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1 Introduction
The global transition towards sustainable and resilient energy systems is imperative in
the face of escalating environmental concerns and the urgent need to mitigate climate
change. Hybrid Energy systems (HES) stand out as prime candidates in facilitating
a shift towards more sustainable and efficient energy practices. A hybrid energy
system utilises an integration of two or more distinct energy sources which leads to
more efficient system.[1] Currently HES provides a reliable power generation solution
to areas where conventional energy grids are non-existent or impractical. Apart from
that, a hybrid energy system might also open up market opportunities for emergent
energy technologies that are still not fully developed. For example, if a new type of
fuel cell is not yet efficient enough for a standalone electricity production system,
it can still fit well in a hybrid framework, facilitating its market entry and adoption.[2]

Even so, the HES poses a few financial and technical challenges. The high capital
costs involved in the setup phase require meticulous planning and strategic manage-
ment to ensure that the system is not only operationally viable but also economically
sustainable.[3] Given the multitude of components each energy system encompasses,
the operational intricacy of the HES cannot be understated. From connections
to utility markets and energy converters facilitating transitions between different
energy sources, to battery storage units and additional revenue streams like hydrogen
markets, a hybrid energy system is a combination of various moving parts, each with
its own set of challenges and considerations.

Another point of consideration is the volatility of the electricity markets. The
electricity markets tend to display abrupt and generally unanticipated extreme
changes in the Day-ahead prices prices known as ’jumps’ or ’spikes’.[4] Consider the
graph (Fig. 1) that depicts spot prices at an hourly time interval taken from the Nord
Pool system.

This thesis examines the investment possibilities of HES through an optimisation
model in order to investigate their economic viability. Whether HES warrants major
investment is the central research question in this analysis. The study intends to give
a thorough assessment of HES and their role in the shift towards renewable energy
sources by analysing the performance, cost-efficiency, and market adaptability of
these systems.

Chapter 2 provides a comprehensive insight into the economic principles guiding
the energy and hydrogen markets and delineate the uncertainties prevalent within
these domains. Furthermore, this chapter will outline methodologies to quantify
and address uncertainties in energy system modelling, with a particular emphasis on
Monte Carlo Simulation. Chapter 3 presents a linear optimization framework for
HES, detailing the step-by-step construction of an optimization model. It begins by
formulating an objective function for revenue maximization and progresses through
iterative stages, incorporating grid energy transactions, battery storage dynamics,
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hydrogen production and sale, and finally, the integration of imbalance settlement
procedures to navigate solar production variability. Chapter 4 evaluates the benefits
of HES and simulates scenarios using Monte Carlo simulations and discusses the
results. Finally, Chapter 5 summarises the conclusions from this thesis and proposes
further areas of research.

Figure 1: Nord Pool. (2023). Area Prices [Hourly].
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2 Economic Principles and Uncertainties in
Energy and Hydrogen Markets

2.1 Introduction
Understanding the economic principles driving the energy markets, alongside the
pervasive uncertainties, is crucial for stakeholders, policy-makers, and researchers
engaged in energy planning and management.

Economic principles form the backbone of energy markets, dictating the inter-
actions between supply and demand, influencing pricing mechanisms, and shaping
market players’ strategies and responses [8]. These principles provide a framework
to comprehend the operational dynamics within the energy and hydrogen markets,
thereby facilitating more informed and strategic decision-making processes.

Energy prices, particularly in deregulated markets, have been subjected to sig-
nificant fluctuations, resulting from a myriad of factors including geopolitical events,
infrastructure constraints, and supply-demand imbalances [9]. In parallel, the hydro-
gen market, though in its infancy, has been influenced by its production costs, its
potential in providing energy security, and its projected demand in various sectors,
from transportation to industrial applications [10]. These uncertainties, if not ade-
quately accounted for, may lead to sub-optimal planning and operation of energy
systems, thereby risking economic viability and stability. Therefore, integrating an
understanding of market economics with a robust approach to managing uncertainties
is pivotal.

One such powerful tool is the Monte Carlo Simulation, a computational technique
that provides a range of possible outcomes and the probabilities they will occur
for any choice of action [11]. Applied to energy planning and forecasting, it offers
stakeholders a probabilistic assessment, thereby aiding in robust decision-making in
the face of uncertainty.

2.2 Economic Principles in Energy Markets
2.2.1 Supply and Demand Dynamics

Supply and demand serve as pivotal concepts in the field of economics, wielding
considerable influence in the competitive marketplace where they jointly determine
both the price and the quantity of goods, securities, and other tradeable commodities
that are sold [12]. Understanding the supply and demand dynamics within energy
and hydrogen markets is pivotal to accurately model and predict market behaviors
and prices. These dynamics are shaped by numerous variables, including production
capacity, consumption rates, market strategies, and external shocks.
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• Energy Market
The fundamental economic principles of supply and demand are embodied
in the supply and demand curves. Fig. 2 provides graphical representations
depicting the relationship between the unit price and the total quantity of
goods.

Figure 2: Typical supply and demand curves

The supply curve, with an upward slope, reveals how the unit price relates to
the quantity of goods producers are willing to offer. This upward trajectory
is especially observable in the electricity market and can be elucidated by
examining the operational dynamics of power plants. Initially, supply is man-
aged by efficient plants that can generate electricity at lower costs. However,
as demand escalates, less efficient plants, characterized by higher operational
costs, are utilized to augment supply, leading to an increase in the unit price of
electricity[13]. Moreover, the supply side is further complicated by factors such
as the availability of resources, production capacity, and governmental policies.
The volatility is particularly pronounced with renewable energy sources whose
supply is inherently contingent upon unpredictable factors like weather condi-
tions.
On the other side, the demand curve is characterized by a downward slope,
signifying an inverse relationship between the unit price and the quantity
consumers are willing to purchase. As prices increase, demand from consumers
tends to diminish. This principle is crucial in understanding market dynamics,
as higher prices usually result in reduced demand [12]. The energy sector
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witnesses significant demand surges during economic growth periods, resulting
in price hikes if supply does not correspondingly increase. Furthermore, the
global transition towards sustainable and renewable energy sources has led to
an increase in demand for these resources, introducing additional volatility to
market prices.

• Hydrogen Market
The costs associated with producing hydrogen can vary significantly based on
technology, energy prices (particularly electricity for electrolysis), and regional
factors. This variability can translate into price volatility in the hydrogen
market [14]. Electrolysis driven by renewable energy, especially wind and solar,
is subject to the intermittency of these sources. As such, the inconsistent
supply can result in volatile production rates, which can influence hydrogen
prices [15]. Limited storage and transport infrastructure can create bottlenecks,
affecting the regular supply of hydrogen and leading to price fluctuations
[16]. Changes in government policies, subsidies, or incentives can impact the
production, distribution, and consumption of hydrogen, leading to shifts in its
pricing structure. Given the emerging nature of the hydrogen market, it can
be influenced by the speculative behaviors of investors and traders, adding to
its price volatility.

2.2.2 Price Mechanisms in Energy Markets

The energy markets are a complex ecosystem where prices are influenced by a variety
of factors ranging from supply-demand dynamics, geopolitical events, technological
advancements, and even environmental factors. Energy prices are established through
several mechanisms, which reflect the interplay between market participants and the
rules set by regulators and exchanges. Our focus is primarily on the Nordic Energy
Markets. The Nordic energy market, comprising of Norway, Denmark, Finland, and
Sweden, represents one of the most integrated and liberalized energy markets in
the world. Within this market, electricity price determination and trade occur via
two principal mechanisms: the Day-Ahead Market (DAM) and the Intraday Market
(IDM). Understanding these two facets provides insight into how supply and demand
equilibrium is established, and how market participants can manage their risk and
operational strategies.

• Day Ahead Markets
The DAM is a forward market where electricity is traded one day before the
actual delivery. Participants submit their bids (both buying and selling) for each
hour of the following day. Once all bids are submitted, they are aggregated,
and an equilibrium price, commonly known as the Market Clearing Price
(MCP), is determined for each hour based on supply and demand [17]. Price
determination in the DAM is a result of the merit order principle. It ranks the
available sources of energy based on the ascending order of their bid prices [18].
The renewable sources with low marginal costs (like wind and hydropower) are
dispatched first, followed by fossil fuels and then peak reserves. The intersection
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of cumulative supply and demand curves establishes the MCP for each hour.
The DAM serves multiple purposes:

– Price Transparency: It offers a clear indication of expected electricity
prices for the next day, enabling market participants to make informed
decisions.

– Risk Management: By locking in prices a day in advance, producers
and consumers can hedge against potential price fluctuations.

– Operational Planning: Utilities and energy-intensive industries can
plan their operations based on anticipated energy costs.

To better understand the workings of the DAMs, we can take an example.
Assuming that a cold winter day is approaching in Finland. The temperature is
forecasted to drop sharply the next day. With most homes and many industries
relying on electricity for heating in Finland, the demand for electricity is antic-
ipated to be high [19].Various market participants, ranging from large power
generation companies, renewable energy producers, to industrial consumers,
prepare to submit their bids for the next day’s electricity delivery.

– Power Generation Companies: A major Finnish utility, like Fortum,
evaluates its portfolio. They decide they can provide a certain amount of
megawatts (MW) at a specific price derived from their production costs,
which includes the costs of fuels, operations, and other factors.

– Renewable Energy Producers: A wind farm operator in Ostrobothnia
estimates the wind conditions for the next day. Based on the forecast,
they calculate the potential electricity output and decide on a selling
price. Given that wind energy has negligible marginal costs once the
infrastructure is in place, they might bid at a very low price to ensure
their electricity is dispatched.

– Industrial Consumers: A large pulp and paper factory in southern
Finland calculates its electricity requirement for the next day. They submit
a bid indicating how much electricity they are willing to buy and at what
maximum price.

All bids are submitted to the Nord Pool power exchange, which operates the
DAM in Finland and other Nordic countries.

1. Bids are aggregated, and the supply and demand curves are formed.
2. The intersection of these curves gives the hourly system price. This is the

price at which electricity will be traded for each specific hour the next
day.

For this cold winter day in our scenario, let us assume that due to the high
demand and limited supply, the price spikes during peak demand hours in the
evening.
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– Power Generation Companies: Fortum, having successfully bid at a
price below the system price, gets ready to deliver the promised amount
of electricity the next day.

– Renewable Energy Producers: The wind farm operator, having bid at
a very competitive price, finds that their electricity will also be dispatched.
They monitor wind conditions closely to ensure they can meet their
commitments.

– Industrial Consumers: The pulp and paper factory, based on the
System Price, might decide to curtail some of its operations during the
peak demand hours to save on electricity costs. Alternatively, if they
had bid at a price higher than the system price, they would continue
operations as usual.

This example demonstrates the intricacies of the DAM in Finland. It is a
dynamic play of supply and demand, predictions, and strategies.

• The Intraday Market
The IDM allows for trading of electricity after the DAM has cleared and before
actual delivery. Given the increasing share of renewable energy, particularly
wind power which is inherently volatile, the IDM provides a platform to adjust
positions closer to real-time as more accurate forecasts become available. Unlike
the DAM which clears at a specific time, the IDM operates as a continuous
market. This means participants can buy and sell electricity throughout the day
until one hour before delivery. As forecasts for renewables and demand become
more accurate closer to real-time, the IDM allows for continuous adjustments.
The IDM’s significance, especially in the Nordic context, cannot be understated:

– Integration of Renewables: The IDM has become increasingly impor-
tant with the rise of wind and solar energy in the Nordic mix. It allows
for last-minute adjustments based on real-time weather forecasts.

– Operational Flexibility: Utilities can optimize their generation sched-
ules, and large consumers can adjust their consumption patterns based
on intraday prices.

– System Reliability: By allowing adjustments close to the delivery hour,
the IDM plays a role in ensuring the stability and reliability of the grid.

Fig. 3 shows that in the DAM, participants commit to producing or consuming
certain amounts of electricity based on forecasts and the DAM allows these
positions to be adjusted in response to new information or unexpected events.
Continuing from our cold winter day scenario in Finland, after the DAM
has determined the system price for electricity for each hour of the next day,
we now move closer to real-time operations. Even with the best forecasts,
actual conditions can vary. The wind may not blow as predicted, a sudden
technical fault might reduce generation from a power plant, or there could be an
unexpected surge in electricity demand. The DAM helps mitigate such scenarios.
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Figure 3: An Example Visualization of the Day-ahead and IDMs

The IDM, on the other hand, allows market participants to adjust their positions
based on the latest information and forecasts. It provides an opportunity to
buy or sell additional electricity if their production or consumption varies from
their day-ahead commitments and hedge against the price differences that
might arise due to these last-minute changes. Looking at it sequentially:

1. After the DAM has cleared, the IDM opens. Participants can submit
updated bids or offers for electricity based on their new forecasts and
needs.

2. The IDM is continuous, meaning transactions can occur anytime once the
market is open until the delivery hour.

3. Prices in the IDM are determined by the immediate dynamics of supply
and demand, which can be different from the Day-ahead prices.

Let us go back to our cold winter day in Finland:

– Wind Farm Operator in Ostrobothnia: By midday, they realize the
wind is not blowing as strongly as forecasted. Their electricity production
will be lower than what they committed to in the DAM. To fulfill their
commitment, they decide to buy electricity in the IDM.

– Pulp and Paper Factory in Southern Finland: They unexpectedly
land a big order and decide to ramp up production overnight. They will
need more electricity than they initially bid for. They turn to the IDM to
purchase the extra electricity they need.
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– A Hydroelectric Power Plant in Northern Finland: Thanks to
recent rains, they have more water reserves than anticipated. They can
produce more electricity and decide to sell this surplus in the IDM.

All these participants adjust their positions in real-time, ensuring a balance
between electricity supply and demand, and minimizing imbalances which
could destabilize the grid. The IDM, thus, plays a crucial role in the efficient
operation of the electricity system in Finland.

2.2.3 Market Players and Regulations

The energy and hydrogen markets, like most markets, consist of a variety of players
that interact within a framework shaped by regulations and policies. Understanding
the dynamics of this framework is crucial for comprehending market functions, price
mechanisms, and the overall behavior of the market.

• Market Players

Producers: These entities are responsible for producing and sometimes selling
energy or hydrogen directly to the market. Producers might range from large
multinational corporations that engage in the extraction of raw materials,
refining, and commercial sale, to smaller entities that may focus on a specific
segment of the production process.
Example: Major oil and gas companies can be producers in the energy market,
while specialized companies might engage in the production of hydrogen through
electrolysis or other means.
Consumers: Consumers in the energy and hydrogen markets can be individuals,
businesses, or industrial entities. They purchase energy or hydrogen for various
needs, from powering homes and vehicles to serving as a raw material in certain
industrial processes.
Example: Households buying electricity, factories requiring hydrogen for refining
processes, or transport companies buying fuel.
Intermediaries: These players sit between producers and consumers and can
include brokers, traders, and other entities that buy from producers and sell to
consumers, often adding value in the process.
Example: Energy trading firms, or hydrogen distribution companies that trans-
port and sell hydrogen to end-users.
Regulatory Bodies: Government agencies or international entities oversee
and regulate the energy and hydrogen markets to ensure fairness, security,
environmental protection, and more. They establish rules and guidelines and
monitor market activities.
Example: The European Energy Commission.
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• Role of Regulations and Policies

Safety and Environmental Concerns: Regulations often aim to ensure
that the extraction, production, distribution, and consumption of energy or
hydrogen do not compromise public safety or the environment. This could
involve setting standards for safe operations or emission limits.
Fair Market Operations: To avoid monopolistic practices or any other unfair
market manipulations, regulatory bodies often establish guidelines to ensure
fair competition, transparent pricing mechanisms, and protection of consumers.
Promotion of Sustainable Technologies: Governments may enact policies
or provide incentives to promote cleaner and sustainable energy technologies,
which can shape the dynamics of the market. For example, subsidies for
renewable energy sources or tax breaks for hydrogen production can influence
market participation and pricing [20].
Infrastructure Development: Regulations might also emphasize the need for
adequate infrastructure such as pipelines for natural gas or refueling stations for
hydrogen. Such policies can dictate the accessibility and distribution efficiency
in the market.
Price Stabilization: In some markets, regulatory bodies might intervene
to stabilize prices, especially if there are severe fluctuations that could harm
consumers or producers. This could be achieved through strategic reserves,
tariffs, or subsidies.

2.3 Uncertainties in Energy and Hydrogen Markets
Energy and hydrogen markets, like many commodities markets, are exposed to
various uncertainties. Looking at the previous section 2.2, we can get an idea
of the different uncertainties affecting the energy and hydrogen market. These
uncertainties stem from a combination of exogenous factors (e.g., geopolitical events,
natural disasters) and endogenous factors (e.g., technological developments, market
dynamics) and addressing them is crucial to ensure resilient and effective planning
and decision-making in the sector.

2.3.1 Types of Uncertainties

• Price Volatility: Energy and hydrogen prices can be highly volatile, influenced
by various factors. Fluctuations may arise from global events, such as sudden
shifts in production decisions by major oil producers [21], policy changes, or
shifts in supply and demand dynamics. Such volatility poses challenges for
investors and operators in accurately forecasting revenues and costs.

• Demand Fluctuations: The demand for energy and hydrogen can vary based
on several factors. Economic growth, energy efficiency measures, shifts in
consumer behavior, and technological advancements play a significant role. For
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instance, during the pandemic, the global fuel consumption fell by more than
25%, leading to drastic changes in demand [21]. Additionally, the adoption
rate of hydrogen-powered vehicles can also influence hydrogen demand.

• Technological Uncertainties: The energy sector is undergoing rapid tech-
nological evolution [22]. There is uncertainty regarding which technologies
will dominate in the future, their efficiency rates, cost trajectories, and scal-
ing potential. For hydrogen, uncertainties might revolve around production
techniques (e.g., electrolysis vs. natural gas reforming), storage solutions, and
distribution infrastructure.

• Regulatory and Policy Shifts: The transformation of the electricity industry
worldwide has been influenced by regulatory changes aiming to replace state-
owned monopolies with open and competitive markets [23]. Governments
worldwide are setting aggressive climate targets, leading to evolving energy
and environmental policies. Uncertainty in regulatory direction can affect
investments and operations in both conventional energy sectors and emerging
markets like hydrogen.

• Supply Chain Disruptions: Events like natural disasters, geopolitical ten-
sions, or pandemics can disrupt energy and hydrogen supply chains, creating
uncertainty in both availability and pricing.

• Geopolitical Risks: The energy market, especially oil and gas, has historically
been influenced by geopolitical events. These can impact access to resources,
dictate trade routes, and influence international energy prices [21].

2.3.2 Impact of Uncertainties

• Operational Impact: Uncertainties in the energy and hydrogen markets,
especially those stemming from sudden shifts in supply or demand, can lead
to significant operational challenges [24]. For instance, a hydrogen production
facility that anticipates a certain level of demand might face underutilization if
that demand unexpectedly drops [25]. Such scenarios can lead to operational
inefficiencies and, consequently, financial losses. Moreover, uncertainties in
renewable energy sources can also impact the operational security and efficiency
of power systems. Managing these uncertainties becomes a major challenge in
power systems with a high penetration of volatile generation and load [26].

• Financial and Profitability Risks: Factors such as price volatility, unpre-
dictable demand, and rapid technological shifts can significantly affect both
revenues and costs. This volatility directly impacts the profitability of compa-
nies operating within the sector. For investors and stakeholders, clear visibility
of potential returns is crucial. However, these uncertainties can cloud judgment
and hamper investment decisions.
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• Strategic Impacts: In the long run, uncertainties can significantly influence
the strategic direction of energy companies. Regulatory uncertainties, for exam-
ple, might deter companies from investing heavily in fossil fuels [27]. Instead,
they might opt to diversify their portfolio, incorporating more renewable energy
or hydrogen solutions to hedge against potential regulatory shifts.

• Reputation and Compliance Risks: Anticipating and addressing uncer-
tainties is crucial, especially those related to regulatory changes. Failure to
do so can expose companies to compliance risks. Such oversights might not
only result in financial penalties but can also tarnish a company’s reputation.
This can have long-term implications, affecting market standing and eroding
stakeholder trust. For instance, energy companies face a growing volume of
regulations, as well as stepped-up sanctions and regulatory actions. When
asked about the negative impact of policy and regulatory developments, 41 per
cent of energy companies say they are extremely concerned about environmental
protection regulation [28].

• Importance in Planning and Decision-making: To effectively navigate
these uncertainties, companies must incorporate flexibility into their decision-
making processes. Rigid strategies or infrastructure investments can leave
firms vulnerable to the ever-changing market dynamics. Advanced modeling
techniques, such as Monte Carlo Simulations, scenario planning, and sensitivity
analysis, are invaluable tools in this context. They help companies understand,
quantify, and mitigate uncertainties, ensuring more informed decision-making.
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2.3.3 Addressing Uncertainties in Energy System Modeling

As observed in the previous sections, an energy system and more precisely, a hybrid
energy system deals with considerable uncertainty. From price volatility, to supply
and demand related uncertainties, there are numerous areas to look at when trying
to model an energy system. On top of that, there are different parts of the energy
system, each of which deals with its own set of uncertainties. Modelling each and
every uncertainty for each and every part of the energy system would fall out of the
scope of the thesis, and therefore the focus has been put on one key aspect of the
energy system, the DAM.
The growth of Distributed Energy Resources (DERs), such as solar panels and storage
devices, adds uncertainty to demand forecasting which is an important part of the
DAM. On the supply side, the increasing integration of renewable energy sources like
wind and solar generates significant uncertainty in supply forecasts. These sources
are highly volatile, with cloud cover and wind speed changes affecting the production
of renewable energy. Unexpected equipment breakdowns and transmission failures
might also lower the projected supply. In terms of pricing, the activity of electric-
ity traders and expectations about real-time market prices can cause volatility in
DAM prices. [29]. Quantifying these uncertainties can help market participants can
make more informed decisions about bidding, purchasing, or selling energy in the
DAM which can lead to improved profitability and risk management. It also aids in
improving operational reliability, stakeholder confidence, and better risk management.

Quantifying the variability between the forecasted and actual solar production is
crucial in managing and planning the operation of solar energy systems. This process
helps in understanding, and mitigating the risks associated with unpredictability of
solar energy production. Statistical methods such as standard deviation, expected
values and mean absolute error (MAE) are commonly used in quantifying the vari-
ability of solar energy production. A graph can also be plotted to show the difference
between the forecasted and actual solar production values.

Traditionally, forecasts have been point predictions representing the expected values
at different times, however as the field of weather forecasting has long recognized,
forecasts are essentially five dimensional spanning the three-dimensional space, time
and probability [31]. This has led to the utilization of probabilistic forecasting for
quantifying the variability of wind power. A popular method in the field of forecasting
renewable energy production is the Monte Carlo Simulation. Monte Carlo simulation
is a mathematical technique that predicts possible outcomes of an uncertain event.
Using a probabilistic model to simulate the outcome will produce different results
each time. For example, the distance between a train station and a school is fixed.
However, a probabilistic simulation might predict different travel times by considering
factors such as congestion, bad weather, and vehicle breakdowns. [32]
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2.4 Monte Carlo Simulations
Probabilistic solar forecasting represents a significant shift in solar resource assessment
and forecasting. Traditional methods relied on deterministic forecasts, providing
single-valued predictions [33]. However, the variability and uncertainty in solar energy
production have led to the adoption of probabilistic forecasts. These forecasts present
possible outcomes in forms such as probability distributions, ensembles, quantiles,
and/or prediction intervals. This approach allows for a more comprehensive under-
standing of potential scenarios and better decision-making in the face of uncertainty
[33].

Monte Carlo Simulation [36] is a mathematical technique, which is used to esti-
mate the possible outcomes of an uncertain event. In contrast to conventional
forecasting models that use fixed input values, Monte Carlo Simulation forecasts a
variety of outcomes based on a speculated spectrum of values (hence, probabilistic
in nature). This method constructs a scenario of potential results by applying a
probability distribution, such as uniform or normal, to each variable that carries
inherent uncertainty. The model then runs multiple iterations, each employing a
distinct set of random values within the defined minimum and maximum limits.
Upon completion it provides an array of potential outcomes, each accompanied by
the likelihood of its occurrence [34]. A classic example illustrating Monte Carlo
Simulation involves estimating the probability of rolling two standard dice. With 36
possible dice combinations, the likelihood of any specific outcome can be calculated
manually. However, by employing a Monte Carlo Simulation to replicate the dice roll
10,000 times (or even more), the model can attain a higher precision in its predictions.
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3 Linear Optimization Framework for Hybrid
Energy Systems

3.1 Introduction to Linear Optimization Framework
HES are complicated in nature to optimise for due to the need for integrating various
energy sources, conversion technologies, and storage systems. Linear Programming,
also known as Linear Optimization, is a widely used tool in the field of operations
research and management science. It is characterized by a linear objective function,
decision variables, and constraints exhibiting linear relationships. The result of a
linear programming problem is obtained by either maximizing or minimizing the
objective function[5]. A conventional linear programming problem can be briefly
represented in a standard matrix form[6].

maximize cT x
subject to Ax ≥ b

x ≥ 0,
(1)

where the objective function is represented as the dot product of the vectors c
and x, and the result is obtained by the maximization of the said function. The
constraints are represented as the matrix-vector product Ax, which should be greater
than or equal to vector b, and the vector x being greater than or equal to 0. Each
row in matrix A corresponds to a linear constraint on the decision variables.

3.2 Formulation of the Objective Function
The central tenet driving the linear optimization framework is revenue maximization,
a critical factor for the sustainable operation of HES. With the volatile nature of
energy markets, devising strategies for maximizing revenue ensures that the HES can
consistently generate economic value while mitigating financial risks. It is pivotal to
understand that the objective here is not merely technical efficiency but also economic
sustainability, wherein the system is capable of generating sufficient revenues to cover
operational costs and, potentially, drive profits.

The formulation process involves constructing an objective function, decision vari-
ables, and constraints that collectively represent the operations and limitations of
the hybrid energy system. The objective function Z represents the daily operational
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profit and is defined as:

max, Z =
23∑

t=0

day_ahead_vars(t) · day_ahead_prices(t) (2)

−
23∑

t=0

grid_buy_vars(t) · day_ahead_prices(t)

+ hydrogen_cost_kg ·
23∑

t=0

hydrogen_sold_vars(t)

− hydrogen_cost_kg ·
23∑

t=0

hydrogen_buy_vars(t),

Each term in the objective function corresponds either to the cost or to the revenue
component of the energy system’s operations. It is constructed to capture the
dynamics between energy sales, purchases, and conversions in the day ahead energy
trading or hydrogen markets.

3.2.1 Revenue from Day Ahead Energy Sales

The first term of the equation:

23∑
t=0

day_ahead_vars(t) × day_ahead_prices(t)

corresponds to the revenue accrued from selling energy within the DAM. It calculates
the total earnings for every hourly interval, considering the amount of energy sold at
hour t scheduled for delivery at hour t of the following day.

3.2.2 Cost of Buying Energy from Grid

The second term of the equation:

−
23∑

t=0

grid_buy_vars(t) × day_ahead_prices(t)

corresponds to the expenditure related to purchasing energy from the grid, calculated
for each hourly interval.

3.2.3 Revenue from Hydrogen Sales

The third term of the equation:

+
23∑

t=0

hydrogen_sold_vars(t) × hydrogen_cost_kg

represents the function aims to optimise revenue generated through the sales of
hydrogen, computed for each hour within the operating period.
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3.2.4 Cost of Buying Hydrogen

The fourth term of the equation:

−hydrogen_cost_kg ×
23∑

t=0

hydrogen_buy_vars(t)

corresponds to the total costs associated with procuring hydrogen, effectively calcu-
lated for each hour of operation.

3.3 Decision Variables
Decision variables are introduced to represent the amount of energy (in MWh) and
hydrogen (in kg) sold, purchased, stored, or converted at each hour. The Decision
variables used are:

• day_ahead_vars(t): The energy sold in the DAM. Each element t denotes
energy sold for delivery at hour t. All the deals are made for the next day.

• grid_buy_vars(t): Energy bought from the grid at hour t.

• battery_charge_vars(t) and battery_discharge_vars(t): Battery charge and
discharge amounts at hour t, respectively.

• electricity_to_hydrogen_vars(t) and hydrogen_to_electricity_varst: Energy
converted to hydrogen and hydrogen converted to energy at hour t, respectively.

• hydrogen_buy_vars(t) and hydrogen_sold_vars(t): Hydrogen bought and
sold at hour t, respectively.

These decision variables are constrained to be non-negative and continuous.

3.3.1 Constraints

Several constraints are implemented to ensure the feasibility and practicality of the
optimization solution:

• Grid Capacity Constraint: The total energy bought from the grid and sold
in the DAM at any hour is limited to 50 MWh.

• Energy Balance: At every hour, the energy inputs must equal the energy
outputs.

• Battery Constraints: Constraints on the storage capacity and power rating
of the battery as well as the condition of having a fully charged battery at the
end of the day.

• Hydrogen Constraints: Constraints on hydrogen operations such as the
conversion to and from energy along with the storage capacity constraint.
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3.4 Modeling Assumptions and Parameters
3.4.1 Assumptions on the Hybrid Energy System

Solar Production

The model assumes a predetermined hourly solar energy output stored in solar_production.
This assumption simplifies the optimization problem by treating solar production as
a known parameter, effectively excluding variability and uncertainty in solar energy
production from the model.

Battery System

The battery storage system integrated into the hybrid energy system has defined oper-
ational parameters. The maximum capacity (battery_capacity_MW), discharge rate
(battery_c_value), and efficiency during charge-discharge cycles (battery_efficiency)
are all predetermined and constant. The model also assumes that the initial state of
charge (SOC) of the battery is zero, and the maximum energy that can be discharged
at any given time is limited to 80% of the total battery capacity.

Hydrogen System

The hydrogen system’s operating constraints and parameters are clearly defined.
The model stipulates a fixed hydrogen storage capacity and assumes that the storage
begins empty. The electrolyser has a predetermined maximum capacity and operates
with specified efficiency and conversion rates. Additionally, the hydrogen fuel cell’s
size and conversion efficiency are set parameters within the model.

3.4.2 Trading Operation Assumptions

Day-ahead Market Trading

For the DAM trading operations, the model allows hourly energy sale transac-
tions. It sets a maximum energy capacity limit that can either be bought from or
sold to the grid each hour.

Battery Trading Operations

The battery can either be charged or discharged within a given hour but cannot
perform both operations simultaneously. The model enforces constraints to ensure
the SOC is within the permissible bounds at all times.

Hydrogen Trading Operations

Several constraints govern the hydrogen system’s operation within the trading
environment. These include limitations on the amount of electricity converted to
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and from hydrogen and constraints on hydrogen storage levels. The model also
implements constraints to ensure that the hydrogen sold and used for electricity
generation does not exceed the available hydrogen storage.

Limits on Hydrogen Sale

The model imposes restrictions on the number of times hydrogen can be sold within
a day, with the current setup limiting this to once per day.

3.4.3 Additional Technical Assumptions

Linear programming is the chosen optimization technique, implying that the model
assumes linearity in all relationships. It also employs a big-M method to linearize
certain constraints, requiring a careful selection of a sufficiently large M to ensure
model feasibility and accuracy.

3.5 Iterative Model Development Process
Due to the number of moving parts in a hybrid energy system, namely solar production,
battery storage, hydrogen storage, electrolysers, and others, it is important to keep
track of the workings of the optimization model. One way of doing that is by
simplifying the model to only cover one or two decision variables to optimise. It
enables us to manually check the model at the initial stages. After the implementation
and verification of the base model, we can start adding more decision variables and
the corresponding constraints iteratively to keep track of the changes in the optimal
value of the Linear Optimization task.

3.5.1 Model Formulation - Stage 1

In the first stage of our iterative model development, our primary focus is on the basic
structure of the model, which revolves around maximizing the revenue generated
from the solar energy production by selling it in the DAM.

• Decision Variables
The initial set of decision variables includes the amount of energy (in MWh)
sold in the DAM. For each hour t of the day, energy is sold for delivery at hour
t of the following day. Mathematically, this can be expressed as:

day_ahead_vars(t), ∀t ∈ {0, 1, . . . , 23},

where day_ahead_vars(t) ≥ 0

• Objective Function
The objective function is formulated to maximize the revenue from selling solar-
produced energy in the DAM. For each hour t (of the previous day), energy is
sold for delivery at hour t of the next day (of the current day), with special
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consideration for the last hour due to the indexing limitation The objective
function can be represented as follows:

max, Z =
23∑

t=0

day_ahead_vars(t) · day_ahead_prices(t) (3)

• Constraints

1. Energy Balance Constraint:
For each hour t in the planning horizon {0, 1, . . . , 23}, the energy sold in
the day-ahead market must be equal to the energy produced from solar.
This is captured by the following constraint:

day_ahead_vars(t) = solar_production(t), (4)
∀t ∈ {0, 1, . . . , 23}

Equation (4) is referred to as the Energy Balance Constraint.
2. Grid Capacity Constraint:

For each hour t in the planning horizon {0, 1, . . . , 23}, the energy sold in
the day-ahead market must be less than the grid capacity, represented by
S. This is captured by the following constraint:

day_ahead_vars(t) ≤ S, ∀t ∈ {0, 1, . . . , 23} (5)

• Model Solution
Upon solving the model using PuLP [7], the optimal solutions for the decision
variables (i.e the optimal amount of energy to sell at the DAM at each hour)
and the maximum revenue that can be generated are obtained.

Hour Energy Sold (MWh) Intraday Price Hour
6 1.20 7
7 3.60 8
8 7.00 9
9 9.60 10
10 12.00 11
11 16.20 12
12 20.80 13

Table 1: Example Output: Selling Decisions
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3.5.2 Stage 2: Incorporation of Battery Storage

In Stage 2 of the model development, we introduce battery storage into the system,
represented by various decision variables and constraints associated with the operation
of a battery.

• Decision Variables
In addition to the DAM decision variables (day_ahead_vars) from Stage 1,
we introduce three new sets of decision variables:

• battery_charge_vars(t) : Energy charged into the battery at hour t.

• battery_discharge_vars(t) : Energy discharged from the battery at hour t.

• battery_SOC_vars(t) : SOC of the battery at the end of hour t.

• Battery Parameters
The parameters for the battery are set as follows:

Capacity : 10 MW
C-value : 0.5
Efficiency : 0.9 (or 90%)
Discharge Limit : 8 MW (80% of Capacity)
Lifetime Cycles : 5000
Initial State of Charge(SOC) : 0

• Objective Function
The objective function remains the same as in Stage 1; to maximize revenue
from selling solar-produced energy in the DAM.

• Constraints
In addition to the constraints from Stage 1, we introduce the following con-
straints and their modifications:

1. Energy Balance Constraint:

day_ahead_vars(t) + battery_charge_vars(t) (6)
≤ solar_production(t) + battery_discharge_vars(t) × battery_efficiency,

∀t ∈ {0, . . . , 23}

Equation (6) ensures that the energy produced and energy discharged
from the battery should be less than or equal to the energy stored in the
battery and the energy sold in the DAM.

2. Charging Limit Constraint:

battery_charge_vars(t) ≤ battery_capacity_MW × battery_c_value
(7)

∀t ∈ {0, . . . , 23}
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Equation (7) ensures that the charging rate at any time t does not exceed
the product of the battery’s capacity and the charging rate coefficient
(C-value).

3. Discharging Limit Constraint:

battery_discharge_vars(t) ≤ battery_discharge_limit × battery_c_value
(8)

∀t ∈ {0, . . . , 23}

Equation (8) guarantees that the discharging rate at any time t is within
the battery’s specified discharge limit.

4. SOC Constraint:

battery_SOC_vars(t) − battery_discharge_vars(t) ≥ 0 (9a)
battery_SOC_vars(t) + battery_charge_vars(t) ≤ battery_capacity_MW

(9b)
∀t ∈ {0, . . . , 23}

Constraints (9a) and (9b) ensure that the SOC remains within the bounds
of 0 and the battery’s capacity, post charging and discharging activities.

5. Binary Charging and Discharging Constraints:

battery_charge_vars(t) ≤ M × (1 − battery_action(t)) (10a)
battery_discharge_vars(t) ≤ M × battery_action(t) (10b)
∀t ∈ {0, . . . , 23}

These binary constraints, as indicated by (10a) and (10b), prevent simul-
taneous charging and discharging within the same time period.

6. Initial SOC Constraint:

battery_SOC_vars(0) = battery_SOC + battery_charge_vars(0) (11)
− battery_discharge_vars(0) × battery_efficiency

Equation (11) defines the initial SOC of the battery, considering initial
conditions and efficiencies.

7. SOC Dynamics Constraint:

battery_SOC_vars(t) = battery_SOC_vars(t − 1) (12)
+ battery_charge_vars(t) − battery_discharge_vars(t)
× battery_efficiency
∀t ∈ {1, . . . , 23}

Equation (12) describes the evolution of SOC over time, taking into
account the charging and discharging events and the battery’s efficiency.
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Hour Energy Sold (MWh) Day Ahead Price of Hour (€/MWh)
8 4.40 16.78
9 12.93 56.65
10 8.80 23.85
11 19.65 28.89

Table 2: Hourly selling decisions in Stage 2 (partial).

• Selling Decisions
Table 2 shows the energy amounts sold at each hour, considering the day ahead
prices.

• Battery Charging Decisions
Table 3 outlines the hourly decisions to charge the battery, indicating the
amount of energy (in MWh) stored at each hour.

Hour Energy Charged (MWh)
7 1.20
8 3.60
9 2.60
11 3.15

Table 3: Hourly battery charging decisions in Stage 2 (partial).

• Battery Discharging Decisions

Similarly, Table 4 presents the energy amounts discharged from the battery at
each hour to be sold in the DAM. Note that the discharged amount is taken
to be the amount available after loss during the discharge cycle, i.e battery
efficiency.

Hour Energy Discharged (MWh)
10 3.70
14 4.00
18 4.00
20 2.00

Table 4: Hourly battery discharging decisions in Stage 2 (partial).

• Battery SOC
The SOC of the battery at each hour is essential to understand the battery’s
operation and performance throughout the day. Table 5 summarizes the energy
available in the battery at each hour.
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3.5.3 Stage 3: Introduction of Grid Energy Purchase

In Stage 3, we further refine the model by considering the possibility of purchasing
energy from the grid. This stage allows the system not only to sell energy but also
to buy it, providing additional flexibility and optimization potential in operations.

• Decision Variables
Stage 3 introduces a new decision variable while retaining those from Stage 2:

• grid_buy_vars(t) : Amount of energy bought from the grid at hour t.

• Objective Function Modification
The objective function is updated to maximize the net revenue, considering
both sales to and purchases from the grid:

max, Z =
23∑

t=0

day_ahead_vars(t) × day_ahead_prices(t) (13)

−
23∑

t=0

grid_buy_vars(t) × day_ahead_prices(t)

• New and Updated Constraints
New constraints are introduced, and previous constraints are updated to incor-
porate the grid energy purchase option. Let:

1. Energy Balance Constraint:

day_ahead_vars(t) + battery_charge_vars(t) (14)
≤ solar_production(t) + battery_discharge_vars(t) × battery_efficiency
+ grid_buy_vars(t),
∀t ∈ {0, . . . , 23}

Equation (14) now has increased supply of electricity by now allowing
buying from the grid.

Hour Energy in Battery (MWh)
7 1.20
8 4.80
9 7.40
10 3.70
11 6.85
12 6.85

Table 5: Hourly SOC in the battery in Stage 2 (partial).
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2. Grid Capacity Constraint:
For each hour t in the planning horizon {0, 1, . . . , 23}, the energy sold in
the day-ahead market and bought must be less than the grid capacity,
represented by S. This is captured by the following constraint:

day_ahead_vars(t) + grid_buy_vars(t) ≤ S, ∀t ∈ {0, 1, . . . , 23} (15)

This stage offers more operational flexibility by allowing energy purchases from the
grid, optimizing the energy flow, and maximizing the revenue generated through
strategic buying and selling decisions. With the integration of grid energy purchasing,
the model can better navigate the dynamics of energy demand and supply, providing
a robust framework for efficient energy management.

• Buying Decisions
Table 6 shows the energy amounts bought at each hour, considering the day
ahead prices.

Hour Energy Bought (MWh) Day Ahead Price of Hour (€/MWh)
2 5.0 7.89
3 2.5 11.18
6 3.125 9.71
7 0.3625 10.33

Table 6: Hourly buying decisions in Stage 3.

3.5.4 Stage 4: Integration of Hydrogen Production and Sale

Stage 4 incorporates hydrogen production and sale into the model, enhancing its op-
erational flexibility and revenue-generation capabilities by tapping into the hydrogen
market.

• Decision Variables
In addition to previous decision variables, Stage 4 introduces the following:

• hydrogen_storage_vars(t) : Amount of hydrogen stored at hour t.

• electricity_to_hydrogen_vars(t) : Amount of electricity converted to hydrogen
at hour t.

• allow_hydrogen_sale_vars(t) : Binary variable allowing hydrogen sale at hour t.

• hydrogen_sold_vars(t) : Amount of hydrogen sold at hour t.

• Hydrogen Parameters
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The parameters for the battery are set as follows:

hydrogen_storage_capacity_kg : 1250
electrolyser_size_MW : 6

electrolyser_conversion_rate : 0.0333
electrolyser_efficiency : 0.6

electrolyser_conversion_efficiency : electrolyser_efficiency
electrolyser_conversion_rate

hydrogen_demand_flat : 100 kg
hydrogen_market_price_EUR_per_kg : 6

hydrogen_cost_price_EUR_per_kg : 6

• Objective Function Modification
The objective function is updated to include revenue from hydrogen sales:

max, Z =
23∑

t=0

day_ahead_vars(t) × day_ahead_prices(t) (16)

−
23∑

t=0

grid_buy_vars(t) × day_ahead_prices(t)

+
23∑

t=0

hydrogen_sold_vars(t) × hydrogen_market_price_EUR_per_kg

• New and Updated Constraints

1. Energy Balance Constraint:

day_ahead_vars(t) + battery_charge_vars(t) (17)
+ electricity_to_hydrogen_vars(t)
≤ solar_production(t) + battery_discharge_vars(t) × battery_efficiency
+ grid_buy_vars(t),
∀t ∈ {0, . . . , 23}

Equation (14) now has increased supply of electricity by now allowing
buying from the grid.

2. Grid Capacity Constraint:
For each hour t in the planning horizon {0, 1, . . . , 23}, the energy sold in
the day-ahead market and bought must be less than the grid capacity,
represented by S. This is captured by the following constraint:

day_ahead_vars(t) + grid_buy_vars(t) ≤ S, ∀t ∈ {0, 1, . . . , 23} (18)
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3. Electricity-to-Hydrogen Conversion Constraint:
For each hour t in the planning horizon {0, 1, . . . , 23}, the electricity being
converted to hydrogen cannot be more than the capacity of the electrolyser
installed.

electricity_to_hydrogen_vars(t) ≤ electrolyser_size_MW, (19)
∀t ∈ {0, . . . , 23}

4. Initial Hydrogen Storage:

hydrogen_storage_vars(0) = initial_hydrogen_storage (20)
+ electricity_to_hydrogen_vars(0) × electrolyser_conversion_efficiency
− hydrogen_sold_vars(0)

5. Hydrogen Storage Dynamics:

hydrogen_storage_vars(t) = hydrogen_storage_vars(t − 1) (21)
+ electricity_to_hydrogen_vars(t) × electrolyser_conversion_efficiency
− hydrogen_sold_vars(t),
∀t ∈ {1, . . . , 23}

6. Hydrogen Storage Bounds:

0 ≤ hydrogen_storage_vars(t) ≤ hydrogen_storage_capacity_kg, (22)
∀t ∈ {1, . . . , 23}

7. Hydrogen Sale Constraints:

hydrogen_sold_vars(t) ≤ 1500 × allow_hydrogen_sale_vars(t), (23a)
∀t ∈ {1, . . . , 23}

23∑
t=0

allow_hydrogen_sale_vars(t) ≤ 1 (23b)

This stage further expands the model’s capabilities, enabling it to optimise oper-
ations considering both the energy and hydrogen markets, thus providing a more
comprehensive framework for energy management from more than a single source
and revenue optimization in a hybrid energy system.

• Electricity to Hydrogen Conversion Decisions
The optimization decision includes converting specific amounts of electricity
into hydrogen at various hours. Table 7 provides details on these decisions.
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Hour Electricity Converted to Hydrogen (MWh)
0 6.0
1 6.0
11 6.0
23 6.0

Table 7: Hourly Electricity to Hydrogen Conversion Decisions in Stage 4 (partial).

• Hourly Hydrogen Storage Decisions
Table 8 provides details on the amounts of hydrogen stored hourly as per
optimization decisions.

Hour Hydrogen Stored (kg)
0 108.0108
1 216.0216
6 756.07561
8 972.09721
9 1080.108
21 1250.00
23 100.00

Table 8: Hourly Hydrogen Storage Decisions in Stage 4.

• Total Hydrogen Sold
The total amount of hydrogen sold as per optimization decisions in Stage 4 is
1258.0108 kg.

3.5.5 Stage 5: Incorporating Hydrogen Market and Hydrogen-to-Electricity
Conversion

In Stage 5, the model is extended to interact with the hydrogen market, both buying
and selling, and to convert stored hydrogen back to electricity. This stage enhances
the system’s operational flexibility and allows more intricate energy management
strategies.

• Decision Variables
Stage 5 introduces new decision variables while retaining those from Stage 4:

• hydrogen_to_electricity_vars(t) : The hydrogen (in kg) converted to energy
at each hour t.

• hydrogen_buy_vars(t) : Amount of Hydrogen bought from the Hydrogen
Market in kg at hour t.
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• Objective Function Modification
The objective function is updated to maximize the net revenue, considering
hydrogen sales, purchases, and energy trading:

max, Z =
23∑

t=0

day_ahead_vars(t) × day_ahead_prices(t) (24)

−
23∑

t=0

grid_buy_vars(t) × day_ahead_prices(t)

+
23∑

t=0

(hydrogen_sold_vars(t) × hydrogen_market_price_EUR_per_kg

− hydrogen_buy_vars(t) × hydrogen_cost_price_EUR_per_kg)

• New and Updated Constraints
Constraints are added and updated to accommodate the new decision variables:

1. Energy Balance Constraint:

day_ahead_vars(t) + battery_charge_vars(t) (25)
+ electricity_to_hydrogen_vars(t)
≤ solar_production(t) + battery_discharge_vars(t) × battery_efficiency
+ grid_buy_vars(t) + hydrogen_to_electricity_vars(t),

∀t ∈ {0, . . . , 23}

2. Hydrogen-to-Electricity Conversion Constraint:
For each hour t in the planning horizon {0, 1, . . . , 23}, the hydrogen being
converted to electricity cannot be more than the capacity of the Fuel Cell
installed.

hydrogen_to_electricity_vars(t) × fuel_cell_conversion_efficiency
(26)

≤ hydrogen_fuel_cell_size_MW,

∀t ∈ {0, . . . , 23}

3. Initial Hydrogen Storage:

hydrogen_storage_vars(0) (27)
= initial_hydrogen_storage − hydrogen_to_electricity_vars(0)
+ electricity_to_hydrogen_vars(0) × electrolyser_conversion_efficiency
− hydrogen_sold_vars(0) + hydrogen_buy_vars(0)
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4. Hydrogen Storage Dynamics:

hydrogen_storage_vars(t) (28)
= hydrogen_storage_vars(t − 1) − hydrogen_to_electricity_vars(t)
+ electricity_to_hydrogen_vars(t) × electrolyser_conversion_efficiency
− hydrogen_sold_vars(t) + hydrogen_buy_vars(t),
∀t ∈ {1, . . . , 23}

3.5.6 Stage 6: Integration of Imbalance Settlement Procedure

Stage 6 introduces the incorporation of the imbalance settlement procedure into the
model. This enhancement is pivotal in managing the discrepancies between actual
and forecasted solar production, thereby optimizing revenue in the face of real-world
uncertainties.

• Objective Function Refinement
The objective function is adjusted to accommodate the financial implications
of the imbalance between forecasted and actual solar production. It aims to
maximize net revenue, factoring in the costs associated with energy imbalances:

max, Z =
(

23∑
t=0

day_ahead_vars(t) × day_ahead_prices(t) (29)

−
23∑

t=0

grid_buy_vars(t) × day_ahead_prices(t)

+
23∑

t=0

(hydrogen_sold_vars(t) × hydrogen_market_price_EUR_per_kg

− hydrogen_buy_vars(t) × hydrogen_cost_price_EUR_per_kg)

+
23∑

t=0

(max(0, solar_production_actual(t) − solar_production_forecast(t))

× positive_imbalance_price(t)
+ min(0, solar_production_actual(t) − solar_production_forecast(t))

× negative_imbalance_price(t))
)

• New and Updated Constraints

1. Grid Capacity Constraint
A constraint is set to ensure that the combined total of day-ahead market
trades and grid purchases does not exceed the grid capacity limits, taking
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into account the imbalance in solar production:

day_ahead_vars(t) + grid_buy_vars(t) (30)
+ |solar_production_actual(t) − solar_production_forecast(t)|
≤ grid_capacity_limit_MW,

∀t ∈ {0, . . . , 23}

2. Energy Balance Constraint:
The energy balance constraints are revised to align with the changes in
solar production, ensuring that the total energy used or stored at any
given time does not exceed the available resources and capacities:

day_ahead_vars(t) + battery_charge_vars(t) (31)
+ electricity_to_hydrogen_vars(t)
+ |solar_production_actual(t) − solar_production_forecast(t)|
≤ solar_production(t) + battery_discharge_vars(t) × battery_efficiency
+ grid_buy_vars(t) + hydrogen_to_electricity_vars(t),
∀t ∈ {0, . . . , 23}

• Significance and Implications
The integration of the imbalance settlement procedure highlights the model’s
ability to adapt to real-world operational uncertainties. This stage underscores
the significance of accurate solar production forecasting and its financial im-
plications, offering insights into optimal energy management strategies in the
presence of solar production variability.
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4 Analysis of Optimization under Uncertainties

4.1 Asset Utilization
We will analyse the model’s output in this subsection to determine how effective
asset utilisation is in the long run. We will take into account the rates of utilisation,
the financial advantages, and the operational robustness that our all-encompassing
strategy provides. Our study will show the highs and lows of asset utilisation, dissect
the model’s optimisation reasoning, and offer a road map for further advancements.

Figure 4: Daily Solar Production throughout the year.

Figure 5: Daily Revenue throughout the year.
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Fig. 4 illustrates the amount of energy produced from solar power every day
for a year. The seasonal color-coding highlights the impact of seasons on solar
energy production. A noticeable trend may show higher production in the summer
months compared to winter, aligning with longer daylight hours. This graph informs
stakeholders about the variability of solar energy production and the need for com-
plementary energy solutions or storage systems to balance the supply throughout
the year.

Fig. 5 shows how the revenue generated from energy production varies throughout
the year. The fluctuations in the graph indicate that revenue is not constant; it rises
and falls, possibly due to varying market prices and changes in production efficiency.
A key takeaway is that certain times of the year might be more profitable than others,
which could influence strategic planning for energy sales or marketing. Despite the
presence of a battery and hydrogen storage along with the electrolysers and fuel cells,
it can be seen that the outline of Fig. 5 resembles the outline of Fig. 4, indicating a
clear dependency on solar production.

Figure 6: Amount Charged to Battery throughout the year.

In Fig. 6, we observe the amount of energy stored in batteries over the year. The
seasonal shading helps to understand how different seasons affect the ability to charge
the batteries. For instance, you might see more energy storage in winter seasons due
to low solar production and need for storing the limited solar energy. Conversely,
less energy may be stored during seasons with more sunlight due to more consistent
and higher solar production. This information is crucial for planning energy storage
strategies and ensuring a stable energy supply throughout the year. The revenue
and battery charging graphs can be compared to understand how energy storage
impacts financial returns. For example, during times when the battery charging is
high, revenue might not necessarily increase if the market price is low. Conversely,
even if less energy is stored in batteries, revenue might be high if the energy is sold
when market prices peak.
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Figure 7: Hydrogen Storage at the end of the day in kg throughout the year.

Fig. 7 depicts the level of hydrogen storage at the end of the day, measured in
kilograms, across the year. The stability of the line around the 100 kg mark suggests
that the model consistently maintains a certain level of hydrogen storage at the end
of the day, likely to ensure a steady supply of hydrogen in case of an emergency.

Figure 8: Hydrogen to Electricity Conversion throughout the year.

Fig. 8 shows the conversion of stored hydrogen back into electricity. The flat line
at zero suggests that hydrogen is not converted back to electricity within the model.
This could mean that hydrogen is either sold directly or stored for longer-term use
rather than being used for electricity generation. This helps us understand that the
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investment in a Fuel Cell might not be worth if only focusing on it’s use case to
convert electricity from hydrogen.

Figure 9: Electricity to Hydrogen Conversion throughout the year.

Fig. 9 indicates the amount of electricity converted to hydrogen. The consistent
value of 69 MWh suggests a steady use of excess electricity to produce hydrogen,
which may then be stored or sold. The model regularly utilizes available electricity
for hydrogen production, which can act as a form of energy storage or as a product
for the energy market.

These graphs collectively demonstrate how the optimization model strategically
manages energy assets to maximize revenue, ensure energy supply, and leverage
seasonal variations. The utilization of batteries for storage, solar production for
generating energy, and hydrogen as a flexible energy carrier are all part of the model’s
integrated approach to stabilizing revenue throughout the year despite the inherent
fluctuations in market prices and energy availability. We can look at how the model
stabilises inherent fluctuations in more detail by exploring the variability in market
prices.

4.2 Market Price Variability
As discussed earlier, The prices in the energy market are extremely volatile. This
volatility can have significant impacts on the revenue streams for energy producers,
particularly those that operate with renewable sources like solar energy, where
production can be highly variable.
Using the optimization model presented above in Equation 16, the effect of volatile
market prices can be seen on the generated revenue. The model can also be modified
to help visualise the effect of the market prices on the revenue when certain elements
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of the model aren’t present, to better judge the necessity and importance of those
elements.

Figure 10: Impact of Market Prices on Revenue without Battery and Hydrogen.

Fig. 10 shows revenue fluctuating widely with market prices, indicating a direct
dependence on selling prices without any means to store or defer the sale of produced
energy. The jagged pattern suggests that revenue is highly sensitive to market
conditions, which can lead to financial instability for the producer.

Figure 11: Impact of Market Prices on Revenue with Battery but without Hydrogen.

In Fig. 11, With the introduction of battery storage, there is a noticeable stabi-
lization in revenue, as energy can be stored when prices are low and sold when they
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are higher. The battery acts like a buffer. However, the peaks and troughs indicate
that the capacity or strategy of the battery storage does not entirely mitigate the
volatility. This could be because the battery has a limited capacity, and it can only
mitigate the impact of market prices to a certain extent.

Figure 12: Impact of Market Prices on Revenue with Battery and Hydrogen

Fig. 12 demonstrates the most stable revenue profile, suggesting that the combi-
nation of battery and hydrogen storage provides the best buffer against market price
volatility. The use of hydrogen storage possibly allows for long-term energy retention,
offering more flexibility to wait for favorable market conditions. The smoother trend
line indicates that the integrated approach to energy storage can significantly reduce
the risk associated with price fluctuations.

Without any storage, the producer’s revenue is highly unstable, leading to financial
risk. Adding a battery storage system helps stabilize revenue somewhat, reducing but
not eliminating volatility. Introducing both battery and hydrogen storage systems
offers the most stable revenue, demonstrating the value of diversified energy storage
solutions to mitigate the risks of fluctuating market prices.

4.3 Solar production variability
In our model, probabilistic forecasting is implemented by fitting a gamma distri-
bution to historical solar production data. The gamma distribution is particularly
suited for this purpose due to its flexibility in modeling skewed, non-negative data, a
common characteristic of solar energy production. By fitting this distribution, the
model captures the typical range and variability in historical solar output, provid-
ing a basis for generating realistic future scenarios. As the model employs Monte
Carlo simulation to obtain numerical results through repeated random samples, it
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enables the exploration of a wide range of scenarios, particularly in systems with
complex interactions and uncertainty, like solar energy production. By drawing ran-
dom samples from the fitted gamma distribution for each time period, the model is
able to simulate various plausible solar production levels for different hours of the day.

The curve on the graph below Fig. 13 represents the gamma probability density
function (PDF) that has been fitted to the solar production data. This represents
the likelihood of different solar production values occurring. The gamma distribution
is commonly used to model data that are skewed to the right and where the values
are positive, which is typical for the solar production data. The PDF starts high
at the lower end of the x-axis (near zero), indicating a higher probability of lower
production values, and gradually tapers off as the production value increases. This
reflects that lower solar production values are more common than higher ones in
your dataset. This is because there are multiple hours with no sun and hence no
production, and with higher values of solar production being observed only for an
hour or two maximum if the weather conditions are not cloudy. In the context of
Monte Carlo simulation, this PDF can be used to generate random solar production
values that are consistent with historical patterns. When one simulates numerous
scenarios (each represented by a day with 24 hours of production), you draw random
values from this distribution, mirroring the range of possible real-world outcomes.

Figure 13: A visual representation of the PDF for the used solar production data
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The process of using Monte Carlo Simulation and performing statistical analysis on
the simulated data can be summarised by the steps below,

1. Gamma Distribution Fitting:
Let X be the random variable representing solar production. The historical
solar production data D = {d1, d2, . . . , dn} where di > 0, is used to estimate
the parameters of a gamma distribution. This is given by the PDF:

f(x; k, θ) = xk−1e− x
θ

θkΓ(k) (32)

where k is the shape parameter, θ is the scale parameter, and Γ(k) is the
gamma function evaluated at k. The parameters k and θ are estimated from
the data D.

2. Simulated Solar Production Generation:
For each day t, simulate m scenarios of solar production St,1, St,2, . . . , St,m,
where each scenario is a vector of 24 hourly values denoted by h. Each value is
generated from the gamma distribution with parameters k and θ:

St,j = (st,j,1, st,j,2, . . . , st,j,24), st,j,h ∼ Gamma(k, θ), (33)

We can have a look at the difference between the actual solar production data
and the simulated data when we increase the number of scenarios Fig. 14. When
running the simulation only once, the outcome is just one instance of what could
happen given the input parameters. This single instance can be quite far from
the actual or expected value because it represents only one possible outcome
out of many. When the simulation is ran multiple times, the simulation starts
to generate a range of possible outcomes. The average of these outcomes tends
to converge towards the expected value, which in this case is the expected solar
power production.

3. Sunrise/Sunset Mask:
Define a binary mask Mt = (mt,1, mt,2, . . . , mt,24) based on the sunrise and
sunset times for day t, such that:

mt,h =
{

1 if h is between sunrise and sunset
0 otherwise

(34)

The simulated production is then adjusted by the mask:

S ′
t,j = St,j · Mt (35)

4. Revenue Calculation:
For each scenario j on day t, calculate the revenue Rt,j using the objective
function in equation 29.
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Figure 14: Difference between actual and simulated data when there is only 1 scenario

5. Statistical Analysis:
Perform statistical analysis on the set of revenues {Rt,1, Rt,2, . . . , Rt,m} for each
day t. Calculate the expected revenue µ, the standard deviation σ, and the
5th and 95th percentiles P5 and P95:

µ = 1
m

m∑
j=1

Rt,j (36)

σ =

√√√√ 1
m − 1

m∑
j=1

(Rt,j − µ)2 (37)

P5 = 5th percentile of {Rt,1, Rt,2, . . . , Rt,m} (38)
P95 = 95th percentile of {Rt,1, Rt,2, . . . , Rt,m} (39)

From the graphs (Fig. 14 - Fig. 17) it can be observed that as the number of
scenarios increases, the variability in the difference tends to reduce, indicating a
convergence to an expected value. This behavior is consistent with the Law of Large
Numbers in probability theory, which states that as the number of trials increases,
the average of the outcomes will tend to converge towards the expected value. The
purpose of using Monte Carlo simulation in this context is to take into account the
randomness and uncertainty in solar production forecasts. By generating multiple
scenarios, we can understand the variability and risk associated with solar production.
After running the model on all the scenarios, we can calculate the:

• Expected Revenue : This is the mean or average of the revenues from all
the simulated scenarios. A negative value indicates that, on average, the model
predicts a loss. This could happen if the costs associated with imbalances,
buying energy, or other factors outweigh the revenue from selling energy.



41

Figure 15: Difference between actual and simulated data when there are 5 scenarios

Figure 16: Difference between actual and simulated data when there are 20 scenarios

• Revenue Standard Deviation : This measures the amount of variability
or dispersion from the average revenue. A higher standard deviation indicates
a greater spread of outcomes, meaning there is higher uncertainty about the
revenue outcome.

• Percentile 5 : This is a measure of the lower boundary of revenue outcomes.
Only 5 per cent of the outcomes are below this value. It is a way to understand
the worst-case scenarios and risks involved.

• Percentile 95 : This represents the upper boundary, with 95 per cent of the
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Figure 17: Difference between actual and simulated data when there are 100 scenarios

revenue outcomes falling below this value. It gives a sense of the best-case
scenarios.

Fig. 18 illustrates the variability of revenue outcomes based on different percentiles.
The green box represents the middle 90 per cent of all revenue outcomes. The central
line (median) suggests that the median outcome is slightly negative, indicating that
typically, the revenue is slightly less than the break-even point. The red box represents
the top 5 per cent of all revenue outcomes, which are the best-case scenarios, where
solar production was likely more accurate or favorable, resulting in positive revenue
outcomes. The blue box represents the worst-case scenarios with significant negative
revenue, likely due to substantial discrepancies between forecasted and actual solar
production, leading to high costs in the imbalance market.
Based on the figures (Fig. 18,Fig. 19), we can see that if the actual solar production
significantly deviates from what was forecasted and sold on the market, the energy
provider must cover the imbalance by buying or selling the difference at potentially
unfavorable prices, leading to financial losses. Therefore, investment in improving
the accuracy of solar forecasts is of paramount importance to reduce exposure to
imbalance markets and stabilize revenue.
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Figure 18: Visualising the spread of revenue outcomes, highlighting the 0th, 5th,
95th, and 100th percentiles on 100 simulations.

Figure 19: Likelihood of the returns on investment for the simulated solar production
values



44

5 Conclusions and Future Directions
In conclusion, this thesis has successfully established a linear optimization framework
for analyzing the viability and optimization of HES within the Nordic energy markets,
focusing particularly on Finnish data. The thesis also dove into the foundational
economic concepts governing energy markets and the inherent uncertainties in these
markets. It also introduced Monte Carlo Simulations which was utilised to simulate
various market scenarios, assessing the impact of these uncertainties on the perfor-
mance and profitability of a hybrid energy system. The results obtained highlighted
the effectiveness of the developed optimization model in managing uncertainties and
maximizing revenue.

During the iterative model development process it was observed that on a dataset
of 24 hours for a random day, The model shows a 20% increase in revenue on the
addition of a 10 MW battery storage, a 24% increase in revenue on the allowing the
ability to buy electricity from the grid and a 485% increase in revenue with hydrogen
conversion and storage facilities implemented along with the other assets. The results
indicated the importance of having a HES for the purposes of maximising revenue.
The results also showed increased resilience towards the volatility of market prices,
further strengthening the case for investing in a HES.

While an optimization model can enhance decision-making by proposing the most
efficient use of resources based on predictions, it cannot fully compensate for inaccu-
racies in solar production forecasts. An optimization model is only as good as the
data it is based on. If the solar production forecasts are inaccurate, even the most
sophisticated optimization models may lead to suboptimal decisions and negative
financial outcomes. This highlights a major limitation in a HES, which is the sources
of energy being used and the accuracy of the respective source of energy being used.
However, this does not weaken the case for a HES as inaccuracies in forecast will have
a worse effect if there is no flexibility available that comes with the establishment of
a HES.

A major area of focus to further make the case for a HES and improve decision
making through the optimization framework will be the development of more accurate
energy forecasting models. There can also be the inclusion of more than one source
of energy, incorporation of intraday and flexibility markets in the model to further
stabilise the revenue by providing additional maneuvering against the volatile market
prices.
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A Python Code for Revenue Generation Model

1 import pandas as pd
2 import numpy as np
3 import pulp as pl
4

5 from solarproductionforecast import *
6 from fetchprices import *
7

8 forecast_df , actual_df , df = solar_energy_production_forecast ()
9

10 solar_production_forecast = forecast_df [" Amount (MW)"]. values
11 solar_production_actual = actual_df [" Amount (MW)"]. values
12 day_ahead_spot_prices = fetch_spot_prices ()[" Price(EUR/MW)"]. values
13

14 positive_imbalance_price , negative_imbalance_price =
extract_imbalance_prices ()

15

16 tolerance = 1e -5 # You may adjust the tolerance level as necessary
17 big_M = 1000
18 data_points = 24 # The number of hours in the planning horizon ,

typically 24 for a single day.
19 time_frame = range (1, data_points )
20 grid_capacity_limit_MW = 50
21

22

23 # Battery Parameters
24 battery_capacity_MW = 10 # The maximum amount of energy that the

battery can store , measured in Megawatts (MW).
25 battery_c_value = 0.5 # Represents the battery ’s discharge rate.

A C- value of 0.5 means the battery can be dis/ charged at a rate
that would deplete its capacity in 2 hours .

26 battery_efficiency = 0.9 # The efficiency of the battery in
storing and discharging energy . A value of 0.9 (or 90%) means
that 10% of energy is lost during charging and discharging
cycles .

27 battery_discharge_limit = 0.8 * battery_capacity_MW # The maximum
amount of energy that can be discharged from the battery at any
given time , calculated as a percentage of the battery ’s capacity
.

28 battery_lifetime_cycles = 5000 # The total number of charge -
discharge cycles the battery can undergo before its capacity
significantly degrades .

29 battery_SOC = 0 # Initial state of charge
30

31

32 # Hydrogen Parameters
33 hydrogen_storage_capacity_kg = 1250 # The total amount of hydrogen

(in kilograms ) that can be stored .
34 initial_hydrogen_storage = 0 # Initial amount of hydrogen in

storage
35

36 electrolyser_size_MW = 6 # The capacity of the electrolyser ,
measured in Megawatts .
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37 electrolyser_conversion_rate = 0.03333 # Conversion rate as a
separate constant measured in MWh/kg.

38 electrolyser_efficiency = 0.6 # The efficiency of the electrolyser
as a variable input.

39 electrolyser_conversion_efficiency = electrolyser_efficiency /
electrolyser_conversion_rate # The formula for calculating
electrolyser conversion efficiency in kg/MWh.

40

41 hydrogen_fuel_cell_size_MW = 10 # The capacity of the hydrogen
fuel cell , measured in Megawatts .

42 fuel_cell_conversion_efficiency = 0.017 # The amount of electrical
energy produced from 1 kg of hydrogen , measured in MWh/kg.

43

44 hydrogen_demand_flat = 100 # The constant amount of hydrogen
demanded

45 hydrogen_market_price_EUR_per_kg = 6 # The selling price of
hydrogen per kilogram

46 hydrogen_cost_price_EUR_per_kg = 6 # The cost price of hydrogen per
kilogram

47

48

49

50 def revenue_generated ():
51

52 # Create the LP problem
53 problem = pl. LpProblem (" Revenue_Maximization ", pl. LpMaximize )
54

55 # Create decision variables
56 day_ahead_vars = pl. LpVariable . dicts(" Day_Ahead ", (range(

data_points )), lowBound =0, cat=" Continuous ") # The energy (
MWh) sold in the day ahead market . Each element t denotes
energy sold for delivery at hour t. All the deals are made
for the next day.

57 grid_buy_vars = pl. LpVariable . dicts (" Grid_Buy ", range(
data_points ), lowBound =0, cat=" Continuous ") # The energy (
MWh) bought from the grid at each hour t.

58

59 battery_charge_vars = pl. LpVariable .dicts (" Battery_Charge ",
range( data_points ), lowBound =0, cat=" Continuous ") # This
variable represents the amount of energy (in MW) that is
charged into the battery at each hour t within the planning
horizon ( defined by num_hours ).

60 battery_discharge_vars = pl. LpVariable . dicts(" Battery_Discharge
", range( data_points ), lowBound =0, cat=" Continuous ") #
Represents the amount of energy (in MW) discharged from the
battery at each hour t within the planning horizon .

61 battery_action = pl. LpVariable . dicts(" Battery_Action ", range(
data_points ), cat=" Binary ") # Prevent simultaneous charging
and discharging of the battery within the same hour using a
Binary variable .

62 battery_SOC_vars = pl. LpVariable . dicts(" Battery_SOC ", range(
data_points ), lowBound =0, upBound = battery_capacity_MW , cat="
Continuous ") # Decision variable for state of charge of the
battery



50

63

64 # Decision variables for hydrogen
65 hydrogen_storage_vars = pl. LpVariable .dicts(" Hydrogen_Storage ",

range( data_points ), lowBound =0, cat=" Continuous ") #
Represents the amount of hydrogen (in kg) stored at each
hour t within the planning horizon .

66 electricity_to_hydrogen_vars = pl. LpVariable .dicts("
Electricity_To_Hydrogen ", range( data_points ), lowBound =0,
cat=" Continuous ") # Total energy converted to hydrogen at
each hour t in (MW)

67 allow_hydrogen_sale_vars = pl. LpVariable .dicts("
Hydrogen_Sale_Limit ", range( data_points ), cat=" Binary ")

68 hydrogen_sold_vars = pl. LpVariable .dicts(" Hydrogen_Sold ", range
( data_points ), lowBound =0, cat=" Continuous ") #The amount of
hydrogen sold (in kg)

69 hydrogen_to_electricity_vars = pl. LpVariable .dicts("
Hydrogen_To_Electricity ", range( data_points ), lowBound =0,
cat=" Continuous ") # The hydrogen (in kg) converted to energy

at each hour t.
70 hydrogen_buy_vars = pl. LpVariable .dicts (" Hydrogen_Bought ",

range( data_points ), lowBound =0, cat=" Continuous ") # Amount
of Hydrogen bought from the Hydrogen Market in kg.

71

72 # Set the objective function
73 problem += (
74 pl.lpSum ([ day_ahead_vars [t] * day_ahead_spot_prices [t] for

t in time_frame ]) - pl. lpSum ([ grid_buy_vars [t] *
day_ahead_spot_prices [t]] for t in range( data_points )) +

pl.lpSum( hydrogen_sold_vars [t] *
hydrogen_market_price_EUR_per_kg - hydrogen_buy_vars [t]
* hydrogen_cost_price_EUR_per_kg for t in range(
data_points ))

75 + pl.lpSum ([ max (0, solar_production_actual [t] -
solar_production_forecast [t]) * positive_imbalance_price
[t] + min (0, solar_production_actual [t] -
solar_production_forecast [t]) * negative_imbalance_price
[t] for t in range( data_points )])

76 )
77

78 # Add 50 MW grid buy/sell constraint
79 for t in time_frame :
80 problem += (
81 day_ahead_vars [t] + grid_buy_vars [t] + abs(

solar_production_actual [t] -
solar_production_forecast [t])

82 ) <= grid_capacity_limit_MW
83

84

85 # Add the energy balance constraints
86 for t in time_frame :
87 problem += (
88 day_ahead_vars [t] + battery_charge_vars [t] +

electricity_to_hydrogen_vars [t] +
solar_production_actual [t -1] -
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solar_production_forecast [t -1]
89 <= battery_discharge_vars [t]* battery_efficiency +

grid_buy_vars [t] + hydrogen_to_electricity_vars [t]*
fuel_cell_conversion_efficiency

90 )
91

92 # Battery operational constraints
93 for t in range( data_points ):
94 problem += battery_charge_vars [t] <= battery_capacity_MW *

battery_c_value
95

96 problem += battery_discharge_vars [t] <=
battery_discharge_limit * battery_c_value

97

98 problem += battery_SOC_vars [t] - battery_discharge_vars [t]
>= 0

99 problem += battery_SOC_vars [t] + battery_charge_vars [t] <=
battery_capacity_MW

100

101 problem += battery_charge_vars [t] <= big_M * (1 -
battery_action [t])

102 problem += battery_discharge_vars [t] <= big_M *
battery_action [t]

103

104 # Set the initial conditions outside the loop
105 problem += battery_charge_vars [0] == 0
106 problem += battery_discharge_vars [0] == 0
107

108 # Constraints for state of charge
109 problem += battery_SOC_vars [0] == battery_SOC +

battery_charge_vars [0] - battery_discharge_vars [0]
110 for t in time_frame :
111 problem += battery_SOC_vars [t] == battery_SOC_vars [t -1] +

battery_charge_vars [t] - battery_discharge_vars [t]
112

113 # Constraints to ensure state of charge is within bounds
114 for t in range( data_points ):
115 problem += battery_SOC_vars [t] <= battery_capacity_MW
116 problem += battery_SOC_vars [t] >= 0
117

118

119 # Hydrogen operational constraints
120 for t in range( data_points ):
121 problem += electricity_to_hydrogen_vars [t] <=

electrolyser_size_MW # Amount of electricity we convert
to hydrogen should always be less than the size of the
electrolyser

122 problem += hydrogen_to_electricity_vars [t] *
fuel_cell_conversion_efficiency <=
hydrogen_fuel_cell_size_MW # Amount of electricity we
get from hydrogen should always be less than the size of

the Fuel cell
123

124 # Constraints for hydrogen storage dynamics
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125 problem += hydrogen_storage_vars [0] == initial_hydrogen_storage
- hydrogen_to_electricity_vars [0] +

electricity_to_hydrogen_vars [0] *
electrolyser_conversion_efficiency - hydrogen_sold_vars [0] +

hydrogen_buy_vars [0]
126 for t in time_frame :
127 problem += hydrogen_storage_vars [t] ==

hydrogen_storage_vars [t -1] -
hydrogen_to_electricity_vars [t] +
electricity_to_hydrogen_vars [t] *
electrolyser_conversion_efficiency - hydrogen_sold_vars [
t] + hydrogen_buy_vars [t]

128

129 # Constraints to ensure hydrogen storage is within bounds
130 for t in range( data_points ):
131 problem += hydrogen_storage_vars [t] <=

hydrogen_storage_capacity_kg
132 problem += hydrogen_storage_vars [t] >= 0
133

134 # Ensure that the sum of hydrogen sold and hydrogen used to
meet demand does not exceed the hydrogen stored

135 for t in range( data_points ):
136 problem += hydrogen_storage_vars [t] >= hydrogen_demand_flat
137 problem += hydrogen_sold_vars [t] <= 1500 *

allow_hydrogen_sale_vars [t]
138 problem += hydrogen_to_electricity_vars [t] <= 1500 *

allow_hydrogen_sale_vars [t]
139 problem += electricity_to_hydrogen_vars [t] <= big_M *(1 -

allow_hydrogen_sale_vars [t])
140 problem += hydrogen_buy_vars [t] <= big_M *(1-

allow_hydrogen_sale_vars [t])
141

142

143 # Limit the number of times hydrogen can be sold in a day
144 problem += pl. lpSum ( allow_hydrogen_sale_vars [t] for t in range(

data_points )) <= 1
145

146

147 # Solve the problem and print the results
148 problem .solve ()
149 print(" Status : ", pl. LpStatus [ problem . status ])
150 print(" Optimal revenue : ", pl.value ( problem . objective ))
151

152 revenue_generated ()

Listing 1: Python code for revenue generation optimisation model

The GitHub repository for the optimization model can be found at this link.

https://github.com/avasheshK/Optimising-the-Hybrid-Energy-System---Masters-Thesis-Work.git
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