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Abstract
The Finnish power market is undergoing a rapid transformation driven by the increasing
share of variable renewable energy sources (VRES), particularly wind and solar. This
shift has resulted in increased price volatility, including frequent negative prices
and occasional extreme spikes, highlighting the growing need for flexibility in the
power system. Simultaneously, the reduced profitability of traditional energy arbitrage
strategies has made participation in reserve markets, such as frequency containment
reserves for disturbances (FCR-D), an increasingly important revenue stream for
flexible assets such as battery energy storage system (BESS). As a result, determining
how and when to participate in different electricity markets has become a more
complex decision-making problem for asset owners.

This thesis addresses this challenge by developing a stochastic optimisation model
for market bidding, aimed at maximizing the profits of a hybrid energy portfolio
consisting of a solar power plant and a BESS. The model is designed to participate in
both the day-ahead and up- and down-regulating FCR-D markets. The model considers
uncertainty in day-ahead prices and FCR-D market prices, and solar power production
using scenarios. A case study based on Finnish market conditions is conducted to
evaluate the profitability of the proposed approach. Although bidding optimisation has
been widely studied in the literature, studying pricing strategies remains relevant due
to the evolving markets and the role of opportunity cost for zero marginal production,
coupled with BESS. Moreover, relatively little research has focused on the Finnish
context, particularly for a hybrid plant consisting of a solar plant and BESS.

The results demonstrate that the proposed bidding strategy improves profitability.
Over a 30-day case study using 2024 data, the optimized system with the best price
strategy increased profits by 5.58% compared to the naive strategy, with the greatest
profit during summer due to higher solar production and favorable up-regulating FCR-
D prices. The BESS enables load-shifting and helps reduce imbalances. Additionally,
profit increased nearly linearly with battery size.

Keywords Electricity markets , Bidding optimisation, Stochastic programming,
BESS
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Tiivistelmä
Suomalaiset sähkömarkkinat muuttuvat nopeasti lisääntyneen uusiutuvan tuotannon,
etenkin aurinko- ja tuulivoiman johdosta. Tämän seurauksena hintojen vaihtelu
on kasvanut, esimerkiksi negatiivisia hintoja ja ajoittaisia hintapiikkejä nähdän yhä
useammin. Tämä korostaa joustavuuden tarvetta verkossa. Samanaikaisesti mahdolliset
tuotot vuorokausimarkkinoilta ovat pienentyneet, korostaen tarvetta osallistua usealle
markkinalle, esimerkiksi tajuusohjattuun käyttö- tai häiriöreserviin, etenkin joustavilla
resursseilla. Tämän seurauksena päätöksenteko siitä, miten ja millä markkinoilla
operoidaan on muuttunut entistä kompleksisemmaksi ongelmaksi.

Tämä dilomityö käsittelee tätä ongelmaa kehittämällä stoksatisen optimointimal-
lin tarjousten tekemiseen. Tavoitteena on maksimoida tuottoja hybridilaitokselle,
joka koostuu aurinkovoimalasta ja akusta. Malli on suunniteltu toimimaan vuoro-
kausimarkkinoilla sekä ylös- ja alassäätö häiriöreservissä. Malli ottaa epävarmuuden
markkinahinnoissa ja tuotannossa huomioon käyttämällä skenaarioita. Työssä on tehty
kokeellinen tutkimus suomalaisilla markkinoilla, esitetyn metodin arvioimiseksi. Siitä
huolimatta, että tarjousoptimointia on tutkittu laajasti, hintastrategioiden tutkiminen
on edelleen relevanttia muuttuvien markkinoiden sekä hybridilaitosten vaihtoehtois-
kustannusten johdosta. Tämän lisäksi tutkimus Suomalaisilla markkinoilla, etenkin
aurinkovoimasta ja akusta muodostuvalle hybrilaitoksille, on ollut vähäistä.

Kokeelliset tulokset osoittavat, että ehdotettu tarjousoptimointi parantaa tuottavuut-
ta. Valituilta kolmeltakymmeneltä päivältä vuodelta 2024, optimoiduilla tarjouksilla
ja parhaalla hinta strategialla kasvu tuotoissa oli 5.58% verrattuna tilanteeseen, jossa
systeemi oli optimoitu, mutta käytettiin naiivia hintastrategiaa. Parasta hintastrate-
giaa käyttämällä suurin kasvu tuotoissa nähtiin kesältä, suurimmaksi osaksi johtuen
kasvaneesta tuotannosta ja lisääntyneistä tuotoista ylössäätävästä häiriöreservistä.
Akun avulla voidaan toteuttaa kuormansiirtoa ja akku auttaa myös pienentämään
tasevirheen määrää. Tämän lisäksi, tuotot lisääntyvät lähes lineaarisesti, kun akun
kokoa kasvatetaan.
Avainsanat Sähkömarkkinat, tarjousoptimointi, stokastinen ohjelmointi, Akku
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Symbols and abbreviations

Abbreviations
aFRR Automatic frequency restoration reserve
BESS Battery energy storage system
DA Day-ahead market
EH Energy hub
ENTSO-E European network of transmission system operators for electricity
EES Energy storage systems
EV Electric vehicle
FCR Frequency containment reserve
FCR-D Frequency containment reserve for disturbances
FCR-N Frequency containment reserve for normal operation
FFR fast frequency reserve
IDA1 Intraday auction one
mFRR Manual frequency restoration reserve
MILP Mixed-integer linear programming
MW Mega watt
MWh Mega watt hour
PV Photovoltaic
RES Renewable energy sources
RTE Round-trip efficiency
SE1-SE4 Sweden power price areas
SCAD Single day-ahead coupling
TSO Transmission system operator
VPP Virtual power plant
VRE Variable renewable energy
XGBoost Extreme gradient boosting

Symbols

Sets

𝑆 Set of scenarios
𝑇 Set for hours
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Parameters

Γ𝐷𝐴
𝑡𝑠 Day-ahead market price in hour 𝑡 in scenario 𝑠 (=C/MWh)

Γ𝑈𝑃
𝑡𝑠 Up-regulating FCR-D market price in hour 𝑡 in scenario 𝑠

(=C/MWh)
Γ𝐷𝑁
𝑡𝑠 Down-regulating FCR-D market price in hour 𝑡 in scenario 𝑠

(=C/MWh)
𝛽𝑠𝑒𝑙𝑙𝑡𝑠 Indicator whether bid is cleared to day-ahead market or not
𝛽𝑈𝑃
𝑡𝑠 Indicator whether bid is cleared to up-regulating FCR-D

market or not
𝛽𝐷𝑁
𝑡𝑠 Indicator whether bid is cleared to down-regulating FCR-D

market or not
𝑃𝑃𝐶𝐶 Licensed power at the point of common coupling (MW)
𝜋𝑠 Probability of scenario 𝑠

𝐸 Rated capacity of the energy storage system (MW)
𝑃𝐵𝐴𝑇 Rated power of charge and discharge of the energy storage

system (MWh)
𝜂𝐶𝐻𝐴 Charge efficiency of the energy storage system (%)
𝜂𝐷𝐼𝑆 Discharge efficiency of the energy storage system (%)
𝑃̂𝑡𝑠 Power production forecast available at gate closure for the

day-ahead market per hour and per scenario (MWh)
𝐶𝑃𝑉 Rated capacity of the solar power plant (MW)
𝑃𝐹𝐶𝑅 Upper limit for bids to the FCR-D markets (MW)
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Decision variables

𝑏𝑠𝑒𝑙𝑙𝑡 Bid to sell power in the day-ahead market in hour 𝑡 (MW)
𝑏
𝑏𝑢𝑦
𝑡 Bid to buy power in the day-ahead market in hour 𝑡 (MW)

𝑏𝐷𝑁
𝑡 Power bid in the down-regulating FCR-D market in hour 𝑡

(MW)
𝑏𝑈𝑃
𝑡 Power bid in the up-regulating FCR-D market in hour 𝑡 (MW)
𝑝𝑠𝑒𝑙𝑙𝑡𝑠 Power sold on the day-ahead market in hour 𝑡 in scenario 𝑠

(MWh)
𝑝
𝑏𝑢𝑦
𝑡𝑠 Power bought on the day-ahead market in hour 𝑡 in scenario

𝑠 (MWh)
𝑝𝐷𝑁
𝑡𝑠 Capacity sold on the down-regulating FCR-D market in hour

𝑡 in scenario 𝑠 (MW)
𝑝𝑈𝑃
𝑡𝑠 Capacity sold on the up-regulating FCR-D market in hour 𝑡

in scenario 𝑠 (MW)
𝑒𝑡𝑠 Energy stored in the energy storage system in hour 𝑡 in

scenario 𝑠 (MWh)
𝑝𝐶𝐻𝐴
𝑡𝑠 Charging power in the energy storage system in hour 𝑡 in

scenario 𝑠 (MW)
𝑝𝐷𝐼𝑆
𝑡𝑠 Discharging power in the energy storage system in hour 𝑡 in

scenario 𝑠 (MW)
𝑝𝑃𝑉𝑡𝑠 Solar production in hour 𝑡 in scenario 𝑠 (MWh)
Δ𝑡𝑠 Imbalance between market commitment and production in

hour 𝑡 in scenario 𝑠 (MWh)
Δ+
𝑡𝑠 Excess production in hour 𝑡 in scenario 𝑠 (MWh)

Δ−
𝑡𝑠 Deficit production in hour 𝑡 in scenario 𝑠 (MWh)

𝑖𝑡 binary variable indicating if power is purchased on the day-
ahead market in hour 𝑡

𝑗𝑡𝑠 Binary variable indicating whether the battery is charging or
discharging at time 𝑡
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1 Introduction

The European electricity market has undergone profound structural changes over the
past decade. Driven by political commitments to mitigate climate change, there has
been a rapid expansion in variable renewable energy (VRE) generation, particularly
wind and solar. Simultaneously, fossil-fuel power plants have increasingly been phased
out, both due to policy pressure and reduced competitiveness against low-marginal-
cost VRE. Renewable energy capacity, particularly wind and solar, has increased
significantly in Finland. In fact, based on ongoing construction and investment plans,
wind power generation in Finland is expected to reach up to twice the electricity
consumption of 2022 by the late 2030s [1].

In addition to these trends, external shocks, such as geopolitical issues, have further
destabilized the European power market [2]. Where electricity prices once followed
relatively predictable patterns, extreme volatility is now common. Finland, especially,
has extremely volatile day-ahead prices. In 2024, Finland had 724 hours of negative
day-ahead prices. In contrast, in January of the same year, the Finnish spot-market
reached an all-time high of 1896 =C/MWh, which resulted from a combination of high
demand, low wind generation, and unexpected plant outages.

To maintain grid stability, electricity supply and demand must be matched con-
tinuously in real time. This requirement becomes increasingly challenging as the
share of VRE increases, introducing greater uncertainty and fluctuations in the power
system [3]. Deviations between predicted and actual production are inevitable due to
forecasting errors, unforeseen events and the stochastic nature of VRE production.
Moreover, unlike traditional power plants, VRE do not inherently provide inertia,
which stabilizes the grid by resisting frequency changes. To manage these challenges,
transmission system operators (TSOs) operate reserve markets. These markets enable
a real-time balance between supply and demand. As conventional thermal power plants
are phased out, battery storage, demand-side response, and power electronics-based
solutions are expected to play a growing role in providing reserve services [1].

Consequently, the role of battery energy storage systems (BESS) is expected to
grow. In recent years, there has been an increase in the integration of energy storages
in Finland. Utility-scale BESS has particularly grown, with about 0.2 GWh currently
in operation and an additional 0.4 GWh planned. The progress has been supported
by investments and legislative changes that eliminate obstacles, such as the double
taxation of stored electricity. [1]

VRE producers face increasing challenges in maintaining profitability [4]. Since
VRE generates electricity at zero marginal cost, producers often submit bids at zero
price. Combined with auction-based pricing, this leads to the cannibalization effect.
As a result, during periods of high renewable output, especially when electricity
consumption is low, supply often exceeds demand, pushing market prices down,
sometimes even into negative values. At the same time, the narrowing price spread
between peak and off-peak hours further limits revenue opportunities. Consequently,
participation in multiple markets and leveraging load shifting have become important
for improving profitability. For BESS operators, the ability to strategically allocate
capacity between markets is essential to maximize overall profitability.
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The objective of this thesis is to develop a stochastic optimisation model for
supporting bidding decisions in Finnish electricity markets for a portfolio consisting
of a solar power plant and BESS, with the goal of maximizing the profits. The
model is designed for players that participate in both the day-ahead and up- and
down-regulating FCR-D markets and operates with an hourly time resolution. Scenario
generation is used to account for uncertainties in the day-ahead market prices, up-
and down-regulating FCR-D market prices, and solar power production. A case study
is conducted to evaluate the expected profitability of a portfolio comprising a solar
power plant and a BESS.

This thesis is structured as follows. Chapter 2 provides an overview of solar
power and battery energy storage systems. Additionally, it introduces the reserve
market products, particularly the up- and down-regulation FCR-D markets, their
market designs, and the day-ahead market auction. Furthermore, the chapter presents
modeling frameworks for bidding strategies, with a focus on stochastic optimisation.
Chapter 3 presents the modeling assumptions and the formulation of the stochastic
optimisation model for bidding. Chapter 4 describes the methodology used for scenario
generation. Chapter 5 presents the results of the case study. Chapter 6 discusses the
limitations of the model, outlines potential improvement, and concludes the content of
this thesis.



2 Background

This thesis focuses on the optimal bidding strategy of a solar power plant with battery
energy storage in the Finnish electricity markets, and thus, it is important to understand
the technical and market environment in which such a system operates. Therefore,
this chapter provides background on the relevant electricity markets, technologies,
and prior research. Section 2.1 introduces the Nordic day-ahead market, which serves
as the primary marketplace for electricity trading. Section 2.2 describes the Nordic
reserve markets, with a focus on up- and down-regulating FCR-D markets. Section 2.3
presents the operating principles and characteristics of solar power, while Section 2.4
introduces battery energy storage systems and their role in energy markets. Finally,
Section 2.5 reviews previous research on optimal bidding strategies.

2.1 Day-Ahead Market

The Nordic day-ahead market is the main platform for Finnish power companies to
sell their energy. The market is operated by Nord Pool which operates in 15 countries
including the Nordic and Baltic countries, the United Kingdom, among others [5].
In the day-ahead electricity market, supply and demand must always be balanced to
ensure stability in the grid. Electricity producers and buyers submit their bidding
curves to the day-ahead market by 12:00 CET, indicating how much electricity they
are willing to sell or purchase and at what price. These bids are then processed
through the Single Day-Ahead Coupling (SDAC) using a algorithm called Euphemia,
which matches orders across the Europe taking into account network constraints. A
market clearing price for each hour and bidding zone is determined according to the
intersection of the supply and demand curves. The results, including the clearing
prices and volumes, are published at 12:45 CET or later. Market prices are bound
between -500 =C/MWh and 4000 =C/MWh [5].

The Nordic day-ahead market aims to determine a market-clearing price, or area
price, for each participating bidding zone. Transmission limitations between bidding
zones can lead to price differentiation, commonly referred to as area prices. Price
separation between neighboring zones occurs when the transmission interconnection
operates at maximum flow capacity. Countries may have multiple bidding zones, such
as Sweden (SE1-SE4) [6]. Finland has not been divided into multiple bidding zones
and functions as a single pricing area.

Through market-based pricing, it incentivizes producers to offer electricity at
competitive rates while ensuring that demand is met through the least-cost generation
resources available. The supply curves, which represent the willingness of generators
to sell electricity at various price levels, intersect with the demand curves, which
reflect the willingness of consumers to purchase electricity. An example of supply and
demand curves can be seen in Figure 1.
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Figure 1: Aggregated bidding curve from Nordpool for one hour in Finland. The blue
curve is the supply curve and the red curve is the offer curve. The market-clearing
price for this hour was 12.52 =C/MWh. [7]

Market prices are influenced by several factors, including fuel costs, generation
mix, weather conditions, and network constraints. Market regulations [8] require
participants to set the price of electricity they sell based on either the marginal cost of
producing it or the opportunity cost. Opportunity costs reflect the potential benefit
lost by choosing one option over another. Opportunity costs may be present due to
opportunities to store energy, use it for own consumption, or bid it in subsequent
markets. Accurately evaluating these costs is challenging, as it requires considering
future market conditions and alternative uses of energy. Producers therefore develop
bidding strategies based on forecasts of market prices, demand forecasts, and the
availability of their generation assets. The marginal cost of renewable energy is
effectively zero [9]. Thus, producers usually offer their production at zero price unless
they have another use for it, such as energy storage.

If actual production deviates from daily commitments due to forecast errors or
unforeseen events, market participants can adjust their positions through intraday
trading. Moreover, BESS can help minimize imbalances by storing excess energy or
supplying power when actual production falls short [10]. Balancing markets, managed
by transmission system operators, provide a last resort mechanism for addressing
real-time imbalances. The pricing structure in balancing markets often penalizes
deviations, by imbalance settlement cost, from day-ahead commitments, reinforcing
the importance of accurate forecasting and strategic bidding in the day-ahead auction.

2.2 Reserve Markets

Reserve markets play a critical role in maintaining the stability and reliability of
the electricity system by balancing supply and demand fluctuations in real-time.
These markets ensure that sufficient backup capacity is available to respond to grid
disturbances, frequency deviations, and unexpected changes in electricity consumption
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or generation. The need for reserve capacity has grown significantly in recent years due
to the increasing share of renewable energy sources, which introduce more variability
in electricity supply into the power system. [11], [12]

In the Nordics, reserve markets are managed by each country’s transmission
system operator. In Finland, this responsibility lies with Fingrid. They operate the
reserve markets and procure resources from the market. The Nordic transmission
system operators are required to maintain a certain amount of reserves [13]. There
are multiple reserve products and there is a market for each of them, each serving a
different purpose. These include frequency containment reserves (FCR) for normal
operation (FCR-N) and disturbances (FCR-D), automatic frequency restoration reserve
(aFRR), manual frequency restoration reserve (mFRR), and fast frequency reserve
(FFR). These reserve products differ in their purpose and technical implementation.
The market places are presented in Figure 2. Some reserves are also divided into
upward and downward regulation, depending on whether the aim is to increase or
decrease the grid frequency. From the perspective of a power plant, upward regulation
means increasing electricity supply to the grid, either by ramping up generation or by
reducing consumption. Conversely, downward regulation involves reducing electricity
supply or increasing local consumption to help bring the frequency down when it rises
above the nominal level.

Reserve market places in Finland

Manual Frequency
Restoration Reserve

Reference incident +
imbalances of balance

responsible parties

Automatic
Frequency
Restoration Reserve,
Finland 60-80 MW,
Nordics total 300-400
MW

Frequency Containment
Reserve for Normal
Operation,
Finland ~120 MW, Nordics
total 600 MW

Frequency
Containment
Reserve for
Disturbances,
Finland ~300 MW,
Nordics total 1450 MW
upwards and 1400 MW
downwards

Fast Frequency
reserve,
Finland 18 %,
Nordics total 0-300 MW
(estimate)

Activated if
necessary

Used in certain
hours

Used all the timeIn large frequency
deviations
Up-regulation and down-
regulation separately

In large frequency
deviations
In low inertia situations

Activated

In fifteen minutesIn five minutesIn three minutesIn secondsIn a secondActivation
speed

Figure 2: Reserve market places in Finland [14].

FCR-D is designed to mitigate significant frequency deviations caused by unex-
pected events such as power plant outages or sudden changes in demand. FCR-D is
classified into up-regulating FCR-D and down-regulating FCR-D to account for both
over- and under-frequency conditions. These reserves help maintain grid stability by
rapidly adjusting power generation or consumption in response to deviations from the
nominal 50 Hz frequency. The activation of FCR-D is based on real-time frequency
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measurements. Up-regulating FCR-D reserves are activated when the frequency falls
below 49.5 Hz, and down-regulating FCR-D activates when it rises above 50.5 Hz.

Up-regulating FCR-D is activated in less than 10 seconds. Fingrid’s obligation for
2024 was set at 295 MW, with a volume weighted average price of 12 =C/MW in 2023.
The minimum bid size for participation is 1 MW. The purpose of up-regulating FCR-D
is to increase electricity production or decrease consumption when the grid frequency
drops below 49.5 Hz, helping to restore balance [12]. Similarly, down-regulating
FCR-D also activates in less than 10 seconds. In 2024, Fingrid’s obligation for this
reserve was 240 MW, with a 2023 volume weighted average price of 14 =C/MW.
Like up-regulating FCR-D, the minimum bid size is 1 MW. However, its role is the
opposite: it is used to decrease electricity production or increase consumption when
the frequency rises above 50 Hz, ensuring that the grid remains stable [12].

FCR-D is procured through both annual and hourly markets. In the annual capacity
auctions producers commit to offering reserve capacity for a full year whereas in
the hourly capacity auctions participants can submit bids daily. The gate closure
time for the hourly market is 17:30 CET for the following day. Participants receive
compensation for making their reserve capacity available, regardless of activations.
Figure 3 shows the projected development of the need for FCR-D reserves. While the
total demand for up- and down-regulating FCR-D in the Nordic region is expected to
remain stable, Fingrid anticipates that their share of the reserve provision will increase
in the coming years.
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Figure 3: Upper figure presenting the projected demand for up-regulating FCR-D and
bottom figure the projected demand for down-regulating FCR-D. Demand for FCR-D
in Finland is expected to steadily grow during the upcoming years [15].

2.3 Solar Power

Solar energy is the radiant energy emitted by the Sun, which can be harnessed for
various applications, including electricity generation with photovoltaic (PV) systems
and heating with solar thermal energy. The Sun provides an enormous amount of
energy, 1.7·1022𝐽 in 1.5 days, while the total annual energy use by humans is 4.6·1020𝐽,
which means that available solar energy vastly exceeds global energy consumption [16].
Photovoltaic technology converts sunlight directly into electricity using semiconductor
materials. When sunlight (photons) strikes a photovoltaic cell, it excites electrons,
generating an electric current. This process, known as the photovoltaic effect, occurs
in p-n junctions formed by semiconductor layers. A solar panel system consists of
solar panels, inverters, transformers, mounting structures, tracking mechanisms, and
wiring [17].

Over the years, various photovoltaic technologies have emerged, each with distinct
characteristics, efficiencies, and costs. Silicon-based solar cells are widely used in
commercial applications, accounting for about 90% of global solar panel production.
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They are categorized into two main types, mono-crystalline and poly-crystal. Mono-
crystalline silicon solar cells have an efficiency of approximately 20-25%. They
offer high efficiency and performance, a long lifespan of over 25 years, and better
performance in low-light conditions. Polycrystalline silicon solar cells have an
efficiency of around 16-18%. Although multi-crystalline silicon solar cells are less
efficient than mono-crystalline silicon solar cells, they dominate the global market
because of their lower production costs [18]. With the growing demand for more
efficient and cost-effective solar cells, new technologies are being developed. At the
moment, gallium arsenide solar cells have the best efficiency of more than 30%. They
provide high efficiency because of their superior absorption properties. However, they
are very expensive to produce and rely on the limited availability of gallium [18].

Solar power is non-dispatchable and inherently intermittent [19]. Its output depends
directly on weather conditions and time of day, which means it cannot be controlled
in the same way as conventional power generation. Although solar power cannot be
increased on demand, it is possible to curtail its production by disconnecting panels or
limiting inverter output [20]. Curtailment can be implemented almost instantaneously,
making it relatively fast and flexible in terms of downward regulation. Solar power is
qualified to provide down-regulating FCR-D services in Finland [21].

The predictability of solar generation has improved with advances in weather
forecasting and machine learning [22]. Day-ahead forecasts for solar power can
reach reasonable accuracy, especially for clear-sky conditions. However, short-term
variations due to cloud cover still present challenges. Another important consideration
is how well solar power production aligns with electricity demand. In many regions,
peak solar production occurs around midday, which often do not coincide with peak
hours. Peak hours refer to periods of high electricity demand, typically in the early
morning and in the late afternoon to evening when consumption rises again. Off-peak
hours, on the other hand, occur during periods of lower demand, such as late at night
or midday in some regions. Therefore, integrating solar energy effectively requires
either flexible demand, energy storage, or complementary generation sources that can
cover the gaps between production and consumption.

In recent years, most of Finland’s solar power capacity has been rooftop photovoltaic
and small-scale solar plants. However, large-scale solar power plants with a capacity
exceeding one megawatt have been developed in Finland at a significant pace for
about two years. By the end of 2024, the total capacity of utility-scale solar power in
operation had surpassed 120 megawatts, with nearly half being completed in 2024
[23]. The growth of large-scale solar power in Finland is expected to accelerate, with
investment decisions made by the end of 2024 bringing the projected installed capacity
to approximately 450 megawatts by 2025 [24]. As shown in Figure 4, this capacity is
expected to continue increasing rapidly.
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Figure 4: Projected development of solar power in Finland [25]. Especially the
number of large-scale solar power plants are expected to grow.

2.4 Battery Energy Storage Systems

Solar energy production is inherently intermittent. Battery energy storage systems
(BESS) help mitigate this variability by storing surplus electricity generated during
peak production periods and supplying it during times of low solar output. They
improve the resilience and reliability of power grids by facilitating the integration
of intermittent renewable sources and serving multiple functions, including load
leveling, energy management, backup power, voltage support, and grid stabilization.
The combined use of solar power and batteries optimizes the utilization of renewable
resources [26].

The increasing share of renewable energy, particularly wind and solar, amplifies
the importance of energy storage [27], [28]. In regions with high renewable capacity,
surplus electricity could be generated at no additional cost when supply exceeds
demand. Energy storage systems enable capturing this surplus power.

Electricity demand fluctuates throughout the day, influencing electricity market
prices, which tends to be higher during peak hours and lower during off-peak periods.
This variation is due to differences in generation costs. During peak demand hours,
electricity is often produced using flexible but expensive power sources such as oil-
and gas-fired plants. These sources are not only expensive but also tend not to be
environmentally friendly, which is why reducing their use is a key goal in the transition
to cleaner energy systems. Conversely, when demand is low, these costly generators
can be shut down. Energy storage systems (EES) can capitalize on this dynamic by
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storing cheaper electricity produced during off-peak hours and supplying it during
peak periods [29].

Common metrics used to describe battery energy storage systems include rated
power, battery capacity and round-trip efficiency (RTE). Rated power refers to the
maximum continuous active power that the storage device can deliver or absorb
during discharge and charge, respectively. It is important to distinguish this from the
peak power, which represents the absolute maximum the device can handle for short
durations and is typically higher than the rated value. Round trip efficiency is the
ratio of energy retrieved from a battery to the energy initially put into it during a full
charge-discharge cycle. It is a key performance metric for energy storage systems, as
it determines how much energy is lost during the charging and discharging processes,
directly impacting the overall effectiveness of the storage system. Battery capacity
refers to the total amount of energy a battery can store and, for utility-scale batteries,
it is typically measured in mega watts (MW) [30]. It is calculated by multiplying
the discharge current by the discharge time. In large-scale applications like grid or
industrial storage, a higher capacity means the system can provide power for a longer
duration.

The high efficiency of lithium-ion technology makes it a preferred choice for
grid-scale energy storage, electric vehicles (EVs), and portable electronics. The service
life of lithium-ion batteries is around 5-15 years [31]. Lithium ion batteries generally
exhibit a round-trip efficiency of 85%–95% [27], depending on factors such as battery
chemistry, operating conditions, and aging.

2.5 Research on Optimal Bidding Strategy in Energy Markets

Different market participants employ various bidding techniques to maximize their
revenue while mitigating risks. Some producers optimize their bid curves to account
for potential intraday market opportunities, while others strategically allocate capacity
between the day-ahead and reserve markets. The decision to offer capacity in the
day-ahead market versus holding it for ancillary services depends on market price
expectations and regulatory constraints.

Earlier research has demonstrated that bidding at true costs is optimal under certain
market designs that allow, for example, the inclusion of fixed costs in addition to
marginal costs [32]. However, the structure of modern electricity markets differs from
those assumptions, and such optimality does not necessarily extend to today’s market
conditions. The problem is further complicated by nonlinear structure of offering, as
revenue depends on the product of two variables, price and quantity. Thus, bidding
strategy optimisation remains a challenging and actively researched topic. Many prior
studies have focused on finding optimal bid quantities without considering bid prices
[33]–[36]. However, there are some studies that utilize varying approaches to find
both optimal bid volumes and prices [37], [38]. Authors of [37] presents a stochastic
optimisation model to minimize operational costs for an electrical vehicle aggregator.
Their results demonstrated that including both quantity and price in reserve bids is
beneficial over bids based on quantity alone. However, their problem setting is different
from this thesis, since the study does not consider any production of their own, and
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their objective is to minimize cost. In addition, imbalance is not penalized sufficiently,
which can affect the results.

In a multi-market environment like the Nordic power system, where a generator
can participate in several different electricity markets with varying price formation
mechanisms, opportunity cost becomes a key factor in offer optimisation. Producers
must consider not only the immediate profit from selling in the current market but also
the potential profits they could earn in subsequent markets. This means that the price
of electricity should reflect the expected value of alternative opportunities, especially
when energy can be stored and sold later. In addition, uncertainty in renewable energy
generation further complicates this decision making. As a result, modern producers
must optimize their offers by weighing both the uncertainty in production and the
opportunity cost of committing energy to one market over another.

There are various combinations of variable renewable energy (VRE) sources and
battery energy storage systems, each with its own characteristics. However, similar
methodologies can generally be applied regardless of the specific type of renewable
energy or storage technology, since all VREs are inherently intermittent and most
energy storage systems are capable of providing similar services, despite differences
in their technical specifications. There are multiple ways of referring to a VRE and an
energy storage unit that operate together, depending on the context and focus of the
application. Common terms include hybrid power plant, co-located system, energy
hub, aggregated resource, or virtual power plant (VPP).

The optimal bidding strategy for variable renewable energy and battery energy
storage systems has been widely studied across different market settings and with
varying focuses. Some studies concentrate on VRE sources like solar or wind [39],
[40], while others examine BESS operating independently [41], relevant also to this
thesis during winter months when solar production is minimal. In addition to stochastic
optimisation, several other methods have been explored to optimize bidding strategies,
including artificial intelligence-based approaches [42], machine learning and deep
learning techniques [43], bidding curve optimisation [44], and robust optimisation
[45]. Since this thesis considers a combined solar power plant and energy storage
system participating in the day-ahead and FCR-D up- and down-regulation markets,
the literature review in this section focuses on studies with similar settings and that
utilize stochastic optimisation methods.

2.5.1 Bidding Optimisation

Stochastic programming is an optimisation approach designed to handle uncertainty
in real-world decision-making [46]. It has proven to be highly effective in optimizing
complex systems where key parameters are not known in advance, outperforming many
traditional deterministic methods in both accuracy and efficiency. Unlike deterministic
models, which rely on single-point estimates such as expected values to represent
uncertainty, stochastic programming incorporates uncertainty directly within the
optimisation problem. In stochastic optimisation, the optimal decision is determined
by evaluating the model in multiple potential outcomes of the uncertain variables. As
a result, the solution may not be the best one for one specific outcome, but it provides

20



the best overall performance across scenarios before the realization of the uncertainties
are observed.

A wide range of studies have applied stochastic optimisation to create optimal
bidding strategies in electricity markets [35], [41], [47], [48]. Authors in [41] presents
a mixed-integer linear programming (MILP) model to optimize the participation of
BESSs in the Swedish FCR markets. The model is designed to maximize potential
profit and also accounts for battery degradation. It considers participation in multiple
FCR services, including FCR for normal operation (FCR-N) and FCR for disturbances
(FCR-D) in both up- and down-regulation. From the case study on 2022 data, the
results indicate that the highest profit comes from multi-market participation, with the
largest share of that profit generated in the FCR-D markets.

Other studies that considered Nordic markets include [49], which introduced a
stochastic model that accounts for the impact ofwindpowerproduction andconsumption
on market prices. Two bidding algorithms were developed and evaluated within the
Nord Pool electricity market. The authors of [50] developed a bidding strategy
for wind power plants in the Nordic electricity market as a stochastic mixed-integer
programming model, aiming to maximize expected profits while minimizing imbalance
settlement costs.

The authors of [51] explore how over-installing renewable energy sources (RES),
such as wind and solar, can increase producer profits. They introduced a scenario-
based stochastic optimisation model for developing a bidding strategy that maximizes
expected profits in the day-ahead and balancing markets. It also accounts for battery
degradation and export capacity limits. Their simulation results show that the proposed
stochastic approach can lead to higher profits than the deterministic method. In
particular, it increased profits by 5.25% for a wind power producer and by 1.23% for a
solar (PV) producer. The study also finds that using a battery energy storage system is
economically beneficial if its cost is less than 200,000 =C/MWh.

Several studies have focused on the development of optimal bidding strategies for
standalone battery energy storage systems [52]–[54]. The authors of [52] propose an
optimisation-based bidding strategy to determine optimal bids and estimate the revenue
potential of BESS, operating alone or as part of a virtual power plant. The results show
that with current BESS costs, participation in the aFRR market is not economically
viable. However, projected cost reductions by 2025 could make BESS operations
profitable, although still less profitable than participating in the FCR market.

2.5.2 Generating Scenarios for a Stochastic Optimisation Model

There are multiple ways to account for uncertainty in production and market prices.
Stochastic optimisation is one way of modelling with uncertainty; other frameworks
deal with uncertainty using a deterministic model and optimizing using the mean
value [55], using robust optimisation [56], or using distributionally robust optimisation
[57]. In this thesis uncertainty was modelled leveraging the stochastic programming
framework, meaning that uncertainty was taken into account by modelling multiple
scenarios for the uncertainty factors.

Stochastic optimisation models are used for decision making under uncertainty
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and thus require data to characterize the uncertain parameters. The quality of data
directly impact the model’s performance and the reliability of the results. The ways
to include stochasticity in scenarios are, for example, Monte Carlo simulation [58],
residual sampling [59], and artificial neural networks [60]. In this thesis the data
for the stochastic program was created by sampling values from the distribution of
residuals.

Several studies on stochastic optimisation have employed residual sampling as part
of their scenario generation process [58], [61]. Authors of [58] presents a stochastic
optimal bidding model for an Energy Hub (EH) that incorporates variable renewable
energy sources and battery energy storage in day-ahead electricity and reserve markets.
It utilizes a Monte Carlo sampling method to simulate uncertainties in wind power
output. The authors of [61] develop a stochastic programming model to optimize
day-ahead market bids for a demand response aggregator under price uncertainty.
They use Monte Carlo sampling to generate electricity price scenarios, which are
then reduced for computational efficiency. The model includes a risk constraint and is
solved as a mixed-integer linear program. Results using Danish market data show that
the stochastic approach better matched the decisions under perfect information better
than if robust optimisation was used.
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3 Model

This chapter presents a stochastic optimisation model for optimizing bidding in the
day-ahead and FCR-D markets under price and production uncertainty in the Finnish
markets. The imbalance settlement costs are also taken into account. The producer bids
their production from the solar plant and a BESS. The BESS can provide load-shifting
by charging during the hours with a lower day-ahead market prices and discharging
when prices are higher in the day-ahead or FCR-D markets. Modeling assumptions
are introduced in Section 3.1. Section 3.2 presents the model formulation.

3.1 Modeling Assumptions

The proposed model’s objective function maximizes profit in all considered markets.
The model is formulated as a stochastic optimisation model and operates with a
24-hour time horizon, covering the following day. The decisions comprise optimal
bid quantities under production and price uncertainty. The decision making process
is simplified by dividing it into two stages: day-ahead decision and operating day
decisions. Day-ahead decisions include determining the optimal bid quantities for the
day-ahead market and the up-regulating FCR-D markets. Thus, the producer does
not observe the outcome of the day-to-day market before submitting offers to the
FCR-D market. A simplification was made in assuming that only one bid, consisting
of price and quantity, is submitted to the day-ahead market instead of a bidding curve.
Operating day decisions include the operation planning of the solar power plant and
BESS based on the specified solar production forecasting and cleared bids. Possible
decisions include the solar power plant being curtailed, and the BESS’s operation
schedule can be altered. Operating day decisions are made to fulfill commitments and
minimize imbalances. The producer is modelled as a price-taker, meaning that the
volume bought or sold by the producer does not affect the market price.

For the FCR-D markets, the model assumes that the cleared capacity is never
activated. Consequently, the model considers only the capacity fees for reserving
capacity, while potential energy fees from actual activations are excluded. The
minimum bid size of 1 MW to the FCR-D markets is assumed to be filled organically
in this model. In addition, it is also assumed that solar power can be curtailed.
Uncertainty in production and market prices are taken into account by scenario-based
modeling.

3.2 Model Formulation

Objective function

The objective (1) is to maximize the expected market profit over three markets:
the day-ahead, up-regulating FCR-D and down-regulating FCR-D markets, while
penalizing imbalances between planned and actual production and consumption.
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max
∑︁
𝑠∈𝑆

∑︁
𝑡∈𝑇

𝜋𝑠

(︃ (︂
(𝑝𝑠𝑒𝑙𝑙𝑡𝑠 − 𝑝

𝑏𝑢𝑦
𝑡𝑠

)︂
· Γ𝐷𝐴

𝑡𝑠 + 𝑝𝑈𝑃
𝑡𝑠 · Γ𝑈𝑃

𝑡𝑠 + 𝑝𝐷𝑁
𝑡𝑠 · Γ𝐷𝑁

𝑡𝑠

)︃
−
∑︁
𝑠∈𝑆

∑︁
𝑡∈𝑇

𝛿
(︁
Δ+
𝑡𝑠 + Δ−

𝑡𝑠

)︁
(1)

The objective function is formulated as a maximization problem, where 𝑝𝑠𝑒𝑙𝑙𝑡𝑠 ,𝑝𝑏𝑢𝑦𝑡𝑠

are non-negative variables that denote the cleared quantities of sold and bought day-
ahead bids. Variables 𝑝𝑈𝑃

𝑡𝑠 and 𝑝𝐷𝑁
𝑡𝑠 denote the cleared quantities of up-regulating and

down-regulating FCR-D, respectively, in megawatts. Indices 𝑡 = {1, . . . , 𝑇} denote the
considered time horizon, i.e., the 24 hours of the following day. The set of scenarios
𝑆 = {1, . . . , |𝑆 |}, captures uncertainty in solar production, day-ahead market price and
up-regulating FCR-D and down-regulating FCR-D markets prices. The parameter 𝜋𝑠
denotes the probability of scenario 𝑠. The parameters Γ𝐷𝐴

𝑡𝑠 , Γ𝑈𝑃
𝑡𝑠 , and Γ𝐷𝑁

𝑡𝑠 represent
the scenario-dependent market prices for the day-ahead market, up-regulating FCR-D,
and down-regulating FCR-D, respectively, at time 𝑡 under scenario 𝑠. Non-negative
variables Δ+

𝑡𝑠 ≥ 0 and Δ−
𝑡𝑠 ≥ 0 represent the power imbalance for excess and deficit

power at time step 𝑡 of the scenario 𝑠. Imbalance is penalized by 𝛿. Since balancing
responsible parties are obligated to maintain a balanced position, a sufficiently large
number 𝛿 is used to minimize imbalances in the model [62].

Constraints

Constraints (3)–(6) ensure that only accepted bids lead to actual power transactions,
reflecting the stochastic nature of market liquidity. The approach to modeling
uncertainty in market clearing is similar to that used in [63]. The acceptance of a
bid at the price level in time 𝑡 and scenario 𝑠 is captured by binary parameters 𝛽𝑠𝑒𝑙𝑙𝑡𝑠 ,
𝛽𝑈𝑃
𝑡𝑠 , 𝛽𝐷𝑁

𝑡𝑠 , which indicate whether the bid is accepted based on the corresponding
scenario-dependent market prices. Equation (2) presents the general logic applied to
all 𝛽𝑡𝑠 parameters, demonstrated through the case of a selling bid in the day-ahead
market. Parameter 𝑏𝑝𝑡𝑠 represents the scenario-dependent bid price for day-ahead
market.

𝛽𝑠𝑒𝑙𝑙𝑡𝑠 =

{︄
1, if Γ𝐷𝐴

𝑡𝑠 ≥ 𝑏𝑝𝑠𝑒𝑙𝑙𝑡𝑠

0, otherwise.
(2)

Non-negative variables 𝑏𝑈𝑃
𝑡 and 𝑏𝐷𝑁

𝑡 represent bids to up-regulating FCR-D and
down-regulating FCR-D market. The cleared bid in each time period 𝑡 and scenario 𝑠

is described by the non-negative variables 𝑝𝑈𝑃
𝑡𝑠 and 𝑝𝐷𝑁

𝑡𝑠 , reflecting market-clearing
under uncertainty.

𝑝𝑈𝑃
𝑡𝑠 = 𝑏𝑈𝑃

𝑡 · 𝛽𝑈𝑃
𝑡𝑠 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (3)

𝑝𝐷𝑁
𝑡𝑠 = 𝑏𝐷𝑁

𝑡 · 𝛽𝐷𝑁
𝑡𝑠 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (4)
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Non-negative variables 𝑏𝑠𝑒𝑙𝑙𝑡 and 𝑏
𝑏𝑢𝑦
𝑡 represent selling and buying bids to day-

ahead market. The actual power sold in each time period and scenario, 𝑝𝑠𝑒𝑙𝑙𝑡𝑠 , depends on
whether the selling bid is cleared, determined by the binary variable 𝛽𝑠𝑒𝑙𝑙𝑡𝑠 . Conversely,
buying denoted by non-negative variable 𝑝

𝑏𝑢𝑦
𝑡𝑠 occurs only in scenarios where the

selling bid is rejected, i.e., when the market price is lower than the selling bid price.
This is captured by the complement (1 − 𝛽𝑠𝑒𝑙𝑙𝑡𝑠 ), which ensures that power is bought
only when selling is not profitable.

𝑝𝑠𝑒𝑙𝑙𝑡𝑠 = 𝑏𝑠𝑒𝑙𝑙𝑡 · 𝛽𝑠𝑒𝑙𝑙𝑡𝑠 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (5)

𝑝
𝑏𝑢𝑦
𝑡𝑠 = 𝑏

𝑏𝑢𝑦
𝑡 ·

(︂
1 − 𝛽𝑠𝑒𝑙𝑙𝑡𝑠

)︂
∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (6)

To prevent simultaneous buying and selling in the day-ahead market, a binary
variable 𝑖𝑡 is introduced to restrict bidding behavior. It ensures that at each time
step 𝑡, the model can either place a buy bid or a sell bid, but not both. This logic is
implemented in Equations (7) and (8).

𝑏
𝑏𝑢𝑦
𝑡 ≤ 𝑖

𝑏𝑢𝑦
𝑡 · (𝑃𝑝𝑐𝑐) ∀𝑡 ∈ 𝑇 (7)

𝑏𝑠𝑒𝑙𝑙𝑡 ≤
(︂
1 − 𝑖

𝑏𝑢𝑦
𝑡

)︂
· (𝑃𝑝𝑐𝑐) ∀𝑡 ∈ 𝑇 (8)

Constraint (9) guarantees that the total selling bids submitted for each hour remain
within the capacity limits of the interconnection between the producer and the power
grid. The capacity limit of the interconnection is represented by parameter 𝑃𝑃𝐶𝐶 .

𝑏𝑠𝑒𝑙𝑙𝑡 + 𝑏𝑈𝑃
𝑡 ≤ 𝑃𝑃𝐶𝐶 ∀𝑡 ∈ 𝑇 (9)

Constraint (10) guarantees that the total buying bids submitted for each hour remain
within the capacity limits of the interconnection between the producer and the power
grid.

𝑏
𝑏𝑢𝑦
𝑡 + 𝑏𝐷𝑁

𝑡 ≤ 𝑃𝑃𝐶𝐶 ∀𝑡 ∈ 𝑇 (10)

Constraint (11) ensures that bidding does not exceed the power plant’s capacity.
Parameter 𝐶𝑃𝑉 represents the solar production capacity and parameter 𝐸 denotes the
BESS’s capacity.

𝑏𝑠𝑒𝑙𝑙𝑡 + 𝑏𝑈𝑃
𝑡 ≤ 𝐶𝑃𝑉 + 𝐸 ∀𝑡 ∈ 𝑇 (11)

Constraint (12) ensures that the combined bought power from the day-ahead market
and sold power to down-regulating FCR-D market cannot exceed the battery’s capacity.
Meaning that all energy received from the grid, whether through bought electricity
from the day-ahead market or resulting from down-regulation commitments, must
remain within the limits of the BESS’s capacity.

𝑏
𝑏𝑢𝑦
𝑡 ≤ 𝐸 − 𝑏𝐷𝑁

𝑡 ∀𝑡 ∈ 𝑇 (12)
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Constraints (13) and (14) restrict the amount that can be bid to the FCR-D markets.
Parameter 𝑃𝐹𝐶𝑅 represents the maximum capacity that can be offered to the FCR-D
markets. This model assumes that reserve capacity is provided by the BESS and thus
the amount of possible capacity to bid to reserve markets is limited.

𝑏𝑈𝑃
𝑡 ≤ 𝑃𝐹𝐶𝑅 ∀𝑡 ∈ 𝑇 (13)

𝑏𝐷𝑁
𝑡 ≤ 𝑃𝐹𝐶𝑅 ∀𝑡 ∈ 𝑇 (14)

Constraints (15) and (16) represent the solar production at time 𝑡 of scenario 𝑠.
Constraint (15) enforces that the solar production 𝑝𝑃𝑉𝑡𝑠 is at most the scenario-dependent
solar availability 𝑃̂𝑡𝑠. Equation (16) balances the energy flows by ensuring that the
total power generated, from solar and energy discharged from the battery, denoted by
the nonnegative variable 𝑝𝐷𝐼𝑆

𝑡𝑠 , minus the energy used to charge the battery, denoted
by the nonnegative variable 𝑝𝐶𝐻𝐴

𝑡𝑠 , equals the cleared day-ahead commitments. Delta
captures the excess or deficit generation in scenarios 𝑠 if the market commitments are
not met.

𝑝𝑃𝑉𝑡𝑠 ≤ 𝑃̂𝑡𝑠 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (15)

𝑝𝑃𝑉𝑡𝑠 + 𝑝𝐷𝐼𝑆
𝑡𝑠 − 𝑝𝐶𝐻𝐴

𝑡𝑠 =

(︂
𝑝𝑠𝑒𝑙𝑙𝑡𝑠 − 𝑝

𝑏𝑢𝑦
𝑡𝑠

)︂
+ Δ𝑡𝑠 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (16)

Predicting renewable energy generation with complete accuracy for the next day is
not feasible due to the variability and unpredictability of these sources. As a result,
any deviation between the scheduled schedule and the actual power generation of the
power plant creates power imbalances during operating hours. These imbalances occur
as either a surplus or a shortage of power, depending on whether the plant produces
more or less than expected.

Excess and deficit production, Δ𝑡𝑠, are penalized in the objective function. Con-
straint (17) represents the sum of positive and negative imbalances by nonnegative
variables Δ+

𝑡𝑠 and Δ−
𝑡𝑠.

Δ𝑡𝑠 = Δ+
𝑡𝑠 − Δ−

𝑡𝑠 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (17)
The approach to modeling battery’s energy level used in equations (18)-(20) is

similar to the one in [60]. Constraint (19) represent the battery’s charge at time step 𝑡

of the scenario 𝑠. Constraint (18) represent the battery’s charge at the first time step of
the scenario 𝑠 and constraint (20) denotes the battery’s charge at the final time step
of the scenario 𝑠. Non-negative parameters 𝜂𝐶𝐻𝐴 and 𝜂𝐷𝐼𝑆 denote the charging and
discharging efficiencies of the battery, and variable 𝑒𝑡𝑠 denotes the energy level in
the BESS at time-step 𝑡 in megawatts. The variables 𝑝𝐶𝐻𝐴

𝑡𝑠 and 𝑝𝐷𝐼𝑆
𝑡𝑠 ≥ 0 denote the

charge and discharge power. A BESS ties together decisions made on different days,
as it can store energy. It is assumed that the battery must have 60% charge at the end
of the day to reflect its influence on the decisions and profits of the following day. In
this way, each day can be modelled as an independent optimisation problem. If such a
constrain was not imposed the model would empty the BESS at the end of the day.
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𝑒𝑡𝑠 = 0.6 · 𝐸 + 𝜂𝐶𝐻𝐴 · 𝑝𝐶𝐻𝐴
𝑡𝑠 − 1

𝑛𝐷𝐼𝑆

· 𝑝𝐷𝐼𝑆
𝑡𝑠 ∀𝑡 = 1, 𝑠 ∈ 𝑆 (18)

𝑒𝑡𝑠 = 𝑒(𝑡−1)𝑠 + 𝜂𝐶𝐻𝐴 · 𝑝𝐶𝐻𝐴
𝑡𝑠 − 1

𝑛𝐷𝐼𝑆

· 𝑝𝐷𝐼𝑆
𝑡𝑠 ∀𝑡 ∈ 𝑇\{1}, 𝑠 ∈ 𝑆 (19)

𝑒𝑡𝑠 = 0.6 · 𝐸 ∀𝑡 = 24, 𝑠 ∈ 𝑆 (20)

Constraint (21) enforces that the battery’s energy level, denoted by the non-negative
variable 𝑒𝑡𝑠, remains below the rated capacity of the energy storage system.

𝑒𝑡𝑠 ≤ 𝐸 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (21)

Constraints (22) and (23) enforces that the energy storage system cannot be charged
or discharged with more power than its rated power. Additionally, a binary variable,
𝑗𝑡𝑠, ensures the battery cannot be charged and discharged simultaneously.

𝑝𝐶𝐻𝐴
𝑡𝑠 ≤ 𝑗𝑡𝑠 · 𝑃𝐵𝐴𝑇 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (22)

𝑝𝐷𝐼𝑆
𝑡𝑠 ≤ (1 − 𝑗𝑡𝑠) · 𝑃𝐵𝐴𝑇 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (23)

Constraint (24) ensures that in, each scenario 𝑠, the energy storage system has at
least the amount of energy required to fulfill the commitment in the up-regulating
FCR-D market.

𝑒𝑡𝑠 ≥
1

𝜂𝐷𝐼𝑆

𝑝𝑈𝑃
𝑡𝑠 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (24)

Constraint (25) ensures that in each scenario 𝑠, the energy storage system has space
to store the amount of energy required to fulfill the commitment in the down-regulating
FCR-D market.

𝑒𝑡𝑠 ≤ 𝐸 − 𝜂𝐶𝐻𝐴𝑝
𝐷𝑁
𝑡𝑠 ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (25)
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4 Scenario generation

This section outlines the methodology for creating price predictions for the FCR-D
markets. Scenarios for the day-ahead market, up- and down- regulation FCR-D
markets, as well as for solar production, are also created for the optimisation model to
account for price and production uncertainty. The scenarios are generated by adding a
residual value to the prediction. Section 4.1 presents the scenario generation for the
day-ahead market prediction. Section 4.2 outlines the method for creating predictions
and generating scenarios for the up- and down-regulating FCR-D markets. Section 4.3
presents the scenario generation for the solar production prediction.

4.1 Day-ahead Market-Price Scenarios

The generation of day-ahead market price scenarios begins with a prediction for
the day-ahead market price. This price prediction model originates from the SKM
Market Predictor platform [64]. The model outputs a single prediction for the Finnish
day-ahead market price with hourly granularity.

To capture uncertainty around this forecast, the historical deviations between past
predictions and actual market outcomes is analyzed. These deviations, referred to as
residuals, represent the errors made by the forecasting model. A distribution is then
fitted to these residuals. The Python package Fitter [65] is used for this purpose, as it
tests a wide range of distributions and selects the best fit. In this case, the best-fitting
distribution for the forecast errors was found to be the dgamma distribution, with
parameters 𝛼 = 0.6096, 𝜃 = 24.58, 𝑙𝑜𝑐 = −0.56. This distribution is illustrated in
Figure 5.

Once the residual distribution is known, scenarios are generated by sampling
residual values from it. For each hour, a residual value is drawn from the dgamma
distribution and added to the corresponding forecasted price. This process is repeated
for as many times as the desired number of scenarios. Each resulting scenario represents
a possible realization of future day-ahead market prices.
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Figure 5: Fitter dgamma distribution for historical day-ahead market price prediction
errors.

4.2 FCR-D Market-price Predictions and Scenarios

The prediction for the market price for FCR-D up and down markets are obtained
by training an Extreme Gradient Boosting (XGBoost) regression model [66] using
historical data from March 2024 to February 2025. Extreme Gradient Boosting
regression model is a machine learning algorithm used to predict continuous outcomes.
It works by building many decision trees one after another, where each new tree
aims to correct the prediction mistakes made by the previous ones. This step-by-step
improvement process is guided by gradient descent, which helps minimize prediction
errors.

The features were selected based on factors expected to influence market prices and
on information available prior to the FCR-D market gate closure. The chosen features
to predict the market price for the XGBoost model are consumption prediction, lag
1-24 values for up- and down-regulating FCR-D market prices, renewable production
prediction, non-renewable production, which is obtained by reducing renewable
production from the production prediction, intraday trading transmission capacity
between Finland and Estonia, Finland and SE1, and Finland and SE3 price zones.
Information from markets that had gate closing time before FCR-D markets are also
added as features. These features include the day-ahead market price, the bought
volumes, and the marginal prices for the mFRR up and down markets. They also
include the volume-weighted average price, traded volume, highest and lowest prices,
and the last trade price from the first intraday auction market (IDA-1). Additionally,
the hour, the day of the week, and the month are included as features. The features
that were used and the sources are listed in Table 1.
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The feature importances of the ten most important features are presented in Figure
6 and Figure 7 for the up- and down-regulating FCR-D market price predictions made
with XGBoost, respectively. Feature importance represents which features have the
most significant impact on a model’s predictions. For a single decision tree, it is
calculated based on how much each attribute’s split point improves the performance
metric, weighted by the number of observations the node is responsible for. These
figures show that the load forecast for the following day is the most important feature
for both price predictions, followed by the lag-1 prices. Some differences can be
observed between the feature importances for the up- and down-regulating FCR-D
prices, e.g., the renewable production prediction is more important in up-regulating
FCR-D price prediction, while nonrenewable production is more important for down-
regulating FCR-D price prediction. For the up-regulating FCR-D price prediction the
importance score ranges from 6 to 408, the least important being the month. Similarly
for down-regulating FCR-D price prediction the range is 8-397.

Table 1: Features and their data sources used in the XGBoost regression model for
FCR-D market price predictions.

Feature Source

Consumption prediction Fingrid Open Data Portal
Lag 1–24 values of FCR-D up market prices Fingrid Open Data Portal
Lag 1–24 values of FCR-D down market prices Fingrid Open Data Portal
Renewable production prediction Fingrid Open Data Portal
Non-renewable production Fingrid Open Data Portal
Intraday trading capacity FI–EE Fingrid Open Data Portal
Intraday trading capacity FI–SE1 Fingrid Open Data Portal
Intraday trading capacity FI–SE3 Fingrid Open Data Portal
Day-ahead market price SKM Market Predictor
Bought volume in mFRR up market Fingrid Open Data Portal
mFRR up market marginal prices Fingrid Open Data Portal
Bought volume in mFRR down market Fingrid Open Data Portal
mFRR down market marginal prices Fingrid Open Data Portal
ID1 volume-weighted average price SKM Market Predictor
ID1 volume SKM Market Predictor
ID1 highest trade price SKM Market Predictor
ID1 lowest trade price SKM Market Predictor
ID1 last trade price SKM Market Predictor
Hour Fingrid Open Data Portal
Day of the week Fingrid Open Data Portal
Month Fingrid Open Data Portal
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Figure 6: Feature importance for up-regulating FCR-D market price prediction.
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Figure 7: Feature importance for down-regulating FCR-D market price prediction.

Data from March 2024 to February 2025 was used to train the model. The training
data had hourly granularity. A train-test split of 75/25, a learning rate of 0.1 and
100 estimators were applied. With these features, the R score for FCR-D down- and
up-market price predictions were 0.781 and 0.710 respectively. The R value of 1 is the
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perfect correlation and 0 means that these is no correlations. Figure 8 shows the actual
down-regulating FCR-D market price in blue and model predicted FCR-D down price
in red. For these prediction indices the R value was 0.81. It can be seen that the prices
are predicted relatively well by the model.

The R-score for FCR-D up price prediction is 0.710. Thus, the model predicts the
prices fairly well. From Figure 9, it can be seen that for these 150 prediction indices
the prediction was very accurate, with an R-value of 0.86. However, the prediction
model occasionally struggles with predicting the height of price spikes.
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Figure 8: Down-regulating FCR-D market price prediction for 150 prediction indices.

0 20 40 60 80 100 120 140
Prediction Index

0

25

50

75

100

125

150

175

Pr
ice

 (
/M

W
h)

R = 0.86

Actual FCR-up price
Predicted FCR-up price

Figure 9: Up-regulating FCR-D market price prediction for 150 prediction indices.

After training the XGBoost models for the up- and down-regulating FCR-D market
prices, they are used to produce hourly price forecasts for a given day. To generate a
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forecast for a specific day, the relevant input features, listed in Table 1, are provided to
the models. Once the inputs are provided, the models outputs predicted hourly prices
for up- and down-regulating FCR-D markets for the following day.

However, in order to account for uncertainty in these predictions and to generate
realistic price scenarios for the model outlined in section 3, it is necessary to model
the forecast errors. This is done by examining the historical residuals, the differences
between the actual market prices and the model’s predictions. A distribution is then
fitted to these residuals with Python’s Fitter package. Using the fitted distribution,
residuals can be sampled and added to the predicted prices, thereby generating
alternative plausible prices.

The best fitting distribution for the historical residuals for down regulating FCR-D
price can be seen in Figure 10. The best fitting distribution for FCR-D down residuals
was a skewcauchy distribution with parameters 𝛼 = 0.328, 𝜃 = 4.647, 𝑙𝑜𝑐 = 1.02. For
the up-regulating FCR-D market prices, the prediction residuals are best described by
a t-distribution. The fitted distribution parameters are 𝜏 = 2.43, 𝜈 = 1.07, 𝜇 = 2.52, as
shown in Figure 11
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Figure 10: Fitted skewcauchy distribution to down-regulating FCR-D price prediction
errors.

33



60 40 20 0 20 40 60
Prediction Error

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity
Prediction Errors
Fitted t-distribution

Figure 11: Fitted t-Distribution to up-regulating FCR-D price prediction errors.

Once the error distributions are fitted, the scenario generation process proceeds as
follows. For each hour, a residual value is sampled from the fitted distribution and
added to the model’s predicted price. This is repeated for as many times as the number
of desired scenarios. Each set of sampled residuals, when added to the forecast, results
in one scenario that reflects a plausible realization of future prices under uncertainty.

4.3 Solar Production Scenarios

Solar production, as all renewable production, is inherently intermittent. Each hour,
the producer faces production uncertainty. Factors affecting solar production are, for
example, solar irradiance, weather conditions such as cloud cover and temperature, and
the time of the day and the year. Thus, making accurate predictions is challenging. To
account for this uncertainty in the model, scenarios for solar production are generated
by introducing variation into the solar power forecast. Specifically, residual values,
representing historical prediction errors, are added to the forecast to produce a set of
plausible alternative production outcomes.

Access to prediction data for a specific solar power plant was not available.
Therefore, solar production prediction data provided by Fingrid, covering the entire
country, was used. The solar prediction was adjusted to the size of the modelled solar
plant. The forecast is updated daily at noon and provides predictions for the following
72 hours. Similarly, actual measured production data from a specific solar power plant
was not available. As a substitute, Finland’s historical solar production data from
ENTSO-E was used and scaled to reflect the size of the modelled solar plant. It should
be noted that this data does not include any curtailment, so all production values are
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assumed to be unconstrained.
Solar production follows a strong daily cycle, typically peaking around midday

and dropping to zero during the night. As a result, the magnitude and variability of
prediction errors also vary by hour. For example, the uncertainty during midday, when
production is high, can be larger in absolute terms than during the early morning or
late evening when production is minimal. To reflect this time-dependent behavior
of uncertainty more accurately, a separate residual error distribution for each hour
of the day is constructed. This means that when generating production scenarios,
the model samples residuals from the distribution corresponding to the specific hour
being predicted. For instance, a residual added to a hour 10 forecast comes from the
distribution fitted to historical prediction errors at hour 10. This approach allows the
model to better capture the characteristics of production uncertainty throughout the
day and avoids applying unrealistic residuals. The residual distribution for each hour
is presented in Table 2.
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Table 2: Best-fit distributions and parameters for each hour.

Hour Distribution Parameters

0 johnson 𝑠𝑢 a = 5.80, b = 0.50, loc = 1.67e-05, scale = 1.70e-08
1 weibull_max c=0.36, loc=9.53e-29, scale=0.05
2 skewcauchy a=-0.94, loc=-2.19e-07, scale=0.01
3 crystalball beta=5.17e-07, m=1.27, loc=0.00, scale=1.89e-09
4 levy l loc=0.02, scale=0.07
5 weibull_max c=0.28, loc=3.57e-28, scale=2.11
6 gausshyper a=1.63, b=0.57, c=1.03, z=0.73, loc=-9.46, scale=9.46
7 mielke k=2.70, s=221.88, loc=-8.76, scale=8.72
8 laplace_asymmetric kappa=2.43, loc=-0.39, scale=0.66
9 genhyperbolic p=0.79, a=0.05, b=-0.02, loc=-0.08, scale=0.03
10 gennorm beta=0.83, loc=0.34, scale=0.49
11 laplace loc=0.70, scale=0.77
12 dgamma a=1.53, loc=0.90, scale=0.56
13 laplace asymmetric kappa=0.40, loc=1.44e-08, scale=0.60
14 genhyperbolic p=0.74, a=8.93e-12, b=8.25e-12, loc=-6.07e-13, scale=1.29e-12
15 johnsonsu a=-1.25, b=0.12, loc=-3.53e-09, scale=9.97e-09
16 cauchy loc=0.00, scale=0.02
17 loglaplace c=0.77, loc=-9.42e-27, scale=0.02
18 kappa3 a=2.26, loc=-7.32e-09, scale=0.01
19 gilbrat loc=-0.00, scale=0.00
20 wald loc=-0.00, scale=0.00
21 betaprime a=0.13, b=2.01, loc=0.00, scale=0.40
22 betaprime a=0.13, b=2.01, loc=0.00, scale=0.40
23 genextreme c=1.29, loc=-0.00, scale=0.00
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5 Case study

In this section, the model introduced in Section 3 is applied to evaluate how different
bidding strategies affect the profits of a hybrid power plant consisting of solar power
and a BESS, operating in the day-ahead and up- and down-regulating FCR-D markets.
The model is run for 30 chosen days with a range of price strategies to identify which
yield the highest profits. The analysis considers seasonal variation in profitability,
examines the operational behavior of the BESS, and compares best pricing strategies
to a naive baseline. Finally, the effect of the energy storage system’s capacity on the
optimal bidding strategy and profits is assessed.

5.1 Input Values and Process of Running the Model

The model is run with different price strategies for 30 days, all spaced 10 days apart.
This time period covers the period from February 3𝑟𝑑 2024 to December 17𝑡ℎ 2024.
As input for the model, predictions for the day-ahead, up-regulating FCR-D, and
down-regulating FCR-D market prices, as well as for solar production, are generated.
For each of the 30 days, 10 scenarios based on these predictions were produced. In the
model, the 10 scenarios were assumed to be equiprobable. The scenario generation
process was outlined in Section 4. Other input parameters include the beta values
that were computed based on the predicted price scenario and the price strategies.
Charging and discharging efficiencies of 0.93 and 0.97, respectively, are used, resulting
in a 0.902 round-trip efficiency, which is common for lithium-ion batteries [27]. The
modelled power plant has a battery with a 10 MWh energy capacity and a 10 MW
power rating which is the same as the maximum bid capacity to FCR-D markets. The
solar park’s capacity is 20 MW and the interconnection capacity is 30 MW.

To assess how different pricing strategies affect profits from a single day, a range of
realistic prices is analyzed for each of the three markets. A single price strategy consists
of three bid offer prices, a day-ahead, up-regulating FCR-D, and down-regulating
FCR-D prices, respectively. Prices ranging from 0 =C/MWh to 4 =C/MWh were chosen
for day-ahead bids and prices from 0 =C/MWh to 10 =C/ MWh for up- and down-
regulating FCR-D bids. Bid prices of 0-4 =C/MWh were chosen for the day-ahead bid
because the marginal cost of solar power is effectively zero. Additionally, although the
average day-ahead price in 2024 was 38.87 =C/MWh, approximately 25% of the hours
had prices below 4 =C/MWh, which justifies lower bids to day-ahead market. Market
regulation requires power producers to bid at their marginal cost or the opportunity
cost. Thus, analyzing non-zero bid prices is justified because energy can be stored in
the BESS and the company is also participating in reserve markets. Therefore, selling
energy at low day-ahead prices may mean foregoing more valuable opportunities
in reserve markets or during peak-price periods in day-ahead markets, which can
be further capitalized through load-shifting. A higher bid price ensures that the bid
is cleared on the day-ahead market when it exceeds the opportunity cost of these
alternative revenue streams.

Bid prices between 0 =C/MW and 10 =C/MW were chosen for both up- and down-
regulating FCR-D markets since it is likely that bids with these prices will be cleared
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in the market regularly. This choice was motivated by the fact that in 2024, the
average FCR-D market clearing prices were 16.56 =C/MW for down-regulation and
17.31 =C/MW for up-regulation. However, a substantial share of hours, 68.15% for
down-regulation and 71.56 % for up-regulation, cleared below 10 =C/MW. Bidding at
higher price levels would significantly reduce the likelihood of being cleared to these
markets.

A set of pricing strategies was created by enumerating all combinations of bid
prices for the day-ahead, up-regulating, and down-regulating FCR-D markets within
the ranges described above. With 5 day-ahead bid prices, and 11 bid prices for both
up- and down-regulating FCR-D, this procedure resulted in 5 x 11 x 11 = 605 pricing
strategies. After generating the price strategies, which represent the prices used for
bidding in the model, beta values are generated to account for uncertainty in market
clearing. This is done by assessing whether the bids made with each price strategy
would be accepted based on the market price predictions developed in Section 4. Betas
are computed as described in Section 3 with constraint (2). Beta is one if the bid is
cleared and otherwise beta is zero.

The model is run for 30 days of data and for each day the model is run for each
of the 605 price strategies. For each strategy and day, the model is run twice: first
to determine the optimal bidding quantities under uncertainty, and then to evaluate
the resulting profit through an out-of-sample analysis. This makes it possible to
find which pricing strategy results in the highest profit for each of the selected days.
The process of running the model for one day and one price strategy is illustrated in
Figure 12. In the first run, predictions for day-ahead market prices, up-regulating and
down-regulating FCR-D market prices, and solar production are used to determine the
optimal bid quantities for each market under uncertainty. In the second run, the profit
resulting from the strategy obtained in the first run is analyzed. This is done by an
out-of-sample analysis, where the model is run with values that are not included in
the data set used in the optimisation of the model. Actual prices for day-ahead and
up- and down-regulating FCR-D markets and the realized solar production are used.
In the second run, the bids obtained from the first run are fixed, and new beta values
are computed using the actual market prices, as previously described. During the
out-of-sample analysis, the model optimizes the operation of the system to fulfill the
commitments with minimal imbalances. There are often at least a few hours where
imbalances are unavoidable during the day, which is common with variable renewable
energy. However, the model minimizes imbalances by modifying both the schedule
and the amount of energy the battery charges and discharges.

After the second run, once the imbalance quantity is acquired, the strategy given
by the first run can be assessed. This is done by computing profits from each market
by multiplying the cleared bid quantity with the corresponding market price. The
imbalance settlement costs for the day in question are then calculated and subtracted
from the profits. The imbalance settlement costs were retrieved from Fingrid’s open
data sets. Possible activation fees received by the company are not considered since
Fingrid does not share data on FCR-D activations. Thus, it is assumed that the FCR-D
commitments are not activated in the analysis of the results.
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Figure 12: Illustration of the process of running the model for one price strategy and
for one day.

5.2 Optimal bidding strategy for the observed 30 days

Breakup of the results from running the model for the chosen 30 days, as described
before, are presented in Table 3. The table presents how the model allocates bids across
different markets, showing the best price strategy, total profit, the bought and sold
power from and to day-ahead market, and capacity bid to down- and up- regulating
FCR-D markets for each day. Seasons of the year are separated by the dash lines.

Out of the chosen 30 days, only three days’ best price strategy out of the observed
price strategies was the naive one. The naive price strategy refers to bidding with the
marginal price, which is effectively zero, on all the observed markets. In the best price
strategy for each day, the day-ahead bid price took values between 0-4 =C/MWh, which
was the tested price range for the day-ahead market prices. Out of the chosen 30 days,
10 had bid price of 4 =C/MWh, 10 had bid price of 2 =C/MWh, 7 had bid price of 0
=C/MWh and the remaining 3 had bid price of 1 =C/MWh for the day-ahead market.
Bid prices for both up- and down-regulating FCR-D markets range from 0 =C/MW to
10 =C/MW.

In the optimum strategy, the company operates on all of the considered markets on
every day, except for one day when the company only sells power to day-ahead market
and capacity to down regulating FCR-D market. The total amount of sold capacity to
the up- and down regulating FCR-D markets were almost 3000 MW for each. The
total power sold to the day-ahead market was 1965 MWh. In the optimum strategy the
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company buys power from the day-ahead market on 12 days. The amount ranges from
under a megawatt to a bit over 20 megawatts. The most common amount to buy was
10 MWh, which equals to one full charge of the BESS.

Table 3: Price strategy, total profit and the bid quantities to the observed markets. A
price strategy consists of bids to day-ahead market (=C/MWh), up- and down-regulating
FCR-D markets (=C/MW).

Price
Strategy

Total profit
(=C)

DA buy
(MWh)

DA sell
(MWh)

FCR-D down
(MW)

FCR-D up
(MW)

(4.0, 4.0, 10.0) 5578.82 0.000 60.309 142.290 70.657
(4.0, 0.0, 0.0) 7014.77 0.000 66.558 131.780 101.506
(4.0, 0.0, 0.0) 7728.25 0.000 32.942 144.137 101.360
(2.0, 6.0, 10.0) 20515.38 0.000 14.113 131.841 88.391
(0.0, 0.0, 0.0) 10384.82 0.000 83.785 160.408 76.359
(4.0, 3.0, 3.0) 7091.77 0.000 103.107 79.997 94.628
(4.0, 0.0, 0.0) 3766.49 0.000 96.189 155.280 72.433
(2.0, 6.0, 10.0) 15514.49 10.000 46.235 34.884 188.656
(2.0, 6.0, 10.0) 17552.14 0.000 111.747 3.021 196.639
(2.0, 2.0, 2.0) 29867.36 0.000 130.997 16.311 217.106
(4.0, 3.0, 0.0) 6678.78 0.000 145.366 91.235 100.799
(0.0, 2.0, 0.0) 2223.98 20.000 62.700 113.656 82.631
(1.0, 4.0, 4.0) 4555.46 20.753 60.283 33.656 113.951
(0.0, 0.0, 0.0) 4617.74 10.000 140.133 99.257 142.582
(2.0, 3.0, 0.0) 3513.78 0.753 74.374 54.420 153.250
(2.0, 7.0, 0.0) 4850.70 10.000 66.909 116.129 110.361
(2.0, 6.0, 10.0) 7564.69 10.000 18.841 21.532 190.146 9
(2.0, 9.0, 0.0) 7621.15 0.000 89.380 146.712 0.000
(0.0, 0.0, 0.0) 4408.51 25.699 58.926 112.263 109.509
(0.0, 2.0, 2.0) 4742.59 15.699 82.215 88.602 123.093
(4.0, 0.0, 3.0) 5185.00 0.000 69.437 83.606 62.253
(4.0, 0.0, 0.0) 9990.78 10.000 33.950 98.801 136.590
(4.0, 0.0, 2.0) 4052.06 15.691 35.488 72.950 137.767
(2.0, 0.0, 7.0) 8564.94 0.000 38.359 133.548 101.748
(0.0, 10.0, 2.0) 3408.36 4.301 50.509 164.302 19.400
(3.0, 8.0, 2.0) 10125.23 0.000 35.340 157.848 49.179
(1.0, 2.0, 5.0) 7358.49 0.000 50.608 68.602 14.453
(0.0, 10.0, 2.0) 11197.06 0.000 30.376 80.624 58.200
(4.0, 0.0, 0.0) 1753.76 0.000 31.961 159.478 64.199
(2.0, 3.0, 9.0) 2434.52 0.000 43.450 81.158 14.625
Total 239861.85 152.90 1964.59 2978.33 2992.47

Table 4 presents the breakup of the profits for the chosen 30 days. Moreover, it
presents how the profits are divided between seasons. The total profit, out of which
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imbalances were reduced, was 239 861 =C. Approximately 21.77 % of the profit came
from the day-ahead market, around 46.30 % came from up regulating FCR-D market
and around 31.92% came from down-regulating FCR-D market. Since the capacity
sold to up- and down-regulating FCR-D markets were about the same, this result
implies that the model was able to capture better prices from the up-regulating FCR-D
market than from the down-regulating FCR-D market.

Table 4: Seasonal breakdown of day-ahead, up-regulating FCR-D profit, and down-
regulating FCR-D profit.

Season DA Profit
(=C)

FCR-D down
(=C)

FCR-D up
(=C)

Spring 14 143.26 32 090.73 15 846.29
Summer 16 673.42 3 204.27 56 514.52
Autumn 14 348.57 17 030.20 21 116.16
Winter 7 051.00 24 244.07 17 599.34
Total 52 216.25 111 076.31 76 569.27

5.3 Comparing Best Pricing Strategies to a Naive One

To understand how much profits can be increased Table 5 presents daily profits that the
company would have obtained with the naive strategy and with the best pricing strategy.
Moreover, the absolute and perceptual differences between the two are presented on a
daily level. Out of the 30 days, on 22 days there was an increase in profits when the
best pricing strategy was used.

The biggest increase between an optimal price strategy for a day and the naive
(0.0,0.0,0.0) strategy was on 30.06.2024 when the percentage increase was 124.12%
and absolute increase was 2522.84 =C. The average daily increase out of the observed
days was 11.40%. The total profit from the 30 days was 5.58% better with the optimized
price strategies than what it would have been if the naive strategy was used.
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Table 5: Comparison in profits between naive and best pricing strategy with absolute
and percentual differences of the profits.

Day Naive strategy
profit (=C)

Best strategy
profit (=C)

Absolute
difference (=C) % Difference

1 5498.72 5578.82 80.09 1.46
2 7014.77 7014.77 0.00 0.00
3 7728.25 7728.25 0.00 0.00
4 19800.11 20515.38 715.26 3.61
5 10384.82 10384.82 0.00 0.00
6 7054.13 7091.77 37.64 0.53
7 3766.49 3766.49 0.00 0.00
8 14863.12 15514.49 651.37 4.38
9 16466.73 17552.14 1085.41 6.59

10 29867.36 29867.36 0.00 0.00
11 6253.84 6678.78 424.94 6.79
12 1612.35 2223.98 611.62 37.93
13 2032.63 4555.46 2522.84 124.12
14 4617.74 4617.74 0.00 0.00
15 3453.76 3513.78 60.01 1.74
16 4511.09 4850.70 339.61 7.53
17 7500.10 7564.69 64.59 0.86
18 7220.05 7621.15 401.10 5.56
19 4408.51 4408.51 0.00 0.00
20 4380.45 4742.59 362.14 8.27
21 3977.07 5185.00 1207.93 30.37
22 9919.31 9990.78 71.46 0.72
23 3789.24 4052.06 262.82 6.94
24 8257.88 8564.94 307.06 3.72
25 3048.63 3408.36 359.72 11.80
26 9489.99 10125.23 635.24 6.69
27 5649.22 7358.49 1709.27 30.26
28 11154.90 11197.06 42.15 0.38
29 1753.76 1753.76 0.00 0.00
30 1718.62 2434.52 715.90 41.66

5.4 The Effect of Seasons on the Profit

Season affects market prices, power consumption, and generation. In Finland, winter
brings high electricity demand due to heating and low solar output, leading to higher
day-ahead prices, while summer sees lower demand and abundant hydro and solar
generation, often resulting in lower or even negative prices. Wind power generation is
often higher in winter, and hydropower peaks during spring. In the FCR-D markets,
down-regulation prices peak in spring (22.04 =C/MWh on average during 2024) and
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are lowest in summer (5.39 =C/MWh on average during 2024). On the other hand,
up-regulation prices are highest in summer (36.03 =C/MWh on average during 2024)
and lowest in winter (9.03 =C/MWh on average during 2024), reflecting seasonal
differences in flexibility and reserve availability. Therefore, relying on a single price
strategy for the entire year may be suboptimal.

For the purposes of this modelling, seasons are defined as follows: spring spans
from March to early May, summer from May to the end of July, autumn from August to
the end of October, and winter includes November through February. This classification
is chosen to reflect solar production, which peaks in June, rather than adhering to
traditional definitions.
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Figure 13: Box plot of seasonal average profits.

Figure 13 contains a box plot where the horizontal line in the middle of the box
represents the median profit. The area between the bottom edge of the box and the
median corresponds to the 25𝑡ℎ to 50𝑡ℎ percentile, while the area between the median
and the upper edge represents the 50𝑡ℎ to 75𝑡ℎ percentile. Values between the upper
and lower whiskers fall within the typical range of the data, excluding outliers, which
are visualized as circles.

From Figure 13, it can be seen that profits are highest during summer and lowest
during autumn. In addition, the variation in profits is greatest during the summer.
The least variation in profits occurs during spring and autumn. Table 6 shows the
total profit of the company with the naive strategy and with the best price strategy in
different seasons. The absolute increase and percentual increase is also stated in the
Table. It shows that the percentual increase in total profit on summer is the highest
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with 7.44% increase. The second highest increase was in the total profits from winter
when the percentual increase was 6.49%.

Table 6: Seasonal comparison of naive and best price strategies.

Season Naive
strategy (=C)

Best
strategy(=C)

Absolute
Difference (=C)

%
Difference

Spring 61 247.29 62 080.30 833.01 1.36%
Summer 71 095.99 76 392.21 5 296.22 7.44%
Autumn 50 088.08 51 894.94 1 806.86 3.61%
Winter 49 762.24 52 994.42 3 232.18 6.49%

5.5 Operation of BESS

During the day-ahead stage, the model creates a schedule for charging and discharging
so that bids to the markets can be fulfilled. During the operating day stage, the BESS
can reschedule charging and discharging based on cleared bids and specified solar
production. The BESS can adapt its behavior in several ways on the operating day: it
can initiate charging or discharging during hours that were originally inactive, adjust
the amount of energy charged or discharged, or even perform the opposite of the
day-ahead plan, for example, discharging when charging was scheduled, or vice versa.
These operational adjustments enable the BESS to respond to deviations between
predicted and actual solar generation, thereby minimizing imbalances.

Figure 14 and 15 illustrate how the BESS adapts its operation on the operating
day compared to the original day-ahead plan. In Figure 14, the charging schedule
shows that while the day-ahead plan scheduled charging during specific hours, the
operating day behavior differs both in timing and magnitude. For example on hour 5,
the BESS is charging, which was not planned in the day-ahead schedule and on hour 7
the charging power is 3 instead of the 10 that was originally planned. Similarly, Figure
15 presents the discharging schedule, where the operating day actions deviate from
the planned discharging hours and quantities.
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Figure 14: Day-ahead charging schedule plan in dark blue and operating day charging
schedule in light blue.
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Figure 15: Day-ahead discharging schedule plan in red and operating day discharging
schedule in orange.

5.6 Seasons Effect on the Operation of the Hybrid Power Plant

The operation of the BESS varies by season. Since the company operates a solar
power plant, solar production fluctuates throughout the year, which in turn affects
how the BESS is operated. Additionally, as previously mentioned, electricity demand
and consumption, and consequently market prices, also change with the seasons. The
average operation of the BESS during different seasons are presented in Figures 16,
17, 18 and 19 for spring, summer, autumn and winter respectively. Each figure has
charging power in orange, discharging power in blue, bought power from day-ahead
market in green and solar power production in gray. Each figure has different scale on
y-axis. Due to the modeling choice represented with constraints (18) and (20), it is
assumed that the BESS’ state of charge is 60% at the end of the day, which affects the
average charging and discharging values on that hour.
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Figure 16 shows the average charging schedule during spring. The BESS typically
discharges during the early hours of the day and begins charging more actively from
around 7 a.m. until approximately 3 p.m. This pattern reflects load-shifting behavior:
the BESS charges during the daytime, when solar production is higher and market
prices are generally lower, and discharges later in the afternoon (around 4–5 p.m.),
when solar production ceases and demand, and thus prices, tend to rise. In spring, it is
also common for the BESS to discharge in the evening. During the observed spring
days, the company did not purchase power from the day-ahead market to charge the
BESS.

The average charging schedule during summer is shown in Figure 17. In summer,
solar production is at its peak, and the BESS is used more. Compared to spring, the
BESS is charged more earlier in the day. In addition to charging from solar, power is
also purchased from the day-ahead market during the day and evening when prices are
lower, allowing for discharge at later hours when higher prices can be captured. As in
spring, the BESS performs load-shifting throughout the summer.

Figure 19 presents the average BESS operation schedule during autumn. Compared
to spring and summer, the charging and discharging pattern aligns more closely with
the solar production curve. The BESS typically discharges around 4 p.m., as solar
generation begins to decline, indicating that load-shifting is also taking place during
autumn. In the evening hours, when solar production is no longer available, the BESS
is more frequently charged with power purchased from the day-ahead market than
during the spring and summer months. Finally, Figure 19 presents BESS’s average
operation during winter. The operation appears more stochastic and does not follow
the solar production curve, which is considerably lower during the winter months.
Charging typically occurs around midday and afternoon, while discharging is more
common during the evening.
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Figure 16: Average operation of the hybrid power plant during spring.
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Figure 17: Average operation of the hybrid power plant during summer.
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Figure 18: Average operation of the hybrid power plant during autumn.
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Figure 19: Average operation of the hybrid power plant during winter.

A summer day is used to illustrate BESS operation during the season when
solar power production is at its highest and most of the profit is generated. While
average values are presented in Figure 17, deeper insight into BESS operation during
high-activity periods can be gained by examining a specific summer day, as important
variations in charging and discharging behavior may be obscured by the averaging
process. Although Figure 20 represents just a single day, it is indicative of the typical
BESS operation pattern observed throughout the summer.

On the observed day, the BESS begins by charging with power purchased from
the day-ahead market and discharges it in the following hour. As solar production
increases, the BESS charges again and discharges on hour 5. Later in the day,
another charge–discharge cycle occurs, by using power from the day-ahead market.
Additionally, the BESS performs load-shifting by charging at 3 p.m. and discharging
at 4 p.m.
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Figure 20: A battery’s operation schedule presented on a summer day.
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5.7 Effect of Battery Capacity on Optimal Bidding Strategy

To analyze how profits and best price strategies vary with different BESS capacities,
the model is run for the same day using battery capacities ranging from 1 to 20 MW.
The profits are then evaluated using the optimal pricing strategy for each battery
capacity. While results are shown for a single day, similar increases in profit and
changes in the optimal bidding strategy were observed across other days as well.

The results are presented in Table 7. The table presents the profit, increase in
profit compared to a one size smaller BESS and the optimal price strategies for each
battery size. It can be seen that the profits increase linearly with the size of the battery.
However, the increase is a bit steeper with BESS sizes 1-5 MW. The increase in profit
per 1 MW additional battery is in range 377.13-543.25 =C for battery sizes 1 - 20
MW and the average increase in profit is 424.00 =C/MW for the observed day. From
Table 7 it can also be seen that optimal bid prices change only slightly when battery
capacity increases. The down-regulating FCR-D bid price stays constant at 3.0 =C/MW
regardless of the battery capacity. Similarly, the day-ahead bid price does not change
as the battery capacity increases. The up-regulating FCR-D bid price changes slightly
with battery capacities. It alternates between 0 =C/MW and 2 =C/MW.

The payback period for different battery sizes is presented in Figure 21. It is
assumed that the cost of a BESS is 200 000 =C/MW and increases linearly with the
capacity. It can be seen that as the BESS size increases, the rate of increase for the
payback period slows down. This means that for a larger BESS it takes comparatively
fewer days to pay back for itself compared to smaller installations.
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Figure 21: The figure presents the payback period in days with increasing BESS
sizes.
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Table 7: Best price strategies and corresponding profits for battery sizes from 1 to
20 MW. A price strategy consists of bids to day-ahead market (=C/MWh), up- and
down-regulating FCR-D market (=C/MW). The last column shows the profit difference
compared to the previous battery size.

Battery capacity
(MW)

Price
strategy

Profit
(=C)

Increase in
profit (=C/1 MW)

1 (4.0, 2.0, 3.0) 1141.85
2 (4.0, 2.0, 3.0) 1653.25 511.40
3 (4.0, 0.0, 3.0) 2163.26 510.01
4 (4.0, 2.0, 3.0) 2688.97 525.71
5 (4.0, 0.0, 3.0) 3232.22 543.25
6 (4.0, 2.0, 3.0) 3609.35 377.13
7 (4.0, 2.0, 3.0) 4006.16 396.81
8 (4.0, 2.0, 3.0) 4400.35 394.19
9 (4.0, 0.0, 3.0) 4791.33 390.98
10 (4.0, 0.0, 3.0) 5185.00 393.67
11 (4.0, 0.0, 3.0) 5578.67 393.67
12 (4.0, 0.0, 3.0) 5972.33 393.66
13 (4.0, 0.0, 3.0) 6366.00 393.67
14 (4.0, 0.0, 3.0) 6759.67 393.67
15 (4.0, 0.0, 3.0) 7153.33 393.66
16 (4.0, 0.0, 3.0) 7561.35 408.02
17 (4.0, 2.0, 3.0) 7962.15 400.80
18 (4.0, 2.0, 3.0) 8374.06 411.91
19 (4.0, 2.0, 3.0) 8785.98 411.92
20 (4.0, 2.0, 3.0) 9197.89 411.91
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6 Conclusion

This thesis presented a stochastic optimisation model designed to maximize the profits
of a Finnish market participant operating a solar power plant and a BESS. The
model focused on bidding strategies in the day-ahead market and in both up- and
down-regulating FCR-D markets. In addition, scenario generation methods were
used to form estimates to account for uncertainty in day-ahead market prices, up- and
down-regulating FCR-D market prices and solar power production. The scenarios
were used to find the optimal bidding strategy in a case study in the Finnish context
and on data from 2024. The model was used to analyse how much the profits could be
increased by a better price strategy instead of the naive strategy. Moreover, seasonal
differences in profits were analyzed. Finally, the effect of the capacity of the energy
storage system on the optimal bidding strategy and profits were analyzed.

The results show that with an optimal bidding strategy for day-ahead and up-
and down-regulating FCR-D markets, a producer can get higher revenue than just
by bidding with the zero marginal cost. The improvement was dependent on the
season and the size of the BESS. Over the 30 chosen days in 2024, the total profit was
increased 5.58% when the optimized price strategy was used every day, compared to if
the naive strategy was utilized. The profit gains were seasonally dependent: the largest
increase in profits occurred during summer (7.44%), primarily due to higher solar
production and increased profits from up-regulating FCR-D market. It was shown
that the BESS enables load-shifting and alters its behavior on the operating day to
minimize imbalances caused by the prediction errors. The results also showed that
profits increase nearly linearly with battery size, with an average gain of 424 =C on the
observed day per additional MW.

The results show that the BESS schedule on the operating day often deviates
from the schedule determined on the day-ahead. These deviations include changes
in the timing and magnitude of charging and discharging, and in some cases, even
reversing the planned operation. Thus, the BESS can react to unexpected deviations in
solar production. By adjusting its operation in real time, the BESS helps minimize
imbalances and increases the profitability of the hybrid power plant. Seasonal analysis
reveals how BESS operation is shaped by the variability of solar production and shifts
in electricity market prices. In spring and summer, high solar output and favorable
FCR-D market prices enable efficient load-shifting, with the BESS charging during
daylight hours and discharging during peak price periods. Summer, in particular,
represents the most active and profitable period for the hybrid power plant, as it
combines high solar availability with strategic bidding. In contrast, autumn and
especially winter present more constrained conditions, with the BESS relying more on
market purchases and exhibiting less predictable operational patterns due to limited
solar input. This thesis did not account for BESS degradation. These results could
differ if battery degradation had been taken into account, as it can influence the optimal
operation of the power plant [67]. Furthermore, when charging the BESS with solar
production, fluctuations in solar power production can lead to additional degradation,
which were also not considered in this thesis [68].

There are several areas in which the current model and methodology could be
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improved or extended in future work. First, improvements in scenario generation could
lead to better profit. More accurate forecasting of solar power production could reduce
imbalances between predicted and actual solar production and thus reduce imbalance
settlement costs. Moreover, in addition to using different solar residual distributions
for each hour of the day, scenario accuracy could be further improved by tailoring
these distributions to different seasons, better capturing seasonal variation in forecast
errors. Similarly, more precise market price predictions could allow the model to
allocate the bids across markets more precisely to capture the best price available.
Secondly, the current model relies on a limited set of predefined price strategies. While
these provided a reasonable basis for optimisation, it is possible that the true optimal
price strategy is outside the tested combinations. Incorporating a broader range of
price strategies, or implementing a search algorithm could lead to finding better price
strategies. Another limitation is that the solar production and prediction data used in
this thesis does not originate from an actual operating solar power plant. Although it
reflects realistic patterns, the use of real production data could increase the validity
and reliability of the results. Additionally, the requirement for the BESS to have a
60% state of charge at the end of the day may have influenced the results. Lastly, this
thesis analyzes only 30 individual days, which limits the robustness of the results.
More reliable insights could be obtained by extending the analysis, e.g., to a full year.
With a limited number of days, random events can have large impact on the results,
especially when comparing seasonal differences.

Regarding practical applicability, the framework developed in this thesis offers
valuable insights, but the results may not fully reflect the profits that could be achieved
in reality. For example, the simplifying assumption that bids to the day-ahead and
FCR-D markets are submitted simultaneously can effect the outcome. Additionally,
this thesis focused on the day-ahead market and up- and down-regulating FCR-D
markets. Participation in other markets, such as aFRR, or intraday markets, could
potentially yield different outcomes. Including these markets in future work could
provide a more comprehensive view of market opportunities for hybrid systems.
Lastly, the results may change once the 15-minute time resolution is implemented in
the Finnish day-ahead market, as it could enable more precise scheduling and better
alignment between solar production, battery operation, and market participation.

Despite its limitations, this thesis demonstrates the value of optimizing bidding
strategies across multiple markets and leveraging load shifting, as the model effectively
utilizes the BESS to enhance the value of zero-margin solar generation and improve
overall profitability by minimizing imbalance settlement costs. This multi-market
approach can increase profit and improve the overall economic viability of a VRE
system coupled with BESS. These results are valuable given the challenges of
maintaining profitability for variable renewable energy sources in the current Finnish
day-ahead market.
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