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Abstract
This thesis investigates the design of automated market makers (AMMs) for trading
tokenized derivatives in decentralized finance. Motivated by the limitations of existing
AMMs, which only permit strictly positive prices, we introduce an invariant that also
allows for negative prices. As a primary use case, the thesis develops an AMM for
trading an offset token against tokenized euros.

The thesis employs, on the one hand, a Monte Carlo–based simulation to evaluate
the risk-adjusted returns of an AMM. The simulation includes two types of traders:
arbitrage traders, who exploit price deviations between the AMM and the fair value,
and noise traders, who represent demand for liquidity. On the other hand, we introduce
KPIs such as impermanent loss and market depth.

The goal of the thesis is to analyse whether these KPIs can be used to predict the
risk-adjusted returns of an AMM.

Keywords AMM, Impermanent Loss, Market Depth, Geometric Brownian Motion,
Invariant Design, Arbitrage Trader, Noise Trader
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Abbreviations and Notation
Abbreviations
AMM Automated Market Maker
CI Confidence Interval
DEX Decentralized Exchange
DLT Distributed Ledger Technology
GBM Geometric Brownian Motion
IL Impermanent Loss
KPI Key Performance Indicator
LP Liquidity Provider
MD Market Depth
SR Sharpe Ratio
Std Standart Deviation
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Notation
𝛼 Offset token traded in the AMM, whose fair value may be

positive or negative.
𝛽 Tokenized euro used as the reference currency in the AMM.
D Set of days in the simulation horizon.
T Set of discrete time points at which trades may occur.
𝑁 Time from emission to maturity of the offset token, measured

in days.
(𝑅𝛼, 𝑅𝛽) Reserve state of the AMM, representing the quantities of 𝛼

and 𝛽 held by the pool.
(𝑅𝛼 (𝑡), 𝑅𝛽 (𝑡)) Reserve state of the AMM at time point 𝑡 ∈ T .
(𝑅𝛼 (𝑣𝛼), 𝑅𝛽 (𝑣𝛼)) Reserve state at which the AMM spot price of 𝛼 equals 𝑣𝛼

(i.e. 𝑝(𝑅𝛼) = 𝑣𝛼).
𝑝(𝑅𝛼) Spot price of 𝛼 quoted by the AMM as a function of the

reserve level 𝑅𝛼.
𝑝̄(𝑅𝛼,Δ𝛼) Average execution price of a trade of size Δ𝛼.
(Δ𝛼,Δ𝛽) Changes in AMM reserves induced by a single trade.
(Δ𝛼 (𝑡),Δ𝛽 (𝑡)) Changes in AMM reserves due to the trade executed at time

point 𝑡.
𝛿(𝑡) Indicator function taking value 1 if a trade is executed at time

𝑡 ∈ T , and 0 otherwise.
𝜅 Fee parameter determining the transaction fee charged per

traded offset token.
𝜏 Price sensitivity parameter used in the definition of market

depth.
𝑚 Mean trade size of noise traders.
𝑠 Log-standard deviation of noise-trader trade sizes.
𝜆 Expected number of noise-trader arrivals per day.
𝜀 Price sensitivity of noise traders with respect to deviations

from fair value.
Tarbitrage Set of time points at which the arbitrage trader executes a

trade.
Tnoise Set of time points at which noise traders execute trades.
V𝛼 Set of all possible fair-value time series of the offset token 𝛼.
𝑋profit Random variable representing the (risk-adjusted) total profit

of the AMM over a simulation path.
𝑋 revenue Random variable representing the total fee revenue earned

by the AMM.
𝑋cost Random variable representing the total trading cost or loss

incurred by the AMM.
𝑋 IL Random variable representing the theoretical impermanent

loss induced by the fair-value distribution of 𝛼.
𝑋depth(𝜏) Random variable representing the aggregated market depth

of the AMM for price sensitivity parameter 𝜏.
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1 Introduction
1.1 Motivation, Market Context, and Blockchain Fundamen-

tals
Distributed-ledger technology (DLT) has evolved into critical financial infrastructure,
handling trillions of euros each year. Decentralized exchanges (DEXs) alone processed
more than $1.76 trillion in trading volume in 2024, an increase of 89 % year-on-year [1].
These figures illustrate that on-chain liquidity provision is no longer a niche activity
but is rapidly becoming a core component of global capital markets.

A blockchain can be understood as a shared database that is maintained and updated
by many computers simultaneously. All participants observe the same version, and
once information is added, it cannot be altered. This enables strangers to agree on a
common record without trusting a single authority.

On top of this, there are so-called Smart Contracts, which are programs that can
modify the shared database. This makes it possible to create an on-chain exchange
venue. When executed, multiple computers must run the program in parallel to ensure
that changes to the shared database are correct. Consequently, executing data-intensive
and computationally demanding programs is expensive and therefore undesirable.

Tokens are digital objects recorded on the blockchain. They can represent almost
anything. Examples from finance include cryptocurrencies, fiat currencies such as
USD or EUR, financial instruments such as bonds or shares, and derivatives such
as swaps or futures. They can also represent non-financial items, for example the
ownership of a picture, a flight ticket, or a physical book. Ultimately, tokens themselves
are also smart contracts that encode the rules governing their own creation, ownership,
and transfer. In chapter 2 we describe that in more detail.

In this thesis, we consider two types of tokens. The first, denoted by 𝛼, is an offset
token that has properties similar to a futures contract in traditional finance (offset token,
futures, and the similarities and differences between them are explained in greater
detail in Section 2.4). The second, denoted by 𝛽, represents tokenised currency, in our
case the euro. This notation (𝛼, 𝛽) will be used consistently throughout the thesis.

1.2 From Order Books to Automated Market Makers
Early on-chain exchanges attempted to replicate the order book used in traditional
finance. An order book is a list of outstanding buy and sell offers; whenever the highest
bid meets the lowest ask, a trade occurs. While this approach works well in traditional
finance, implementing it as a smart contract has significant drawbacks: it is highly
data-intensive and computationally demanding, making it expensive and generally
undesirable.

Automated Market Makers (AMMs) have been introduced as a more computa-
tionally efficient alternative. Instead of collecting and matching individual orders, an
AMM holds reserves of two tokens, 𝛼 and 𝛽. These reserves must always satisfy a
predefined mathematical rule, known as the invariant of the AMM, if the reserves
hold the invariant, they are said to be in a valid state. Anyone can trade against these
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reserves: when token 𝛼 is deposited, the invariant determines the corresponding
amount of token 𝛽 that is exchanged. As a result of the trade, the reserves of tokens 𝛼
and 𝛽 are updated.

The corresponding amount of 𝛽 the trader receives, and the number of 𝛽 per 𝛼 (i.e.,
the AMM-quoted price of 𝛼), is determined by the current reserves and the invariant
(concepts such as price and fair value are discussed in Section 2.2). Each trade changes
the reserves and adjusts the price for future trades. Figure 1 illustrates the process of
how the AMM reserves change when two traders consecutively sell to the AMM.

This mechanism ensures that trades can be executed immediately without waiting
for a matching order.

1 2

1

2

𝑅𝛼

𝑅𝛽

Initialization

Start: The invariant (blue line)
covering all possible states of the

AMM. The initial reserve is
(0.5𝛼, 2𝛽).

1 2

1

2

𝑅𝛼

𝑅𝛽

First trade

First trader sells 0.5𝛼, he
receives 1𝛽. AMM reserves
changed to (1𝛼, 1𝛽). The
average price of 𝛼 is 2𝛽.

1 2

1

2

𝑅𝛼

𝑅𝛽

Second trade

Second trader sells 0.5𝛼, he
receives only 0.33𝛽. AMM

reserves changed to
(1.5𝛼, 0.67𝛽).The average price

of 𝛼 is 0.66𝛽.

Figure 1: Visualization of AMM initialisation to trade 𝛼 against 𝛽. It shows that the
trader gets more per 𝛼 when the AMM has fewer 𝛼 tokens compared to when it has
more 𝛼 tokens.

1.3 Use Cases, Research Questions, and Methodology
The mechanisms described above illustrate how AMMs enable trading of tokens
without relying on traditional order books or intermediaries. They form a central
building block of today’s decentralised finance (DeFi) ecosystem.

In recent years, decentralised finance has expanded beyond cryptocurrencies.
One notable example is the issuance of a =C60 million tokenised bond on a public
blockchain in 2023 [2]. In this context, tokenisation means that investors did not hold
a traditional bond certificate but instead received tokens representing it. Ownership of
these tokens conveys the right to receive coupon payments and repayment of principal
at maturity. This concept can be extended to derivatives. Owning tokens from a
tokenised derivative means that, depending on the underlying’s performance, the
holder is either required to pay or eligible to receive money.
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This thesis considers a financial setting in which not only bonds but also derivatives
such as swaps, futures, and options are tokenised.

In this setting, it is desirable to enable trading of such tokenised derivatives on an
entirely on-chain decentralised exchange, as this would allow market participants to
transact without relying on intermediaries. Yet designing a suitable market mechanism
faces two key challenges. First, a fully on-chain implementation of an order book is
data-intensive and computationally expensive. Second, the current methodology of
invariants restricts the average price of a trade to strictly positive values.

To address these challenges, this thesis introduces invariants that allow the price
quoted by an AMM to be negative. Figure 2 shows how an invariant can produce
negative prices.

2 4 6

1

2

𝑅𝛼

𝑅𝛽

Positive price

Initial reserves are (2𝛼, 1𝛽). First trader sells
1𝛼, he receives 0.75𝛽. AMM reserves

changed to (3𝛼, 0.25𝛽). The average price of
𝛼 in this trade is 0.75𝛽.

2 4 6

1

2

𝑅𝛼

𝑅𝛽

Negative price

Initial reserves are (5𝛼, 0.25𝛽). First trader
sells 1𝛼, additionally needs to pay 0.75𝛽.
AMM reserves changed to (1𝛼, 1𝛽). The
average price of 𝛼 in this trade is −0.75𝛽.

Figure 2: Visualization of negative and positive prices.

As the primary use case, we develop an AMM that holds the two tokens: The
offset token 𝛼 and the tokenized euro 𝛽.

The objective of this thesis is to answer the research question: How can Automated
Market Maker (AMM) models be designed to support negative prices, and to what
extent do aggregated market depth and impermanent loss determine the risk-adjusted
profitability of liquidity providers of AMMs that allow negative prices? The first part is
already partially answered, but we will explore it further and introduce a class called
the Power Sum Invariant.

We address the second part through a five-step process (as illustrated in Figure 3).
First, we draw 256 invariants from the Power Sum Invariant class (introduced in
section 3.3).

In the second step, we simulate 100 fair-value time series of 𝛼, where a fair-value
time series is defined as a sequence of simulated fair-value estimates of an asset with one
value per day over a one-year horizon. The dynamics are generated using a modified
version of geometric Brownian motion (GBM), a stochastic process commonly used
to model asset prices. In our setting, GBM is employed to simulate the fair value of
the underlying asset and, through the offset, the fair value of the offset token.
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Figure 3: Process steps to evaluate the connection between KPIs and the simulation:
Draw 256 invariants; run the simulation and calculate KPIs for each invariant; compare
the results. Note: 𝑋 𝑝𝑟𝑜 𝑓 𝑖𝑡

𝑓𝑖
= 𝑋𝑟𝑒𝑣𝑒𝑛𝑢𝑒

𝑓𝑖
− 𝑋𝑐𝑜𝑠𝑡

𝑓𝑖

In the third step, we set up an agent-based trading simulation in which traders
interact with the AMM according to predefined rules by buying and selling 𝛼 against 𝛽.
The agent-based model consists of an arbitrage trader and noise traders. The arbitrage
trader seeks to maximize profit by exploiting the difference between the AMM-quoted
price and the fair value of 𝛼. The noise trader represents liquidity demand and trades
for reasons unrelated to arbitrage.

In the fourth step, we use these Fair Value Time Series to estimate key performance
indicators such as impermanent loss (i.e., the opportunity cost LPs face when providing
liquidity compared to holding the offset token) and market depth (i.e., how many offset
tokens a trader can buy or sell such that the average price of that trade remains within
a given range), based on the market environment.

Finally, in the fifth step, we analyse the extent to which profit and risk-adjusted
return are determined by impermanent loss and market depth.

1.4 Thesis Structure
The remainder of this thesis is structured as follows. Chapter 2 presents the funda-
mentals for Automated Market Makers (AMMs) that can support both positive and
negative prices. It introduces the conceptual design of the offset token and illustrates
the underlying mechanics through numerical examples. Chapter 3 formalises the
AMM framework by defining the mathematical structure, including invariants, reserve
dynamics, axioms, and the specific invariant family analysed in this work. Chapter 4
presents the simulation environment. It describes the market setup, trader models,
and the stochastic process used to generate the fair value time series that drive the
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trading dynamics. Chapter 5 defines the key performance indicators used to evaluate
AMM behaviour, with a focus on impermanent loss and market depth. The chapter
also discusses their theoretical relationship to revenue and cost. Chapter 6 reports the
simulation results. It compares simulated outcomes with the KPIs and proposes a
method for predicting risk-adjusted profitability based on these indicators.

Finally, Chapter 7 summarises the contributions of the thesis, discusses limitations,
and outlines potential directions for future research on AMM design for derivative
tokens.
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2 Fundamentals of Automated Market Makers
This chapter aims to provide intuition for AMMs and, in particular, AMMs that allow
negative prices. Throughout this chapter, we neglect fees, as the goal is to provide
intuition for how AMMs with negative prices work.

2.1 Motivation of the Invariant
To illustrate the behavior of an AMM, we use an invariant 𝑓 that allows negative
prices. Let 𝐴 be an AMM with invariant 𝑓 . Generally, it is clear from context that
a function 𝑓 is the invariant of a given AMM, if there is uncertainty, we write 𝑓𝐴
to clarify that it is the invariant of AMM 𝐴. The trader buys or sells Offset Tokens
(denoted by 𝛼) against euros (denoted by 𝛽). Hence, 𝐴 holds reserves of 𝛼 and 𝛽. Let
𝑅𝛼 be the amount of 𝛼, and 𝑅𝛽 the amount of 𝛽 held by the AMM 𝐴, implying

𝑅𝛽 = 𝑓 (𝑅𝛼).

The first challenge is designing an invariant that allows both negative and positive
prices. An AMM is typically designed such that if the fair value of 𝛼 decreases, the
AMM ends up holding more 𝛼. To limit downside exposure, the invariant should
ensure that the AMM has a theoretical maximum amount of 𝛼. Let this upper bound
be 10. The invariant needs to be constructed so that it becomes infinitely expensive to
move 𝑅𝛼 to 10, just as it should be infinitely expensive to drain the pool (i.e., to move
𝑅𝛼 to 0).

The invariant
𝑓1(𝑅𝛼) =

1
10 − 𝑅𝛼

ensures that 𝑅𝛼 always remains below 10. The invariant

𝑓2(𝑅𝛼) =
1
𝑅𝛼

ensures that 𝑅𝛼 always remains above 0. Adding these two functions yields the
invariant

𝑓 (𝑅𝛼) = 𝑓1(𝑅𝛼) + 𝑓2(𝑅𝛼) =
1
𝑅𝛼

+ 1
10 − 𝑅𝛼

,

which combines both properties. We refer to the property that 𝑅𝛼 can never reach the
lower bound 0 nor the upper bound 10 as the boundary behavior.

Additionally, we want the price of 𝛼 to be low when the AMM holds a large
amount of 𝛼, and high when it holds only a small amount. Figure 4 illustrates this
behavior, which we formalize in Chapter 3. One final remark regarding the invariant
𝑓 : in the right-hand plot of Figure 4, we observe that 𝑓 is defined so that the reserves
always contain at least 0.4𝛽, which cannot be removed. Therefore, we slightly modify
the invariant by subtracting a constant 𝑐 = 0.4, giving

𝑓 (𝑅𝛼) =
1
𝑅𝛼

+ 1
10 − 𝑅𝛼

− 0.4.
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2 4 6 8 10

1
2
3
4
5
6

𝑅𝛼

𝑅𝛽

Upper-bound barrier via 𝑓1

Idea: As 𝑅𝛼 approaches 10
from the left, 𝑓1 tends to ∞.
Effect: Selling 𝛼 becomes

prohibitively expensive near 10,
so the AMM state stays < 10.

2 4 6 8 10

1
2
3
4
5
6

𝑅𝛼

𝑅𝛽

Lower-bound barrier via 𝑓2

Idea: As 𝑅𝛼 approaches 0 from
the right, 𝑓2 tends to ∞.

Effect: Buying 𝛼 becomes
prohibitively expensive near 0,
so the AMM state stays > 0.

2 4 6 8 10

1
2
3
4
5
6

𝑅𝛼

𝑅𝛽

Combined invariant 𝑓 = 𝑓1 + 𝑓2

Idea: Summing 𝑓1 and 𝑓2 adds
both barriers.

Effect: The 𝛼 reserve is always
in the interval (0, 10) with

increasing cost near both ends.

Figure 4: Boundary-enforcing invariants. The combined invariant on the right
combines the properties of discouraging approaching 𝑅𝛼 → 0 and 𝑅𝛼 → 10.

2.2 Price, Fair Value, and AMM Price Discovery
In this thesis, we frequently refer to both the price of 𝛼 and the fair value of 𝛼. Because
the framework includes tokens that may have negative prices, this section introduces
these concepts and explains how prices behave in AMMs compared with order-book
markets.

Fair Value and Price

A definition of price, according to the IMF, is “A price is the amount of money a buyer
gives a seller in exchange for a good or a service." [3]. Based on this, we define the
fair value of a financial instrument (which is an economic good) as the price at which
it would trade in a perfectly efficient market. In this thesis, if 𝛼 has a fair value of 1,
we assume that a trader can buy and sell 𝛼 for 1 in an external market in arbitrarily
large quantities. By external market, we mean a trading venue that is not the AMM.
Price impact in that external market is ignored.

Throughout the thesis, when we refer to the price of a token, we mean the AMM
price. This is the amount of money required to purchase a token from an AMM,
determined solely by the AMM’s invariant, its reserves, and the trade size. It does not
depend on the fair value. However, as discussed in Section 4.2.2, arbitrage traders
continually realign the AMM price with the fair value.

Prices are measured in 𝛽

𝛼
. For example, we may say that the price of 𝛼 is 2𝛽 or the

fair value of 𝛼 is 2𝛽. When the context is clear, we omit 𝛽 and simply write that the
price or fair value is 2.
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Negative Prices

Negative prices arise when holding an asset consists of both rights and obligations. If
the obligation exceeds the expected revenue, the net value becomes negative; if the
expected revenue exceeds the obligation, the value becomes positive.

Formally, let an asset generate an expected cash flow 𝑅 and require fulfilling an
obligation of size 𝐿. The fair value is

Fair Value = 𝑅 − 𝐿.

If 𝑅 < 𝐿, the value is negative, meaning holders must be compensated for taking on
a net liability. Such situations occur when the obligations associated with an asset
outweigh the rights it confers.

Spot Price

When discussing the AMM price so far, we have considered the average trade price
for 𝛼, which depends not only on the current state of the AMM but also on the trade
size. Larger purchases of 𝛼 are more expensive due to the shape of the invariant. To
obtain a unique metric that reflects the AMM price at a specific moment, we introduce
the spot price—the average price of 𝛼 in a trade in which an infinitesimally small
amount of 𝛼 is bought or sold (see Figure 5).

1 2 3 4

1

2

3

4

𝑅𝛼

𝑅𝛽
Spot price

Figure 5: The average price of a trade
can be interpreted as the negative slope
of the secant line connecting the old
state and the new state (grey). If we let
the trade size approach 0, the secant
becomes a tangent (black) and its neg-
ative slope is the spot price.

0.5 1 1.5 2

0.5

1

1.5

2 tangent slope = −4

tangent slope = −1

tangent slope = − 1
4

𝑅𝛼

𝑅𝛽
Spot price movement through arbitrage

Figure 6: Fair value changes from
𝑝old = 1

4 to 𝑝new = 4. Arbitrage moves
the AMM state along 𝑦 = 1

𝑥
from

(2, 0.5) to (0.5, 2) until the instanta-
neous price (negative tangent slope)
equals 4.
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Price Discovery and Fair Value Adjustments

We now analyze how changes in the fair value of 𝛼 affect the spot price in an AMM
compared with an order-book exchange. The argument relies on rational trader
behavior, as outlined in the introduction.

Suppose the fair value of 𝛼 increases from 𝑝1 to 𝑝2. In an order-book exchange,
rational sellers—observing the new fair value—will not accept prices significantly
below 𝑝2. All outstanding sell orders below 𝑝2 are therefore canceled, and the spot
price jumps immediately to 𝑝2.

An AMM, however, does not observe the fair value. It quotes prices solely based
on its reserves and invariant. A rational arbitrageur buys 𝛼 as long as the AMM’s spot
price lies below 𝑝2. Each arbitrage trade increases the spot price according to the
invariant until it converges to 𝑝2 (see Figure 6). At that point, further arbitrage profits
disappear.

Thus, unlike order-book markets, AMMs cannot adjust instantaneously to changes
in fair value. At least one arbitrage trade is required to realign the AMM spot price
with the new fair value. This mechanism corresponds to the arbitrage-trader behavior
introduced in Section 4.2.2.

2.3 Illustrative Example
To illustrate the mechanism of the invariant

𝑓 (𝑅𝛼) =
1
𝑅𝛼

+ 1
10 − 𝑅𝛼

− 0.4,

we go through the first few steps in the lifecycle of the AMM. Initially, the fair value
of 𝛼 (i.e., the offset token) is 0, so the LPs initialize the reserves such that the spot
price is 0. This is the case for

(𝑅𝛼, 𝑅𝛽) = (5, 0).

Now a trader wants to sell 1𝛼, i.e., Δ𝛼 = 1. To determine the amount Δ𝛽 of 𝛽 that the
trader pays or receives, we consider the state after the trade is executed. The state after
the trade is (𝑅new

𝛼 , 𝑅new
𝛽

), with

𝑅new
𝛼 = 𝑅𝛼+Δ𝛼 = 5+1 = 6, 𝑅new

𝛽 = 𝑓 (𝑅new
𝛼 ) = 1

6
+ 1

10 − 6
−0.4 =

1
6
+1

4
−0.4 ≈ 0.0167.

Hence,
Δ𝛽 = 𝑅new

𝛽 − 𝑅𝛽 ≈ 0.0167 − 0 = 0.0167.

The trader gives 1𝛼 to the AMM and receives approximately −0.0167𝛽, meaning they
effectively pay 0.0167𝛽 to the AMM. The average price of 𝛼 in this trade is therefore

−0.0167
1

= −0.0167.

We see that the trader needs to pay more compared to selling all of 𝛼 at the current
spot price; this cost is called slippage.
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Now the fair value of 𝛼 changes to −1. The current state of the AMM is

(𝑅𝛼, 𝑅𝛽) = (6, 0.0167).

The effect described in Section 2.2 now takes place. The AMM state where the spot
price equals −1 is approximately at 𝑅new

𝛼 ≈ 9. Thus, an arbitrage trader would buy

Δ𝛼 = 𝑅new
𝛼 − 𝑅𝛼 = 9 − 6 = 3

tokens of 𝛼 from an external market. The arbitrage trader receives 3𝛼 and 3𝛽 from the
external market. The amount Δ𝛽 the arbitrage trader pays to the AMM is determined
through

𝑅new
𝛽 = 𝑅𝛽 + Δ𝛽,

and 𝑅new
𝛽

must satisfy
𝑓 (𝑅new

𝛼 ) = 𝑅new
𝛽 .

Thus,

Δ𝛽 = 𝑓 (𝑅new
𝛼 ) − 𝑅𝛽 =

(︃
1
9
+ 1

1
− 0.4

)︃
− 0.0167 ≈ 0.689.

This means the arbitrage trader makes a profit of 2.311𝛽.
The LPs initializing the AMM held 5𝛼 and 0𝛽. Had they simply held these tokens,

their position would now be worth −5𝛽 (called the HODL strategy1). Instead, as
liquidity providers, they now have 9𝛼 and 0.689𝛽, which is worth −8.311𝛽 (the LP
strategy). The difference between the HODL strategy and the LP strategy is called
impermanent loss, previously described as the opportunity cost of providing liquidity.
The LPs’ portfolio is now worth 3.311𝛽 less than the HODL alternative. It is called
impermanent loss because when the fair value of 𝛼 returns to 0, the loss disappears
(that is also the reason why it is called impermanent loss, as the loss is impermanent
and can disappear).

2.4 Comparison between Traditional Finance and Decen-
tralized Finance

We introduced the offset token as a token that can have a negative fair value and
described it as a financial instrument similar to a future. We begin by explaining a
futures contract and then introduce a detailed description of what an offset token is,
highlighting similarities and differences between an offset token and a future. In the
second part, we compare how Automated Market Makers relate to market makers in
traditional finance and how AMMs compare with order-book-based trading venues in
traditional finance.

1HODL: Originally a typo for "hold", now used as an acronym for "hold on for dear life", i.e., a
buy-and-hold strategy
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Futures

Futures are standardized derivative contracts traded on organized trading venues. They
specify the obligation to buy or sell a particular underlying asset at a predetermined
price on a defined future date [4]. This date is referred to as the maturity of the
contract. A market participant who is obligated to buy the underlying at maturity
holds a long position, while a participant who is obligated to deliver the underlying
holds a short position. The underlying asset can be a commodity such as oil, silver, or
gold; however, in this thesis, we focus on shares as the underlying asset.

At maturity, the long side is required to pay the predetermined price regardless of
the current market price of the underlying, and the short side is required to deliver
the underlying asset. For an underlying asset without dividends, a theoretical futures
price is given by

𝐹𝑡 = 𝑆𝑡 (1 + 𝑟𝑑)𝑇−𝑡 ,
where 𝑆𝑡 is the price of the underlying at time 𝑡, 𝑟𝑑 is the risk-free daily interest rate,
𝑇 − 𝑡 denotes the remaining time to maturity in days, and 𝐹𝑡 is the futures price at time
𝑡. This expression describes the theoretical pricing relation; in practice, the market
futures price is determined by supply and demand.

In practice, however, futures are normally not settled by physical delivery of the
underlying for most contracts. Instead, the contract is settled through cash payments.
If the future is entered at time 𝑡, the payoff for a long position at maturity 𝑇 is

𝑆𝑇 − 𝐹𝑡 ,

and for a short position, it is
𝐹𝑡 − 𝑆𝑇 .

Thus, if 𝑆𝑇 > 𝐹𝑡 , the long position receives a payment from the short position, and if
𝑆𝑇 < 𝐹𝑡 , the short position receives a payment from the long position.

If futures were settled only at maturity, there would be counterparty risk: the gain
of one party can become very large if the final underlying price differs substantially
from the agreed futures price, potentially causing the losing party to default. To
mitigate this, two mechanisms are used: first, a clearing house acts as the counterparty
to all trades, and second, margin accounts with daily settlement are used.

A clearing house stands between buyers and sellers by becoming the counterparty
to both sides of the trade. This eliminates direct counterparty exposure between
participants and ensures that contractual obligations are fulfilled.

A margin account is a dedicated account that holds collateral for each futures
position. When a position is opened, an initial margin is deposited, and the account is
subsequently adjusted based on daily price movements.

Daily settlement, also known as marking-to-market, means that the futures position
is revalued every trading day. For a long position opened at time 𝑡, the daily change to
the margin account on day 𝑡 + 1 is

𝐹𝑡+1 − 𝐹𝑡 ,
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and for a short position it is
𝐹𝑡 − 𝐹𝑡+1.

If the future reaches maturity on day 𝑡 + 1 (i.e., 𝑡 + 1 = 𝑇), then 𝐹𝑇 = 𝑆𝑇 , so the futures
price at maturity equals the fair value of the underlying asset.

Through this mechanism, gains and losses are realized continuously, which ensures
that obligations are met and reduces counterparty risk.

Offset Token in Comparison to Futures

In the introduction, we presented the offset token as a token that can have a negative
fair value. Owning an offset token is similar to buying a futures contract; however,
the offset token is a hypothetical tokenized derivative. This section discusses how
the infrastructure around an offset token could look. Throughout this thesis, it is
sufficient to think of the offset token as an instrument whose fair value can be both
positive and negative, with an oracle supplying the daily fair value. Arbitrageurs are
assumed to be able to buy and sell the token at this fair value at another exchange
venue. Nevertheless, to motivate the need for an AMM design that supports negative
prices, it is useful to describe the mechanics of such a token more concretely.

The offset token has some underlying asset 𝑈 and represents the performance of a
100=C investment into that underlying asset. We call the 100=C the notional of the offset
token and let 𝑣𝑈 (𝑡) be the fair value of that 100=C investment at time 𝑡, so 𝑣𝑈 (0) = 100
is the notional of the offset token (we also denote it by 𝑣0). Similar to futures contracts,
the offset token has a predetermined date 𝑇 at which the offset token reaches maturity.
Once the offset token has matured, owners of offset tokens are entitled to a payout of

𝑣𝑈 (𝑇) − 𝑣𝑈 (0).

If the payout is negative, then owners are required to pay the difference. Owning
an offset token is similar to owning the underlying asset and borrowing the money
required to buy the underlying asset at day 0. The fair value of an offset token at time
𝑡 is therefore given by

𝑣𝛼 (𝑡) = 𝑣𝑈 (𝑡) − 𝑣𝑈 (0) (1 + 𝑟𝑑)𝑇−𝑡 ,

where 𝑇 is the maturity date, 𝑡 is the current day, and 𝑣𝛼 (𝑡) denotes the fair value of
the offset token (we use 𝛼 to denote the offset token). For simplicity, we assume in
this thesis that the risk-free interest rate is 0.

For futures contracts, there is a long position, which is an obligation to buy the
underlying at maturity. Holding that long position via a futures contract is similar
to owning an offset token. Analogously, there also needs to be a short position: we
call this the negative offset token. There is always a one-to-one connection between a
negative offset token and an offset token; we say that a negative offset token has exactly
one offset token as counterparty. The negative offset token has the same maturity as
the offset token. The payout at maturity is

𝑣𝑈 (0) − 𝑣𝑈 (𝑇),
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which is the negative of the offset token’s payout. So if 𝑣𝑈 (𝑇) > 𝑣𝑈 (0), then the owner
of the offset token (long position) receives a payment from the owner of the negative
offset token (short position), and if 𝑣𝑈 (𝑇) < 𝑣𝑈 (0), the short position receives a
payment from the long position.

The way we have designed the offset token so far, it involves counterparty risk.
Similar to futures contracts, a clearing house would be used as counterparty for the
long and short positions. The clearing house would need to design mechanisms such
as margin accounts or other collateral requirements to ensure that owners of (negative)
offset tokens have sufficient funds to cover the amounts they may need to pay.

Figure 7 shows how the fair value of the offset token behaves in comparison to the
fair value of the underlying.
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Figure 7: Example timeseries of the fairvalue of the underlying and the fairvalue of
the offset token, which is exactly the fairvalue of the underlying minus the fairvalue of
the underlying at 𝑡 = 0 (i.e. 100 EUR).

Traditional Trading Venues and the Role of Market Makers

Traditional trading venues organize the interaction of buyers and sellers through a
Central Limit Order Book (CLOB). The order book is the core mechanism for price
formation and trade execution. It aggregates all outstanding buy and sell orders
submitted by market participants and ranks them according to their bid and ask prices.
Buy orders are sorted in descending order, with the highest bid at the top of the book,
while sell orders are listed in ascending order, with the lowest ask at the top.

When a new order arrives, the matching engine checks whether it can trade with the
best prices on the other side of the market. If it can, the order is executed immediately
and removed from the book. If not, it remains in the book as a limit order until it is
filled, cancelled, or expires.
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Within this structure, market makers play a crucial role. These entities, often
specialized trading firms or broker-dealers, continuously quote both buy and sell
prices for selected financial instruments. By posting limit orders on both sides of the
market, they provide liquidity to other participants and help maintain a narrow bid–ask
spread. Their activity reduces execution uncertainty for traders who demand immediate
liquidity and stabilizes prices by absorbing temporary imbalances in order flow. To
manage their inventory and mitigate risk, market makers dynamically adjust their
quotes in response to market conditions, volatility, and their own position exposure.

How Automated Market Makers Combine the Functions of Trading Venues
and Market Makers

Automated Market Makers (AMMs) replace both the traditional trading venue in-
frastructure and the role of professional market makers through a fully algorithmic
mechanism. Instead of organizing orders in a central limit order book, AMMs rely
on liquidity pools that hold reserves of two or more assets. Traders interact directly
with these pooled reserves, without the need for a matching engine or a counterparty
submitting a corresponding order.

The pricing mechanism of an AMM is different from that of a traditional trading
venue, as seen in Section 2.2. Nevertheless, it still allows traders to buy and sell assets
immediately without waiting for a matching order. The reason is that the AMM also
fulfills the role traditionally held by market makers. Instead of relying on specialized
firms to post quotes, liquidity is supplied by users who deposit assets into the pool.
These liquidity providers collectively serve as the market maker: the pool stands ready
to buy and sell, with the price determined by the invariant of the AMM. In return for
providing liquidity, liquidity providers earn compensation in the form of trading fees.
Arbitrage traders play an indirect but essential role by ensuring that the AMM’s price
remains aligned with external markets.

Through this combination, AMMs unify two distinct functions—trade execution
and liquidity provision—into a single, protocol-driven system that operates without
order books, quote providers, or centralized matching infrastructure.

2.5 Distributed Ledger and Smart Contracts
Based on [5], we now examine how blockchains work and what it means to be a
distributed ledger.

Blockchain as Distributed Ledger

A blockchain can be understood as a distributed ledger in which all transactions are
stored transparently, permanently, and in a way that can be verified by all participating
nodes. Instead of relying on a central authority to validate and maintain the ledger,
this responsibility is shared among many independent participants in the network.
Each node keeps its own copy of the ledger and verifies new transactions according to
a common set of rules.
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Once a collection of valid transactions has been gathered, it is bundled into a
block. Each block contains a cryptographic reference to the previous block, forming a
chain of interconnected records. This structure ensures that past data cannot be altered
without breaking the cryptographic links between blocks, making manipulation easily
detectable. As a result, the blockchain provides a decentralized and resilient method
for maintaining a trustworthy ledger without the need for a single controlling entity.

Table 1 shows an example collection of transactions, and Figure 8 illustrates how
the balances of the accounts change as a result of these transactions.

Number Action
1 A transfers 10 Tokens to B
2 B approves A to transfer 10 Tokens from B to any address
3 A transfers from B 10 Tokens to A

Table 1: A minimalistic example of entries in a distributed ledger

Account Balance
A 10
B 0

(a) Initial state of the
balances

Account Balance
A 0
B 10

(b) After execution of
first statement

Account Balance
A 0
B 10

(c) After execution of
second statement

Account Balance
A 10
B 0

(d) After execution of
third statement

Figure 8: Reserves for different accounts are changing based on the transactions
from Table 1, assuming the initial balance for account A is 10 and for account B is 0.
The actual balances are not stored directly on the blockchain.

Smart Contracts

Up to this point, we have simply assumed the existence of a token that can be sent and
received. Blockchains such as Ethereum have a native currency—Ether in the case of
Ethereum—and, as shown in the previous section, the blockchain stores the actions
(the distributed ledger) from which account balances can be derived.

Blockchains like Ethereum also allow users to create their own tokens by deploying
smart contracts that specify the behavior of those tokens. Figure 21 shows a minimalistic
example. ERC20 is a standard for fungible tokens on the Ethereum blockchain, defining
a uniform interface for balance management, token transfers, and delegated spending.
Fungible tokens are interchangeable units of equal value, such as tokens or currencies.
Non-fungible assets, by contrast, represent unique items whose value cannot be
exchanged one-to-one, such as artwork or a flight ticket with a specific seat. In this
thesis, however, we consider only fungible tokens. Its fixed set of functions and
events ensures interoperability between wallets, smart contracts, and decentralized
applications [6]. Although many token standards exist, ERC20 is a simple standard
illustrating how one might create a digital bond or a stablecoin.
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Smart contracts can be used for far more than token creation. One important
use case is the development of decentralized exchange venues. Figure 20 provides
pseudocode describing how the code of an AMM could look. When a trader buys
or sells some amount of token 𝛼, the AMM first checks its current reserves. It then
computes the amount of 𝛽 the trader must pay or receive according to the invariant, and
also computes the applicable fee. Finally, the AMM collects or pays out the required
amounts of 𝛼 and 𝛽 to or from the trader, and forwards the fee to the liquidity provider.

For example, suppose a trader wants to sell 5𝛼, and according to the invariant, this
requires the trader to pay 4𝛽 (i.e., the price of 𝛼 is negative). Then the trader must
call the approve function of 𝛼 to allow the AMM to collect 5𝛼, and must call the
approve function of 𝛽 to allow the AMM to collect 4𝛽.

In the example code of the AMM we omitted several aspects to keep the presentation
simple. The pseudocode is only intended to illustrate the structure of a trade. For
completeness, the omitted elements include necessary security checks such as verifying
whether 𝑓 (𝑅𝛼) = 𝑅𝛽 (in the example code we used rAlpha for 𝑅𝛼 and rBeta for 𝑅𝛽),
the constructor in which the liquidity provider, the token addresses for 𝛼 and 𝛽, and
the fee parameter would typically be specified, as well as standard protections against
overflow or underflow and other safeguards commonly used in production smart
contracts.
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3 Automated Market Makers
Building on the conceptual framework developed from Section 2, this chapter provides
a formal foundation for Automated Market Makers (AMMs) capable of handling both
positive and negative prices. The discussion transitions from qualitative intuition to
precise mathematical structure, introducing the formal components that define an
AMM and specifying the assumptions required for consistent price formation.

An AMM can be described by four fundamental elements: its invariant, the reserves
of the traded tokens, a liquidity level, and a fee mechanism. Together, these determine
the price dynamics, the shape of the trading curve, and the incentives for both traders
and liquidity providers. In contrast to conventional AMMs, whose invariants implicitly
restrict prices to positive domains, the framework developed here generalizes the
structure to permit negative price regions.

The remainder of this section proceeds as follows. Section 3.1 introduces the core
mechanics of an AMM, defines reserves and valid states, and establishes regularity
and convexity assumptions for the invariant. Section 3.2 formalizes the roles of the
liquidity provider and the fee structure, including the concept of liquidity scaling.
Section 3.3 presents the specific invariant family used throughout this thesis, which
is the Power Sum Invariant, and demonstrates that it satisfies the required axioms
and scaling properties. And finally in Section 3.4 we summarize other literature
introducing invariants, that allow negative prices.

3.1 Invariant, Reserves and Core Mechanics
An AMM is an exchange venue where traders can exchange token 𝛼 against token 𝛽.
In the setting of this thesis, 𝛼 represents offset tokens, while 𝛽 represents the euro.

Definition 3.1 (Reserves and State). An AMM holds reserves of 𝛼 and 𝛽, denoted by

(𝑅𝛼, 𝑅𝛽).

The pair (𝑅𝛼, 𝑅𝛽) is called the state of the AMM. The initial state, i.e., the state before
any trades have been executed, is denoted by

(𝑅(0)
𝛼 , 𝑅

(0)
𝛽
).

An AMM cannot hold negative reserves. Furthermore, if a token can take on a
negative fair value, its reserve must have an upper bound (as discussed in Section 2.1).
In the setting considered here, the fair value of 𝛼 can be negative, while the fair
value of 𝛽 is strictly positive. Let 𝑘 > 0 denote the upper bound for the 𝛼 reserves.
Consequently, the reserves satisfy

(𝑅𝛼, 𝑅𝛽) ∈ (0, 𝑘) × [0,∞).

The constant 𝑘 is referred to as the liquidity level.
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Definition 3.2 (Invariant and Valid State). An invariant of an AMM is a function
𝑓 : (0, 𝑘) → [0,∞) such that a state (𝑅𝛼, 𝑅𝛽) is valid if and only if

𝑅𝛽 = 𝑓 (𝑅𝛼).

When the current state of the AMM is (𝑅𝛼, 𝑅𝛽), a trader may execute a trade
(Δ𝛼,Δ𝛽) if and only if

𝑅𝛼 + Δ𝛼 ∈ (0, 𝑘) and 𝑅𝛽 + Δ𝛽 = 𝑓 (𝑅𝛼 + Δ𝛼).

In this case, (Δ𝛼,Δ𝛽) is called a valid trade.

Axiom 1: Regularity

In Section 2.2 we established that the spot price is linked to the derivative of the
invariant. To define the spot price rigorously, we therefore require a regularity
assumption on 𝑓 .

Axiom 1 (Regularity). The invariant 𝑓 is twice continuously differentiable on (0, 𝑘),
i.e., 𝑓 ∈ 𝐶2((0, 𝑘)).

Definition 3.3 (Average and Spot Price). Given a valid state (𝑅𝛼, 𝑅𝛽) and a valid trade
(Δ𝛼,Δ𝛽), the average price of 𝛼 in that trade is defined as

𝑝̄(𝑅𝛼,Δ𝛼) = −
Δ𝛽

Δ𝛼

= − 𝑓 (𝑅𝛼 + Δ𝛼) − 𝑓 (𝑅𝛼)
Δ𝛼

.

The spot price is the infinitesimal limit:

𝑝(𝑅𝛼) = lim
Δ𝛼→0

𝑝̄(𝑅𝛼,Δ𝛼) = − 𝑓 ′(𝑅𝛼).

Axiom 2: Strict Convexity

Intuitively, the average price for a small trade should be higher than for a large trade,
analogous to classical exchanges. For all 𝑅𝛼 ∈ (0, 𝑘) and 𝛿𝛼 < Δ𝛼, this requires that

𝑝̄(𝑅𝛼,Δ𝛼) < 𝑝̄(𝑅𝛼, 𝛿𝛼).

This property is equivalent to the strict convexity of 𝑓 (as shown in [7]), because
𝑝̄(𝑅𝛼,Δ𝛼) is the negative secant slope going through the two points

(𝑅𝛼, 𝑓 (𝑅𝛼)), (𝑅𝛼 + Δ𝛼, 𝑓 (𝑅𝛼 + Δ𝛼)).

Axiom 2 (Strict Convexity). The invariant 𝑓 is strictly convex, i.e., its derivative 𝑓 ′(𝑥)
is strictly increasing on (0, 𝑘).
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Axiom 3: Boundary Behavior

The invariant should be designed such that it becomes infinitely expensive to move the
reserve 𝑅𝛼 to either boundary point 0 or 𝑘 .

Axiom 3 (Boundary Behavior). The invariant 𝑓 satisfies

lim
𝑥↑𝑘

𝑓 (𝑥) = +∞, lim
𝑥↓0

𝑓 (𝑥) = +∞.

This ensures that

lim
𝑥↑𝑘

𝑝(𝑥) = +∞, lim
𝑥↓0

𝑝(𝑥) = −∞.

Since 𝑓 is continuous, differentiable, and strictly convex, the derivative − 𝑓 ′ is
invertible, and its inverse (− 𝑓 ′)−1 is well-defined on R.

Corollary 3.4 (Summary of Properties). If 𝑓 satisfies Axioms 1–3, then:

1. 𝑓 is strictly convex and twice continuously differentiable,

2. 𝑝(𝑥) = − 𝑓 ′(𝑥) is continuous, strictly monotonic, and bijective,

3. The inverse 𝑢 𝑓 = (− 𝑓 ′)−1 exists and is defined on R.

3.2 Fee and Liquidity Provider
In the previous section, we introduced the core mechanics of an AMM primarily from
the trader’s perspective. We now turn to the role of the liquidity provider (LP) and the
fee mechanism.

The initial liquidity provider determines the invariant 𝑓 (including the liquidity
level 𝑘) such that it satisfies Axioms 1, 2, and 3. The LP also selects an initial valid
state (𝑅(0)

𝛼 , 𝑅
(0)
𝛽
) with 𝑓 (𝑅(0)

𝛼 ) = 𝑅
(0)
𝛽

, ensuring that the spot price matches the current
fair value 𝑝(𝑅(0)

𝛼 ) = 𝑣𝛼 (0).

Scaled Liquidity

Suppose the initial LP creates an AMM 𝐴1 and decides to use the invariant 𝑓 . However,
later, the LP realizes that he wants to double the liquidity level. One way the LP could
achieve that would be to create a new identical AMM 𝐴2 that also has 𝑓 as invariant
and then split every trade evenly across the two identical AMMs 𝐴1, 𝐴2. Rather than
operating multiple AMMs, we construct a single AMM 𝐵 whose invariant 𝑔 replicates
the combined effect. Let (𝑅𝛼, 𝑅𝛽) denote the reserves of 𝐴1, 𝐴2. Then AMM 𝐵 should
have reserves (2𝑅𝛼, 2𝑅𝛽), implying that

𝑔(2𝑅𝛼) = 2 𝑓 (𝑅𝛼),

or equivalently, by setting 𝑥 = 2𝑅𝛼,

𝑔(𝑥) = 2 𝑓
(︁
𝑥
2
)︁
.
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By generalizing this argument, for any scaling factor 𝑐 ∈ Q>0,

𝑔(𝑥) = 𝑐 𝑓
(︁
𝑥
𝑐

)︁
.

Hence, we define the liquidity scaling operator as follows:

𝐿 (𝑐, 𝑓 ) (𝑥) := 𝑐 𝑓
(︁
𝑥
𝑐

)︁
. (3.1)
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Figure 9: Same invariant with different levels of liquidity; when the axes are scaled
accordingly, the shape of the invariant remains unchanged.

When comparing two AMM which have the same invariant, but one has higher
liquidity. For the one AMM with higher liquidity, a single trade has less influence on
prices, while with lower liquidity, the same trade causes larger price changes, as seen
in Figure 10.

Definition 3.5 (Scaling Property). Let ( 𝑓𝑘 )𝑘∈Q be a family of invariants satisfying
Axioms 1, 2, and 3 for each 𝑘 . Then we say ( 𝑓𝑘 )𝑘∈Q fulfills the scaling property, if for
all 𝑘1, 𝑘2 ∈ Q following holds:

𝑓𝑘1 = 𝐿

(︂
𝑘1
𝑘2
, 𝑓𝑘2

)︂
,

where 𝐿 (·, ·) is the scaling operator as defined in equation 3.1.

Fees.

When a trader executes a trade of size Δ𝛼, the AMM charges a fee on behalf of the
liquidity provider from the trader to execute the trade. The fee is paid in 𝛽. The fee is
specified by a function

𝛾(𝑅𝛼,Δ𝛼) ≥ 0,
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𝑅𝛼

𝑅𝛽

AMM with lower level of liquidity

Current spot price of 𝛼 is 1, therefore current
state is (1𝛼, 1𝛽), a trader sells one 𝛼 and
receives 0.5𝛽. AMM reserves changed to
(2𝛼, 0.5𝛽). The average price of 𝛼 is 0.5𝛽,

the new spot price of 𝛼 is 0.25.

1 2 3 4

2

4

𝑅𝛼

𝑅𝛽

AMM with higher level of liquidity

Current spot price of 𝛼 is 1, therefore current
state is (2𝛼, 2𝛽), a trader sells one 𝛼 and

receives 0.67𝛽. AMM reserves changed to
(3𝛼, 1.33𝛽). The average price of 𝛼 is 0.67𝛽,

the new spot price of 𝛼 is 0.44.

Figure 10: Visualization on how higher liquidity leads to lower changes of the spot
price. And the average price of a trade is closer to the spot price before the trade is
executed.

which depends on the current reserve level and the traded amount. We adopt a fee
model where the fee per contract is constant. Let 𝑣0 be the notional of the offset token,
then

𝛾(𝑅𝛼,Δ𝛼) = 𝜅 · 𝑣0 · |Δ𝛼 |,
with 𝜅 > 0 as a proportionality constant. In figure 20 is highlighted by pseudo code,
showing how the fee is charged and how it is distributed to the liquidity provider.

3.3 Chosen AMM Design
In Section 2.1, we introduced the invariant

𝑓 (𝑅𝛼) = 𝑅−1
𝛼 + (10 − 𝑅𝛼)−1

as a first potential candidate. The constant 10 represents the liquidity level 𝑘 . For small
values of 𝑅𝛼, this invariant resembles the constant-product AMM (𝑅𝛼 · 𝑓 (𝑅𝛼) = 1),
which in general takes the form 𝑅𝛼 · 𝑅𝛽 = 𝑀 for some constant 𝑀 > 0. Generalizing
this idea yields

𝑓 (𝑅𝛼) = 𝑀𝑅−1
𝛼 + 𝑁 (𝑘 − 𝑅𝛼)−1,

where 𝑀, 𝑁 > 0 are constants. Inspired by the BMM (Better Market Maker) introduced
in [8], we further generalize to

𝑓 (𝑅𝛼) = 𝑀𝑅−𝑎
𝛼 + 𝑁 (𝑘 − 𝑅𝛼)−𝑏,
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for constants 𝑎, 𝑏 > 0. However, this form does not satisfy the scaling property 3.5

𝑓𝑘1 = 𝐿

(︂
𝑘1
𝑘2
, 𝑓𝑘2

)︂
.

To ensure this property holds, we modify the invariant to

𝑓 (𝑅𝛼) = 𝑀𝑘𝑎+1𝑅−𝑎
𝛼 + 𝑁𝑘𝑏+1(𝑘 − 𝑅𝛼)−𝑏 .

Definition 3.6 (Power Sum Invariant). The family of Power Sum Invariant invariants
is given by

𝑓𝑎,𝑏,𝑀,𝑁,𝑘 (𝑅𝛼) = 𝑀𝑘𝑎+1𝑅−𝑎
𝛼 + 𝑁𝑘𝑏+1(𝑘 − 𝑅𝛼)−𝑏,

with parameters 𝑎, 𝑏, 𝑀, 𝑁, 𝑘 > 0.

Lemma 3.7 (Scaling Property). For any 𝑘1, 𝑘2 > 0 it holds that

𝑓𝑎,𝑏,𝑀,𝑁,𝑘1 = 𝐿

(︂
𝑘1
𝑘2
, 𝑓𝑎,𝑏,𝑀,𝑁,𝑘2

)︂
.

Proof. Let 𝑐 =
𝑘1
𝑘2

. By definition of 𝐿 (𝑐, 𝑓 ) we have

𝐿 (𝑐, 𝑓𝑎,𝑏,𝑀,𝑁,𝑘2) (𝑥) = 𝑐 𝑓𝑎,𝑏,𝑀,𝑁,𝑘2

(︁
𝑥
𝑐

)︁
.

Substituting the definition of 𝑓𝑎,𝑏,𝑀,𝑁,𝑘2 yields

𝐿 (𝑐, 𝑓𝑎,𝑏,𝑀,𝑁,𝑘2) (𝑥) = 𝑐

[︂
𝑀𝑘𝑎+1

2
(︁
𝑥
𝑐

)︁−𝑎 + 𝑁𝑘𝑏+1
2

(︁
𝑘2 − 𝑥

𝑐

)︁−𝑏]︂
= 𝑐

[︁
𝑀𝑐𝑎𝑘𝑎+1

2 𝑥−𝑎 + 𝑁𝑐𝑏𝑘𝑏+1
2 (𝑐𝑘2 − 𝑥)−𝑏

]︁
= 𝑀𝑐𝑎+1𝑘𝑎+1

2 𝑥−𝑎 + 𝑁𝑐𝑏+1𝑘𝑏+1
2 (𝑐𝑘2 − 𝑥)−𝑏

= 𝑀 (𝑐𝑘2)𝑎+1𝑥−𝑎 + 𝑁 (𝑐𝑘2)𝑏+1(𝑐𝑘2 − 𝑥)−𝑏 .

Since 𝑐𝑘2 = 𝑘1, we obtain

𝐿 (𝑐, 𝑓𝑎,𝑏,𝑀,𝑁,𝑘2) (𝑥) = 𝑀𝑘𝑎+1
1 𝑥−𝑎 + 𝑁𝑘𝑏+1

1 (𝑘1 − 𝑥)−𝑏

= 𝑓𝑎,𝑏,𝑀,𝑁,𝑘1 (𝑥),

and the scaling property holds. □

Lemma 3.8 (Satisfaction of Axioms 1–3). For 𝑎, 𝑏, 𝑀, 𝑁, 𝑘 > 0, the Power Sum
Invariant

𝑓 (𝑥) = 𝑀𝑘𝑎+1𝑥−𝑎 + 𝑁𝑘𝑏+1(𝑘 − 𝑥)−𝑏, 𝑥 ∈ (0, 𝑘),
satisfies Axioms 1 (Regularity), 2 (Strict Convexity), and 3 (Boundary Behavior).

Proof. Axiom 1 Regularity: On (0, 𝑘), both functions 𝑥 ↦→ 𝑥−𝑎 and 𝑥 ↦→ (𝑘 − 𝑥)−𝑏
are 𝐶∞. Hence, 𝑓 ∈ 𝐶2((0, 𝑘)).
Axiom 2 Strict Convexity: The first and second derivatives are

𝑓 ′(𝑥) = −𝑎𝑀𝑘𝑎+1𝑥−𝑎−1 + 𝑏𝑁𝑘𝑏+1(𝑘 − 𝑥)−𝑏−1,

𝑓 ′′(𝑥) = 𝑎(𝑎+1)𝑀𝑘𝑎+1𝑥−𝑎−2 + 𝑏(𝑏+1)𝑁𝑘𝑏+1(𝑘 − 𝑥)−𝑏−2.
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For all 𝑥 ∈ (0, 𝑘), each term in 𝑓 ′′(𝑥) is positive. Thus 𝑓 ′′(𝑥) > 0, implying that 𝑓 ′ is
strictly increasing and 𝑓 is strictly convex.
Axiom 3 Boundary Behavior: As 𝑥 ↓ 0, the first term diverges to +∞, and as 𝑥 ↑ 𝑘 ,
the second term diverges to +∞:

lim
𝑥↓0

𝑓 (𝑥) = +∞, lim
𝑥↑𝑘

𝑓 (𝑥) = +∞.

Therefore, the boundary condition is satisfied. □

3.4 Other Concepts Allowing Negative Prices
In [9], [10], and [11], an invariant of a circular form is introduced and discussed. The
basic form of the invariant is

(𝑅𝛼 − 𝑧)2 + (𝑅𝛽 − 𝑧)2 = 𝑧2.

This formulation has the advantage that both tokens 𝛼 and 𝛽 can have positive or
negative prices. In our setting, we have so far assumed that only the asset 𝛼 can have a
negative price. In our invariant, we limited the amount of 𝛼 held by the AMM through
an upper bound 𝑘 , while the amount of 𝛽 is unlimited. As long as 𝛽 has a positive fair
value with respect to some reference currency, this poses no problem. However, if 𝛽
can also have a negative fair value with respect to some currency, then a trader could
get rid of negatively priced tokens almost for free.
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4 Simulation
One key objective of this thesis is to quantify how market depth and impermanent loss
shape the risk-adjusted return of an AMM that admits negative prices. To evaluate this
return, we construct a simulation framework that combines a stochastic model for fair
values with an intraday trading environment capturing arbitrage activity, noise-trader
flow, fee accumulation, and inventory risk.

The structure of this chapter is as follows. Section 4.1 defines the market
environment that generates fair-value time series. Section 4.2 introduces the trading
environment. Section 4.3 defines simulation paths together with the associated random
variables: fee revenue, cost, and liquidity-provider profit.

4.1 Market Environment
In financial modeling, Geometric Brownian Motion (GBM) is a commonly used
process for representing the evolution of asset prices. As outlined in [4], GBM
constitutes the underlying assumption of the Black–Scholes option pricing framework,
which remains a standard reference point in quantitative finance.

The GBM framework, however, assumes that asset returns follow a normal
distribution. Empirical studies indicate that this assumption is often violated in
financial markets. For instance, [12] provide evidence that daily stock returns display
noticeable deviations from normality, including heavy tails. Such findings illustrate
known limitations of GBM and motivate the consideration of alternative models when
capturing observed return dynamics.

4.1.1 Notation

We model the fair value of the token 𝛼 on a discrete set of trading days. To formalize
this, we first fix the number of trading days in a one-year horizon. Let 𝑁 ∈ N denote
the number of trading days per year (we use 𝑁 = 252 throughout the thesis, as that is
the average number of trading days per year). The set of days is

D := {1, 2, . . . , 𝑁}.

We refer to the fair value of 𝛼 and of its underlying asset 𝑈 on any given day. For
𝑑 ∈ D, we denote these fair values by

𝑣𝛼 (𝑑) and 𝑣𝑈 (𝑑),

respectively. A complete history of 𝛼’s fair value over the year is called a fair-value
time series. Formally, the sequence (︁

𝑣𝛼 (𝑑)
)︁
𝑑∈D

is a fair-value time series of 𝛼, and we write V𝛼 for the set of all such time series.
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4.1.2 Offset Geometric Brownian Motion

Because the price formation mechanism is not our main object of study, we use
Geometric Brownian Motion (GBM) as a standard model from mathematical finance
to produce realistic, strictly positive dynamics for the underlying 𝑈. Since 𝛼 may
be negative by construction, we obtain 𝛼’s fair value via a deterministic offset of the
underlying.

We now define the discrete-time GBM for the underlying and its offset mapping to
𝑣𝛼. We first specify daily log returns and the compounding rule for 𝑈.

Let 𝜇 ∈ R be the annual drift, 𝜎 > 0 the annual volatility, 𝑁 the number of trading
days per year, and 𝑣0 > 0 a reference level. We model daily log returns by

𝑟𝑖 =

(︂
𝜇 − 1

2𝜎
2
)︂

1
𝑁

+ 𝜎

√︃
1
𝑁
𝑍𝑖, with 𝑍𝑖

i.i.d.∼ N(0, 1).

Given an initial level of the underlying 𝑣𝑈 (0), the fair value of 𝑈 after 𝑡 trading days
is obtained by compounding these log returns

𝑣𝑈 (𝑡) = 𝑣𝑈 (0) exp
(︂ 𝑡∑︁
𝑖=1

𝑟𝑖

)︂
.

We obtain the fair value of 𝛼 by subtracting the reference level 𝑣𝑈 (0), thereby allowing
negative values for 𝛼

𝑣𝛼 (𝑡) = 𝑣𝑈 (𝑡) − 𝑣𝑈 (0).
For notational convenience, we encapsulate this construction in a short definition.

Definition 4.1 (Offset GBM for 𝛼). Let 𝑈𝑡 follow a discrete GBM with parameters
(𝜇, 𝜎, 𝑁) and initial level 𝑈0 = 𝑣0 > 0. Define 𝛼’s fair value by 𝑣𝛼 (𝑡) := 𝑈𝑡 − 𝑣0 for
𝑡 = 0, . . . , 𝑁 . We write

𝑣𝛼 ∼ OffsetGBM(𝜇, 𝜎, 𝑁, 𝑣0).

Equivalently, if 𝑟𝑖 are the GBM log returns, then 𝑈𝑡 = 𝑣0 exp(∑︁𝑡
𝑖=1 𝑟𝑖) and

𝑣𝛼 (𝑡) = 𝑣0

(︄
exp

(︂ 𝑡∑︁
𝑖=1

𝑟𝑖

)︂
− 1

)︄
.

Example (Path sampling). Drawing 𝑀 independent fair-value paths,

𝑣
(𝑚)
𝛼 ∼ OffsetGBM(0.10, 0.10, 252, 100), 𝑚 = 1, . . . , 𝑀,

corresponds to simulating 𝑀 paths with 10% annual drift, 10% annual volatility, 252
trading days, and 𝑣0 = 100. Each path starts at 𝑣𝛼 (0) = 0 and may take negative or
positive values thereafter.
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4.2 Trading Environment
This subsection describes the intraday trading environment used in our AMM analysis.
The structure is motivated by [13], which studies constant-product (Uniswap-like)
markets, explains how arbitrage keeps AMM prices close to an external reference price,
and uses an agent-based simulation to test stability under different market conditions.

We adapt these ideas to our setting. First, we model each day as an ordered
sequence of timepoints so that trade execution and state updates are easy to track
(opening arbitrage, a fixed number of noise-trader intents, and closing arbitrage).
Second, we include an execution filter that skips noise trades when their average
execution price differs too much from the fair value, preventing trades that would be
clearly uneconomic.

4.2.1 Timepoints and AMM State

Trading activity occurs within each day as a sequence of trade intents. To index these
events and the AMM state after each event, we now introduce timepoints.

Fix a maximum number of within-day trade intents 𝑇max ∈ N and define the
within-day index set

𝑆 := {1, 2, . . . , 𝑇max}.
A timepoint is an ordered pair consisting of a day and an intent index,

𝑡 = (𝑑, 𝑠) ∈ T := D × 𝑆.

At any timepoint 𝑡 = (𝑑, 𝑠), a proposed trade size in 𝛼-units is denoted by

Δ𝛼 (𝑑, 𝑠).

An intent either executes or is skipped. We therefore introduce an indicator

𝛿(𝑑, 𝑠) ∈ {0, 1},

where 𝛿(𝑑, 𝑠) = 1 signifies execution of the intent and 𝛿(𝑑, 𝑠) = 0 otherwise. The
AMM reserves after processing the 𝑠-th intent on day 𝑑 are written as(︁

𝑅𝛼 (𝑑, 𝑠), 𝑅𝛽 (𝑑, 𝑠)
)︁
.

If 𝛿(𝑑, 𝑠) = 0, then the state does not change relative to the previous timepoint.

4.2.2 Arbitrage Trader

The arbitrage trader exploits discrepancies between the AMM’s spot price and the fair
value 𝑣𝛼 (𝑑) observed externally. We assume the arbitrageur is active twice per day, at
the first and last intents. The corresponding timepoints are

Tarbitrage := D × {1, 𝑇max} ⊆ T .
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At an arbitrage timepoint 𝑡 = (𝑑, 𝑠) ∈ Tarbitrage, the trader chooses a trade size to
maximize profit, measured in 𝛽-units. We first relate a candidate Δ𝛼 to the implied
𝛽-flow via the invariant curve.

Let 𝑓 denote the AMM’s trading function (invariant). If the state before the trade
is (𝑅𝛼 (𝑡), 𝑅𝛽 (𝑡)) and the trader submits a size Δ𝛼, then the corresponding 𝛽-amount
exchanged is

Δ𝛽 = 𝑓
(︁
𝑅𝛼 (𝑡) + Δ𝛼

)︁
− 𝑅𝛽 (𝑡),

and the trade must keep reserves in the feasible domain, which we write generically as

𝑅𝛼 (𝑡) + Δ𝛼 ∈ (0, 𝑘).

We now express the arbitrage profit for a candidate size. The trader values 𝛼 at
𝑣𝛼 (𝑑) and pays the AMM’s path price (captured by Δ𝛽) plus a fee 𝛾(𝑅𝛼 (𝑡),Δ𝛼). The
profit function is therefore

Π(Δ𝛼; 𝑡) = Δ𝛼 𝑣𝛼 (𝑑) −
(︁
𝑓 (𝑅𝛼 (𝑡) + Δ𝛼) − 𝑅𝛽 (𝑡)

)︁
− 𝛾(𝑅𝛼 (𝑡),Δ𝛼),

subject to 𝑅𝛼 (𝑡) + Δ𝛼 ∈ (0, 𝑘). The arbitrageur’s optimal size at 𝑡 solves

Δ𝛼 (𝑡) ∈ arg max
Δ𝛼: 𝑅𝛼 (𝑡)+Δ𝛼∈(0,𝑘)

Π(Δ𝛼; 𝑡).

Arbitrage intents are always succesfull, therefore 𝛿(𝑡) = 1 for all 𝑡 ∈ Tarb, however
Δ𝛼 (𝑡) might be 0. The intuitive effect of an arbitrage trade is that whenever the AMM’s
spot quote deviates sufficiently from 𝑣𝛼 (𝑑), the optimal arbitrage trade moves the state
toward the fair value.
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Figure 11: Visualization of arbitrage optimization problem.

4.2.3 Noise Traders

Noise traders generate baseline demand for liquidity. We assume a fixed number 𝜆 ∈ N
of noise-trader intents per day. Their timepoints are

Tnoise = D × {2, 3, . . . , 𝜆 + 1},
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so that each day consists of an opening arbitrage intent (𝑠 = 1), followed by 𝜆 noise
intents, and a closing arbitrage intent (𝑠 = 𝜆 + 2). Consequently,

𝑇max = 𝜆 + 2.

Each noise intent draws a direction (buy or sell) with equal probability and a
random trade size. We model the absolute trade size with a lognormal distribution.
Let 𝑚 and 𝑠 > 0 parameterize the underlying normal distribution. We set

|Δ𝛼 (𝑡) | ∼ Lognormal
(︁
𝑚 − 1

2 𝑠
2, 𝑠2)︁ , P

(︁
Δ𝛼 (𝑡) > 0

)︁
= P

(︁
Δ𝛼 (𝑡) < 0

)︁
= 1

2 .

Large trades face slippage. To prevent executing uneconomic executions, we
impose an execution filter: an intent only executes if its average execution price
(including fees) stays within an 𝜀-band around fair value. Let 𝑝avg(𝑅𝛼 (𝑡),Δ𝛼 (𝑡))
denote the AMM’s average price for size Δ𝛼 (𝑡). The execution rule is

𝛿(𝑡) =
⎧⎪⎪⎨⎪⎪⎩

1, if 𝑣𝛼 (𝑑) − 𝜀 ≤ 𝑝avg
(︁
𝑅𝛼 (𝑡),Δ𝛼 (𝑡)

)︁
≤ 𝑣𝛼 (𝑑) + 𝜀,

0, otherwise.

Hence, noise-trader behavior is governed by the parameters (𝑚, 𝑠, 𝜆, 𝜀).

4.3 Simulation Paths and Profit Components
4.3.1 Simulation Paths

A simulation path consists of one fair-value time series of 𝛼 together with all noise-
trader intents over the horizon. Formally,

𝜔 =

(︂
(𝑣𝛼 (𝑖))𝑁𝑖=1, (Δ𝛼 (𝑖, 𝑗)) 𝑗=2,...,𝜆+1

𝑖=1,...,𝑁

)︂
,

and we use the projection
𝑉 (𝜔) := (𝑣𝛼 (𝑖))𝑁𝑖=1

to refer to the fair-value component alone.

4.3.2 Fee Revenue, Cost, and Risk-Adjusted Profit

Liquidity providers earn fees on executed trades. Our fee rule as described in 3.2 is
that the fee per trade is proportional to the amount of 𝛼 bought or sold

𝛾(𝑅𝛼 (𝑡),Δ𝛼 (𝑡)) = 𝑣0𝜅 |Δ𝛼 (𝑡) |, 𝜅 ≥ 0,

and 𝑣0 is the notional value of the offset token. The total fee revenue on a path 𝜔 is
therefore

𝑋 revenue(𝜔) =
∑︁
𝑡∈T

𝛾
(︁
𝑅𝛼 (𝑡),Δ𝛼 (𝑡)

)︁
𝛿(𝑡) =

∑︁
𝑡∈T

𝜅 |Δ𝛼 (𝑡) | 𝛿(𝑡).
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The only source of cost is the opportunity cost of providing liquidity instead of holding
the initial liquidity. Let the initial reserves be

(𝑅(0)
𝛼 , 𝑅

(0)
𝛽
),

and the terminal reserves after the final intent on day 𝑁 be

(𝑅fin
𝛼 , 𝑅fin

𝛽 ).

To estimate the cost on path 𝜔, we calculate, what the fairvalue of the initional
investment (𝑅(0)

𝛼 , 𝑅
(0)
𝛽
) would be now, if it has not been used to provide liquidity and

compare it with the fair value of the terminal reserves. The fair value of (𝑅(0)
𝛼 , 𝑅

(0)
𝛽
)

would be (︁
𝑅
(0)
𝛼 𝑣𝛼 (𝑁) + 𝑅

(0)
𝛽

)︁
and the fair value of the terminal reserves are(︁

𝑅fin
𝛼 𝑣𝛼 (𝑁) + 𝑅fin

𝛽

)︁
,

therefore the liquidity provider has cost of

𝑋cost(𝜔) =
(︁
𝑅
(0)
𝛼 𝑣𝛼 (𝑁) + 𝑅

(0)
𝛽

)︁
−

(︁
𝑅fin
𝛼 𝑣𝛼 (𝑁) + 𝑅fin

𝛽

)︁
.

The liquidity provider’s profit on a path 𝜔 is defined as

𝑋profit(𝜔) = 𝑋 revenue(𝜔) − 𝑋cost(𝜔).

The risk-adjusted return is estimated as the ratio of expected profit to the standard
deviation of profit,

E(𝑋profit)
𝜎(𝑋profit)

.

A closely related measure is the Sharpe ratio as introduced in Sharpe [14],

E
(︂
𝑋profit

𝐼

)︂
− 𝑅 𝑓

𝜎

(︂
𝑋profit

𝐼

)︂ ,

where 𝑅 𝑓 denotes the risk-free rate, typically derived from short-term government
bond yields. The Sharpe ratio is widely used because it evaluates returns relative to
the risk taken and allows comparisons across investment strategies.

In our setting, providing liquidity to an AMM requires no initial investment,
therefore 𝐼 = 0. Taking the limit 𝐼 → 0 yields

lim
𝐼→0

E
(︂
𝑋profit

𝐼

)︂
− 𝑅 𝑓

𝜎

(︂
𝑋profit

𝐼

)︂ = lim
𝐼→0

1
𝐼

(︁
E(𝑋profit) + 𝐼 𝑅 𝑓

)︁
1
𝐼
𝜎(𝑋profit)

=
E(𝑋profit)
𝜎(𝑋profit)

.
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5 Key Performance Indices
In the previous Chapter 4, we introduced the simulation framework used to compute
the risk-adjusted returns of an AMM. While this approach provides detailed insights
into the realized performance of liquidity provision, it is also computationally intensive
and depends on numerous assumptions about trading behavior. This motivates the
search for a model-independent key performance indicators (KPIs) that can serve as
reliable predictors of AMM performance.

In particular, we investigate whether impermanent loss and market depth can act
as meaningful explanatory variables for risk-adjusted returns. To be suitable for this
purpose, such KPIs should be independent of specific trading activity and depend only
on the fair value of the underlying asset 𝛼 or its expected fair-value time series. Our
approach is conceptually related to the framework introduced by Engel and Herlihy
[15], who proposed the notion of load as a combined measure of slippage (the price
impact of executing trades) and impermanent loss, and extended it to the expected
load by incorporating a probability distribution over future fair values of 𝛼. Building
on this idea, we generalize the concept to a set of KPIs derived from the distribution
of possible future price paths and explore whether these theoretical measures can
approximate or predict simulation-based performance outcomes.

In the following, we formally define the two main KPIs considered in this study:
1. Impermanent Loss, which quantifies the opportunity cost of liquidity provision

relative to a simple buy-and-hold strategy, given a distribution of possible future
prices; and

2. Market Depth, which measures an AMM’s capacity to absorb trading volume
around the fair value without causing significant price impact.

5.1 Notation
We introduced 𝑅𝛼 and 𝑅𝛽 as variables that denote the current state of an AMM. Given
this state, the spot price can be expressed as 𝑝(𝑅𝛼). We now invert this relationship:
let 𝑣𝛼 denote the fair value of 𝛼. Then

(𝑅𝛼 (𝑣𝛼), 𝑅𝛽 (𝑣𝛼))
represents the state such that the spot price at this state satisfies 𝑝(𝑅𝛼 (𝑣𝛼)) = 𝑣𝛼.

As defined in 4.1.1, we denote by

V𝛼 = {(𝑣𝛼 (𝑑))𝑑∈D : 𝑣𝛼 (𝑑) ∈ R}
the set of all random walks of 𝛼. Let 𝑣 = (𝑣𝛼 (𝑑))𝑑∈D ∈ V𝛼, then

𝑣 [−1] := 𝑣𝛼 (max(D))
denotes the fair value of 𝛼 on the last day of that random price walk. For a set of
random price walks 𝑉 ⊆ V𝛼, we denote

𝑉[−1] := {𝑣 [−1] : 𝑣 ∈ 𝑉}.
Finally, let 𝑋 ∈ V𝛼 be a random variable taking values in V𝛼.
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5.2 Impermanent Loss
Impermanent loss measures the opportunity cost of providing liquidity to an AMM.
Loesch et al. [16] find that “Impermanent Loss (or ‘IL’) is the dominant factor in
determining the financial impact of liquidity provision on Uniswap v3.”

Hence, we use impermanent loss as a KPI responsible for predicting potential
losses. We define it as follows: assume we know that the fair value of the token 𝛼 is
𝑝 at the end of the AMM’s lifetime. The impermanent loss is the loss incurred by
providing liquidity instead of simply holding the tokens (𝑅(0)

𝛼 , 𝑅
(0)
𝛽
). At that point, the

liquidity provider holds (𝑅𝛼, 𝑅𝛽) such that the spot price equals 𝑝.
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For 𝑝 = 2, the AMM deviates slightly from
the ideal path, causing a small impermanent

loss of 1𝛽.
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For 𝑝 = 4, the deviation is stronger, resulting
in an impermanent loss of 4𝛽.

Figure 12: Illustration of impermanent loss. The black curve shows states where
𝐼𝐿 = 0. The dotted line is parallel to it and indicates the final AMM state at the
fair price. The vertical arrow shows the impermanent loss in 𝛽 needed to restore the
zero-IL condition.

The initial investment would be worth

𝑉hold(𝑝) = 𝑅
(0)
𝛼 · 𝑝 + 𝑅

(0)
𝛽
,

whereas the AMM reserves are worth

𝑉LP(𝑝) = 𝑅𝛼 (𝑝) · 𝑝 + 𝑅𝛽 (𝑝).

The difference between these two values defines the impermanent loss

𝐼𝐿 (𝑝) = 𝑉hold(𝑝) −𝑉LP(𝑝).

However, we are often interested in the impermanent loss over a random price path of
𝛼. For a fair-value path 𝑣 of 𝛼, we denote its terminal fair value by 𝑣 [−1] . So, if we
know the fair-value path 𝑣 of 𝛼, we denote it as

𝐼𝐿 (𝑣) = 𝐼𝐿 (𝑣 [−1]).
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In most cases, we do not know the exact fair-value path of 𝛼. If we assume that it
follows a probability distribution described by the random variable 𝑉 , we can define
the theoretical impermanent loss as

𝑋 IL = 𝐼𝐿 (𝑉).

5.2.1 Comparison Between Cost and Impermanent Loss

When comparing the definitions of cost and impermanent loss, we see that they differ
only in the evaluation of the fair value of the 𝛼 and 𝛽 tokens when retracting liquidity.
In the impermanent loss case, we assume that the amounts of 𝛼 and 𝛽 are such that
the spot price equals the fair value of 𝛼. For the simulated impermanent loss, we do
not know if his is the case. However, we know that

𝑅𝛼 ∈ {𝑅𝛼 : 𝑝(𝑅𝛼) ∈ [𝑝 − 𝜅, 𝑝 + 𝜅]}.

Therefore, simulated impermanent loss and theoretical impermanent loss are close to
each other.

5.3 Market Depth
Market depth captures the ability of an Automated Market Maker (AMM) to absorb
trading volume without causing large price movements. Empirical evidence suggests
that higher market depth is essential for supporting greater trading activity: Liao and
Robinson [17] find that “high market depth is needed to support high transaction
volumes with reliable execution.” Hence, market depth can be viewed as a key
determinant of execution quality and trading capacity in AMMs, as high market depth
allows large trades to be executed without having large changes in the price, as market
depth describes how much of the token 𝛼 can be bought or sold before the average
price exceeds a certain threshold.

At a specific fair value 𝑝 of 𝛼, assume the reserves of the AMM are set such that
the spot price equals 𝑝, and let 𝜏 denote the price sensitivity. Then the market depth is
the difference between the largest and smallest order such that the average price of that
trade is still greater than or equal to 𝑝 − 𝜏 and less than or equal to 𝑝 + 𝜏. Therefore,
we define 𝑀𝐷 (𝑝) as

𝑀𝐷𝜏 (𝑝) = sup{𝑑 : 𝑝̄(𝑅𝛼 (𝑝), 𝑑) ≤ 𝑝 + 𝜏} − inf{𝑑 : 𝑝̄(𝑅𝛼 (𝑝), 𝑑) ≥ 𝑝 − 𝜏}.

Now assume we know the entire fair-value path of 𝛼, denoted by

𝑣 = (𝑣𝛼 (𝑑))𝑑∈D .

In this case, it is more informative to measure the mean market depth over the duration
of the path, defined as

𝑀𝐷𝜏 (𝑣) =
1
|D|

∑︁
𝑑∈D

𝑀𝐷𝜏 (𝑣𝛼 (𝑑)).
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Invariant 𝑓 (𝑥) = (𝑥 − 5)2 and a market depth
of 2 when fair value of 𝛼 is 2.

3 3.5 4 4.5 5 5.5

2

4

𝑝𝑠𝑝𝑜𝑡 = 2 𝑝𝑎𝑣𝑔 = 1

𝑝𝑎𝑣𝑔 = 3

𝑀𝐷 (2) = 1

𝛼

𝛽

Invariant 𝑓 (𝑥) = 2(𝑥 − 5)2 and a market depth
of 1 when fair value of 𝛼 is 2.

Figure 13: Visualization of the market depth: Current fair value is 𝑝 = 2, price
sensitivity is 𝜏 = 1, black dot shows the state of the AMM, where the spot price is 1.
The red (orange) arrows are highlighting the largest buy (sell) orders, such that the
average price of those trades are still within [𝑝 − 𝜏, 𝑝 + 𝜏]

In general, we do not know the exact fair-value path but can assume that it follows
some random distribution 𝑉 , which takes values in the set of all fair-value time series.
Then we define the random variable

𝑋depth(𝜏) = 𝑀𝐷𝜏 (𝑉).

5.3.1 Common Definition of Market Depth and 𝜏 Comparison

In the literature (for example, in Kempf and Korn [18]), market depth is commonly
defined as the required trade size to achieve a certain price change, which in our case
would translate to the spot price. It is defined as

Market Depth =

(︃
𝑑𝑃

𝑑𝑄

)︃−1
,

where 𝑑𝑃 is the change of price and 𝑑𝑄 is the amount of the asset that got traded.
Using our notation, assuming the current spot price is 𝑝0 and it changes by 𝑑𝑃, we
can compute 𝑑𝑄 as

𝑑𝑄 = 𝑅𝛼 (𝑝0 + 𝑑𝑃) − 𝑅𝛼 (𝑝0),
and therefore the market depth would be defined as

Market Depth =
𝑅𝛼 (𝑝0 + 𝑑𝑃) − 𝑅𝛼 (𝑝0)

𝑑𝑃
.

The common definition and the definition we introduced look quite similar. The
differences are: first, the common definition is with respect to the spot price and not
the average price of a trade, and second, the common definition considers the limit as
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𝑑𝑃 → 0. We have introduced a measure of market depth depending on the average
price of a trade because the buy/sell decision of the noise traders is based on the
average price of the trade. Based on the displays in Figure 14 we can see that when

Mean

𝜏 = 0.1 𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4

Std

𝜏 = 0.1 𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4

Figure 14: Comparison between market using common definition and using average
price based definition of market depth for 𝜏 ∈ {0.1, 1, 2, 3, 4}, by plotting the (i)
expected value and (ii) standard deviation of the common definition on the vertical
axis and 𝑋depth(𝜏) on the horizontal axis.

choosing a small 𝜏 (e.g., 𝜏 = 0.1), there is an almost linear relationship. However, for
larger 𝜏 it becomes curved and less precise.

5.3.2 Market Depth and Revenue

In our simulation, an AMM generates more revenue when a larger number of trades
execute successfully, and when larger trades are executed successfully more frequently.
A trade is not executed if its average price deviates too much from the fair value. This
is precisely where market depth becomes crucial: it measures the range of trade sizes
for which the average execution price stays within a deviation of at most 𝜏 from the
fair value. If this range is large, more potential trades pass the execution filter, and
larger trades are also more likely to be executed.
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6 Numerical Results
We investigate whether market depth and impermanent loss (IL) are sufficient to
predict the risk-adjusted profitability of an AMM. Concretely, we aim to identify a
function 𝑔 such that

E
(︁
𝑋profit)︁

𝜎
(︁
𝑋profit)︁ ≈ 𝑔

(︂
E
(︂
𝑋 IL

)︂
, 𝜎

(︂
𝑋 IL

)︂
, E

(︂
𝑋depth

)︂
, 𝜎

(︂
𝑋depth

)︂ )︂
. (6.1)

We proceed in several steps to understand the functional form of 𝑔.

6.1 Simulation Setup
Throughout, we consider AMMs with invariants of the form

𝑓 (𝑥) = 𝑀 𝑘𝑎+1𝑥−𝑎 + 𝑁 𝑘𝑏+1(𝑘 − 𝑥)−𝑏 . (6.2)

For each experiment, we specify how many invariants are drawn, the parameter ranges
for 𝑎, 𝑏, 𝑀, 𝑁, 𝑘 , and the simulation-path parameters. Let Ω = {𝜔1, . . . , 𝜔𝑙} denote
the set of simulation paths described in Section 4.3. The market environment is
parameterized by 𝜇, 𝜎, and the noise-trader behavior by 𝑚, 𝑠, 𝜆, 𝜖 (see Chapter 4). We
choose 𝑙 = 100; therefore, we draw 100 simulation paths to test each invariant.

For every AMM 𝐴, we simulate fee revenue, cost, and profit along full price paths
with trader intents, and compute impermanent loss and market depth from price paths
only (i.e., using the projection {𝑉 (𝜔1), . . . , 𝑉 (𝜔𝑙)}). We use the shorthand

𝐸profit(𝐴) = E
(︂
𝑋

profit
𝐴

)︂
, Σprofit(𝐴) = 𝜎

(︂
𝑋

profit
𝐴

)︂
,

𝐸 revenue(𝐴) = E
(︁
𝑋 revenue
𝐴

)︁
, Σrevenue(𝐴) = 𝜎

(︁
𝑋 revenue
𝐴

)︁
,

𝐸cost(𝐴) = E
(︁
𝑋cost
𝐴

)︁
, Σcost(𝐴) = 𝜎

(︁
𝑋cost
𝐴

)︁
,

𝐸 IL(𝐴) = E
(︂
𝑋 IL
𝐴

)︂
, ΣIL(𝐴) = 𝜎

(︂
𝑋 IL
𝐴

)︂
,

𝐸depth(𝐴) = E
(︂
𝑋

depth
𝐴

)︂
, Σdepth(𝐴) = 𝜎

(︂
𝑋

depth
𝐴

)︂
.

We set up two experiments. Across both experiments, we draw AMM invariants
of the form (6.2) using identical parameter ranges. The parameters 𝑎, 𝑏 are drawn
randomly from the interval [10−0.7, 100.7] and the parameters 𝑀, 𝑁 are drawn ran-
domly from the interval [10−2, 100]. The parameter 𝑘 is fixed at 𝑘 = 30. The market
environment is held constant across experiments, with drift 𝜇 = 0.1 and volatility
𝜎 = 0.1.

Noise-trader behavior is also largely identical between the two experiments. In
both cases, we set the average trade size parameter to 𝑚 = 10 and the average number
of trade intents to 𝜆 = 8. The experiments differ only in the dispersion (𝑠) and tolerance
parameters (𝜖) of the noise traders. In Experiment 1, we use 𝑠 = 2.5 and 𝜖 = 0.7,
whereas in Experiment 2 these parameters are changed to 𝑠 = 4 and 𝜖 = 1.5.
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6.2 Simulation Results
As a reminder, the goal is to find a function 𝑔 as described in 6.1. As a first step, we
can reformulate the risk-adjusted profit as

E
(︁
𝑋profit)︁

𝜎
(︁
𝑋profit)︁ =

E(𝑋 revenue) − E(𝑋cost)
𝜎(𝑋 revenue − 𝑋cost) .

However, we want to rewrite this expression in terms of 𝑋 IL and 𝑋depth(𝜏) . As a first
step, we determine the appropriate choice of 𝜏.

6.2.1 Step 1: Finding the Optimal Market Depth Parameter 𝜏

Description: The market depth 𝑋depth(𝜏) depends on the parameter 𝜏. The goal
of this step is to analyze whether the choice of 𝜏 is relevant and, if so, whether there
is an optimal 𝜏. If an optimal 𝜏 exists, we also ask whether it is consistent across
experiments or depends on the experimental setup.

Data and Visualization: For data, we use 𝐸 revenue and 𝐸depth(𝜏) , as well as
Σrevenue and Σdepth(𝜏) for 𝜏 ∈ {0.1, 1, 2, 3, 4}. The corresponding scatter plots and
relationships are displayed in Figure 15.

As shown in Figure 15, a different 𝜏 is optimal in experiment 1 than in experiment 2.
We also see that if we choose 𝜏 too small, there is a rightward curvature, whereas if
we choose it too large, there is a leftward curvature.
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Experiment 1
Mean

𝜏 = 0.1 𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4

Std

𝜏 = 0.1 𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4

Experiment 2
Mean

𝜏 = 0.1 𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4

Std

𝜏 = 0.1 𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4

Figure 15: For each experiment different choices of 𝜏 to compare mean market
depth and mean revenue, as well as standard deviation of market depth and standard
deviation of revenue.

Statistical Analysis: The goal here is to determine the optimal 𝜏 for each setting.
As seen above in Figure 15, we can choose 𝜏 too large or too small. Therefore, we
compute the correlation between market depth and revenue for different choices of 𝜏:

𝜌𝐸 (𝜏) = 𝜌𝐸 revenue,𝐸depth(𝜏 ) and 𝜌Σ (𝜏) = 𝜌Σrevenue,Σdepth(𝜏 )

and maximize 𝜌𝐸 (𝜏) + 𝜌Σ (𝜏).
Based on the results from Table 2, we choose 𝜏 = 2 for experiment 1, and based

on Table 3, we choose 𝜏 = 3 for experiment 2.
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𝜏 0.1 1 2 3 4

Mean 0.943 0.997 0.999 0.997 0.994

Std 0.972 0.999 0.998 0.995 0.991

Sum 1.915 1.996 1.997 1.992 1.985

Table 2: Correlation for Experiment 1 when choosing different values for 𝜏.

𝜏 0.1 1 2 3 4

Mean 0.917 0.980 0.991 0.993 0.992

Std 0.978 0.993 0.994 0.994 0.992

Sum 1.895 1.974 1.985 1.986 1.984

Table 3: Correlation for Experiment 2 when choosing different values for 𝜏.

6.2.2 Step 2: Approximating the Standard Deviation of the Profit

Description: Returning to our goal of approximating the risk-adjusted return
using market depth and impermanent loss, so far we have

E
(︁
𝑋profit)︁

𝜎
(︁
𝑋profit)︁ =

E(𝑋 revenue) − E(𝑋cost)
𝜎(𝑋 revenue − 𝑋cost) .

In this step, we will see that there exist a constant 𝑚𝜎, such that

𝜎(𝑋 revenue − 𝑋cost) ≈ 𝑚𝜎 ·
(︁
𝜎(𝑋 revenue) + 𝜎(𝑋cost)

)︁
,

and we can approximate the risk-adjusted return by

E
(︁
𝑋profit)︁

𝜎
(︁
𝑋profit)︁ ≈ E(𝑋 revenue) − E(𝑋cost)

𝑚𝜎

(︁
𝜎(𝑋 revenue) + 𝜎(𝑋cost)

)︁ .
Therefore, the goal is to approximate Σprofit using Σrevenue and Σcost

Σprofit = 𝑚𝜎

(︁
Σrevenue + Σcost)︁ .

In other words, we try to approximate Σprofit using linear regression. To do that, we set

𝑍 := Σrevenue + Σcost.

For the linear regression, we also set the 𝑦-intercept to 0, because if the standard
deviation of cost and of revenue is 0, then the standard deviation of profit is also 0. In
general, the relation

𝜎(𝑋 + 𝑌 ) = 𝑀
(︁
𝜎(𝑋) + 𝜎(𝑌 )

)︁
for some 𝑀 ∈ R and random variables 𝑋,𝑌 does not hold; however, in our specific
case we will see that it provides a good approximation.

Data and Visualization: For data, we use Σprofit, Σcost, and Σrevenue as described
in 6.1. In Figure 16, we illustrate the relationship between Σprofit and 𝑍 .

45



(a) Experiment 1 (b) Experiment 2

Figure 16: Relationship between 𝜎(𝑋profit) and 𝜎(𝑋 revenue) + 𝜎(𝑋cost).

Correlation Regression

Experiment 𝜏 Corr. 𝑝-value Slope 95% Confidence Interval (CI)

Experiment 1 2 0.999 < 0.001 0.880 [0.878, 0.883]
Experiment 2 3 0.999 < 0.001 0.897 [0.894, 0.900]

Table 4: Correlation and regression results for Std(Fee Revenue) + Std(IL) vs
Std(Profit).

Statistical Analysis: In Table 4 we see that in both experiments 𝑍 and Σprofit are
highly correlated and the 𝑝-value is smaller than 0.001, which makes the relationship
statistically significant. When we examine it further using linear regression, we obtain
a rather tight confidence interval for 𝑚𝜎.

6.2.3 Step 3: Linear Relationship between Revenue and Market Depth

Description: Returning to our goal of approximating the risk-adjusted return
using KPIs, so far we have

E
(︁
𝑋profit)︁

𝜎
(︁
𝑋profit)︁ ≈ E(𝑋 revenue) − E(𝑋cost)

𝑚𝜎

(︁
𝜎(𝑋 revenue) + 𝜎(𝑋cost)

)︁ .
In this step, we will see that

E(𝑋 revenue) ≈ 𝑚𝐸 E(𝑋depth(𝜏)), 𝜎(𝑋 revenue) ≈ 𝑚Σ 𝜎(𝑋depth(𝜏))

and we can approximate the risk-adjusted return by

E
(︁
𝑋profit)︁

𝜎
(︁
𝑋profit)︁ ≈ 𝑚𝐸E(𝑋depth(𝜏)) − E(𝑋cost)

𝑚𝜎

(︁
𝑚Σ𝜎(𝑋depth(𝜏)) + 𝜎(𝑋cost)

)︁ .
In Step 1, we already saw that, when we choose 𝜏 correctly, there is a linear

correlation between 𝐸 revenue and 𝐸depth(𝜏) , as well as between Σrevenue and Σdepth(𝜏) .
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This step concerns the statistical significance of that correlation. In Chapter 5.3.2, we
also discussed a causal relationship between market depth and revenue; therefore, we
quantify it by linear regression. We use the model

𝐸 revenue = 𝑚𝐸 𝐸depth, Σrevenue = 𝑚Σ Σ
depth.

In both cases, the regression lines are constrained to pass through the origin. For the
first model, 𝐸 revenue = 𝑚𝐸 𝐸depth, this reflects the fact that when market depth is zero,
no trades occur, and hence the expected revenue must also be zero. Similarly, for the
second model, Σrevenue = 𝑚Σ Σ

depth, the data indicate that Σrevenue approaches zero as
Σdepth tends to zero. Therefore, in both regressions, we fix the intercept to zero.

Data and Visualization: For data, we use 𝐸 revenue and 𝐸depth(𝜏) , as well as Σrevenue

and Σdepth as described in 6.1. In Figure 13, we see an almost linear relationship
between 𝐸 revenue and 𝐸depth, as well as between Σrevenue and Σdepth.

Experiment 1

(a) Mean market depth vs mean revenue. (b) Std market depth vs std revenue.

Experiment 2

(c) Mean market depth vs mean revenue. (d) Std market depth vs std revenue.

Figure 17: Relation between market depth and fee revenue for Experiment 1 and 2.
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Mean Std

Experiment 𝜏 Corr. 𝑝-value Corr. 𝑝-value

Experiment 1 2 0.9991 < 0.001 0.9981 < 0.001
Experiment 2 3 0.9927 < 0.001 0.9935 < 0.001

Table 5: Correlation results between revenue and market depth.

Mean Std

Experiment 𝜏 Slope 95% CI Slope 95% CI

Experiment 1 2 13.586 [13.549, 13.623] 15.384 [15.324, 15.444]
Experiment 2 3 7.968 [7.914, 8.021] 8.733 [8.675, 8.791]

Table 6: Regression results between revenue and market depth.

Statistical Analysis In Table 5, we see that for both experiments, market depth
and revenue are highly correlated. In all cases, the 𝑝-value is smaller than 0.01, which
makes the relationship statistically significant. Therefore, we examine it further using
linear regression as described above, again setting the 𝑦-intercept to 0.

In Table 6, we report the values 𝑚𝐸 and 𝑚Σ for experiments 1 and 2, and we
observe that the 95% confidence interval is quite tight around those values in both
experiments.

6.2.4 Step 4: Linear Relationship between Cost and Impermanent Loss

Description: Continuing our goal of approximating the risk-adjusted return using
KPIs, we have

E
(︁
𝑋profit)︁

𝜎
(︁
𝑋profit)︁ ≈ 𝑚𝐸E(𝑋depth(𝜏)) − E(𝑋cost)

𝑚𝜎

(︁
𝑚Σ𝜎(𝑋depth(𝜏)) + 𝜎(𝑋cost)

)︁ .
In this step, we will see that

𝐸cost ≈ 𝐸 IL, Σcost ≈ ΣIL,

and we can approximate the risk-adjusted return by

E
(︁
𝑋profit)︁

𝜎
(︁
𝑋profit)︁ ≈ 𝑚𝐸E(𝑋depth(𝜏)) − E(𝑋 IL)

𝑚𝜎

(︁
𝑚Σ𝜎(𝑋depth(𝜏)) + 𝜎(𝑋 IL)

)︁ .
Similar to Step 3, we now analyze the linear correlation between 𝐸cost and 𝐸 IL, as
well as between Σcost and ΣIL. Based on the discussion in Section 5.2.1, we expect

𝐸cost = 𝐸 IL, Σcost = ΣIL.

Thus, impermanent loss is the only cost that occurs.
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Data and Visualization: For data, we use 𝐸cost and 𝐸 IL, as well as Σcost and ΣIL

as described in 6.1. In Figure 18, we see a nearly perfect linear relationship between
𝐸cost and 𝐸 IL, as well as between Σcost and ΣIL.

Experiment 1

(a) Mean IL. (b) Std IL.

Experiment 2

(c) Mean IL. (d) Std IL.

Figure 18: Relation between cost and impermanent loss for Experiment 1 and 2.

Statistical Analysis: In Tables 7 and 8, we confirm our expectation and show
that the cost can be reliably estimated using impermanent loss.

Mean Std

Experiment 𝜏 Corr. 𝑝-value Corr. 𝑝-value

Experiment 1 2 1.000 < 0.001 1.000 < 0.001
Experiment 2 3 1.000 < 0.001 1.000 < 0.001

Table 7: Correlation results between cost and impermanent loss.
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Mean Std

Experiment 𝜏 Slope 95% CI Slope 95% CI

Experiment 1 2 1.000 [1.000, 1.000] 1.000 [1.000, 1.000]
Experiment 2 3 1.000 [1.000, 1.000] 1.000 [1.000, 1.000]

Table 8: Regression results between cost and impermanent loss.

6.2.5 Step 5: Sharpe Ratio Estimation and KPI-Based Estimators

Description: We are interested in finding a function 𝑔 such that

E(𝑋profit)
𝜎(𝑋profit)

≈ 𝑔
(︁
E(𝑋 IL), 𝜎(𝑋 IL),E(𝑋depth), 𝜎(𝑋depth)

)︁
.

Steps 1–4 have shown that the Sharpe ratio can be well approximated by

E
(︁
𝑋profit)︁

𝜎
(︁
𝑋profit)︁ ≈

𝑚𝐸 E
(︁
𝑋depth(𝜏) )︁ − E

(︁
𝑋 IL)︁

𝑚𝜎

(︁
𝑚Σ 𝜎

(︁
𝑋depth(𝜏) )︁ + 𝜎

(︁
𝑋 IL)︁ )︁ ,

where 𝑚𝐸 , 𝑚Σ, and 𝑚𝜎 are obtained by linear regressions in Steps 2–4, and 𝜏 is the
depth parameter chosen in Step 1. This provides a natural candidate for the functional
form of 𝑔.

To evaluate how well this candidate predicts the simulated Sharpe ratio, we define

𝑍 :=
𝑚𝐸 E

(︁
𝑋depth(𝜏) )︁ − E

(︁
𝑋 IL)︁

𝑚𝜎

(︁
𝑚Σ 𝜎

(︁
𝑋depth(𝜏) )︁ + 𝜎

(︁
𝑋 IL)︁ )︁ ,

and analyze how closely 𝑍 tracks the Sharpe ratio obtained from the full simulation. In
particular, we first study the correlation between 𝑍 and the simulated Sharpe ratio and
then fit a linear regression with zero or small intercept to quantify any systematic bias.

The parameters entering the construction of 𝑍 are summarized in Table 9.

Experiment 1 Experiment 2
Depth parameter 𝜏 2 3
𝑚𝐸 13.586 7.968
𝑚Σ 15.384 8.733
𝑚𝜎 0.880 0.897

Table 9: Estimated parameters used in the KPI-based Sharpe ratio estimators.

Data and Visualization: For each AMM, we compute, on the one hand, the
simulated Sharpe ratio E(𝑋profit)

𝜎(𝑋profit) and, on the other hand, the approximation 𝑍 defined
above. To construct 𝑍 , we use

𝜎(𝑋 IL), 𝜎(𝑋depth(𝜏)), E(𝑋 IL), E(𝑋depth(𝜏))
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as described in Section 6.1, together with the parameters 𝜏, 𝑚𝐸 , 𝑚Σ, and 𝑚𝜎 obtained
in Steps 1–4. A comparison of 𝑍 and the simulated Sharpe ratio is shown in Figure 19.
Visually, the points lie close to the 45-degree line, indicating that the KPIs provide a
good approximation of the Sharpe ratio, with a few noticeable deviations for AMMs
with very low market depth.

Experiment 1

(a) Using all data points (b) Use a subset of AMM

Experiment 2

(c) Using all data points (d) Use a subset of AMM

Figure 19: Comparison of Sharpe ratios: Once we use all 256 AMMs and once we
use only the top 90% percent tile with respect to the market depth.

Statistical Analysis: Table 10 shows that the approximation performs well when
all AMMs are included. The correlation between 𝑍 and the simulated Sharpe ratio
exceeds 0.95 in both experiments, with a 𝑝-value below 0.001. The regression slope
is slightly above 1, suggesting that 𝑍 tends to underestimate the true Sharpe ratio on
average.

When we exclude the 10% of AMMs with the lowest market depth, Table 11 shows
that the correlation increases further and the 95% confidence interval of the regression
slope becomes tighter. In Figure 19, the biggest outliers disappear once we focus on
AMMs with sufficient market depth. This indicates that the KPI-based approximation
works particularly well for AMMs with moderate to high market depth.
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Correlation Regression

Experiment 𝜏 Corr. 𝑝-value Slope 95% CI 𝑦-Intercept 95% CI

Experiment 1 2 0.984 < 0.001 1.002 [0.980, 1.024] -0.017 [-0.024, -0.010]
Experiment 2 3 0.957 < 0.001 1.014 [0.976, 1.052] 0.051 [0.037, 0.064]

Table 10: Correlation and regression between simulated Sharpe ratio and KPI-based
Sharpe ratio using all AMMs.

Correlation Regression

Experiment 𝜏 Corr. 𝑝-value Slope 95% CI 𝑦-Intercept 95% CI

Experiment 1 2 0.997 < 0.001 1.003 [0.993, 1.013] -0.002 [-0.005, 0.001]
Experiment 2 3 0.990 < 0.001 1.000 [0.981, 1.018] 0.021 [0.014, 0.028]

Table 11: Correlation and regression between simulated Sharpe ratio and KPI-based
Sharpe ratio using top 90% AMMs regarding the market depth.

Resulting Sharpe Ratio Estimators 𝑔1 and 𝑔2: We now use our results to
provide explicit estimators 𝑔1 and 𝑔2 for experiments 1 and experiment 2, respectively.
These estimators are obtained by inserting the empirically estimated parameters
from Table 9 into the expression for 𝑍 , together with the linear adjustment from the
regression of the simulated Sharpe ratio on 𝑍 .

For experiment 1, we obtain

𝑔1
(︁
E(𝑋 IL), 𝜎(𝑋 IL),E(𝑋depth), 𝜎(𝑋depth)

)︁
= 1.003 ·

13.586E
(︁
𝑋depth(2) )︁ − E

(︁
𝑋 IL)︁

0.880
(︁
15.384𝜎

(︁
𝑋depth(2) )︁ + 𝜎

(︁
𝑋 IL)︁ )︁ − 0.002.

For experiment 2, we analogously obtain

𝑔2
(︁
E(𝑋 IL), 𝜎(𝑋 IL),E(𝑋depth), 𝜎(𝑋depth)

)︁
= 1.000 ·

7.968E
(︁
𝑋depth(3) )︁ − E

(︁
𝑋 IL)︁

0.897
(︁
8.733𝜎

(︁
𝑋depth(3) )︁ + 𝜎

(︁
𝑋 IL)︁ )︁ + 0.021,

for AMMs where market depth is not low, i.e., those in the upper 90% quantile of the
depth distribution. For the lower 10% of AMMs, we know from the regression results
that 𝑔1 tends to overestimate and 𝑔2 tends to underestimate the true Sharpe ratio.
For the vast majority of AMMs in our sample, however, 𝑔1 and 𝑔2 provide accurate
KPI-based approximations of the risk-adjusted profitability.
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7 Discussion
Summary of the Findings and Their Relevance
The aim of this thesis was to explore how Automated Market Makers (AMMs) can be
designed to allow negative prices and how their performance can be understood using
key performance indices of the invariant. For this purpose, the Power Sum Invariant
was introduced as a class of invariants that allows both positive and negative spot
prices.

Additionally, a simulation environment was built that combines fair-value paths of
the underlying (generated with an Offset-GBM process) with an agent-based trading
setup consisting of arbitrage and noise traders. This allowed us to measure fee revenue,
simulated impermanent loss, and ultimately the risk-adjusted profit of a liquidity
provider for a set of 256 different invariants. In parallel, the two key performance
indicators—market depth and theoretical impermanent loss—were computed for each
invariant in the same market environment.

When comparing these KPIs with the simulation results, a clear pattern emerged:
the Sharpe ratio of the liquidity provider appears to be largely determined by a
combination of aggregated market depth and theoretical impermanent loss. The
estimator 𝑔 introduced in Section 6.2.5 captures this relation reasonably well and
provides a simple way to approximate the risk-adjusted return directly from the
invariant’s parameters. The behavior was consistent across the 256 sampled invariants
and suggests that these KPIs capture essential structural features of the AMM’s
performance in environments where prices can become negative. It is important
to note, however, that this approximation worked reliably only for invariants whose
market depth lay within roughly the top 90% of the sampled range. For invariants with
very low market depth, the estimator showed large deviations.

Limitations
The results rely on several simplifying assumptions. Most importantly, the fair-value
dynamics of the underlying were modeled using GBM. While this is mathematically
convenient, it does not fully capture the empirical behavior of financial assets, such as
jumps or time-varying volatility. The noise traders in the simulation follow a simple
rule-based behavior, which does not reflect the diversity or adaptiveness of real market
participants.

Another limitation is that the liquidity level of the AMM is assumed to be constant
throughout the one-year simulation horizon, and we fixed it at 30 across all invariants.
In reality, liquidity providers react to market conditions, expected returns, and collateral
requirements, which is especially relevant in settings with potentially negative prices.
The simulation therefore evaluates a static environment and does not account for
changes in liquidity over time.

Furthermore, the invariant family studied in this thesis is intentionally narrow. The
Power Sum Invariant provides a tractable class with clear mathematical structure, but
it is only one possible approach to designing AMMs that allow negative prices. The
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thesis therefore cannot identify an optimal invariant and does not claim that such an
invariant exists within the tested class.

Finally, the observed relationship between KPIs and the Sharpe ratio is derived
within the specific simulation setup used here. It is unclear how robust this relationship
is under alternative market models, trader behavior, or different types of stochastic
processes. The results should therefore be seen as an indication of a structural link
rather than a general statement.

Further Work
There are several natural directions for future research. One possibility is to replace
the GBM-based fair-value process with more realistic stochastic models and to study
whether the KPI-based approximation remains valid. More sophisticated noise-trader
models could also be introduced, potentially allowing calibration to empirical trading
patterns.

Another direction is to explore broader families of invariants, for example invariants
with different curvature properties or alternative boundary behavior. If the KPI-based
relationship continues to hold, this could help identify classes of invariants that tend
to produce better risk-adjusted outcomes.

Finally, future work could focus on modeling dynamic liquidity provision. In
practice, liquidity providers adjust their positions in response to market conditions,
expected returns, and the risk of holding offset tokens. Incorporating such entry and
exit decisions into the simulation would make it possible to analyze how changing
liquidity levels interact with the invariant and whether the relationships identified in
this thesis persist once liquidity is no longer fixed.
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A Additional Figures: Pseudo Code

contract MinimalAMM {
ERC20 public immutable alpha;
ERC20 public immutable beta;
uint256 private kappa; // fee in per mille
address liquidity_provider;
function f(uint256 rAlpha) public view returns (uint256) {
// Implementation of invariant
return rBeta;

}
function buy_sell_alpha(int256 dalpha) external returns bool

{
// 1) Read pool reserves
uint256 rAlpha = alpha.balanceOf(address(this));
uint256 rBeta = beta.balanceOf(address(this));
// 2) Compute new pool state and trader delta
int256 dBetaPool = int256(f(rAlpha + uint256(dalpha))) -

int256(rBeta);
uint256 fee = (abs(dalpha) * kappa) / 1000;
int256 dBetaTrader = dBetaPool + int256(fee);
// 3) Apply token flows
collect_or_payout(alpha, dalpha);
collect_or_payout(beta, dBetaTrader);
beta.transfer(liquidity_provider, fee);
return true;

}
function collect_or_payout(ERC20 token, int256 amount)
internal {
if (amount > 0) {
// Trader sends tokens to the pool
token.transferFrom(msg.sender, address(this), uint256
(amount));

} else if (amount < 0) {
// Pool sends tokens to the trader
token.transfer(msg.sender, uint256(-amount));

}
}

}

Figure 20: Minimalistic AMM as a smart contract
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contract ERC20 {
uint8 public decimals = 18;
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public
allowance;

constructor(uint256 initialSupply) {
totalSupply = initialSupply * (10 ** uint256(decimals));
balanceOf[msg.sender] = totalSupply;
emit Transfer(address(0), msg.sender, totalSupply);

}
function _transfer(address _from, address _to, uint256
_value) internal {
require(_to != address(0));
require(balanceOf[_from] >= _value);
unchecked {
balanceOf[_from] -= _value;
balanceOf[_to] += _value;

}
}
function transfer(address _to, uint256 _value) external
returns (bool) {
_transfer(msg.sender, _to, _value);
return true;

}
function approve(address _spender, uint256 _value) external
returns (bool) {
allowance[msg.sender][_spender] = _value;
return true;

}
function transferFrom(address _from, address _to, uint256
_value) external returns (bool) {
uint256 allowed = allowance[_from][msg.sender];
require(allowed >= _value);
unchecked {
allowance[_from][msg.sender] = allowed - _value;

}
_transfer(_from, _to, _value);
return true;

}
}

Figure 21: Minimal ERC20 Token as a smart contract
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