03/2025) is also highlighted.
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Figure 7: Four different segments, the inactive period is marked with red background.

Table 1: Summary of Unique Values and Segment Combinations

Description Count
Countries 80
Commodities 47
Activity Types 19
Total Unique Segments 1602

Unique Active Segments During Test Set 817

Looking at total demand data in Figure 6 can be misleading since this aggregate
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data is not directly being forecast. Moreover, operations with large volume dominate
this plot "hiding" smaller operations. A larger set of segments has been visualized in
Section 7. Many of these series are highly non-stationary with different trends, these
larger segments rarely have any zero demand values which points to lower demand
segments being mostly zero, as can be seen in Figure 7.

Key statistics about the handover data is shown in Table 2. The data has a large
number of zeroes with sporadic demand, approximately 50.07% of values being zeroes.
Moreover, the dataset is extremely skewed, with most demand being small and some
demand being many magnitudes larger. This underlines the volatility of the demand,
which is visualized in Figure 8, where the data has been filtered excluding very small
values and very large to get a better understanding of the distribution. This reflects the
nature of HOs, having many smaller operations and a few large ones, where a lot of
assistance is needed. It also poses a major challenge in developing a general predictive
model. The distribution of the data is similar to other intermittent demand datasets,
such as in the M5 dataset [18].

Distribution of Handovers (10 < Handovers = 5000 MT)
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Figure 8: Histogram of actualized demand for demand within [10, S000]MT, 26984
data-points filtered away below 10MT and 1036 above S000MT.
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Table 2: Basic Statistics of Actual Demand

Statistic Value
Count 75889
Mean 369.93
Std 2884.42
Min 0.00
25% (Q1) 0.00
50% (Median) 0.00
75% (Q3) 54.66
Max 138081.05
Zeroes Count 38477
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Figure 9: ADI/CV? demand patterns classification

To get a more accurate sense of the demand characteristics a widely used 4 class
categorization of demand patterns is used [34]. As visualized in 9 around 74%
of timeseries are lumpy, 12% intermittent, 10% erratic and 4% smooth. This also
highlights the difficulty in forecasting these models especially with statistical models

which generally perform quite poorly on other than smooth data.
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4.2.2 Implementation Plans

Implementation plans are the demand plans for individual COs. The IPs are de-
rived from a needs assessments combined with funding forecasts and implementa-
tion/operational constraints. Examples of IPs have been shown in 10. These plans
can give a sense of scale or changes in trends which classical statistical models do
not pick up on, therefore, these could provide useful exogenous features. This is
analogous to the study by Baecke, De Baets, and Vanderheyden [22], who found that
adding judgmental forecasts as a feature, yielded accuracy gains in demand forecasting
models.

126 Total Averge Implementation Plans 01/2018-04/2025

12 Month Plan Average Total (MT)

Month-Year

Figure 10: Average over 12 month ad-hoc plans summed.
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Figure 11: Examples of IPs for the test set.

When analyzing the IPs compared to handovers (see Figures 6 and 11 ), a consistent
positive bias can be identified. This is most likely due to funding needs not being
met. This is because many COs create plans based on "best-case" funding scenarios.
Therefore, a simple heuristic model is proposed where this bias is minimized by
calculating a rolling ’bias ratio’ over a specified window N,

1 N y
_ 1 t-n
r,—an:;

9
Xtt—n

where x;,_; is the IP for time ¢ at reporting period ¢ — i. This bias is then removed
from the IP for the UIP forecast,

YTen = XT+hT X TT. (20)

this data will be referred to as the unbiased implementation plan (UIP), and will be
compared with the other models. Biases of 3,6,12 months will be compared on the test
set and then the best models will finally be tested with backtesting. UIP and the IPs
are considered judgmental forecasts, since these are made by individual COs based on
the needs and plans of the operations.

4.2.3 Inventory Data

WFEFP internal inventory data is used for each segment. We consider two main data
points: total inventory utilization and the relative utilization based on total inventory.
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A country office’s inventory level relative to its IP volume gives an indication of its
likelihood to implement a higher or lower portion of the plan. For example, if a country
has high inventory levels, it is likely they can distribute as much as planned, at least in
the first few months, while low inventory makes it more likely they will implement
less than the IP.

4.2.4 Annual Organizational Data

WEP global metrics are included as well. These are available on an annual basis for
the organization and show large-scale trends in funding, expenditure, and inflation. All
data is sourced internally within the organization. All of these metrics have a rough
annual forecast that will also be included. These are global funding (USD), global
expenditure (USD), global average food prices (USD/MT), food price index, food ratio
expenditure, inflation rate, inflation index on other costs, food expenditure (volume
index). Note this data includes historical actualized values as well as future forecasts.

4.2.5 Macroeconomic Indicator Data

To test the model’s capacity to use external macroeconomic data we have chosen to
test inflation and GDP growth from the International Monetary Fund (IMF) World
Economic Outlook Report 2025 [45]. This report includes annual real GDP growth
data and global inflation rates for average consumer prices. This thesis also includes
the outlooks for the year 2025 given in this report [45]. Since food demand is heavily
funding-driven [7, p. 36], it is assumed that GDP growth could reflect this; this will
become apparent when testing the feature importance in the models. Inflation is
included as the cost-of-living crisis is a major contributor to food insecurity globally
[5] [5]. These datasets contain historical values as well as future forecasts, data on
historical past forecasts where not available. This means that the models are trained
on historical values and on inference forecasts will be used.

4.2.6 Food Insecurity Data

Integrated food security phase classification (IPC) [6] data has also been included,
this data reflects the number of people within a specific IPC index rating from 0 (food
secure) to 5 (famine). This should strongly affect the needs of the people on the ground
which is correlated with food demand somewhat [6]. However this data is problematic
since it is quite sparse. The IPC data comes from reports published by the Food
Security Information Network (FSIN), FSIN publish data on crises stricken areas,
therefore data is not available on a majority of countries and periods in the dataset that
is being predicted in this thesis. The available rows with IPC data is about 15%, this
data is updated infrequently by reporting from food insecure areas in the world. To
populate a larger portion of the data the choice has been made to forward fill the rest
of the data. This expands the data availability to around 53% of the rows. The IPC
values are joined with the reporting period columns, ie. the features will be the latest
IPC values available at the time of inference, this way there is no time leakage.
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4.3 Model Selection

For fair comparisons, a mix between naive, statistical, judgmental and ML methods
should be chosen [15]. For the naive method, three different moving-average models
will be initially chosen, with a window of 3,6 and 12 months. For statistical methods
Auto-ARIMA [41] and Holt-Winters exponential smoothing (ES) [39] are chosen.
These methods are widely used, and are therefore suitable benchmarks. Moreover
Ouchtar, t’Serstevens, and Rahman [27], that ES and MA performed relatively
well, while ARIMA models performed poorly for humanitarian demand forecasting.
Ouchtar, t’Serstevens, and Rahman [27] found that triple and double exponential
smoothing where relatively accurate on forecasting humanitarian demand. For a fair
comparison, a double, triple and single ES are fit on each timeseries and the best
model is chosen by choosing the one with smallest SSE 6. For this study, the analysis
was limited to additive ES models. This decision was primarily driven by the nature of
the demand data, which is characterized by high intermittency and frequent zero-value
periods. Multiplicative seasonality is less appropriate for such series, as seasonal
effects are not expected to scale with a level that is often zero or close to zero. IPs and
UIP 20 will also be included, and their accuracies compared; these are relevant since
they show "judgmental forecasting" models. Choosing this mix of models will give an
overview of the performance of naive methods, statistical methods and judgmental
methods with the IPs.

The choice of testing ML models for this problem is mainly based on the use of
exogenous data and the nature of the timeseries dataset. Since the dataset is large and
grouped within different categories, similar to the M5 forecasting competition, there
is large potential for cross-learning. Moreover, there is much evidence to support the
inclusion of many exogenous variables to improve accuracy [16]-[18]. This strongly
points to ML models having the potential to deliver more accurate forecasts as opposed
to statistical methods, which have to be fit to individual timeseries and have limited
inclusion of exogenous data.

Recently, there have been developments within time series forecasting with ML
methods. Methods such as TFT [20] and LSTMs [17] have shown promise and
could provide good results. However, these methods most often come with a large
computational cost and complex hyperparameter tuning. This leads to slower training
times and less possibility to quickly iterate over different versions of the models. As
stated by Ouchtar, t’Serstevens, and Rahman [27], models within the humanitarian
sector should be quickly iterable. GBDTs have shown large promise for forecasting
tasks [18] and are well suited for the type of tabular data used in this case. Moreover,
GBDTs, especially LightGBM [21], are very quick to iterate over large datasets. They
also make it easy to include exogenous data points. As shown in Makridakis, Spiliotis,
and Assimakopoulos [18], LightGBM also leveraged cross-learning very well, which
could provide accuracy improvements in our case. Moreover, due to the quick training
and inference of LightGBM, these models can be used in ensemble [18], being able to
easily be applied in a hierarchical forecasting fashion, predicting timeseries at different
aggregation levels and then reconciling [31, ch. 11]. Ensembling also provides the
possibility of probabilistic predictions via direct quantile forecasting or parametric
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probabilistic forecasting via methods such as LightGBMLSS [46].

The choice of including only one ML method in this thesis is to better finetune and
analyze the results. A comparison could be made between multiple different models,
however this would "water down" the analysis for this specific case. Since the dataset
is complex and requires a large amount of time for feature engineering, the choice of
only including different versions of LightGBM has been made. Moreover, since a goal
for this case is to move the model into production, the robustness and explainability
will be important. Doing this analysis for multiple models would not fit the scope
of a master’s thesis. For the LightGBM models a direct (multi-model) version and a
recursive version will be tested.

4.4 LightGBM Implementation and Feature Engineering
4.4.1 Feature Engineering

LightGBM is the only model that uses exogenous data and therefore requires some
feature engineering. A recursive and direct version of LightGBM will be implemented
and tested. The recursive model creates one LightGBM instance and fits existing
data on this model. During inference, the model will recursively predict each forecast
horizon, the past predictions will be fed into the next horizon as lagged values. This
is as per Equation (2). The direct model will create 4 LightGBM instances, each
instance will predict one specific future horizon. The instances are analogous to f;
in Equation (1). Most exogenous data are fed into the models as such, for demand,
historical demand values lagged and moving average values are created. For the
recursive model the lagged handover data is updated iteratively. All the features are
shown in Section 7.

4.4.2 Hyperparameter Tuning

For both the direct and recursive models, the same set of hyperparameters will be used.
The learning rate v, L1 and L, regularization, number of estimators m, the feature
fraction f, number of leaves in the tree J, minimum data per leaf f;. There are many
more hyperparameters that can be chosen for the LightGBM model; however, as a
starting point, these are generally considered important for training, especially number
of estimators and learning rate. Since the dataset is extremely volatile, regularization
terms are added to avoid overfitting. These hyperparameters will be trained first
on a validation set with a larger search range, after which they will be tuned via
cross-validation over 20 folds in the past. This training seeks to first narrow the scope
of the parameter values, after which cross-validation will avoid overfitting. Finally,
after cross-validation, the models will be evaluated based on the test set as well as a
final cross-validation. The average cross-validation metrics and test set metrics will be
used to compare models.
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4.4.3 Sliding Window Normalization

The timeseries are non-stationary, which is apparent from simple visual inspection
(for more timeseries, see Section 7). Therefore, a variant of a sliding window moving
average transformation [47] is proposed. The goal is to remove large trends by dividing
the existing time series using simple moving averages. Since the data is highly
intermittent, it can be tricky to scale; therefore, the moving average of the IPs has also
be included. The normalization factor for scaling is defined as

t+12

1 j: Yi z:xti
fact - _ - 4+ _— 21
norm_ractor; (i -y 1 L 1 s ( )

where x; ; is the planned implementation at time ¢ for future time i. The normalized
values are then simply divided by the norm factor

norm _ Yt
Vi = .
norm_factor;

Notable is that this method does not remove variability from the model. The choice
of scaling the data is to remove scale between timeseries which the models would
otherwise have to learn. Moreover, this removes changes in trend in the timeseries. For
instance, the segment shown in Figure 12 has a large peak during 2023 and otherwise
relatively low volumes. By normalizing the data, the model can learn the changes in
data and does not need to learn the changes in scale. This is analogous to differencing
non-stationary datasets. The choice of normalizing instead of differencing is to be
able to take into account IPs which are good indicators of changes in scale. Moreover,
there is a risk that models will predict differences incorrectly when there is a large
change in scale and therefore all predictions after that will be largely incorrect.
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Figure 12: Example of a segment normalization transformation, removing the trend.

For some cases, the scaling is not possible at training; these timeseries will not
be trained on. For inference, if normalization is not possible, meaning there are no
historical values in the past 12 months and no plans, the predictions are set to zero.

4.4.4 Loss Function

The selection of an appropriate loss function is a critical step in model development,
as it directly guides the optimization process during training [35]. Given the different
characteristics of the raw and normalized data in this study, two distinct loss functions
were chosen for the LightGBM models. For the raw model, the standard RMSE was
used as a loss function, this closely resembles the evaluation criteria, optimizing for
the mean. However, RMSE is sensitive to large errors, which can disproportionately
influence model training when applied to data with a heavy-tailed distribution, as is
the case here. To address this sensitivity to outliers, a different strategy was employed
for the models trained on the normalized data. For these models, the Huber loss (see
Equation (15)) function was selected. The normalization process brings all time series
to a comparable scale, which makes it possible to use a single, meaningful ¢ value for
the Huber loss across all segments. This offers a distinct advantage, as applying Huber
loss to the raw, unscaled data would require a different delta for each time series.
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4.5 Evaluation

For evaluation, we are concerned with the accuracy of the model as well as the bias.
Bias is important since models can sometimes systematically under- or overestimate
values, which is unwanted. A cumulative bias is proposed
D.ses IBIAS|

y

CBIASP =

where y = ﬁ 2iseS % Z,T:Th vs. 18 the mean of the target over all segments and |S] is
the count of all segments.

However, accuracy is also an important metric; therefore, a score that combines
accuracy and bias has been proposed as the main evaluation metric. For forecasting
intermittent demand we are concerned with optimizing for the mean and not median,
therefore a variant of RMSE is wanted. Since the dataset contains multiple time series
a scaled or percentage-based error metric should be used for comparisons between time
series. Moreover, the time series exhibit intermittent demand patterns with multiple
zero values. This makes percentage-based evaluation metrics unstable due to division
by zero. Therefore RMSSE (see Section 3.6.1) will be used.

The aforementioned metrics are for single time series in the dataset; however,
these should be combined for an overall score. Similarly to Makridakis, Spiliotis, and
Assimakopoulos [18], this thesis proposes using a weighted sum of the metrics. A
weighting based on historical volume is proposed

T
_ 2i=r—12 Vst

22
Ws 12 ’ ( )

where wj is the rolling 12-month mean for the segment s. Yielding the total weighted
accuracy of a prediction

WRMSSE = Z w,RMSSE,.

seS§

The inclusion of a weight metric not only gives importance to the current scale but can
also be altered in the future. For this thesis, the total volume is optimized; however,
the weight metric could in the future be changed to the dollar value of the commodity,
since this is arguably more important than total volume. The dollar value of the
commodities has not been taken into account as these data were not available for all
commodities during the writing of this thesis. For hyperparameter optimization we
want to tune the model based on one metric, for this we will define

1
Score = WRMSSE + ElCBIASPL (23)
weighting the bias metric by 1/2 since ultimately the accuracy is more important,

however the bias should still be taken into account. The absolute value of the bias is
taken since values closer to zero are preferable.
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Having more easily explainable metrics is also important for effective commu-
nication. Therefore MAE and relative MAE (rMAE) will be included for easy

interpretation. Where

MAE
MAE = ——,

Yy
where y is the average target value for a specified period. Notable is that rMAE is not
scaled per segment, but by the total demand during the evaluation period, this means
that larger scaled timeseries will likely dominate the metric.
For probabilistic forecasts a MPL will be used defined in Equation (19), for a
accuracy metric over all quantiles. We further define a weighted sum similar to [18], as

WMPL = Z w,MPL,

ses

where w; is the segment specific weight defined in 22.

Accuracy metrics give a quantitative sense of accuracy and bias. However, it is
also important to do a visual evaluation of the models. This is not trivial, since the
dataset contains approximately 800 timeseries. Therefore, segments will be sorted by
accuracy and relative accuracy based on naive methods, after which the best and worst
performing models will be analyzed. Much analysis could further be done, on total
volume, volatility, characteristics of timeseries. For the worst and best performers,
representative timeseries of different characteristics will be chosen, to get as close to a
complete evaluation set as possible. Finally, as earlier stated, scaleups are a notable
challenge, and difficult to predict. Therefore, analyzing datasets where the volume
increases by many magnitudes in the test set will be visualized.

Total Handovers (01/2018 - 03/2025)
Showing Training, CV-Active, Validation & Test Periods

nnnnnn

Figure 13: Date splits for train, validation and test.

This analysis includes a large amount of models, and using backtesting on all
the models would be tedious and be practically too large of a scope for this thesis.
Therefore, a choice has been made to do a initial evaluation on only the test set, from
which the best naive, statistical and ML models will be included. This is also the
case for the ML models, where in the initial round, hyperparameters will be tuned on
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only the validation set (not using cross-validation). The sets have been visualized in
Figure 13, where the initial train/validation/test split has been highlighted with different
colors. The decision regarding a "two-staged" validation process and the "elimination"
of certain models after the first stage is made for practical reasons. This approach
aligns with the Design Science Research Methodology (DSRM) activities of Design &
Development, Demonstration, and Evaluation, where models are constructed, tested,
and assessed, followed by a cycle of adjustments. It is acknowledged that doing a
initial test without cross-validation and eliminating some models which might perform
poorly "by fluke" on the test set, and otherwise perform well. However, this is always
the case for comparative analysis where all available methods cannot be tested, and
therefore some methods have to be eliminated.

4.6 Robustness and Explainability

Per-design, backtesting gives a good overview of the stability of the model. Since we
can analyze the models at different time points we see how this changes the model
outputs. Moreover, since the dataset has a wide variety of different timeseries, a visual
analysis of different predictions is a good way to get a sense of stability. For visual
inspection, it is important to choose the timeseries in an unbiased way and choosing a
diverse type of timeseries. Moreover, the inclusion of multiple metrics furthermore
reinforces the stability of the results, since sometimes one metric does not always
capture all wanted behavior. Hyperparameter optimization will show if there is a
significant deviation in metrics given shifts in parameters, and how much the change in
a parameter affects the metrics. SHAP scores is a good way to analyze the importance
of features and the robustness of the models. This can be done on a global level by
including plots where all SHAP scores are represented, a common way for this is to
use beeswarm plots [38, ch. 18].

4.7 Probabilistic Forecasting

A key aspect of modeling demand under volatile conditions, such as humanitarian
demand is the uncertainty associated with the forecasts. Therefore, using LightGBM
for modeling uncertainty will be demonstrated, albeit not as rigorously as the point
forecasts. LightGBM can be developed into a probabilistic model by predicting
quantiles. Quantiles can be predicted by setting the loss function to a pinball loss
(PL) defined in Equation (18). This can be done by defining one LightGBM instance
per quantile, which makes the model computationally heavier. To keep the scope of
this thesis, we will demonstrate a probabilistic model based on the LightGBM direct;
however, this can be generalized for the recursive model as well. Lagged values of
quantiles where also added as additional features, shown in Section 7.

A naive moving average model will be used for comparison where the quantiles
will be derived from a Gaussian distribution based on historical standard deviation
from the past 24 months. To make comparisons more meaningful, another method
which uses LightGBM direct median forecast and normal distribution for quantiles
will also be employed. To get a more meaningful sense of the uncertainty for each
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forecast, the standard deviation of the residuals from the UIP model will be used. The
choice of using UIP residuals is since these can easily be computed, another possible
option could be to use the residuals from the LightGBM models from cross-validation.
This would be a computationally heavier solution and have higher inaccuracies for
the earlier cross-validation folds as the training set is smaller. For these reasons,
the LightGBM residuals were not used. Finally, since the LightGBM direct upper
quantiles can be somewhat unstable, these will be smoothed with a 7 month rolling
average. All models will be compared based on WMPL and coverage ratios.

4.8 Software and Library Versions

The experiments were conducted primarily using Jupyter notebooks with Python. Git
was used for version control, enabling the sharing of both the findings and the codebase
with the HO. The models and analyses are implemented based on the following key
software packages and their versions. The python packages used has been outlined in
Table 3 and the hardware specifications in Table 4.

Table 3: Key software packages and their versions used in the experiments.

Package Version
Python 3.12.2
Optuna 4.3.0

LightGBM  4.6.0
Statsmodels 0.14.4
NumPy 1.26.4
Pandas 223
Matplotlib ~ 3.10.0
Pmdarima  2.0.4

Table 4: Hardware specifications of the system used for experiments

Component Specification
Computer Model MacBook Pro
Processor Apple M4 Pro
Total Cores 12 (8 performance and 4 efficiency)

Memory (RAM) 24 GB
Operating System macOS Sequoia 15.5
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5 Results

This section introduces the results from the case study as described in Section 4. This
section is split into two subsections: the point forecast and probabilistic forecasts. A
large emphasis is placed on the point forecasts, while the probabilistic forecasts serve
to demonstrate the model’s generalizability for predicting uncertainty. Accordingly,
methods such as backtesting and cross-validation are applied exclusively to the point
forecasts.

5.1 Point Forecast

For the point forecasts, a two-staged evaluation process was implemented, where models
showing promise in the initial round were chosen on a single test set. For the second
round, chosen models were backtested and ML models tuned with cross-validation.

5.1.1 Initial Evaluation Runs

For the initial model runs, all models were fitted and evaluated on the test set. The ML
models were tuned on the validation set with 50 trial runs, optimizing for the score
defined in Equation (23). The final models where trained on the train and validation set.
The eight hyperparameters were n_estimators, learning_rate, num_leaves, max_depth,
min_data_in_leaf, feature_fraction, lambda_l1 and lambda_12. The tunable ranges are
specified in Section 7. The statistical and naive methods were fitted on the train and
validation set and tested on the test set.

The results are presented in Table 5, note that for all metrics a lower number
is preferred. The implementation plans (IPs) performed poorly, achieving a higher
(worse) score than any other model except for Auto-ARIMA. This underperformance
is partly due to the large positive bias, which also leads to higher WRMSSE and
rMAE metrics. The unbiased implementation plan (UIP) models are the modified IP
with the bias removed via a rolling average bias ratio. These performed significantly
better, especially UIP12, outperforming all models except the LightGBM models. As
expected, the UIP models also had low bias. Interestingly, MA3 had the least bias,
even less than the UIP models; however, when looking at MAE and the score metrics,
MAG outperformed all other MA models. The exponential smoothing model (ES)
did not perform well, although better than the IP. The LightGBM models performed
well. Notable is the larger rMAE on the LightGBM raw models. The lowest score
was achieved by the LightGBM Recursive Raw model. However, with a considerably
higher rMAE, this points to the model working well on variable timeseries and having
a small bias. The LightGBM direct norm had the best MAE, outperforming the next
best model by over 1I0MT. The worst performing model was Auto-ARIMA, which
was the only model that performed worse than the IPs.
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Table 5: Key performance metrics of forecasting models on the test set.

Model Score  WRMSSE CBIASP rMAE
IP 1.61 1.30 0.62 1.03
ES 1.32 1.15 0.34 0.83
Auto-ARIMA 2.29 1.84 0.90 1.44
UIP3 0.99 0.92 -0.14 0.99
UIP6 0.92 0.89 -0.06 0.92
UIP12 0.89 0.88 -0.02 0.89
MA3 0.97 0.97 0.01 0.73
MAG6 0.95 0.90 0.10 0.67
MA12 1.14 1.01 0.26 0.80
LightGBM Direct Norm 0.93 0.79 -0.28 0.60
LightGBM Direct Raw 1.03 0.85 -0.35 0.72
LightGBM Recursive Norm  0.91 0.77 -0.29 0.62
LightGBM Recursive Raw 0.83 0.81 -0.04 0.75

Based on these findings, the LightGBM normalized models, UIP6. MA6, ES and
IP, will be further compared via backtesting and tuned in cross-validation. These
eliminate a large portion of the models while still maintaining a good mix of ML,
statistical, naive and judgmental models for a fair comparison. A choice was made to
not include the LightGBM recursive raw, despite its low score, since the rMAE was
higher than MA and UIP. UIP12 and MA6 will be included in the analysis, since they
had the best performances out of their respective versions. Auto-ARIMA will not be
included due to its poor results.

5.1.2 Backtesting

For the backtesting runs, the LightGBM normalized models are tuned in an expanding
window cross-validation fashion. The number of tuned parameters are also shrunk
by keeping the hyperparameters that have a low importance and tuning the most
important parameters. For both the direct and recursive LightGBM the learning_rate
and n_estimators were tuned. This allowed for faster iterations which led to more folds.
Taking an average over model predictions is a common ensembling approach that can
increase accuracy [15], as was the case in the M5 competition [18]. Therefore, this
study will test ensembles created by averaging the predictions from the LightGBM
and UIP models. Specifically, variations between the LightGBM models and the UIP6
(hereafter referred to as UIP) will be evaluated.

54



Model Performance Metrics across Cross-Validation Folds
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Figure 14: Backtesting Metrics for Each Fold.

Table 6: Average performance metrics in backtesting, metrics have been rounded to
the two nearest decimals.

Model Score  WRMSSE rMAE |CBIASP| o (Score)
1P 1.99 1.78 091 043 0.41
ES 1.66 1.53 0.79 0.26 0.35
MAG6 1.52 1.42 0.72 0.20 0.29
UIP 1.43 1.40 0.70 0.11 0.34
LightGBM Dir. 1.33 1.24 0.59 0.18 0.33
LightGBM Rec. 1.37 1.30 0.62 0.15 0.77
LightGBM Dir. + UIP  1.27 1.21 0.61 0.13 0.30
LightGBM Rec. + UIP  1.29 1.23 0.62 0.11 0.46
LightGBM Rec. + Dir.  1.30 1.23 0.60 0.15 0.43

The backtesting results are visualized per fold in Figure 14, with aggregate metrics
in Table 6. These findings are consistent with the initial test runs (Table 5), with the IP
model performing worst on nearly all metrics except for the score’s standard deviation,
followed by the MA6 and UIP models. A key finding from the cross-validation was
the instability of the recursive model. During fold 18, for instance, the model entered
an unstable state with rapidly growing prediction errors (Figure 15). This behavior
is quantified by its high standard deviation of the score, which was over twice that
of the direct model. Despite this instability, the recursive model also showed unique
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strengths. The recursive model was the only model that maintained a constant error
during the downward trend in 2023, a period where all other models’ errors increased.
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Figure 15: Aggregate Forecasts for cross-validation Fold 18.

The LightGBM direct and ensemble models performed well, where the combination
of UIP and LightGBM direct had the best performance in score and WRMSSE. The
direct model had a lower rMAE but higher bias, meaning the ensemble version
(LightGBM direct+UIP) is correcting for this negative bias, slightly making the rMAE
higher but lowering bias. From Figure 14 it is also clear that the high accuracies
for MAG is due to the relatively constant demand patterns during the test set, where
MAG is very inaccurate during the downwards trend in 2023. This is where the
LightGBM model really outperforms UIP and MAG6 considerably. During the test
set, the differences are not as large. Another finding is that the LightGBM increase
slightly as the training set increases; this is expected since most often a larger training
set leads to better results.

Another important aspect of models is the stability. As stated earlier, the recursive
LightGBM model has been deemed unstable due to erratic spikes in predictions.
Visual inspection is a good way to identify large spikes in error. For a more quantitative
approach, the standard deviation of the score has also been included. MAG6 had the
most stable score overall; the LightGBM direct + UIP came in at a close second, only
having a standard deviation of 0.01 more than MAG6.

56



Forecast Performance Metrics by Horizon across CV Folds
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Figure 16: Average WRMSSE and rMAE per forecast horizon over backtesting folds.

The models were also evaluated over each forecast horizon within the backtesting
folds. The rMAE and WRMSSE are presented for all 12 horizons in Figure 16. As
anticipated, the error tends to increase with the forecast horizon. There seems to be
somewhat of a jump from three to four months looking at the IP and consequently
UIP. All models are quite consistent in their order, where the LightGBM direct has
the lowest rMAE over almost all horizons; however, for WRMSSE it is not as clear,
and LightGBM direct seems to grow somewhat for horizons 11 and 12.

The final aggregate predictions are visualized in Figure 17. Here, the negative
bias of the LightGBM models is evident; this is most likely due to the negative trend
that preceded the period from which the models learned. Figure 17 also illustrates
that relying on visual validation of aggregate predictions can be misleading, as both
LightGBM direct and recursive models have more accurate predictions yet appear less
accurate in the plot. Therefore, it is more useful to look at individual predictions.
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Test Set Aggregate Forecasts
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Figure 17: Aggregate Demand Predictions.

Figure 18 illustrates the better performing predictions of the LightGBM models.
The top row displays the overall accuracy, while the bottom row presents accuracy
relative to MA6. Conversely, Figure 19 showcases the least accurate predictions, again
with the first row showing total accuracy and the second comparing it to UIP. Overall,
the LightGBM models produce smooth predictions with mostly negative trends. This
counteracts the sporadic nature of IPs. This is to the detriment and benefit of the
models, for instance (ISO21, CM42, AC12) in 19 the models incorrectly predict a
large dip in demand, while in (ISO76, CM32, AC17) in 18 it does the same correctly.
The downwards predictions are most likely due to the historical negative trends, and
therefore it might be a chance that the models sometimes predict these negative trends
correctly in the test set.
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Figure 18: Examples of accurate LightGBM predictions, first row has high accuracies
and second row has high accuracy compared to UIP.

When analyzing the relative low accuracy, IPs have mostly predicted large spikes
in demand The LightGBM models are conservative, meaning they do not predict large

58



spikes even if there is a spike in IPs. This can also increase accuracy, when analyzing
the best predictions, for instance in ("ISO25", "CM30", "AC10"). In this sense the
LightGBM models more closely resemble moving average models or statistical models.
There are also examples of large increases in demand, notable in Figure 19 where large
spikes in demand occur in the test set. These large increases in demand are visible
in the IPs which 1s why the LightGBM models can pick up on the large increases
in demand. Here it is also apparent where the moving average and other statistical
models do not perform well. Overall analyzing metrics and predictions show that the
LightGBM models increase the accuracy of predictions, however for some timeseries
they perform considerably worse than the naive models. This might be due to the
earlier negative trend; with more training data the models could perform better.
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Figure 19: Examples from inaccurate LightGBM direct predictions, first row has low
accuracies and second row has low accuracy compared to UIP.

The largest errors were in timeseries with historically very low demand with sudden
increases in demand (see second row of Figure 19). It is not expected for models to have
good results for these kinds of events since they are inherently very difficult to predict.
One takeaway is that the LightGBM models use the IP data, however the models are
very conservative and predict under the IP or UIP. This leads to better predictions
for (ISO80, CM11, AC17) but worse in (ISO69, CM17, AC10), as compared to UIP
and IP. As expected, the MAG6 performs very poorly on these. (ISO11, CM07, AC17)
is also interesting in the sense that the models being conservative leads to a large
under-prediction for the actualized demand spike, however a much lower error for the
period where the IP is large in the end of 2024.

Finally, a two-way permutation test is performed between absolute errors and
WRMSSE to see if there is a significant difference between MAE and WRMSSE.
The choice has been made to do these separately instead of doing one permutation
test on the scores, since this gives a more comprehensive overview of the differences
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between individual metrics. The two-way permutation tests have been visualized in
Figure 20. All the models have significant deviations from the IP, meaning that all the
models outperformed the IP with statistical significance over 40 cross-validation folds.
For MAG it is a bit more nuanced, where only the LightGBM model has statistically
significant deviations from MAG6. Notably, a statistically significant difference between
the recursive model was only seen in the recursive direct ensemble. This means that it
is difficult to draw statistically significant conclusions between this model and others.
This is most likely due to the instability of the model. However based on this, it is
clear that the LightGBM direct model outperformed MAG6, IP and UIP models with
statistically significant differences in WRMSSE and MAE. The normalized LightGBM
direct model seems to best predict food demand given the evaluation metrics and
feature set, and accuracy can be further improved by using ensembles, however this
change is not statistically significant.

Statistical Significance of Model Differences by Metric
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Figure 20: Two-way permutation on the differences between metrics for all segments
and all cross-validation folds. Significance levels: p<0.1 -> *, p<0.01 -> **, p<0.1 ->
sk (1.0 x 100 permutations).
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5.1.3 Explainability

For the direct and recursive LightGBM models, the SHAP values were analyzed with
beeswarm plots (Figures 21 and 22). The top features of the models are similar, where
lagged features, as well as IP and inventory data were dominant. The lagged features
are expected, especially lag 1 for the recursive model. Interestingly, resource_ratio was
the most important feature for the direct model, while the fifth most important for the
recursive one. The direct model has less emphasis on norm_IP_req than the recursive
model. Interestingly, activities were more important than the country feature; this
points to the importance of including activities in the model. The direct model used
moving average values more while the recursive model relied on corporate level data
such as expenditure data. This coincides with the recursive model performing better at
picking up macro trends than the direct model. This is also visible in Figure 14 where
the recursive model had good accuracy during the trend changes in 2023. A notable
finding is that the recursive model uses the approximate expenditure on food feature.
This could explain why it was able to predict the downwards trend for 2023. This
could be due to a lower expenditure forecast for this year, which led to lower demand
and was not picked up by the IPs.

The direct model picked up GDP growth where smaller GDP growth coincided
with less demand. This is logical since GDP growth generally corresponds with the
economic prosperity or stability of a country, which in turn leads to less need for aid.
The recursive model used the inflation index more, where a larger inflation index
corresponds with more demand. Since cost of living crises are one of the main drivers
of food insecurity [5], this is expected. The IPC data [6] was wasn’t highly important,
most likely due to the small data set used, where a large portions of rows did not
have IPC values. The resourced_ratio was the most important feature for the direct
model and a very important feature for the recursive model and indicates that larger
resource_ratios correspond to a larger demand. This makes sense, since if there is
large stock then this will most likely be distributed in the future.
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Figure 21: SHAP Values for LightGBM Direct.
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Figure 22: SHAP Values for LightGBM Recursive.

5.2 Probabilistic Forecasts

For the probabilistic forecast, 5 quantiles are predicted: the 10%, 25%, 50%, 75%, and
90%. A separate LightGBM Direct Norm model was fitted on each of these quantiles,
and the accuracy was measured by taking the average pinball loss. The coverage of the
quantiles was also reported. A 6 month moving average model (MA®6) is also shown
for comparison. The MA6 model estimates the mean which is the 50% quantile, the
rest of the quantiles are estimated based on a Gaussian distribution from the historical
residuals.
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Distribution of Pinball Loss by Quantile (95th Percentile Filtered)
Quantile 0.1
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Figure 23: Distribution of WMPL over Optuna trial runs, 95% percentile removed
for readability.

Initially, a model was tried where the hyperparameters for each quantile model
were the same. This proved to fail, since the larger quantiles are considerably more
unstable. This is expected due to the large right skew of the data, with a sparse
and long right tail. Therefore, the hyperparameters were tuned individually for each
quantile. This was done with 30 trials per quantile, and only on the validation set. The
uncertainty levels are still volatile; therefore, a 7 month rolling average was done in
postprocessing, which yielded better results. The Optuna WMPL scores over all trial
runs are shown in Figure 23. It is evident that certain hyperparameter combinations
result in errors that are orders of magnitude larger than the average error.

The results are shown in Table 7, where the LightGBM model clearly outperforms
the MAG6 naive model. The smoothed model has the strongest performance, especially
in the higher quantiles where the coverage ratio was almost exactly equal to the
quantiles for the 75% and 90% percentile. This is also reflected in the WMPL.
The smoothed model had across the board stronger results than the standard direct
LightGBM model. However, both of these had poor performance on the lower quantiles
where the MA outperformed all models on the 25% quantile and the LightGBM naive
model on the 10% quantile. This points to the lower quantiles following more of a
normal distribution while the upper quantiles are different. This is expected since the
data is heavily skewed to the right.
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MAG6 Gaussian Gaussian Direct Direct Smoothed

WMPL 0.1912 0.1719  0.1620 0.1560
Coverage Ratios

7=0.1 0.132 0.096 0.082 0.084
T=0.25 0.255 0.137 0.195 0.192
7=0.5 0.697 0.403 0.403 0.409
7=0.75 0.863 0.773 0.740 0.749
=09 0.936 0.912 0.894 0.901

Table 7: Comparison of Weighted Mean Pinball Loss (WMPL) and Coverage Ratios
for different probabilistic models. The target quantile is denoted by 7. (All models are
normalized LightGBM models expect MAG6.)
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Figure 24: Probabilistic forecast examples, and different variants of Normalized
LightGBM Direct.

Some results have been visualized in Figure 24 where one can see the strength of
different versions of the model. Most notable are the sudden spikes in demand, where
LightGBM models considerably outperform MA, and would most likely outperform all
models which do not include exogenous data points. A permutation test was performed
on the models seen in Figure 25. It shows that most WMPL findings were significant,
except between the LightGBM naive and MA6. This might be due to the similar
uncertainty intervals of the models, both assuming a Gaussian distribution. Moreover,
since the data is quite constant for the test set, the LightGBM median forecasts could
be quite close to MA6 predictions.
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Pairwise Model Comparison - Permutation Test
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Figure 25: Two-way permutation between segment level WMPL. Significance levels:
p<0.1 -> *, p<0.01 -> **, p<0.1 -> *** (1.0 x 10° permutations).
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6 Discussion

This thesis expands upon the scarce literature on demand forecasting within the
humanitarian sector [3]. As stated by Babai, Boylan, and Rostami-Tabar [3], there
exists no current literature within humanitarian demand forecasting, and based on the
literature review we found this to be true. We see this thesis as a contribution to this
area of research, which is crucial for more efficient supply chain management [3].
During the writing of this thesis, Ouchtar, t’Serstevens, and Rahman [27] published
a report analyzing statistical demand forecasting methods for a smaller NGO. We
see this thesis as a complementary study compared to that one, by applying similar
methods to a larger HO, and further analyzing the impact of using ML models.

This section discusses the findings presented in Section 5, interpreting their
significance in relation to the research questions defined in Section 1. It will first assess
the performance of statistical, naive and judgmental methods (RQ1), then evaluate
the accuracy improvements and model variations of LightGBM (RQ?2), analyze the
reliability and interpretability of the proposed models (RQ3), and finally, reflect on
the effectiveness of using LightGBM for characterizing demand uncertainty (RQ4).

6.1 Accuracy of Statistical Methods

Part of this thesis was to study the accuracy of naive, statistical and judgmental
models in predicting demand. By first testing exponential smoothing, Auto-ARIMA
and three different moving averages, it was found that Auto-ARIMA performed very
badly compared to all other models. This is in line with the findings by Ouchtar,
t’Serstevens, and Rahman [27] where Auto-ARIMA was the worst performing model.
The exponential smoothing did not perform well either, but had better predictions than
the country office implementation plans (IPs). All moving averages outperformed
the IPs and statistical models, with the six month moving average having the best
performance. Moreover, the IPs had considerable positive bias, therefore a simple
unbiased version was tested where the bias was calculated in a rolling fashion and
removed from the IPs. This greatly increased the accuracy, and it was found that a
12 month rolling bias ratio had the best performance. Based on this, the unbiased
implementation plan (UIP), six-month moving average (MA6), IPs and exponential
smoothing were backtested.

In backtesting, the UIP, MA, ES and IP models performed worse on average
compared with the test set. This is most likely due to changes in trends which are very
hard to predict by just fitting on historical values. The UIP slightly outperformed all
models, with the MA scoring higher across the board than ES and IP. The IP was the
worst performer, exhibiting a large positive bias, high standard deviation, and higher
rMAE and WRMSSE. The accuracy also decreased with a higher forecast horizon,
which is expected.

The poor performance of these statistical models is likely a direct result of the
data’s high volatility. Models such as ARIMA and ES are best suited for time series
with more regular and predictable patterns. Given that only about 4% of the demand
data in this study is classified as ’smooth’ while the majority is lumpy’, the weak

67



performance of these traditional models is expected. This finding underscores the need
to apply more advanced methods, like the gradient boosting decision trees evaluated
in this thesis, which are better equipped to handle such complex and erratic data [18].
Moreover, this underscores the power of simple methods, such as bias removal of IPs
or simply using moving average models as opposed to statistical methods. However,
these simpler methods have their own critical limitation: being purely fit on historical
data, they are not suited for all situations, particularly during significant trend changes.
This suggests that if an organization were to rely solely on naive or simple statistical
models, these would still need to be paired with expert judgmental forecasting to
anticipate future shifts not present in the historical data.

6.2 LightGBM Models to Improve Accuracy

Due to the difficult nature of the timeseries, LightGBM models were implemented.
These were compared to the statistical and naive methods for benchmarking. Initially
four different versions were tested, a recursive and direct version on normalized and raw
data. Based on initial runs on the test set, the normalized methods outperformed the
raw ones, therefore these methods were further tuned with cross-validation and tested
with backtesting. This was done to get a good sense of how the models performed over
multiple different time periods as well as robust tuning on multiple different evaluation
windows.

Overall, the LightGBM models performed well, notable was the normalized variant
of the LightGBM Direct version, which had the lowest MAE and WRMSSE. This
was despite critical data features such as funding data which could probably improve
the accuracy even further. In backtesting the LightGBM direct outperformed the
naive, statistical and UIP models with a 7% decrease in score and a 16% decrease
in MAE, compared to the best baseline models. Moreover, these differences where
statistically significant. Instability was found in the recursive LightGBM models, both
in cross-validation and in hyperparameter tuning (see Section 7), however the models
where able to accurately predict changes in trends when all other models had higher
errors. This is in line with Makridakis, Spiliotis, and Assimakopoulos [18] where it
was found that recursive LightGBM versions had high accuracies but were unstable.
The direct model exhibited good stability with a low standard deviation of the score,
this stability was further increased in the ensemble versions.

It has been shown that taking the average predictions of different models can
yield gains in accuracy [15], [18]. Therefore, simple averages of different model
combinations were tested; this led to positive results, albeit not statistically significant
differences between standard LightGBM models and ensemble versions. The highest
scores were found by combining the LightGBM normalized direct model with the un-
biased 12-month IPs. From these findings, there are statistically significant differences
in multiple accuracy metrics as opposed to the IPs. Moreover, LightGBM models
outperform unbiased versions of the IPs, moving averages, and statistical models such
as ARIMA and ES, in all metrics except for bias.

The trend removal, i.e. rolling normalization of the data, was found to work well.
This removed large changes in trends, allowing models to predict relative changes in
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the data. This led to considerable accuracy gains in LightGBM models; however, there
was a higher negative bias. The negative bias is a noteworthy finding, as systematic
underprediction is an unwanted feature of the models. Typically, within humanitarian
demand, a slight overstock is generally preferred, especially for non-perishable items
that do not expire as quickly. Consequently, this should be accounted for in post-
processing and demand planning if these models were to be taken into production.
This negative bias is likely due to the negative trend in the test sets, suggesting the
model optimizes for this. The negative trend arises from smaller amounts of funding;
hence, if funding data were to be considered, it could offset some of this "systematic"
negative bias.

The models were trained on a broad feature set. The most influential features were
inventory data and IPs, as well as lagged demand and lagged moving averages. Most of
the features had logical effect on the models; for instance, a higher resourced_ratio led
to more demand, i.e. the more commodities that are stored, the more aid is distributed.
Additionally, IPs were in line with demand, where higher plans did indeed lead to
higher predicted demand in the models. Other notable features were that GDP growth
had a negative effect on demand, indicating that more economic growth corresponds
to less need for food aid. The IPC data did not have a notable effect on food demand;
this is most likely due to the data populating a bit less than half of the rows. Moreover,
since the IPC data consisted of five different features, their combined importance
might be considerable even if the individual features contributed small amounts.

6.3 LightGBM for Modeling Uncertainty

To demonstrate the use of LightGBM in probabilistic forecasting, benchmarking was
conducted on the test set. This was done by fitting a separate LightGBM instance
per each quantile by fitting to the corresponding pinball loss function. Four different
models were employed for benchmarking, with a six-month moving average (MAO6)
model utilizing a Gaussian distribution for quantiles as the naive benchmark model. To
ensure a more fair comparison, a LightGBM model predicting the median and using a
Gaussian distribution for modeling quantiles was also utilized. Finally, a LightGBM
model fitted on each quantile was tested; to ensure stability, a smoothed version of this
model was also implemented.

For the LightGBM direct model, the weighted mean pinball loss (WMPL) was over
15% lower compared to the MAG6, with this reduction being statistically significant.
Moreover, smoothing out the LightGBM predictions further decreased the WMPL
to 0.156 compared to the MA6 0.191. It also had more accurate coverage ratios
for all quantiles expect the 25% where there was a noticeably larger deviation in
the LightGBM model. A drawback for the LightGBM model was its stability,
especially when modeling the higher quantiles. These models were highly unstable,
which was visible in large errors when changing parameters in hyperparameter
optimization. Ultimately, while LightGBM models effectively capture demand
uncertainty better than naive models, they exhibit instability. As a result, tuning or
further development in ensuring robustness are essential for practical application.
Moreover, the lower quantiles were quite inaccurate and a simple moving average with
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a Gaussian distribution modeled these better on average when looking at coverage
ratios. This paired with the instability in the models points towards more development
being needed for taking these models into practice; however, the early developments
are promising. For now, simply modeling the median and inferring the quantiles from
a Gaussian distribution seems to deliver more robust results; though more inaccurate
results. Therefore, a more sophisticated distributional assumption could deliver more
robust and accurate results. Since the data is for the most part lumpy, intermittent,
and erratic, distributional assumptions such as negative binomial could provide better
results. Moreover, one could use parametric regression models such as Light GBMLSS
[46] to directly fit to these distributions; this would generate more robust models.

6.4 Limitations

This thesis seeks to develop forecasting models for a complex problem; therefore, there
are simplifying assumptions and limitations in the study. One major limitation is that
adding more data should be done in the future to increase the model accuracy further,
for instance funding forecasts. This will lead to the models behaving differently, which
might require retuning and new benchmarking to be done for optimal models. Another
limitation is that while we can confidently rule that LightGBM models perform better
than statistical methods such as ES and Auto-ARIMA, no tests were done on other ML
models. For instance Herteux, Raeth, Martini, ef al. [16] found evidence that Reserve
Computing can outperform GBDT models in predicting short-term food insecurity.

While statistical significance is tested, it is not the standard way of doing timeseries
forecast comparisons. This was done for practical reasons due to the small sample
size and large number of groupings. However, in longer horizons, a more meaningful
test would be, for instance, the Diebold-Mariano test [15]. This would give a better
analysis when measuring differences between forecasts; however, it is not trivial how
this should be applied to grouped timeseries datasets as in this thesis.

A key assumption which was made is that the implementation plans (IPs) and
inventory levels are independent of these forecasts. This assumption can be made as
the primary use-case for this model is for global supply chain planning and inventory
optimization. An obvious limitation is the meaningfulness and robustness of the
LightGBM probabilistic model. This was as a proof of concept demonstrating that
LightGBM models can improve probabilistic forecasts if measured against naive
models. However, stability could further be improved with post-processing or trying
other methods, such as parametric distributional models [46].

6.5 Avenues for Future Research

Building directly on the limitations identified in the previous section, several avenues
for future research emerge. It is probable that gains in accuracy can be achieved by
expanding the model feature set. For instance, more meaningful data on funding,
climate, and food insecurity could further enhance accuracy. This could also lead to
changes in the models and therefore parameter tuning and testing should be performed
again with new feature sets.
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The models developed in this thesis are optimized using volume-centric error
metrics. A key avenue for future research is to create forecasts that are more directly
aligned with financial and operational objectives by incorporating commodity price
and criticality. One approach is to shift the optimization from physical volume to
monetary value. This could be implemented by modifying the evaluation weighting
scheme (see Equation (22)) to include commodity spot prices, or future prices if
available. This would prioritize forecast accuracy for high-value items, supporting more
cost-efficient procurement and inventory management. Alternatively, a humanitarian-
impact approach could be adopted by weighting commodities based on their criticality.
For example, specialized nutritional products might be prioritized over bulk grains,
even if their volume or cost is lower. This would ensure that forecasts for life-saving
items are the most accurate.

Some features are not available for segment level, for instance the macroeconomic
indicators used in this thesis which are only available annually and for countries.
These features could be better utilized by forecasting on higher aggregate levels such
as the total demand per country instead of only segment level. Therefore, it could
be beneficial to forecast on different hierarchy levels, combining these forecasts in
post processing. Utilizing methods such as minimum trace reconciliation, one could
combine these forecasts [31, ch. 11]. These types of methods have shown promise in
complex hierarchical forecasting tasks and could be applied in this case as well [18].

Future work could also further study probabilistic forecasting methods. Since
the current quantile forecasts are quite unstable, other methods such as residual
based quantile estimates might yield more reliable predictions. Other models such as
parametric models which assume some distribution and fit data to the parameters could
be utilized. However, it is difficult to assume a certain distribution for one segment
since these can differ, therefore one might need to first classify segments based on
distributions after which the parameters of the distribution could be inferred.

Possible improvements in accuracy could further be gained by smoothing the data
in preprocessing. For instance, a simple moving average could improve accuracy
by reducing volatility in the training data. This would still serve its purpose for
longer-term supply planning, since individual month predictions are not as important
as the average demand over the neighboring months.
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7 Conclusion

This thesis aimed to contribute to the limited literature on demand forecasting in the
humanitarian sector. Forecasting demand enables improved supply chain management
and, consequently, more efficient aid delivery. In this thesis, we applied naive,
statistical, and machine learning (ML) demand forecasting models to predict the
demand for WFP food commodities. Multiple different exogenous data points were
included and different feature engineering methods to improve accuracy.

Four LightGBM variants were tested, direct and recursive with normalized and
raw data. It was found that the normalized versions outperformed the raw ones.
The normalized LightGBM recursive model was deemed unstable but had accurate
predictions most of the time as compared to the benchmark methods. However, the
LightGBM direct normalized model outperformed all other models metrics with a
statistically significant degree. It was moreover found that combining judgmental and
LightGBM models proved an effective way to remove some bias and increase the
accuracy metrics of the LightGBM direct model.

For useful demand forecasts for supply planning, the uncertainty of the models
should also be taken into account. Based on the point-forecast findings, the LightGBM
model was expanded to predict quantiles, giving a sense of the uncertainty of the
predictions. It was found that the LightGBM direct normalized models outperformed
a naive normal MA6 model where the uncertainty was based on the standard deviation
of historical residuals and assumed a Gaussian distribution. The upper quantiles were
unstable and therefore a smoothing post-processing step was added which increased
the accuracy further. Ultimately, the LightGBM normalized model performed better
than the MA6 naive model based on WMPL measures.

The models implemented in this thesis are generalizable and allow for multiple
new features and different parameters to be tested. Based on earlier literature and
the lack of some key features, the models could most likely still be improved and
developed on. Therefore, we see this as a starting point for more advanced ML based
demand forecasting within the humanitarian sector.
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Appendix A: Data
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Figure 26: 40 largest segments by total demand, this is included to give a overview
of the data, and shows the different profiles of the data.

77



Appendix B: Features for LightGBM Models

Table 8: Feature Engineering Details for Direct Model Features

Feature Name

Description

encoded_country
encoded_commodity
encoded_activity
time_index

lagN

lagl2

lagN_mavg_3
lagN_mavg_6
lagN_mavg_12
com_lagN_mavg_12
country_lagN_mavg_12
act_lagN_mavg_12
IP_req
past_pip_bias_ratio

norm_factor

lagN_mavg_12
inventory_resourced_all_periods

resourced_ratio
PCPIPCH

NGDP_RPCH

IPC features

Annual global level HO features and forecasts

Integer value representing a unique country.
Integer value representing a unique commodity.
Integer value representing a unique activity.
Integer representing the number of months from
the start of the historical data, providing a chrono-
logical sequence.

Handover quantity from N periods prior (where
N = current forecast_distance + 1).

Normalized handover quantity from 12 periods
prior.

3-month rolling mean of "lagN’.

6-month rolling mean of ’lagN’.

12-month rolling mean of "lagN’.

Commodity 12-month rolling mean.

Country 12-month rolling mean.

Activity 12-month rolling mean.
Implementation pipeline for the target period.
Historical ratio of actual handovers to pipeline
requirements.

Normalization factor (see Equation (21)). (only
for normalized model)

12-month rolling mean of ’lagN’.

Aggregated resourced inventory across all rele-
vant periods.

Ratio of current inventory usage per total inven-
tory capacity.

Consumer Price Index Percentage Change (year-
over-year inflation) [45].

Nominal Gross Domestic Product - Real Pur-
chasing Power Parity (PPP) Conversion Factor
available for each year and country, forecasts for
2025 also included [45].

Estimated number of people in a specific IPC
[6] index 1-5 (data is unavailable for much of
training and inference).

’contributions’, ’expenditure’, *avg_food_prices’,
’food_index’, “percent_food’, "ap-
prox_expenditure_food_USD_B’,
*US_inflation_rate’, ’Index_on_other_costs’,
"food_expenditures_volume_index’

8



Table 9: Feature Engineering Details for Recursive Model Numerical Features

Feature Name Description

lag_1 Recursively updated lag_1.

lag_12 Recursively updated lag_12.
lagl_mavg_3 Recursively updated moving average 3.
lagl_mavg_6 Recursively updated moving average 6.
lagl_mavg_12 Recursively updated moving average 12.

forecast_distance The current forecast horizon being predicted.

Table 10: Feature Engineering Details for Probabilistic Model Features

Feature Name Description

norm_lagN_ql10_6  10th quantile of the normalized ’lagN’ feature
over a 6-month rolling window.
norm_lagN_q25_6  25th quantile of the normalized ’lagN’ feature
over a 6-month rolling window.
norm_lagN_q50_6  50th quantile (median) of the normalized ’lagN’
feature over a 6-month rolling window.
norm_lagN_q75_6  75th quantile of the normalized ’lagN’ feature
over a 6-month rolling window.
norm_lagN_q90_6  90th quantile of the normalized ’lagN’ feature
over a 6-month rolling window.
norm_lagN_ql10_24 10th quantile of the normalized ’lagN’ feature
over a 24-month rolling window.
norm_lagN_q25_24 25th quantile of the normalized *lagN’ feature
over a 24-month rolling window.
norm_lagN_q50_24 50th quantile (median) of the normalized ’lagN’
feature over a 24-month rolling window.
norm_lagN_q75_24 75th quantile of the normalized ’lagN’ feature
over a 24-month rolling window.
norm_lagN_q90_24 90th quantile of the normalized ’lagN’ feature
over a 24-month rolling window.
norm_lagN_iqr_24  Interquartile range (IQR) of the normalized
"lagN’ feature over a 24-month rolling window.
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Appendix C: Hyperparameter Optimization for Light-
GBM Models

This appendix details the search space used for hyperparameter optimization of the
LightGBM models using Optuna [48].

Table 11: Hyperparameter search space for the first models runs, optimized on only
the validation set.

Hyperparameter Optuna Suggestion Type Search Range

n_estimators suggest_int [100, 700]
learning_rate suggest_loguniform [0.001, 0.1]
num_leaves suggest_int [20, 50]
max_depth suggest_int [3, 10]
min_data_in_leaf suggest_int [10, 50]
feature_fraction suggest_uniform [0.7, 1.0]
lambda_11 suggest_loguniform [0.001, 20]
lambda_12 suggest_loguniform [0.001, 20]

Hyperparameter Importances
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o tcaves [ 07
min_aeeneo [ o7
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Figure 27: LightGBM direct normalized hyperparameter tuning validation parameter
importance’s.
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Figure 28: LightGBM recursive normalized hyperparameter tuning validation pa-
rameter importance’s.
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Slice Plot

Figure 29: LightGBM direct normalized hyperparameter tuning validation trials.
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Figure 30: LightGBM recursive normalized hyperparameter tuning validation trials.
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