
Aalto University
MASTER’S THESIS 2021

Decision Support Model for Fleet Maintenance
based on Vehicle Quality Incentives for Bus
Operators in Public Transportation

Oskari Kivinen

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo, 6 June 2021

Supervisor: Professor Antti Punkka
Advisors: M. Sc. Petri Auno, Nobina Oy

B.Eng. Marko Lonnakko, Nobina Oy

The document can be stored and made available to the public
on the open internet pages of Aalto University. All other rights
are reserved.

Aalto University
School of Science
Master’s Programme in Mathematics and
Operations Research



Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Oskari Kivinen

Title
Decision Support Model for Fleet Maintenance based on Vehicle Quality Incentives for
Bus Operators in Public Transportation

School School of Science

Master’s program Mathematics and Operations Research

Major Systems and Operations Research Code SCI3055

Supervisor Professor Antti Punkka

Advisors M.Sc. Petri Auno & B.Eng. Marko Lonnakko, Nobina Oy

Level Master’s thesis Date 6 June 2021 Pages iv+36 Language English

Public transportation is often organized and operated by separate organizations.
The public authority in Helsinki, HSL, is responsible for organizing the time sched-
ules, route planning etc. The operation of the bus transportation is outsourced
to bus operators, such as Nobina. HSL has set different incentive and sanction
systems to control operation to a favourable way. One of the incentive systems is
related to the visible quality of the fleet in operation. The quality is monitored
on contract level during inspection seasons by giving inspection points on specific
faults, and the performance is measured by counting inspection points received
per inspection, with lower amounts resulting to higher bonuses.

This thesis develops a decision support tool to target limited maintenance actions
to accumulate more quality incentive bonuses. The objective was to develop a
process to find a better policy (or maintenance order), and create a tool to determine
the best order at any point in time. The system, i.e. bus operation in the context
of incentive bonuses, was modeled as a Markov Decision Process (MDP). The
current faults, inspection points, and inspections formed the states, maintenance
procedures the actions, and the incentive bonus as the payoff from the MDP. The
policies were tested by simulation to determine the expected payoff for each policy.

The results suggest that it is possible to create better policies in the process. A
sensitivity analysis revealed that preventing faults being caught in an inspection
has the highest impact on the received incentive bonus. Further development of
the model could change the results, as some key parts were forced to be left out,
such as the cost of actions. In addition, policy optimization could likely further
improve the gain of incentive bonuses.

Keywords Markov Decision Process, public transport

ii



Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Oskari Kivinen

Työn nimi
Päätöksentekotyökalu kaluston huoltoon perustuen ajoneuvon kuntoon liittyviin
kannustimiin julkisessa liikenteessä

Korkeakoulu Perustieteiden korkeakoulu

Maisteriohjelma Mathematics and Operations Research

Pääaine Systems and Operations Research Koodi SCI3055

Valvoja Professori Antti Punkka

Ohjaajat FM Petri Auno & Tekn. ins. Marko Lonnakko, Nobina Oy

Työn laji Diplomityö Päiväys 6.6.2021 Sivuja iv+36 Kieli englanti

Tiivistelmä

Julkinen joukkoliikenne on usein järjestetty ja liikennöity eri organisaatioiden
toimesta. Julkinen taho Helsingissä – HSL (Helsingin seudun liikenne) – on vas-
tuussa mm. liikenteen aikatauluista ja reitityksestä. Bussien liikennöinti on ul-
koistettu liikennöitsijöille, kuten Nobinalle. HSL on asettanut erilaisia kannustin-
ja sanktiojärjestelmiä hallitakseen liikennöinnin toteuttamista toivottuun suun-
taan. Yksi kannustinjärjestelmistä liittyy käytetyn bussikaluston nähtävissä
olevaan laatuun. Laatua valvotaan sopimustasolla tarkastuskausien aikana anta-
malla tarkastuspisteitä tietyistä vioista, ja suoriutumista mitataan laskemalla
keskimääräiset tarkastuspisteet tarkastusta kohden. Alhaisempi lukema johtaa
suurempaan kannustimeen.

Tässä työssä kehitetään päätöksentukityökalu rajallisten huoltotoimenpiteiden
kohdentamiseen isompien laatukannustimien kartuttamiseksi. Tavoitteena oli
löytää parempi huoltokäytäntö (tai huoltojärjestys) ja luoda työkalu parhaimman
järjestyksen määrittämiseen minä ajanhetkenä tahansa. Systeemi, eli bussien
liikennöinti kannustimien kontekstissa, mallinnettiin Markovin päätöksenteko-
prosessina. Olemassaolevat viat, tarkastuspisteet ja tarkastukset muodostivat
prosessin tilat, huoltotoimenpiteet prosessin toiminnat ja kannustimet prosessin
palkinnon. Huoltokäytännöt testattiin simuloinnin kautta, jotta odotettu tuotto
voitiin määrittää kullekin käytännölle.

Tulokset kielivät mahdollisuudesta luoda parempia käytäntöjä prosessiin. Herk-
kyysanalyysi paljasti, että vikojen kiinnijäämisen estämisellä tarkastuksissa on
suurin vaikutus saatuihin kannustimiin. Mallin lisäkehitys voi muuttaa tuloksia,
sillä joitain pääkohtia jouduttiin jättämään mallista pois, kuten toimintojen kus-
tannukset. Tämän lisäksi käytäntöjen optimointi voisi todennäköisesti edelleen
kasvattaa saatujen kannustimien määrää.

Avainsanat Markovin päätöksentekoprosessi, joukkoliikenne
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1. Introduction

Public transport has been used in city areas from early 19th century

(Parks 2017), and with the megatrend of urbanization, the utilization of

public transport has been estimated to increase heavily (PwC 2020). The

introduction of public transport has been a key factor in the expansion of

cities to sub-urban areas, hence offering a solution to mobility in areas

with ever-increasing population density. For the climate change, public

transport introduces a way to decrease emissions, as urban mobility is a

major source of transport emissions (European Comission 2020).

Government or municipal subsidies are a common way to finance public

transport due to the collective benefits it provides. Some cities have a

public authority to design and manage the ticket systems, timetables and

route planning, such as SL in Stockholm and HSL in Helsinki (Jansson

and Pyddoke 2010; The Board of HSL 2019). In Helsinki, the authority is

owned by the cities and municipalities that participate in the transport

with the expenses divided by the amount of traffic each city has. The

transport itself is then managed by separate operators, such as VR for the

commuter trains (Pääkaupunkiseudun Kalusto Oy 2020) and Nobina Oy

for a share of the buses (Kuukankorpi 2020). Nobina is the Nordic region’s

largest and most experienced public transport service provider. Nobina is

the largest public transport service provider in the Helsinki region and

thus also one of the country’s major players.

Since the authority—HSL in Helsinki’s case—is responsible for the cus-

tomer experience for the passengers, the contracts with the bus operators

have both incentives and sanctions to guide the operators to perform well

on selected criteria, such as punctuality, cancellations and the quality of

the used fleet. The quality of the fleet can be divided as the features of the

fleet, such as the model and age, and the visible quality, such as cleanliness

and integrity. HSL has set incentives to improve the visible quality by
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Introduction

giving bonuses of up to 1% of accumulated revenue in a bonus season for

operators who maintain their fleet in top condition. HSL monitors the

quality with subcontracted inspectors, who perform random inspections

with ongoing transportation and give inspection points on the emerged

faults for each bonus season. Nobina has an incentive program that aims

to increase the profit gained by the offered incentives.

This thesis develops a decision support tool for the quality incentive

program at Nobina Oy. Since the resources of maintenance are limited, the

tool helps on focusing the resources more efficiently by accumulating more

incentive bonuses with a good maintenance policy. In general, a policy

determines guidelines, from which actions are based on. In Nobina’s case,

a policy determines where the fixes should be focused on, i.e., the order

of contracts to focus on. The objective of the thesis was to develop and

test different policies to discover a more lucrative way of repairing faults

compared to the current one.

The system that the tool is applied can be modeled as a Markov Decision

Process (MDP) to consider the present situation in a bonus season and

model when and what type of new faults appear, are inspected, and are

repaired. The MDP uses states to represent the inspection points per

contract and current faults in contracts based on the present knowledge of

which buses have faults and in which contracts they are used. In addition,

the MDP considers actions to perform on the MDP states, namely the

fixes done to repair faults, and a reward function to measure the effect of

the actions. The reward function is determined by the paid bonus at the

end of a bonus season, which is based on the amount of inspection points

and inspections on contracts, of which only the former can be controlled

by Nobina’s actions. The MDP advances with a time step of one day and

actions are executed based on the effective policy.

The testing was performed by simulating the policies within the system.

Each policy produces its own MDP due to different sets of actions leading

to different states and eventually different rewards at the end of the

process. The system contains four different random variables, i.e. new

inspections, new faults, new points from the more severe faults, and the

amount of repair actions, which were modeled as Poisson point processes.

The realizations of the random variables were the same between policies

for each simulation.

As the maximum bonus offered is one percent in HSL region, and typical

revenues of bus operators range from tens of millions to a hundred million,
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Introduction

the theoretical total benefit for a company is in the order of magnitude of

a million euros. Currently, Nobina receives approximately a third of the

theoretical maximum. The considerable amount of bonus left motivates for

further research on improving current protocols of maintenance actions.

This thesis is structured as follows. Chapter 2 reviews relevant literature

of service quality, discrete finite MDP, and Poisson point process. Chapter

3 presents the development of the model by first describing the system,

then continuing with the time evolution of the modeled system, and finally

describing the estimation of parameters used in the model. Chapter 4

presents the development of different policies and how the model is simu-

lated, followed by the performance of the policies and a sensitivity analysis

with regards to the estimated parameters. Then, the model and results

are reviewed in Chapter 5. Finally, conclusions on the thesis are presented

in Chapter 6.

3



2. Background

This Chapter introduces the reader to the problem, beginning with the

operating environment and the incentive bonuses in Section 2.1. Next, in

Section 2.2 the subject of Markov Decision Process (MDP) is expatiated,

which was used to build the decision support tool. Finally, some theory of

Poisson point processes is reviewed in Section 2.3.

2.1 Service quality in public transportation

Service quality can be determined by three dimensions; the functional

quality of the process, the technical quality of the encounter, and the

corporate image (Thai et al. 2014). While there exists other definitions

(e.g. Parasuraman et al. 1988), the three dimensions offer a comprehensive

approach, and thus, are sufficient to describe perceived quality in public

transportation.

The functional quality includes the service process, which in the case of

public transportation is displayed as e.g. the frequency and punctuality

of departures. In addition, the coverage of the transportation network,

connections of routes, and methods of payments are considered as func-

tionalities in the service process. In the context of this thesis, HSL — the

public transport authority in Helsinki region — is responsible for most of

the service process, i.e. the functional quality of the public transportation,

since it plans the coverage, connections, and timetables of the transporta-

tion, handles the marketing of the service, and hosts the payment system

of the service. However, since HSL does not operate the transport itself,

it monitors the punctuality of different operators and has set both incen-

tives and sanctions to ensure transport operators fulfill functional quality

standards of the transportation which are determined in contracts. The

contracts are agreements between the authority and an operator about
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Background

some proportion of the total transportation with some revenue associated

to it. In general, several bus lines are included in one contract, where a

bus line is a predetermined route for a bus to drive within the timetables.

On the other hand, HSL as an authority plays a unique role to the

customer of the transportation; the whole service is highly associated with

the authority itself, although the execution and delivery of the service

is mostly dependent on the operators. Whenever a customer uses the

websites of the service, pays a ticket, gives feedback on the service, or even

climbs on board of a vehicle, the colors and logo of HSL are everywhere.

The result is that the corporate image lies essentially fully on HSL, in

which it does relevantly well; 76% of passengers were satisfied for the

public transportation overall (HSL 2020). However, all of the feedback

is forwarded to the target of the feedback, and customer satisfaction is

one source of incentives and sanctions. Thus, operators pursue for a

good corporate image by e.g. being reliable and responsible. In addition,

HSL, media, public opinion, and prospective employees are needed for

maintaining and creating business.

Finally, the technical quality includes the visible quality of the service,

e.g. how well the service is functioning or how the delivery is perceived.

While HSL manages the IT side of the service, the actual transportation is

operators’ responsibility, which is the largest factor in the service of what

the customer perceives whilst using the service. The technical quality

ranges from the customer service of the driver to the smoothness of the

transport ride and from perceived cleanliness to the intactness of the bus.

As stated earlier, HSL desires to maintain the overall quality of the ser-

vice since it holds the largest stake in terms of service quality as perceived

by the customers. As a consequence, both sanctions and incentives are set

to the technical side of the service, since HSL has no other control over

how operators deliver the service. One of the incentives is related to the

cleanliness and the visible shape of the vehicles. The way these incentives

work is that HSL monitors the cleanliness and shape with subcontracted

inspectors riding the vehicles during operation. The inspectors report any

defects or faults they encounter to a monitoring system. Most defects are

rated with an inspection point system, e.g. 10 inspection points for a minor

fault and 90 inspection points for an egregious fault. The operators then

act based on these reports to fix the faults accordingly.

The inspections used to monitor the quality are executed during inspec-

tion periods of bonus seasons. Bonus seasons are always the first and
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second half of the year, while inspection periods last approximately four

months in both spring and fall. The inspection points are used to calculate

the bonus points, which in turn determine the amount of paid bonus in a

bonus season for each contract. Bonus points for a contract are the average

inspection points per inspection during a bonus season. The incentive

bonus is determined with a step-wise function, with the bonus being either

1%, 0.5%, or 0% of the accumulated revenue of the contract during the half

of the year in which the ongoing bonus season is.

There are two different threshold systems, the old and the new system,

to determine the amount of bonus each contract has. The old system is still

active, but any new contracts are formed with the new system. For the

old system, the contracts are ranked based on the amount of bonus points

they have, where the lowest score receives the best rank. The contracts

are divided roughly into thirds based on their revenue. The best third with

the lowest amount of points receive the maximum bonus of 1%, the second

third a 0.5% bonus and the last third receives no bonus. Consequently, the

threshold levels in the old systems are dynamic and vary from season to

season. For the new system, the bonus levels are pre-determined. If the

contract has 10 bonus points or fewer, it receives the best bonus. If it has

more than 10 points but under 25 bonus points or exactly 25 points, the

contract receives 0.5% bonus. Otherwise, there will be no incentive bonus

for the contract. Based on historical threshold levels, the new system

rewards more equally on excellent service, but is more strict on the second

threshold levels. The common factor between the systems is that a higher

amount of bonus points leads to a lower incentive bonus.

2.2 Discrete finite Markov Decision Process

Markov Decision Process (MDP), introduced in the 1950’s (Bellman 1957),

is a mathematical framework used in decision making. Sutton and Barto

(2018) described it as a discrete stochastic version of the optimal control

problem in dynamic programming. The MDP is an extension of Markov

chains with the addition of decisions that affect the state transitions. A

Markov chain describes a sequence or a chain of random variables, or

states, that all possess the Markov property. The Markov property refers

to the memoryless property of a stochastic process (Markov 1954). In

mathematical terms, the Markov property can be written as
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P (X
n+1

= sn+1|Xn = sn, ..., X0 = s0) = P (Xn+1 = sn+1|Xn = sn),

where Xn denotes a random variable at time tn, and sn ∈ S denotes a state

in state space S, which consists of all possible states (Durrett 2019). The

state space is a measurable space (S,S), where S denotes the algebras or

operations related to S. A function q : S ×S → R is a transition probability

of a Markov chain if it satisfies the following conditions:

1. For each x ∈ S,O → q(x,O) is a probability measure on (S,S).

2. For each O ∈ S, x → q(x,O) is a measurable function.

Moreover, we say Xn is a Markov chain with a transition probability q if

P (Xn+1 ∈ B|Fn) = q(Xn|B),

where Fn is a nonempty collection of subsets of all possible outcomes

related to the Markov chain, and B denotes the set of possible states of

Markov chain (Durrett 2019).

The extensions the MDP introduces to a Markov chain are rewards and

actions. The agent in control of the actions interacts with the environment

at discrete time steps. Based on the state St ∈ S at time t the agent

selects an action At ∈ A(s), s ∈ S. Based on the action, the state moves to

St+1 and a reward Rt+1 is received. The goal for the agent is to maximize

the cumulative reward (or if the reward R is negative then minimize the

cumulative costs) denoted by Gt. In many cases, rewards are discounted to

take the time value into account. Total reward at time t is calculated as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑︂
k=0

γkRt+k+1,

where γ is the discount factor for the time corresponding the time value.

The first terms can be rearranged to find a recursive manner on the total

reward:
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Gt = Rt+1 + γ (Rt+2 + γRt+3 + ...)

= Rt+1 + γGt+1. (2.1)

Both St and Rt are random variables that follow some probability dis-

tribution. The variables depend only on the preceding values of St−1 and

At−1. The dynamics of the MDP can be defined as

p(s′, r|s, a) .
= Pr{St = s′, Rt = r|St−1 = s,At−1 = a},

for all s′, s ∈ S, r ∈ R, and a ∈ A(s) (Sutton and Barto 2018).

The function p fully describes the probability distributions related to

states and rewards, and, as the MDP should, it holds the Markov property.

In addition, p can be used to calculate state-transition probabilities:

p(s′|s, a) .
= Pr{St = s′|St−1 = s,At−1 = a} =

∑︂
r∈R

p(s′, r|s, a).

To support the decisions regarding the choice of actions, a policy π is

determined by the agent. The policy should be a robust way to perform

actions on each state. Moreover, the policy should only depend on the

current state and not the history due to the Markov property:

π(a|s) = Pr{At = a|St = s}.

Following a policy π on a state s returns a deterministic reward, if only

the actions impact the state transition, i.e. no impact from environment

occurs. The objective is to maximize the reward (or minimize the costs) by

selecting the best policy π among a group of policies. State-value function

denoted by vπ is used to calculate the expected return of the process, and

is written as

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1

⃓⃓⃓⃓
⃓St = s

]︄
.

Similarly to the total reward (2.1), the state-value function too can be
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written recursively:

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt + γGt+1|St = s]

= Eπ[Rt + γvπ(St+1)|St = s]

=
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)
[︁
r + γvπ(s

′)
]︁
∀ s ∈ S.

The last row fulfils the Bellman equation for vπ, which is considered in

dynamic programming as a necessary condition for optimality (Dixit and

Sherrerd 1990).

While state-value function vπ(s) shows the value of a state s by following

a policy π, an action-value function qπ(s, a) shows the value of taking an

action a on a state s under a policy π, as

qπ(s, a)
.
= Eπ[Rt + γvπ(St+1)|St = s,At = a]

=
∑︂
s′,r

p(s′, r|s, a)
[︁
r + γqπ(s

′, a′)
]︁
∀ s ∈ S.

The value of a policy may be calculated using the state-value function,

since the sum of the values of all states is the result of the chosen actions

determined by policy π. This allows a straightforward comparison between

different policies, where the largest value describes the best policy. A policy

π can be further improved with the action-value function, as it describes if

any action a′ yields a larger value than the action a given by the policy π.

Due to flexibility of the framework for problems in the world, the MDP

is applied in numerous different situations. The applications include

e.g. herd management in animal production (Kristensen 1996), optimal

electricity supply bidding (Song et al. 2000), dynamic pricing models (Aviv

and Pazgal 2005), maintenance scheduling (Leppinen 2020), and finance

and investment models (White 1993). In addition, the field of machine

learning utilizes the MDP, since reinforcement learning is heavily inspired

by it (Sutton and Barto 2018).
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2.3 Poisson point process

Several phenomena in the nature can be modeled as stochastic processes,

with realizations appearing as point events in space or time. Point events

in space include e.g. the distance between stars, the location of molecules

in gas, and the distribution of blood cells in a sample (Guttorp and Tho-

rarinsdottir 2012), whilst point events in time include e.g. frequency of

earthquakes, radioactive decay, and cars passing a reference point in a

road (Cha 2018). The point process is called a Poisson point process, or

Poisson process, if the events follow a Poisson distribution (Cha 2018).

Especially events with the characteristics of vast amount of possible real-

izations, but a relatively low probability of occurring, such as the location

of a molecule in gas, are often Poisson distributed. Poisson Processes were

the foundation from which Markov processes were developed (Guttorp and

Thorarinsdottir 2012; Itô 2020).

Poisson distribution is a discrete probability distribution, expressing the

density of independent events occurring. For example, Stirzaker (2000)

derives a general probability mass function (PMF) for the Poisson distribu-

tion from the binomial distribution. The PMF of Poisson distribution can

be written as

Pr(X = k) =
λke−λ

k!
, (2.2)

where λ depicts the frequency of the events, and k is the number of events.

In fact, λ is both the expected value and the variance of X. The expected

value can be derived from the rate of occurrence for the events as λ = rt,

where r is the number of events per unit of time.

The behavior of any phenomenon in the nature that follows a Poisson

distribution can be predicted with the probabilities given by the PMF

(2.2). The probabilities express the likelihood of observing the events

in the future. The probabilities can be determined given that λ can be

calculated by observing r. The Poisson process may be simulated using

the calculated probabilities. A common and an easy way to simulate the

Poisson distribution is to use the cumulative distribution function (CDF),

and with a uniformly distributed random variable between zero and one

determine the amount of events from the CDF (Date 2019).
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3. Model development

This Chapter clarifies the modeled system, which is the operation of the

buses in the context of the quality incentive program. In Section 3.1, the

key concepts are introduced to understand how the system operates, and

explanations are given on why some approximations and simplifications

are necessary in the model of the system. Section 3.2 further explains the

evolution of the modeled system both in general and with an example of a

miniature system. In Section 3.3 the parameters and the basis for their

selection are reviewed in detail.

3.1 Description of the system

This thesis models the operation of buses in the context of the quality

incentive program using a discrete-time Markov Decision Process (MDP),

including states, actions, and a reward at the last state of the MDP. The

MDP is used to determine the best policy π among a set of feasible policies

to perform certain actions on different states to produce maximal incentive

bonuses from a bonus season. The decision period, i.e. the time interval of

the process from time step t to t+ 1, is one day, and each event or action

occurs or is performed during each period. Both events and actions change

the state of the system and ultimately affect the expected incentive bonus

at the end of the bonus season. For example, new faults and inspections

are considered events, while fixes are considered actions.

In the context of this thesis, faults are considered as anything that can be

perceived and which decline the quality of the service for a passenger. They

include any dysfunctional items, such as a non-operational stop-button,

or items that cause discomfort, such as a dirty seat. Faults occur due to

accidents in traffic, vandalism, or neglect for tidiness by the passengers.

The nature of the faults is that they are unpredictable and thus arise
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randomly.

The faults that are inspected are given inspection points based on a

separate inspection point table, which is distributed by HSL to all operators.

A part of the whole table is shown in Table 3.1. Each fault belongs to a

fault category describing the location of a fault, such as doors, stop-buttons,

or seat cleanliness, totaling to 17 different categories.

Table 3.1. Faults are given inspection points based on their fault category and the severity
of the fault if caught in an inspection. This Table displays a part of the whole
point table that HSL has distributed to the operators.

Severity Doors Stop-buttons Seat cleanliness Front plate
Dangerous 90 - 60 -
Must be fixed 60 20 40 60
Minor 30 10 20 30

Each fault in every category is given a severity status based on how much

discomfort each fault produces. In addition to faults giving inspection

points, the faults may incur a sanction if not repaired within an agreed

deadline. Dangerous faults may cause physical harm to passengers and

need to be repaired within a day, or the vehicle is not allowed to operate

anymore. Faults that must be fixed have a deadline of six months to

be repaired before sanctions are given. These faults are not physically

dangerous, but are thought to significantly lower the overall attractiveness

of traveling. Finally, minor faults have mainly a mild unaesthetic effect

and do not incur any sanctions if not repaired, although the same faults

may be caught in inspections, consequently lowering the incentive bonus.

Ideally, all faults would be fixed whenever one is observed either by self-

monitoring the vehicles or through inspections. Typically, bus operators

have their own maintenance to fix all kinds of faults that may appear in

the vehicles. However, maintenance has several limitations, which come

down to capacity, cost, and vehicle type restrictions on contracts. More

often than not, there is not enough room, staff or time, i.e. capacity, to fix

every fault that is observed. Thus, it is important to have a clear priority,

a maintenance order, for all fixes. In this thesis, different policies basically

control the maintenance order to maximize the incentive bonus by reducing

inspection points on future inspections in key contracts.

Maintenance costs can be roughly divided as labor and material costs.

While labor costs are relatively constant between fault categories, the

material costs vary greatly depending on where the fault is located and

how severe the fault is. For example, fixing a stop-button may cost approx-

imately 50 euros, where as fixing a scratch on the body of the bus may cost
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around a thousand euros. Despite the large discrepancy between the costs

of fault categories, the inspection points do not differ as much. Therefore,

it would make sense to control the maintenance order by those faults that

have the best impact on bonus per cost ratio. Unfortunately, the inspection

data gives insufficient information to draw conclusions about the approx-

imate costs, as many faults have cost ranges from 300 to 1000 euros. In

addition, it is possible to have many faults in a small area which could be

fixed for a price of one repair action. This is, however, also undisclosed in

the inspection data, ergo credible approximations are impossible to conduct.

Similarly, the vehicle restrictions on contracts is a complex topic, since

whenever a bus is under maintenance, it requires a reserve bus on the

contracts to be used. The vehicle restrictions are difficult to simulate due

to imperfect data, and easily leads to infeasible combinations of reserve

buses in traffic, which incurs a sanction. Both costs and vehicle restrictions

are omitted from the system considered in the thesis to simplify the model.

The minor faults clearly differ from the two other types of faults. The

minor faults receive a lower priority in the maintenance order both in

terms of received sanctions – none for minor faults – and lost incentive

bonus due to lower amount of inspection points received. These faults often

remain unrepaired for extended periods and accumulate inspection points

from several inspections. In general, Nobina receives approximately half

of their inspection points from minor faults. In the context of the thesis,

the action-value function would simulate the cost of fixes, thus yielding a

direct negative impact. However, due to an uncertain manner of the costs,

it is extremely difficult to estimate a reliable cost for any repair actions.

Moreover, all of the existing faults are sought to be fixed which means

that the costs would incur at some point anyway, and since there is no

discounting, there is an indifference between fixing a fault now versus

later. Thus, minor faults are the focus of this thesis and only they are

modeled in the system as faults to be repaired, as the other types of faults

are trivial since they will be repaired nonetheless as soon as possible.

Ideally, all of the emerged faults are to be noticed before they are caught

in an inspection, enabling actions to prevent more points being gathered

from inspections either by repairing the fault or switching the bus to

another one from reserve or another contract. However, monitoring the

faults is imperfect due to lack of resources and in some cases secretion

from those who have caused the fault. Consequently, some faults will only

be noticed after they have been caught in an inspection.

13
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Switching buses might prove useful if there is a contract which has room

for inspection points due to the stepwise nature of the paid incentive bonus

function. However, as is the case of using spare buses during maintenance,

switching buses between contracts has many restrictions, as the vehicle

type used in contracts is regulated and controlled via sanctions. In addition,

monitoring available buses requires manual work to track where each bus

is located at any given time. Thus, feasible switches are difficult to model

due to complex and strict rules outside the scope of this thesis, which is

why bus switches between contracts are omitted from the modeled system.

Inspections are performed by a subcontracted service. HSL has set target

amounts of inspections for each bus operator based on the registered fleet

size each operator owns. Inspectors choose relatively randomly different

bus lines, and board seemingly random buses. They investigate the bus

both inside and outside. Since it is their single task to observe any and

all faults, it is fair to assume that they will find any faults that exist in

the bus during the inspection. The incentive bonus is paid based on the

performance of operators in inspections. Each contract has its own bonus

points, which is calculated as the average inspection points per inspection.

Thus, bonus points can be both improved or worsened in the span of an

inspection season. For a more detailed explanation of the bonus point

system, refer to Section 2.1.

3.2 Time evolution of the modeled system

The system is modeled on a day-to-day basis for the duration of an inspec-

tion season, giving the limits for a discrete time step t ∈ [0, T ], where T

is the last day of the inspection season. The system consists of I fault

categories and J contracts. I is determined by HSL, and it is possible to

change it between bonus seasons. J depends on the operator and how well

they fare against the competition in tenders. A state x(t) of the modeled

system described above is determined by the total inspection points pj and

inspections cj per contract j ∈ [1, J ], and the existing minor faults vij per

fault category i ∈ [1, I] per contract j. The inspection points and inspec-

tions per contract at time T determine the bonus threshold in which the

contract is at the end of the bonus season. The faults per fault category – or

fault type – per contract are based on bus level data, which is consolidated

to contract level, so the system excludes information of faults per buses.

The first state at t = 0 is based on realized data, such as the effective

14



Model development

driving schedule and the existing faults per buses. New faults and repair

actions follow a Poisson point process, and they are added on top of the

known faults. The faults affect the expected inspection points gained

through inspections, which also follow a Poisson point process. The state

can be written as

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v11 . . . v1J
... . . . ...

vI1 . . . vIJ

c1 . . . cJ

p1 . . . pJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For the purpose of this Section, let us construct an example system. Sup-

pose I = 4 and J = 3 with a bus capacity bc of three buses for each contract,

which means that there are three buses used each day for each contract. bc
is also used in the inspection point calculations later in this Section. The

fault categories are faults on doors, stop-buttons, seat cleanliness, and the

front plate of the bus, which displays the line number and destination of

the bus. The example state xe is then

xe(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

0 2 0

1 2 0

0 3 0

4 3 2

50 130 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The system evolves in time through transitions of states. The state

transitions are affected by the chosen actions, since repairing a fault

changes the faults in the state. Due to limited resources, the workshops

are unable to repair all the existing faults, and due to the various nature

of the faults, the amount of repair actions in a day is not constant. Instead,

the action count can be modeled as a Poisson point process. The actions

are denoted as
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u(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 . . . u1J
... . . . ...

uI1 . . . uIJ

0 . . . 0

0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where uij is the change of the amount of faults of type i in contract j due

to fixes done at time t. The example state repair actions could be focused

on contract j = 2, giving an example realization of actions as

ue(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0

0 −1 0

0 −1 0

0 −2 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

After the selection of actions, let us consider the state transitions from

time t to t+ 1. For the duration of the time step, all the actions are imple-

mented, in addition to the additional faults, inspections, and inspection

points being added to the state, all of which follow their own Poisson point

processes. The new faults are denoted as

wf (t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V11 . . . V1J

... . . . ...

VI1 . . . VIJ

0 . . . 0

0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Vij is the amount of faults of type i for contract j. Vij also follows

the Poisson process. The example state could face new faults e.g. as
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wf,e(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 1

1 1 0

1 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

New inspections are modeled as

wc(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
... . . . ...

0 . . . 0

C1 . . . CJ

0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Cj is the amount of new inspections on contract j. The example

state could receive inspections as

wc,e(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0 0 0

0 1 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The inspection points are dependent on inspections occurring in a state

transition. For example, contract j = 1 did not receive any inspections

in the time step, thus gaining zero inspection points despite having some

faults. Since the assumption is that all faults are found on each inspection,

the amount of inspection points gained from the minor faults is known for a

bus, denoted as mj . However, since the system in this thesis omits bus level

data, the amount of points from minor faults is assumed as if the minor

faults are spread evenly on the buses used for the day. The inspection on

contract j = 2 in the example state would then observe 1/3 minor faults of

type i = 3, the seat cleanliness, accumulating 20/3 inspection points as per

Table 3.1. In addition, faults with a severity status of dangerous or must

17



Model development

be fixed, i.e. the more severe faults, are modeled as if there are none at any

time t, but some may appear during the state transition and get caught in

an inspection, accumulating some inspection points. After the more severe

faults have been observed through inspections, they are repaired instantly,

and do not cause more points for later state transitions. Points gathered

in this way from one inspection are denoted as sj and can be modeled as

a Poisson point process. The total inspection points from the more severe

faults are simplified such that each new inspection causes sj points, i.e.

the total inspection points from the more severe faults can be calculated

as Sj = Cjsj . Thus, the new inspection points are denoted as

wp(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
... . . . ...

0 . . . 0

0 . . . 0

m1 + S1 . . . mJ + SJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where mj = Cj
∑︁I

i=1 ni(vij + uij + Vij/2)/bc,j are the inspection points

from minor faults for contract j. Here, ni is the point count for a fault of

type i and bc,j is the bus capacity for contract j. Notice, that the model

assumes that only half of the new faults occur before any inspection and

the other half occurs after all inspections. This assumption is based on

the dispersion of inspections throughout a day, where the average of the

times of inspections is close to noon. To demonstrate the calculation for

the example state, the new minor inspection points for contract j = 2 are

m2 = 1 ·
(︃
30

1− 1 + 0

3
+ 10

2− 1 + 0

3
+ 20

2− 1 + 1/2

3
+ 30

3− 2 + 0

3

)︃
= 0 +

10

3
+ 10 + 10 ≈ 23.3.

Similarly, the minor fault points can be calculated for contract j = 3 as

m3 = 101/2
3 ≈ 1.7. In addition, an example realization of the inspection

points gained from the more severe faults is added, giving the total new

inspection points to the example state as
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wp,e(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 23.3 + 15 1.7 + 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 38.3 11.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The evolution of the system can be formulated by combining the different

parts above to a new function f , described as

x(t+ 1) =f(x(t), u(t), wf (t), wc(t), wp(t))

=x(t) + u(t) + wf (t) + wc(t) + wp(t)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v11 . . . v1J
... . . . ...

vI1 . . . vIJ

c1 . . . cJ

p1 . . . pJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 . . . u1J
... . . . ...

uI1 . . . uIJ

0 . . . 0

0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V11 . . . V1J

... . . . ...

VI1 . . . VIJ

0 . . . 0

0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
... . . . ...

0 . . . 0

C1 . . . CJ

0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
... . . . ...

0 . . . 0

0 . . . 0

m1 + S1 . . . mJ + SJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The state transition for the example state summarizes to
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xe(t+ 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

0 2 0

1 2 0

0 3 0

4 3 2

50 130 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0

0 −1 0

0 −1 0

0 −2 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 1

1 1 0

1 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0 0 0

0 1 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 38.3 11.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0

0 1 1

2 2 0

1 1 0

4 4 3

50 168.3 21.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The objective is to maximize the incentive bonuses gained from contracts

at the end of the inspection season at time T . The paid bonus is based

on the revenue τj of the contract j from the bonus season and the bonus

percentage dj , which in turn is based on the bonus points for the contract.

Bonus points ρj are calculated as the average inspection points per in-

spection, i.e. ρj = xwp,j(T )/xwc,j(T ), where xwp,j(T ) and xwc,j(T ) are the

inspection points and inspections at the final state for contract j, respec-

tively. The total incentive bonus is the sum of bonuses from all contracts,

denoted as G =
∑︁J

j=1 gj , where gj is the contract specific bonus and can be

defined as gj = τjdj , where the bonus percentage for contract j is calculated

as

dj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1% if ρj ≤ l1

0.5% if l1 < ρj ≤ l2

0 else

,

where l1 and l2 are the lower and upper bonus limits set by the incentive
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program, respectively. As stated in Section 2.1, the limits are either fixed

or undisclosed until the end of the season depending on whether a contract

is in the new or old bonus system, respectively.

In the case of our example system, if the new state would in fact be the

final state and all contracts had the fixed limits of 10 and 25 bonus points,

the bonus percentages for each contract could be calculated as in Table

3.2. Contract j = 1 is in the second threshold, and could have gained the

best bonus by different actions. Contract j = 2 is far from the lower bonus

limit of 25 points, which suggests that either the actions done have been

insufficient or the contract has suffered from excessive amount of faults.

As for contract j = 3, it has the best percentage and the largest revenue,

yielding a significant portion of the total bonus of 1150 EUR. The total

bonus percentage from total revenue and total bonuses is approximately

0.6%.

Table 3.2. The example state would gain a total of 1 150 EUR in incentive bonuses, if the
inspection season would end at t+ 1. Total bonus percentage is then 0.6%.

Contract Bonus points Bonus percentage Revenue Bonus (EUR)
j=1 12.5 0.5% 30 000 150
j=2 42.1 0% 50 000 0
j=3 7.2 1% 100 000 1 000

3.3 Estimation of parameters of the model

A critical part of simulating the model is to tune the random variables

reliably. There are several variables estimated to follow a Poisson point

process, more specifically the fault rate per day for each fault category per

contract, the inspection rates per weekday per contract, the inspection

points from the more severe faults per contract, and the repair rate per day

per fault category for each workshop. All of these phenomena have com-

prehensive historical data to observe the average amount of occurrences

per time period.

The public authority, HSL, shares the relevant datasets from inspections

and the points gained through the inspections, in addition to data of

individual faults indicating how they were handled or repaired. The data

used for estimating the parameters for the random variables stretches out

two years back to include enough data to draw conclusions, but to exclude

irrelevant data from the past, since e.g. maintenance speed changes with

investments and process development, nullifying the relevance of the past
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data. Inspection rates are calculated separately for each contract and

weekday since inspectors work only from Monday to Friday. On average,

there are 0.6 inspections per contract on Tuesdays and Wednesdays, 0.5

inspections on Mondays and Thursdays, and only 0.3 inspection on Fridays.

However, some contracts average to over 1.1 inspections per day, while

others remain under 0.2 inspections per day, mainly due to less intensive

driving schedules.

New minor faults per day are specific for each fault category and contract.

Surprisingly, out of the 17 different fault categories, only three have on an

average contract over 0.01 faults per day. These faults appear on average

0.05 times per day per contract. Some contracts gain as high as 0.2 new

faults per day, while some gain no faults at all in several categories. The

difference on new faults origins from different frequency of departures,

traffic conditions, and passenger demographics. Inspection points from the

more severe faults are contract specific and average to 8.9 points per day,

whereas most contracts have 5 points per day. At most a contract gains 47

points per day. Same reasons for differences between contracts for point

accumulation hold as they are for inspection rates and fault rates.

Repairs per day are approximated for the two considered workshops

separately and for each fault category. The inspection data from HSL

includes the date of inspection and the repair date. Extracting the time

taken for a repair action in days, averaging over available data points, and

taking the inverse of it yields an average amount of repairs per day. Since

the maintenance processes are under constant development, the repair

data is first examined from the previous three months, from which the

values are calculated. However, there are more gaps on different fault

categories, so if no value exists, the scope is extended to two years. Despite

this, some fault categories still lack the data to calculate the repair time

due to never occurring during the two year period. Such categories receive

the average repair time for all available categories. On average, different

fault categories receive 0.3 repairs per day in a workshop with the highest

value being 0.5 and lowest 0.2 repairs.

The results are highly dependent on the output of the Poisson point pro-

cesses, which is the reason why the simulations are run several times to

exclude randomness. The final state of each MDP from the simulations is

averaged to calculate the expected performance of each policy. Increasing

the number of simulations improves confidence intervals resulting in a

more reliable result for the expected incentive bonuses. However, simu-
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lations are time consuming. Scripts that take hours to run decrease the

usability of the decision tool. Thus, a compromise is required to select a

reasonable amount of iterations. The results in Section 4.3 were extracted

as the average outcomes from 100 iterations.
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4. Results

This Chapter describes how the model operates with different policies, and

how those policies were developed in Section 4.1. The details on how the

simulations of the model were done are in Section 4.2. The results of the

simulation are introduced in 4.3. Finally, a sensitivity analysis is found in

Section 4.4.

4.1 Development of policies

As presented in Section 3.1, the quality incentive program as a system

is complex and has many restrictions in terms of modeling the system

as a Markov Decision Process (MDP). Thus, many approximations and

simplifications lead to the definition of a policy used to determine the

actions being reduced to describe only the maintenance order between

contracts.

The current way of repairing faults is by chronologically fixing them as

they come by, on the condition that there are resources to fix them. The

focus is on the more severe faults that are required to be repaired in a

deadline. If the repair workshops can repair the minor faults, they will fix

them. Based on historical data, an average amount of repairs per day can

be calculated to model the events as a Poisson process. The process is used

to model how many faults one workshop can fix in a day.

Since the modeled system lacks the data of which fault has been observed

at which time, the current policy to repair faults can be approximately

modeled to the system by repairing minor faults randomly from contracts.

Each workshop handles a set of contracts assigned to them, and each

workshop has their own rate of repair actions for each fault type per day.

This kind of a random policy is a robust way to repair faults in contracts

and treat the contracts equally. However, the policy is not necessarily the
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best in terms of gaining the most incentive bonuses from all contracts,

since contracts are not equal between each other due to accumulating

different amounts of revenue. Other possible policies focus differently

on contracts, which changes the state of the system and in the end may

change the amount of bonus received. Constructing other policies may be

in some cases straightforward, and in some cases quite arbitrary. There

are vast numbers of possibilities for different policies, so only a small set is

formed for an approachable comparison between the policies, and rational

interpretations of how those policies are implemented.

A greedy alternative to the current policy of random order is to have the

contracts in the order of accumulated revenue. This maintains the largest

contracts on the best possible bonus level due to low amount of faults

caught in inspections. The trade-off is that the focus could prove to be

too much in the top contracts, and the middle sized and smaller contracts

risk losing all bonuses, which could in the worst case have a negative total

impact.

One possible policy could be ranking the contracts based on how many

minor faults each has in total. This emphasizes minimizing the inspection

points per inspection for all contracts. This policy also has a similar trade-

off to the randomly based policy, since focusing on low-revenue contracts

yields lower incentive bonuses compared to the high-revenue contracts.

However, lower revenue contracts have less traffic on them, which corre-

lates positively with the amount of minor faults.

Another possible policy is to assign the repair actions to contracts which

are on the verge of losing or gaining bonus. The contracts are organized

in an ascending order of their relative distance from the nearest bonus

threshold limit. The closer a contract is to the closest limit, the higher

priority it receives on the maintenance queue. Benefits to this method are

that the efforts have likely the most impact due to gaining a bonus with

few actions, or not losing bonus due to negligence on any contract. The

disadvantage is that the policy disregards contracts that are far from their

respective bonus limit. On the one hand, such contracts could be thought

as so called lost causes, such as contracts with 50 or more bonus points,

but on the other hand, there might be contracts that could give a major

proportion of the incentive bonuses if maintained more thoroughly.

Finally, combining the best effects and losing some of the trade-offs of

previous policies would be to rank the contracts based on how close they

are to gaining or losing bonus, that is the relative distance to a bonus limit,
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and how much the revenue is for the contracts. Basically, each contract

receives a rank score rj as rj =
τj
δj

, where δj = min(
ρj−l1
l1

,
ρj−l2
l2

). Thus, if

any lost causes exist based on the rank scores, they are more likely to have

low revenue.

4.2 Simulating the model

The model must be simulated in order to extract any results due to the

random variables. The simulation is run from the first day of the inspection

season from the fall of 2020 to the end of the inspection season with the

initial state build from realized data. The goal of the simulation is to

calculate the expected total incentive bonus at the end of the inspection

season for different policies. Due to the random variables, the simulations

are run 100 times with a set of parameters to mitigate variance and

improve the confidence intervals. From the set of simulations, the received

bonuses are averaged to receive the expected value of incentive bonuses

by following any policy. All contracts belonged to the old system of bonus

thresholds, and the limits are known retrospectively, which were 10 bonus

points for the best third and 22 bonus points for the second best third

in the fall of 2020. Thus, the bonus thresholds for each contract can be

determined based on the realized threshold limits.

There are several aspects to consider while building the simulation.

First, the simulation requires the initial data of what is the situation in

the system, which acts as the basis for the simulation. Second, each tested

policy has a unique MDP due to different actions on the process, however,

the number of inspections, new faults and repair actions are the same

between the policies, since a policy does not affect any of them.

The model was built as a Jupyter Notebook, and the simulations were run

with Visual Studio Code on a personal laptop, resulting to approximately

75 seconds per simulation. The Poisson processes that each random vari-

able follows were simulated with the Poisson module from Scipy package.

The realization of each process was determined by using the cumulative

distribution function cdf-method and a uniform random variable uniform-

method from Numpy package.
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4.3 Performance of policies

The performance of a policy is measured by the accumulated incentive

bonus at the end of a bonus season. Table 4.1 shows the comparison

between the different policies for the bonus season of fall 2020. The policy

with the ratio of revenue and distance to bonus limit offers the largest

bonus from the tested set of policies. Compared to the random situation,

the improvement is 8.2% with the best policy. The policy with focus on

the amount of minor faults offers the lowest bonus. In fact, the worst

policy appears to do significantly worse with approximately 8% less bonus

compared to simply randomly repair faults.

Table 4.1. Results of the bonus season with different policies. Model names refer to
the focus points of each policy. The fifth policy with the ratio of revenue and
difference to bonus limit is denoted as R&L.

Model Random Revenue Fault Limit R&L
Bonus-% 0.29 0.30 0.27 0.31 0.31
Bonus (kEUR) 156 159 143 166 168
Difference to random (%) 0.0 2.0 -8.0 6.7 8.2

With the results from the sensitivity analysis, it is possible to compare

the policies with even more simulations, as any change of the tested

parameters should not affect the differences of the policies. Table 4.2

shows the average results from all simulations.

Table 4.2. Average results of incentive bonus from all the simulations including the ones
from sensitivity analysis. Model names refer to the focus points of each policy.
The fifth policy with the ratio of revenue and difference to bonus limit is denoted
as R&L.

Model Random Revenue Fault Limit R&L
Difference to random (%) 0.0 1.3 -7.3 8.1 8.9

4.4 Sensitivity analysis of the estimated parameters

The model has several random variables that are modeled with historic

data. However, historical events are not a guarantee for future events.

The expected realizations of the random variables based on historical data

might in fact deviate from the actual average realizations. For example,

the Covid-19 pandemic reduced the amount of commuting, which could

have lead to fewer faults occurring due to lower passenger counts and

fewer traffic. To test the impact of deviances of the estimated parameters,

a sensitivity analysis is conducted to demonstrate how the results are

affected by each parameter.
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The analysis is executed by running a new set of simulations and chang-

ing one parameter at a time by 10%, 20%, -10%, or -20%. The examined

parameters are the random variables, i.e. inspection rates, fault occur-

rence rates, repair action rates, and inspection point rates of the more

severe faults, which all have several values for each contract or each fault

category. The changes are applied to all different values within the param-

eter. For example, the change of 10% in inspection rate results to more

inspections on average with every contract. Each change is run with a

unique set of a hundred iterations, which unfortunately means that the

realizations of unchanged parameters vary between each change of the

investigated parameter. Ideally, all unchanged parameters would be con-

trolled between the changes to observe changes only caused by the change

of the investigated parameter.

The results for the analysis are presented in Tables 4.3-4.6. The numbers

represent the relative changes of the received incentive bonuses compared

to received bonuses with original parameters found in Table 4.1. Each

Table includes the average change between the policies for each parameter

change.

The inspection rate has arguably the most interesting role of the param-

eters. On the one hand, with no inspections there would be no inspection

points, and on the other hand, inspections with little inspection points

decrease the bonus points. Thus, in some cases inspections improve the

results, and in other cases they worsen the outcome depending on how

many faults a bus has during an inspection. Table 4.3 shows the sensitiv-

ity analysis on the inspection rate, which suggests that fewer inspections

in fact decrease the received incentive bonus and vice versa. However,

the results do vary, and the magnitude of the impact is small compared

to the impact of e.g. fault occurrence rate. The difference between the

values received from ±20% changes for each policy is relatively constant,

approximately 3.3% percentage points. The analysis produces no strong

conclusions, however, it suggests that the impact of inspection rate is small.

Table 4.3. Results for the sensitivity analysis on the inspection rate. Model names refer to
the focus points of each policy. The fifth policy with the ratio of revenue and
difference to bonus limit is denoted as R&L.

Change Random Revenue Fault Limit R&L Average
+20% 1.5% 0.6% 2.3% 2.8% 2.5% 1.9%
+10% -0.1% -0.3% 0.1% 1.0% 0.0% 0.1%
-10% -2.3% -2.1% -1.7% -1.6% -1.1% -1.8%
-20% -1.2% -2.4% -1.1% -1.1% -1.0% -1.4%
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The amount of possible repair actions is limited, however, the repair

processes can be improved. The effect of repair actions appears to be

relatively small based on the results on Table 4.4. The results are not

consistent on magnitude which shows that the results are susceptible

to deviation, however, the more negative change in repair actions, the

less bonus is received and vice versa. Improving the repair processes

should then pay off, and since the repair rate is a parameter under the

operator’s control, it is encouraged to focus on it. Based on the analysis,

one could argue that the most expensive repair actions could be ignored

since the impact of the repair action rate is not that significant, however,

this requires further study and model development.

Table 4.4. Results for the sensitivity analysis on the repair action rate. Model names refer
to the focus points of each policy. The fifth policy with the ratio of revenue and
difference to bonus limit is denoted as R&L.

Change Random Revenue Fault Limit R&L Average
+20% 1.9% 2.1% 0.8% 3.2% 3.5% 2.3 %
+10% -2.0% -0.1% -1.3% 0.0% -0.3% -0.7%
-10% -3.0% -3.4% -0.7% -1.0% -2.0% -2.0%
-20% -2.8% -4.8% -1.7% -4.1% -5.2% -3.7%

The rate of faults has a clear impact on the received bonus as is shown in

Table 4.5. The more new faults occur, the less bonus is received. The results

are quite consistent in terms of the direction and magnitude. Historically,

approximately half of the inspection points are gained from minor faults,

and the rest from the more severe faults, which fits quite well for the

magnitude of the change.

Table 4.5. Results for the sensitivity analysis on the fault occurrence rate. Model names
refer to the focus points of each policy. The fifth policy with the ratio of revenue
and difference to bonus limit is denoted as R&L.

Change Random Revenue Fault Limit R&L Average
+20% -7.5% -10.7% -6.5% -7.9% -9.5% -8.4%
+10% -5.5% -6.0% -4.9% -4.6% -5.7% -5.3%
-10% 3.0% 3.8% 3.4% 6.9% 6.4% 4.7%
-20% 8.7% 8.2% 9.4% 10.8% 10.6% 9.6%

The sensitivity analysis on the inspection points rate of the more severe

faults produces expected results found in Table 4.6. Increasing the rates

reduces the received bonus, since more inspection points increases the

bonus points, while reducing the rates increases the received bonus. The

magnitude is in line with how approximately half of the inspection points

from the more severe faults.

Based on the sensitivity analysis, the two most sensitive parameters are

the fault occurrence rate and the inspection points rate of the more severe
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Table 4.6. Results for the sensitivity analysis on the inspection points rate of the more
severe faults. Model names refer to the focus points of each policy. The fifth
policy with the ratio of revenue and difference to bonus limit is denoted as R&L.

Change Random Revenue Fault Limit R&L Average
+20% -7.4% -12.0% -6.1% -4.8% -6.9% -7.4%
+10% -5.0% -5.9% -3.5% -1.8% -2.6% -3.8%
-10% 1.5% 2.3% 1.4% 3.5% 2.2% 2.2%
-20% 7.7% 7.3% 8.9% 8.8% 7.9% 8.1%

faults. Both of the parameters are related to faults that are found on an

inspection. If the faults could be detected and repaired before caught in

an inspection, the impact on the incentive bonus would be large. Once

the faults have been caught once, the amount of repairs done appears to

have a relatively low impact. As for the inspection rate, the impact of it is

fortunately low, since the operator is not able to control the variable.
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5. Discussion

The objective of the thesis was to develop a decision support tool for fleet

maintenance at Nobina to improve the efficiency of the maintenance or-

der by procuring incremental incentive bonus from the quality incentive

system. One part of the objective was to develop a set of different policies

that could be executed with relative ease and which one of them is the

best. Based on the results, the policy with both revenue and distance to

bonus limit as the focus points is the best option. The sensitivity analysis

supports the superiority, since the analysis produced more simulations to

compare the outcomes. Another part of the objective was to create a tool

to determine the maintenance order based on the best policy at any given

time. In retrospect, the objective was fulfilled.

However, due the course of the thesis project the model of the system

experienced several simplifications that might have decreased the accuracy

of the model. For example, the model handles faults at a contract level,

although they exist at bus level. There is a relatively large variance on

how many faults a bus may have, for example the age of the bus correlates

positively with the amount of faults. This directly affects how many

inspection points a bus may incur from an inspection. In addition, buses

can be switched between contracts with certain strict vehicle requirements.

For example, most of the buses can be switched with electric buses due to

HSL valuating them high, whereas some bus lines travel in the highways

with more capacity, creating a need for large buses. Both necessary and

voluntary bus switches occur naturally due to e.g. accidents, maintenance

schedules, or a surplus of more efficient vehicles. Implementing this side

could prove to be the very beneficial for more reliable and better results

as an entire new set of actions is introduced to the model. This would

require researching the vehicle requirements thoroughly and creating and

maintaining a database for the information.
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Another deficiency in the model is the lack of costs for actions. The costs

would affect the model by giving a more realistic outcome of the actions,

giving the decision makers a better tool. Fault categories have very varied

costs, ranging from tens of euros to over a thousand euros. Thus, focusing

on faults with a good inspection points per repair cost ratio could give

rise to new and better policies. The issue with these costs is that there

is no way to reliably estimate a cost for a single fault in the dataset, as

there is no additional information on the nature of the fault which would

be required to create a clear picture of what ought to be done to repair

the fault. It is possible that many faults can be repaired at the cost of

one action, e.g. several scratches on a window only require changing the

one window. Consequently, the costs have a high variance, which could

be harmful to the model overall. If these costs and bus switching would

be introduced, the costs for bus switching could also be implemented with

relative ease due to more stable and predictable behavior. The costs of bus

switching are low, as traveling costs of the buses are cheap compared to

the costs of repairing faults. If bus switching would be allowed to incur the

sanctions related to it, they would have a more significant impact, but it

would provide a more diverse set of feasible actions.

In addition, the number of faults is difficult to know with certainty

for several reasons. First, the inspectors may interpret the number of

faults differently, e.g. two scratches next to each other may be marked as

one or two faults occasionally. Second, some faults are caught multiple

times, each time yielding more inspection points. However, the data lacks

the necessary information to interpret whether a new fault has in fact

been caught in a previous inspection. Thus, each inspection accumulates

inspection points, but does not necessarily add new faults to the state.

Finally, fixing many faults at one repair action changes the amount of

existing state too. It is practically impossible to approximate the frequency

of such events with the existing data, and more detailed recording of faults

and maintenance is required for such conclusions.

The assumption that inspections are done randomly for buses for each

contract should be a good assumption, however, inspectors have access to

the inspection system where open faults may be observed, and inspections

are possible to focus on buses with many open faults. Similarly, the as-

sumption that all existing faults are caught in an inspection might not

hold, since passengers may cover some of the faults, and the inspector

might not have access to every part of the bus, such as the left side of the
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bus from the outside due to traffic.

The time step of one day fits for the purposes of making decisions well,

but for example the inspections and emerging faults differ based on the

time of the day, which has some effect on the inspection points gained from

an inspection. The model treated this spread by assuming half of the new

faults in a day can be caught in inspections, whilst the other half occurs

after the inspections are done for the day. In addition, weekdays have

their differences due to driving schedules and passenger behavior, but this

aspect was taken into consideration as weekdays were handled separately.

In the model, many events were approximated as Poisson processes,

namely new faults on buses, inspections, inspection points from the more

severe faults, and fixes a workshop can perform. In order for the variables

to truly follow a Poisson distribution, the events need to be independent

from each other. Especially the new faults and fixes might in fact have

dependency in some cases, as one fault may lead to another fault, or fixing

one fault might require fixing another fault – or it just is convenient to

do at the same time. These cases, however, should not have a significant

impact based on their scarcity.

In addition, HSL sets a target number of inspections for the inspectors,

which means that if inspections are short of the target at the end of the

inspection season, there will be more efforts to fulfil the target. This leads

to special cases of the distribution, such as the zero-truncated Poisson

distribution, where the number of events is a positive integer. This or

other special cases could be utilized at the company level, but since the

inspections need to be modeled at the very least on contract level, it is

impossible to determine which contracts would be affected by the special

case. Hence, the inspection target is not considered in the model. In fact,

the average number of inspections from simulations falls under the target

value set for Nobina. One explanation is that since the target level has

risen in the past two years, the historical data produces a lower rate of

inspections than what is necessary to produce enough inspections.

The sensitivity analysis had an issue on controlling the random variables

that were not examined, as each change in a parameter resulted in a whole

new set of simulations with different realizations on the random variables.

Technically, it would have been possible to build the simulation script with

the ability to control all parameters, but since the sensitivity analysis was

conducted at the end of the project with little time to spare, the control

was excluded.
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6. Conclusions

The objective of this thesis was to develop a decision support tool for a

quality incentive program at Nobina to determine how the maintenance

order could be improved for additional incentive bonuses, and giving a

recommendation on what the order should be at any given situation. An-

other benefit of the model was to form a process to gather information from

various sources to produce a clear vision of the current state at any point,

which was previously concealed.

The results suggest that it is possible to improve the current maintenance

order of a relatively random way by taking account the size of a contract

by revenue, and how close to gaining or losing bonus the contract is. This

policy proved to be the best of the five policies tested in thirteen out of

fourteen sets of simulations including the simulations from the sensitivity

analysis.

The research done in the thesis provides a solid foundation for further

development of the processes around the system and improving the model.

As it stands, the model is a stripped version of the system with several

simplifications. With more precise and thorough datasets, the model could

be improved greatly to consider e.g. the costs of the actions to provide

a more realistic view of the system. In addition, instead of comparing

pre-determined policies, it is possible to conduct policy optimization, which

could likely improve the outcome considerably.
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