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Abstract
Ethereum is the second largest crypto protocol in the world in terms of market
capitalization and the size of the user and developer community.

Ether (ETH), the native token of the protocol, has unique characteristics as a
financial asset but resembles a combination of a currency, a commodity, and a security.
At the time of writing, the total market capitalization of ETH is $381 billion.

This thesis proposes a novel approach to incorporate the dynamics of supply
changes in the valuation of ETH call options. Mathematically, a modified Black-
Scholes-Merton (BSM) options pricing model is formulated for ETH. A comparison
analysis is performed with synthetic data and historical market data from Deribit,
the largest exchange of ETH options by volume. In addition, implied volatilities are
estimated using the approach.

The numerical results confirm the theoretical behavior of the volatility structures
with the addition of supply dynamics to the BSM model. In particular, volatility
structures experience an increasing skewness for deep-in-the-money call options.
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Tiivistelmä
Ethereum on maailman toiseksi suurin kryptoprotokolla markkina-arvon ja käyttäjä-
määrän suhteen.

Ether (ETH), protokollan oma virtuaalivaluutta, omaa uniikkeja ominaisuuksia
rahoitusvälineenä, mutta muistuttaa yhdistelmää valuutasta, hyödykkeestä ja arvopa-
perista. ETH:n kokonaismarkkina-arvo on 381 miljardia dollaria.

Diplomityössä ehdotetaan uutta lähestymistapaa Ethereum-optioiden arvostuk-
seen, joka ottaa huomioon kokonaistarjonnan muutosdynamiikan. Matemaattisesti
Black-Scholes-Merton (BSM) optiohinnoittelumallia muokataan ETH:lle sopivaksi.
Vertailuanalyysi suoritetaan käyttäen synteettistä dataa, sekä historiallista markkina-
dataa Deribit-pörssistä, joka on volyymiltaan suurin ETH-optioiden pörssi. Lisäksi
arvioituja implisiittisiä volatiliteetteja lasketaan uutta lähestymistapaa käyttäen.

Numeeriset tulokset vahvistavat mallin teoreettisten volatiliteettirakenteiden käyt-
täytymisen. Erityisesti volatiliteettirakenteet kokevat kasvavaa vinoumaa voimakkaasti
voitolla oleville osto-optioille.

Avainsanat Ethereum, optiot, optioiden hinnoittelumallit, implisiittinen volatiliteetti



Preface
The book of nature is written in the language of mathematics.

— Galileo Galilei, 1623

Otaniemi, 28th January 2025

Teemu Laurikainen
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Symbols, acronyms and abbreviations

Symbols
E[·] Expectation
V𝑎𝑟 [·] Variance
𝑑𝑡 Infinitesimally small time increment
𝑆𝑡 Stock price at time 𝑡
𝜇 Expected return
𝜎 Volatility of the stock’s returns
𝐵𝑡 Brownian motion at time t
𝑟 Risk-free rate
𝐾 Strike price of the option
𝑇 Maturity of the option
𝐶 (𝑡, 𝑆𝑡) Price of a European call option at time 𝑡 with stock price 𝑆𝑡
LN Lognormal distribution
Π Portfolio
𝑞 Continuous dividend yield
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Acronyms and Abbreviations

Term Definition

Ethereum A blockchain-based protocol for decentralized applications

ETH Ether or Ethereum token, the virtual currency native to the
Ethereum protocol

HTTP, IP, DNS Communications protocols used on the Internet.

EVM Ethereum Virtual Machine

EIP Ethereum Improvement Proposal

Blockchain A distributed ledger technology that allows data to be stored
across a network of computers.

Proof-of-stake A type of algorithm by which a blockchain protocol aims to
achieve distributed consensus.

Proof-of-work A type of consensus algorithm that relies on competition of
computational effort.

Slashing Punishment for a validator’s malicious behaviors in proof-
of-stake blockchain systems

Smart contract Self-executing program code on blockchain protocols

Staking Holding and locking cryptocurrencies in an account to sup-
port operations such as transaction validation and network
security in proof-of-stake blockchains.

Gas A measure of computational effort in Ethereum, denoting the
cost to perform transactions or smart contract interactions.

Dapps Decentralised applications that run on a blockchain protocol.

Spot trading The buying or selling of a financial instrument for immediate
delivery and payment.

BSM model Black-Scholes-Merton options pricing model, a group of
mathematical formulas to value options where the underlying
is a stock. Often used to derive implied volatilities from
option prices.

European call option An option contract that gives the holder the right, but not the
obligation, to buy the underlying asset at a specified price on
a specific date.

Implied volatility The volatility derived from the actual market value of an
option often using the BSM model.

Volatility smile A pattern in which at-the-money options tend to have lower
implied volatilities than in- or out-of-the-money options.
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1 Introduction

1.1 Background
Ethereum is a global computing platform on top of which anyone is open to build de-
centralized applications [1]. The system is fundamentally at the intersection of various
fields, including finance, computer science, mathematics, and politics. Therefore, the
system can be defined from various perspectives. This thesis focuses mostly on the
financial aspects of Ethereum and, in particular, on the option market dynamics of the
crypto asset Ether (ETH).

The thesis is motivated by the nascent nature of the crypto industry and the lack of
existing research on options pricing models for crypto assets. Existing option pricing
models have been fine-tuned for traditional asset classes, such as stocks, futures,
and foreign currencies. However, crypto assets are a completely new asset class and
option pricing models have to be considered together with their unique characteristics
and adjusted if necessary. If the total crypto asset market capitalization continues to
increase, as historically it has, these pricing model adjustments become increasingly
important in the context of pricing accuracy and market efficiency. Extensions to
specific crypto assets such as ETH are not widely found in the literature.

Considering ETH in the context of the Black-Scholes-Merton option pricing model,
now known as the "BSM" model, it can be applied directly with the assumption that
ETH is a non-dividend paying stock [2]. However, ETH resembles a combination of a
currency, a stock, and a commodity, as will be discussed in detail later in the thesis.
ETH is not a plain stock. ETH is a non-dividend paying crypto asset with a dynamic
supply change parameter.

Critically, the BSM model does not directly capture the supply-change dynam-
ics of ETH, which should have an obvious effect on option valuations. As an example,
if we consider an annual supply change of 10% of the underlying until perpetuity,
then we should expect the underlying to be diluted by some percentage of value
annually. Taking a comparison from traditional finance, mathematically, a stock split
does not result in the creation of additional value. This statement can be surprisingly
counterintuitive to market participants, as research shows how the market reacts often
positively to stock splits [3]. If stock splits systematically created additional value for
shareholders, the correct strategy for every existing company in the world would be
to immediately attempt to reach infinity with their amount of outstanding shares. In
general, corporate actions do not correspond to this strategy.

This comparison is important because it forms the basis for the premise that in-
creasing the amount of shares in a company only results in a dilution of existing shares
and no additional value is created. Applied to ETH, if the supply change is positive,
existing ETH holders are diluted. Conversely, if the supply change is negative, the
value is transferred indirectly to existing ETH holders.



We arrive at the central topic of the thesis; how to incorporate the ETH supply
change dynamics into the BSM model? Dividends are just one known form of share
value dilution in the BSM model. Is there something in the construction of the BSM
model that strictly forces the use of dividends, or can we extend this dilution factor to
other mechanisms, such as supply changes? If we can, what about negative supply
changes if burn exceeds issuance in the Ethereum protocol?

1.2 Research objectives and questions
The objective of the thesis is to devise a method to assess the applicability of the
BSM model to ETH options. This thesis will specifically aim to answer the research
questions presented below.

• What impact do supply changes have on the BSM model when pricing ETH
options?

• How does the extended BSM model affect option pricing and implied volatility
structures compared to the traditional approach?

The scope of the thesis is limited to the consideration of the crypto asset ETH. Although
the results of this thesis may be useful for the valuation of other crypto asset options,
this study will not focus on any other crypto assets. Furthermore, only the Black-
Scholes-Merton model is considered, although numerous option pricing models exist
in the financial literature. These models include Heston and Bachelier among others
[4] [5]. A key reason for the selection of the BSM model for this study is its widespread
use in financial markets and also its mathematical simplicity compared to other models.

In the BSM model, the focus is on the dividend term 𝑞, both mathematically and
empirically. The scope of the study includes rigorous reasoning on why or why not
the definition of the term can be extended to consider other dilution mechanisms in
addition to dividends. In addition, an empirical analysis based on options market data
is included in the study.

1.3 Structure of the thesis
The thesis continues to Section 2 with an overview of Ethereum. Section 3 presents the
mathematical background necessary to have the correct tools to approach the research
questions. In Section 4, Research methods, a mathematical formulation of a modified
version of the BSM for ETH options is presented, followed by an explanation of how
empirical analysis with the options market data from Deribit is conducted. Section 5
presents the results of the analysis. Lastly, Section 6 discusses the results in connection
with the original research goals and objectives and summarizes the contents of the
thesis.
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2 Ethereum

2.1 Ethereum protocol
From a computer science perspective, Ethereum is a protocol on the Internet. In
networking, a protocol is a set of rules or processes for transmitting data between
electronic devices, such as computers [6]. The most well-known protocols include
HTTP, IP, DNS, and other major Internet communications protocols. Ethereum
and other crypto-economic systems can be contextually thought of as value transfer
protocols. Instead of communications data, the protocol is able to transfer economic
value.

Technically, Ethereum is a deterministic and unbounded state machine, consist-
ing of a singleton state that is globally accessible and a virtual machine that changes
that state [7]. Alternatively defined, Ethereum is a blockchain; a decentralised peer-
to-peer network that leverages cryptography to securely host applications, store data,
and transfer digital objects [8]. Instead of simple tracking of currency ownership,
Ethereum blockchain tracks the state transitions of a general-purpose data store [7].
Ethereum has an average block-time of approximately 12 seconds, that is, how often a
new block is added to the chain [9].

The Ethereum protocol was initially conceptualized in 2013 by Vitalik Buterin in his
whitepaper. Motivation for the design of such system arose from Bitcoin’s inherent
technical limitations, namely, in the difficulty of building and running application code
directly on top of Bitcoin. Ethereum’s design pioneered the use of smart contracts,
program code which is executed trustlessly on the Ethereum blockchain. These
contracts are mainly written in Ethereum’s native programming language, Solidity.
In his paper, Vitalik describes how the Bitcoin protocol facilitates a weak version
the concept of smart contracts, but lists serveral technical limitations in Bitcoin’s
scripting language that makes the use of these contracts practically difficult, notably
lack of Turing-completeness [1]. Turing-completeness is important because Ethereum
can function as a general-purpose computing platform, often described as a "world
computer" [10].

The ability to run and execute smart contract logic on Ethereum opened an un-
bounded design environment to create and build decentralised applications [10].
Trustless applications are important in the context of the entire decentralized pro-
gramming paradigm, since they enable protocol logic to be extended from simple
value transfer to more complicated financial processes, such as lending, stablecoins,
exchanges, or tokenisation of real world assets. As of the time of writing this thesis, the
total market capitalisation of all decentralised finance applications is approximately $
40 billion [11].
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2.2 Ethereum token (ETH) and supply dynamics
Ether, or more commonly abbreviated as ETH, is the native crypto currency of the
Ethereum protocol, which serves multiple purposes [1]. First, it is used to pay for
transaction fees in the Ethereum protocol. Whenever a transaction is sent, the sender
incurs a fee in the form of ETH.

These transaction fees are also referred to as "gas" or "fuel" in the Ethereum protocol.
The gas system in Ethereum is essentially a metering system to prevent infinite loops
from occurring, which are possible in Turing-complete systems. If a party could run a
code infinitely, they could consume infinite computing resources from the Ethereum
protocol. When the Ethereum virtual machine (EVM) executes a smart contract, it
counts the number of instructions in the given code. Each of these instructions has
a predetermined cost in units of gas. Before the smart contract code is executed,
the sender has to choose the maximum level of gas they are willing to spend. If the
computation exceeds this limit, the code will stop running, preventing infinite loops
in the system. Fundamentally, the gas system is needed because we cannot predict
a path of a program without running it, i.e. the Halting Problem is undecidable as
Alan Turing proved in 1936 [12]. Conceptually, the gas system allows a market for
computation [13]. [7]

Secondly, Ether is needed as a cryptoeconomic security mechanism to pay the
validators to secure transactions and the blockchain consensus [13]. Since September
15, 2022, the Ethereum protocol has operated on a "proof-of-stake" consensus model.
This event is called the "Merge". In a proof-of-stake model, validators are responsible
for "staking" their capital in the form on Ether and checking the validity of the new
blocks that are proposed in the network. Moreover, validators are occasionally respon-
sible for creating and propagating new blocks themselves. The staking mechanism
incentivizes honest behavior in consensus systems, because dishonest behavior results
in "slashing" of the validators’ capital (i.e. loss). [14]

Before the proof-of-stake model, the Ethereum protocol operated on a proof-of-work
model, as originally pionered in Bitcoin [15]. One of the key reasons for transitioning to
a proof-of-work system was to reduce the energy consumption of the network, resulting
in a reduction of 99.95%, essentially fixing one of the most widely criticized elements
in blockchain consensus systems. [14]. The proof-of-stake system also has a lower rate
of issuance of new ether, which is important in the context of aggregate supply changes.

The supply change rate, or alternatively, the net issuance rate, is the most sig-
nificant single variable in this thesis and will be applied later in option valuations.
Net issuance can be divided into two different mechanisms: 1) issuance and 2) burn.
The issuance is simply the creation of new ETH that did not previously exist. In the
early proof-of-work era 2015 - 2018, the issuance varied between 17 000 and 29 000
ETH per day, decreasing by time. In the recent proof-of-work era 2019 - 2022, the
issuance was approximately 13 000 ETH per day. Since the Merge, the issuance has
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been approximately 1 700 ETH per day, a 88% reduction in the issuance rate. The
respective issuance percentage rates ranged from 7% to 15% in 2015 - 2018, 4% -
5% in 2015 - 2022, and around 0.5% after Merge. The initial total ETH supply was
approximately 72 000 000 at launch in July 30, 2015 in the "Frontier" release, growing
to 120 520 000 at the time of the Merge in September 15, 2022. [16]

Ethereum also has a burn mechanism that results in ongoing deflationary pres-
sures in total supply. This mechanism has been in the protocol since August 2021
after the implementation of the "London" upgrade. The upgrade included a widely
debated element called EIP-1559, the burn mechanism. EIP stands for Ethereum
Improvement Proposal. The burn mechanism takes a part of the transaction fee and
automatically removes it from circulation. Essentially, the motivation was to improve
Ethereum’s financial sustainability by introducing a platform take rate, resulting in a
counterforce to the inflation caused by the issuance rate. The amount of gas burned is
also a function of the network activity; the higher the demand for gas, the higher the
burn. [16] To summarise,

Supply change rate = Net issuance rate = Issuance rate − Burn rate. (1)

The total historical supply of Ethereum and the change rate of supply are also
shown in Figure 1 [17]. Etherscan is used as the data source, as it is considered the
most reputable Ethereum blockchain data explorer.

Figure 1: Ethereum supply and one-year supply change

Figure 1 shows how the total Ethereum supply has increased until the Merge in
September 15, 2022, from which point on it has slightly decreased. The one-year
supply change shows how inflation has steadily decreased as time passes.
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2.3 ETH as a financial asset
ETH is a financial asset that has a market value and is actively traded on global markets.
ETH and other crypto tokens are often referred to as crypto assets. In finance, crypto
assets are a nascent asset class with a total market capitalisation of $1.1 trillion [11].
ETH’s market capitalisation is $200 billion. The daily spot trading volumes of ETH
range significantly depending on market conditions, but historically are in the tens of
billions of dollars [11]. Figure 2 shows the historical development of ETH market
capitalisation.

Figure 2: Ether market capitalisation over time

ETH has unique characteristics as an asset class but has elements of a currency, a
commodity, and a security. The crypto asset can be considered a currency from the
perspective that it can be simply transacted with in the Ethereum economy. If a party
is willing to sell goods or services in exchange for ETH payments, the technology
enables this activity. Arguably, the current major limiting factor for this use case is
historical volatility. ETH can also be considered a commodity comparable to oil in
the physical world since ETH is "computational fuel", as explained in Section 2.2.
Lastly, ETH can be considered a security specifically after the London upgrade, since
the burn mechanism is basically a value capture mechanism for the protocol. The
burn rate can be compared to a traditional take rate of any marketplace business, and
related financial metrics can be constructed. These financial metrics include widely
used security valuation multiples, such as P/E ratios [18]. Moreover, there have been
arguments that ETH could be considered a perpetual bond or an "Internet bond" due
to the never-maturing periodic staking yield in the Ethereum protocol [19]. This yield
is comparable to bond coupon payments, where the payment intervals are Ethereum
block times. This distinction can be important from a valuation perspective; however,
legally bonds are debt obligations and, thus, financial securities. Further, an important

17



distinction here is that the yield actually goes to ETH stakers that own "staked ETH",
not to passive ETH holders. This thesis strictly studies the ETH asset.

Wide disagreement and different interpretations of the legal status of ETH exist
among financial authorities, such as the U.S. Securities and Exchange Commission
(SEC) and the U.S. Commodity Futures Trading Commission (CFTC). In a 2018
speech by the SEC’s Director, William Hinman, the view was given that "current
offers and sales of ETH are not securities transactions", widely interpreted as the SEC
viewing ETH not as a security [20]. On the other hand, CFTC chairman Heath Tarbert
directly stated in 2019 that the agency views ETH as a commodity and may allow
ETH futures to trade on US markets (they are allowed today) [21]. The current SEC
Director, Gary Gensler, has taken a different stance than the predecessor, not directly
stating, but on various occasions suggesting that crypto assets may be securities [22].
Furthermore, on 6 June 2023, the SEC sued one of the largest and publicly listed crypto
exchanges in the world, Coinbase, for operating as an unregistered securities exchange,
broker, and clearing agency [23]. In particular, the SEC had approved Coinbase’s
public direct listing on the Nasdaq in April 2021, two years earlier, highlighting the
lack of legal clarity of various crypto assets in the US [24]. Globally, increasingly
many financial authorities have published legal crypto asset frameworks, such as the
EU in June 2023 through its Market in Crypto Assets Regulation Act (MiCA), paving
the way for clarity for crypto assets like Ethereum [25].

2.4 Derivative and option markets for ETH
Derivatives markets exist naturally as a result of a considerable volume of spot trading.
In March 2023, crypto derivatives represented approximately 75% of the total crypto
trading volume of $2.95 trillion [26]. According to Block, a reputable crypto data
analytics provider, the total monthly trading volume of ETH options has ranged
between $6.5 billion to $15 billion in 2023 [27]. The estimates consider the leading
centralised ETH options exchanges, Deribit, CME Group, OKX, Delta Exchange, and
Binance. In particular, decentralized option protocols, such as Hegic Options or Opyn
are excluded from these estimates, because of their low comparable volumes. These
protocols are examples of decentralised applications that are built on the Ethereum
protocol, a concept introduced earlier.

Deribit is by far the largest ETH options exchange by volume, having a market
share of approximately 80% between January and July in 2023 [27]. Despite CME
Group being a global institution in traditional finance, it has not yet reached significant
volumes of trading for ETH options. CME Group launched its ETH option product in
August 2022 and the cumulative trading volume to date (August 2023) is estimated at
$2 billion [27]. Consequently, the empirical analysis of this thesis will be based on
Deribit’s ETH options data.
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2.5 Ethereum options literature
There exists research on both Ethereum as a system and options as financial derivatives.
However, the literature at the intersection of these two areas remains underdeveloped.
Ethereum was launched in 2013, while options theory can be considered to have its
beginnings in the early 20th century with Bachelier’s "Théorie de la spéculation" in
1900 [5]. Thus, the existing literature is heavily weighted in availability towards options.

However, some specific research has been done on the Ethereum options. Re-
cently, Sapna and Mohan have published papers on the performance of numerical
approximations in estimating the implied volatility structures of Ethereum options
using the BSM model [28] [29]. The main idea in the construction of implied volatili-
ties is to numerically solve the equation 𝐶𝐵𝑆𝑀 = 𝐶𝑚𝑎𝑟𝑘𝑒𝑡 , using techniques such as the
Newton-Raphson method or the bisection method. Numerical root-finding methods
are used because the equation does not have analytical solutions for volatility. Their
research does not separately consider the supply changes in Ethereum and its effects on
implied volatilities. They have used the Deribit options data, which provides further
legitimacy to the data source also used in this thesis.

Considering other crypto assets, research is primarily focused on Bitcoin due to
its largest market capitalisation and significance in the crypto industry. Hou et al.
researched Bitcoin options in their 2020 study "Pricing Cryptocurrency Options" [30].
The study focused mainly on the correlation of price jumps and volatility and did not
use the BSM model. In 2019, Pagnottoni published a paper on how neural networks
could be applied to the pricing of Bitcoin options, but this study also does not consider
the BSM model [31].
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3 Options
This section reviews the literature on options and the mathematical principles for
constructing the Black-Scholes-Merton model. The complete step-by-step proof of the
BSM model is long; therefore, some of the intermediate steps are left out of Section
3.2, especially related to simple algebraic operations.

3.1 Stochastic calculus
Financial mathematics is based on stochastic calculus. Stochastic calculus is a branch
of mathematics for quantifying uncertainty through the use of probabilities. The
following sections are built to form a logical flow for the construction of the BSM
model.

3.1.1 Probability theory

Probability theory is largely based on measures. This section introduces general
notions of probability theory with the assumed basic knowledge of the concepts of
measures. The main references in this section include Durrett and Kytola [32] [33].
There are many reputable books in probability theory, including Jacod (2004) and
Williams (1991), which introduce the same concepts with alternative notation. [34] [35]

An outcome 𝜔 of a random experiment represents a single realization of randomness.
The sample space Ω is the set that consists of all possible outcomes.

An event 𝐸 is a subset 𝐸 ⊂ Ω of the set of possible outcomes. The event 𝐸 is
said to occur if 𝜔 ∈ Ω belongs to this subset, i.e., if 𝜔 ∈ 𝐸 . All subsets of Ω cannot
be allowed as events, but a suitable collection ℱ of subsets needs to be constructed,
consistent with the axioms of probability.

A probability space is a triple (Ω,ℱ, 𝑃), where Ω is a set of outcomes, ℱ is a
collection of events, and 𝑃 : ℱ → [0, 1] is a function that assigns probabilities to
events. The collection ℱ is a 𝜎-field (or 𝜎-algebra). A collection ℱ ⊂ 𝒫(Ω) of
subsets of a set Ω is a 𝜎-algebra on Ω if

1. Ω ∈ ℱ,

2. if 𝐸 ∈ ℱ then 𝐸c = Ω\𝐸 ∈ ℱ,

3. if 𝐸1, 𝐸2, . . . ∈ ℱ then
⋃︁
𝑛∈N 𝐸𝑛 ∈ ℱ.[32]

Probability spaces form the basis of stochastic calculus. In addition to this concept,
random variables and expected values are found in standard textbooks.

Let R𝑑 be the set of vectors (𝑥1, . . . 𝑥𝑑) of real numbers and R𝑑 be the Borel sets, the
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smallest 𝜎-field containing the open sets. Let (𝑆,S) be an arbitrary measurable space.
A function 𝑋 : Ω → 𝑆 is said to be a measurable map from (Ω,ℱ) to (𝑆,S) if

𝑋−1(𝐵) ≡ {𝜔 : 𝑋 (𝜔) ∈ 𝐵} ∈ ℱ for all 𝐵 ∈ S.

If (𝑆,S) =
(︁
R𝑑 ,R𝑑

)︁
and 𝑑 > 1, then 𝑋 is called a random vector. If 𝑑 = 1, 𝑋 is called

a random variable. [33]

The expected value E[𝑋] of a random variable 𝑋 : Ω → 𝑆 ⊂ R, represents an
average of the possible values of 𝑋 over all randomness, weighted according tow
probabilities P. If 𝑋 is a real-valued random variable defined on a probability space
(Ω,ℱ, P), the expected value of 𝑋 is defined as the Lebesgue integral

E[𝑋] =
∫
Ω

𝑋𝑑P.

3.1.2 Stochastic processes

The references in this section include Karatzas and Shreve (1991), Peltola (2023),
and Kaila (2008) [36][37][38]. There is a broad literature on stochastic processes;
well-known resources include Ross (1995) and Parzen (1999). [39] [40]

A stochastic process is a collection of real valued random variables (𝑋𝑡)𝑡≥0 defined
on a probability space (Ω,ℱ, 𝑃). Equivalently, a stochastic process is a collection of
random variables 𝑋 = {𝑋𝑡 ; 0 ≤ 𝑡 < ∞} on a sample space (Ω,ℱ), which take values
in a second measurable space (𝑆,𝒮), called the state space. [36]

Three fundamental concepts in stochastic processes are filtration, the Markov property,
and the martingale property. Filtration attempts to mathematically formalize the
notion of "information". It basically refers to the information available at time 𝑡. A
collection ℱ• = (ℱ𝑛)𝑛∈N0 comprising an increasing family ℱ0 ⊂ ℱ1 ⊂ · · · ⊂ ℱ of
sub-sigma-algebras of ℱ is called a filtration. The related tuple (Ω,ℱ,ℱ•, 𝑃) is
called a filtered probability space. [37] A stochastic process (𝑋𝑡)𝑡≥0 is adapted to the
filtration (ℱ𝑡)𝑡≥0, if the stochastic process 𝑋𝑡 is ℱ𝑡-measurable for every 𝑡. [41]

A stochastic process {𝑋𝑡}𝑡≥0 on a filtered probability space (Ω,ℱ,ℱ•, 𝑃) is called a
martingale with respect to a filtration ℱ• (and with respect to 𝑃 ) if

1. 𝑋𝑡 is ℱ𝑡-measurable for all 𝑡,

2. E [|𝑋𝑡 |] < ∞ for all 𝑡,

3. E [𝑋𝑡 | ℱ𝑠] = 𝑋𝑠 for all 𝑡 ≥ 𝑠. [41]

Essentially, a martingale is a stochastic process, where the conditional expectation of
the next value of the sequence is equal to the present value. For example, if we assume
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that a stock price is a martingale, the best forecast of the future value of the stock, at
any given future time t, is its current value 𝑋𝑠.

A Markov process is a stochastic process for which only the present value of the
random variable matters when trying to forecast the future. An (ℱ𝑡)𝑡≥0-adapted
process (𝑋𝑡)𝑡≥0 is a Markov process if

E[𝑋𝑡 | ℱ𝑠] = E[𝑋𝑡 | 𝑋𝑠] for all 0 ≤ 𝑠 ≤ 𝑡. (2)

Equation (2) is often referred to as the Markov property. [38]

Although martingales and Markov processes are intimately related, they have different
mathematical definitions. Martingales can sometimes be constructed from Markov
processes under certain conditions, and certain Markov processes possess the mar-
tingale property under specific filtrations. In financial mathematics, the stock price
process under the risk-neutral measure is a martingale, and when modeling stock
prices (as in the BSM model), the Markov property becomes crucial.

3.1.3 Brownian motion

The references for this section include Karatzas and Shreve (1991), Peltola (2023) and
Le Gall (2016) [42].

Brownian motion is both a martingale and a Markov process. It is one of the
fundamentally important stochastic processes, originally developed in the 19th century
in the context of diffusion phenomena in physics and as a way to model the behavior
of financial markets [37].

Mathematically, Brownian motion is a continuous-time real-valued stochastic process
usually denoted 𝐵 = (𝐵𝑡)𝑡≥0, defined on some probability space (Ω,ℱ, 𝑃). More
precisely, a Brownian motion with a starting point 𝑥0 has the following properties:

1. For each 𝜔 ∈ Ω, 𝐵0(𝜔) = 𝑥0.

2. For any partition 0 ≤ 𝑡0 < 𝑡1 < . . . < 𝑡𝑛, the increments{︁
𝐵𝑡 𝑗+1 − 𝐵𝑡 𝑗 | 𝑗 = 0, 1, . . . , 𝑛 − 1

}︁
are independent random variables.

3. For each 0 ≤ 𝑠 < 𝑡, the increment 𝐵𝑡 − 𝐵𝑠 has Gaussian distribution that only
depends on the time difference

𝐵𝑡 − 𝐵𝑠 ∼ N(0, 𝑡 − 𝑠), 0 ≤ 𝑠 < 𝑡.
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4. P-almost every sample path 𝑡 ↦→ 𝐵𝑡 is continuous

P [{𝜔 ∈ Ω | 𝑡 ↦→ 𝐵𝑡 (𝜔) is continuous }] = 1.

[37]

In the context of financial markets and this thesis, the assumption that the stock price
process follows a geometric Brownian motion (GBM) is the fundamental building
premise to use the BSM model.

A stock price process 𝑆𝑡 following the GBM satisfies the following stochastic differ-
ential equation:

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡 , (3)

where 𝐵𝑡 is Brownian, 𝜇 is drift, and 𝜎 is volatility.

3.1.4 Itô’s calculus

Before moving to option pricing theory, we last introduce critical concepts in stochastic
calculus from the mathematician Itô, which originated in the 1940s. Itô essentially
developed a generalization of integration by parts to stochastic integrals. The process
and lemma are presented.

ltô process 𝐼𝑡 is a stochastic process with a drift term and a stochastic term:

𝑑𝐼𝑡 = 𝑎 (𝐼𝑡 , 𝑡) 𝑑𝑡 + 𝑏 (𝐼𝑡 , 𝑡) 𝑑𝐵𝑡 , (4)

where the drift 𝑎 (𝐼𝑡 , 𝑡) and the volatility 𝑏 (𝐼𝑡 , 𝑡) are functions of 𝐼𝑡 and 𝑡, and 𝐵𝑡 is
Brownian motion. [41]

ltô’s Lemma states the following: Let 𝑋 (1) , 𝑋 (2) , . . . , 𝑋 (𝑑) be continuous semi-
martingales and 𝑓 : R𝑑 → R twice continuously differentiable. Define �⃗� 𝑡 =(︂
𝑋
(1)
𝑡 , . . . , 𝑋

(𝑑)
𝑡

)︂
. Then, the following formula holds

𝑓

(︂
�⃗� 𝑡

)︂
− 𝑓

(︂
�⃗�0

)︂
=

𝑑∑︁
𝑗=1

∫ 𝑡

0

(︁
𝜕𝑗 𝑓

)︁ (︂
�⃗� 𝑠

)︂
d𝑋 ( 𝑗)

𝑠 +1
2

𝑑∑︁
𝑗 ,𝑘=1

∫ 𝑡

0

(︁
𝜕𝑗𝜕𝑘 𝑓

)︁ (︂
�⃗� 𝑠

)︂
d
⟨︂
𝑋 ( 𝑗) , 𝑋 (𝑘)

⟩︂
𝑠
, 𝑡 ≥ 0

(5)
where

⟨︁
𝑋 ( 𝑗) , 𝑋 (𝑘)⟩︁ denotes the quadratic covariation between 𝑋 ( 𝑗) and 𝑋 (𝑘) . [37] [43]

Critically, every martingale is a semimartingale (but not vice versa), and Brow-
nian motion is a martingale as previously discussed. Thus, Itô’s Lemma can be used
as a tool in the options calculations.
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3.2 Option pricing
This section presents the literature related to the BSM model and constructs the
model using the tools of Section 3. Longer algebra sections are omitted to maintain
a reasonable scope in the thesis. The math sections are presented in logical continuation.

Quantitative finance has a wide literature. References include Paul Wilmott’s quanti-
tative finance books (2001, 2006), and Baxter and Rennie (2006), which all include
mathematics around the BSM model [44][45][46].

3.2.1 Black-Scholes in differential form

First, the key assumptions about the markets are presented below:

1. There is no arbitrage opportunity (i.e. the markets are perfectly efficient).

2. Any market participant can borrow and lend any amount at the riskless rate
(infinite liquidity).

3. Any market participant can buy and sell any amount of the stock (infinite stock
supply).

4. No transaction costs (i.e. perfectly frictionless market).

Next, assume the stock price 𝑆𝑡 follows a geometric Brownian motion:

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡 , (6)

where 𝑆𝑡 is the stock price at time t, 𝜇 is the expected return, 𝜎 is the volatility, and 𝐵𝑡
is Brownian.

Equation (6) can be shown to satisfy

𝑆𝑡 = 𝑆0𝑒
(𝜇− 𝜎2

2 )𝑡+𝜎𝐵𝑡 ∼ LN
(︂
𝑆0𝑒

𝜇𝑡 , 𝑆2
0𝑒

2𝜇𝑡 (𝑒𝜎2𝑡 − 1)
)︂
, (7)

where LN is the lognormal distribution.

Now, we assume a risk-neutral world, where 𝜇 = 𝑟, the risk-free rate. Then the
process becomes:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡 , (8)
where 𝑟 is the risk-free rate and other variables defined as in Equation (6).

Consider a European call option on this stock with strike price 𝐾 and maturity
𝑇 . Let 𝐶 (𝑡, 𝑆𝑡) be the price of this option at time 𝑡 when the stock price is 𝑆𝑡 .

By Itô’s Lemma from Equation (5), 𝐶 (𝑡, 𝑆𝑡) satisfies the following stochastic differen-
tial equation

𝑑𝐶 (𝑡, 𝑆𝑡) =
𝜕𝐶

𝜕𝑡
𝑑𝑡 + 𝜕𝐶

𝜕𝑆
𝑑𝑆𝑡 +

1
2
𝜕2𝐶

𝜕𝑆2 (𝑑𝑆𝑡)
2. (9)
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Inserting the geometric Brownian motion in Equation (8) for 𝑑𝑆𝑡 into Equation (9)
yields

𝑑𝐶 (𝑡, 𝑆𝑡) =
𝜕𝐶

𝜕𝑡
𝑑𝑡 + 𝜕𝐶

𝜕𝑆
(𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡) +

1
2
𝜕2𝐶

𝜕𝑆2 (𝜎
2𝑆2
𝑡 𝑑𝑡). (10)

Simplifying, we get

𝑑𝐶 (𝑡, 𝑆𝑡) =
(︃
𝜕𝐶

𝜕𝑡
+ 𝑟𝑆𝑡

𝜕𝐶

𝜕𝑆
+ 1

2
𝜎2𝑆2

𝑡

𝜕2𝐶

𝜕𝑆2

)︃
𝑑𝑡 + 𝜎𝑆𝑡

𝜕𝐶

𝜕𝑆
𝑑𝐵𝑡 . (11)

The last stochastic term in Equation (11) including Brownian motion 𝐵𝑡 can be
eliminated by selecting a portfolio of Π = −𝐶 + 𝜕𝐶

𝜕𝑆
𝑆𝑡 , and noticing that resulting

portfolio change must be riskless during a time differential, yielding the risk-free rate

𝑑Π =

(︃
−𝜕𝐶
𝜕𝑡

− 1
2
𝜕2𝐶

𝜕𝑆2 𝜎
2𝑆2
𝑡

)︃
𝑑𝑡 = 𝑟Π𝑑𝑡. (12)

Inserting the selected portfolio into Equation (12) gives

𝜕𝐶

𝜕𝑡
+ 1

2
𝜎2𝑆2

𝑡

𝜕2𝐶

𝜕𝑆2 + 𝑟𝑆𝑡
𝜕𝐶

𝜕𝑆
− 𝑟𝐶 (𝑡, 𝑆𝑡) = 0, (13)

which is the differential form of the basic Black-Scholes model for European call
options. Note that the stock does not pay dividends in the basic BS model; it will be
discussed in Section 3.2.3 in detail.

3.2.2 Black-Scholes closed solutions

Equation (13) is a second-order partial differential equation with the following boundary
conditions:

1. At expiry (𝑡 = 𝑇): The payoff of the option is given by the difference between
the stock price and the strike price at expiry. The first boundary condition is:

𝐶 (𝑇, 𝑆) = max(𝑆 − 𝐾, 0). (14)

2. Stock price approaches zero (𝑆 → 0): The call option becomes worthless if
the stock price goes to zero. The second boundary condition is:

𝐶 (𝑡, 0) = 0. (15)

3. Stock price approaches infinity (𝑆 → ∞): The option price increases together
with an increasing stock value, subtracted by the present value of the strike
price, leading to the third boundary condition:

𝐶 (𝑡, 𝑆) → 𝑆 − 𝐾𝑒−𝑟 (𝑇−𝑡) as 𝑆 → ∞. (16)
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The problem can be tackled with various approaches, such as direct integration, by
applying the Feynman-Kac theorem, using the Capital Asset Pricing Model (CAPM),
or by transforming Equation (13) into the heat equation, as originally done by Black
and Scholes [2] [47].

The intermediate steps to the final form are omitted to maintain the scope of the thesis.
The closed solution of Equation (13) is the basic Black-Scholes formula for a European
call option (C) on a non-dividend paying stock and is given as

𝐶 = 𝑆0N(𝑑1) − 𝐾𝑒−𝑟𝑡N(𝑑2), (17)

where

• 𝐶 is the price of the call option

• 𝑆0 is the initial stock price

• 𝐾 is the strike price

• 𝑡 is the time to maturity

• 𝑟 is the risk-free interest rate.

In Equation (17), N is the cumulative distribution function of the standard Gaussian,
defined as

N(𝑧) = 1
√

2𝜋

∫ 𝑧

−∞
𝑒−

𝑥2
2 𝑑𝑥. (18)

The parameters 𝑑1 and 𝑑2 are calculated as

𝑑1 =
𝑙𝑛( 𝑆0

𝐾
) + (𝑟 + 𝜎2

2 )𝑡
𝜎
√
𝑡

, (19)

𝑑2 = 𝑑1 − 𝜎
√
𝑡, (20)

where 𝜎 is the volatility of the stock’s returns.

3.2.3 Merton dividends adjustment and BSM

In the 1973 published paper "Theory of Rational Option Pricing", Merton provided
a framework on how the basic Black-Scholes model (Equations (17)-(20)) can be
extended to account for dividends [48]. These concepts are also discussed later in his
1991 foundational text book, "Continuous-Time Finance" [49].

The main idea is to assume that dividends are continuous and to use a slightly
adjusted geometric Brownian stock price process

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 − 𝑞𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡 = (𝑟 − 𝑞)𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡 , (21)
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where 𝑞 is the continuous dividend yield of the underlying stock, and other variables
defined as in Equation (8). If the stock pays dividends continuously at a rate 𝑞, then
over a time differential 𝑑𝑡, the amount of dividends paid is 𝑞𝑆𝑡𝑑𝑡, where 𝑆𝑡 is the stock
price at time 𝑡. Because dividends are cash paid out of a company, this has a negative
effect on the stock price 𝑆𝑡 .

The stock price process is also lognormally distributed as in Equation (7), with
slight adjustments to the expected value and variance:

𝑆𝑡 ∼ LN
(︂
𝑆0𝑒

(𝑟−𝑞)𝑡 , 𝑆2
0𝑒

2(𝑟−𝑞)𝑡 (𝑒𝜎2𝑡 − 1)
)︂
, (22)

where variables are defined as in Equations (7) and (21).

Applying the algebra of Sections 3.2.1 - 3.2.2 gives the dividend-adjusted BSM
model. Specifically, the Black-Scholes-Merton formula for a European call option (C)
on a dividend paying stock is given as

𝐶 = 𝑆0𝑒
−𝑞𝑡N(𝑑1) − 𝐾𝑒−𝑟𝑡N(𝑑2), (23)

where

• 𝐶 is the price of the call option

• 𝑆0 is the initial stock price

• 𝐾 is the strike price

• 𝑡 is the time to maturity

• 𝑟 is the risk-free interest rate

• 𝑞 is the continuous dividend yield.

In Equation (23), N is the cumulative distribution function of the standard Gaussian,
defined as

N(𝑧) = 1
√

2𝜋

∫ 𝑧

−∞
𝑒−

𝑥2
2 𝑑𝑥. (24)

The parameters 𝑑1 and 𝑑2 are calculated as

𝑑1 =
𝑙𝑛( 𝑆0

𝐾
) + (𝑟 − 𝑞 + 𝜎2

2 )𝑡
𝜎
√
𝑡

, (25)

𝑑2 = 𝑑1 − 𝜎
√
𝑡, (26)

where 𝜎 is the volatility of the stock’s returns.

As can be seen, the model is close to the version without dividends in Equations
(17)-(20), except for the presence of the 𝑞-term. Considering the research questions of
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the thesis, it is important to further elaborate the notion of dividends. The dividend
yield of a company is defined as

𝑞 =
Annual dividends per share

Price per share
. (27)

Equivalently,
𝑞 =

Annual total dividends
Company market capitalisation

. (28)

Due to the assumption of continuity of 𝑞 in the BSM model, it is used more accurately
for option indices where dividends are paid out in a rate of approximately continuously.
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4 Research methods
The aim of this section is to connect the unique characteristics of Ethereum with the
BSM model. In Section 4.1 a novel approach is presented to value ETH options that
incorporates supply dynamics into the equations. Moreover, Sections 4.2 - 4.3 outline
how the comparison analysis of the thesis is conducted.

4.1 Modified BSM for Ethereum options
The main argument in this section is that crypto asset supply changes are simply
another form of value-affecting mechanism for those who have an exposure to the
underlying. Formulas are provided to justify the claims.

Recall that the initial problem was that there was no parameter to account for supply
changes in the BSM model for Ethereum. Supply changes are unique characteristics
of crypto assets that clearly have an effect on the underlying asset, and therefore also
on any derivative of the underlying. The supply change equation was introduced as
an idea in Equation (1). A mathematical justification for the claims is presented in
Section 4.1.1, and the modified BSM model for crypto assets is formalized in Section
4.1.2.

4.1.1 Mathematical formulation

Consider again the following stock price process, including dividends, presented in
Section 3.2.3, i.e.,

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 − 𝑞𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡 .
Over a time differential 𝑑𝑡, the amount of dividends paid is 𝑞𝑆𝑡𝑑𝑡. At time 𝑡 + 𝑑𝑡, the
stock is worth 𝑆𝑡 + 𝑑𝑆𝑡 , and existing shareholders experience a relative change in stock
value of

𝑆𝑡+𝑑𝑡 − 𝑆𝑡
𝑆𝑡

=
𝑆𝑡 + 𝑑𝑆𝑡 − 𝑆𝑡

𝑆𝑡

=
𝑟𝑆𝑡𝑑𝑡 − 𝑞𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡

𝑆𝑡

= 𝑟𝑑𝑡 + 𝜎𝑑𝐵𝑡 − 𝑞𝑑𝑡, (29)

where −𝑞𝑑𝑡 represents the stock value dilution caused by dividends. As a concrete
example, over a year period, share value would be diluted by a factor of −𝑞. That is,
existing shares are diluted by (𝑞 ∗ 100)% over a period of one year due to dividends.

Now, assume that a company has a constant market capitalisation 𝑀 and increases
the amount shares at a continuous rate. Let 𝑁𝑡 be amount of shares at time 𝑡, and 𝑠
the rate of change of the amount of shares. Consequently, the stock price 𝑆𝑡 can be
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expressed as 𝑆𝑡 = 𝑀/𝑁𝑡 .

The differential equation describing the change in the amount of shares is

𝑑𝑁 = 𝑠𝑁𝑡𝑑𝑡, (30)

where the variables are defined as above.

Over a time differential 𝑑𝑡, the amount of new shares created is 𝑠𝑁𝑡𝑑𝑡. At time
𝑡 + 𝑑𝑡, the total amount of shares in existence is 𝑁𝑡 + 𝑑𝑁𝑡 . Existing shareholders
experience a share value dilution of

𝑆𝑡+𝑑𝑡 − 𝑆𝑡
𝑆𝑡

=

𝑀
𝑁𝑡+𝑑𝑡

− 𝑀
𝑁𝑡

𝑀
𝑁𝑡

=
𝑁𝑡 − 𝑁𝑡+𝑑𝑡
𝑁𝑡+𝑑𝑡

=
𝑁𝑡 − (𝑁𝑡 + 𝑑𝑁𝑡)

𝑁𝑡 + 𝑑𝑁𝑡
=

−𝑑𝑁𝑡
𝑁𝑡 + 𝑑𝑁𝑡

=
−𝑠𝑁𝑡𝑑𝑡
𝑁𝑡 + 𝑠𝑁𝑡𝑑𝑡

= − 𝑠𝑑𝑡

1 + 𝑠𝑑𝑡 , (31)

which mathematically differs from the dilution created by dividends in Equation (29).
As a concrete example, over a two-year period, the share value would be diluted by a
factor of −2𝑠/(1+2𝑠). That is, existing shares are (2𝑠/(1+2𝑠)) ∗ 100% less valuable over a
period of two years.

As a result, the comparable GBM stock price process including a continuous increase
in the amount of shares and without dividends is given by

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 −
𝑠

1 + 𝑠𝑑𝑡 𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡 , (32)

where the term 𝑠/(1+𝑠𝑑𝑡) is the stock dilution scaling factor dependent on the time
differential 𝑑𝑡, which means the scaling factor is not a scalar.

Equation (32) can be written as

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 −
1

1 + 𝑠𝑑𝑡 𝑠𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝐵𝑡 , (33)

which is closer to the original form of Equation (21), except for the non-scalar drift
scaling factor 1/(1+𝑠𝑑𝑡).
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We conclude that both dividends and increases in the share amount have a di-
luting effect on the underlying stock price under the given assumptions, but the dilution
factors and stock price processes are different.

Lastly, the use of Equation (33) would not necessarily result in any known ver-
sion of the BSM model due to the non-scalar drift scaling factor. However,

lim
𝑠→0

1
1 + 𝑠𝑑𝑡 = 1, (34)

and for small values of 𝑠 it holds that

1
1 + 𝑠𝑑𝑡 ≈ 1 − 𝑠𝑑𝑡. (35)

Equation (34) holds trivially and for Equation (35), consider an n:th order Taylor
approximation at point 𝑎 = 0:

𝑓 (𝑥) ≈ 𝑓 (0) + 𝑓 ′(0)𝑥 + 𝑓 ′′(0)
2!

𝑥2 + . . . + 𝑓 (𝑛) (0)
𝑛!

𝑥𝑛, (36)

where 𝑓 (𝑥) = 1
1+𝑥 and 𝑥 = 𝑠𝑑𝑡. Equation (36) simplifies to a known geometric series:

𝑓 (𝑥) ≈ 1 − 𝑥 + 𝑥2 − 𝑥3 + . . . + (−1)𝑛𝑥𝑛

= 1 − 𝑠𝑑𝑡 + (𝑠𝑑𝑡)2 − (𝑠𝑑𝑡)3 + . . . + (−1)𝑛 (𝑠𝑑𝑡)𝑛

= 1 − 𝑠𝑑𝑡, (37)

because the differential terms (𝑑𝑡)𝑛 become negligibly small for 𝑛 ≥ 2. These details
are important when constructing the crypto asset BSM in Section 4.1.2.
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4.1.2 Crypto asset BSM

In this section we connect Equation (1) to Equation (33) and construct a suitable BSM
version for Ethereum.

Assume that we have a non-dividend-paying crypto asset with price 𝑄𝑡 and with an
annual issuance rate 𝑖 ≥ 0 and an annual burn rate of 𝑏, where 0 ≤ 𝑏 < 1. Denote the
net issuance by 𝐼𝑁 , 𝐼𝑁 ∈ R. Then, by Equation (1):

𝐼𝑁 = 𝑖 − 𝑏, (38)

where variables are defined above.

Mathematically, crypto asset supply changes are comparable to stock supply changes
discussed in Section 4.1.1. This is given as a premise since it is trivially true. Moreover,
crypto asset price processes can be modeled using GBM due to the widespread use of
the traditional BSM model in crypto option markets. Using Equation (33), we can
state the crypto asset price process explicitly as

𝑑𝑄𝑡 = 𝑟𝑄𝑡𝑑𝑡 −
1

1 + 𝐼𝑁𝑑𝑡
𝐼𝑁𝑄𝑡𝑑𝑡 + 𝜎𝑄𝑡𝑑𝐵𝑡 (39)

= 𝑟𝑄𝑡𝑑𝑡 −
1

1 + (𝑖 − 𝑏)𝑑𝑡 (𝑖 − 𝑏)𝑄𝑡𝑑𝑡 + 𝜎𝑄𝑡𝑑𝐵𝑡

= 𝑟𝑄𝑡𝑑𝑡 −
1

1 + (𝑖 − 𝑏)𝑑𝑡 𝑖𝑄𝑡𝑑𝑡 +
1

1 + (𝑖 − 𝑏)𝑑𝑡 𝑏𝑄𝑡𝑑𝑡 + 𝜎𝑄𝑡𝑑𝐵𝑡 , (40)

where 1/(1+(𝑖−𝑏)𝑑𝑡) is the non-scalar drift scaling factor of the price effect caused by
issuance 𝑖 and burn 𝑏 and other variables defined as before. Importantly, we cannot
state that this process is necessarily a geometric Brownian without further examination.

To apply this crypto asset price process to the BSM model, we apply the Taylor
approximation from Equation (35) to Equation (39)

𝑑𝑄𝑡 ≈ 𝑟𝑄𝑡𝑑𝑡 − (1 − 𝐼𝑁𝑑𝑡)𝐼𝑁𝑄𝑡𝑑𝑡 + 𝜎𝑄𝑡𝑑𝐵𝑡
= 𝑟𝑄𝑡𝑑𝑡 − 𝐼𝑁𝑄𝑡𝑑𝑡 + 𝐼2𝑁𝑄𝑡 (𝑑𝑡)2 + 𝜎𝑄𝑡𝑑𝐵𝑡
= 𝑟𝑄𝑡𝑑𝑡 − 𝐼𝑁𝑄𝑡𝑑𝑡 + 𝜎𝑄𝑡𝑑𝐵𝑡
= (𝑟 − 𝑖 + 𝑏)𝑄𝑡𝑑𝑡 + 𝜎𝑄𝑡𝑑𝐵𝑡 , (41)

where variables are defined as before.

Equation (41) is now comparable to the original geometric Brownian of Merton in
Equation (21), with different scalar multipliers. Consequently, the post-approximation
𝑄𝑡 is lognormal with a net issuance-adjusted expected value and variance:

𝑄𝑡 = 𝑄0𝑒
(𝑟−𝑖+𝑏− 𝜎2

2 )𝑡+𝜎𝐵𝑡 ∼ LN
(︂
𝑄0𝑒

(𝑟−𝑖+𝑏)𝑡 , 𝑄2
0𝑒

2(𝑟−𝑖+𝑏)𝑡 (𝑒𝜎2𝑡 − 1)
)︂
, (42)
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where variables are defined as previously.

The BSM model can now be generalized to crypto assets:

The Black-Scholes-Merton formula for a European call option (C) on a non-dividend
paying crypto asset with continuous token issuance and continuous token burn is given
as

𝐶 = 𝑄0𝑒
−(𝑖−𝑏)𝑡N(𝑑1) − 𝐾𝑒−𝑟𝑡N(𝑑2), (43)

where

• 𝐶 is the price of the call option

• 𝑄0 is the initial crypto asset price

• 𝐾 is the strike price

• 𝑡 is the time to maturity

• 𝑟 is the risk-free interest rate

• 𝑖 is the continuous issuance rate

• 𝑏 is the continuous burn rate

N is the cumulative distribution function of the standard Gaussian, defined as

N(𝑧) = 1
√

2𝜋

∫ 𝑧

−∞
𝑒−

𝑥2
2 𝑑𝑥. (44)

The variables 𝑑1 and 𝑑2 are calculated as

𝑑1 =
𝑙𝑛(𝑄0

𝐾
) + (𝑟 − 𝑖 + 𝑏 + 𝜎2

2 )𝑡
𝜎
√
𝑡

, (45)

𝑑2 = 𝑑1 − 𝜎
√
𝑡, (46)

where 𝜎 is the volatility of the crypto asset’s returns.

4.1.3 Model assumptions

The key assumption of the model is the use of the Taylor approximation, which means
that its effects must be properly examined. The error is the difference between the
function and the Taylor approximation. This can be explicitly written as

𝑅𝑛 (𝑥) =
𝑓 (𝑛+1) (𝑐)
(𝑛 + 1)! (𝑥 − 𝑎)𝑛+1, (47)
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where 𝑓 = 1/(1+𝑥) and 𝑐 is some number between 𝑎 and 𝑥.

The approximation of Equation (35) is equivalent to the first-order Taylor approximation
at the point 𝑎 = 0. Thus,

𝑅1(𝑥) =
𝑓 ′′(𝑐)

2!
𝑥2

= (1 + 𝑐)−3𝑥2. (48)

We seek to construct the maximum error bounds to understand how the model behaves
under different variations of net issuance and option expiration time.

For 𝑥 ≥ 0, since 0 ≤ 𝑐 ≤ 𝑥, (1 + 𝑐)−3 ≤ 1. Therefore, |𝑅1+(𝑥) | ≤ 𝑥2. For 𝑥 < 0, since
𝑥 ≤ 𝑐 ≤ 0, the upper error bound is at 𝑐 = 𝑥. Therefore, |𝑅1−(𝑥) | ≤ (1 + 𝑥)−3𝑥2.

Figure 3: Taylor approximation percentage error bounds for 𝑓 = 1/(1+𝐼𝑁 𝑡). Red curved
lines mark the intersection of a plane at 𝑅1 = 2.5%.
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Figure 3 shows how the Taylor approximation error bounds behave for different param-
eter selections of net issuance 𝐼𝑁 and option expiration time 𝑡. The red curved lines
mark the intersection of a plane at 𝑅1 = 2.5%, under which 82% of the combinations
of parameters are located. This can be interpreted as the approximation having a
theoretical maximum error of 2.5% in 82% of the possible 𝐼𝑁 and 𝑡 combinations in
the range −0.15 ≤ 𝐼𝑁 ≤ 0.15 and 0 ≤ 𝑡 ≤ 2.

An examination of Figure 3 suggests that when the net issuance rate and the expiration
time of the option increase, the approximation error increases. Furthermore, it is
asymmetric in the sense that deeply negative issuance rates result in higher approxi-
mation errors than deeply positive rates. This is caused by the function 𝑓 = 1/(1+𝑥)
not being symmetric around the y-axis itself. This can also be confirmed with math;
Let T denote the Taylor approximation function, fix 𝑡 = 2 and take 𝐼𝑁 = 0.10 and
𝐼𝑁 = −0.10

| 𝑓 (0.2) − 𝑇 (0.2) | =
|︁|︁|︁|︁ 1
1 + 0.2

− (1 − 0.2)
|︁|︁|︁|︁ = 0.033 . . . (49)

≠ | 𝑓 (−0.2) − 𝑇 (−0.2) | =
|︁|︁|︁|︁ 1
1 − 0.2

− (1 − (−0.2))
|︁|︁|︁|︁ = 0.05. (50)

Using the idea of Figure 3, we construct Table 1 with varying ranges of 𝐼𝑁 and
option expiry time 𝑇 .

𝐼𝑁min 𝐼𝑁max T 𝑅1 error bound Values under 𝑅1
-0.15 0.15 2 1.0% 67.0%
-0.1 0.15 2 1.0% 73.1%
-0.05 0.1 2 1.0% 88.3%
-0.05 0.05 2 1.0% 99.6%
-0.15 0.15 2 2.5% 82.2%
-0.1 0.15 2 2.5% 87.8%
-0.05 0.1 2 2.5% 97.3%
-0.05 0.05 2 2.5% 100.0%
-0.15 0.15 5 2.5% 50.2%
-0.1 0.15 5 2.5% 55.7%
-0.05 0.1 5 2.5% 72.6%
-0.05 0.05 5 2.5% 88.5%
-0.15 0.15 5 5.0% 60.3%
-0.1 0.15 5 5.0% 66.5%
-0.05 0.1 5 5.0% 83.2%
-0.05 0.05 5 5.0% 96.8%

Table 1: 𝑅1 error bounds for different ranges of 𝐼𝑁 and 𝑡 and the resulting percentage
values under the 𝑅1 plane.
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Since January 2018, Ethereum has had a maximum positive net issuance rate of
approximately 10% and a minimum negative net issuance rate of approximately
-0.25% (Figure 1). Interpreting the Table 1, this corresponds to 97.3% of value
combinations being acceptable with a 2.5% error bound, when the value ranges are
−0.05 ≤ 𝐼𝑁 ≤ 0.10 and 0 ≤ 𝑡 ≤ 2. If the option expiry time range is increased to
0 ≤ 𝑡 ≤ 5, the respective results are 72.6% acceptance with a 2.5% error bound, with
the same 𝐼𝑁 value ranges. Increasing the 𝑅1 error bound to 5.0% results in 83.2%
acceptance with the same value ranges.

To conclude, the Taylor approximation is suitable to be used in the model and
works with neglible errors in most cases when using Ethereum’s historical net issuance
rates. The model is particularly accurate for short- and medium-term options, but
can also be used for longer ones. However, if the option expiration time increases to
more than 2 years, and especially if the net issuance rates are high simultaneously,
numerical error analysis is worth conducting when using the model.

Finally, it is important to address the continuity assumption for the issuance rate 𝑖
and the burn rate 𝑏. As discussed earlier, the dividend-adjusted BSM model is often
applied for option indices, where the continuity approximation results in negligible
errors. In the case of here, the model is directly suitable for individual crypto assets
due to the concept of block times in blockchain protocols. As mentioned in Section
1.1, Ethereum’s average block time is 12 seconds. Practically, this means that the
Ethereum system updates its state every 12 seconds. Notably, there are blockchain
protocols with considerably slower block times. The continuity approximation error 𝜖
can be written as

𝜖 =

|︁|︁|︁|︁|︁(︃1 + 1
𝐵

)︃𝐵
− lim
𝑛→∞

(︃
1 + 1

𝑛

)︃𝑛|︁|︁|︁|︁|︁
=

|︁|︁|︁|︁|︁(︃1 + 1
𝐵

)︃𝐵
− 𝑒

|︁|︁|︁|︁|︁ , (51)

where 𝐵 is the amount of blocks added to the blockchain in a year. 𝐵 can be calculated
from block times. In Ethereum, 𝐵𝑒𝑡ℎ ≈ 2628000, yielding

𝜖𝑒𝑡ℎ =

|︁|︁|︁|︁|︁(︃1 + 1
2628000

)︃2628000
− 𝑒

|︁|︁|︁|︁|︁ (52)

≈ 5 × 10−7.

As a result, the contuinity assumption of issuance and burn rates hold comfortably for
Ethereum and for any crypto asset with sufficiently small block times.
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4.2 Data acquisition
This section explains the two main data sets used in the comparison analysis of the
two different models, the original BSM and the crypto BSM. First, synthetic data are
used to simulate how models should differ under theoretical circumstances. Secondly,
ETH option market data is retrieved from Deribit options exchange to compare the
models with real-world data.

4.2.1 Synthetic data

The synthetic data set is created with the following specifications:

The parameters for the crypto asset price (𝑄𝑡), risk-free rate (𝑟), net issuance (𝐼𝑁 = 𝑖−𝑏),
and time to maturity (𝑡) are set as 2000, 0, 0, and 1, respectively. A series of 31 strike
prices (𝐾𝑖) are linearly spaced between 500 and 3500. A volatility smile is simulated
by generating a set of volatilities using a parabolic equation that is a function of the
strike prices. The equation used is as follows,

𝜎𝑖 (𝐾𝑖) = 0.20 + 0.3
(︃
𝐾𝑖 − 2000

1500

)︃2
, 𝑖 = 1, 2, . . . , 31 (53)

where 𝜎𝑖 (𝐾𝑖) denotes the volatility corresponding to the strike price 𝐾𝑖.

Figure 4: Synthetic volatility smile as a function of strike prices. ATM refers to
"at-the-money", meaning the crypto asset spot price is 𝑄𝑡 = 2000.

Figure 4 visualizes the synthetic data set. The decision to simulate a "smile" for the
volatilities is based on the fact that most implied volatilities in real-world market
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data form a parabolic shape. In other words, there is a natural tendency for implied
volatilities to increase for deep out-of-the-money (OTM) or in-the-money (ITM)
options. This phenomenon is rooted in the differences in the market distribution of
returns compared to the normal distribution, namely that the market distribution tails
have more probability mass than those of a normal distribution.

Synthetic data are used in the analysis to calculate the corresponding option prices and
to show how the option prices differ when the net issuance 𝐼𝑁 changes. In addition,
different volatility smiles are compared to the synthetic volatility smile with varying
𝐼𝑁 .

4.2.2 Deribit options exchange

Deribit is the leading crypto asset options exchange in terms of volumes and signifi-
cance. ETH option data was fetched from the Deribit API using Python 3. A JSON
file containing detailed data on the options was received for the date 31 August 2023.
The data was then parsed and structured into a format that was more suitable for
analysis. The processed dataframe consists of ETH call options with varying strike
and expiration times. The data consist of the previous 24 hours of the snapshot on
31 August 2023. The size of the dataframe is 14 columns, 214 rows, and its head is
presented in Table 2 below.

Table 2: Processed Python dataframe of the Deribit ETH call option data

The column name volume_usd refers to the 24h USD volume of the instrument given
in the instrument_name column. All prices are denominated in USD in the dataframe.
The underlying_price refers to the ETH spot price for the specific instrument. The
spot prices may differ slightly due to bid-ask spreads and observation times. The
estimated_delivery_price is consistently equal across various instruments, since it
refers to the forward underlying price at expiration. All spot prices gravitate towards this
same forward price. The columns mark_price_usd, bid_price_usd, and ask_price_usd
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all refer to the call option market prices. The column time_to_expiry is the expiration
time in years and is derived from the difference of expiry_date and creation_timestamp.
This type of data formatting is sufficient for the purposes of analysis.

4.3 Analysis overview
The analysis of the data sets is focused on two main goals to answer the research ques-
tions. These goals are to understand how the net issuance changes in the BSM model
affect option prices when volatility is known, and conversely, how these changes affect
implied volatilities when option market prices are known. Furthermore, understanding
how option expiration times affect these dynamics is analyzed.

It is straightforward to calculate the implied option prices with both versions of
the BSM formula when there are predefined constant volatilities for each strike price.
However, comparing implied volatilities with actual market prices from Deribit data
requires numerical root-finding methods, because equation 𝐶𝐵𝑆𝑀 = 𝐶𝑚𝑎𝑟𝑘𝑒𝑡 does not
have analytic solutions for volatility. In the analysis, the bisection method is used due
to its comparable benefits to other methods in this specific situation. The reasoning
for this selection and the algorithm is presented in Section 4.3.1.

4.3.1 Numerical methods

There are many widely used numerical root finding algorithms in addition to the
bisection method, such as Newton-Raphson or the secant method. The main logic
for selecting the bisection method in this analysis is the interest in guaranteeing
convergence in as many cases as possible, possibly at the cost of computational time.
The data set cannot be considered large, and the computations are not intensive.
Therefore, there is no point in optimizing computational efficiency at any trade-off
cost. Newton-Raphson and the secant methods are more prone to the initial parameter
selections, and root convergence depends on these initial parameter values. The
bisection method is guaranteed to converge, if the function 𝑓 is continuous on an
interval [𝑎, 𝑏] such that 𝑓 (𝑎) and 𝑓 (𝑏) have opposite signs. The goal is to maximize
the accuracy of each numerical estimate of implied volatility at each strike price. The
bisection algorithm is presented below.

When estimating the traditional implied volatility, the function is defined as

𝑓 (𝜎) = 𝐶BSM(𝑆, 𝐾, 𝑇, 𝑟, 𝜎) − 𝐶market. (54)

Here 𝐶BSM is the BSM call option pricing formula and 𝐶market is the market price of
the option. The Bisection method consists of the following steps:

1. Choose the initial interval [𝑎, 𝑏] such that 𝑓 (𝑎) 𝑓 (𝑏) < 0. This indicates that
the function 𝑓 (𝜎) changes sign in the interval.

2. Calculate the midpoint 𝑐 = (𝑎+𝑏)/2.

39



3. Evaluate the function at the midpoint, 𝑓 (𝑐).

4. If 𝑓 (𝑐) is very close to zero (within a predefined tolerance), then 𝑐 is the root of
the function and the algorithm stops.

5. If 𝑓 (𝑐) is not close to zero (not within a predefined tolerance), determine the
subinterval where the root lies:

• If 𝑓 (𝑎) 𝑓 (𝑐) < 0, then the root lies in the interval [𝑎, 𝑐], so set 𝑏 = 𝑐.
• If 𝑓 (𝑏) 𝑓 (𝑐) < 0, then the root lies in the interval [𝑐, 𝑏], so set 𝑎 = 𝑐.

6. Repeat steps 2 to 5 until the root is found or the maximum number of iterations
is reached.

When estimating the implied volatilities using the crypto BSM, the algorithm is the
same except for the function definition, which is:

𝑓 (𝜎) = 𝐶cryptoBSM(𝑆, 𝐾, 𝑇, 𝑟, 𝑖, 𝑏, 𝜎) − 𝐶market, (55)

which considers the continuous issuance rate and the continuous burn rate of the
crypto asset, given by the Equations (43) - (46).
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5 Results and analysis
This section presents the results of the model comparison analysis. In Section 5.1,
synthetic data are used as a basis, while Deribit market data are used in Section 5.2.
Section 5.3 summarizes the key insights from the results.

5.1 Model comparison with synthetic data
First, option prices corresponding to the synthetic volatility smile are calculated using
a standard BSM model without dividends.

Figure 5: Call option prices for the synthetic data with strikes between 1200 and
2800. Time to expiration 𝑡 = 1.

Figure 5 shows how the option prices are more valuable further in-the-money. In
addition, option prices typically decrease asymptotically as the strike price increases
after at-the-money price.

Next, call option prices are plotted with varying net issuance rates.
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Figure 6: Call option prices for the synthetic data with different values for net issuance
𝐼𝑁 , with strikes between 1800 and 2200. Time to expiration 𝑡 = 1.

Figure 6 shows how the option market prices differ as the net issuance rate 𝐼𝑁 changes.
The center green graph corresponds to the graph in Figure 5. The blue top graph
corresponds to the option prices with negative net issuance rates, resulting in higher
option prices. The bottom violet graph corresponds to option prices with positive
net issuance rates, resulting in lower option prices. Notably, the absolute price dif-
ferences increase moving further in-the-money, and decrease for out-the-money strikes.

The effect of changing the option expiration time is in Figure 7.
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Figure 7: Call option prices impled by the synthetic data with different values for net
issuance 𝐼𝑁 , with strikes between 1800 and 2200. Time to expiration 𝑡 = 0.1.

Figure 7 shows how the effect of changing net issuance rates decreases as option
expiration time decreases. This is because the options have less time value.

We now have a basic theoretical understanding of how the call option prices be-
have under varying net issuance rates and option expiration time, and we move on to
compare volatility structures.
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Figure 8: Volatility structure comparison with strikes between 500 and 3500. Net
issuance 𝐼𝑁 = 0.0025. Time to expiration 𝑡 = 1.

Figure 8 compares the synthetic volatility smile to a smile corresponding to the crypto
asset BSM implied volatilities with a low positive net issuance rate. As can be seen,
the net issuance rate introduces skewness to the volatility structure, especially for
in-the-money strikes. A low net issuance rate is used to properly compare to the
different volatility structures. With higher net issuance rates, the deep-in-the-money
implied volatilities increase aggressively, making the structures more difficult to
compare. The volatility implied by the crypto asset BSM is higher everywhere with a
positive net issuance rate. However, as the strike price increases, the implied volatilities
approach each other with the two different models.
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Figure 9: Volatility structure comparison with strikes between 1200 and 3500. Net
issuance 𝐼𝑁 = −0.0025. Time to expiration 𝑡 = 1.

Figure 9 demonstrates the same skewness phenomenon as Figure 8, but for negative net
issuance rates. Now, the volatilities implied by the crypto asset BSM are systematically
lower everywhere and similarly approach each other as strike prices increase. A
different strike interval is chosen such that the comparison is meaningful. Below
1200 strike prices, the crypto asset BSM implied volatilities start to aggressively trend
down. This is in line with the behavior of Figure 8, where the implied volatilities
increase, respectively.

We now have a basic theoretical understanding of how the call option prices and
volatility structures behave with the traditional BSM and the crypto asset BSM with
varying net issuance rates. In Section 5.2, the comparison is applied to Deribit options
data.
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5.2 Model comparison with Deribit data
First, an index of ETH options is chosen from Deribit and plotted against all available
strike prices. The options are chosen to have an expiration time of approximately
half a year, since the synthetic data mostly covered cases with expiration time of one
year. Therefore, the results with synthetic data and real-world data should be roughly
comparable. Moreover, half-year option expiration time ensures that the model is very
accurate (note Section 4.1.3), but the changes in net issuance have a noticeable effect.

Figure 10: Volatility structure of the Deribit options index ETH-29MAR24 with all
available strikes between 200 and 7000. Net issuance 𝐼𝑁 = 0.00. Time to expiration
𝑡 = 0.578082. Date: 31.08.2023.

Figure 10 shows the implied volatilities for the Deribit call option index "ETH-
29MAR24" using a standard BSM approach. The shape of the plot is not a perfectly
symmetric smile, which is natural for real-world options market data.

In Figure 11 below, the strike range is narrowed such that the implied volatilities form
a smile more comparable to the synthetic volatility smile.

46



Figure 11: Volatility structure of the Deribit options index ETH-29MAR24 with strikes
between 500 and 3500. Net issuance 𝐼𝑁 = 0.00. Time to expiration 𝑡 = 0.578082.
Date: 31.08.2023.

Now, we can calculate the crypto asset BSM implied volatilities to the same graph for
comparison with a non-zero net issuance rate.

Figure 12: Volatility structure of the Deribit options index ETH-29MAR24 with
strikes between 500 and 3500. Net issuance 𝐼𝑁 = −0.0025. Time to expiration
𝑡 = 0.578082. Date: 31.08.2023.

47



Figure 12 compares the implied volatilities of the traditional BSM and the crypto asset
BSM with a low negative net issuance rate of −0.0025. This net issuance rate roughly
corresponds to the net issuance of ETH during the last year [17]. Therefore, this com-
parison suggests that, according to the crypto asset BSM, the implied volatilities for
ETH should be lower than currently considered, especially for deep-in-the-money calls.

Finally, the graph below demonstrates the hypothetical scenario in which the net
ETH issuance rate decreases to −0.01, highlighting the most drastic differences in the
volatility structure.

Figure 13: Volatility structure of the Deribit options index ETH-29MAR24 with strikes
between 700 and 3500. Net issuance 𝐼𝑁 = −0.01. Time to expiration 𝑡 = 0.578082.
Date: 31.08.2023.

Figure 13 shows how the implied volatility structures have considerably higher
differences compared to the two models with a slightly more negative net issuance
rate. Specifically, the difference for at-the-money price is significant compared to
Figure 12.
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5.3 Key findings
To summarize the key findings, call option prices increase for all strikes when the net
issuance parameter is negative. Conversely, the prices decrease when the parameter is
positive. When strike prices decrease, the absolute differences become larger. When
strike prices increase significantly, option prices approach each other.

The net issuance rate introduces skewness in volatility structures. This skewness is
weighted for deep-in-the-money options, which is consistent with the behavior of option
prices. As strike prices increase significantly, the implied volatilities asymptotically
approach each other.

Moreover, the sensitivity of the results to even minor changes in the net issuance
rate parameter is noteworthy. Figures 12 - 13 demonstrate this effect. This indicates
that the inclusion of the net issuance rate can cause significant changes in option
pricing. Consequently, options could be fundamentally mispriced if the parameter is
completely ignored.

The implied volatility graphs publicly available on the Deribit exchange are calculated
without considering net issuance rates [50]. This can also be visually confirmed with
the volatility structures calculated with the traditional BSM. Interestingly, the crypto
asset BSM implied volatility structure for the Deribit options index ETH-29MAR24
forms a more symmetric smile on the chosen strike range. This can be coincidence or
simply be explained by market expectations. However, it could also be explained by
the market already understanding the significance of net issuance rates for crypto asset
option pricing, and the crypto asset BSM implied volatility smile reflects this market
knowledge. More analysis would be needed across various ETH options indices to
conclude anything definitively.
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6 Conclusions

6.1 Discussion
The main contribution of the thesis is the identification of a deterministic factor in
the pricing of crypto asset options, the supply change rate, which is not taken into
account in the traditional BSM model. The extended BSM model, or alternatively
the crypto asset BSM, presented in this thesis includes this rate in the model. The
supply change rate can take both positive and negative values within its mathematically
defined limits. Moreover, the crypto asset BSM can be used for any other crypto asset
that has a supply change parameter, preferably with low block times.

The first research question was to determine the impact that supply changes have on
the BSM model when pricing ETH options. Section 4 mathematically formulates the
impact by extending the BSM model to account for supply changes by introducing a
net issuance rate variable to the equations. The second research question was about
the comparison of the extended BSM model with the traditional approach to option
pricing and implied volatility structures. The numerical results in Section 5 confirm
that even minor changes in the net issuance rate cause meaningful changes in the
option pricing and volatility structures. In particular, volatility structures experience
an increasing skewness for deep-in-the-money call options.

The key limitiation in the thesis is the use of Taylor’s approximation in the for-
mulation of the crypto asset BSM. Therefore, the effects of the approximation are
rigorously modeled and numerically studied. The accuracy of the crypto asset BSM
decreases for long-expiration options with high net isuance rates. Consequently, the
model is suitable for the majority of ETH options that are typically available in standard
option exchanges. An obvious improvement and a motivation for further research
is solving the crypto asset BSM analytically without the use of an approximation.
This analytical version would be more suitable for the pricing of options across all
expiration and net issuance rates.

Furthermore, another limitation is the assumption that the net issuance rate is constant
in the crypto asset BSM. In reality, the net issuance rate can be stochastic with its own
drift and volatility parameters. The crypto asset BSM could be extended to consider
this in further research on the topic. In addition, the comparison analysis presented in
Section 5 can be performed for different option products, which could strengthen the
case for the theoretical and numerical results presented.

The BSM model is the most widely adapted options pricing model in financial
markets. For this reason, it has already been extended to various financial instruments,
including futures, bonds, and foreign currencies. This thesis extends the BSM to the
nascent new asset class called crypto assets, and specifically to Ethereum, the second
largest crypto asset.
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The development of pricing models for new financial technologies is important
for the general efficiency of the market. Crypto assets as a phenomenon are widely
dismissed as something they are only partly: Internet currencies. Ethereum is a global
decentralized protocol on top of which different types of new financial applications
can be built. ETH is a unique financial asset that is a combination of a currency, a
commodity, and a security. It is my sincere hope that this thesis plays a role not only
in the improvement of crypto asset options valuations, but also in explaining what
Ethereum is as a financial technology.
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