
Master’s programme in Mathematics and Operations Research

Long-input summarization using Large
Language Models

Emma Järvinen

Master’s Thesis
2023



© 2023

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Author Emma Järvinen
Title Long-input summarization using Large Language Models
Degree programme Mathematics and Operations Research
Major Systems and Operations Research
Supervisor Prof. Mikko Kurimo
Advisor M.Sc. (Tech) Viljami Raiski
Collaborative partner Smartbi Oy
Date 21 December 2023 Number of pages 77+5 Language English

Abstract
Large language models (LLMs) have shown remarkable capabilities in various natural
language processing tasks. However, their output may not always meet the specific
requirements or domain knowledge needed. The generated text may lack coherence or
factuality, especially in summarization tasks with longer inputs. The increasing demand
for automated summarization and the complexity of summarizing scientific content
presents a unique challenge. This thesis will focus on the long-input summarization
task of scientific articles using LLMs.

The thesis employs abstractive summarization techniques and explores two promi-
nent strategies: fine-tuning LLMs and prompting. Fine-tuning involves adapting
pre-trained models to the summarization task, leveraging their vast pre-trained knowl-
edge, while prompting relies on structured instructions to guide LLMs in generating
summaries without altering their weights. The research comprehensively analyzes
these approaches, evaluating their strengths and weaknesses regarding summary
quality, computational efficiency, and adaptability to the scientific domain.

Utilizing relatively small datasets from arXiv, the thesis showcases successful fine-
tuning even with a limited amount of data, examines the impact of text preprocessing on
fine-tuning, and optimizes prompt engineering through multiple prompts and a custom
chunking algorithm. The limitations of numerical evaluation metrics in assessing
text quality are critically analyzed. The research aims to provide valuable insights
into long-input summarization, offering guidance on the effectiveness of fine-tuning
and prompting strategies to enhance LLMs’ capabilities in processing extensive and
intricate textual documents.

The results of this study show that the fine-tuning strategy outperforms the prompt-
ing approach in the long-input summarization task of scientific articles. Furthermore,
comparing non-fine-tuned and fine-tuned LLMs reveals that fine-tuning is a crucial
step in using an LLM to summarize scientific articles, even with models pre-trained
for summarization. We emphasize the limitations of using only numerical evaluation
metrics in assessing the quality of generated texts and conclude that human evaluation
is a vital part of ensuring the factuality and coherence of the generated summaries.

Keywords large language model, long-input summarization, fine-tuning, prompt
engineering
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Tiivistelmä
Suuret kielimallit ovat osoittaneet merkittäviä kykyjä useissa luonnollisen kielen
käsittelyä vaativissa tehtävissä. Niiden kyky tiivistää tekstiä on kuitenkin usein puut-
teellista. Kielimallien tiivistämä teksti ei välttämättä ole yhtenäistä tai todenperäistä,
erityisesti tiivistettävän tekstin pituuden kasvaessa. Kasvava kysyntä automaattiselle
tekstin tiivistämiselle yhdistettynä tieteellisen tekstin monimutkaisuuteen muodostaa
ainutlaatuisen haasteen. Tämä diplomityö pyrkii kattavasti tarkastelemaan pitkien
tieteellisten artikkeleiden tiivistämistä suurien kielimallien avulla.

Käytämme abstrakteja tekniikoita tieteellisten artikkeleiden tiivistämiseen. Hyö-
dynnämme kahta eri strategiaa: kielimallien hienosäätöä sekä ohjeistamista. Hienosäätö
sisältää esikoulutettujen mallien sovittamisen tiivistystehtävään hyödyntäen niiden
laajaa ennalta opittua tietoa. Ohjeistaminen perustuu strukturoituihin ohjeisiin, jotka
ohjaavat suuria kielimalleja tiivistelmien generoinnissa muuttamatta mallin painoja.
Tutkimus analysoi perusteellisesti näitä lähestymistapoja arvioiden niiden vahvuuksia
ja heikkouksia tiivistelmän laadun ja laskennallisen tehokkuuden osalta. Lisäksi
arvioimme, kuinka nämä lähestymistavat toimivat tieteellisten tekstien kontekstissa.

Osoitamme, että suuria kielimalleja voi onnistuneesti hienosäätää hyödyntäen
suhteellisen pientä tekstiaineistoa. Lisäksi tutkimme tekstin esikäsittelyn vaikutuksia
hienosäätöön ja optimoimme ohjeistuksen suunnittelua käyttäen useita ohjeita ja
räätälöityä paloittelualgoritmia. Tutkimus pyrkii tarjoamaan arvokkaita näkemyksiä
pitkän tekstin tiivistämiseen suurien kielimallien avulla, tarjoten ohjeita mallien
onnistuneeseen hienosäätöön sekä ohjeistamiseen.

Tämän työn tulokset osoittavat, että kielimallin hienosäätö tuottaa parempia tiivis-
telmiä tieteellisistä teksteistä verrattuna kielimallin ohjeistamiseen. Lisäksi osoitamme,
että kielimallin hienosäätäminen on kriittistä, mikäli mallin halutaan tiivistävän tie-
teellistä tekstiä mahdollisimman hyvin, vaikka tehtävään käytetty kielimalli olisi
esikoulutettu tekstin tiivistämiseen. Tutkimus osoittaa, että tekstin laadun arvioiminen
ainoastaan numeerisia metriikoita käyttäen on puuttellista. Mikäli kielimallin tuot-
taman tiivistelmän faktat ja yhtenäisyys halutaan kattavasti varmistaa, on ihmisen
hyödyntäminen arviointiprosessissa olennaista.

Avainsanat suuri kielimalli, pitkän tekstin tiivistäminen, kielimallin hienosäätö,
kielimallin ohjeistaminen
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1 Introduction
Large language models (LLMs), such as GPT-3, GPT-4 (Brown et al. [23]), and BERT
(Devlin et al. [10]), have shown impressive capabilities in various natural language
processing tasks aiming to generate coherent and contextually relevant text (Wang
et al. [15]). However, their output may not always meet the specific requirements
or domain knowledge needed in tailored real-life applications. Furthermore, the
generated text may lack coherence or factuality, especially in summarization tasks
with longer inputs (Koh et al. [16]). The demand for automated summarization has
grown exponentially with the proliferation of digital content across various domains
such as news, academia, legal documents, and social media (El-Kassas et al. [17]).

While the potential of developing an effective automatic text summarization
system has attracted significant interest from the research community, automatic text
summarization remains a challenging task. It is not applicable for wide practical use,
particularly when it comes to summarizing longer texts such as scientific articles.
Long-input summarization deals with the challenging task of summarizing extended
documents or text passages, which often contain nuanced information and complex
structures (Koh et al. [16]). In the context of machine learning, a document is
considered long when current state-of-the-art models for a normal document cannot
be implemented effectively due to hardware and model limitations. This work defines
a long text as being longer than 1000 tokens.

This thesis will focus on the long-input summarization task of scientific articles
using large language models. The abstractive summarization technique is used to
summarize the articles. Abstractive summarization focuses on concisely summarizing
a given text by interpreting and rephrasing the content rather than extracting and
rearranging existing sentences or phrases (Kouris et al. [58]). We delve into two
strategies for tackling the long-input summarization task - fine-tuning an LLM
and employing prompting techniques. These two methodologies represent critical
directions in natural language processing research, and their comparative analysis aims
to contribute valuable insights into the best practices for addressing the long-input
summarization task. We use relatively small datasets containing approximately 1k to
10k scientific articles. arXiv is used as a source for articles to ensure high-quality,
human-generated text samples that align with the desired objectives and meet the
requirements for the long-input summarization task, particularly in terms of text length.

Fine-tuning an LLM involves adapting a pre-trained language model to a specific
task. For our summarization task, this means that we fine-tune a pre-trained model
on a smaller, task-specific dataset consisting of text documents and their respective
summaries. Fine-tuning allows the model to specialize in summarization by adjusting
its weights, yet it requires a substantial amount of labeled data and domain-specific
expertise. This approach has gained considerable attention and success in recent years,
owing to its ability to leverage the immense pre-trained knowledge of LLMs and adapt
it to the specifics of summarization (Zhang et al. [4], Phang et al. [7]).

On the other hand, prompt engineering relies on structured and domain-specific
prompts to guide the LLM’s behavior in generating a summary from a given text.
Prompting is an efficient learning paradigm that allows LLMs to perform zero-shot



inference by conditioning on an instruction designed by humans (Zhou et al. [57]). A
prompt is natural language text describing the task that an LLM should perform. These
prompts are carefully designed to instruct the model to focus on critical elements,
eliminate noise, and produce summaries from given texts. (Liu et al. [18]) In prompt
engineering, a prompt containing the instructions for summarization and an article
is fed to the model. An LLM aims to solve the given task at inference time without
changing its weights. This approach is particularly appealing due to its flexibility
and ease of use, as it doesn’t require extensive fine-tuning with domain-specific data.
However, it raises questions about the effectiveness of prompts, optimal prompt design,
and potential limitations in handling longer documents.

We comprehensively examine these two approaches, fine-tuning and prompting, and
evaluate their strengths and weaknesses in the context of long-input summarization.
The evaluation will consider various aspects, including the quality of generated
summaries, computational efficiency, models’ adaptability to a scientific domain, and
the need for labeled data. In fine-tuning, we leverage large pre-trained language models
as a starting point and then fine-tune these models. In prompting, we do not fine-tune
an LLM but rather guide the model via a prompt to summarize scientific articles. The
performance of each model is evaluated using suitable evaluation metrics, and the
generated summaries are compared against the reference texts. Technical accuracy
of the generated texts is out of the scope of this work. We also analyze whether the
existing metrics for evaluating text quality are sufficient.

This research aims to shed light on the path forward, addressing the challenges
and opportunities of long-input summarization and contributing to the broader goal of
making large language models more adept at processing lengthy and complex textual
documents. The main contributions of this thesis can be summarized as follows:

• We comprehensively analyze the performance of various language models in the
long-input summarization task of scientific articles. We utilize two datasets of
scientific articles gathered from arXiv. The first dataset consists of approximately
9k articles from the reinforcement learning domain (RL dataset), whereas the
other dataset contains approximately 1.5k articles from the domain of large
language models (LLM dataset).

• We compare the fine-tuning and prompt engineering approaches that are used
to adapt an LLM to a long-input summarization task. Additionally, we analyze
how our fine-tuned models perform in the long-input summarization task of
scientific articles by comparing them to previous work by others.

• We show that even with a limited amount of data, it is possible to fine-tune an
LLM for a long-input summarization task successfully.

• We show that the fine-tuning strategy outperforms the prompting approach in the
long-input summarization task of scientific articles. Furthermore, comparing
non-fine-tuned and fine-tuned LLMs reveals that fine-tuning is a crucial step in
using an LLM to summarize scientific articles, even with models pre-trained for
summarization.
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• We analyze how different text preprocessing techniques affect the fine-tuning of
an LLM and present the preprocessing steps that lead to the best performance in
the long-input summarization task.

• We analyze how prompt engineering can be optimized by formulating multiple
prompts that guide the model in the summarization task and presenting a custom
chunking algorithm.

• We emphasize the limitations of using only numerical evaluation metrics in
assessing the quality of generated texts and conclude that human evaluation is a
vital part of ensuring the factuality and coherence of the generated summaries.

1.1 Research questions
This thesis aims to answer the following research questions.

1. How does a fine-tuned model perform in a long-input summarization task
compared to the corresponding base model or prompt engineering?
Nowadays, it is possible to fine-tune large language models with custom data to
generate text or apply prompt engineering to achieve the same goal. However,
it is not always clear which of the abovementioned approaches works best in
a summary generation task due to the many factors that must be considered.
These factors include, among other things, the length of the input texts, the type
of text, the availability of a suitable model for fine-tuning, data privacy, and
financial and computational considerations. In this study, we comprehensively
analyze the performance of language models in the long-input summarization
tasks, leveraging fine-tuning and prompt engineering.

2. How do varying hyperparameters and data preprocessing options impact
the performance of the models and generated outputs?
It is crucial to preprocess the input text before feeding it to a model. Usually,
tables, equations, and special characters are removed from the original text, and
the text is lowercased (Tabassum et al. [51]). Preprocessing logic depends on the
context and type of the original text. This thesis applies custom preprocessing
logic to the input texts, and its effects are analyzed and compared to other
preprocessing approaches.
Prompt engineering provides a way to generate summaries without model fine-
tuning. In prompt engineering, parameters such as chunk size, temperature, and
choice of relatedness metric affect the model’s outputs. These parameters should
be chosen to achieve the highest quality of the generated texts. Additionally,
crafting a suitable prompt that guides the model to summarize articles is
significant. In this thesis, we study how prompt engineering can be utilized in
the long-input summarization task. Furthermore, we aim to write an "optimal"
prompt and study the effect of varying the chunk size.
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Fine-tuning a pre-trained model requires selecting suitable values for the model’s
hyperparameters. How to define these hyperparameters should be carefully
considered to make sure the model runs successfully within memory limits and
time constraints. Furthermore, we must avoid overfitting the model and aim to
achieve the highest performance possible regarding the evaluation metrics. Due
to time and space complexities, we cannot test multiple hyperparameter sets in
fine-tuning, even though it would have been interesting.

3. How to comprehensively evaluate the quality of generated texts?
Generally, text can be evaluated using metrics such as ROUGE, BLEU, and
BERTScore. However, these scores provide only a limited view of the quality
of the text. (Gehrmann et al. [49]) If factors such as coherence and factuality
are not considered, we might overestimate the quality of the generated text. For
example, ROUGE scores can be reasonably high for a text that contains words
similar to the original text, but its readability and factuality may be poor. This
thesis analyzes the limitations of using only numerical metrics in assessing the
quality of generated texts.
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2 Background
This section aims to provide a thorough view of the large language models and text
summarization. First, we will discuss artificial neural networks (ANNs), namely
feed-forward and recurrent neural networks (FNN and RNN), that are predecessors of
a Transformer model. Then, the Transformer model and its architecture are presented
in detail, as each LLM used in this thesis relies on the Transformer architecture.
Artificial neural networks are presented in Section 2.1, and its subsections cover FNN,
RNN, and Transformer.

ANNs can be trained through various learning paradigms. In Section 2.2, we
present three types of learning. Two common paradigms, supervised and unsupervised
learning, are briefly discussed. However, Transformer-based models are usually trained
with self-supervised learning; thus, we present this learning paradigm.

After covering ANNs, we will move on to discuss large language models, which
are types of ANNs containing billions of parameters that they learn from massive
amounts of textual data. We explain large language models in general in Section
2.3 and dive deeper into in-context learning and fine-tuning that adapt an LLM to
a specific task in Section 2.4. In Section Evaluation metrics 2.5, we will introduce
several evaluation metrics used to evaluate the quality of the generated content by
an LLM. Furthermore, we cover text summarization, define relevant concepts, and
discuss different techniques that can be used for summarizing text in Section 2.6.

2.1 Artificial neural networks
Artificial neural networks (ANNs, also shortened to NNs) are a class of machine
learning models inspired by the structure and functioning of the human brain. They
are a fundamental component of deep learning. This section will cover three types of
ANNs: FNN in Section 2.1.1, RNN in Section 2.1.2, and Transformer in Section 2.1.3.

ANNs consist of interconnected nodes, often called neurons, organized into layers.
Nodes are the basic computational units in a neural network. Each node receives one
or more input signals, processes them, and produces an output. Nodes are usually
organized into layers, including an input layer, one or more hidden layers, and an output
layer. Weights represent connections between neurons. Each link has an associated
weight that determines the strength of the connection. During training, these weights
are adjusted to optimize the network’s performance.

In addition, the activation function of a neuron defines the output of that neuron
based on its input. It introduces non-linearities into the network, allowing it to learn
complex relationships in the data. Standard activation functions include sigmoid,
hyperbolic tangent (tanh), and rectified linear unit (ReLU) (Nair et al. [47]).

Neural networks are organized into layers. The input layer receives the initial data,
the hidden layers process this data, and the output layer produces the network’s final
output. Deep neural networks have multiple hidden layers.

Neural networks learn from data by adjusting their weights during training.
This process involves presenting the network with input-output pairs (training data),
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computing the output, comparing it to the desired output, and adjusting the weights to
reduce the error. (Wikipedia contributors [45])

2.1.1 Feed-forward neural network

A feed-forward neural network (FNN) is an artificial neural network in which the
information flow direction is forward from the input nodes. FNNs have no cycles or
loops. Modern feed-forward networks are trained using the backpropagation method.
(Wikipedia contributors [33])

Let us next define equations for a hidden state and an output variable. Consider an
input X ∈ R𝑛×𝑑 , where 𝑛 is the number of samples, and 𝑑 is the number of inputs of
each sample. The corresponding hidden state is defined as H ∈ R𝑛×ℎ, where ℎ is the
number of hidden units. Furthermore, we define a weight matrix W𝑥ℎ ∈ R𝑑×ℎ, and an
activation function 𝜙. A logistic sigmoid or a hyperbolic tangent (tanh). We define a
hidden state

H = 𝜙ℎ (XW𝑥ℎ + bℎ), (1)

where bℎ ∈ R1×ℎ is a bias parameter. The output variable can be defined as

O = 𝜙𝑜 (HWℎ𝑜 + b𝑜). (2)

One of the simplest FNNs is a single-layer perceptron. Perceptron uses a linear
activation function. In perceptron, input values enter the layer and are multiplied by
their corresponding weights. Each multiplication is added to get a weighted sum of all
input values. If the sum of the values is above a specific threshold, usually set at zero,
the value produced is often 1, whereas if the sum falls below the threshold, the output
value is -1. The single-layer perceptron is often used in classification tasks (Wikipedia
contributors [33]).

An extension of the perceptron is a multi-layer perceptron (MLP). The MLP
consists of an input layer, one or more hidden layers, and an output layer. MLPs are
fully connected, meaning that each node in one layer connects with a certain weight to
every node in the following layer. Learning in MLP occurs by changing connection
weights after each piece of data is processed based on the amount of error in the output
compared to the expected result. This is an example of supervised learning and is
carried out through backpropagation. Backpropagation performs a backward pass to
adjust a neural network model’s parameters, aiming to minimize the mean squared
error. (Wikipedia contributors [34])

2.1.2 Recurrent neural network

Recurrent Neural Network (RNN) is a type of neural network architecture mainly
used to detect patterns in a data sequence such as text or numerical time series and
handwriting (Chung et al. [63]). RNNs are used widely for tasks such as handwriting
recognition, machine translation, and time series prediction (Wikipedia contributors
[21]). The main difference between FNN and RNN is that recurrent neural networks
have cycles, and information is transmitted back into itself. RNN can be thought of as
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a directed acyclic graph (DAG); that is, it consists of vertices and edges, with each
edge directed from one vertex to another, such that following those directions will
never form a closed loop (Wikipedia contributors [30]).

RNN has at least one hidden layer, and the information flows through the hidden
layer(s). Next, we describe a process of passing information from the previous iteration
to the hidden layer using the mathematical notation proposed by Zhang et al. [64].
Consider an input X𝑡 ∈ R𝑛×𝑑 at timestep 𝑡, where 𝑛 is the number of samples, and 𝑑
is the number of inputs of each sample. The corresponding hidden state at timestep
𝑡 is defined as H𝑡 ∈ R𝑛×ℎ, where ℎ is the number of hidden units. Furthermore,
we define a weight matrix W𝑥ℎ ∈ R𝑑×ℎ, and a hidden-state-to-hidden-state matrix
Wℎℎ ∈ Rℎ×ℎ. Lastly, an activation function 𝜙, usually a logistic sigmoid or tanh
function, is presented. The activation function is used to prepare the gradients for
usage in backpropagation. Now that we have all the components to determine a hidden
state, we get the following equation.

H𝑡 = 𝜙ℎ (X𝑡W𝑥ℎ + H𝑡−1Wℎℎ + bℎ), (3)

where bℎ ∈ R1×ℎ is a bias parameter. The output variable can be defined as

O𝑡 = 𝜙𝑜 (H𝑡Wℎ𝑜 + b𝑜). (4)

To emphasize the differences between FNNs and RNNs, the basic structure of
both neural networks can be seen in Figure 1. The feed-forward neural network is on
the left side, whereas the recurrent neural network is on the right.

A long short-term memory (LSTM) network is a popular type of RNN aimed to
solve the vanishing gradient problem common when dealing with traditional RNNs
(Wikipedia contributors [31]). The architecture in LSTM differs from the conventional
RNN architecture. In LSTM, an additional module that learns when to remember and
when to forget relevant information is added (Gers et al. [32]). For instance, in the
context of NLP, the network can learn dependencies between types of words. "Long"
in LSTM refers to the short-term memory that can last thousands of timesteps in RNN.
Even though LSTM networks partially solve the vanishing gradient problem, they can
still suffer from the exploding gradient problem.

A typical LSTM unit consists of a cell and three gates: an input gate, an output
gate, and a forget gate. The gates regulate the flow into and out of the cell, which
remembers the information received through the gates over an arbitrary time interval.
The input gate regulates the inward flow of new information to the cell in its current
state. On the other hand, the output gate is used to decide which information to output
from the current state by considering both the current and the previous states. The
forget gate controls what information is discarded from the previous state. Input and
forget gates assign a value between 0 and 1 to the previous state, which decides whether
to keep or discard the information. Output gates assign a value between 0 and 1 to the
information using the previous and current states. A rounded value of 1 means to keep
the information, and a value of 0 means to discard it. (Wikipedia contributors [31])
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Figure 1: Simplified structure of FNN and RNN.

2.1.3 Transformer

This section provides a thorough walk-through of a Transformer model introduced by
Vaswani et al. in the paper “Attention Is All You Need” [2] in 2017. Each model used
in this thesis relies on the Transformer architecture. Thus, we must understand how
these kind of models work. The Transformer model entirely relies on self-attention to
compute representations of its input and output without using sequence-aligned RNNs
or convolution.

The basic structure of a Transformer model is seen in Figure 2. The encoder maps
an input sequence of symbol representations (𝑥1, ..., 𝑥𝑛) to a series of continuous
representations 𝑧 = (𝑧1, ..., 𝑧𝑛), from which the decoder then generates an output
sequence (𝑦1, ..., 𝑦𝑚) of symbols one element at a time. The model takes advantage
of the previously generated output and the previous hidden state of the decoder when
generating the following output. Before the processing in the encoder and decoder
starts, input and output embeddings are fed to the positional encoding, which adds
significant information about the order of the input sequence into each word.

The encoder and decoder components consist of layers called stacks. Let us denote
the number of layers as 𝑁 . Each encoder layer in a stack consists of two sublayers:
a self-attention layer and a feed-forward neural network layer. Encoder layers are
identical in structure but have unique weights. An encoder layer is described in more
detail in Figure 3. A decoder layer has the corresponding sublayers, but in addition to
the self-attention and the feed-forward neural network, there is an encoder-decoder
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Figure 2: Basic structure of a Transformer model.

attention sublayer between the components, as mentioned earlier.
In the encoder part, the input embedding, or after the first layer, the output of

the previous encoder layer, is fed to the self-attention layer. Let us consider the
self-attention process in more detail. The self-attention process can be seen in Figure
4. We calculate query, key, and value vectors for every row (word) in 𝑋 , 𝑞 𝑗 , 𝑘 𝑗 , and
𝑣 𝑗 , respectively. Here, 𝑗 ∈ {1 . . . 𝑛}, where 𝑛 is the number of input words. The
corresponding matrices, that are seen in Equation 5, 𝑄𝑖, 𝐾𝑖, and 𝑉𝑖 are calculated
by multiplying 𝑋 with head-specific weights𝑊𝑄

𝑖
,𝑊𝐾

𝑖
, and𝑊𝑉

𝑖
. Here, 𝑖 ∈ {1 . . . ℎ},

where ℎ is the number of heads or parallel layers.
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Figure 3: Detailed description of an encoder layer.

𝑄𝑖 = 𝑋𝑊
𝑄

𝑖
(5a)

𝐾𝑖 = 𝑋𝑊
𝐾
𝑖 (5b)

𝑉𝑖 = 𝑋𝑊
𝑉
𝑖 . (5c)

Self-attention for a certain head𝑖, 𝑖 ∈ {1 . . . ℎ} is calculated as a function of 𝑄𝑖,
𝐾𝑖, and 𝑉𝑖. It is defined as the inner product of 𝑄𝑖 and 𝐾𝑖 divided by the square root of
its dimensions. Each row in 𝑄𝑖 corresponds to an input word vector that is multiplied
by every key vector in 𝐾𝑖. The process for calculating attention for an example query
is visualized in Figure 5, and the corresponding equations are seen in 6.
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head𝑖 = SelfAttention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 , 𝑉𝑊
𝑉
𝑖 ) (6a)

SelfAttention(𝑄, 𝐾,𝑉) = softmax(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉. (6b)

Calculating scores for a query means that a dot-product is taken with every key
in 𝐾𝑖. A score can be understood as a factor used to determine the importance of
other words in a sequence as we encode a word at a particular position. The scores are
then scaled to have more stable gradients and passed into a softmax operation that
normalizes the scores. The intuition behind the softmax operation is that we determine
what words are expressed at a certain position. Then, each value vector is multiplied
by the corresponding softmax score to keep the values of the words we want to focus
on at a certain position intact. Lastly, we sum up the weighted value vectors to get the
output vector of the self-attention layer at a certain position.

As can be seen from Figure 4, self-attention is calculated ℎ times in parallel. Each
head𝑖 in multi-head attention is a unique representation of the input words multiplied
by the corresponding weight matrices and thus expands the model’s ability to focus
on different aspects. The resulting ℎ heads are concatenated into a single matrix
multiplied with another weight matrix (𝑊𝑂)𝑇 as seen in Equation 7.

MultiHeadAttention(𝑄, 𝐾,𝑉) = Concat(head1, . . . , headℎ)𝑊𝑂 . (7)

The above multiplication results in a matrix 𝑍 that contains information from
all ℎ attention heads. Before proceeding to the second sublayer, layer normalization
is applied to the sum of the input word matrix 𝑋 and the attention matrix 𝑍 . Layer
normalization reduces training time and prevents the weight from exploding by
restricting it to a certain range. This step can be seen in Figure 3. The resulting matrix
𝑍 can then be fed to the feed-forward neural network of the following structure, seen in
Equation 8. This regular feed-forward network is applied separately to every attention
vector 𝑧𝑖 in 𝑍 . The FFN is unique in each sublayer. The FFN is used so that the output
can be consumed by the next encoder block or, after the final encoder layer, the decoder
block. One should note that layer normalization is applied to the sum of the input and
output of the sublayers in each encoder block to employ a residual connection.

FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2. (8)

Now that we have covered the encoder part of the Transformer, seen on the left-hand
side of Figure 2, we may proceed to the decoder side. The decoder is somewhat
similar to the encoder part, the main difference being that an encoder-decoder attention
sublayer exists between the already familiar components, the self-attention and FFN
layers, from the encoder part. This encoder-decoder layer performs the already seen
multi-head attention over the output of the encoder stack. The encoder-decoder
layer takes the embeddings from both the input sequence and the target sequence to
determine how each word in the input is related to the words in the target sequence.
More specifically, in the encoder-decoder attention layer, the query matrix for the
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target sequence is received from the self-attention layer below the current layer. In
contrast, the key and value matrices are received from the output of the encoder stack.

The self-attention layer differs from the one seen on each encoder layer. It can
only attend to earlier positions in the output sequence while generating the attention
vectors. This ensures that predictions for a certain position depend only on the known
outputs at positions before the current position. The masking of the future positions is
done before the softmax step in the self-attention layer by setting them to −∞. The
query vectors (i.e., the collection of the attention vectors) describe how much each
word is related to other words in the target sequence. As with the encoder, the residual
connections are applied around each sub-layer, followed by layer normalization.

The decoder outputs vectors of floats that each correspond to a word. Now, these
vectors are turned into words using linear and softmax layers. The linear layer is a
fully connected neural network that projects a vector into a logit vector, where each
float represents a score for a word. The size of the logit vector is the number of unique
words in the model’s output vocabulary. Finally, we may apply the softmax to the
logit vector and obtain the corresponding probabilities. The highest probability is
chosen, and the word associated with it is produced as an output of the Transformer at
a current time step.

Now, we have covered the "basic" transformer architecture in detail. Later in this
thesis, we will delve deeper into a few transformer-based language models that utilize
the basic architecture with modifications.

2.2 Artificial neural network learning paradigms
Artificial neural networks can be trained using various learning paradigms, including
supervised, unsupervised, and self-supervised learning. The choice of the learning
paradigm depends on the nature of the task and the available data. Supervised learning
is suitable for tasks with labeled data, unsupervised learning is suitable for tasks without
labeled data, and self-supervised learning is suitable for creating supervision signals
from the data itself. LLMs are usually trained through self-supervised learning; thus,
we mainly focus on this learning paradigm in this section. Section 2.2.1 briefly covers
supervised and unsupervised learning. In Section 2.2.2, we discuss self-supervised
learning.

2.2.1 Supervised and unsupervised learning

In supervised learning, the model receives a set of labeled examples as training data and
makes predictions for all unseen points. The model’s job is to find a mapping between
the given inputs and the corresponding labels such that the model generalizes to new
data. Common use cases for supervised learning include classification, regression,
and ranking problems. (Mohri et al. [59])

On the other hand, in unsupervised learning, the model is given unlabeled training
data, and the model’s job is to make predictions for all unseen points. It can be
challenging to evaluate the performance of a model quantitatively since, usually,
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no labeled example is available in that setting. Examples of unsupervised learning
problems are clustering and dimensionality reduction. (Mohri et al. [59])

2.2.2 Self-supervised learning

Self-supervised learning (SSL) is a machine learning paradigm in which a model is
trained on a dataset without explicit labels. Instead, the model leverages the inherent
structure or information within the input data to generate its own supervision signals.
Self-supervised learning incorporates ideas from both supervised and unsupervised
learning. It is similar to unsupervised learning in that it learns from unlabeled data.
Still, it is also supervised since the model creates its own pseudo-labels to learn from
during training. The term "self-supervised learning" was first introduced in robotics,
where training data is automatically labeled based on the relations between input
sensor signals. The machine learning community further developed the idea. (Liu et
al. [60])

SSL is particularly beneficial when labeled datasets are scarce or expensive to
obtain. In self-supervised learning, the model typically formulates tasks that can be
solved using the available input data without relying on external annotations. These
tasks often involve generating missing parts of the input, predicting relationships
between different parts, or other context-based predictions. Through this process, the
model learns to extract meaningful features and representations from the data, which
can later be fine-tuned for specific supervised tasks. (Qiu et al. [61])

One common example of self-supervised learning is pretraining a neural network
on a massive amount of unlabeled text data using tasks like language modeling, where
the model predicts the next word in a sequence. Once pre-trained, the model can be
fine-tuned on a smaller labeled dataset for tasks like text classification or sentiment
analysis. This demonstrates the transferability and effectiveness of features learned
through self-supervised learning. Another example of a self-supervised task is the
masked language model (MLM), which attempts to predict the masked words in a
sentence given the rest of the words. (Qiu et al. [61])

2.3 Large language models
Large Language Models (LLMs) have garnered considerable attention recently due to
their remarkable capabilities in understanding and generating human-like text. In this
chapter, we delve into the evolving landscape of LLMs, their current applications, their
promises for the future, and the history of their development. Additionally, we will
explore their vulnerabilities and ethical implications while considering the potential
use cases for fine-tuning these models and employing prompting techniques, especially
in the context of long-input summarization.

2.3.1 Overview

Large language models are a type of language model notable for their ability to
achieve general-purpose language understanding and generation. Large language
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models are trained mostly through self-supervised learning on vast amounts of text
from the internet, books, articles, and more. This text corpus gives them a broad
understanding of human language and various topics. These models are designed to be
general-purpose, meaning they can perform various language-related tasks, including
text generation, translation, summarization, and question-answering. They don’t need
task-specific programming; they learn from the data they are trained on. The term
"large" in large language models refers to the size of their neural network and the
amount of training data. These models have millions or even billions of parameters,
which allows them to capture intricate language patterns and nuances. Large language
models are artificial neural networks, mainly Transformers (Vaswani et al. [2]). They
are pre-trained using self-supervised learning (Wikipedia contributors [28]) and weak
learning (Wikipedia contributors [29]). (Wikipedia contributors [20])

Large language models did not emerge overnight but resulted from decades of
research and development in Natural Language Processing (NLP). The concept of
using neural networks for NLP tasks dates back to the 1960s (Brill et al. [19]).
However, the breakthroughs leading to LLMs can be traced to the advancements in
deep learning, specifically in the form of deep neural networks known as RNNs and
FNNs. The pivotal moment in the development of LLMs was the introduction of
the Transformer architecture in the paper "Attention is All You Need" by Vaswani
et al. in 2017 [2]. The Transformer architecture revolutionized NLP by introducing
the concept of self-attention mechanisms, which enabled models to capture long-
range dependencies in text efficiently. This breakthrough laid the foundation for the
subsequent development of large-scale language models.

Large language models have since evolved and grown in size, with models like
GPT-3 and GPT-4 (Brown et al. [23]) and BERT (Devlin et al. [10]) pushing the
boundaries of what is possible in NLP. These models have billions of parameters
and can comprehend and generate coherent text, enabling them to automate various
language-related tasks. They have been employed in machine translation, sentiment
analysis, chatbots, and content generation, significantly streamlining processes in
many industries.

The future potential of LLMs is vast and exciting. As these models continue
to evolve and grow in sophistication, they will likely play a pivotal role in various
domains. In particular, long-text summarization is a promising application, providing
companies with new ways to leverage their industry-specific documents. Fine-tuning
or prompt engineering LLMs to generate concise and accurate summaries of complex
papers could significantly enhance accessibility to specific knowledge.

While LLMs offer great promise, they are not without their vulnerabilities and
ethical concerns. The potential for biases in generated content, the misuse of the
technology for malicious purposes, and the environmental impact of training and
deploying these massive models are areas of concern (Wu et al. [11]). Researchers
and practitioners must address these issues responsibly and transparently.

Companies and organizations increasingly recognize the value of LLMs in au-
tomating tasks, enhancing customer interactions, and generating content (Daugherty
et al. [62]). Fine-tuning or prompt engineering LLMs with domain-specific data can
be a strategic move to harness the full potential of these models. For example, in
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scientific research, companies can use fine-tuned LLMs to automatically summarize
the latest developments in their respective fields, aiding decision-making processes
and staying competitive.

Large language models have transformed the landscape of natural language
understanding, offering unprecedented capabilities and opportunities for automation
and innovation. However, their growth is accompanied by ethical considerations
(Bender et al. [46]), and it is crucial to use these models responsibly. As we continue
to explore the possibilities of LLMs, their ability to enhance accessibility to scientific
knowledge through summarization holds immense promise and potential benefits for
society.

2.3.2 Hallucination

Hallucination is a known problem in the context of large language models. In this
context, the term "hallucination" refers to the generation of content that is not grounded
in factual information or is not a faithful representation of reality. It occurs when
the model produces output that appears coherent and contextually relevant but lacks
accuracy or is entirely fabricated. (Ji et al. [48]) Hallucinations in language models can
arise for various reasons, such as lack of fact-checking, over-optimization of training
data, or ambiguity in training data.

Language models do not inherently possess a mechanism for fact-checking, so
they may generate responses that sound plausible but are not necessarily true. Thus,
a lack of fact-checking may occur. On the other hand, over-optimization of training
data can happen if a model is overfitting its training data. In that case, it may generate
content that aligns more closely with the training examples but does not necessarily
reflect real-world accuracy. Furthermore, if the training data contains ambiguous or
contradictory information, the model might "hallucinate" by filling in the gaps with its
own interpretation.

Addressing hallucination in large language models is an ongoing research challenge.
Researchers are working on developing methods to improve the factual accuracy and
reliability of model outputs, but achieving perfection in this regard is a complex task.
Users are encouraged to critically evaluate information generated by language models
and verify it against reliable sources when necessary.

2.4 Customization of LLM
This section describes two methods, fine-tuning and in-context learning, that can
be used to customize a large language model for a specific task. Fine-tuning and
in-context learning are methods used to adapt pre-trained language models to specific
tasks or contexts. Fine-tuning involves retraining the model on task-specific data,
while in-context learning leverages the manipulation of input prompts to influence
the model’s output. Both approaches enable the customization of LLMs for diverse
applications. First, we consider in-context learning in Section 2.4.1, then fine-tuning
in Section 2.4.2.
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2.4.1 In-context learning

In-context learning (ICL) is a task adaptation strategy that does not update the weights
of the pre-trained large language model (Brown et al. [23]). In ICL, the model is
conditioned on natural language instruction and a few demonstrations of the task
and is then expected to complete further instances of the task simply by predicting
what comes next. Recently, it has been argued by Awadalla et al. [27] that ICL leads
to better out-of-domain performance when compared to fine-tuning, but there are
references such as Mosbach et al. [26] that state the opposite. Next, we briefly discuss
different approaches to learning within the context, namely zero-shot and few-shot
learning.

Zero-shot learning represents a leap forward in LLMs’ capabilities, allowing
them to generate text without specific training or prior knowledge. As the name
zero-shot suggests, in zero-shot learning, only instructions without any examples are
provided in natural language to the model at inference (Brown et al. [23]). Zero-shot
learning leverages the inherent capabilities of LLMs, which have been pre-trained
on vast amounts of text from the internet. Zero-shot learning eliminates the need
for domain-specific training. Instead, the model is guided by a simple prompt or
instruction, typically in the form of a question or directive. Despite having no prior
knowledge of the specific content, the model uses its general language understanding
and reasoning abilities to generate a coherent and contextually relevant text.

However, the quality and relevance of the generated text can vary based on the
prompt and the model’s interpretation. It should be ensured that the generated content
remains unbiased and factually accurate, and users must carefully craft prompts to
achieve the desired results. Additionally, zero-shot summarization may struggle with
highly technical or specialized content, and it should be carefully considered whether
fine-tuning LLM could provide a better alternative for specific tasks or domains.

On the other hand, few-shot refers to the setting where the model is given a
few demonstrations of the task at inference time as conditioning, but the model’s
weights are not updated (Brown et al. [23]). Few-shot learning with large language
models involves training these models using a limited number of examples for specific
tasks. Instead of extensive training data, LLMs rely on their pre-trained language
understanding and patterns extracted from the provided examples to quickly adapt and
generalize. In addition to few-shot learning, some literature distinguishes one-shot
learning as its own. One-shot learning is the same as few-shot except that only one
example is allowed at inference time, in addition to a natural language description of
the task.

The critical advantage of few-shot learning is the ability of LLMs to learn and
generalize from a small number of examples, leading to a significant reduction in the
need for task-specific data. Their strong foundation in language prediction enables
them to adapt to new inputs based on the patterns identified in the examples. However,
ensuring the quality and relevance of the examples is crucial, as inaccuracies or
inadequate representation can result in undesired outcomes. In text summarization,
few-shot learning with relevant examples has significantly improved LLMs’ accuracy
(Brown et al. [23]). Training the model with curated prompt examples can incorporate
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targeted language and capture essential topics in the generated summaries. This
approach eliminates the need for rigid instructions, reducing the risk of overfitting the
model to specific patterns.

In this thesis, we will make use of prompt engineering which is a zero-shot learning
strategy. We aim to write an effective prompt and feed scientific articles to the model
individually. The prompt asks the model to summarize the contents of an article. This
summary can then be compared with the corresponding abstract from the original
paper.

2.4.2 Fine-tuning

Fine-tuning has emerged as a popular approach in recent years within the domain of
natural language processing and machine learning (Yu et al. [36]). This technique
involves meticulously adjusting the model’s weights, building upon a pre-trained
architecture by exposing it to a carefully curated dataset tailored to the specific task. In
most cases, these datasets encompass an array of thousands to hundreds of thousands
of labeled examples, each serving as the fuel for the refinement process.

Fine-tuning should be considered when adapting to a new domain or genre
(Mosbach et al. [26]). Fine-tuning necessitates the creation of a fresh, often large-scale
dataset for each novel task, which makes it a resource-intensive endeavor. This demand
for substantial data can pose a logistical barrier, particularly for tasks with limited
pre-existing labeled examples. Moreover, fine-tuned models may exhibit a proclivity
for overfitting the specific characteristics of the training data (Brown et al. [23]). This
overfitting phenomenon can result in poor generalization when the model faces data
distributions that differ from those encountered during training. In other words, the
model might excel on the dataset used for fine-tuning but falter when confronted with
real-world, out-of-distribution data. However, there exist results that state otherwise;
Mosbach et al. [26] show that fine-tuned language models can, in fact, generalize well
out-of-domain.

Another challenge is the possibility of fine-tuned models inadvertently seizing upon
irrelevant or spurious features in the training data (Brown et al. [23]). Such an outcome
can lead to a lack of robustness and fairness issues, as the model’s performance may
be inflated by its ability to exploit idiosyncratic artifacts within the training dataset.

Fine-tuning performs better with more high-quality examples. To fine-tune a model
that performs better than using a high-quality prompt with the base model, at least
a few hundred high-quality examples should be collected. Doubling the number of
examples tends to increase the model’s performance linearly. Increasing the number
of examples is usually the best and most reliable way of improving performance. [1]

In this thesis, we fine-tune four large language models to adapt to a new domain,
a dataset consisting of scientific articles that our model will then summarize using
the corresponding abstract as a reference. The first dataset deals with reinforcement
learning, and the other with large language models. These datasets and the fine-tuning
process will be defined in more detail later.
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2.5 Evaluation metrics
In this section, we present metrics that are commonly used to evaluate text generation
models. Then, we consider the limitations of the evaluation metrics in Section 2.5.7.

The metrics we will discuss in this section are F1-score, ROUGE, BLEU,
BERTScore, NIST, and cosine similarity. These metrics are used in NLP to compare
generative or extractive tasks wherein two texts are to be compared. Machine-generated
texts are typically assessed against a target text, representing the ideal output expected
from the model. The ’generated text’ refers to what the machine produces, while the
’target’ or ’reference text’ is the source we compare it to.

2.5.1 F1-score

F1-score is generally defined as,

𝐹1 =
(𝛽2 + 1) · precision · recall
𝛽2 · precision + recall

, (9)

where 𝛽 is a term used to choose whether precision is favored over recall. Usually, 𝛽
is set to 1, meaning the F1-score is evenly balanced. In this thesis, we use the evenly
balanced version of F1-score, thus

𝐹1 = 2 · precision · recall
precision + recall

. (10)

Precision and recall are defined as

precision =
tp

tp + fp
, (11)

recall =
tp

tp + fn
. (12)

In Equations 11-12, tp stands for true positive, fp for false positive, and fn for
false negative. Recall, as seen in Equation 12, is a function of its correctly classified
examples (true positives) and its misclassified examples (false negatives), whereas
precision, in Equation 11, is a function of true positives and examples misclassified as
positives (false positives). [37]

Let’s consider the F1 score in terms of the extractive summarization task. Precision
is the number of correct words in the generated text divided by the total number of
words in the generated text. Recall is the number of correctly predicted words divided
by the total number of words in the target text. We may emphasize that the F1 score is
computed based on correct words, not tokens. To illustrate the computation of the F1
score, we can consider the F1 score for the prediction ”Large” when the reference
answer is ”Large Language Models” would be, 2 ·

1
1 ·

1
3

( 1
1+

1
3 )

= 1
2 .
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2.5.2 ROUGE

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation. ROUGE
is a set of evaluation metrics commonly used to assess the quality of automatic or
machine-generated summaries in natural language processing (NLP) tasks. It measures
the similarity between a generated summary and one or more reference summaries.
(Lin et al. [38])

ROUGE computes various metrics based on the overlap of n-grams (contiguous
sequences of words) between the generated summary and the reference summaries.
ROUGE-N, -L, and -S are the most commonly used ROUGE metrics.

ROUGE-N is an n-gram recall between a candidate summary and a set of reference
summaries. ROUGE-N is computed as follows:

ROUGE-N =

∑︁
𝑆∈{𝑅𝑒 𝑓 𝑆𝑢𝑚}

∑︁
𝑛-gram∈𝑆 CountMatch(𝑛-gram)∑︁

𝑆∈{𝑅𝑒 𝑓 𝑆𝑢𝑚}
∑︁
𝑛-gram∈𝑆 Count(𝑛-gram) , (13)

where 𝑛 refers to the length of the n-gram, and CountMatch(𝑛-gram) is the maximum
number of n-grams co-occurring in a candidate summary and a set of reference
summaries {𝑅𝑒 𝑓 𝑆𝑢𝑚}. ROUGE-N measures the overlap of n-grams between the
generated and reference summaries. ROUGE-1 corresponds to unigrams, ROUGE-2
to bigrams, and so on.

On the other hand, ROUGE-L measures the longest common subsequence (LCS)
between the generated and reference summaries. It captures the longest sequence
of words that appears in both summaries while allowing for some rearrangements.
ROUGE-S measures the skip-bigram overlap between the generated and reference
summaries. A skip-bigram is a pair of words that appear in the same order in both
summaries but may have other words between them.

The ROUGE-Lsum is a variation of the ROUGE-L metric, employing a slightly
different calculation approach. Instead of evaluating the summary as a whole, ROUGE-
Lsum operates at the sentence level using the ROUGE-L calculation method. It then
combines these sentence-level results to generate the final score. This metric is
particularly suitable for tasks where extracting information at the sentence level is
crucial, such as in extractive summarization. In contrast to ROUGE-L, which assesses
the entire summary without considering newlines, ROUGE-Lsum divides the text
into sentences based on newlines. It computes the LCS for each pair of sentences and
calculates the average score across all sentences. In simpler terms, ROUGE-Lsum
provides a more detailed analysis by focusing on individual sentences, potentially
offering greater insight into certain scenarios.

These metrics provide a quantitative assessment of how well a generated summary
captures the important content and structure of the reference summaries. Higher
ROUGE scores indicate better performance. To evaluate the performance of a language
model using ROUGE, we’ll compare the generated summary against one or more
reference summaries and compute the ROUGE scores.

ROUGE is widely used in research and benchmarking of summarization systems
and has become a standard evaluation metric in the NLP community. However, it’s
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important to note that ROUGE has limitations and may not capture all aspects of
summary quality, such as coherence, fluency, and semantic understanding. Therefore,
it should be used with other evaluation methods to provide a more comprehensive
assessment of language model performance. (Gehrmann et al. [49])

2.5.3 BLEU

BLEU (Bilingual Evaluation Understudy) is a commonly used evaluation metric in
natural language processing, particularly in machine translation tasks. It measures
the similarity between a machine-generated translation and one or more reference
translations. BLEU was originally designed to evaluate machine translation systems
but has also been adapted for other NLP tasks. (Papineni et al. [39])

The BLEU score is based on precision, which measures the percentage of words
or n-grams in the generated text that appear in the reference texts. BLEU computes a
modified form of precision, called the brevity penalty, to account for differences in the
lengths of the generated and reference texts.

We need one or more reference texts that serve as the ground truth or gold standard
to calculate the BLEU score. The generated summary is compared against the reference
summaries to compute the BLEU score.

First, we compute the N-gram overlap by calculating the modified precision for
each N-gram up to a specified maximum order (usually 𝑁 = 4). In this case, the
N-grams represent phrases or sequences of words in the text. Then, we calculate the
geometric mean of the modified precision scores for all N-grams. This step captures
the overall similarity between the generated and reference texts.

Next, we apply the brevity penalty (BP) to account for length differences between
the generated and reference texts. This step penalizes shorter or longer summaries to
ensure fairness in the evaluation. The final BLEU score is obtained, ranging from 0 to
1, where a higher score indicates better similarity between the generated summary
and the reference summaries.

BLEU can be computed as follows:

BLEU = BP · exp

(︄
𝑁∑︁
𝑛=1

𝑤𝑛log𝑝𝑛

)︄
, (14)

where BP stands for brevity penalty calculated such that

BP =

{︄
1 𝑐 > 𝑟

𝑒1− 𝑟
𝑐 𝑐 ≤ 𝑟

. (15)

In Equation 14, we first compute the geometric mean of the modified n-gram
precisions, 𝑝𝑛, using n-grams up to length 𝑁 and positive weights 𝑤𝑛 summing to
one. Then, we multiply the result by an exponential brevity penalty factor seen in
Equation 15, where 𝑐 is the length of the candidate translation and 𝑟 is the effective
reference corpus length. (Papineni et al. [39])

By using BLEU in summary generation tasks, we can quantitatively evaluate
the quality of generated summaries. However, one should note that BLEU has its
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limitations. As stated in "BERTScore: Evaluating text generation with BERT" by
Zhang et al. [40], BLEU provides a simple and general measure but fails to account
for meaning-preserving lexical and compositional diversity.

2.5.4 BERTScore

BERTScore is a metric that evaluates the quality and similarity of text based on the
principles of Transformer-based language models, particularly BERT (Bidirectional
Encoder Representations from Transformers) (Devlin et al. [10]). This metric deviates
from traditional evaluation measures by considering contextual information, capturing
semantic nuances, and enabling a more comprehensive assessment of text similarity
(Zhang et al. [40]).

The theoretical foundation of BERTScore lies in its use of token embeddings
derived from pre-trained BERT models. These embeddings capture the contextual
dependencies between words within sentences, enhancing the metric’s ability to
discern semantic relationships. This contextual awareness sets BERTScore apart from
traditional metrics like BLEU and ROUGE.

Next, we define BERTScore according to the original paper by Zhang et al. [40].
Given a reference sentence 𝑥 = ⟨𝑥1 . . . 𝑥𝑘⟩ and a candidate sentence �̂� = ⟨�̂�1 . . . �̂�𝑙⟩,
we use contextual embeddings to represent the tokens, and compute matching using
cosine similarity, which is defined later in this section, optionally weighted with
inverse document frequency scores. Importance weighting can be easily applied to
BERTScore, but it is not discussed in detail here. These contextual embeddings can
generate different vector representations for the same word in different sentences
depending on the surrounding words, which form the context of the target word (Zhang
et al. [40]).

The embedding model generates a sequence of vectors x = ⟨x1 . . . x𝑘⟩, and x̂ =

⟨x̂1 . . . x̂𝑙⟩ for both the tokenized reference and the candidate sentences, respectively.
These vector representations are then compared using cosine similarity. Finally, given
a reference sentence and a candidate sentence, precision and recall are combined to
calculate the F1-score that is:

𝑃BERT =
1
|�̂� |

∑︁
�̂� 𝑗∈�̂�

max𝑥𝑖∈𝑥x
𝑇
𝑖 x̂ 𝑗 , (16)

𝑅BERT =
1
|𝑥 |

∑︁
𝑥𝑖∈𝑥

max�̂� 𝑗∈�̂�x
𝑇
𝑖 x̂ 𝑗 , (17)

𝐹BERT = 2 · 𝑃BERT · 𝑅BERT
𝑃BERT + 𝑅BERT

. (18)

BERTScore is computationally efficient and scalable, making integration into
various NLP applications practical. Pre-trained models and libraries are readily
available, simplifying its adoption within research and industry settings. BERTScore
aligns closely with human judgment, suggesting its effectiveness in assessing the
coherence and fluency of generated text. However, BERTScore is not exempt from
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limitations. It may face challenges in domains with specialized language or constrained
computational resources.

2.5.5 NIST

NIST is based on the BLEU metric but with some alterations. NIST is mainly used
in translation tasks but can be used in other NLP tasks. BLEU calculates n-gram
precision, adding equal weight to each one, whereas NIST calculates how informative
a particular n-gram is. NIST also differs from BLEU’s calculation of the brevity
penalty as small variations in translation length do not impact the overall score as
much. The NIST metric was designed to improve BLEU by rewarding the translation
of infrequently used words. This was intended to further prevent the inflation of SMT
evaluation scores by focusing on common words and high-confidence translations.
As a result, the NIST metric uses heavier weights for rarer words. The final NIST
score is calculated using the arithmetic mean of the n-gram matches between SMT
and reference translations. In addition, a smaller brevity penalty is used for smaller
variations in phrase lengths. The reliability and quality of the NIST metric are shown
to be superior to the BLEU metric in many cases. (Doddington et al. [41])

According to a definition in Doddington et al. [41], NIST is calculated as follows.
First, information weights are computed using N-gram counts over the set of reference
texts according to the following equation:

Info(𝑤1, . . . , 𝑤𝑛) = log2

(︄
The # of occurrences of 𝑤1, . . . , 𝑤𝑛−1
The # of occurrences of 𝑤1, . . . , 𝑤𝑛

)︄
. (19)

Then, using Equation 19, we compute NIST:

NIST =

𝑁∑︁
𝑛=1

{︄∑︁
co-occurring 𝑤1,...,𝑤𝑛

Info(𝑤1, . . . , 𝑤𝑛)∑︁
𝑤1,...,𝑤𝑛

(1)

}︄
· exp

{︄
𝛽 · log2

[︄
min

(︄
𝐿𝑠𝑦𝑠

�̄�𝑟𝑒 𝑓
, 1

)︄]︄}︄
,

(20)

where 𝑁 = 5 is a constant, and 𝛽 is chosen to make the brevity penalty factor 0.5 when
the number of words in the system output is 2/3 of the average number of words in the
reference translation. Furthermore, �̄�𝑟𝑒 𝑓 is the average number of words in a reference
text, averaged over all reference texts, whereas 𝐿𝑠𝑦𝑠 is the number of words in the text
being scored.

2.5.6 Cosine similarity

Cosine similarity can be used to measure the similarity between tokenized words or
sentences. Cosine similarity is a similarity measure between two non-zero vectors
defined in an inner product space. Cosine similarity is the dot product of the vectors
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divided by the product of their lengths, i.e., the cosine of the angle between the vectors.
It can be calculated such that

cosine similarity = cos(\) = A · B
∥A∥∥B∥ =

∑︁𝑛
𝑖=1 𝐴𝑖𝐵𝑖√︃∑︁𝑛

𝑖=1 𝐴
2
𝑖

√︃∑︁𝑛
𝑖=1 𝐵

2
𝑖

, (21)

where 𝐴𝑖 and 𝐵𝑖 are 𝑖th components of vectors A and B, respectively. Cosine similarity
does not depend on the magnitudes of the vectors but only on their angle. The cosine
similarity is measured at [−1, 1].

2.5.7 Limitations

There are many challenges with evaluating language models that produce natural
language. The evaluation metrics presented above produce numeric values of the
performance of a model that generates natural language. Most of these metrics measure
only the similarity between model output and references but cannot estimate any
quality aspects of the generated outputs. We may ask whether a single metric is
adequate to describe the performance of a language model if it cannot measure, e.g.,
factuality or coherence. Furthermore, we haven’t yet discussed human evaluation,
which is a critical part of the evaluation of language models.

Human evaluation improves the evaluation process as humans can consider more
nuances in generated language than automated metrics. However, great investments are
required in using humans to evaluate the performance of language models. It is both
expensive and time-consuming. Additionally, human evaluation can be challenging if
the evaluators are not familiar enough with the material used to train and test a language
model. Our task is to fine-tune a model or use prompt engineering techniques to
summarize long scientific articles. To evaluate the generated summaries, the evaluator
should be familiar with the original papers’ topics to check the summary’s factuality
and overall quality. This would require the evaluator to read and internalize the
original paper and its abstract. The evaluator could only critically assess the generated
summary’s overall quality by understanding the original paper.

In this thesis, we cannot use comprehensive human evaluation even though it
would give us more insight into the performance of the models. Instead, we will assess
only a few texts generated by the models and compare them to the corresponding
reference texts.

Gehrmann et al. [49] state that most automated metrics measure only the similarity
between model output and references and fail to consider quality aspects. On the other
hand, human evaluations have a high variance and rarely produce replicable results due
to insufficient documentation. Recognizing these limitations, recent academic papers
have critiqued existing evaluation methods or proposed novel approaches. However,
there is a notable gap between these recommendations and actual implementation. The
disconnect arises from a misalignment of incentives, as there is little motivation for
researchers to invest in rigorous evaluations when the focus is primarily on publishing
new models or modeling techniques. While adopting general evaluation techniques
could facilitate the integration of evaluation advancements into model development,
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their creation demands valuable resources, such as model outputs for validation and
test sets or substantial amounts of human assessments. Challenges, such as refining
datasets, involve collaborative and iterative processes among multiple researchers.
Consequently, a cyclic dependence emerges, where enhancements in the evaluation of
generation models are contingent on using improved evaluations by generation models
themselves. (Gehrmann et al. [49])

We can conclude that a single metric cannot describe a language model’s perfor-
mance. Despite the known problems, many publications still use only one metric, e.g.,
ROUGE, to demonstrate improvements over prior systems. This is also the case with
the language models we will utilize in this thesis. The only evaluation metric used
when assessing the performance of the models was ROUGE. These models will be
described later.

2.6 Text summarization
As early as the late 1950s and early 1960s, it was suggested that text summarization
by computer was feasible but not straightforward. Since then, the interest in text
summarization has grown remarkably as the amount of digital content has grown
exponentially (El-Kassas et al. [17]). In the following subsections, we consider key
concepts related to the text summarization task using large language models. First, we
focus on extractive and abstractive summarization in Section 2.6.1 and then consider a
long-input summarization task in Section 2.6.2.

Let us first give a definition and requirements for a summary. A summary is a
text that is produced from one or more texts, that contains a significant portion of
the information in the original text(s), and that is no longer than half of the original
text(s) (Hovy et al. [24]). A summary must fulfill the following requirements: it must
be shorter than the original input text, contain the vital information (the user defines
importance) of the original, and not other, totally new information (Hovy et al. [24]).

Indicative summaries provide an idea of what the text is about without giving any
content, whereas informative ones provide some shortened version of the content. On
the other hand, extracts are summaries created by reusing portions (words, sentences,
etc.) of the input text verbatim, while abstracts are created by re-generating the extracted
content. [24]

2.6.1 Extractive and abstractive summarization

In extractive summarization, the focus is on selecting relevant sentences from the
input text to construct a summary. It is to decide whether each sentence should be
included in the summary. Thus, this approach treats the task as a binary classification
problem. The famous architecture for extractive summarization is BERT, which
serves as a baseline and can be further fine-tuned for specific domains. Determining
which sentences matter in a summary is subjective and depends on the field, leading
to variations in extractive summarization approaches. As an example of extractive
summarization, SBERT (Reimers et al. [25]), a widely used library, facilitates the
creation of summaries with the flexibility to specify the desired number of sentences.
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SBERT is a modification of the pre-trained BERT network that uses siamese and
triplet network structures to derive semantically meaningful sentence embeddings that
can be compared using cosine similarity (Reimers et al. [25]).

On the other hand, abstractive summarization aims to generate a concise summary
by comprehensively considering all the information in the input text. Unlike extractive
summarization, it does not rely on using exact sentences from the original text but
instead focuses on capturing the essence of the content through paraphrasing. (Kouris
et al. [58]) Typical architectures for abstractive summarization follow a Transformer-
based approach, similar to extractive summarization, but can be additionally fine-tuned
for specific domains such as books, research papers, interviews, and legal documents.
These models typically support larger input sizes. Given the extensive data required to
fine-tune Transformer-based architectures for new use cases, most summarizers are
built as abstractive summarizers, leveraging the abundantly available datasets. The
models used in this thesis use abstractive summarization to generate text.

2.6.2 Long-input summarization

Long-input summarization deals with the challenging task of summarizing lengthy
documents or text passages, which often contain nuanced information and complex
structures. Long-input summarization is particularly vital in the context of scien-
tific literature, legal documents, news articles, and other information-rich domains.
Recently, Transformer-based LLMs have emerged as promising tools for long-input
summarization, offering transformative capabilities in condensing lengthy texts into
concise summaries. Significant research efforts have been made to improve automatic
text summarization systems, and numerous studies on the challenges of extending
these systems to the long document domain have emerged (Koh et al. [16]).

To further discuss long-input summarization, we must define what is considered
"long" input. The literature lacks an agreement on the specific word limit distinguishing
long and short inputs in a summarization task. However, Koh et al. [16] differentiates
short and long document summarization based on document length, content breadth,
and coherence level. In the context of machine learning, a document is deemed long
when current state-of-the-art models face challenges in effective implementation due
to hardware and model constraints. Koh et al. propose that a benchmark dataset
with an average source document length surpassing 3000 tokens qualifies as a "long
document" since many state-of-the-art summarization systems are restricted to 512 to
1024 tokens. This study defines a long input as exceeding 1000 tokens, while an input
with 1000 tokens or fewer is considered short. The 1000-token limit corresponds to
an average of 750 words (OpenAI [53]).

In contrast to short documents, long documents are typically structured into sections
to aid user comprehension, each containing distinct content related to the document.
Summarizing long documents poses a challenge for LLMs as they grapple with fluency,
redundancy, and semantic coherence issues when integrating key information from
various sections into a cohesive summary. As document length increases, the volume
of informative, non-redundant content tends to expand. However, summary length
is constrained by user perceptions of reasonableness. Empirical evidence reveals
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that the relative length of summaries compared to source documents significantly
decreases with longer documents, resulting in the loss of non-essential information
in long document summarization. Diverse user preferences and expectations further
complicate this task (Koh et al. [16]).

One of the main challenges in long-input summarization with Transformer-based
models is a quadratic scaling of memory consumption as the input length doubles
(Beltagy et al. [3]). As an example, let us consider a Transformer-based summarization
model with 12 encoder and 12 decoder layers, which were initially pre-trained on
short input sequences of 512 tokens and then fine-tuned for specific tasks that involved
longer input sequences of 16 384 tokens, with an output length of 512 tokens in both
cases.

Contrary to the usual practice where fine-tuning is less resource-intensive than
pre-training, in this case, fine-tuning is more resource-intensive and slower. This
is primarily due to the significant increase in input sequence length during fine-
tuning, which results in a quadratic scaling of memory consumption for self-attention
operations in the encoder. Specifically, the encoder’s self-attention consumes 1024
times more memory during fine-tuning than pretraining due to the 32-fold increase in
input length.

Even if an efficient Transformer variant is used, such as Longformer (Beltagy et
al. [3]), to mitigate memory and computation issues, both the encoder’s self-attention
and the decoder’s cross-attention operations still consume 32 times more memory
compared to the pretraining stage. Additionally, operations such as the Feed-Forward
Network (FFN) that scale linearly with input length also significantly increase the
computational requirements during training and inference. (Phang et al. [7])

The increasing reliance on LLMs for summarization also raises quality and ethical
concerns. In addition to the computational challenges in long-input summarization,
another major challenge is the lack of comprehensive evaluation metrics that could be
used to estimate the quality of generated texts. Even though metrics such as ROUGE
and BLEU exist, which are used to measure the similarity between the original
and generated text, human evaluators are needed to assess coherence and factuality.
Ensuring that generated summaries are unbiased, accurate, and free from unintended
errors remains challenging. Researchers and practitioners must exercise caution and
develop robust evaluation methodologies to maintain the integrity of summarization
outputs.

LLMs are continuously developed to address these challenges. The goal is to
create models that understand language nuances, have contextual awareness, and have
extensive pre-trained knowledge that enables them to generate summaries that capture
the essence of lengthy texts while maintaining readability and coherence. However,
computational resources and time complexity must be considered while developing
LLMs that can process long-input sequences. Furthermore, these models should be
able to produce more human-like summaries in their structure and fluency.

The applications of long-input summarization with LLMs are manifold. In
academia, researchers could use fine-tuned LLMs to generate concise summaries of
research papers, facilitating rapid literature review and knowledge dissemination. Legal
professionals can expedite document review processes by automating the extraction
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of critical information from legal documents. In journalism, LLMs can assist in
summarizing lengthy investigative reports, making news more accessible to readers.

Long-input summarization with LLMs represents a significant challenge in NLP.
These models empower us to distill vast volumes of information into concise, infor-
mative summaries, offering potential across various domains. As LLMs evolve and
improve, their role in long-input summarization is expected to expand, enhancing
our ability to navigate the ever-expanding sea of textual information efficiently and
precisely.
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Figure 4: Self-attention process in detail.
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Figure 5: Attention for the first query (i.e. row) in 𝑄𝑖.
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3 Research material and methods
In this section, we present the data and methods used in the summarization task, where
our objective is to generate an abstract from a scientific article. First, we describe our
data and explain the corresponding preprocessing logic in Sections 3.1 and 3.2. As for
the methods, fine-tuning and prompt engineering are applied to LLMs to improve the
base models’ ability to generate relevant text. The models we fine-tune or query by
prompt engineering are presented in Section Models in our summarization task 3.3.
We will explain the fine-tuning and prompt engineering processes in Sections 3.4 and
3.5.

3.1 Data
This section describes the data used in the summarization task. The objective was to
find at least one dataset containing lengthy texts with the same main topic, a similar
vocabulary, and a similar text structure. The dataset should be large enough to learn
necessary and significant information during fine-tuning. However, it should not be
too large as we have limited computational resources in fine-tuning models. Another
objective was to compose the dataset such that the main topic of the texts wouldn’t be
too broad. Otherwise, the fine-tuning may not capture all the necessary information
from the data provided to the model. To meet these requirements, scientific articles
were chosen as a type of text. The objectives were also chosen to mimic real-world
cases where gathering a dataset containing over 10 thousand or even smaller amounts
of text documents is often impossible.

Two datasets were used throughout fine-tuning different LLMs and in in-context
learning with GPT-3.5. Both datasets contain scientific articles from arXiv [35]. The
first dataset consists of roughly 1000 articles. Three datasets were concatenated into
one more extensive set to get enough data for training, validation, and testing. The
datasets were gathered via arXiv API using the following keywords: "large language
model", "transformer model", and "neural network". The number of articles is also
limited to 1000, 100, and 500 in each set, respectively. The other dataset was fetched
through arXiv API using the "reinforcement learning" keyword. The size of this
dataset is approximately 9000 articles. Later in this thesis, we will refer to these
datasets as LLM and RL datasets.

The vocabulary in the scientific articles is domain-specific, thus providing an
exciting factor to consider in the long-input summarization task we’ll perform with our
datasets. The size of both datasets is relatively small as we aim to mimic real-world
situations where it is not often plausible to have tens of thousands of domain-specific
articles with their corresponding summarizations.

LLM and RL datasets were preprocessed before feeding the texts to the LLMs.
Custom preprocessing logic was created to process the articles into a suitable form.
These articles contain many mathematical notations, equations, tables, and figures.
Even though it would be interesting to be able to consider all the information that
can be gained from these parts of the article, it is out of the scope of this thesis. The
preprocessing is discussed in the next section.
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After preprocessing, data was split into training, testing, and validation sets. The
dataset sizes are seen in Table 1. The average, minimum, maximum, and median word
counts before tokenization and after preprocessing for the articles and summaries in
LLM and RL datasets are seen in Table 2. The word count was calculated by splitting
the text by space.

Table 1: Sizes of train, test, and validation sets for LLM and RL datasets.

Dataset Train Test Validation Total

LLM 1165 146 146 1457
RL 7350 919 919 9188

Table 2: The average, minimum, maximum, and median word counts before tokeniza-
tion and after preprocessing for the inputs (articles) and labels (summaries).

Dataset Column Average Median Minimum Maximum

LLM Input 5456 4993 246 54894
LLM Label 153 151 32 274
RL Input 5776 5239 44 58832
RL Label 155 153 14 297

3.2 Preprocessing
We start this section by briefly discussing common practices in preprocessing textual
data for language models. Then, we will present the preprocessing logic applied to the
data before feeding it to the models.

First, we define what text preprocessing means in the context of NLP. We use the
definition by Tabassum et al. [51], which states that preprocessing a text means bringing
the document to a format that is easily understandable, predictable, and analyzable by
the machine through the various machine learning algorithms. According to Tabassum
et al. [51], some of the widely used pre-processing techniques are:

1. Sentence segmentation Sentence segmentation refers to breaking a text doc-
ument or corpus into individual sentences. This alleviates the problem of
identifying word boundaries so that further processing can be done sentence-
wise. Usually, the text is segmented into sentences when a full stop occurs.

2. Change to lower case Capital letters usually occur at the beginning of a sentence,
in proper nouns and abbreviations. It is argued that making all words lowercase
is one of the most effective and simplest steps in text preprocessing. Lowercasing
text is especially effective when the dataset is significantly sparse. The main
benefit of lowercasing is that it decreases the number of word vectors formed
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from each word. For example, the words "Dog" and "dog" would produce
different word embeddings without lowercasing, even though the words have
exactly the same meaning.

3. Tokenization In tokenization, we split sentences into tokens that can be words,
characters, and punctuations. Usually, the splitting criteria in tokenization is a
space or a punctuation. Based on OpenAI’s Token Calculator [53], a general
rule of thumb is that 75 words approximately equals 100 tokens, and 1 token
approximately equals 4 text characters.

4. Parts-of-Speech tagging In POS tagging, each word in a sentence is tagged
with its corresponding grammar class, such as a noun, a pronoun, a verb, an
adjective, etc. The sentences are tagged based on the sentence segmentation
done before POS tagging. In natural language, some words can represent more
than one part of speech at different times. POS tagging can be a challenging
problem when word forms are ambiguous.

5. Stop words removal Stop words removal refers to removing words from a
text that do not have significance in terms of a certain NLP task. Stop words
usually contains words such as "the", "is", and "and". However, it is case
dependent on what words should be included in the set of stop words. In
classification problems, stop words are usually removed. For other NLP tasks,
such as summarization, we omit this step as we would lose the meaning of the
sentences if we were to remove the stop words.

6. Removal of punctuations Special characters such as exclamation marks,
commas, or apostrophes are removed in this step. Removal of punctuation makes
the text less noisy for the machine to read.

7. Stemming Stemming is a word-shortening technique that converts a word to its
base root. In stemming, we shorten the suffixes in a text such that the semantic
meaning of all different forms remains the same. For example, "reading" would
change to "read" when stemmed. However, "riding" changes to "rid", which no
longer makes sense. It depends on whether we should use stemming and what
words should be shortened to their base root.

8. Lemmatization Lemmatization is similar to stemming in that both techniques
bring a word to its base. Lemmatization differs from stemming in that the
word is brought to its base, but the resulting word is meaningful, which is not
necessarily the case in stemming. For example, "riding" would change to "ride".

Let us next describe our preprocessing logic. Initially, we have all articles in PDF
format, fetched through arXiv API. Furthermore, we have an abstract for each article
in CSV format.

1. Lowercase the abstract and remove special characters First, we lowercase
the abstract, then remove the following special characters: [, ,̂ <, ], +, ?, >, and
numbers.
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2. Read the article as blocks with pymupdf library pymupdf is a high-
performance Python library for data extraction, analysis, conversion, and
manipulation of PDF (and other) documents. From this library, we use a
function that extracts a page’s text blocks as a list of items. Blocks of text are
easier to identify and modify for further purposes than plain text, as each block
contains information about the block type that can be used to determine whether
the block contains an image or text. We will remove blocks containing an image.
Note that the remaining text blocks contain tables and equations in text format
that are removed later in this process.

3. Drop non-ASCII characters From each text block, we remove non-ASCII
characters. Scientific articles contain multiple equations and tables that often
have non-ASCII characters. We cannot account for information from tables or
equations, so all non-ASCII characters are removed.

4. Remove abstract from the article We must carefully remove the abstract, i.e.,
target, from each article to use the articles as inputs for the summarization
task. We use sequence matching to find the block that contains the abstract by
comparing each block’s content to the abstract we already have in CSV format.

5. Remove Acknowledgements, Appendices, and References from the article
Acknowledgments, appendices, and references are part of most articles in
our datasets. However, these sections do not contain significant information
regarding the abstract. Thus, these parts are removed from the original article.

6. Remove short blocks Due to unknown reasons, some blocks may contain only
a few characters. These short blocks are removed to parse the article’s text from
PDF to CSV format as clearly as possible.

7. Remove links All links are removed from each article.

8. Lowercase the article and remove special characters First, we lowercase the
article, then remove the following special characters: [, ,̂ <, ], +, ?, >, and
numbers.

In general, programming with PDF files is challenging due to the complexity of
the format.

3.3 Models in our summarization task
This section thoroughly describes the models that are used in our summarization task.
Each model is either fine-tuned or queried by prompt engineering. We consider five
models: T5 in Section 3.3.1, PEGASUS in Section 3.3.2, PEGASUS-X in Section 3.3.3,
LED in Section 3.3.4, and GPT-3 in Section 3.3.5. The models were selected as a result
of comprehensive research and some requirements. Models are required to be able to
handle long inputs as our data consists of lengthy scientific articles. Due to limited
GPU resources in fine-tuning, we must also find models that don’t exceed the available
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memory during the fine-tuning process. If one exists, we also present previous results
for a summarization task of scientific articles or similar texts in Section 3.3.6.

3.3.1 T5

A set of T5 -models (Text-to-Text Transfer Transformer) was first published and
introduced by Raffel et al. in 2020 [5]. The base structure of T5 follows the
Transformer model proposed by Vaswani et al. [2] apart from small deviations. These
deviations include removing the Layer Norm bias, placing the layer normalization
outside the residual path, and using a simplified form of position embeddings.
T5 comes in different sizes; small version with ∼60M parameters, base model with

∼220M parameters, large version with ∼770M parameters, 3B and 11B versions. The
small T5 -model has 𝐿 = 6 layers for encoder and decoder, a hidden size of 𝐻 = 512,
a feed-forward layer of 𝐹 = 2048 in size, and 𝐴 = 8 self-attention heads. We will later
fine-tune the small version of T5.

The basic idea in T5 is that it takes text as an input and produces new text as an
output, making it a text-to-text model and allowing it to generalize to different types of
text processing problems. The text-to-text framework allows the same model, objective,
training procedure, and decoding process to be applied to every task considered.
T5 was pre-trained on the C4 (The Colossal and Cleaned version of Common

Crawl) dataset. C4 contains text from 350M web pages; the dataset is 750 GB. A
maximum sequence length of 512 was used in the pre-training. The hyperparameters
of the pre-training T5SMALL are seen in Table 3. T5 was first pre-trained using a simple
denoising objective. In a denoising objective, the model is trained to predict missing
or otherwise corrupted tokens in the input. The objective randomly samples and drops
out 15% of tokens in the input sequence. The C4 dataset contains unlabeled data; thus,
the objective does not require labels but teaches the model generalizable knowledge.
This "general knowledge" is later utilized in downstream tasks.

After pre-training, the model was fine-tuned on downstream tasks, including
machine translation, question answering, abstractive summarization, and text classi-
fication. The model has been evaluated on various English-based NLP tasks, such
as document summarization, translation, and question answering. Before training, a
task-specific prefix was added to each input text to train T5 on various tasks. These
prefixes are typically short, e.g., for a translation task from English to Finnish, the
prefix is "translate English to Finnish: ". Similarly, the prefix for a summarization
task is "TL;DR: ". Naturally, these prefixes are used in fine-tuning too. Since we are
especially interested in the summarization task, we will later in Section Results on the
summarization tasks 3.3.6 take a look into the performance of the T5 -model on the
summarization task that was achieved by Raffel et al.

A non-anonymized version of the CNN/Daily Mail dataset (Hermann et al. [56])
by See et al. [8] was used to measure the downstream performance on the abstractive
summarization task. The CNN/Daily Mail dataset is widely used in short summarization
tasks. The dataset contains document-summary pairs, where the document represents
a news article. (Koh et al. [16])
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3.3.2 PEGASUS

PEGASUS (Pre-training with Extracted Gap-sentences for Abstractive Summarization)
was implemented by Zhang et al. in 2020 [4]. PEGASUS belongs to the family
of sequence-to-sequence models. The base architecture of PEGASUS is a standard
Transformer encoder-decoder. In contrast to models such as T5 (Raffel et al. [5]) and
BART (Lewis et al. [6]), in PEGASUS, important sentences are removed or masked
from an input document and are generated together as one output sequence from the
remaining sentences, similar to an extractive summary. As an outcome, two models
were published; PEGASUSBASE with 223M parameters, and PEGASUSLARGE with 568M
parameters. PEGASUS models are intended to be used for abstractive summarization.
We will later fine-tune PEGASUSLARGE.

The pre-training objectives of PEGASUS models were tailored for abstractive text
summarization, i.e., generating a summary-like text from an input document. When
developing PEGASUS, there were two main pre-training objectives: Gap Sentences
Generation (GSG) and Masked Language Model (MLM). The idea behind GSG is
that whole sentences from a document are masked, and these so-called gap sentences
are then concatenated into a pseudo-summary. To approximate a summary even more
closely, sentences that appear to be important/principal to the document are selected.
The 𝑚 sentences that are masked are selected using three strategies: based on their
importance to the document, selecting 𝑚 sentences at random, or selecting the first 𝑚
sentences from a document. These strategies are called Principal, Random, and Lead,
respectively. A gap-sentences ratio (GSR) is the percent of sentences masked from
a document, and finding an ideal value for this hyperparameter in pre-training was
crucial.

In the other objective, MLM, 15% of tokens in the input text were selected. These
selected tokens are 80% of the time replaced by a mask token, 10% of the time replaced
by a random token, and 10% of the time kept unchanged. Both GSG and MLM were
used as objectives in training the Transformer encoder, but MLM was not included
in the final PEGASUSLARGE model as it did not improve downstream tasks at a large
number of pre-training steps. Additionally, it was found that the Principal strategy, i.e.,
selecting the most important sentences from a document, worked best in pre-training
PEGASUS.
PEGASUSLARGE has 𝐿 = 16 layers for encoder and decoder, a hidden size of

𝐻 = 1024, a feed-forward layer of 𝐹 = 4096 in size, and 𝐴 = 16 self-attention heads.
GSR of 30% was found to be an effective ratio in pre-training PEGASUSBASE as a
result of ablation studies with PEGASUSBASE, and testing the base model’s performance
and comparing the effect of having GSR from 15% to 75% on downstream datasets.
However, when scaling up to PEGASUSLARGE, GSR was increased to 45% to achieve a
similar number of gaps as the base model.

Two large text corpora, C4 and HugeNews, were used as the pre-training corpus.
HugeNews is a dataset containing 1.5B articles from news and news-like websites
from 2013 to 2019. A maximum sequence length of 512 was used in the pre-training
phase. The hyperparameters of the pre-training are seen in Table 3. PEGASUS was
evaluated on 12 downstream summarization tasks spanning news, science, stories,
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instructions, emails, patents, and legislative bills. Additionally, human evaluation
studies were leveraged to validate the quality of the generated summaries. For
downstream summarization, 12 different, publicly available abstractive summarization
datasets were used to fine-tune both PEGASUSBASE and PEGASUSLARGE.

One of the 12 datasets used for downstream summarization is arXiv’s scientific
articles (215k in size) published by Cohan et al. [54]. The arXiv dataset is a long
scientific document summarization dataset collected from the arXiv.org scientific
repository. This dataset represents the earliest work on large-scale, long document
summarization datasets (Koh et al. [16]). As we will utilize two custom samples
collected from arXiv when fine-tuning our models, this gives us another benchmark
that we will use to compare our fine-tuned model’s performance and the results of
PEGASUSLARGE on the arXiv dataset. The arXiv dataset contains documents considerably
longer than the maximum input length of 512 in pre-training. Because sinusoidal
positional encodings [2] generalize well, PEGASUSLARGE was fine-tuned with 1024
tokens. However, the input length of 1024 tokens is not even close to the average input
length of the articles in the arXiv dataset.

In the real world, gathering a large dataset (>100k) of supervised examples to
fine-tune a summarization model is often difficult. Thus, Zhang et al. simulated
low-resource summarization using small samples of the 12 datasets mentioned above
and fine-tuning both PEGASUSBASE and PEGASUSLARGE with the truncated datasets. The
sample sizes used to fine-tune the models were 10, 100, 1k, and 10k. The promising
results indicate that it is possible to achieve high ROUGE scores even with a limited
number of data.

3.3.3 PEGASUS-X

In 2022, PEGASUS-X was first introduced by Phang et al. in the paper "Investigating
Efficiently Extending Transformers for long-input Summarization" [7] to address the
ongoing challenges of long-input summarization. Compared to models like PEGASUS
and T5 described above that are pre-trained with a maximum input sequence length
of only 512, PEGASUS-X is an extended version of PEGASUSLARGE, pre-trained with
additional long-input sequences up to 16K tokens. PEGASUS-X is intended to be used
for long-input summarization.

As mentioned in Section Long-input summarization 2.6.2, the main limitation
of training LLMs with long-input sequences is the quadratic scaling of the memory
requirements, as computing the attention mechanism in Transformer-base models is
quadratically dependent on the input length. Phang et al. experimented with different
Transformer architectures for pre-training and fine-tuning with long inputs. First, the
memory consumption of the models with longer input sequences was investigated by
swapping the encoder of PEGASUS for more efficient encoder architectures such as
Big Bird (Zaheer et al. [12]) that use sliding window and global token attentions, and
Performer (Choromanski et al. [13]) which factorizes attention matrices via orthogonal
random features. In addition to Big Bird and Performer, two variants of local attention
Transformer encoders, Local and Global-Local, are introduced. Local is a simple
block-local Transformer, where encoder input tokens are divided into non-overlapping

43



blocks, which means that tokens can only attend to other tokens within the block.
Global-Local is an extension of the local Transformer where a set of global tokens
with learnable embeddings are added, and these tokens can attend to and be attended
from every encoder token.

Different encoder architectures were tested on short and long (e.g., arXiv scientific
articles by Cohan et al. [54]) summarization tasks. The full-attention Transformer
performed best among the short summarization tasks, whereas Global-Local performed
best among the long summarization tasks. Both Global-Local and Local encoders had
a good balance between performance and efficiency, and thus, they were improved
further. Results with encoder variants can be seen in the model paper by Phang et al.
[7].

A series of approaches were tested to improve Global-Local and Local encoder
architectures and later construct an efficient model PEGASUS-X. First, a staggering of
local attention blocks was added. In block-local attention, the information is not shared
across blocks; the same block boundaries are used across all layers. In staggering,
the boundaries are shifted in every other layer, allowing cross-block interactions with
minimal additional complexity or computational cost. In the Global-Local model, the
following variant was considered. The global token representations were supplied
to the decoder, and an additional encoder-decoder cross-attention that attends only
to the global tokens before performing cross-attention over the encoded tokens was
introduced. Both of these changes in Local and Global-Local models improved the
performance significantly. This is particularly surprising as the Global-Local model
already has a set of global tokens used in cross-block interactions.

The Global-Local model’s performance on the summarization task was measured
by varying the block size and the number of global tokens. The key takeaway from
this experiment was that increasing either block size or global tokens up to a certain
point leads to improved performance. Still, the increase is seen in computation time
and memory consumption. A block size of 64 and 32 global tokens was used for the
rest of the experiments with the Global-Local encoder.

Different position encoding schemes were tested on a full-attention Transformer,
pre-trained with an input length of 512, and fine-tuned with an input length of 2048
for the long-input tasks. Each scheme was applied to the model’s encoder and decoder
parts. PEGASUS and Vaswani et al. [2] use a sinusoidal position encoding, but also the
bucket-based relative position encoding scheme of T5, RoPE (Su et al. [14]), absolute
position embeddings and no position encoding was tested. T5 performed best based
on ROUGE scores, but it was almost twice as slow as the other schemes. On the other
hand, sinusoidal position encoding and RoPe performed only a little worse than T5,
and thus, the sinusoidal position encoding was chosen to be used in PEGASUS-X.

Furthermore, Local and Global-Local models were tested on summarization tasks
by scaling the encoder and decoder layers with a fixed total number of layers. Decoder-
heavy models seemed to perform slightly better for Local models. In contrast, a
balanced encoder-decoder outperforms both encoder- and decoder-heavy alternatives
for Global-Local models, but the difference is not remarkable. In a long-input
summarization task, the inputs are considerably longer than the resulting output,
which leads to different computational trade-offs depending on the balance between
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the number of encoder and decoder layers. Encoder-heavy models require more
memory due to the long inputs, whereas decoder-heavy models are somewhat slower
at inference.

Next, it was investigated whether it was better to pre-train a model with an efficient
encoder from the beginning or use the efficient encoder in fine-tuning or additional
pre-training directly after the model is first pre-trained with a full-attention Transformer
on short input sequences. In both approaches, pre-training was performed with short
input sequences of 512 tokens. Four pre-training and fine-tuning approaches were
tested and evaluated using ROUGE scores on long summarization tasks with four
different block sizes: Transformer in pre-training and Local in fine-tuning, Local
in both pre-training and fine-tuning, Transformer in pre-training and Global-Local
in fine-tuning, and Global-Local in both pre-training and fine-tuning. Block sizes
used were 4, 16, 64 and 256. Out of all these 16 different approaches, Global-Local
performed best in pre-training and fine-tuning with block sizes of 64 and 256.

A second-to-last experiment tested Global-Local and Local encoders with different
pre-training schemes. In this experiment, short-input pre-training, with 512 input
tokens and 256 output tokens, and long-input pre-training, with 4096 input tokens and
256 output tokens, was considered. In total, five different pre-training formats were
tested for both Local and Global-Local encoders. The pre-training formats consisted
of short-input pre-training for 100% of tokens with 500k and 1M steps, short-input
pre-training for 75% of tokens, and then long-input pre-training for the remaining 25%
of tokens with 1M steps, short-input for 50% of tokens and long-input for 50% of tokens
with 1M steps, and lastly long-input for 100% of tokens with 1M steps. Considering
the ROUGE scores of the ten approaches, the Global-Local encoder outperformed the
Local encoder, and pre-training should have both short- and long-input sequences to
achieve the best performance.

Lastly, an encoder-decoder cross-attention was investigated to reduce memory
consumption. Using an efficient encoder already reduces the memory requirements
as it scales linearly rather than quadratically in input length. However, the other
major factor in memory consumption is the encoder-decoder cross-attention, as each
decoder layer attends separately to the long encoder representations. To address this
issue, a model with a Global-Local encoder was pre-trained and fine-tuned using
cross-attention only in some of the decoder layers. The main outcome was that the
best practice is to pre-train a Global-local model with full cross-attention and then
drop cross-attention from a subset of the decoder layers in fine-tuning. This decreases
the performance only a little but reduces memory consumption.

Based on the experiments, PEGASUS was adapted to handle long-input summa-
rization. The Global-Local encoder architecture with block staggering was chosen.
During pre-training, many global tokens and large block sizes were used. An additional
pre-training was conducted using 4096 tokens for 300k steps. During fine-tuning,
input sequences of up to 16384 tokens were used depending on the task.

As a result, two models were released: a smaller PEGASUS-XBASE with 272M
parameters, and PEGASUS-X with 568M parameters. Furthermore, Phang et al.
evaluated a series of proposed efficient Transformer architectures and other model
tweaks. They reported their efficacy and trade-offs on computational resources when
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applied to long-input summarization tasks. The pre-training phase of PEGASUS-X
followed a similar process as was done with PEGASUS in the corresponding model
paper by Zhang et al. [4]. Additionally, pre-training with long-input sequences of
4096 tokens was performed with a reduced GSR of 5.625% (the original masking
ratio of 45% was used in pre-training PEGASUS). The reduced GSR matched the 8x
increase in input sequence length. PEGASUS-XBASE has 𝐿 = 16 layers for encoder and
decoder, a hidden size of 𝐻 = 1024, a feed-forward layer of 𝐹 = 4096 in size, and
𝐴 = 16 self-attention heads. The hyperparameters of the pre-training are seen in Table
3.

Model Corpus LR BS 𝑛𝑠 𝑙max
input 𝑙max

target

T5SMALL C4 0.01∗ 128 219 512 -
PEGASUSLARGE C4/HugeNews 0.1 8192 500k 512 256
PEGASUS-XBASE C4 0.1 512 500k (300k) 512 (4096) 256

Table 3: Hyperparameters of the pre-training. *The learning rate for the first 104

steps is 0.01, then exponentially decays until pre-training is over. For PEGASUS-XBASE,
the numbers in brackets refer to an additional long-input pre-training.

3.3.4 LED

The Longformer-Encoder-Decoder (LED) was introduced in 2020 by Beltagy et al. in
[3]. LED is a Longformer variant for supporting long document generative sequence-
to-sequence tasks. Sequence-to-sequence refers to a process of transforming sequences
from one domain to another. Specifically, LED has an attention mechanism that scales
linearly with sequence length, whereas standard Transformer-based models have a
self-attention mechanism that scales quadratically with the sequence length. Thus,
with LED, it is relatively easy to process long documents. LED was pre-trained with the
Books corpus and English Wikipedia. Furthermore, a subset of the Realnews dataset
with documents longer than 1200 tokens and a subset of the Stories corpus were used
in pre-training. LED is developed to be suitable for modeling sequence-to-sequence
tasks with long documents.

Longformer’s attention mechanism combines a windowed local-context self-
attention and an end task-motivated global attention that encodes inductive bias about
the task. Both attention types are needed but serve different purposes. Local attention
is primarily used to build contextual representations, whereas, with global attention,
Longformer can build full sequence representations for prediction.

Next, we present the design and implementation of Longformer’s attention mecha-
nism in detail. The standard full self-attention has the computational complexity of
𝑂 (𝑛2), where 𝑛 is the length of the input sequence. Full attention is seen in Figure 6
a). To achieve linear scalability, the full self-attention matrix is sparsified according to
an attention pattern that specifies pairs of input locations attending to one another.
First, the attention pattern employs a fixed-size window of attention surrounding each
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Figure 6: Full self-attention pattern and the attention patterns in Longformer.

token. As a result of multiple stacked layers where this fixed-size attention window
is applied to each layer, we obtain a receptive field. The receptive field’s top layers
have access to all input locations and, thus, can build representations incorporating
all available information. Let 𝑤 be a fixed window size. Each token attends to 1

2𝑤
tokens on each side. This behavior can be seen in Figure 6 b). The computational
complexity of the sliding window attention is 𝑂 (𝑛 × 𝑤). If 𝑤 is fixed for all layers,
then in a transformer with 𝐿 layers, the receptive field size at the top layer is 𝐿 × 𝑤.

One can increase the receptive field by dilating the sliding window without
increasing the computational complexity. The dilated sliding window has gaps of size
𝑑. If 𝑤 and 𝑑 are fixed for all layers, then in a Transformer with 𝐿 layers, the receptive
field size at the top layer is 𝐿 × 𝑤 × 𝑑. The dilated sliding window allows the top layer
to reach more tokens, even for small values of 𝑑. This behavior can be seen in Figure 6
c). In multi-headed attention, each attention head computes a different attention score.
In Longformer, attention heads had different dilation configurations, which was found
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to improve performance. Some heads were set to have no dilation, i.e., to focus on
local context, whereas others were set with dilation to focus on longer context.

Figure 6 d) shows an example of a sliding window of attention with global attention
at a few tokens at custom locations. In Longformer, the windowed and dilated attentions
are not flexible enough to learn task-specific representations. Hence, global attention
is added to a few pre-selected input locations symmetrically. This means that a token
with global attention attends to all tokens across the sequence, and all tokens in the
sequence attend to it.
LED has both the encoder and decoder Transformer stacks. The encoder uses the

same attention pattern as Longformer, combining a windowed local-context self-
attention and an end task-motivated global attention. The window size used in LED is
1024. The decoder uses full self-attention to all the encoded tokens and to previously
decoded locations. This model scales linearly with the input. Pre-training LED is
expensive; thus, LED parameters are initialized from the BART, with no additional
pre-training. The number of layers and hidden sizes follows BART’s exact architecture.
However, BART can process only 1K tokens, and hence, the position embedding
matrix in LED is extended to 16K tokens by copying BART’s 1K position embeddings
16 times. LED comes in two sizes, LEDBASE and LEDLARGE, having 6 and 12 layers in
both encoder and decoder stacks, respectively. LEDBASE has 𝐿 = 6 layers for both
encoder and decoder, a hidden size of 𝐻 = 768, a feed-forward layer of 𝐹 = 3072 in
size, and 𝐴 = 8 self-attention heads.
LED was evaluated on the long-input summarization task using the arXiv summa-

rization dataset (Cohan et al. [54]). The results are seen in Table 6.

3.3.5 GPT-3

GPT-3 is an autoregressive language model with 175 billion parameters. GPT-3 was
evaluated on over two dozen NLP datasets and several novel tasks designed to test rapid
adaptation to tasks unlikely to be directly contained in the training set. The model was
trained on 499 billion tokens of CommonCrawl, WebText, English Wikipedia, and
two books corpora. The GPT models are general-purpose language models that can
perform various tasks, such as writing code, summarizing text, creating content, and
extracting data from documents. (Brown et al. [23])

For each task, GPT-3 was evaluated under three conditions: few-shot learning,
whereas many demonstrations as will fit into the model’s context window are allowed
(typically 10 to 100); one-shot learning, where only one demonstration is allowed, and
lastly, zero-shot learning, where no demonstrations are allowed and only instruction in
natural language is given to the model.

The first GPT-model was introduced in 2018 in a paper "Improving Language
Understanding by Generative Pre-Training" by Radford et al. [42]. GPT-1 is a 12-layer
decoder-only Transformer with 12 masked self-attention heads and roughly 110M
parameters. BooksCorpus dataset, which contains books from various genres, was
used to train the language model. The dataset consists of long passages of contiguous
text, which allows the model to learn to condition on long-range information. Gaussian
Error Linear Unit (GELU) (Lee et al. [44]) was used as an activation function.
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On the other hand, the GPT-2 model was released in 2019 in the paper "Language
Models are Unsupervised Multitask Learners" by Radford et al. [43]. The model has a
total of 1.5 B parameters. It was pre-trained on the BookCorpus dataset and trained
on a dataset of 8 million web pages. With GPT-2, it was demonstrated that language
models begin to learn NLP tasks such as question answering, machine translation,
reading comprehension, and summarization without any explicit supervision. This is a
major difference compared to the supervised learning approaches using large amounts
of manually labeled data. [43]

All GPT-models have a generative pre-trained Transformer architecture. The models
are autoregressive, specifically unidirectional, meaning they are trained to predict the
next word in a sentence. The autoregressive model generates text or predictions one
token at a time by conditioning each token’s generation on the previously generated
tokens. In autoregressive models, the probability distribution of the next token is
influenced by the entire sequence of previously generated tokens. This means the model
considers the left context (tokens to the left of the current token) during generation.
The unidirectional model is a specific type of autoregressive model in which the
generation of the next token only depends on tokens to the left of the current position.
In other words, it considers a "unidirectional" context, typically the left context. This
means that a unidirectional model does not consider any tokens to the right of the
current token during generation.

Chunking algorithm

The chunking algorithm is important in text processing pipelines built on the GPT-3
architecture. It is responsible for breaking down large text into manageable chunks
of size 𝑛 that can be processed by GPT-3 and then combining the outputs to create
a unified result. The choice of chunking algorithm can range from simply splitting
the document into smaller sizes to more complex approaches involving multiple NLP
models to determine optimal splitting points. Despite its seemingly straightforward
nature, the chunking algorithm holds importance as it acts as a variance control for
inputs and significantly impacts the accuracy of text summarization.

The significance of a high-quality chunking algorithm stems from its position at
the forefront of the pipeline, where changes in its parameters and capabilities have
ripple effects on downstream models. Modifying the output structure or appearance of
the chunks often necessitates retraining or adjustment of GPT-3 models, as they were
initially refined to work with a specific input structure or data size. Failure to address
these changes can lead to a decrease in accuracy. Even seemingly minor adjustments,
such as altering the chunk size, require refinement of downstream models due to the
level of variance the GPT-3 models are accustomed to. For instance, changes in the
number of topics discussed in interview transcript chunks can significantly impact the
ability of GPT-3 models to summarize diverse chunks accurately.

This thesis will use a simple chunking algorithm that splits a document into smaller
sizes. We aim to find the nearest end of a sentence within a range of 0.5×𝑛 and 1.5×𝑛
tokens.
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3.3.6 Results on the summarization tasks

We close this section by presenting previous results on the short- and long-input
summarization tasks for the models described earlier. First, we consider the long-input
summarization task and fine-tuned versions of the following models: PEGASUS-XBASE,
and PEGASUS-XLARGE. These models are fine-tuned with arXiv’s scientific articles
(Cohan et al. [54]) and evaluated on the test set. LEDLARGE is not fine-tuned but
evaluated on the arXiv test dataset. The dataset size is 215k, the average document
length is 4938 words, and the average summary length is 220 (Cohan et al. [54]).

Results for the long-input summarization task are seen in Table 6. The results
are gathered from the paper "Investigating Efficiently Extending Transformers for
Long-input Summarization" by Phang et al. [7]. The scores presented in Table 6 are
ROUGE1-F1, ROUGE2-F1, and ROUGELs-F1. ROUGELs-F1 refers to the ROUGE-
Lsum, a variation of the ROUGE-L metric. Instead of evaluating the summary
as a whole, ROUGE- Lsum operates at the sentence level using the ROUGE-L
calculation method. It then combines these sentence-level results to generate the
final score. PEGASUS-XBASE and PEGASUS-XLARGE achieve almost identical results and
slightly outperform LEDLARGE. These results provide a benchmark for our long-input
summarization task with two distinct sets of articles from arXiv, namely RL and LLM
datasets.

Furthermore, we present the results for the short-input summarization task with
T5SMALL and PEGASUSLARGE in Table 5. T5SMALL was fine-tuned for a short-input
summarization task. A non-anonymized version of the CNN/Daily Mail dataset (See et
al. [8]) was used to fine-tune and test the model. On the other hand, arXiv’s scientific
articles dataset (Cohan et al. [54]) was used to fine-tune and evaluate PEGASUSLARGE.
For PEGASUSLARGE, ROUGEL-F1 was reported instead of ROUGELs-F1 (marked with
*).

Hyperparameters for fine-tuning T5SMALL, PEGASUSLARGE, PEGASUS-XBASE, and
PEGASUS-XLARGE are seen in Table 4. LR and BS refer to learning rate and batch size,
respectively. The number of steps in fine-tuning is referred to as 𝑛𝑠. Additionally,
𝑙max
input and 𝑙max

target refer to the maximum number of tokens that can occur in the tokenized
input and the resulting output.

Model Dataset LR BS 𝑛𝑠 𝑙max
input 𝑙max

target

T5SMALL CNN/Daily Mail 0.001 128 218 512 -
PEGASUSLARGE arXiv 5e-4 256 50k 512 256
PEGASUS-XBASE arXiv 8e-4 64 92.5k 16384 256
PEGASUS-XLARGE arXiv 8e-4 64 92.5k 16384 256

Table 4: Hyperparameters of the fine-tuning.
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Table 5: Comparison of short-input summarization task with different LLMs.

Model Dataset ROUGE1-F1 ROUGE2-F1 ROUGELs-F1

T5SMALL CNN/Daily Mail 0.411 0.196 0.384
PEGASUSLARGE arXiv 0.447 0.172 0.257∗

Table 6: Comparison of long-input summarization task with different LLMs.

Model Dataset ROUGE1-F1 ROUGE2-F1 ROUGELs-F1

PEGASUS-XBASE arXiv 0.494 0.216 0.440
PEGASUS-XLARGE arXiv 0.500 0.218 0.446
LEDLARGE arXiv 0.466 0.196 0.418

3.4 Fine-tuning
T5, PEGASUS, PEGASUS-X, and LED were fine-tuned for the summarization task of
scientific articles. The RL dataset was used as training, validation, and testing material
to fine-tune these models. LLM dataset was utilized only once: a fine-tuned version of
PEGASUS-X was trained to summarize LLM-related articles. Fine-tuning scripts for
each model were written in Python. The process starts by loading and defining the
training, validation, and test datasets. Then, the tokenizer, responsible for preparing
the inputs for a model, is loaded. Training and validation data is fed to the tokenizer.
The base model is loaded, and hyperparameters for fine-tuning are selected. Tokenized
training and validation data is fed to the base model, and the model is fine-tuned.

During the fine-tuning phase, the model is exposed to the labeled training and
validation datasets. The training set is used to update the parameters of the pre-
trained model, while the validation set helps fine-tune hyperparameters and avoid
overfitting. The fine-tuning process involves forward and backward passes through
the neural network of the model. For each training example (article-summary pair),
the model generates a summary, compares it to the ground truth summary using the
cross-entropy loss, and then backpropagates the error through the network to adjust
the model’s parameters. The model’s weights are adjusted using the AdamW, i.e.,
Adam with decoupled weight decay optimizer (Loshchilov et al. [65]) to minimize
the cross-entropy loss. This process is repeated until the cross-entropy loss does
not decrease anymore. Then, the fine-tuned model is saved, and the performance
is measured against the test dataset. The generated summaries are compared to the
original summaries in the test dataset. This comparison uses the evaluation metrics
defined in Section Evaluation Metrics 2.5.

Model parameters are seen in Table 7. Size refers to the number of parameters in a
base model. For LED, the number of parameters was not reported in the original paper,
and thus it is left empty. 𝐿 refers to the number of layers in a model’s encoder and
decoder. 𝐻, 𝐹, and 𝐴 refer to the hidden size, the size of the feed-forward layer, and
the number of self-attention heads, respectively. The models are detailed in Section
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Models in our summarization task 3.3. Table 8 shows the hyperparameters chosen for
each fine-tuning process. LR, WD, and BS refer to learning rate, weight decay, and
batch size, respectively. The number of epochs is referred to as 𝑛𝑒.

In machine learning, weight decay, learning rate, epoch, and batch size are pivotal
for effective model training. The learning rate is a critical hyperparameter determining
the step size during the fine-tuning phase, influencing the model’s convergence. If the
learning rate is too high, the model might overshoot the minimum and fail to converge.
If it’s too low, the model might take a long time to converge or get stuck in a local
minimum. The learning rate in each fine-tuning process was chosen based on the
recommendations in the papers where the corresponding models were described.

Weight decay is a regularization technique that helps prevent overfitting by
penalizing large weights in the model. It involves adding a penalty term to the loss
function based on the magnitude of the weights in the model. The regularization
term discourages the model from assigning excessively large weights to any particular
feature. This helps in creating a simpler model that generalizes better to unseen data.
The weight decay was set to 0.01 for each model that was fine-tuned.

Epochs represent the number of times the entire training dataset is processed
during model training. Multiple passes over the dataset allow the model to learn from
the data, refining its parameters to improve performance. The number of epochs is a
hyperparameter that needs to be chosen based on the specific problem and dataset.
In our case, the number of epochs was determined by the cross-entropy loss that is
calculated for training and validation datasets after each epoch. The fine-tuning was
terminated when the cross-entropy loss started to increase or stabilize for the validation
set. From Table 8, we note that fine-tuning LED required significantly fewer epochs
than other models.

Batch size, another crucial hyperparameter, defines the number of training examples
processed in one iteration. It affects the trade-off between computational efficiency and
parameter update frequency, with small batches introducing more noise but potentially
aiding generalization and large batches offering computational efficiency but possibly
slower convergence. Tuning these parameters is essential for achieving optimal model
performance in diverse machine-learning applications. The batch size was set to one
or two in each fine-tuning process as larger numbers led to out-of-memory (OOM).

FE is an abbreviation for "Frozen encoder". If an encoder of a model is frozen
during fine-tuning, it is marked with "x" in Table 8. Freezing the encoder parameters
before fine-tuning decreases the number of adjustable parameters. This approach may
be suboptimal when it comes to the performance of the resulting fine-tuned model,
but with a limited amount of memory, this was found to be an effective way to avoid
OOM issues.

PEFT is an abbreviation for Parameter-Efficient Fine-Tuning. PEFT is a library for
efficiently adapting pre-trained language models to various downstream applications
without fine-tuning all the model’s parameters. PEFT was first introduced in 2022
by Mangrulkar et al. in [52]. In PEFT, we only fine-tune a small number of model
parameters. This significantly decreases computational and storage costs, as fine-
tuning large-scale pre-trained language models is costly. Recent PEFT techniques
have achieved comparable performance to traditional full fine-tuning. (Mangrulkar et
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al. [52]) If PEFT is used before fine-tuning, an "x" is marked in Table 8. The only
model where PEFT was used is T5SMALL. It would have been beneficial to use PEFT
with other models, but it was impossible since the support covers only T5 and BART
models. Furthermore, the PEFT model is required to fit into a single GPU. T5SMALL
was the only model fulfilling this requirement.

On the other hand, 𝑙max
input and 𝑙max

target refer to the maximum number of tokens that can
occur in the tokenized input and the resulting output. In fine-tuning PEGASUSLARGE
and PEGASUS-XBASE, the target length for the model output was not set. This means
we do not explicitly specify the maximum number of tokens allowed in the model
output. 𝑙max

input for T5SMALL, PEGASUSLARGE, and PEGASUS-XBASE was set to the maximum
number of tokens that the model can process. Two approaches were tested for LED
models. In LED-16kBASE, 𝑙max

input was set to 16384, but in LED-8kBASE and LED-8kLARGE
it was set to 8192.

As the number of tokens processed by the model increases, the amount of memory
also increases. This should be taken into account when deciding the value for 𝑙max

input. If
our dataset that is used to fine-tune the model contains articles that are, on average,
closer to 8192 than 16384, we should probably set 𝑙max

input to 8192. This means we only
consider 8192 tokens, and tokens exceeding this limit are cut off. In our case, the
cutting is done from left to right, meaning that we take 8192 tokens starting from the
beginning of the article.

Model Size 𝐿 𝐻 𝐹 𝐴

T5SMALL 60M 6 512 2048 8
PEGASUSLARGE 568M 16 1024 4096 16
PEGASUS-XBASE 272M 12 768 3072 16
LEDBASE 6 768 3072 8
LEDLARGE 12 1024 4096 16
GPT-3 175B 96 4096 4096 96

Table 7: Model parameters.

Model LR WD BS 𝑛𝑒 FE PEFT 𝑙max
input 𝑙max

target

T5SMALL 3e-4 0.01 1 48 x 8192 512
PEGASUSLARGE 5e-5 0.01 2 116 x 1024 -
PEGASUS-XBASE 5e-5 0.01 2 23 x 16384 -
LED-16kBASE 1e-4 0.01 1 4 x 16384 1024
LED-8kBASE 1e-4 0.01 1 3 8192 1024
LED-8kLARGE 1e-4 0.01 1 3 x 8192 1024

Table 8: Hyperparameters in fine-tuning.

Model fine-tuning was run in Amazon Sagemaker. Amazon SageMaker provides
machine learning capabilities to prepare, build, train, and deploy ML models efficiently.
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Two instances, ml.g5.24xlarge and ml.g5.2xlarge, were utilized in fine-tuning.
The details of the instances are in Table 9. The instance ml.g5.2xlarge was
used in fine-tuning T5SMALL. The other models were fine-tuned using the instance
ml.g5.24xlarge. The main difference between these instances is the amount of
memory available. The number of GPUs increases the costs. Thus, ml.g5.2xlarge
is significantly cheaper.

Instance GPU model vCPU GPU GiB Price per hour

ml.g5.2xlarge NVIDIA A10G 8 1 32 12.73$
ml.g5.24xlarge NVIDIA A10G 96 4 384 1.895$

Table 9: Instance parameters.

3.5 Prompt engineering
A zero-shot learning approach with prompt engineering was applied to GPT-3. Model
parameters for GPT-3 can be seen in Table 7. The main difference to fine-tuning is
that we don’t update the model’s weights. This approach doesn’t require any training.
Instead, we feed the articles to the model one by one with a prompt that contains
instructions for the summarization task. We do not give any examples of the articles
and the corresponding summaries, thus the zero-shot learning occurs at inference.

The GPT model used was gpt-3.5-turbo-1106, and the embedding model was
text-embedding-ada-002. Starting from the 6th of November 2023, the model
gpt-3.5-turbo-1106 started to support a 16k context window for the prompt and
the answer, i.e., 𝑙max

input + 𝑙
max
target = 16384 tokens. Before that, the maximum context

window for the prompt and the answer was 4096 tokens. Thus, the need for a chunking
algorithm presented below was crucial before the new updates to the context window
were released. We will later refer to gpt-3.5-turbo-1106 as GPT-3.

A custom chunking algorithm was created to process lengthy texts appearing in
the RL dataset’s test set. The chunking algorithm is responsible for breaking down
the article into smaller chunks of size 𝑛 that are further processed by GPT-3. The
chunk size used was 𝑛 = 1000, and the temperature was set to 0 in both the creation of
the final summary and the creation of the summary for each chunk to minimize the
possibility of hallucination. The temperature is a parameter responsible for the degree
of randomness in the model’s output.

The behavior of the chunking algorithm is explained below.

1. Chunk the document into 𝑛 token chunks The idea is to split a text into
smaller chunks of size 𝑛, preferably ending at the end of a sentence. We first
encode the whole text into tokens. Then, we aim to find the nearest end of a
sentence within a range of 0.5 × 𝑛 and 1.5 × 𝑛 tokens. To find the end of a
sentence, we decode the tokens and check for a full stop or a new line character.
If no end of sentence is found, we use 𝑛 tokens as the chunk size. After creating
the chunks, these chunks are decoded back into text.
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2. Process the chunks in parallel In this part, we apply a prompt to each chunk
of text and return a summarized version. The prompt used to guide the model is
"""Summarize this text from an academic paper. Extract any key points with
reasoning. Content:""". Temperature is set to 0 to avoid hallucination.

3. Summarize the chunks into an overall summary The chunks are summarized
into an overall summary. The prompt used to guide the model with the creation
of the final summary is """Summarize this collection of key points extracted
from an academic paper in a single paragraph. The summary length must NOT
exceed the word limit of {𝑠𝑢𝑚𝑚𝑎𝑟𝑦_𝑙𝑒𝑛}. Key points: {𝑟𝑒𝑠𝑢𝑙𝑡𝑠}""", where
𝑠𝑢𝑚𝑚𝑎𝑟𝑦_𝑙𝑒𝑛 is the length of the original summary and 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 contains the
summarized chunks. Again, the temperature is set to 0 to avoid hallucinations.
The word limit for a generated text is thus set to 𝑙max

target = {𝑠𝑢𝑚𝑚𝑎𝑟𝑦_𝑙𝑒𝑛}.

The pricing of GPT-3 is based on the tokens. For this model, the price for the
inputs is $0.0010 per 1K tokens. The price for the outputs is $0.0020 per 1K tokens.
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4 Results
This section presents the results for the long-input summarization task with the RL
dataset and the LLM dataset. First, we consider the fine-tuning approach. The training
data of the RL dataset is used to fine-tune six models. Furthermore, one model is
fine-tuned with the training data of the LLM dataset. The fine-tuning allows the model
to adapt for summarising articles from the domains of reinforcement learning (RL) or
large language models (LLM). We present the results for the fine-tuned models and
their corresponding base versions without fine-tuning. Then, the results for prompting
approach with GPT-3 are presented. The prompting approach is tested using the test
data from the RL dataset. Lastly, we answer the research questions posed in Section
1.1. Section Discussion and conclusions 5 analyzes the results in more detail.

The performance of the fine-tuned models and those without fine-tuning was
assessed using numerical evaluation metrics. The models that were fine-tuned with
the training data of the RL dataset were evaluated using the test data of the RL dataset.
Similarly, the model that was fine-tuned with the training data of the LLM dataset
was evaluated using the test data of the LLM dataset. The evaluation metrics were
ROUGE, BLEU, BERTScore, and NIST. Here, we only report the following ROUGE
metrics: ROUGE1-F1, ROUGE2-F1, ROUGEL-F1. ROUGE was chosen as the main
evaluation metric due to its popularity. Using ROUGE, we can also compare our
models’ performance to other published models that were fine-tuned for summarization
tasks, as they usually report only ROUGE metrics. The ROUGE scores for both base
and fine-tuned models are seen in Table 10. In Table 10, the column name “FT” is an
abbreviation for fine-tuning. If the model is fine-tuned, it is marked with an “x” in the
corresponding row in the column “FT”. The column “Dataset” refers to the dataset
that is used to evaluate and/or fine-tune the model’s performance. The ROUGE scores
are calculated for the test data of the dataset that is marked in the column “Dataset”.
T5SMALL was fine-tuned for summarizing articles from the domain of reinforcement

learning. The context window was set to 8192 tokens for the tokenized articles.
The cross-entropy loss was used to determine when the fine-tuning was completed.
The fine-tuning was terminated when the cross-entropy loss started to increase or
stabilize for the validation set of the RL dataset. Both fine-tuned and base models
were evaluated using the test dataset of the RL dataset. Without fine-tuning T5SMALL,
the following results are obtained for ROUGE1-F1, ROUGE2-F1, and ROUGEL-F1:
0.193, 0.037, 0.132. For the fine-tuned T5SMALL, the ROUGE1-F1, ROUGE2-F1, and
ROUGEL-F1 scores are 0.374, 0.116, and 0.215, respectively. The ROUGE metrics
are better for the fine-tuned version of T5SMALL. However, the non-fine-tuned version of
T5SMALL outperforms other base models that were evaluated using the RL test dataset.
PEGASUSLARGE was fine-tuned for summarizing articles from the domain of re-

inforcement learning. The training data of the RL dataset was used to fine-tune
the model. The encoder parameters of the model were frozen to save memory. In
PEGASUSLARGE, the maximum number of tokens that can be taken into account from
each input is only 1024 tokens. In the fine-tuning process, the number of epochs was
116, considerably larger than those in other models’ fine-tuning. This is probably due
to the small context window of 1024 tokens and the relatively small learning rate of
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5e-5. Both fine-tuned and base versions of PEGASUSLARGE were evaluated using the test
dataset of the RL dataset. Without fine-tuning PEGASUSLARGE achieves ROUGE1-F1,
ROUGE2-F1, and ROUGEL-F1 scores of 0.257, 0.076, and 0.145, respectively.
With the fine-tuned version, we obtain the following ROUGE1-F1, ROUGE2-F1,
and ROUGEL-F1 scores: 0.412, 0.130, and 0.219. The fine-tuned version clearly
outperforms the non-fine-tuned version of PEGASUSLARGE.

Two versions of PEGASUS-XBASE were fine-tuned for the summarization task.
The first version was fine-tuned with the training data of the LLM dataset and the
other with the training data of the RL dataset. In both fine-tuning processes, the
encoder parameters were frozen to save memory, and the number of epochs was
23. In PEGASUS-XBASE, the context window is of 16k tokens. Thus, we can fit the
full-length articles as input for the model without cutting them. Let us first consider
PEGASUS-XBASE that was fine-tuned with the training data of the RL dataset. The
following ROUGE1-F1, ROUGE2-F1, and ROUGEL-F1 scores are achieved for the
fine-tuned model with the test data of the RL dataset: 0.389, 0.126, 0.211. Without
fine-tuning, PEGASUS-XBASE achieves the ROUGE1-F1, ROUGE2-F1, and ROUGEL-
F1 scores of 0.017, 0.003, and 0.015, respectively, for the test data of the RL dataset.
Similar results are obtained when we consider the LLM dataset. When the base model
PEGASUS-XBASE is evaluated using the test data of the LLM dataset, ROUGE1-F1,
ROUGE2-F1, and ROUGEL-F1 scores are 0.017, 0.003, and 0.014. After fine-tuning
PEGASUS-XBASE with the training data of the LLM dataset, we obtain the following
ROUGE1-F1, ROUGE2-F1, and ROUGEL-F1 scores for the test data of the LLM
dataset: 0.382, 0.129, and 0.214.

Then, three instances of the LED model were fine-tuned for summarizing articles
from the reinforcement learning domain. LED can be loaded in different sizes. We
used both the base and large versions to see if the performance increases when
the model with a larger number of parameters is used. Furthermore, we tested the
base version LEDBASE with context sizes of 8k and 16k. These three LED models
are referred as LED-16kBASE, LED-8kBASE, and LED-8kLARGE, where the 16k and the
8k refer to the used context size. These models were fine-tuned using the training
data of the RL dataset, and the models’ performance was evaluated on the test data
of the RL dataset. During the fine-tuning of LED-16kBASE, and LED-8kLARGE, the
encoder parameters were frozen. The performance of these fine-tuned models and their
corresponding non-fine-tuned versions are seen in Table 10. The fine-tuned version
of LED-8kBASE outperforms the fine-tuned LED-16kBASE. The fine-tuned LED-8kBASE
achieves ROUGE1-F1, ROUGE2-F1, and ROUGEL-F1 scores of 0.465, 0.182, and
0.267, respectively, for the test data of the RL dataset. On the other hand, ROUGE1-F1,
ROUGE2-F1, and ROUGEL-F1 scores for the fine-tuned LED-16kBASE are 0.430,
0.148, and 0.231. The difference in ROUGE scores can be due to the average length
of the articles in the RL dataset (Table 2). The average word count for the RL dataset
is 5776, which is approximately 7702 tokens according to OpenAI Token Calculator
in [53]. Thus, on average, the context window of 8k tokens should be enough for most
articles. When the context window is set to 16k tokens, the number of padded tokens
is approximately 8k, which may cause unnecessary weight updates. Surprisingly, the
fine-tuned LED-8kLARGE did not perform better than the fine-tuned LED-8kBASE, even
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though the number of parameters in LED-8kLARGE is larger. This probably derives
from the freezing of the encoder parameters of LED-8kLARGE during fine-tuning as the
number of weights that can be updated decreases.

Lastly, GPT-3 was used to test the prompting approach with the test data of the RL
dataset. In prompting, we only give the context, i.e., the article, for the model and ask
the model to summarize the article. With the chunk size of 𝑛 = 1000 and temperature
of 0, we obtained the following ROUGE1-F1, ROUGE2-F1, and ROUGEL-F1 scores
for the test data of the RL dataset: 0.434, 0.135, and 0.220, respectively.

The ROUGE1-F1, ROUGE2-F1, and ROUGEL-F1 scores calculated for the test
data of the RL dataset are plotted in Figures 7, 8, and 9, respectively. The “ft” in
Figures 7, 8, and 9 refers to a fine-tuned model. The scores for each model are plotted
in increasing order. Based on the ROUGE scores, the three best-performing models are
the fine-tuned versions of LED-16kBASE, LED-8kBASE, and LED-8kLARGE. These models
were fine-tuned with the training data of the RL dataset, and evaluated with the test
data of the RL dataset. The prompting approach with GPT-3 performed relatively well,
being the 4th best-performing model regarding the ROUGE scores. The fine-tuned
LED-8kBASE outperforms all other models.

Table 10: ROUGE metrics for each model using the RL or LLM dataset test set.

Model FT Dataset ROUGE1-F1 ROUGE2-F1 ROUGEL-F1

T5SMALL RL 0.193 0.037 0.132
T5SMALL x RL 0.374 0.116 0.215
PEGASUSLARGE RL 0.257 0.076 0.145
PEGASUSLARGE x RL 0.412 0.130 0.219
PEGASUS-XBASE RL 0.017 0.003 0.015
PEGASUS-XBASE x RL 0.389 0.126 0.211
PEGASUS-XBASE LLM 0.017 0.003 0.014
PEGASUS-XBASE x LLM 0.382 0.129 0.214
LED-16kBASE RL 0.088 0.023 0.069
LED-16kBASE x RL 0.430 0.148 0.231
LED-8kBASE RL 0.086 0.023 0.067
LED-8kBASE x RL 0.465 0.182 0.267
LED-8kLARGE RL 0.076 0.016 0.063
LED-8kLARGE x RL 0.460 0.171 0.246
GPT-3 RL 0.434 0.135 0.220

4.1 Research questions
Let us next discuss the research questions this thesis aims to answer.

1. How does a fine-tuned model perform in a long-input summarization task
compared to the corresponding base model or prompt engineering?
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Figure 7: ROUGE1-F1 scores in increasing order. Fine-tuned models are referred to
as “ft”.

The performance of the fine-tuned models is significantly better than using
the corresponding models without fine-tuning. ROUGE metrics for every
non-fine-tuned model and their corresponding fine-tuned versions are seen in
Table 10. The reported results are run for the test data of the RL or LLM dataset.
From the non-fine-tuned models, PEGASUSLARGE achieved the highest scores of
0.257, 0.076, and 0.145 for ROUGE1-F1, ROUGE2-F1, and ROUGEL-F1,
respectively. Yet these scores are not even close to the best-performing fine-tuned
model, LED-8kBASE. This model achieved scores of 0.465, 0.182, and 0.267 for
ROUGE1-F1, ROUGE2-F1, and ROUGEL-F1.
The comparison of ROUGE metrics reveals distinctions between the performance
of the prompt engineering approach withGPT-3 and the leading fine-tuned model,
LED-8kBASE. However, the difference is not as remarkable as when comparing
the fine-tuned models and their corresponding base models. ROUGE metrics
differ between the prompt engineering with GPT-3 and the leading fine-tuned
model LED-8kBASE. The difference between ROUGE2-F1 and ROUGEL-F1
values of GPT-3 and fine-tuned LED-8kBASE is significant. The fine-tuned
LED-8kBASE achieves 0.182 for ROUGE2-F1, whereas the score is only 0.135
for GPT-3. Similarly, ROUGEL-F1 is 0.267 for the fine-tuned LED-8kBASE and
0.220 for GPT-3. ROUGE1-F1 is 0.465 for LED-8kBASE, and 0.434 for GPT-3.
Thus, we can conclude that fine-tuning clearly increases the performance of
an LLM in the long-input summarization task regarding the ROUGE scores.
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Figure 8: ROUGE2-F1 scores in increasing order. Fine-tuned models are referred to
as “ft”.

Three top performing fine-tuned models are LED-8kBASE, LED-8kLARGE, and
LED-16kBASE. Prompt engineering with GPT-3 produces great results but this
approach cannot outperform the leading fine-tuned models LED-8kBASE, and
LED-8kLARGE.

2. How do varying hyperparameters and data preprocessing options impact
the performance of the models and generated outputs?
We answer this research question in two parts. First, we consider the effect
of different text preprocessing techniques in fine-tuning. Then, we discuss
how varying the hyperparameters affect the prompt engineering with GPT-3.
Additionally, we test multiple prompts in the prompting approach with GPT-3.
Due to time and space complexities, we could not test multiple hyperparameter
sets in fine-tuning, even though it would have been interesting. The hyperpa-
rameters, seen in Table 8, were chosen based on the original papers where the
models were released (T5 by Raffel et al. [5], PEGASUS by Zhang et al. [4],
PEGASUS-X by Phang et al. [7], LED by Beltagy et al. [3], and GPT-3 by Radford
et al. [42]).
Text preprocessing in fine-tuning
Before fine-tuning the models, a custom preprocessing logic was applied
to the RL and the LLM datasets. To test how preprocessing of the input
text affects fine-tuning, we fine-tune two alternative versions of LED-8kBASE
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Figure 9: ROUGEL-F1 scores in increasing order. Fine-tuned models are referred to
as “ft”.

without preprocessing training data and with alternative preprocessing logic.
LED-8kBASE is chosen as its fine-tuned version outperforms other models in
terms of ROUGE metrics. The average, minimum, maximum, and median
word counts before tokenization and after preprocessing for the inputs (articles)
and labels (summaries) for the RL datasets with different preprocessing logics
are seen in Table 11. The RL dataset is preprocessed as described in Section
Preprocessing 3.2. The RL-2 dataset is processed similarly, but steps 1 and 8
from the original preprocessing logic are omitted. For the RL-3 dataset, abstracts
are removed from each article, but other preprocessing steps are discarded. The
model that is fine-tuned with the training data of the RL-2 dataset is referred to
as LED-2-8kBASE, whereas LED-3-8kBASE refers to the fine-tuned model with
the training data of the RL-3 dataset.
The training data of the RL dataset is used to fine-tune LED-8kBASE, and the
model is evaluated using the test data of the RL dataset. Similarly, we fine-tune
LED-2-8kBASE with the training data of the RL-2 dataset and evaluate the model
with the test data of the RL-2 dataset. LED-3-8kBASE refers to the fine-tuned
model with the training data of the RL-3 dataset. LED-3-8kBASE is evaluated
with the test data of the RL-3 dataset. The resulting ROUGE scores for the
fine-tuned versions of LED-8kBASE are seen in Table 12. Here, we also present
ROUGELs-F1 scores as it alleviates the process of comparing these results to
the results seen in Table 6. Out of these three fine-tuned models, LED-2-8kBASE
performs best, achieving the ROUGE1-F1, ROUGE2-F1, ROUGEL-F1, and
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ROUGELs-F1 scores of 0.488, 0.196, 0.277, and 0.473, respectively. The
fine-tuned LED-3-8kBASE achieves the ROUGE1-F1, ROUGE2-F1, ROUGEL-
F1, and ROUGELs-F1 scores of 0.487, 0.194, 0.275, and 0.471, respectively.
The difference in ROUGE scores between LED-2-8kBASE and LED-3-8kBASE is
diminishing. Surprisingly, the original preprocessing logic results in the lowest
ROUGE scores. This result suggests that the amount of preprocessing needed
before fine-tuning a model is very case-dependent. In our case, we can conclude
that a simpler preprocessing logic results in better performance compared to
our original, more complex preprocessing. Based on the results seen in Table
12, we suggest fine-tuning a model for the long-input summarization task in the
scientific domain without preprocessing the data. If the results are inadequate,
preprocessing logic can be applied step by step to the data.
Hyperparameters and text preprocessing in prompt engineering
In prompt engineering with GPT-3, we can modify the temperature that measures
the degree of randomness in the model’s output, the chunk size 𝑛, and the prompt
that contains the instructions for the summarization task. We aim to minimize
the model’s hallucination. Thus, the temperature in prompt engineering with
GPT-3 is set to zero. We do not modify this parameter but instead alter the
chunk size 𝑛 and the prompt. The idea is to study how the generated summaries
change when the prompt and the chunk size are altered.
Guiding the model via prompts is a critical factor in achieving high-quality
abstracts. We test three different prompts for a small set of articles from the test
data of the RL dataset. The size of this small set is 60 articles. Thus, we cannot
directly compare the ROUGE scores for this subset of articles to those run for the
whole test data of the RL dataset. Also, different values for the chunk size 𝑛 are
tested. Initially, the chunk size is set to 𝑛 = 1000, and the prompt that is given
to GPT-3 to summarize each chunk from the article is "Summarize this text
from an academic paper. Extract any key points with reasoning. Content:". The
prompt for summarizing the chunks into an overall summary is "Summarize this
collection of key points extracted from an academic paper in a single paragraph.
The summary length must NOT exceed the word limit of {𝑠𝑢𝑚𝑚𝑎𝑟𝑦_𝑙𝑒𝑛}. Key
points: {𝑟𝑒𝑠𝑢𝑙𝑡𝑠}", where 𝑠𝑢𝑚𝑚𝑎𝑟𝑦_𝑙𝑒𝑛 is the length of the original summary
and 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 contains the summarized chunks. Let us denote the prompt for
a single chunk as promptc and the prompt for summarizing all the chunks as
promptall.
We test two alternatives for the prompt promptall. The first alternative is
promptall-2 = "Create a summary of this list of paragraphs extracted from an
academic paper. Paragraphs:{𝑟𝑒𝑠𝑢𝑙𝑡𝑠}". The other alternative is promptall-3
= "Write an abstract of this list of paragraphs extracted from a scientific article.
Paragraphs:{𝑟𝑒𝑠𝑢𝑙𝑡𝑠}". These prompts are listed in Table 13. The resulting
ROUGE scores are seen in Table 14. The ROUGE scores are calculated for the
subset of 60 articles from the test data of the RL dataset.
The highest ROUGE scores are achieved with the prompt promptall-3. With
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the chunk size of 1000 tokens and the prompt promptall-3, ROUGE1-F1,
ROUGE2-F1, and ROUGEL-F1 are 0.455, 0.147, and 0.225, respectively. The
key difference in the prompt promptall-3 to the two other alternatives is that
we use the term "abstract" instead of "summary". Additionally, the length of
the prompts promptall-2 and promptall-3 is shorter compared to the original
prompt promptall.
Next, we test three alternatives for the original chunk size 𝑛 of 1000 tokens. We
use the prompt promptall-3 as it outperforms the other alternatives as seen in
Table 14. The alternative chunk sizes are 1200, 1500, and 2000. The results
are in Table 15. The highest ROUGE1-F1 score, 0.455, is obtained when the
chunk size is 1000 tokens. However, with a chunk size of 1000 tokens, the
ROUGE1-F1 score is only 0.002 higher than the ROUGE1-F1 score with a
chunk size of 1500 tokens. The highest ROUGE2-F1 score of 0.152 is obtained
when the chunk size is set to 1500. ROUGEL-F1 is 0.225 with the chunk sizes
1000, 1500, and 2000.
We can conclude that the style and wording of the prompt have an effect on the
outputs of GPT-3. We were able to increase the ROUGE scores by simplifying
and changing the wording of the prompt that is used to guide the model to
summarize the articles. The term "abstract" led to better results than using
the word "summary" in the prompt. The chunk size also affects the generated
summaries by GPT-3, yet the impact is smaller than the correct choice for the
prompt.

3. How to comprehensively evaluate the quality of generated texts?
ROUGE metrics provide only a limited view of the quality of the generated text.
As discussed in Section Limitations 2.5.7, human evaluation is a vital yet time-
and resource-intensive part of assessing the quality of generated texts due to
language’s inherent complexity and subjectivity. While automated metrics, such
as ROUGE, offer quantitative measures of certain linguistic aspects, they often
fall short of capturing human language’s nuanced and contextual nature.
Language is inherently subjective, and assessing qualities like fluency, coherence,
creativity, and adherence to style requires a level of understanding that machines
may struggle to achieve. Human evaluators bring a depth of comprehension that
extends beyond the quantitative metrics. Their ability to grasp the subtleties of
language, understand context, and make subjective judgments is invaluable in
determining the overall quality of generated content.
Human judgment becomes paramount in tasks like natural language generation,
where the goal is to mimic patterns and convey meaning, relevance, and
coherence. Automated metrics might excel at measuring surface-level features,
such as n-gram overlap. Still, they cannot often discern whether the generated
text truly fulfills the intended purpose or meets the expectations of a human
audience.
Moreover, language is not a one-size-fits-all phenomenon. Style, tone and even
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creative expression can vary widely based on individual preferences and the
specific requirements of a given task. Human evaluators can provide insights
into these subjective elements, helping to tailor the evaluation process to the
application’s specific needs. Higher-level cognitive functions such as logical
reasoning, common sense understanding, and context awareness significantly
evaluate text quality. These elements are often beyond the reach of automated
metrics, which makes human evaluators indispensable in ensuring that the
generated content aligns with the intended goals and effectively communicates
with the target audience.
In conclusion, while automated metrics offer quantitative benchmarks, the depth
and breadth of language evaluation demand human involvement. Integrating
automated metrics and human judgment provides a more holistic view of text
quality. It ensures that language’s intricacies, including its subjective and
contextual dimensions, are accurately captured and assessed.

Table 11: The average, minimum, maximum, and median word counts before
tokenization and after preprocessing for the inputs (articles) and labels (summaries) in
RL datasets.

Dataset Column Average Median Minimum Maximum

RL Input 5776 5239 44 58832
RL Label 155 153 14 297
RL-2 Input 6087 5425 49 71176
RL-2 Label 156 153 14 297
RL-3 Input 8436 7135 455 168253
RL-3 Label 156 153 14 297

Table 12: Comparison of long-input summarization task with different preprocessing
logics. Metrics from left to right are ROUGE1-F1, ROUGE2-F1, ROUGEL-F1, and
ROUGELs-F1. ROUGE metrics for the test sets are presented.

Model Dataset R-1 R-2 R-L R-Ls

LED-8kBASE RL 0.465 0.182 0.267 0.450
LED-2-8kBASE RL-2 0.488 0.196 0.277 0.473
LED-3-8kBASE RL-3 0.487 0.194 0.275 0.471
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Table 13: The prompts used in prompt engineering with GPT-3.

promptc
Summarize this text from an academic paper. Extract any key
points with reasoning. Content:

promptall

Summarize this collection of key points extracted from an aca-
demic paper in a single paragraph. The summary length must
NOT exceed the word limit of {𝑠𝑢𝑚𝑚𝑎𝑟𝑦_𝑙𝑒𝑛}. Key points:
{𝑟𝑒𝑠𝑢𝑙𝑡𝑠}

promptall-2
Create a summary of this list of paragraphs extracted from an
academic paper. Paragraphs:{𝑟𝑒𝑠𝑢𝑙𝑡𝑠}

promptall-3
Write an abstract of this list of paragraphs extracted from a
scientific article. Paragraphs:{𝑟𝑒𝑠𝑢𝑙𝑡𝑠}

Table 14: Comparison of long-input summarization task with GPT-3 and varying
prompt.

Model Prompt Chunk size ROUGE1-F1 ROUGE2-F1 ROUGEL-F1

GPT-3 promptall 1000 0.418 0.123 0.209
GPT-3 promptall-2 1000 0.429 0.137 0.214
GPT-3 promptall-3 1000 0.455 0.147 0.225

Table 15: Comparison of long-input summarization task with GPT-3 and varying
chunk size 𝑛.

Model Prompt Chunk size ROUGE1-F1 ROUGE2-F1 ROUGEL-F1

GPT-3 promptall-3 1000 0.455 0.147 0.225
GPT-3 promptall-3 1200 0.448 0.145 0.221
GPT-3 promptall-3 1500 0.453 0.152 0.225
GPT-3 promptall-3 2000 0.448 0.143 0.225
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5 Discussion and conclusions
We start this section by summarizing the work and analyzing the results we obtained
in Section Summary and analysis 5.1. Then, we draw conclusions regarding the
research problem in Section Conclusions 5.2. Additionally, we discuss the limitations
of using only numerical evaluation metrics in assessing the performance of an LLM
in Section Limitations 5.3. Lastly, in Section Recommendations and future work 5.4,
recommendations are given, and future work is discussed.

5.1 Summary and analysis
In this thesis, we studied how large language models can be adapted to summarize
scientific articles. Two sets of scientific articles from arXiv were collected. The first
dataset contained approximately 9000 articles about reinforcement learning. The other
dataset was smaller, containing approximately 1000 articles about large language
models. These datasets are called the RL and the LLM datasets, respectively. The
data was preprocessed before feeding the data to the models.

We utilized pre-trained large language models as a starting point, namely T5,
PEGASUS, PEGASUS-X, and LED. These pre-trained models were trained on large
datasets for various tasks. T5 is pre-trained with unlabeled data with the objective of
teaching the model generalizable knowledge. PEGASUS and PEGASUS-X are intended
to be used for abstractive summarization. PEGASUS-X was specifically pre-trained
for long-input summarization. LED is intended to use in long document generative
sequence-to-sequence tasks. Two approaches, fine-tuning and prompt engineering,
were applied to the base models. Fine-tuning adapted these models to the task
of summarizing scientific articles from the field of reinforcement learning or large
language models. In many real-world scenarios, obtaining a large labeled dataset for
training a model from scratch may be impractical or expensive. Thus, fine-tuning also
allows leveraging pre-existing models trained on large datasets and adapting them
to our task with a smaller, task-specific dataset. Prompt engineering was studied as
an alternative for fine-tuning. In prompt engineering, only a prompt and an article
without examples were provided to the model at inference. Despite having no prior
knowledge of the specific content, the model uses its general language understanding
and reasoning abilities to generate contextually relevant text.

Six models were fine-tuned using the training data of the RL dataset: T5SMALL,
PEGASUSLARGE, PEGASUS-XBASE, LED-16kBASE, LED-8kBASE, and LED-8kLARGE. An-
other version of PEGASUS-XBASE was fine-tuned using the training data of the LLM
dataset. These models were evaluated using the corresponding test data of either the
RL or LLM datasets. The prompt engineering approach with the test data of the RL
dataset was studied with GPT-3.

ROUGE was used as an evaluation metric of the models’ performance. Among
all the models, including both the fine-tuned and the non-fine-tuned models with
the initial preprocessing logic, the fine-tuned LED-8kBASE emerged with the highest
ROUGE scores. ROUGE1-, ROUGE2-, ROUGEL-, and ROUGELs-F1 scores for
the fine-tuned LED-8kBASE were 0.465, 0.182, 0.267, and 0.450, respectively. The
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results for all models are seen in Table 10. Prompt engineering approach with GPT-3
resulted in the following ROUGE1-, ROUGE2-, and ROUGEL-F1 scores for the RL
test dataset: 0.434, 0.135, and 0.220, respectively.

To study how data preprocessing affects the fine-tuned model’s performance, we
ran additional tests for LED-8kBASE by considering two alternative preprocessing logics
for the RL dataset. The resulting datasets with two other preprocessing logics are
referred to as the RL-2 and the RL-3 datasets. The RL dataset is preprocessed as
described in Section Preprocessing 3.2. The RL-2 dataset was processed similarly,
but steps 1 and 8 from the original preprocessing logic were omitted. In the RL-3
dataset, only the abstracts were removed from the articles. The model that is fine-tuned
with the training data of the RL-2 dataset is referred to as LED-2-8kBASE, whereas
LED-3-8kBASE refers to the fine-tuned model with the training data of the RL-3 dataset.

It was found that both alternative preprocessing logics improved the ROUGE scores.
The scores can be seen in Table 12. With the initial preprocessing logic, the ROUGE1-,
ROUGE2-, ROUGEL-, and ROUGELs-F1 scores for the fine-tuned LED-8kBASE were
0.465, 0.182, 0.267, and 0.450 for the test data of the RL dataset. When lowercasing
and removing special characters and numbers from the preprocessing logic were
omitted, the ROUGE1-, ROUGE2-, ROUGEL-, and ROUGELs-F1 scores increased
moderately to 0.488, 0.196, 0.277, and 0.473 for the fine-tuned LED-2-8kBASE. This
model, LED-2-8kBASE, outperforms all the other models adapted to the summarization
task of scientific articles from the domains of reinforcement learning or large language
models. We note that, at least for the scientific articles, the initial preprocessing logic
did not result in the best performance. Unexpectedly, a simpler preprocessing resulted
in better performance regarding ROUGE scores.

Furthermore, we studied how the data preprocessing options and different hyper-
parameters affect the performance of the prompting approach with GPT-3. These
approaches were tested for a subset of 60 articles from the test data of the RL dataset.
First, we wrote three different prompts that guide the model in the summarization task
and kept the chunk size as 1000 tokens. The prompts can be seen in Table 13, and the
results are reported in Table 14. The initial prompt promptall was "Summarize this
collection of key points extracted from an academic paper in a single paragraph. The
summary length must NOT exceed the word limit of {𝑠𝑢𝑚𝑚𝑎𝑟𝑦_𝑙𝑒𝑛}. Key points:
{𝑟𝑒𝑠𝑢𝑙𝑡𝑠}", where 𝑠𝑢𝑚𝑚𝑎𝑟𝑦_𝑙𝑒𝑛 is the length of the original summary and 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
contains the summarized chunks. With this prompt and the chunk size of 1000 tokens,
the ROUGE1-, ROUGE2-, and ROUGEL-F1 scores for a subset of 60 articles from
the test data of the RL dataset were 0.418, 0.123, and 0.209. The following prompt,
promptall-3, produced the best results compared to other alternatives in terms of
ROUGE scores: "Write an abstract of this list of paragraphs extracted from a scientific
article. Paragraphs:{𝑟𝑒𝑠𝑢𝑙𝑡𝑠}", where 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 contains the summarized chunks. With
the aforementioned prompt, the ROUGE1-, ROUGE2-, and ROUGEL-F1 scores for
the RL test dataset increased to 0.455, 0.147, and 0.229, respectively.

Additionally, we varied the chunk size 𝑛 used in the chunking algorithm. The
prompt promptall-3 resulted in the highest ROUGE scores with the subset from the
test data of the RL dataset. Thus, it was used when varying the chunk size 𝑛. Chunk
sizes of 1000, 1200, 1500, and 2000 were tested. The results are seen in Table 15. The
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highest ROUGE1-F1 score is 0.455, which is obtained with the initial chunk size of
1000. However, the highest ROUGE2-F1 score of 0.152 is obtained when the chunk
size is set to 1500. ROUGEL-F1 is 0.225 with the chunk sizes 1000, 1500, and 2000.
Thus, it is not straightforward to conclude which value for 𝑛 is optimal. It can be
argued that choosing the chunk size is case-dependent. Furthermore, the chunking
algorithm could be improved to find paragraphs from the input text instead of splitting
the article into chunks of size 𝑛. We may split the text suboptimally with our naive
chunking algorithm, presented in Section Prompt Engineering 3.5.

5.2 Conclusions
Based on the ROUGE scores, our fine-tuned models (Table 10) for summarizing
scientific articles, namely from RL- or LLM-related topics, can compete with the
models fine-tuned for the similar task seen in Table 6. The models, seen in Table 6, are
fine-tuned utilizing a large set of scientific articles from arXiv (Cohan et al. [54]), and
the task is to summarize scientific articles from various domains. In our case, the task
is identical but the datasets used to fine-tune and test the model are smaller in size
and more specific, containing articles from either LLM- or RL-related topics. The RL
and LLM datasets used in our long-input summarization task contain approximately
9k and 1.5k articles, respectively. In contrast, the arXiv dataset (Cohan et al. [54]),
presented in Section Results on the summarization task 3.3.6, contains 215k scientific
articles. The models that are fine-tuned with the arXiv dataset (Cohan et al. [54])
may generalize better due to a broader set of topics. However, the summarization task
in both cases aims to summarize scientific articles, and thus we can meaningfully
compare the resulting ROUGE scores.

Among the models we fine-tuned with the training data of the RL dataset, the best-
performing model was the fine-tuned version of LED-8kBASE. This fine-tuned model
achieves the following ROUGE1-F1, ROUGE2-F1, ROUGEL-F1, and ROUGELs-F1
scores for the test data of the RL dataset: 0.465, 0.182, 0.267, and 0.473 (see Table 12).
By simplifying the preprocessing logic, we were able to increase the ROUGE scores for
LED-8kBASE. The RL-2 dataset refers to a dataset that is preprocessed with simplified
logic. Using the training data of the RL-2 dataset, we fine-tuned LED-2-8kBASE that
achieves the ROUGE1-F1, ROUGE2-F1, ROUGEL-F1, and ROUGELs-F1 scores of
0.488, 0.196, 0.277, and 0.473, respectively, for the test data of the RL-2 dataset.

On the other hand, among the models that were fine-tuned with the arXiv dataset
(Cohan et al. [54]) for the summariztion task, the best-performing model was
PEGASUS-XLARGE, achieving ROUGE1-F1 of 0.500, ROUGE2-F1 of 0.218, and
ROUGELs-F1 of 0.446 for the test data of the arXiv dataset (see Table 6). The
fine-tuned PEGASUS-XLARGE has higher ROUGE1-F1 and ROUGE2-F1 scores com-
pared to our best-performing fine-tuned model LED-2-8kBASE. However, the fine-tuned
LED-2-8kBASE has higher ROUGELs-F1 score than the fine-tuned PEGASUS-XLARGE.

Based on ROUGE scores, we can conclude that it is possible to successfully
adapt a language model to a summarization task with only a small amount of data.
Choosing the correct pre-trained model as a starting point for the fine-tuning is
task- and data-dependent. For a long-input summarization task, choosing between
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fine-tuning and prompt engineering requires careful consideration of different aspects.
In this thesis, fine-tuning led to better results than the prompt engineering approach.
However, we studied only the long-input summarization task of scientific articles. In
some other domains, prompt engineering may be a better choice. Summarization of
scientific articles benefits from fine-tuning because the vocabulary and the structure
of a scientific article differ from the unstructured data used in pre-training the LLMs.
Furthermore, it was found that a simpler preprocessing logic that omits lowercasing
and removing numbers from the data produced better results than a more detailed one.

In fine-tuning, we utilized open-source models that are free to use. The cost of
fine-tuning was based on the GPU usage in Amazon Sagemaker. After fine-tuning, we
could run the fine-tuned models on inference without cost. The prompt engineering
approach with GPT-3 was, in our case, cheaper than fine-tuning. However, using
GPT-3 is more expensive in the long run. The charges are based on the number of
input and output tokens. The cost would quickly increase if we would like to build an
application with multiple users.

Yet, we have only analyzed the performance of the fine-tuned and base models on the
summarization task relying on the ROUGE scores. Extensive human evaluation would
significantly improve the assessment of the generated summaries, but unfortunately, it
is out of the scope of this thesis. However, some comments can be given regarding
the generated texts. During the evaluation of the models, the generated abstracts
from the articles of the test dataset were saved together with their corresponding
original abstract and the ROUGE scores. Thus, we can access each article, its abstract,
the generated abstracts, and corresponding ROUGE scores by each model shown in
Table 10. Skimming through the generated abstracts of the RL-2 test dataset by the
leading fine-tuned model LED-2-8kBASE reveals that, in general, this model produces
sensible text with correct abbreviations, and the texts consist of coherent sentences
with punctuation. Assessing the quality of the generated texts produced by the models
that were fine-tuned with the training data of the RL dataset is more challenging.
This derives from the original preprocessing logic in which the text is lowercased.
Thus, reading the generated text and comparing it to the original abstract becomes
tedious. The generated abstracts of the RL test dataset by the worst performing
fine-tuned model T5SMALL seem to contain more irrational sentences and repetition
compared to the fine-tuned LED-2-8kBASE. However, these comments are only based
on quick browsing of the generated texts. To dive deeper into the models’ differences
in producing summaries of scientific articles, a rigorous human evaluation process of
the generated texts should be carried out.

5.3 Limitations
There are noteworthy limitations when assessing the performance of LLMs fine-tuned
or prompt-engineered for summarizing scientific articles using numerical metrics like
ROUGE.

Firstly, ROUGE primarily relies on lexical overlap, emphasizing surface-level
similarities. However, this approach may fall short in evaluating the semantic
understanding of the model. A high ROUGE score does not necessarily ensure that the
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generated summary accurately reflects the intricate scientific concepts presented in the
original abstract. Scientific writing often employs domain-specific terminology, and
complex language structures, not to mention equations, graphs, and figures. ROUGE
cannot fully account for the precision and accuracy of these terms, potentially leading
to disparities between the generated summary and the original abstract, particularly in
terms of specificity.

Additionally, scientific discourse often involves synonymy and paraphrasing to
convey nuanced ideas. Numerical metrics may penalize the model for using different
yet valid expressions, possibly underestimating the quality of the generated summaries.
The contextual understanding required for scientific articles, including relationships
between concepts, may not be fully captured by ROUGE. Scientific domains vary
widely, each with unique conventions and writing styles. Generic metrics might
not adequately address the specific requirements of different scientific disciplines,
resulting in biased evaluations.

Scientific articles frequently include technical details crucial for a comprehensive
understanding. Numerical metrics might struggle to evaluate the correctness and
accuracy of these details, potentially overlooking critical information in the generated
summaries. Furthermore, scientific articles often present novel research contributions,
and numerical metrics might not be sensitive to the novelty of the generated content.
This limitation could lead to an incomplete evaluation of the impact and significance
of the generated summaries. With their domain expertise, human experts are better
equipped to evaluate the accuracy and appropriateness of the generated summaries.
Relying solely on numerical metrics may not capture the insights of these experts,
who can provide valuable qualitative assessments.

Lastly, ROUGE and similar metrics are not designed to assess the cohesiveness
and flow of the generated summaries. In scientific writing, the logical progression
of ideas is crucial, and deficiencies in this aspect may not be adequately reflected
in numerical scores. To address these limitations comprehensively, it is encouraged
to supplement numerical metrics with qualitative assessments by domain experts if
possible. Human evaluations, particularly from those with expertise in the specific
scientific domain, offer valuable insights into the accuracy, coherence, and overall
quality of the generated summaries. This combined approach ensures a more thorough
evaluation of the LLM’s performance in summarizing scientific articles.

5.4 Recommendations and future work
There are a few recommendations that should be taken into account when studying
long-input summarization using LLMs. We will next make some recommendations
and comment on future work.

The lack of labeled datasets may become an issue if we want to generalize the long-
input summarization task to other domains. Scientific articles were chosen as a domain
because the abstract is usually a mandatory part of the article. Thus, constructing
a labeled dataset is easy. This may not be the case with real-world use cases. For
example, a company can easily have thousands of documents from a specific industry
without summaries. Fine-tuning an LLM for long-input summarization when only
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documents are available, without corresponding summaries, is challenging. We may
utilize prompt engineering, but it should be noted that without reference summaries,
evaluating the generated texts becomes hard. In this case, human evaluation becomes
crucial.

Secondly, scientific articles usually contain images, graphs, tables, and equations,
besides the unique vocabulary. Even though the summary usually contains only text,
it could be beneficial to leverage the information in tables and equations in fine-tuning
or in-context learning. LLMs that integrate information from multiple modalities,
such as text and images, already exist. One example is GPT-4 by OpenAI [55]. GPT-4
is a large-scale, multimodal model that can accept image and text inputs and produce
text outputs. We cannot directly conclude that this model could process tables or
equations, but it is a step forward in solving the problem.

Lastly, our best-performing model, LED-2-8kBASE, is fine-tuned only for sum-
marizing the articles from the reinforcement learning domain. We have not tested
the model’s performance with the articles from different domains. It is likely that
the model succeeds in summarizing scientific articles from other domains that are
relatively close to reinforcement learning. Yet, this assumption should be confirmed
by testing the fine-tuned model with the articles from other domains.

The development of tools and applications utilizing LLMs has been rapid. In the
near future, businesses and individuals may have more accessible tools for customizing
and fine-tuning pre-trained LLMs for specific tasks, making them more applicable
to various industries and use cases. Researchers are likely to continue working on
developing more advanced and efficient language models. This includes refining
architectures and training techniques and addressing limitations such as biases and
ethical concerns. Furthermore, there may be a trend towards creating specialized LLMs
for specific domains or industries. This could lead to more accurate and context-aware
language understanding in various fields.
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A Example Model Outputs
This appendix contains example model outputs from the fine-tuned models. Analyzing
the generated abstracts and comparing the generated and reference texts is based on
the writer’s abilities. Thus, comprehensive fact-checking is omitted from the analysis.

A.1 LED-2-8k-BASE
In Table A1, there is an arbitrarily selected example of a generated abstract from the test
data of the RL dataset by the fine-tuned LED-2-8kBASE. LED-2-8kBASE is fine-tuned
with the training data of the RL dataset. The abbreviations in the generated text
are correct. The generated summary introduces the proposed technique, Variational
Hierarchical Reinforcement Learning (VHRL), without delving deeply into the specific
challenges open-domain dialog systems face. Furthermore, the generated summary
repeats the statement about VHRL improving human judgments of conversational
quality, appearing twice in the summary.

Table A1: Generated abstract from the test data of the RL dataset by the fine-tuned
LED-2-8kBASE.

ROUGE1-F1 0.432
ROUGE2-F1 0.170
ROUGEL-F1 0.304
ROUGELs-F1 0.412

Original

Open-domain dialog generation is a challenging problem; maximum likelihood training can lead to
repetitive outputs, models have difficulty tracking long-term conversational goals, and training on
standard movie or online datasets may lead to the generation of inappropriate, biased, or offensive
text. Reinforcement Learning (RL) is a powerful framework that could potentially address these
issues, for example by allowing a dialog model to optimize for reducing toxicity and repetitiveness.
However, previous approaches which apply RL to open-domain dialog generation do so at the word
level, making it difficult for the model to learn proper credit assignment for long-term conversational
rewards. In this paper, we propose a novel approach to hierarchical reinforcement learning, VHRL,
which uses policy gradients to tune the utterance-level embedding of a variational sequence model.
This hierarchical approach provides greater flexibility for learning long-term, conversational rewards.
We use self-play and RL to optimize for a set of human-centered conversation metrics, and show that
our approach provides significant improvements – in terms of both human evaluation and automatic
metrics – over state-of-the-art dialog models, including Transformers.

Generated

Open-domain dialog systems have been a fundamental challenge in artificial intelligence (AI).
Current generative models for dialog suffer from several shortcomings that limit their usefulness in
the real world. In this paper, we propose a novel technique, Variational Hierarchical Reinforcement
Learning (VHRL), which leverages policy gradients to adjust the prior probability distribution of the
latent variational model learned at the utterance level of a hierarchical variety of dialog models. We
show that VHRL improves human judgments of conversational quality above state-of-the-art dialog
architectures, including Transformer-based models. Our evaluation shows that VHRL improves
human judgments of conversational quality above state-of-the-art dialog architectures, including
Transformer.

In Table A2, this thesis is summarized by the fine-tuned LED-2-8kBASE. Even
though the thesis deals with long-input summarization using large language models,
and LED-2-8kBASE is fine-tuned with the training data of the RL dataset that contains
articles from the reinforcement learning domain, the ROUGE scores are relatively
high. This thesis is also considerably longer than the articles in the RL dataset.
Thus, the context window of 8k tokens is probably too narrow. In the generated text,
there is no mention of using large language models to solve the task. The generated
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text mentions models but does not specify the term. The following sentence in the
generated is ambiguous: "The short-input summarization task is formulated as a
long-input summarization task that requires the model to focus on critical elements,
summarize articles, and selecting suitable values for the model’s outputs.".

Table A2: Generated abstract from this thesis by the fine-tuned LED-2-8kBASE.

ROUGE1-F1 0.409
ROUGE2-F1 0.123
ROUGEL-F1 0.192
ROUGELs-F1 0.380

Original

Large language models (LLMs) have shown remarkable capabilities in various natural language
processing tasks. However, their output may not always meet the specific requirements or domain
knowledge needed. The generated text may lack coherence or factuality, especially in summarization
tasks with longer inputs. The increasing demand for automated summarization, coupled with
the complexity of summarizing scientific content, presents a unique challenge. This thesis will
focus on the long-input summarization task of scientific articles using LLMs. The thesis employs
abstractive summarization techniques and explores two prominent strategies: fine-tuning LLMs and
prompting. Fine-tuning involves adapting pre-trained models to the summarization task, leveraging
their vast pre-trained knowledge, while prompting relies on structured instructions to guide LLMs in
generating summaries without altering their weights. The research comprehensively analyzes these
approaches, evaluating their strengths and weaknesses regarding summary quality, computational
efficiency, and adaptability to the scientific domain. Utilizing relatively small datasets from arXiv,
the thesis showcases successful fine-tuning even with a limited amount of data, examines the impact
of text preprocessing on fine-tuning, and optimizes prompt engineering through multiple prompts
and a custom chunking algorithm. The limitations of numerical evaluation metrics in assessing
text quality are critically analyzed. The research aims to provide valuable insights into long-input
summarization, offering guidance on the effectiveness of fine-tuning and prompting strategies to
enhance LLMs’ capabilities in processing extensive and intricate textual documents. The results of
this study show that the fine-tuning strategy outperforms the prompting approach in the long-input
summarization task of scientific articles. Furthermore, comparing non-fine-tuned and fine-tuned
LLMs reveals that fine-tuning is a crucial step in using an LLM to summarize scientific articles, even
with models pre-trained for summarization. We emphasize the limitations of using only numerical
evaluation metrics in assessing the quality of generated texts and conclude that human evaluation is
a vital part of ensuring the factuality and coherence of the generated summaries.

Generated

Long-input summarization deals with the challenging task of summarizing extended scientific
articles from a given text. This task is challenging for models as they must navigate issues of fluency,
redundancy, and semantic coherence when current state-of-the-art models for a normal document
cannot be implemented effectively due to hardware and model limitations. In this paper, we tackle
the long-input summarization task by formulating the task as a short-input summary generation task.
The short-input summarization task is formulated as a long-input summarization task that requires
the model to focus on critical elements, summarize articles, and selecting suitable values for the
model’s outputs. We propose two approaches for tackling the long-input summarization task: a
prompt containing instructions for summarization and a prompt to summarize scientific documents.
The prompt is used to guide the model’s behavior in generating a summary from a given text.
The evaluation will consider various aspects, including computational efficiency, computational
efficiency, models’ adaptability to a scientific domain, and the need for labeled data.

A.2 GPT-3
In Table A3, there is an arbitrarily selected example of a generated abstract from the
test data of the RL dataset by GPT-3 with promptall-3 and chunk size of 1500. The
original summary is more concise and focuses on key points, providing a high-level
overview of the main contributions and findings of the paper. The generated summary
is more detailed and delves into specific aspects of the paper, such as the taxonomy
of heterogeneous systems, the evaluation of performance and resilience, and the
support from various organizations. Furthermore, the original summary focuses on
the technical aspects of the paper, such as the introduction of "hetgppo" and its use of a
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graph neural network for inter-agent communication. It also mentions the taxonomical
overview presented in the paper. The generated summary includes more technical
details and discusses the mechanisms suggested by the authors to measure and tune
the degree of policy heterogeneity.

Table A3: Generated abstract from the test data of the RL dataset by GPT-3.

ROUGE1-F1 0.413
ROUGE2-F1 0.117
ROUGEL-F1 0.215

Original

cooperative multi-robot tasks can benefit from heterogeneity in the robots’ physical and behavioral
traits. in spite of this, traditional multi-agent reinforcement learning (marl) frameworks lack the
ability to explicitly accommodate policy heterogeneity, and typically constrain agents to share
neural network parameters. this enforced homogeneity limits application in cases where the tasks
benefit from heterogeneous behaviors. in this paper, we crystallize the role of heterogeneity in
marl policies. towards this end, we introduce heterogeneous graph neural network proximal policy
optimization (hetgppo), a paradigm for training heterogeneous marl policies that leverages a graph
neural network for differentiable inter-agent communication. hetgppo allows communicating agents
to learn heterogeneous behaviors while enabling fully decentralized training in partially observable
environments. we complement this with a taxonomical overview that exposes more heterogeneity
classes than previously identified. to motivate the need for our model, we present a characterization
of techniques that homogeneous models can leverage to emulate heterogeneous behavior, and
show how this ""apparent heterogeneity"" is brittle in real-world conditions. through simulations
and real-world experiments, we show that: (i) when homogeneous methods fail due to strong
heterogeneous requirements, hetgppo succeeds, and, (ii) when homogeneous methods are able to
learn apparently heterogeneous behaviors, hetgppo achieves higher resilience to both training and
deployment noise.

Generated

This academic paper discusses the use of heterogeneous multi-robot systems in various applications
and the challenges in synthesizing optimal decentralized policies for these systems. It introduces
a taxonomy of heterogeneous systems and presents a framework called hetgppo for training
heterogeneous multi-agent reinforcement learning policies. The paper also evaluates the performance
and resilience of heterogeneous policies compared to homogeneous ones in cooperative multi-robot
tasks. The taxonomy classifies heterogeneity into physical and behavioral, with subclasses for each.
The paper also reviews the current state of the art in the area of heterogeneous multi-robot/agent
systems and classifies related works according to the taxonomy. The paper concludes by highlighting
the need for a shared and structured taxonomy of heterogeneous systems and the potential for further
research in this area. The paper also discusses the benefits of policy heterogeneity for multi-robot
tasks in simulation and the real world, demonstrating that heterogeneous models are able to solve
tasks more efficiently and with greater resilience compared to homogeneous models. The paper also
highlights the limitations of homogeneous models in emulating heterogeneous behavior and the
brittleness of inferred indexing. The authors suggest the development of mechanisms to measure and
actively tune the degree of policy heterogeneity in multi-robot teams for better control of trade-offs
between sample efficiency and resilience. The research was supported by various organizations
including the European Research Council and the US Army Research Laboratory.

A.3 PEGASUS-X-BASE
In Table A4, there is an arbitrarily selected example of a generated abstract from the
test data of the RL dataset by the fine-tuned PEGASUS-XBASE. The model is fine-tuned
with the training data of the RL dataset. In the generated abstract, it is stated that the
framework studied is "prediction-then-optimize" (colored in blue). Still, the actual
term used in the original text is "predict-then-optimize". Furthermore, in the generated
text, there is a sentence that refers to a figure (marked in violet) but it is unclear what
the figure is and how it relates to the sentence. Lastly, colored in red, the following
characters exist twice [„,] that shouldn’t be part of the text. Besides these minor details,
the generated text seems coherent.
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Table A4: Generated abstract from the test data of the RL dataset by the fine-tuned
PEGASUS-XBASE.

ROUGE1-F1 0.527
ROUGE2-F1 0.201
ROUGEL-F1 0.222

Original

in the predict-then-optimize framework, the objective is to train a predictive model, mapping from
environment features to parameters of an optimization problem, which maximizes decision quality
when the optimization is subsequently solved. recent work on decision-focused learning shows
that embedding the optimization problem in the training pipeline can improve decision quality
and help generalize better to unseen tasks compared to relying on an intermediate loss function
for evaluating prediction quality. we study the predict-then-optimize framework in the context of
sequential decision problems (formulated as mdps) that are solved via reinforcement learning. in
particular, we are given environment features and a set of trajectories from training mdps, which
we use to train a predictive model that generalizes to unseen test mdps without trajectories. two
significant computational challenges arise in applying decision-focused learning to mdps: (i) large
state and action spaces make it infeasible for existing techniques to differentiate through mdp
problems, and (ii) the high-dimensional policy space, as parameterized by a neural network, makes
differentiating through a policy expensive. we resolve the first challenge by sampling provably
unbiased derivatives to approximate and differentiate through optimality conditions, and the second
challenge by using a low-rank approximation to the high-dimensional sample-based derivatives.
we implement both bellman–based and policy gradient–based decision-focused learning on three
different mdp problems with missing parameters, and show that decision-focused learning performs
better in generalization to unseen tasks.

Generated

we study the prediction-then-optimize framework in sequential decision problems, formulated as
markov decision processes (mdps), with unknown parameters. in particular, at training time, we are
given trajectories and environment features from "training mdps." our goal is to learn a predictive
model which maps from environment features to missing parameters based on these trajectories that
generalizes to unseen test mdps that have features, but not trajectories. the resulting "predicted"
training and test mdps are solved using deep reinforcement learning (rl) algorithms, yielding policies
that are then evaluated by offline off-policy evaluation (ope) as shown in figure. this fully offline
setting is motivated by real-world applications such as wildlife conservation and tuberculosis
treatment where no simulator is available. however, such domains offer past ranger patrol trajectories
and environmental features of individual locations from conservation parks for generalization to
other unpatrolled areas. these settings differ from those considered in transfer-rl [„, ] and meta-rl [„,
] because we generalize across different mdps by explicitly predicting the mapping function from
features to missing mdps parameters, while transfer/meta rl achieve generalization by learning hidden
representation of different mdps implicitly with trajectories. the main contribution of this paper is to
extend the decision-focused learning approach to mdps with unknown parameters, embedding the
mdp problems in the predictive model training pipeline. to perform this embedding, we study two
common types of optimality conditions in a bellman-based approach where mean-squared bellman
error is minimized, and a policy gradient-based approach where the expected cumulative reward is
maximized. we convert these optimality conditions into their corresponding karush–kuhn–tucker
(kkt) conditions, where we can backpropagate through the embedding by differentiating through
the kkt conditions. we empirically test our decision-focused algorithms on three a grid world
with unknown rewards, and snare-finding and tuberculosis treatment problems where transition
probabilities are unknown.

A.4 PEGASUS-LARGE
In Table A5, there is an example of a generated abstract from the test data of the
RL dataset by the fine-tuned PEGASUSLARGE. This model is fine-tuned on the training
data of the RL dataset. ROUGE scores and the original abstract are also shown.
Unnecessary repetitions in the generated abstract are highlighted in red and blue.
The generated text contains two abbreviations colored in violet, "vvse" and "vce",
which both appear to be incorrect. The correct abbreviation is "vcse" which stands for
value-conditional state entropy, and can be seen in the original abstract. This generated
abstract acts as an example of a text that has relatively good ROUGE scores but lacks
coherence and has incorrect abbreviations and repetition.

Table A6 shows another example of a generated abstract from the RL-test dataset
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Table A5: Generated abstract from the test data of the RL dataset by the fine-tuned
PEGASUSLARGE .

ROUGE1-F1 0.524
ROUGE2-F1 0.194
ROUGEL-F1 0.303

Original

a promising technique for exploration is to maximize the entropy of visited state distribution, i.e.,
state entropy, by encouraging uniform coverage of visited state space. while it has been effective for
an unsupervised setup, it tends to struggle in a supervised setup with a task reward, where an agent
prefers to visit high-value states to exploit the task reward. such a preference can cause an imbalance
between the distributions of high-value states and low-value states, which biases exploration towards
low-value state regions as a result of the state entropy increasing when the distribution becomes
more uniform. this issue is exacerbated when high-value states are narrowly distributed within
the state space, making it difficult for the agent to complete the tasks. in this paper, we present a
novel exploration technique that maximizes the value-conditional state entropy, which separately
estimates the state entropies that are conditioned on the value estimates of each state, then maximizes
their average. by only considering the visited states with similar value estimates for computing the
intrinsic bonus, our method prevents the distribution of low-value states from affecting exploration
around high-value states, and vice versa. we demonstrate that the proposed alternative to the state
entropy baseline significantly accelerates various reinforcement learning algorithms across a variety
of tasks within minigrid, deepmind control suite, and meta-world benchmarks. source code is
available at https://sites.google.com/view/rl-vcse.

Generated

the aim of value-conditional state entropy exploration is to train agents that maximize the sum of
task reward and/or intrinsic reward based on a state entropy estimate. we show that this approach
can accelerate reinforcement learning when the distribution of high-value states and/or low-value
states is uniform. specifically, we find that maximizing the sum of task reward and/or intrinsic
reward based on a state entropy estimate can accelerate reinforcement learning when the distribution
of high-value states and/or low-value states is uniform. we leverage this idea to train agents that
maximize the sum of both task reward and/or intrinsic reward by selectively exploring high-value
states and/or low-value states that are near the distribution of high-value states. we present a novel
technique, value-conditional state entropy exploration (vvse), which trains agents that maximize the
sum of both task reward and/or intrinsic reward by selectively exploring high-value states and/or
low-value states that are near the distribution of high-value states. we show that vce accelerates
reinforcement learning when the distribution of high-value states and/or low-value states is uniform.

by the fine-tuned PEGASUSLARGE. In this case, the generated text has less repetition, but
the two sentences marked in blue that are repeated don’t make any sense. Furthermore,
the generated text doesn’t mention the Markov decision process, colored in violet in
the original text, that is mentioned and used to solve the problem discussed in the
original abstract.

A.5 T5-small
In Table A7, generated abstract from the test data of the RL dataset with the highest
ROUGE1-F1-, ROUGE2-F1- and ROUGEL-F1-scores by the fine-tuned T5SMALL is
seen. T5SMALL is fine-tuned with the training data of the RL dataset. The generated text
is shorter than the original and contains two sentences colored in blue that seem to
state the same thing in different orders of words.
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Table A6: Generated abstract from the RL-test dataset by the fine-tuned PEGASUSLARGE
on RL-dataset.

ROUGE1-F1 0.531
ROUGE2-F1 0.178
ROUGEL-F1 0.214

Original

learning a disentangled representation of the latent space has become one of the most fundamental
problems studied in computer vision. recently, many generative adversarial networks (gans) have
shown promising results in generating high fidelity images. however, studies to understand the
semantic layout of the latent space of pre-trained models are still limited. several works train
conditional gans to generate faces with required semantic attributes. unfortunately, in these attempts,
the generated output is often not as photo-realistic as the unconditional state-of-the-art models.
besides, they also require large computational resources and specific datasets to generate high fidelity
images. in our work, we have formulated a markov decision process (mdp) over the latent space
of a pre-trained gan model to learn a conditional policy for semantic manipulation along specific
attributes under defined identity bounds. further, we have defined a semantic age manipulation
scheme using a locally linear approximation over the latent space. results show that our learned
policy samples high fidelity images with required age alterations, while preserving the identity of
the person.

Generated

the task of performing age-specific semantic attribute manipulation in human face images has
multiple applications. for example, face aging has been used for cross face verification and even
in forensic art. the outputs are low in resolution or not comparable to the images generated by the
state-of-the-art gans like progressive gan and style gan. this often limits the application of such
models in downstream tasks, which require high-resolution images with particular facial attributes.
a custom generative model can generate high-resolution images with required facial attributes, but
training it from scratch is an arduous task. recent studies have tried to understand and utilize the
latent structure of generative models. the authors of this paper have shown that a non-linear trajectory
learned by the rl policy, over the latent space of a pre-trained progressive gan, performs the required
age manipulation. that the vector arithmetic over the latent space has a direct association with the
semantic changes over the generated vectors. that the vector arithmetic over the latent space has a
direct association with the semantic changes over the generated vectors. the authors of interface gan
[] have shown promising results in generating semantically rich high resolution images by traversing
the latent space of a pre-trained progressive gan.

Table A7: Generated abstract from the RL-test dataset with the highest ROUGE1-F1-,
ROUGE2-F1- and ROUGEL-F1-scores by the fine-tuned T5SMALL.

ROUGE1-F1 0.686
ROUGE2-F1 0.520
ROUGEL-F1 0.544

Original

traffic congestion is a serious problem in urban areas. dynamic congestion pricing is one of the
useful schemes to eliminate traffic congestion in strategic scale. however, in the reality, an optimal
dynamic congestion pricing is very difficult or impossible to determine theoretically, because road
networks are usually large and complicated, and behavior of road users is uncertain. to account for
this challenge, this work proposes a dynamic congestion pricing method using deep reinforcement
learning (drl). it is designed to eliminate traffic congestion based on observable data in general
large-scale road networks, by leveraging the data-driven nature of deep reinforcement learning. one
of the novel elements of the proposed method is the distributed and cooperative learning scheme.
specifically, the drl is implemented by a spatial-temporally distributed manner, and cooperation
among drl agents is established by novel techniques we call spatially shared reward and temporally
switching learning. it enables fast and computationally efficient learning in large-scale networks.
the numerical experiments using sioux falls network showed that the proposed method works well
thanks to the novel learning scheme.

Generated

dynamic congestion pricing is a serious problem in urban areas. in this study, we propose a dynamic
congestion pricing method using deep reinforcement learning (drl) to eliminate traffic congestion in
strategic scale. in the reality, an optimal dynamic congestion pricing is very difficult or impossible
to determine theoretically, because road networks are usually large and complicated, and behavior
of road users is uncertain. in this study, we propose a novel distributed and cooperative learning
scheme using deep reinforcement learning (drl) to eliminate congestion in large-scale networks.
in the present study, the proposed method is based on spatially distributed reward and temporally
switching learning.
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