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Abstract
A functional public transport system is an important part of any contemporary
city, providing affordable transport services for citizens, improving environmental
sustainability and increasing the overall welfare of the city. The key elements of
all public transport systems are the set of lines, i.e., routes for the vehicles and
passengers, since they provide the basis for operating the entire transport system
and allow passengers to plan their journeys efficiently. The mathematical models for
designing the routes and lines optimally in transport systems give strong support for
decision-making in transport planning. However, the large size of real-life transport
systems and varying properties of different modes of transport require more efficient
models that can be used for real-life instances.

In this work, we introduce line planning models and algorithms based on integer
optimization for obtaining cost-optimal sets of lines in public transport networks with
multiple modes of transport. We formulate the models in terms of external passenger
demand and present theoretical analysis based on the properties of public transport
networks with multiple modes of transport. Finally, we perform computational
experiments using the different models and compare the models using an artificial
public transport network and passenger demand.

The results show that the integer optimization methods for public transport networks
with multiple transport modes give optimal solutions in terms of line operating costs
while also maintaining a reasonable passenger travel time. We also confirm that line
planning problems with multiple modes can be reduced to a set of single modality
problems at the expense of optimality. Overall, we witness a trade-off between
tractability and optimality for the different models. Future work remains on analyzing
the behaviour of different models in terms of model parameters and different objectives
in public transport line planning.

Keywords Public transport planning, Line planning, Integer optimization,
Multimodal network, Public transport network
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Tiivistelmä
Toimiva joukkoliikennejärjestelmä on tärkeä osa nykyaikaista kaupunkisuunnittelua.
Joukkoliikenne on asukkaille edullinen matkustusmuoto, joka on ympäristön kan-
nalta kestävää ja kaupungin yleistä asuinmukavuutta parantavaa. Tärkeä osa kaikkia
joukkoliikennejärjestelmiä ovat joukkoliikenteen linjat, jotka kuvaavat kulkuneuvojen
reittejä liikenteessä. Linjat ovat joukkoliikenteen toiminnan perusta, jonka avulla
matkustajat voivat helposti suunnitella matkojensa toteutustavan. Matemaattiset mallit
optimaaliseen linjastosuunnitteluun tarjoavat vahvan perustan koko julkisen liikenteen
suunnitteluun liittyvälle päätöksenteolle. Kuitenkin liikennejärjestelmien suuri koko
ja kulkuneuvotyyppien vaihtelevat ominaisuudet vaativat yhä tehokkaampia malleja,
jotka toimivat hyvin myös reaalimaailman sovelluksissa.

Tässä työssä esitellään kokonaislukuoptimointiin perustuvia linjastosuunnittelun
malleja ja algoritmeja, joilla määritetään kokonaishinnan kannalta optimaalisia linjas-
toja usean kulkuneuvotyypin joukkoliikenneverkoille. Käytettävät mallit määritellään
ulkoisen matkustajatarpeen mukaan, ja mallien analysointi pohjautuu usean kulku-
neuvotyyppien joukkoliikennesysteemien ominaisuuksiin. Työssä myös vertaillaan
eri mallien toimintaa laskennalisten testien avulla käyttämällä testaukseen soveltuvaa
joukkoliikenneverkkoa ja erillistä matkustajatarvetta.

Työn tulokset osoittavat, että kokonaislukuoptimointiin perustuvat mallit antavat
optimaalisia ratkaisuja kokonaishinnan suhteen siten, että linjastoa käyttävien mat-
kustajien matkustusaika säilyy kohtuullisena. Tulokset osoittavat myös, että usean
kulkuneuvotyypin linjastosuunnittelun optimointiongelma voidaan jakaa useiksi yhden
kulkuneuvotyypin osaongelmiksi ratkaisun optimaalisuuden kustannuksella. Yleisha-
vaintona työssä huomataan, että eri malleilla voidaan optimaalisuutta heikentämällä
ratkaista linjastosuunnittelun ongelmia merkittävästi tehokkaamin. Tulevassa tutki-
muksessa on syytä tutkia eri linjastosuunnittelun parametrien vaikutuksia optimaalisiin
ratkaisuihin sekä muihin linjastosuunnittelun kohdefunktioihin.

Avainsanat Joukkoliikenteen suunnittelu, Linjastosuunnittelu,
Kokonaislukuoptimointi, Joukkoliikenneverkko, Multimodaalinen
verkko



Contents
Abstract 3

Abstract (in Finnish) 4

Contents 5

1 Introduction 7
1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Modeling public transport planning 13
2.1 Passenger demand and public transport network . . . . . . . . . . . 13
2.2 Concept of line planning . . . . . . . . . . . . . . . . . . . . . . . 13

3 Cost-oriented unimodal line planning 15
3.1 Sequential line planning problem . . . . . . . . . . . . . . . . . . . 15
3.2 Passenger assignment problem . . . . . . . . . . . . . . . . . . . . 17
3.3 Integrated line planning problem . . . . . . . . . . . . . . . . . . . 21

4 Cost-oriented multimodal line planning 23
4.1 Multimodal sequential line planning problem . . . . . . . . . . . . 24
4.2 OD-matrix splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Multimodal passenger assignment problem . . . . . . . . . . . . . 30

4.3.1 Multimodal passenger assignment algorithms . . . . . . . . 30
4.3.2 Passenger assignment with Change&Go-network . . . . . . 32

4.4 Multimodal iterative line planning problem . . . . . . . . . . . . . 34
4.5 Multimodal integrated line planning problem . . . . . . . . . . . . 36

5 Theoretical analysis of multimodal networks 38
5.1 Separate PTNs with a single common transfer point . . . . . . . . . 42
5.2 Separate PTNs with more than one common transfer point . . . . . 45
5.3 Identical PTNs with modality transfers . . . . . . . . . . . . . . . . 47
5.4 PTNs with limited transfer points . . . . . . . . . . . . . . . . . . . 51

6 Experiments and Results 54
6.1 Comparison of the line planning algorithms . . . . . . . . . . . . . 55
6.2 Performance analysis of the multimodal passenger assignments . . . 57
6.3 Performance analysis of OD-matrix splitting . . . . . . . . . . . . . 60
6.4 Performance analysis of the integrated multimodal line plans . . . . 62
6.5 Cost efficiency of integrated line planning . . . . . . . . . . . . . . 64

7 Summary and Conclusions 66

References 67

5



A Parameters for computational experiments 69

6



1 Introduction
Public transport planning in the context of urban planning is a vital part of designing
modern city infrastructure and providing efficient and reliable transportation for
citizens. In recent years, the importance of public transport planning has increased
considerably due to several sustainability-related factors. These include growing
populations in urban areas, environmental sustainability issues and socioeconomic
imbalances in cities [16]. A good quality public transport system plays a key role in
addressing many of these issues and increasing the overall welfare of cities. Indeed,
the recent transport policies that suggest replacing car travel with more sustainable
means of transport require more efficient and more economically sustainable transport
design to increase the overall attractiveness of public transport [15, 16].

The primary goal of public transport planning is to create goodquality transportation
services for the population for a reasonable operational cost. The mathematical
approach for public transport planning uses various optimization models to create
line concepts, timetables and vehicle schedules that optimize different objectives such
as passenger travel time and transportation costs. The traditional way to tackle the
large size and high complexity of transport planning is to solve the interconnected
planning models sequentially, as shown in Figure 1, to obtain the characteristics of
public transport systems such as optimal timetables and optimal vehicle routes. With
this approach, the optimal results from previous stages are used in formulating the
subsequent planning models [10].

This work focuses on the line planning step of mathematical public transport
modeling. Line planning is an important aspect of public transport planning since the
lines are essential building blocks of a public transport system and important tools for
both passengers and transport operators alike. In line planning, the goal is to obtain a
set of lines and their corresponding operating frequencies for the vehicles to satisfy
external passenger demand. In the context of line planning, a line represents an ordered
sequence of stops from the origin to the destination along with the routes between
the stops in the network. We assume that a vehicle serves all the stops belonging to a
line in order and always drives from the origin to the destination. Line planning is a
multi-objective optimization problem with multiple objectives such as the passenger
travel time and the line operating costs. In a sequential fashion, the obtained set of
lines are used as an input for subsequent public transport planning stages such as
timetabling and vehicle scheduling [3].

Traditionally, line planning problems are formulated using only a single transport
mode and its corresponding transportation network. Because a majority of the public
transport systems in the world use multiple transport modes, it is important to consider
the aspects of multimodality in line planning and generally in public transport planning.
In addition, different modes of transport have notably different characteristics from the
building of the transport infrastructure to the operation of the transport. For example,
constructing a metro line involves greater initial investment than a bus line, while
generally a metro offers more capacity advantages and reliability than a bus line. Thus,
multimodal line planning approaches provide valuable support for public transport
decision-making in real-life public transport systems [19].
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Figure 1: A general overview of different planning steps in mathematical public
transport optimization. The order of solving the different planning stages sequentially
is presented with the arrows. In the Figure, the blue boxes represent the planning
models, the purple boxes represent the output from the planning models and the green
boxes represent the input data for the planning models.

In this work, we present mathematical formulations of several line planning models
that can be used with multiple different transport modes, each with their corresponding
public transport network. We also introduce two general approaches for dealing
with multiple transport modes in line planning problems. We present a detailed
theoretical analysis of line planning problems with multiple modes and compare
the different solution approaches theoretically using various examples. We also
introduce new passenger assignment algorithms to obtain line planning problems with
varying emphases on objective functions. Finally, we present experimental results
and comparison for the line planning models and modified passenger assignment
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algorithms using passenger demand data and an artificial public transport network.
We focus primarily on the line planning models based on cost-minimization, but also
evaluate other objective functions to highlight the differences in our proposed line
planning models and solution approaches.

1.1 Literature review
The mathematical framework of public transport modeling involves various planning
stages that determine the characteristics of a public transportation system. The different
planning stages include network design, passenger routing and line planning, as well
as timetabling, vehicle scheduling and delay management. Traditionally, the different
planning stages have been solved in a sequential fashion, as illustrated in Figure 1.
The underlying idea of this sequential approach is to solve each of the planning stages
separately and use the optimal solution of the previous stage to formulate the next
stage problem. Handling all the planning stages in a single problem usually results
in a large and complicated model with no guarantee of tractability even for smaller
instances [10].

Due to the greedy-like approach of the sequential planning, recent literature has
suggested integrated models that combine some of the different planning stages into
a single problem, while still keeping the models relatively simple. For example,
[11] suggests combining passenger assignment, line planning and timetabling stages
into a single optimization problem instead of solving the problems sequentially. The
integrated problems have been shown to result in better solutions than sequential multi-
stage problems as presented in [1, 11]. Additionally, the decision-making perspective
of integrated models is particularly useful, since they allow making first-stage decisions
such that the following second-stage decisions are already optimal. Against their
sequential model counterparts, the integrated models always perform at least equally
well in comparison. However, the large size of the problem and limited tractability
prevents the use of integrated models over sequential models if the real-life public
transport networks are too large in size[1, 11].

Combining different planning stages of a sequential model into an integrated model
is not always a straightforward process. However, in the literature there exists some
general frameworks to convert separate problems into a single optimization problem.
As an example, [6] presents an eigenmodel that solves the separate subproblems
iteratively to find local optima of the corresponding integrated model. Moreover, [1]
introduces a mathematical formulation for general sequential processes along with
a partial integration approach for solving only a subset of sequential problems in an
integrated fashion.

In this work, we focus on the line planning phase of the sequential public transport
modeling. This means our primary interest is to obtain lines for vehicles and their
corresponding operating frequencies to fulfill the external passenger demand in the
public transport network. In the literature, there exist many different types of line
planning models that differ in terms of the objectives and constraints of the line plan
[3]. For example, cost-oriented models aim to minimize the costs of operating the set
of lines, whereas passenger-oriented models aim to minimize the average travel time
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of the passengers in the network or maximize the number of direct passengers, that is,
the passengers that don’t have to transfer between different lines during their journey.
Cost-oriented models are analyzed in detail in [8]. A passenger-oriented model with
travel time minimization using a modified network with transfer penalties is presented
in [5] and a line planning model maximizing the number of direct passengers is
introduced in [9].

The public transport systems in real life are usually so large that considering all
the possible lines in the line planning phase becomes numerically intractable for the
majority of line planning problems. Therefore, choosing a limited set of possible lines
called line pool to be considered in line planning models is needed. Methods for
obtaining good quality line pools with limited sizes are presented in [2]. Moreover,
[7] presents another approach of integrating line pool generation into the actual line
planning model using a multi-commodity flow formulation.

Traditionally, line planning models assume that passenger demand is already
distributed to the edges of the public transport network. However, this means that
line planning is a two-stage problem. In the first stage, passenger assignment, the
travel routes are selected for passengers in the public transport network based on
the external passenger travel demand data. In the second stage, a sequential line
planning optimization model, with constraints obtained from the first stage passenger
assignment, is solved. In the literature, the effects of passenger assignment to the
optimal solution of the line planning problem are investigated in [4]. A more general
perspective on passenger assignment ideas are presented in [10]. In addition, [4]
introduces integrated models for line planning phase where the line planning and
passenger assignment are combined into a single integrated optimization model.

In this work, we introduce new formulations and algorithms for cost-oriented
line planning and passenger assignment that can be used when the underlying public
transport network consists of different vehicle modalities, such as metro, tram and
bus. The previous literature on line planning in multimodal public transport systems
is relatively scarce, although some references can be found. Line planning models
with separate stopping patterns on line-level, as presented in [12] and [13], can be
considered an elementary version of multimodal line planning, but only in terms of
different network structures. In addition, [14] presents a system split procedure so that
the original problem can be split into separate problems of single modality and solved
separately. In this work, we present two separate approaches to handle multimodal
line planning problems. One of the approaches is similar to the system split procedure
in a sense that the original problem is also split to separate unimodal problems. In this
work, we also provide theoretical background for allowing different types of problem
splitting based on the problem instance.
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1.2 Thesis outline
The structure of this thesis is presented in the following: Section 2 covers the basic
concepts related to the mathematical public transport planning and formally defines
the concept of line planning in the context of public transport planning.

In Section 3, we present the two main cost-oriented line planning algorithms, the
sequential line planning model and the integrated line planning model, to obtain the
optimal sets of lines in line planning problems with a single modality. We also present
the general framework of passenger assignment algorithms and illustrate the effects of
different passenger assignment algorithms to the optimal sets of lines in line planning
problems.

Figure 2: The relationships between the different methods for solving multimodal line
planning problems in terms of problem tractability and the optimal solution quality.
The black arrows show the order of steps in each method. The colored arrows show
the relationship between the different methods.

In Section 4 we introduce extended formulations of the two cost-oriented line
planning algorithms that can be used to solve line planning problems with multiple
vehicle modalities. We also introduce the concept of OD-matrix splitting, a heuristic
approach for dealing with multiple vehicle modalities in line planning that can be used
to split the problem to a set of single modality problems. Additionally, we propose an
iterative approach for solving line planning problems with multiple modalities. The
relationships between the different methods presented in this chapter are illustrated
in Figure 2 where the main characteristics of the methods are tractability in large
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problem instances and the quality of the optimal solution.
Section 5 presents detailed theoretical analysis and comparison of the methods

presented in Section 4 and explores the theoretical properties of public transport
networks of multiple vehicle modalities with illustrative examples.

Finally, in Section 6 we present experimental results and comparisons of the
methods presented in Section 4 using an artificial public transport network and travel
demand based on a real-life dataset. We conclude the thesis in Section 7.
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2 Modeling public transport planning

2.1 Passenger demand and public transport network
We begin by formally defining the concepts of passenger demand and public transport
network that are used to formulate the line planning problems in public transport
planning.

Definition 1. The public transport network PTN = (𝑉, 𝐸) is a directed graph where
the nodes 𝑉 represent the stops for vehicles in the network and edges 𝐸 represent the
direct connections between the stops. In other words, there is a directed edge from
stop 𝑣1 to 𝑣2 if the vehicle can drive directly from 𝑣1 to 𝑣2 (e.g. there is a road/railway
from 𝑣1 to 𝑣2).

Usually, the PTN is part of the input data of the model. However, there also exists
methods for choosing locations of the stops in the PTN as part of the city infrastructure
design. An example of such method that formulates and solves a specific stop location
problem is described in [18, 3].

Definition 2. An OD-matrix𝑊 ∈ N|𝑉 |×|𝑉 | describes the transport demand in the PTN
network such that 𝑊𝑢𝑣 is the number of passengers willing to travel from stop 𝑢 to
stop 𝑣 in the network, 𝑢, 𝑣 ∈ 𝑉 .

The OD-matrix is also part of the input data of the problem and is used to determine
the constraints of the line planning problem [3].

2.2 Concept of line planning
Definition 3. A line 𝑙 is defined as a connected directed path in a PTN where each
edge can be used at most once. A line concept of a PTN is then a set of frequencies 𝑓𝑙
for all lines available 𝑙 ∈ L0. We refer the line pool L0 as a collection of potential
lines that can be used to build the actual line concept. The cost 𝑐𝑙 for each line 𝑙 ∈ L0

can be formulated as

𝑐𝑙 = 𝑐 𝑓 𝑖𝑥 + 𝑐𝑘
∑︁
𝑒∈𝑙

𝑑𝑒

where 𝑑𝑒 denotes the length of the edge, 𝑐𝑘 denotes the unit cost of a line in terms
of line length and 𝑐 𝑓 𝑖𝑥 denotes the fixed cost of the line.

The goal of the line planning problem is then to find a line concept (L, 𝑓 ) to
minimize or maximize some objective function with given constraints. Here L is
a set consisting of lines 𝑙 ∈ L to be operated and 𝑓 is the vector of corresponding
line frequencies of the lines 𝑓𝑙 , 𝑙 ∈ L. The cost-oriented objective is to minimize the
sum of costs for each line in the line concept

∑︁
𝑙∈L0 𝑐𝑙 𝑓𝑙 . Passenger-oriented objective

functions include minimizing the number of transfers and minimizing the average
travel time of all passengers, when travelling between stops 𝑢, 𝑣 ∈ 𝑉 . The resulting
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line concept can then be used to formulate the problems in the following planning
stages, such as creating timetables or vehicle schedules in the PTN [3]. In this work,
we focus on the cost-oriented objective of minimizing the overall costs in extended
multimodal public transport networks. However, we also evaluate the line concepts
for the passenger-oriented objectives to see how much the cost reduction affects the
passenger-friendliness of the line concept. The formulations of the passenger-oriented
objective functions are presented in more detail in Section 6.

In the line planning problem, we generally assume that the set of potential lines,
i.e., line pool L0 is given. According to [2] and [4], the underlying line pool greatly
affects the quality of the resulting line concept in the line planning problem, which is
certainly intuitive. Preferably, we would like to allow using all possible lines in the
problem, because with more lines to choose from, we have more flexibility to adjust
different lines in the line concept and therefore increase its quality. In practice, this is
generally not possible since the resulting line planning problem would quickly become
too large to solve efficiently.

In this work we use the iterative minimum spanning tree approach presented in
[2] to construct comparable line pools for all of the problem instances. Technically,
we assume line pools along with their corresponding line costs are ’given’ in every
problem instance to neglect the effects of line pool generation in our experimental
and theoretical results. The process of generating the line pools in the experimental
analysis is presented in more detail in Section 6.
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3 Cost-oriented unimodal line planning

3.1 Sequential line planning problem
We now present the basic sequential approach for cost-oriented line planning. In this
approach, the solution to a separate passenger assignment problem is used to formulate
the cost minimization problem. In more detail, the approach works as follows.

1. Calculate traffic loads 𝜔𝑒 for every edge 𝑒 ∈ 𝐸 using Passenger Assignment
Algorithm 2.

2. Calculate the corresponding lower edge frequencies 𝑓 min
𝑒 :=

⌈︂
𝜔𝑒

Cap

⌉︂
for each edge

𝑒 ∈ 𝐸 .

3. Solve the resulting line planning problem LineP( 𝑓 min) where LineP( 𝑓 min) is
the basic cost model for line planning [4]:

LineP( 𝑓 min) : min
∑︁
𝑙∈L0

𝑐𝑙 𝑓𝑙

s.t.
∑︁

𝑙∈L0:𝑒∈𝑙
𝑓𝑙 ≥ 𝑓 min

𝑒 ∀ 𝑒 ∈ 𝐸∑︁
𝑙∈L0:𝑒∈𝑙

𝑓𝑙 ≤ 𝑓 max ∀ 𝑒 ∈ 𝐸

𝑓𝑙 ∈ N ∀ 𝑙 ∈ L0

Here, Cap determines the vehicle capacity in the line concept and 𝑓 max is the upper
limit for vehicles operating frequency derived from the infrastructural limits of the
public transport network. The first constraint of the model guarantees that for each
edge in the public transport network, there are enough lines to serve all the passengers
assigned to the edges. The second constraint limits the number of lines on the edges
due to technical restrictions such as security headways [3]. Naturally, 𝑓 max could also
be edge dependent, but for simplicity we treat it as constant in this work. Note that
with Cap constant and 𝑓𝑙 integer, we can rewrite the integer program LineP( 𝑓 min) in
terms of the traffic loads as an equivalent model

LineP(𝜔) : min
∑︁
𝑙∈L0

𝑐𝑙 𝑓𝑙 (1)

s.t. Cap
∑︁

𝑙∈L0:𝑒∈𝑙
𝑓𝑙 ≥ 𝜔𝑒 ∀ 𝑒 ∈ 𝐸 (2)

Cap
∑︁

𝑙∈L0:𝑒∈𝑙
𝑓𝑙 ≤ 𝑈 ∀ 𝑒 ∈ 𝐸 (3)

𝑓𝑙 ∈ N ∀ 𝑙 ∈ L0 (4)
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where𝑈 = Cap · 𝑓 max describes the theoretical maximum load for every edge in
the network [4]. The basic sequential approach for cost-oriented line planning can
now be described with Algorithm 1.

Algorithm 1 Sequential model for cost-oriented line planning
1: Calculate traffic loads 𝜔𝑒 for every edge 𝑒 ∈ 𝐸 using a passenger assignment

Algorithm 2
2: Solve the resulting line planning problem LineP(𝜔)

The basic cost model for line planning (1)-(4) has been well studied in the literature.
Most notably, [8] show that even without upper-frequency constraints, the model is
NP-hard by reducing the problem to a set covering problem. This means that for
large enough problem instances, the problem becomes computationally intractable.
Apart from few special cases, the line planning problems are generally hard to solve
efficiently [8].

To obtain the traffic loads 𝜔𝑒 for each 𝑒 ∈ 𝐸 , we perform passenger assignment
process as described in Algorithm 2. All specific passenger assignment algorithms
described later in this work are versions of this general algorithm. For each OD-
pair (𝑢, 𝑣) : 𝑢, 𝑣 ∈ 𝑉 , the goal is to distribute passenger demand 𝑊𝑢𝑣 to different
paths 𝑃1

𝑢𝑣, ..., 𝑃
𝑁𝑢𝑣
𝑢𝑣 in the PTN and set weights 𝛼1

𝑢𝑣, ..., 𝛼
𝑁𝑢𝑣
𝑢𝑣 ≥ 0 for each path that

describe the proportion of the complete passenger demand for that specific path.
After distributing passengers to different paths for each (𝑢, 𝑣), we then compute the
passenger loads for each edge. The algorithm is shown in detail below:

Algorithm 2 Algorithm for passenger assignment
Input: PTN = (𝑉, 𝐸),𝑊𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑉
for every 𝑢, 𝑣 ∈ 𝑉 with𝑊𝑢𝑣 > 0 do

Calculate a set of paths 𝑃1
𝑢𝑣, ..., 𝑃

𝑁𝑢𝑣
𝑢𝑣 from 𝑢 to 𝑣 in the PTN

Compute weights for the paths 𝛼1
𝑢𝑣, ..., 𝛼

𝑁𝑢𝑣
𝑢𝑣 ≥ 0 with

∑︁𝑁𝑢𝑣

𝑖=1 𝛼
𝑖 = 1

end for
for every 𝑒 ∈ 𝐸 do

Set 𝜔𝑒 :=
∑︁
𝑢,𝑣∈𝑉

∑︁
𝑖=1,...,𝑁𝑢𝑣 :𝑒∈𝑃𝑖

𝑢𝑣
𝛼𝑖𝑢𝑣𝑊𝑢𝑣

end for

The passenger assignments obtained with Algorithm 2 are valid in a sense that
all passengers are assigned to connected paths from 𝑢 to 𝑣 in the network. This
way, the passenger assignment always respects the passenger demand from the OD-
matrix. Many different approaches exist for determining the weights 𝛼𝑖𝑢𝑣 and the
set of paths in this algorithm. The most common approach for cost-oriented line
planning models is the shortest paths approach, that is 𝑁𝑢𝑣 = 1 for all OD-pairs 𝑢, 𝑣
with 𝑃1

𝑢𝑣 = 𝑃𝑢𝑣 a shortest path from 𝑢 to 𝑣 [4]. The length of a shortest path is denoted
as 𝑆𝑃𝑢𝑣 =

∑︁
𝑒∈𝑃𝑢𝑣 𝑑𝑒. In this work, we propose new approaches for calculating the

weights and paths to receive passenger weights resulting in more suitable line planning
problems of form (1)-(4). Some of the new approaches are designed to utilize different
capacities of vehicles in multimodal public transport networks.
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3.2 Passenger assignment problem
We now present three types of passenger assignment algorithms to obtain the traffic
loads for each 𝑒 ∈ 𝐸 . Each of the algorithms below follow the passenger assignment
procedure represented in Algorithm 2, while the process for calculating the set of
paths 𝑃1

𝑢𝑣, ..., 𝑃
𝑁𝑢𝑣
𝑢𝑣 and path weights 𝑎1

𝑢𝑣, ..., 𝑎
𝑁𝑢𝑣
𝑢𝑣 is different for each algorithm. All

of the algorithms are based on shortest paths but the cost-function used for routing is
different. Also, the iterative processes for obtaining the weights is slightly different for
each algorithm.

First, we formulate the shortest paths passenger routing as follows:

Algorithm 3 Passenger Assignment Algorithm: Shortest Paths
Input: PTN = (𝑉, 𝐸),𝑊𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑉
for every 𝑢, 𝑣 ∈ 𝑉 with𝑊𝑢𝑣 > 0 do

Calculate shortest path 𝑃𝑢𝑣 from 𝑢 to 𝑣 in the PTN according to edge lengths 𝑑𝑒
end for
for every 𝑒 ∈ 𝐸 do

Set 𝜔𝑒 :=
∑︁
𝑢,𝑣∈𝑉 :𝑒∈𝑃𝑢𝑣 𝑊𝑢𝑣

end for

This algorithm computes shortest paths for each OD-pair only once. Using shortest
paths in passenger assignment is especially practical from the passengers’ point of
view, since the goal is to minimize their travel time with this approach. However,
routing on shortest paths still doesn’t guarantee that passengers will actually take
those routes after solving the corresponding line planning problem. For example, the
capacity limitations of the vehicles or the upper frequency constraints in line planning
may prevent passengers from using the shortest paths when travelling. In essence,
Algorithm 3 can be considered the most passenger-friendly cost-oriented heuristic to
generate cost-oriented line planning problems [4].

The next two algorithms compute the paths for OD-pairs iteratively until weights
converge or the maximum number of iterations has been reached.

The Reduction Algorithm 4 is a cost-oriented iterative approach that aims to
concentrate passengers only on a selected number of edges in the network to reduce the
costs further, in contrast to mere shortest paths. It does this by iteratively calculating
passenger loads and lowering distance-induced costs for the edges that are already
used by other passengers after each shortest paths routing. When the passenger
loads 𝜔𝑒 converge (or the maximum number of iterations is reached) the edges with
zero passenger load are removed from the network. Then, the normal shortest paths
passenger routing is performed on the reduced network [17].

The Reward Algorithm 5 is also a cost-oriented iterative algorithm that uses
a modified cost function to calculate shortest paths in the network. Similarly to
Algorithm 4, the algorithm iteratively calculates passenger loads and lowers costs for
already used edges. The algorithm aims to reduce line operating costs by eliminating
empty seats in the vehicles. More precisely, costs are reduced more for the edges
where there is less space for passengers in terms of vehicle capacity.
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Algorithm 4 Passenger Assignment Algorithm: Reduction
Input: PTN = (𝑉, 𝐸),𝑊𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑉, Y, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟
𝑖 := 0
𝜔0
𝑒 := 0 ∀ 𝑒 ∈ 𝐸

repeat
for every 𝑢, 𝑣 ∈ 𝑉 with𝑊𝑢𝑣 > 0 do

Calculate shortest path 𝑃𝑖𝑢𝑣 from 𝑢 to 𝑣 in the PTN according to

cost𝑖 (𝑒) = 𝑑𝑒 + 𝛾 · 𝑑𝑒

max{𝜔𝑖−1
𝑒 , 1}

end for
for every 𝑒 ∈ 𝐸 do

Set 𝜔𝑖𝑒 :=
∑︁
𝑢,𝑣∈𝑉 :𝑒∈𝑃𝑖

𝑢𝑣
𝑊𝑢𝑣

end for
𝑖 = 𝑖 + 1

until
∑︁
𝑒∈𝐸 (𝜔𝑖−1

𝑒 − 𝜔𝑖𝑒)2 < Y or 𝑖 > 𝑚𝑎𝑥𝑖𝑡𝑒𝑟

for every 𝑢, 𝑣 ∈ 𝑉 with𝑊𝑢𝑣 > 0 do
Calculate shortest path 𝑃𝑢𝑣 from 𝑢 to 𝑣 in the PTN according to

cost(𝑒) =
{︄
𝑑𝑒, 𝜔

𝑖
𝑒 > 0

∞, otherwise

end for
for every 𝑒 ∈ 𝐸 do

Set 𝜔𝑒 :=
∑︁
𝑢,𝑣∈𝑉 :𝑒∈𝑃𝑢𝑣 𝑊𝑢𝑣

end for
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Algorithm 5 Passenger Assignment Algorithm: Reward
Input: PTN = (𝑉, 𝐸),𝑊𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑉, Y, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟
𝑖 := 0
𝜔0
𝑒 := 0 ∀ 𝑒 ∈ 𝐸

repeat
𝑖 = 𝑖 + 1
𝜔𝑖𝑒 := 𝜔𝑖−1

𝑒 ∀ 𝑒 ∈ 𝐸
for every 𝑢, 𝑣 ∈ 𝑉 with𝑊𝑢𝑣 > 0 do

for 𝑗 = 1, ...,𝑊𝑢𝑣 do
Calculate shortest path 𝑃𝑖𝑢𝑣 𝑗 from 𝑢 to 𝑣 in the PTN according to

cost𝑖 (𝑒) = max{𝑑𝑒 · (1 − 𝛾 · (𝜔𝑖−1
𝑒 mod Cap)/(Cap)), 0}

for every 𝑒 ∈ 𝑃𝑖−1
𝑢𝑣 𝑗

do
Set 𝜔𝑖𝑒 := 𝜔𝑖𝑒 − 1

end for
for every 𝑒 ∈ 𝑃𝑖𝑢𝑣 𝑗 do

Set 𝜔𝑖𝑒 := 𝜔𝑖𝑒 + 1
end for

end for
end for

until
∑︁
𝑒∈𝐸 (𝜔𝑖−1

𝑒 − 𝜔𝑖𝑒)2 < Y or 𝑖 > 𝑚𝑎𝑥𝑖𝑡𝑒𝑟
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Unlike with Reduction, separate shortest paths assignment is not performed, and
the resulting passenger loads 𝜔𝑒 are obtained directly after the iterative process [4].

Note that Algorithm 5 enables routing passengers within a single OD-pair to
different routes if necessary. This is the reason why shortest paths are calculated for
each passenger of each OD-pair. This approach enables passengers of same OD-pair to
be routed differently each time a single vehicle gets full. This way the chance of having
to obtain another vehicle for remaining passengers of single OD-pair will be reduced,
possibly decreasing the costs in the process. Ultimately, enabling passenger splitting
increases the number of different possible passenger assignments, thus improving the
versatility of the algorithm [4].

The following simple example shows how the passenger assignment affects the
line planning problem and the resulting optimal solution in the line planning process.

Example 1. Consider the PTN illustrated in Figure 3, with OD-matrix such that
𝑊14 = 30, 𝑊13 = 20 and all other entries zero. Our goal is to find a feasible line
concept (L, 𝑓 ) that minimizes the costs of the network. We first compute passenger
assignment 𝜔 and then solve LineP(𝜔), according to Algorithm 1. The first passenger
assignment is calculated using Shortest Paths Algorithm 3 and we obtain

𝜔𝐴 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜔𝐴(1,2) = 30
𝜔𝐴(2,4) = 30
𝜔𝐴(1,3) = 20
𝜔𝐴𝑒 = 0, otherwise

Another passenger assignment is

𝜔𝐵 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜔𝐵(1,2) = 50
𝜔𝐵(2,4) = 30
𝜔𝐵(2,3) = 20
𝜔𝐵𝑒 = 0, otherwise

We can now compare the optimal results by solving LineP(𝜔) with the obtained
passenger assignments. We assume complete line pool, that is, any possible line
can be chosen as part of the line concept. Furthermore, we assume Cap = 50 and
𝑐𝑙 =

∑︁
𝑒∈𝑙 𝑑𝑒 for each 𝑙 ∈ L0. We obtain

LineP(𝜔𝐴) = 2 + 5 + 4 = 11, with 𝑓12 = 1, 𝑓24 = 1, 𝑓13 = 1
LineP(𝜔𝐵) = 2 + 5 + 3 = 10, with 𝑓12 = 1, 𝑓24 = 1, 𝑓23 = 1

We can now see that the choice of passenger assignment affects the optimal cost of
the line planning problem, even in simple problem instances. In fact, the choice of
passenger assignment affects other objective functions as well: The total travel time of
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Figure 3: An example of a unimodal public transport network with four nodes and
four edges. The numbers on the orange nodes indicate the node index 𝑣 ∈ 𝑉 of each
node. The numbers on sides of the edges indicate the length 𝑑𝑒 of each edge

problem LineP(𝜔𝐴) is smaller than LineP(𝜔𝐵) because the passengers have to take
longer route with 𝜔𝐵 to get from node 1 to node 3. Different passenger assignments
result in different sets of objective function values so that different objective functions
are given more emphasis in the multi-objective optimization task. In this work, we
primarily focus on the cost-minimization in line planning but also consider other
objective function values in experimental results.

3.3 Integrated line planning problem
Next, we present an integrated model for line planning which can be used to determine
the optimal passenger assignment and line concept simultaneously. The objective
function, lower frequency constraints and upper frequency constraints remain the
same as in problem (1)-(4), but we introduce new decision variables that describe
the passenger routes for each OD-pair (𝑢, 𝑣) : 𝑢, 𝑣 ∈ 𝑉 . We also add a constraint to
prevent the passenger-weighted average path length from increasing by more than 𝛽
compared to the shortest path length 𝑆𝑃𝑢𝑣 for each OD-pair (𝑢, 𝑣). The reason for
the new constraint is to prevent unreasonably long routes (and hence travel times) for
passengers when using non-shortest paths for minimizing cost of the line concept. The
integrated line planning problem is formulated in (5)-(11).
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LineA : min
∑︁
𝑙∈L0

𝑐𝑙 𝑓𝑙 (5)

s.t. Cap
∑︁

𝑙∈L0:𝑒∈𝑙
𝑓𝑙 ≥

∑︁
𝑢,𝑣∈𝑉

𝑥𝑢𝑣𝑒 ∀ 𝑒 ∈ 𝐸 (6)

Cap
∑︁

𝑙∈L0:𝑒∈𝑙
𝑓𝑙 ≤ 𝑈 ∀ 𝑒 ∈ 𝐸 (7)

Θ𝑥𝑢𝑣 = 𝑏𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑉 (8)∑︁
𝑒∈𝐸

𝑑𝑒𝑥
𝑢𝑣
𝑒 ≤ 𝛽𝑆𝑃𝑢𝑣𝑊𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑉 (9)

𝑓𝑙 ∈ N ∀ 𝑙 ∈ L0 (10)
𝑥𝑢𝑣𝑒 ∈ N ∀ 𝑢, 𝑣 ∈ 𝑉, 𝑒 ∈ 𝐸 (11)

where Θ ∈ R|𝑉 |×|𝐸 | is the incidence matrix of PTN, that is

Θ(𝑣, 𝑒) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑒 = (𝑣, 𝑢) for some 𝑢 ∈ 𝑉
−1 if 𝑒 = (𝑢, 𝑣) for some 𝑢 ∈ 𝑉
0 otherwise

and 𝑏𝑢𝑣 ∈ R|𝑉 | where 𝑏𝑢𝑣𝑢 = 𝑊𝑢𝑣, 𝑏𝑢𝑣𝑣 = −𝑊𝑢𝑣 and the remaining components are
0.

The decision variables 𝑥𝑢𝑣𝑒 contain the passenger loads for each OD-pair (𝑢, 𝑣)
and for each edge 𝑒 ∈ 𝐸 . Here 𝑆𝑃𝑢𝑣 stands for the shortest path length between
OD-pair (𝑢, 𝑣). Note that the sequential model first calculates the passenger loads with
a separate algorithm, thus making the passenger assignment a heuristical approach for
load generation. The integrated model incorporates the heuristic into the parameter 𝛽
that allows to reduce the costs at the expense of passenger-oriented objectives such as
the average travel time. Note that smaller values of 𝛽 makes the integrated problem
more passenger-friendly, indicating better values for passenger travel times but with
higher costs. In turn, increasing 𝛽 puts more emphasis on cost minimization in the
integrated model at the cost of passenger-friendly objectives [4].

Similarly to the basic cost model in the sequential approach, the integrated line
planning problem (5)-(11) is also an NP-hard problem. In fact, the model is even
harder to solve than sequential model but will often generate better solutions in terms of
the different objectives as shown by. Indeed, the motivation behind different solutions
methods is the difference in tractability of the model and quality of the solution output
[1].
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4 Cost-oriented multimodal line planning
In this chapter we extend the unimodal line planning models described in the previous
section to accept multimodal public transport network data. The multimodal public
transport data usually consists of separate unimodal PTN𝑚 for each modality 𝑚 ∈ 𝑀
and global OD-matrix 𝑊 for the whole network. We first define the multimodal
counterparts of the public transport data.

Denote 𝑆 as the set of stops in any unimodal PTN𝑚 of any modality 𝑚 ∈ 𝑀 . Then
we can express PTN𝑚 = (𝑆𝑚, 𝐸𝑚) where 𝑆𝑚 ⊆ 𝑆 and 𝐸𝑚 ⊆ {(𝑠, 𝑠′) : 𝑠, 𝑠′ ∈ 𝑆𝑚}.
Further, denote 𝑇 ⊆ 𝑆 as the set of modality transfer stops in the network. We now
combine the nodes from separate unimodal PTNs into a single graph and append this
set of nodes with a set of transfer nodes and OD-nodes as follows:

𝑉𝑛𝑜𝑑𝑒 :=
⋃︂
𝑚∈𝑀

{(𝑠, 𝑚) : 𝑠 ∈ 𝑆𝑚}

𝑉𝑡𝑟𝑎𝑛𝑠 := {(𝑠, 𝑡𝑟𝑎𝑛𝑠) : 𝑠 ∈ 𝑇}
𝑉𝑂𝐷 := {(𝑠, 𝑂𝐷) : 𝑠 ∈ 𝑆}

We also extend the set of edges in the resulting multimodal PTN to include the
possibility to transfer between modes via the transfer nodes and to include edges
from each OD-node to their corresponding stops. The new set of edges contains the
following:

𝐸𝑛𝑜𝑑𝑒 := {((𝑠, 𝑚), (𝑠′, 𝑚)) : (𝑠, 𝑠′) ∈ 𝐸𝑚, 𝑚 ∈ 𝑀}
𝐸𝑡𝑟𝑎𝑛𝑠 := {((𝑠, 𝑚), (𝑠, 𝑡𝑟𝑎𝑛𝑠)) and ((𝑠, 𝑡𝑟𝑎𝑛𝑠), (𝑠, 𝑚′)) and

((𝑠, 𝑚′), (𝑠, 𝑡𝑟𝑎𝑛𝑠)) and ((𝑠, 𝑡𝑟𝑎𝑛𝑠), (𝑠, 𝑚)) : 𝑠 ∈ 𝑇, 𝑚, 𝑚′ ∈ 𝑀}
𝐸𝑂𝐷 := {((𝑠, 𝑂𝐷), (𝑠, 𝑚)) and ((𝑠, 𝑚), (𝑠, 𝑂𝐷)) : 𝑠 ∈ 𝑆𝑚, 𝑚 ∈ 𝑀}

Note that the original edges and nodes of each PTN𝑚 are indeed preserved during
the creation of the multimodal PTN such that the original edges are all in the set 𝐸𝑛𝑜𝑑𝑒
and original nodes are all in the set 𝑉𝑛𝑜𝑑𝑒.

The transfer nodes 𝑉𝑡𝑟𝑎𝑛𝑠 and transfer edges 𝐸𝑡𝑟𝑎𝑛𝑠 allow passengers to transfer
from one modality to another at stops 𝑇 ⊆ 𝑆 at the cost of mode transfer penalty 𝑑𝑚
per transfer. Moreover, the OD-nodes 𝑉𝑂𝐷 and OD-edges 𝐸𝑂𝐷 are used in the routing
phase with OD-pair 𝑢, 𝑣 ∈ 𝑆 such that the start point of the route is (𝑢, 𝑂𝐷) ∈ 𝑉𝑂𝐷
and the end point is (𝑣, 𝑂𝐷) ∈ 𝑉𝑂𝐷 . The OD-edges connect the OD-nodes to the
remaining graph and always have the effective length and penalty of zero when routing.

With the above definitions for different nodes and edges in the multimodal PTN,
the complete formal definition can be written as

PTN = {(𝑉, 𝐸) : 𝑉 := 𝑉𝑛𝑜𝑑𝑒 ∪𝑉𝑡𝑟𝑎𝑛𝑠 ∪𝑉𝑂𝐷 , 𝐸 := 𝐸𝑛𝑜𝑑𝑒 ∪ 𝐸𝑡𝑟𝑎𝑛𝑠 ∪ 𝐸𝑂𝐷} (12)
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4.1 Multimodal sequential line planning problem
We now modify Algorithm 1 to the corresponding multimodal version. This approach
uses multimodal PTN = (𝑉, 𝐸) created from separate unimodal PTNs as described
in (12) with a global OD-matrix𝑊 and line pools L0

𝑚 for each 𝑚 ∈ 𝑀 . Utilizing the
previously defined set of stops 𝑆, the multimodal approach is described in Algorithm
6.

Algorithm 6 Sequential model for multimodal cost-oriented line planning
1: Calculate traffic loads 𝜔𝑒 in the multimodal PTN for every edge 𝑒 ∈ 𝐸𝑛𝑜𝑑𝑒 using

a passenger assignment Algorithm 2 given OD-pairs 𝑢, 𝑣 ∈ 𝑆
2: Calculate traffic loads 𝜔(𝑠1,𝑠2) for every stop-pair (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆 with formula
𝜔(𝑠1,𝑠2) =

∑︁
𝑒∈𝐸𝑛𝑜𝑑𝑒:𝑒=((𝑠1,·),(𝑠2,·)) 𝜔𝑒

3: Solve the resulting line planning problem LinePM(𝜔)

This approach shares the same core idea as Algorithm 1. The multimodal cost
model for line planning can be formulated as

LinePM(𝜔) : min
∑︁
𝑚∈𝑀

∑︁
𝑙∈L0

𝑚

𝑐𝑚𝑙 𝑓𝑚𝑙 (13)

s.t.
∑︁

𝑙∈𝐿 (𝑠1 ,𝑠2 )
𝑚

Cap𝑚 𝑓𝑚𝑙 ≤ Cap𝑚𝑈𝑚, ∀𝑚 ∈ 𝑀, (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆 (14)∑︁
𝑚∈𝑀

∑︁
𝑙∈𝐿 (𝑠1 ,𝑠2 )

𝑚

Cap𝑚 𝑓𝑚𝑙 ≥ 𝜔(𝑠1,𝑠2) , ∀ (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆 (15)

𝑓𝑚𝑙 ∈ N, ∀𝑚 ∈ 𝑀, 𝑙 ∈ L0
𝑚 (16)

Here 𝑓𝑚𝑙 are the decision variables, that is, the frequencies for lines in their
mode-specific line pool 𝑙 ∈ L0

𝑚, 𝑐𝑚𝑙 are the costs of the corresponding lines and Cap𝑚
denotes the capacity for different modes 𝑚 ∈ 𝑀 . 𝑈𝑚 denotes the upper frequency for
the mode 𝑚 ∈ 𝑀 . 𝜔(𝑠1,𝑠2) denotes the load between a stop-pair (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆. Note
that the loads are not mode specific in this case. Furthermore, we denote 𝐿 (𝑠1,𝑠2)

𝑚 as a
set of lines of modality 𝑚 that contain a stop-pair (𝑠1, 𝑠2) in their line path.

In (13)-(16) the objective function now takes into account the costs of all lines
for each modality. With the lower frequency constraint, we are not interested in the
modality distribution of lines when fulfilling the lower frequency constraint, so we
can simply sum over all modalities’ contribution in the constraints. This is precisely
the reason why in the load generation process we sum over all modality specific traffic
loads for each stop-pair to arrive at global traffic loads 𝜔(𝑠1,𝑠2) to be used in the lower
frequency constraint.

The upper frequency constraint limits the traffic load for separate modalities
between stop-pairs (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆. This is reasonable since, for example, the tram
tracks can only be used by trams and metro tracks can only be used by metros,
meaning that different modalities have different upper limits on their respective traffic
frequencies.
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4.2 OD-matrix splitting
We now present another closely related approach for multimodal cost-oriented line
planning. This approach presents an alternative idea for line planning with multiple
modalities by splitting the global OD-matrix𝑊 to modality specific OD-matrices𝑊𝑚

for each𝑚 ∈ 𝑀 . This approach is particularly useful since solving a series of unimodal
line planning problems can be computationally much more easier to solve than a single
potentially large multimodal problem. Especially in large real-life transport networks,
the limits of computation power may raise a notable concern. The cost-oriented
approach with OD-matrix splitting is summarized in Algorithm 7.

Algorithm 7 Sequential cost-oriented line planning with OD-matrix splitting
1: Compute a viable set of OD-matrices𝑊𝑚 for each 𝑚 ∈ 𝑀 using an OD-matrix

splitting algorithm with global OD-matrix𝑊 .
2: For each 𝑚 ∈ 𝑀, solve the unimodal sequential cost-oriented line planning

problem with PTN𝑚 and𝑊𝑚 using some passenger assignment algorithm for all
modalities and receive 𝑓𝑚 and 𝑐𝑚 for each 𝑚 ∈ 𝑀

3: Obtain the frequencies of the multimodal line concept 𝑓 ∗ = ( 𝑓𝑚)𝑚∈𝑀 and the
compound multimodal cost 𝑐∗ =

∑︁
𝑚∈𝑀 𝑐𝑚

The idea of the approach is greatly similar to the multimodal sequential model
with one key difference. Namely, the OD-matrix splitting approach has two separate
heuristics involved, whereas Algorithm 6 only has one. The added heuristic is precisely
the OD-matrix splitting algorithm in step 1 of Algorithm 7.

To preserve the original passenger demand of the problem, the set of OD-matrices
𝑊𝑚 has to be viable. The viability condition ensures that for each OD-pair (𝑢, 𝑣), the
incoming flow of passengers to the destination and the outgoing flow from the origin
matches the actual passenger demand in the OD-matrix𝑊 . Moreover, the viability
condition ensures that no passengers appear or disappear when routing between
the OD-pair (𝑢, 𝑣). We now present the formal definition of viability for the set of
OD-matrices𝑊𝑚.
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Definition 4. Let𝑊 ∈ N|𝑆 |×|𝑆 |. Set of unimodal matrices {𝑊𝑚, 𝑚 ∈ 𝑀} is viable if
the following conditions hold:

• For all 𝑢, 𝑣 ∈ 𝑆 with𝑊𝑚
𝑢𝑣 > 0, 𝑢 and 𝑣 are connected in PTN𝑚

• For each 𝑢, 𝑣 ∈ 𝑆, 𝑚 ∈ 𝑀 , there exists a set of weights 𝑐𝑢,𝑣,𝑚𝑠,𝑡 , 𝑠, 𝑡 ∈ 𝑆 with

∑︁
𝑠,𝑡∈𝑆

𝑐
𝑢,𝑣,𝑚
𝑠,𝑡 = 𝑊𝑚

𝑢𝑣

• For each 𝑠, 𝑡 ∈ 𝑆, and for all 𝑣 ∈ 𝑉 \ {𝑠, 𝑡} :

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑢,𝑣,𝑚
𝑠,𝑡 −

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑣,𝑢,𝑚
𝑠,𝑡 = 0

• For each 𝑠, 𝑡 ∈ 𝑆,

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑠,𝑢,𝑚
𝑠,𝑡 −

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑢,𝑠,𝑚
𝑠,𝑡 = 𝑊𝑠,𝑡

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑢,𝑡,𝑚
𝑠,𝑡 −

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑡,𝑢,𝑚
𝑠,𝑡 = 𝑊𝑠,𝑡

The following example shows two OD-matrix splits for a single multimodal line
planning problem, one that is viable and one that is not.

Example 2. Consider a multimodal line planning problem with the PTN illustrated in
Figure 4 with OD-matrix

𝑊 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0
0 0 50 0
0 50 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
An example of viable OD-matrix split is then a set of OD-matrices

𝑊𝑔𝑟𝑒𝑒𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 15 0
0 0 0 0

20 0 0 30
0 0 35 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,𝑊
𝑟𝑒𝑑 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 20 0 0

15 0 0 35
0 0 0 0
0 30 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
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By looking at Figure 4, we can see that for both modalities the OD-pairs with
non-zero entries in the respective OD-matrices are indeed connected in their modality-
specific network. Next, we can set the following weights

𝑐
2,1,𝑟𝑒𝑑
2,3 = 𝑊𝑟𝑒𝑑

21

𝑐
1,3,𝑔𝑟𝑒𝑒𝑛
2,3 = 𝑊

𝑔𝑟𝑒𝑒𝑛

13

𝑐
2,4,𝑟𝑒𝑑
2,3 = 𝑊𝑟𝑒𝑑

24

𝑐
4,3,𝑟𝑒𝑑
2,3 = 𝑊

𝑔𝑟𝑒𝑒𝑛

43

𝑐
3,1,𝑔𝑟𝑒𝑒𝑛
3,2 = 𝑊

𝑔𝑟𝑒𝑒𝑛

31

𝑐
1,2,𝑟𝑒𝑑
3,2 = 𝑊𝑟𝑒𝑑

12

𝑐
3,4,𝑔𝑟𝑒𝑒𝑛
3,2 = 𝑊

𝑔𝑟𝑒𝑒𝑛

34

𝑐
4,2,𝑟𝑒𝑑
3,2 = 𝑊𝑟𝑒𝑑

42

and set all other weights zero.
The third constraint makes sure that incoming passengers flows to specific node

are the same as outgoing passenger flows from that specific node. In our case, the
third constraint is indeed satisfied, for example, 𝑐2,1,𝑟𝑒𝑑

2,3 = 𝑊𝑟𝑒𝑑
21 = 𝑐

1,3,𝑔𝑟𝑒𝑒𝑛
2,3 = 𝑊

𝑔𝑟𝑒𝑒𝑛

13 .
The fourth constraint ensures that for global OD-pair 𝑠, 𝑡 ∈ 𝑆, the accumulated

outgoing passenger flow from 𝑢 matches the demand of the global OD-matrix𝑊𝑢𝑣,
whereas the fifth constraint ensures that accumulated incoming passenger flow to
𝑣 matches the demand 𝑊𝑢𝑣. In our case both constraints are indeed satisfied. For
example, 𝑐3,1,𝑔𝑟𝑒𝑒𝑛

3,2 + 𝑐3,4,𝑔𝑟𝑒𝑒𝑛
3,2 = 𝑐

4,2,𝑟𝑒𝑑
3,2 + 𝑐1,2,𝑟𝑒𝑑

3,2 = 𝑊23.
Based on the previous observations, this set of matrices satisfy the viability

conditions of Definition 4.
However, the set of OD-matrices in the following is not viable

𝑊𝑔𝑟𝑒𝑒𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 30
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,𝑊
𝑟𝑒𝑑 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 20
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
To see this, let’s investigate the weights corresponding to pairs 𝑢, 𝑣 ∈ 𝑆 with zeros

in the modality-specific OD-matrix. According to the second constraint, we have

∑︁
𝑠,𝑡∈𝑆

𝑐
𝑢,𝑣,𝑔𝑟𝑒𝑒𝑛
𝑠,𝑡 = 𝑊

𝑔𝑟𝑒𝑒𝑛
𝑢,𝑣 = 0

=⇒ 𝑐
𝑢,𝑣,𝑔𝑟𝑒𝑒𝑛
𝑠,𝑡 = 0 ∀ (𝑢, 𝑣) ∉ (3, 4)

and
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1

3 4

t 1

t 4

2

Figure 4: Example of multimodal network with separate modalities marked with
colors green and red. The numbers on the nodes refer to stop indices 𝑠 ∈ 𝑆 of the
nodes. The nodes with yellow color are transfer nodes

∑︁
𝑠,𝑡∈𝑆

𝑐
𝑢,𝑣,𝑟𝑒𝑑
𝑠,𝑡 = 𝑊

𝑔𝑟𝑒𝑒𝑛
𝑢,𝑣 = 0

=⇒ 𝑐
𝑢,𝑣,𝑟𝑒𝑑
𝑠,𝑡 = 0 ∀ (𝑢, 𝑣) ∉ (1, 4)

since by definition all demand and weights have to be positive.
For the stop-pair (2, 3) ∈ 𝑆, the fourth constraint can be given as

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
2,𝑢,𝑚
2,3 −

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑢,2,𝑚
2,3 = 𝑊2,3∑︁

𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
2,𝑢,𝑚
2,3 −

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑢,2,𝑚
2,3 = 50

=⇒ 0 ≠ 50

which leads to a contradiction. Given the above set of OD-matrices we must
attain zero values to some of the weights to satisfy the second constraint. This
inevitably leads to situation where the fourth constraint does not hold for some 𝑠, 𝑡 ∈ 𝑆.
Therefore, the above set of OD-matrices is not viable w.r.t. Definition 4. Recall that
we can only use sets of viable OD-matrices as part of the Algorithm 7 for solving
multimodal line planning problems. Otherwise, the resulting subproblems do not have
the corresponding passenger demand of the original multimodal problem.

From a theoretical perspective, the connection between the OD-matrix splitting
and the multimodal cost-oriented line planning is important. It can be shown that for
each feasible line concept in (13)-(16) there exists a viable OD-matrix split that will
give the same optimal cost when used with Algorithm 7 with some suitable passenger
assignment algorithms. However, obtaining the correct OD-matrix split can sometimes
be as difficult as solving the sequential model for multimodal line planning.

On the other hand, obtaining merely a viable set of OD-matrices is much more
straightforward. In fact, we can formulate a general algorithm that generates viable sets
of OD-matrices for any multimodal PTN and the corresponding OD-matrix. Similarly
to the path-based approach for passenger assignment, the general algorithm can be
formulated as Algorithm 8.
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Algorithm 8 Algorithm for generating viable sets of OD-matrices
Input: Multimodal PTN = (𝑉, 𝐸),𝑊𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑆
𝑊𝑚 = 0 ∀ 𝑚 ∈ 𝑀
for every 𝑢, 𝑣 ∈ 𝑆 with𝑊𝑢𝑣 > 0 do

Calculate a set of paths 𝑃1
𝑢𝑣, ..., 𝑃

𝑁𝑢𝑣
𝑢𝑣 from 𝑢 to 𝑣 in the PTN

Compute weights for the paths 𝛼1
𝑢𝑣, ..., 𝛼

𝑁𝑢𝑣
𝑢𝑣 ≥ 0 with

∑︁𝑁𝑢𝑣

𝑖=1 𝛼
𝑖 = 1

end for
for every 𝑢, 𝑣 ∈ 𝑆 do

for every 𝑃𝑖𝑢𝑣 ∈ 𝑃1
𝑢𝑣, ..., 𝑃

𝑁𝑢𝑣
𝑢𝑣 do

Set 𝑠0 = 𝑢

for every transfer node (𝑠 𝑗 , 𝑡𝑟𝑎𝑛𝑠) in 𝑃𝑖𝑢𝑣 do
Update𝑊𝑚

𝑠0𝑠 𝑗
:= 𝑊𝑚

𝑠0𝑠 𝑗
+ 𝛼𝑖𝑢𝑣𝑊𝑢𝑣

Set 𝑠0 = 𝑠 𝑗

end for
Update𝑊𝑚

𝑠0𝑣
:= 𝑊𝑚

𝑠0𝑣
+ 𝛼𝑖𝑢𝑣𝑊𝑢𝑣

end for
end for
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Algorithm 8 generates paths between all points in the multimodal PTN using some
routing algorithm and then distributes the demand to modality-specific OD-pairs that
are the start and end points of the corresponding longest modality-specific subpath.
As with the general passenger assignment algorithm, the paths can be calculated by
any routing algorithm such as the shortest paths algorithm. In the theoretical analysis
section of this work, we introduce versions of the above algorithm for obtaining viable
sets of OD-matrices for simplified PTNs that result in the same optimal solution
obtained from (13)-(16).

4.3 Multimodal passenger assignment problem
4.3.1 Multimodal passenger assignment algorithms

In the multimodal case, the passenger assignment process as described in Algorithm 2
is similar to the unimodal case with only few exceptions. First, we use the multimodal
PTN = (𝑉, 𝐸) when routing passengers to enable modality transfers in routing. This
means that the entries in the OD-matrix now correspond to set of stops 𝑆 instead of all
the nodes in the network as in the unimodal case. In pratice, we choose the origin
node as (𝑢, 𝑂𝐷) ∈ 𝑉𝑂𝐷 and destination node as (𝑣, 𝑂𝐷) ∈ 𝑉𝑂𝐷 when calculating
𝑃𝑢𝑣 for each OD-pair 𝑢, 𝑣 ∈ 𝑆.

Second, we adjust the definition of cost functions in all of the algorithms such that

cost(�̃�) =
{︄

cost𝑖 (𝑒) if �̃� = 𝑒 ∈ 𝐸𝑛𝑜𝑑𝑒
𝑑𝑡 if �̃� ∈ 𝐸𝑡𝑟𝑎𝑛𝑠, 𝐸𝑂𝐷

where 𝑑𝑡 is the transfer penalty. Although adjusting transfer penalties for each
station could technically be possible, we usually don’t consider this amount of detail.
The constant value for transfer penalties suffices here for simplicity. With the above
changes in mind, every passenger assignment algorithm presented in Section 3.2 can
be transformed directly to the multimodal case.

However, in the multimodal case with different capacities Cap𝑚 and transfer
possibilities for each𝑚 ∈ 𝑀 , we can employ new heuristics to the passenger assignment
algorithms to arrive at more suitable passenger assignments and traffic loads 𝜔𝑒. More
precisely, we employ new cost-functions to be used for both reduction and reward
approaches to arrive at more suitable passenger assignments. We first declare the cost
functions that can be used for both reward and reduction alike.
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SELECTIVE ASSORTATIVITY

cost𝑖 (𝑒) = 𝑑𝑒 + 𝛾 · 𝑑𝑒

max{𝜔𝑖−1
𝑒 , 1}

+ 𝛼 · 𝑑𝑒

max{∑︁𝑒′∈𝐸𝑝𝑟𝑒𝑑 (𝑒) 𝛽 +
∑︁
𝑒′∈𝐸𝑠𝑢𝑐𝑐 (𝑒) 𝛽, 1}

(17)

WEIGHTED ASSORTATIVITY

cost𝑖 (𝑒) = 𝑑𝑒 + 𝛾 · 𝑑𝑒

max{𝜔𝑖−1
𝑒 , 1}

+ 𝛼 · 𝑑𝑒

max{∑︁𝑒′∈𝐸𝑝𝑟𝑒𝑑 (𝑒) 𝜔
𝑖−1
𝑒 +∑︁

𝑒′∈𝐸𝑠𝑢𝑐𝑐 (𝑒) 𝜔
𝑖−1
𝑒 , 1}

(18)

SELECTIVE DIRECT PASSENGERS

cost𝑖 (𝑒) = 𝑑𝑒 + 𝛾 · 𝑑𝑒

max{𝜔𝑖−1
𝑒 , 1}

+ 𝛼 · 𝑑𝑒

max{∑︁𝑒′∈𝐸𝑝𝑟𝑒𝑑 (𝑒)\𝐸𝑡𝑟𝑎𝑛𝑠
𝛽 +∑︁

𝑒′∈𝐸𝑠𝑢𝑐𝑐 (𝑒)\𝐸𝑡𝑟𝑎𝑛𝑠
𝛽, 1} (19)

WEIGHTED DIRECT PASSENGERS

cost𝑖 (𝑒) = 𝑑𝑒 + 𝛾 · 𝑑𝑒

max{𝜔𝑖−1
𝑒 , 1}

+ 𝛼 · 𝑑𝑒

max{∑︁𝑒′∈𝐸𝑝𝑟𝑒𝑑 (𝑒)\𝐸𝑡𝑟𝑎𝑛𝑠
𝜔𝑖−1
𝑒 +∑︁

𝑒′∈𝐸𝑠𝑢𝑐𝑐 (𝑒)\𝐸𝑡𝑟𝑎𝑛𝑠
𝜔𝑖−1
𝑒 , 1}

(20)

Here 𝐸𝑝𝑟𝑒𝑑 (𝑒) is the set of edges incoming to the start node of 𝑒 and 𝐸𝑠𝑢𝑐𝑐 (𝑒) is
the set of edges outgoing from the end node of of 𝑒 and 𝐸𝑡𝑟𝑎𝑛𝑠 is the set of transfer
edges in the multimodal PTN. The parameter 𝛽 should be chosen to represent the
usual scale of weights appearing in the weighted approach. A particularly simple
approach is to set 𝛽 as the average of passengers entries in the OD-matrix.

All cost functions (17)-(20) share the same first two terms appearing in the cost
function of Algorithm 4. Indeed, the core idea is to concentrate passenger loads to
already used edges to reduce costs in the line concept. The magnitude of this effect is
controlled by parameter 𝛾.

In the Selective and Weighted Assortativity approaches, we focus on those edges
with high assortativity index, i.e., number of edges incident to the start and end nodes
of the edges. In the Selective and Weighted Direct Passengers approaches, we give
separate bonuses for edges that have high assortativity in terms of the edges that share
the same modality. The magnitude of both effects is controlled by parameter 𝛼. We
argue that preferring routes with edges of high assortativity leads to lower overall cost
of the line plan due to increased flexibility in transfers. In particular, the passengers
enjoying significant benefit for transfers can be routed to transport hubs and other
locations where more possibilities for transfers occur. In turn, this means that the
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actual line concept creation has more possibilities to choose the set of lines that would
allow cost reductions for only small decrease in passenger friendliness.

Last, we present a cost function that aims to benefit from different capacities of
different modalities to reduce line plan costs. The following cost-function can be
interpreted as the multimodal version of the Algorithm 5. The idea is to reduce the
number of empty seats in all of the operating vehicles by pre-calculating suitable
passenger amounts that eliminate the empty seats for a specific set of capacities. More
formally, the cost functions is defined as

MULTIMODAL REWARD

cost𝑖 (𝑒) = max{𝑑𝑒 · (1 − 𝛾 · ℎ(𝜔𝑖−1
𝑒 ), 0} (21)

where

ℎ(𝜔𝑒) =
{︄

0 if 𝜔𝑒 ∈ 𝐾
𝜔𝑒

min{𝑘∈𝐾:𝑘>𝜔𝑒}−max{𝑘∈𝐾:𝑘<𝜔𝑒} otherwise

with 𝐾 = {𝐶𝑎𝑝𝑇𝑥 : 𝑥 ∈ N|𝑀 |} and𝐶𝑎𝑝 is the vector of capacities for each𝑚 ∈ 𝑀 .
The set 𝐾 contains all passenger amounts that result in zero empty seats within an edge
if line frequencies are chosen accordingly. In practice, 𝐾 doesn’t contain all possible
passenger amounts since the infinite sequence is impossible to calculate explicitly.
Instead, we use bound 𝐶𝑎𝑝𝑇𝑥 ≤ ∑︁

𝑢,𝑣∈𝑆𝑊𝑢𝑣, that is, the largest computed passenger
amount can be at most the sum of all passenger demand in the OD-matrix. If all
demand is traversed through a single edge in the PTN, this is the theoretical maximum
load.

Similarly to the unimodal reward, this approach doesn’t guarantee that in the
resulting line planning optimization problem, the seats are filled to eliminate empty
seats. However, we argue that (21) is still a good heuristic to eliminate empty seats in
multimodal scenario. Particularly in situations where modality specific edges promote
more passenger load for filling seats, the multimodal reward takes into account other
modalities that can be used to fit the complete stop-pair demand.

4.3.2 Passenger assignment with Change&Go-network

It should be noted that all of the passenger assignment methods described above
distribute passengers on the paths 𝑃𝑢𝑣 on the multimodal PTN without any information
on the resulting line concept. Should the information about the line concept be
available, the passengers could be assigned more efficiently on the edges of the
PTN. However, with the traditional line planning framework, we need full passenger
assignment information in order to build the line concept.

To overcome this phenomenon, several approaches have been implemented to
include information about the potential line concept already in the passenger assignment
step. The information about possible line configurations allows to consider transfer
options between lines already in the passenger assignment phase, possibly resulting in
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better solutions in the line planning phase as shown by [5]. We now present the central
concept of these approaches, namely a Change&Go-network, that will be used in the
following section when formulating the multimodal iterative line planning method.

A multimodal Change&Go-network is a directed graph where nodes of the graph
represent either the station-line pairs for each modality or the global start locations
and end locations of the passengers. Formally, we have

V𝐶𝐺 := {(𝑠, 𝑙, 𝑚) ∈ 𝑆 × L0
𝑚 × 𝑀 : 𝑙 ∈ L0

𝑚 (𝑠), 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑉𝑚}
V𝑂𝐷 := {(𝑠, 0) : 𝑠 ∈ 𝑆}

where V𝐶𝐺 are the stop-line-modality triples and V𝑂𝐷 are the origin-destination
nodes.

Further, we define different types of edges in the Change&Go-network to allow
transfers between lines of the same modality, transfers between lines of different
modalities, regular line edges and origin-destination edges as follows:

E𝐿𝑖𝑛𝑒𝐶ℎ𝑎𝑛𝑔𝑒 := {((𝑠, 𝑙1, 𝑚), (𝑠, 𝑙2, 𝑚)) ∈ V𝐶𝐺 ×V𝐶𝐺 :
𝑚 ∈ 𝑀, 𝑠 ∈ 𝑉𝑚, 𝑙1, 𝑙2 ∈ L0

𝑚 (𝑠)}
E𝑀𝑜𝑑𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒 := {((𝑠, 𝑙1, 𝑚1), (𝑠, 𝑙2, 𝑚2)) ∈ V𝐶𝐺 ×V𝐶𝐺 :

𝑚1, 𝑚2 ∈ 𝑀, 𝑠 ∈ 𝑉𝑚, 𝑙1 ∈ L0
𝑚1 (𝑠), 𝑙2 ∈ L0

𝑚2 (𝑠)}
E𝑙𝑚 := {((𝑠, 𝑙, 𝑚), (𝑠′, 𝑙, 𝑚)) ∈ V𝐶𝐺 ×V𝐶𝐺 : (𝑠, 𝑠′) ∈ 𝐸 (𝑙) × 𝐸 (𝑙)}
E𝑔𝑜 := {

⋃︂
𝑚∈𝑀

⋃︂
𝑙∈L0

𝑚

E𝑙𝑚}

E𝑂𝐷 := {((𝑠, 0), (𝑠, 𝑙, 𝑚)) ∈ V𝑂𝐷 ×V𝐶𝐺 , ((𝑡, 𝑙, 𝑚), (𝑡, 0)) ∈ V𝐶𝐺 ×V𝑂𝐷 :
𝑠, 𝑡 ∈ 𝑆, 𝑚 ∈ 𝑀, 𝑙 ∈ L0

𝑚 (𝑠), 𝑙 ∈ L0
𝑚 (𝑡)}

Here 𝐸 (𝑙) is a set of edges in line 𝑙.
With these definitions, the multimodal Change&Go-network is formally defined

as:

𝐺𝐶𝐺 = {(V, E) : V := V𝐶𝐺 ∪V𝑂𝐷 , E := E𝐿𝑖𝑛𝑒𝐶ℎ𝑎𝑛𝑔𝑒 ∪ E𝑀𝑜𝑑𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒 ∪ E𝑔𝑜 ∪ E𝑂𝐷}
(22)

The intuition of extending the network is similar to that of extending a unimodal
PTN to a multimodal PTN with a few key differences. First, different types of transfer
edges E𝐿𝑖𝑛𝑒𝐶ℎ𝑎𝑛𝑔𝑒 and E𝑀𝑜𝑑𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒 can have different constant transfer penalties.
Second, instead of distributing passengers to network edges as in the case of multimodal
PTN, we now distribute passengers to the lines of the network. Moreover, we now
use only different types of transfer edges and omit the transfer nodes presented in the
multimodal PTN formulation to align with the original formulation of [5].

With a Change&Go-network𝐺𝐶𝐺 = (V, E) constructed, the passenger assignment
process for all previous algorithms with different cost functions can be performed with
few modifications listed below:
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1. Declare Input : 𝐺𝐶𝐺 = (V, E),𝑊𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑆

2. Declare

cost(�̃�) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cost𝑖 (𝑒) if �̃� = 𝑒 ∈ E𝑔𝑜
𝑑𝑡 if �̃� ∈ E𝐿𝑖𝑛𝑒𝐶ℎ𝑎𝑛𝑔𝑒
𝑑𝑚 if �̃� ∈ E𝑀𝑜𝑑𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒
max{𝑑𝑚, 𝑑𝑡} if �̃� ∈ E𝑂𝐷

where 𝑑𝑡 is the penalty for transfer between same modality lines and 𝑑𝑚 is is the
penalty for transfer between different modality lines. In practice, it may be reasonable
to assume that 𝑑𝑡 ≤ 𝑑𝑚 for any transfer option in the graph. Here max{𝑑𝑚, 𝑑𝑡} is a
sufficiently high penalty that prevents infeasible transfers via OD-edges.

As we can see from the definition of nodes V𝐶𝐺 , the lines used to construct the
Change&Go-network (22) are indeed all the lines in each modality specific line pool
L0
𝑚 for each 𝑚 ∈ 𝑀 . If the line pool is reasonably good, we can already arrive at better

cost in the line planning problem when using the Change&Go-network for passenger
assignment [4]. However, the line pool only gives information about lines that are
possible to create and not about the lines that actually will be created [5]. In the
following section, we describe the iterative line planning model that solves multiple
line planning problems iteratively and uses the line concepts from the previous optimal
solution to create the Change&Go-network to be used for next passenger assignment
iteration.

4.4 Multimodal iterative line planning problem
Using the multimodal version of the sequential line planning problem along with the
multimodal passenger assignment problem, we now formulate the iterative approach for
solving the optimal line plan for multimodal PTN = (𝑉, 𝐸) with associated OD-matrix
𝑊 . In Section 6, we investigate whether solving the line planning optimization problem
multiple times iteratively results in better cost or even better cost-travel ratio for a
multimodal PTN. The idea is to fix a set of lines obtained from solving (13)-(16) and
modify the optimization problem to relax the problem constraints using these fixed
lines. We also reroute passengers after each iteration using the resulting line concept
from the previous iteration. In more detail, the framework of the iterative approach is
summarized in Algorithm 9.
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Algorithm 9 Iterative model for multimodal cost-oriented line planning
1: Solve the line planning problem LinePM(𝜔) with weights 𝜔(𝑠1,𝑠2) obtained from

the passenger assignment.
2: Define a set of fixed lines as 𝐿∗𝑚 for each modality 𝑚 ∈ 𝑀
3: Perform passenger assignment using the C&G-graph induced by the previous

solution of LinePM(𝜔) or LinePMI(𝜔) and obtain new weights 𝜔𝑖(𝑠1,𝑠2)
4: Solve the resulting line planning problem LinePMI(𝜔𝑖)
5: Repeat steps 2,3,4 until all of the lines are fixed and obtain 𝑓𝑚𝑙 for each 𝑚 ∈ 𝑀

and 𝑙 ∈ L0
𝑚

The line planning problem described in Step 4 of Algorithm 9 is similar to
LinePM(𝜔) but the effect of the fixed line decision variables on the constraints for
each edge is accounted. Formally, the modified problem is the following:

LinePMI(𝜔𝑖) : min
∑︁
𝑚∈𝑀

∑︁
𝑙∈L0

𝑚

𝑐𝑚𝑙 𝑓𝑚𝑙 (23)

s.t.
∑︁

𝑙∈𝐿 (𝑠1 ,𝑠2 )
𝑚

Cap𝑚 𝑓𝑚𝑙 ≤ Cap𝑚𝑈𝑚 −
∑︁

𝑙∗∈𝐿 (𝑠1 ,𝑠2 )
𝑚 ∩𝐿∗𝑚

Cap𝑚 𝑓𝑚𝑙∗ , ∀ 𝑚 ∈ 𝑀, (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆

(24)∑︁
𝑚∈𝑀

∑︁
𝑙∈𝐿 (𝑠1 ,𝑠2 )

𝑚

Cap𝑚 𝑓𝑚𝑙 ≥ 𝜔𝑖(𝑠1,𝑠2) −
∑︁
𝑚∈𝑀

∑︁
𝑙∗∈𝐿 (𝑠1 ,𝑠2 )

𝑚 ∩𝐿∗𝑚

Cap𝑚 𝑓𝑚𝑙∗ , ∀ (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆

(25)
𝑓𝑚𝑙 ∈ N, ∀𝑚 ∈ 𝑀, 𝑙 ∈ L0

𝑚 (26)

Here, everything else remains the same as in LinePM(𝜔) but the lines are now
considered in two groups, namely fixed lines 𝑙∗𝑚 ∈ 𝐿∗𝑚 and free lines 𝑙𝑚 ∈ L0

𝑚 \ 𝐿∗𝑚. In
essence, the decision variables of the new problem (23)-(26) are all the lines in the
pool but the fixed lines 𝑙∗𝑚 ∈ 𝐿∗𝑚 (and their frequencies) affect the right-hand sides
of the constraints. As in the basic problem, L0

𝑚 denotes the given set of lines in a
modality specific line pool.

The passenger assignment in Step 3 of Algorithm 9 follows the procedure described
in Section 4.3.2. We simply build the corresponding Change&Go-network from the
solution of the previous iteration. Note that the choice of fixed lines 𝐿∗𝑚 does not
affect the resulting Change&Go-network because we take all lines with nonzero
frequency into account when building the Change&Go-network. We will also stick to
the same passenger assignment algorithm used in Step 1 of Algorithm 9 when routing
in Change&Go-network to maintain consistency in different assignment iterations.

In Section 6, we experimentally evaluate whether the iterative approach can give
better solutions than the traditional sequential approach. According to [5], the use of
Change&Go-network in routing can indeed improve the optimal cost under certain
circumstances. For this reason, we want to verify whether iterating the Change&Go-
network for each step can result in even better cost or improved passenger travel time
than regular routing approaches with Change&Go-network.
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Choosing the set of fixed lines is the key heuristic in the iterative approach since
it determines the optimization problem to be solved in the next iteration. In the
experimental analysis we fix all the lines of a single modality in the problem for a
single iteration and alter the order of different modalities to be set fixed. Selecting
smaller sets of lines to be fixed can be difficult since evaluating the importance of
different lines is difficult in general. By fixing all lines within a single modality, we
simplify the analysis and make the process of selecting fixed lines more straightforward.

4.5 Multimodal integrated line planning problem
To conclude this section, we present the multimodal counterpart of the integrated
line planning problem (5)-(11). Interestingly, the multimodal integrated line planning
problem, does not require any additional parameters in the model formulation. Thus,
comparing unimodal results from the integrated approach to the multimodal integrated
results gives valuable insight on the effects of multimodality in the line planning phase.
The integrated model is formulated as follows:

LineAM : min
∑︁
𝑚∈𝑀

∑︁
𝑙∈L0

𝑚

𝑐𝑚𝑙 𝑓𝑚𝑙 (27)

s.t.
∑︁

𝑙∈𝐿 (𝑠1 ,𝑠2 )
𝑚

Cap𝑚 𝑓𝑚𝑙 ≥
∑︁
𝑢,𝑣∈𝑆

𝑥𝑢𝑣𝑒 ∀ 𝑒 ∈ {{(𝑠1, 𝑚), (𝑠2, 𝑚)} : (𝑠1, 𝑠2) ∈ 𝐸𝑚, 𝑚 ∈ 𝑀}

(28)∑︁
𝑙∈𝐿 (𝑠1 ,𝑠2 )

𝑚

Cap𝑚 𝑓𝑚𝑙 ≤ Cap𝑚𝑈𝑚 ∀ 𝑚 ∈ 𝑀, (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆 (29)

Θ𝑥𝑢𝑣 = 𝑏𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑆 (30)∑︁
𝑒∈𝐸

𝑑𝑒𝑥
𝑢𝑣
𝑒 ≤ 𝛽𝑆𝑃𝑢𝑣𝑊𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑆 (31)

𝑓𝑚𝑙 ∈ N ∀ 𝑚 ∈ 𝑀, 𝑙 ∈ L0
𝑚 (32)

𝑥𝑢𝑣𝑒 ∈ N ∀ 𝑢, 𝑣 ∈ 𝑆, 𝑒 ∈ 𝐸 (33)

Here Θ ∈ R|𝑉 |×|𝐸 | is the incidence matrix of the multimodal PTN, that is

Θ(𝑣, 𝑒) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑒 = (𝑣, 𝑢) for some 𝑢 ∈ 𝑉
−1 if 𝑒 = (𝑢, 𝑣) for some 𝑢 ∈ 𝑉
0 otherwise

and 𝑏𝑢𝑣 ∈ R|𝑉 | where 𝑏𝑢𝑣𝑢 = 𝑊𝑢𝑣, 𝑏𝑢𝑣𝑣 = −𝑊𝑢𝑣 and the remaining components are
0.

Here, 𝐿 (𝑠1,𝑠2)
𝑚 is the set of lines in the mode-specific line pool that contain an edge

with 𝑠1 its start point and 𝑠2 its end point. Here, 𝑆𝑃𝑢𝑣 stands for the shortest path
length between OD-pair (𝑢, 𝑣). Recall from the definition of the multimodal PTN
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that in the lower frequency constraint we are iterating over all edges 𝑒 ∈ 𝐸𝑛𝑜𝑑𝑒. Note
also that 𝐿 (𝑠1,𝑠2)

𝑚 ⊆ L0
𝑚 for each 𝑚 ∈ 𝑀 . Otherwise, the multimodal integrated model

(27)-(33) has the same properties as its unimodal counterpart.
As a concluding remark, we point out that multimodal integrated line planning

problems can also be split into unimodal integrated problems using OD-matrix
splitting. The process follows Algorithm 7 where we solve integrated models with
same parameter value 𝛽 instead of sequential models with same passenger assignments.
Recall that OD-matrix splitting is used to create a set of unimodal problems that can be
solved more easily than the large multimodal problem. This approach can be beneficial
for large integrated multimodal problems since integrated models are generally much
harder to solve than sequential models [1]. In Section 6, we compare the OD-matrix
splitting approach runtimes and solutions for both integrated models and sequential
models to validate the effects of OD-matrix splitting.
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Figure 5: Example of a multimodal public transport network where line costs 𝑐𝑙 and
edge lengths 𝑑𝑒 are not necessarily correlated. The numbers on the nodes refer to stop
indices 𝑠 ∈ 𝑆 of the nodes. The nodes with yellow color are the transfer node.

5 Theoretical analysis of multimodal networks
In this section, we analyze the relationship between the multimodal sequential
cost-oriented line planning, described in Algorithm 6 and sequential cost-oriented
line planning with OD-matrix splitting, described in Algorithm 7. We know that
Algorithm 7 can be considered a heuristic version of multimodal line planning since
the OD-matrix splitting algorithm is an auxiliary heuristic that doesn’t appear in
the regular multimodal or unimodal cost-oriented line planning algorithms. On the
other hand, Algorithm 7 solves a series of problems with unimodal PTNs, whereas in
sequential multimodal line planning, we use multimodal PTN (12) as the underlying
PTN.

A central question related to the two approaches is their comparable performance:
What are the optimal costs of the two approaches and how does the chosen OD-matrix
splitting algorithm affect the solution? The following example shows that even when
using a simple shortest paths passenger assignment, the choice of OD-matrix splitting
can drastically alter the optimal cost in the problem. In fact, it is possible to obtain
worse or better optimal costs than in the multimodal problem based on the graph
structure and the choice of the OD-matrix split.

Example 3. Consider a sequential multimodal line planning problem using shortest
paths passenger assignment (Algorithm 3) in the PTN described in Figure 5 with an
OD-matrix where𝑊16 = 10 and all other entries are zero.

Next, consider two unimodal line planning problems using shortest paths passenger
assignment for PTN𝑔𝑟𝑒𝑒𝑛 and PTN𝑟𝑒𝑑 described in Figure 5 where the corresponding
modality specific OD-matrices𝑊𝑔𝑟𝑒𝑒𝑛,𝑊𝑟𝑒𝑑 are obtained using an OD-matrix splitting
algorithm. Assume𝑊𝑔𝑟𝑒𝑒𝑛

12 = 10 and all other entries zero and𝑊𝑟𝑒𝑑
26 = 10 and all other

entries zero. This set of OD-matrices is viable since all passengers are on a single
connected path from 1 to 6 in the whole graph. Finally, assume equal capacities for
both modalities Cap𝑔𝑟𝑒𝑒𝑛 = Cap𝑟𝑒𝑑 = 10. We assume complete line pool for both
modalities.

First, we compute the optimal cost for the multimodal problem. Using shortest
paths passenger assignment, we obtain a set of loads
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𝜔𝑒 = 10, ∀𝑒 ∈ {(1, 3), (3, 4), (4, 6)}
𝜔𝑒 = 0 otherwise

Now since the capacity of a single line matches each nonzero load in 𝜔, we can
simply choose to use the corresponding lines from the complete line pool. The optimal
cost obtained is therefore,

𝑐∗ = LinePM(𝜔) = 100 · 3 = 300

Then we compute the optimal costs for both unimodal problems in a similar
fashion. We obtain the following sets of loads for the unimodal problems

𝜔
𝑔𝑟𝑒𝑒𝑛
𝑒 = 10, ∀𝑒 ∈ {(1, 2)}

𝜔
𝑔𝑟𝑒𝑒𝑛
𝑒 = 0 otherwise

and
𝜔𝑟𝑒𝑑𝑒 = 10, ∀𝑒 ∈ {(2, 5), (5, 6)}

𝜔𝑟𝑒𝑑𝑒 = 0 otherwise

The optimal costs for the unimodal problems are therefore

𝑐∗𝑔𝑟𝑒𝑒𝑛 = LineP(𝜔𝑔𝑟𝑒𝑒𝑛) = 100
𝑐∗𝑟𝑒𝑑 = LineP(𝜔𝑟𝑒𝑑) = 100 + 50 = 150∑︁

𝑚∈𝑀
𝑐∗𝑚 = 𝑐∗𝑔𝑟𝑒𝑒𝑛 + 𝑐∗𝑟𝑒𝑑 = 250

Comparing the compound optimal cost from line planning with OD-matrix splitting
to the multimodal line planning optimal cost, we can indeed see that line planning with
OD-matrix splitting gives better cost than the multimodal line planning algorithm,
when the passenger assignment algorithm and the underlying PTN are comparable for
both approaches.

The reason for this behavior is that OD-matrix splitting greatly affects the resulting
passenger loads for each line planning problem, even when the actual passenger
assignment algorithms are identical. This way, the OD-matrix splitting can be
considered an additional heuristic in the process that produces constraints for the actual
passenger assignment algorithm. For example, it is easy to see that if we chose OD-
matrices𝑊𝑔𝑟𝑒𝑒𝑛

14 = 10 and all other entries zero and𝑊𝑟𝑒𝑑
46 = 10 and all other entries zero,

we would have obtained the same optimal costs for both problems since the OD-matrix
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split now allows the same passenger assignment as obtained with shortest paths in the
multimodal PTN. On the other hand, with identical passenger assignment as in the
example, but 𝑐{(5,6)} = 150 instead of 𝑐{(5,6)} = 50, we would have obtained worse cost
for line planning with OD-matrix splitting, namely

∑︁
𝑚∈𝑀 𝑐

∗
𝑚 = 100+100+150 = 350.

This indicates line planning with OD-matrix splitting is also sensitive to the underlying
graph and line properties.

The previous observations raise a notable concern related to the OD-matrix splitting
approach: How can we make sure that the obtained unimodal line planning problems
from OD-matrix splitting are comparable to the actual multimodal line planning
problem? It turns out that with the correct viable OD-matrix split, we can always
arrive at the same multimodal sequential optimal solution using line planning with
OD-matrix splitting.

Theorem 5.1. Let 𝑐∗(L𝐴) be the optimal cost of the multimodal sequential line
planning problem for multimodal PTN induced from PTN𝑚, 𝑚 ∈ 𝑀 , with OD-matrix
𝑊 when using passenger assignment 𝜔𝑒, 𝑒 ∈ 𝐸 . Then there always exists a set of
OD-matrices {𝑊𝑚, 𝑚 ∈ 𝑀} that are viable w.r.t. Definition 4 s.t. the optimal costs
𝑐∗𝑚 (L𝐵𝑚) of the unimodal sequential line planning problems for PTN𝑚 with OD-matrix
𝑊𝑚 when using passenger assignment 𝜔𝑚𝑒 , 𝑒 ∈ 𝐸 satisfy

𝑐∗(L𝐴) =
∑︁
𝑚∈𝑀

𝑐∗𝑚 (L𝐵𝑚)

Proof. Denote 𝐴 the multimodal sequential line planning problem with optimal cost
of 𝑐∗(L𝐴) and 𝐵𝑚 the unimodal sequential line planning problem with optimal cost
of 𝑐∗𝑚 (L𝐵𝑚)

Let (L𝐴) be the optimal line concept of 𝐴 such that 𝑐∗(L𝐴) is the optimum and
denote the corresponding passenger assignment of the multimodal PTN as 𝜔𝑒, 𝑒 ∈ 𝐸 .
Let (L𝐴,𝑚) be the line concept of modality𝑚 of solution L𝐴 with passenger assignment
𝜔𝑚𝑒 , 𝑒 ∈ 𝐸 such that 𝜔𝑚𝑒 contains the passenger load of edges 𝑒 ∈ 𝐸𝑚 for each 𝑚 ∈ 𝑀 .
For each passenger assignment 𝜔𝑚𝑒 , 𝑒 ∈ 𝐸, 𝑚 ∈ 𝑀, the corresponding OD-matrix is
defined as

𝑊𝑚 =

{︄
𝑊𝑚
𝑠𝑡 = 𝜔

𝑚
(𝑠,𝑡) ∀ (𝑠, 𝑡) ∈ 𝐸𝑚

𝑊𝑚
𝑠𝑡 = 0 ∀ (𝑠, 𝑡) ∉ 𝐸𝑚

This set of OD-matrices {𝑊𝑚, 𝑚 ∈ 𝑀} for each modality satisfies Definition 4
because all the OD-matrices are derived from the connected paths of a feasible line
concepts.

Now suppose that (L𝐴,𝑚) is not the optimal solution to the problem 𝐵𝑚 with
passenger assignment 𝜔𝑚𝑒 , that is, there exists a feasible solution (L𝐵𝑚) for 𝐵𝑚 with
the same passenger assignment 𝜔𝑚𝑒 for some modality 𝑚 so that

𝑐∗𝑚 (L𝐵𝑚) < 𝑐(L𝐴,𝑚) .
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Then the following line concept for multimodal PTN

L𝐴,𝑚′
=

{︄
L𝐴,𝑚 if 𝑚′ ≠ 𝑚

L𝐵𝑚 otherwise

is a feasible solution of problem 𝐴 because L𝐴,𝑚 and L𝐵𝑚 are both obtained from
the same passenger assignment 𝜔𝑚𝑒 .

According to our initial assumption

𝑐(L𝐴,𝑚′) =
∑︁

𝑚∈𝑀\𝑚′

𝑐(L𝐴,𝑚) + 𝑐∗𝑚 (L𝐵𝑚) <
∑︁
𝑚∈𝑀

𝑐(L𝐴,𝑚) = 𝑐∗(L𝐴)

This is a contradiction since 𝑐∗(L𝐴) is the optimal solution of 𝐴. Therefore, the
line concept (L𝐴,𝑚) is the optimal solution to problem 𝐵𝑚 for each 𝑚 ∈ 𝑀 . Moreover,
each optimal solution (L𝐴,𝑚) is obtained from the set of feasible OD-matrices
{𝑊𝑚, 𝑚 ∈ 𝑀}. Based on the optimality of (L𝐴,𝑚), we have 𝑐∗𝑚 (L𝐴,𝑚) = 𝑐∗𝑚 (L𝐵𝑚)
and therefore

𝑐∗(L𝐴) =
∑︁
𝑚∈𝑀

𝑐∗𝑚 (L𝐴,𝑚) =
∑︁
𝑚∈𝑀

𝑐∗𝑚 (L𝐵𝑚)

□

The above theorem clarifies the relationship between the multimodal problem
and corresponding set of unimodal problems obtained by OD-splitting. By solving
the sequential multimodal problem, we always arrive at the actual optimum, but
with correct choice of OD-matrix split, we can also do so with OD-matrix splitting.
However, solving a set of unimodal problems from OD-splitting is generally much
more tractable than solving a single, potentially larger multimodal problem instance.
Therefore, being able to find the correct viable OD-matrix split is of great interest.

Note that Theorem 5.1 also generalizes to the multimodal integrated line planning
problems. In the integrated case, we can simply construct the corresponding passenger
loads 𝜔𝑚𝑒 directly from the decision variables 𝑥𝑢,𝑣𝑒 after which the proof is similar to
the sequential cases.

In the following we analyze the properties of simple multimodal PTNs and whether
the line planning problems can be easily split to the corresponding unimodal problems
using OD-matrix splitting. We also investigate the effect of modality transfer points in
the PTN for both unimodal and multimodal approaches.
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Figure 6: Example of a network with separate PTNs connected by a single transfer
point. The numbers on the edges refer to the lengths of the edges 𝑑𝑒 and numbers on
the nodes refer to stop indices 𝑠 ∈ 𝑆 of the nodes. The node with yellow color is a
transfer node.

5.1 Separate PTNs with a single common transfer point
We begin the analysis of multimodal networks by investigating the case of only one
single transfer point in multimodal PTN. In this case, the multimodal PTN consists of
𝑛 unimodal PTNs, each of which share a common stop 𝑠∗ ∈ 𝑆. In our case, 𝑠∗ is also
the only common stop index for all PTN𝑚, 𝑚 ∈ 𝑀. All of the multimodal PTNs of
this form can then be expressed in the following format:

PTN = {(𝑉 ′, 𝐸′) : 𝑉 ′ := 𝑉 ′
𝑛𝑜𝑑𝑒 ∪𝑉

′
𝑡𝑟𝑎𝑛𝑠 ∪𝑉 ′

𝑂𝐷 , 𝐸
′ := 𝐸′

𝑛𝑜𝑑𝑒 ∪ 𝐸
′
𝑡𝑟𝑎𝑛𝑠 ∪ 𝐸′

𝑂𝐷} (34)

where

𝑉 ′
𝑛𝑜𝑑𝑒 :=

⋃︂
𝑚∈𝑀

{(𝑠, 𝑚) : 𝑠 ∈ 𝑆𝑚}

𝑉 ′
𝑡𝑟𝑎𝑛𝑠 := {(𝑠∗, 𝑡𝑟𝑎𝑛𝑠)}
𝑉 ′
𝑂𝐷 := {(𝑠, 𝑂𝐷) : 𝑠 ∈ 𝑆}

and

𝐸′
𝑛𝑜𝑑𝑒 := {((𝑠, 𝑚), (𝑠′, 𝑚)) : (𝑠, 𝑠′) ∈ 𝐸𝑚, 𝑚 ∈ 𝑀}

𝐸′
𝑡𝑟𝑎𝑛𝑠 := {((𝑠∗, 𝑚), (𝑠∗, 𝑚′)) and ((𝑠∗, 𝑚′), (𝑠∗, 𝑚)) : 𝑠∗, ∀𝑚, 𝑚′ ∈ 𝑀,𝑚 ≠ 𝑚′}
𝐸′
𝑂𝐷 := {((𝑠, 𝑂𝐷), (𝑠, 𝑚)) and ((𝑠, 𝑚), (𝑠, 𝑂𝐷)) : 𝑠 ∈ 𝑆𝑚, 𝑚 ∈ 𝑀}

Note that the only transfer node in (34) is 𝑠∗ and the only transfer edges are
the incoming and outgoing edges of (𝑠∗, 𝑡𝑟𝑎𝑛𝑠) for each PTN𝑚, 𝑚 ∈ 𝑀. Figure 6
illustrates an example of this type of network.

For this type of multimodal PTN, we can formulate an especially strong result
related to cost-oriented line planning. Namely, the line planning problem for (34)
with OD-matrix𝑊 can be solved by splitting it into modified separate unimodal line
planning problems with unimodal PTNs for each modality using a specified version of
Algorithm 8. The OD-matrix splitting algorithm works as follows:
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Algorithm 10 OD-matrix splitting for separate PTNs with one single transfer point

1: Declare �̃�𝑚
= 0 and �̄�𝑚

= 0, �̃�𝑚
, �̄�

𝑚 ∈ N|𝑉𝑚 |×|𝑉𝑚 | for each 𝑚 ∈ 𝑀
2: For each𝑊𝑢𝑣 where 𝑢 ∈ 𝑉𝑚, 𝑣 ∈ 𝑉𝑚′ : 𝑚 ≠ 𝑚′, update �̃�𝑚

𝑢𝑠𝑡 := �̃�𝑚

𝑢𝑠𝑡 +𝑊𝑢𝑣 and
�̃�
𝑚′

𝑠𝑡𝑣 := �̃�𝑚′

𝑠𝑡𝑣 +𝑊𝑢𝑣

3: For each𝑊𝑢𝑣 where 𝑢 ∈ 𝑉𝑚, 𝑣 ∈ 𝑉𝑚, update �̄�𝑚 := �̄�𝑚 +𝑊𝑢𝑣

Here 𝑠𝑡 is the closest transfer point to 𝑢, although in the case with single 𝑠∗, there
is only one transfer point available for a graph so 𝑠𝑡 = 𝑠∗. The set of OD-matrices
�̃�
𝑚
, 𝑚 ∈ 𝑀 is viable, since it satisfies Definition 4. Moreover, note that Algorithm 10

is a special case of Algorithm 8 that always produces a set of viable OD-matrices.
After using the OD-matrix splitting algorithm to obtain the mode-specific matrices

�̃�
𝑚 and𝑊𝑚 for each 𝑚 ∈ 𝑀 , we obtain the following result

Theorem 5.2. Let 𝑐∗ be the optimal cost of multimodal sequential line planning
problem for (34) with OD-matrix𝑊 when using shortest-paths passenger assignment.
Let 𝑐∗𝑚 be the optimal cost of unimodal sequential line planning problem for PTN𝑚
with OD-matrix𝑊𝑚 = �̃�

𝑚 + �̄�𝑚 when using shortest-paths passenger assignment.
Then

𝑐∗ = 𝑐∗𝑚 + 𝑐∗𝑚′

Proof. For each 𝑊𝑢𝑣 where 𝑢 ∈ 𝑉𝑚, 𝑣 ∈ 𝑉𝑚′ : 𝑚 ≠ 𝑚′, all passenger shortest paths
𝑃𝑢𝑣 have to satisfy 𝑃𝑢𝑣 = 𝑃𝑢𝑠∗ ∪ 𝑃𝑠∗𝑣 , where 𝑠∗ is the transfer point. We therefore have

𝑐∗ = LinePM(𝜔(�̄�𝑚
, PTN𝑚) + 𝜔(�̄�𝑚′

, PTN𝑚′) + 𝜔(�̃�𝑚
, PTN𝑚) + 𝜔(�̃�𝑚′

, PTN𝑚′))

On the other hand the summed costs from unimodal problems can be expressed as

𝑐∗𝑚 + 𝑐∗𝑚′ = LineP(𝜔(�̄�𝑚
, PTN𝑚) + 𝜔(�̃�𝑚

, PTN𝑚))

+ LineP(𝜔(�̄�𝑚′
, PTN𝑚′) + 𝜔(�̃�𝑚′

, PTN𝑚′))

However, since PTN𝑚 and PTN𝑚′ are both different unimodal PTNs, and there are
no overlapping edges in any of the separate PTNs, we can factor

𝑐∗ = LinePM(𝜔(�̄�𝑚
, PTN𝑚) + 𝜔(�̃�𝑚

, PTN𝑚))

+ LinePM(𝜔(�̄�𝑚′
, PTN𝑚′) + 𝜔(�̃�𝑚′

, PTN𝑚′))

The solution to multimodal sequential line planning problem is equal to the
unimodal sequential line planning problem if the underlying PTN for both problems is
unimodal and passenger assignments are identical. Thus,
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𝑐∗ = LineP(𝜔(�̄�𝑚
, PTN𝑚) + 𝜔(�̃�𝑚

, PTN𝑚))

+ LineP(𝜔(�̄�𝑚′
, PTN𝑚′) + 𝜔(�̃�𝑚′

, PTN𝑚′))
𝑐∗ = 𝑐∗𝑚 + 𝑐∗𝑚′

□

We also witness that the average travel time can also be compared against the
transfer penalty 𝑑𝑡 . In fact, we see that

Theorem 5.3. Let 𝑇∗ be the total travel time of multimodal sequential line planning
problem for (34) with OD-matrix𝑊 when using shortest-paths passenger assignment.
Let 𝑇∗

𝑚 be the optimal total travel time of unimodal sequential line planning problem
for PTN𝑚 with OD-matrix 𝑊𝑚 = �̃�

𝑚 + �̄�𝑚 when using shortest-paths passenger
assignment. Further, let 𝑞 be the sum of all entries in 𝑊 where 𝑢 ∈ 𝑉𝑚, 𝑣 ∈ 𝑉𝑚′ .
Assume line pool L0 is the same for all modalities. Then

𝑇∗ =
∑︁
𝑚∈𝑀

𝑇∗
𝑚 + 𝑞𝑑𝑡

Proof. For each 𝑊𝑢𝑣 where 𝑢 ∈ 𝑉𝑚, 𝑣 ∈ 𝑉𝑚′ : 𝑚 ≠ 𝑚′, all passenger shortest paths
𝑃𝑢𝑣 have to satisfy 𝑃𝑢𝑣 = 𝑃𝑢𝑠∗ ∪ 𝑃𝑠∗𝑣, where 𝑠∗ is the transfer point. Therefore, for
each such entry, the corresponding travel time of multimodal problem is 𝑆𝑃𝑢𝑣 =

𝑆𝑃𝑢𝑠∗ + 𝑆𝑃𝑠∗𝑣 + 1
2 · 2𝑑𝑡 , where 𝑆𝑃 indicates the length of the shortest path (we assume

edge length is equal to the travel time). No other modality transfers occur in any of the
problems, so with a set of unimodal problems with same passenger assignment for
each, we confirm that

𝑇∗ =
∑︁
𝑚∈𝑀

𝑇∗
𝑚 + 𝑞𝑑𝑡

□

The result above confirms that under certain conditions, OD-matrix splitting can
be performed using a relatively simple algorithm such that the resulting multimodal
cost and sum of unimodal costs are always equal. In this relatively simple case, the
travel times are also equal if we simply account for the compulsory modality transfer
penalties that are not present in any of the unimodal problems.
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5.2 Separate PTNs with more than one common transfer point
Next, we analyze the case where separate PTNs are connected with 𝑛 > 1 common
transfer points. Given the following example network in Figure 7 with two transfer
points, we shall see if the OD-matrix splitting from the previous section also gives the
same cost as the multimodal counterpart.

PTN = {(𝑉 ′, 𝐸′) : 𝑉 ′ := 𝑉 ′
𝑛𝑜𝑑𝑒 ∪𝑉

′
𝑡𝑟𝑎𝑛𝑠 ∪𝑉 ′

𝑂𝐷 , 𝐸
′ := 𝐸′

𝑛𝑜𝑑𝑒 ∪ 𝐸
′
𝑡𝑟𝑎𝑛𝑠 ∪ 𝐸′

𝑂𝐷} (35)

where

𝑉 ′
𝑛𝑜𝑑𝑒 :=

⋃︂
𝑚∈𝑀

{(𝑠, 𝑚) : 𝑠 ∈ 𝑆𝑚}

𝑉 ′
𝑡𝑟𝑎𝑛𝑠 := {(𝑠, 𝑡𝑟𝑎𝑛𝑠) : 𝑠 ∈ 𝑇}

and

𝐸′
𝑛𝑜𝑑𝑒 := {((𝑠, 𝑚), (𝑠′, 𝑚)) : (𝑠, 𝑠′) ∈ 𝐸𝑚, 𝑚 ∈ 𝑀}

𝐸′
𝑡𝑟𝑎𝑛𝑠 := {((𝑠∗, 𝑚), (𝑠∗, 𝑚′)) and ((𝑠∗, 𝑚′), (𝑠∗, 𝑚)) : 𝑠∗ ∈ {𝑠∗1, 𝑠

∗
2, ..., 𝑠

∗
𝑛}, 𝑚, 𝑚′ ∈ 𝑀}

𝐸𝑂𝐷 := {((𝑠, 𝑂𝐷), (𝑠, 𝑚)) and ((𝑠, 𝑚), (𝑠, 𝑂𝐷)) : 𝑠 ∈ 𝑆𝑚, 𝑚 ∈ 𝑀}

Example 4. Consider a sequential multimodal line planning problem for the graph
presented in Figure 7 with OD-matrix𝑊 such that𝑊18 = 50 and all other entries are
zero. Assume we are using shortest path passenger assignment.

Using Algorithm 3 to calculate loads 𝜔 in the multimodal case, gives us the
following set of loads:

𝜔𝑒 = 50, ∀𝑒 ∈ 𝑃18

𝜔𝑒 = 0 otherwise

where

𝑃18 = {(1, 4), (4, 5), (5, 6), (6, 𝑡), (𝑡, 6), (6, 7), (6, 8)}

This will be used as part of the lower frequency constraint in the line planning
problem LinePM(𝜔).

We then compare the results generated in the multimodal case to the unimodal
counterpart with OD-matrix splitting. Using the OD-matrix splitting Algorithm 10
presented in the previous chapter, we obtain two unimodal OD-matrices, with colors
representing the modalities. Here �̄�𝑔𝑟𝑒𝑒𝑛

13 = 50, otherwise zero and �̄�𝑟𝑒𝑑
38 = 50,

otherwise zero. This OD-matrix split is also viable, since the path 𝑃18 = (𝑃13, 𝑃38) is
connected.
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Figure 7: Example of a network with separate PTNs connected by two transfer points.
The numbers on the edges refer to the lengths of the edges 𝑑𝑒 and numbers on the
nodes refer to stop indices 𝑠 ∈ 𝑆 of the nodes. The node with yellow color is a transfer
node.

Using Algorithm 3 to calculate loads 𝜔 for both the unimodal cases, gives us the
following set of loads, first for GREEN problem:

𝜔
𝑔𝑟𝑒𝑒𝑛
𝑒 = 50, ∀𝑒 ∈ {(1, 2), (2, 3)}

𝜔
𝑔𝑟𝑒𝑒𝑛
𝑒 = 0 otherwise

and then for RED problem

𝜔𝑟𝑒𝑑𝑒 = 50, ∀𝑒 ∈ {(3, 6), (6, 7), (7, 8)}
𝜔𝑟𝑒𝑑𝑒 = 0 otherwise

Now let us calculate the optimal values for all the example problems presented
above. We assume a complete line pool for all problems without upper-frequency
constraints and Cap𝑚 = 1 for each 𝑚 ∈ 𝑀 and 𝑐𝑙 =

∑︁
𝑒∈𝑙 𝑑𝑒 for all lines. We have

𝑐∗ = LinePM(𝜔) = 16 · 50 = 800

and

𝑐∗𝑔𝑟𝑒𝑒𝑛 = LineP(𝜔𝑔𝑟𝑒𝑒𝑛) = 6 · 50 = 300
𝑐∗𝑟𝑒𝑑 = LineP(𝜔𝑟𝑒𝑑) = 106 · 50 = 5300∑︁

𝑚∈𝑀
𝑐∗𝑚 = 𝑐∗𝑔𝑟𝑒𝑒𝑛 + 𝑐∗𝑟𝑒𝑑 = 5600

In this case with 𝑛 > 1 common transfer points, we have 𝑐∗ <
∑︁
𝑚∈𝑀 𝑐

∗
𝑚.

The previous example shows that using the OD-matrix splitting does not work
generally with 𝑛 > 1 common transfer points, although for case 𝑛 = 1 we always
obtain the multimodal optimal value. The naive approach for OD-matrix splitting with
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OD-pair (𝑢, 𝑣), 𝑢 ∈ 𝑉𝑚, 𝑣 ∈ 𝑉𝑚′
, 𝑚 ≠ 𝑚′ is to find the shortest path from 𝑢 to any of

the transfer points and then find shortest path from that transfer point to 𝑣. It turns out
this approach is not sufficient, as can be seen from the example by looking at nodes 1
and 8. In essence, a shortest path to any transfer point is not necessarily a subpath of
actual shortest path 𝑃𝑢𝑣 when the number of transfer points is 𝑛 > 1.

From the previous observations we conclude that with shortest paths passenger
assignment, in order to obtain the multimodal sequential optimal value for graph
type (35) using OD-matrix splitting, we have to calculate shortest paths 𝑃𝑢𝑣 for each
(𝑢, 𝑣) in the multimodal PTN and perform the OD-matrix splitting based on those
shortest paths. In practice, we use Algorithm 8 so that paths in the algorithm are
now shortest paths. With this approach, we can consistently solve large instances of
line planning problems for (35) potentially faster than with Algorithm 6 by splitting
the large problem into smaller modality-specific parts. Moreover, this OD-matrix
splitting results in multimodal optimal line plans given the shortest paths passenger
assignments for all problems. However, as we can see in the following, overlapping
edges on multimodal networks may prevent obtaining the correct set of OD-matrices
easily.

5.3 Identical PTNs with modality transfers
We now turn to multimodal networks where identical unimodal PTNs, all with the
same set of stops 𝑆 and set of edges 𝐸 , which are connected by a set of transfer points.
In this kind of network it is possible to transfer from every modality to any other
modality if there is a transfer point available. Such PTNs can always be expressed as:

PTN = {(𝑉 ′, 𝐸′) : 𝑉 ′ := 𝑉 ′
𝑛𝑜𝑑𝑒 ∪𝑉

′
𝑡𝑟𝑎𝑛𝑠 ∪𝑉 ′

𝑂𝐷 , 𝐸
′ := 𝐸′

𝑛𝑜𝑑𝑒 ∪ 𝐸
′
𝑡𝑟𝑎𝑛𝑠 ∪ 𝐸′

𝑂𝐷} (36)

where

𝑉 ′
𝑛𝑜𝑑𝑒 :=

⋃︂
𝑚∈𝑀

{(𝑠, 𝑚) : 𝑠 ∈ 𝑆}

𝑉 ′
𝑡𝑟𝑎𝑛𝑠 := {(𝑠, 𝑡𝑟𝑎𝑛𝑠) : 𝑠 ∈ 𝑇}
𝑉𝑂𝐷 := {(𝑠, 𝑂𝐷) : 𝑠 ∈ 𝑆}

and

𝐸′
𝑛𝑜𝑑𝑒 := {((𝑠, 𝑚), (𝑠′, 𝑚)) : (𝑠, 𝑠′) ∈ 𝐸, 𝑚 ∈ 𝑀}

𝐸′
𝑡𝑟𝑎𝑛𝑠 := {((𝑠∗, 𝑚), (𝑠∗, 𝑚′)) : 𝑠∗ ∈ {𝑠∗1, 𝑠

∗
2, ..., 𝑠

∗
𝑛}, ∀𝑚, 𝑚′ ∈ 𝑀}

𝐸′
𝑂𝐷 := {((𝑠, 𝑂𝐷), (𝑠, 𝑚)) and ((𝑠, 𝑚), (𝑠, 𝑂𝐷)) : 𝑠 ∈ 𝑆𝑚, 𝑚 ∈ 𝑀}

Here, we assume that edge lengths 𝑑𝑒 are equal for every corresponding edge of
each modality. We first realize that in such a network with shortest paths approaches
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for passenger assignment, there is no reason to use modality transfers at all, since all
OD-pairs can be reached even without transfers that accumulate more length to every
shortest path. When line pools L0

𝑚 are the same for each modality, the line costs 𝑐𝑙𝑚
and capacities Cap𝑚 still affect the outcome in the line planning process.

For example, it is easy to see that if capacities for each line 𝑙 ∈ L0
𝑚 are equal for

all modalities, we always choose the modality with lowest cost per line. On the other
hand, if costs for each available line 𝑙 ∈ L0

𝑚 are equal for all modalities, then choosing
the modality with higher capacity is always the better option when minimizing the
overall cost of the line concept.

In reality, it is not practical to assume that different modality lines would all have
the same costs. This is mainly due to differences in infrastructure related costs, such
as costs related to different types of rails, tunnels and so on.

For this type of PTN, the intuitive approach of OD-matrix splitting is to find a
set of unimodal OD-matrices such that𝑊 =

∑︁
𝑚∈𝑀𝑊

𝑚. This is reasonable because
with identical PTNs, the dimensions of OD-matrices are also identical. In detail,
the unimodal OD-matrices can be represented as 𝑊𝑚 = 𝑎𝑚𝑊,𝑚 ∈ 𝑀 such that∑︁
𝑚∈𝑀 𝑎𝑚 = 1. Next, we show that with PTN of type (36), each such set of OD-

matrices is viable and can be used to split the multimodal line planning problem into
unimodal parts.

Theorem 5.4. Let 𝑊 ∈ N|𝑆 |×|𝑆 | and let the underlying PTN be of type (36). A set
of OD-matrices {𝑊𝑚 = 𝑎𝑚𝑊,𝑚 ∈ 𝑀} with

∑︁
𝑚∈𝑀 𝑎𝑚 = 1, 𝑎𝑚 ≥ 0 is viable w.r.t.

Definition 4.

Proof. Since the underlying PTNs are identical, that is PTN = PTN𝑚, ∀𝑚 ∈ 𝑀 , then
∀𝑢, 𝑣 ∈ 𝑆, 𝑢 and 𝑣 are connected and the first constraint holds.■

By setting the weights

𝑐𝑢,𝑣,𝑚𝑢,𝑣 = 𝑊𝑚
𝑢𝑣 = 𝑎𝑚𝑊𝑢𝑣, ∀ 𝑢, 𝑣 ∈ 𝑆, 𝑚 ∈ 𝑀

and all other weights zero, we arrive at

∑︁
𝑠,𝑡∈𝑆

𝑐
𝑢,𝑣,𝑚
𝑠,𝑡 = 𝑐𝑢,𝑣,𝑚𝑢,𝑣 = 𝑊𝑚

𝑢𝑣, ∀ 𝑢, 𝑣 ∈ 𝑆, 𝑚 ∈ 𝑀

so the second constraint also holds.■
With the weights given, the third constraint holds for each 𝑠, 𝑡 ∈ 𝑆, 𝑣 ∈ 𝑉 \ {𝑠, 𝑡}

because 𝑐𝑠,𝑡,𝑚𝑠,𝑡 , 𝑠, 𝑡 ∈ 𝑆, are the only nonzero entries in our set of weights and
𝑣 ∈ 𝑉 \ {𝑠, 𝑡}, so all the entries appearing in this constraint are zero.■

The fourth and fifth constraint in our case can be expressed as
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∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑠,𝑢,𝑚
𝑠,𝑡 −

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑢,𝑠,𝑚
𝑠,𝑡 =

∑︁
𝑚∈𝑀

𝑐
𝑠,𝑡,𝑚
𝑠,𝑡 − 0

=
∑︁
𝑚∈𝑀

𝑊𝑚
𝑠,𝑡

=
∑︁
𝑚∈𝑀

𝑎𝑚𝑊𝑠,𝑡 = 𝑊𝑠,𝑡 ∀ 𝑠, 𝑡 ∈ 𝑆

and

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑢,𝑡,𝑚
𝑠,𝑡 −

∑︁
𝑚∈𝑀

∑︁
𝑢∈𝑉

𝑐
𝑡,𝑢,𝑚
𝑠,𝑡 =

∑︁
𝑚∈𝑀

𝑐
𝑠,𝑡,𝑚
𝑠,𝑡 − 0

=
∑︁
𝑚∈𝑀

𝑊𝑚
𝑠,𝑡

=
∑︁
𝑚∈𝑀

𝑎𝑚𝑊𝑠,𝑡 = 𝑊𝑠,𝑡 ∀ 𝑠, 𝑡 ∈ 𝑆,

Therefore, we have found a set of weights that satisfy all five constraints, so the
proof is complete. □

We now present an interesting example that promotes the use of different capacities
to lower the costs in the multimodal line planning problem. The example also
shows that overlapping edges with different capacities in the multimodal PTN can
make it difficult to obtain an OD-matrix split corresponding to the optimal value
of LinePM(𝜔). From Theorem 5.1, we know that we can always obtain the same
optimal cost than in multimodal line planning with some OD-matrix split that satisfies
Definition 4, independent of the number of transfer points. However, in some cases
𝑐∗ <

∑︁
𝑚∈𝑀 𝑐

∗
𝑚 with any 𝑊 =

∑︁
𝑚∈𝑀𝑊

𝑚, and that modality transfers are required
to obtain the multimodal optimum. That is, there does not exist an OD-matrix split
of the form 𝑊 =

∑︁
𝑚∈𝑀𝑊

𝑚 that results in the same optimal objective value for the
multimodal problem and the sum of unimodal problems.

Example 5. Consider a sequential multimodal line planning problem for the graph
presented in Figure 8. This simple graph is an example of (36), with transfer
possibilities for each node in the network. Assume the multimodal OD-matrix
𝑊16 = 15,𝑊26 = 15,𝑊36 = 15,𝑊46 = 15 and all other entries 0. Due to simplicity of
the graph, the corresponding passenger loads are independent of the routing scheme.
We have 𝜔16 = 15, 𝜔26 = 15, 𝜔36 = 15, 𝜔46 = 15 and therefore 𝜔56 = 15 · 4 = 60

Now let’s calculate the optimal values for the multimodal problem. We assume
complete line pool without upper frequency constraints for all problems. We further
assume two modalities, red and green with Cap𝑟𝑒𝑑 = 15,Cap𝑔𝑟𝑒𝑒𝑛 = 20 and 𝑐𝑟𝑒𝑑𝑙 =
8, 𝑐𝑔𝑟𝑒𝑒𝑛𝑙 = 10, ∀ 𝑙 ∈ L0

𝑚. Then we have
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Figure 8: Example of a network with two identical PTNs with transfer points between
the modalities for each node. The numbers on the edges refer to the lengths of the
edges 𝑑𝑒 and numbers on the nodes refer to stop indices 𝑠 ∈ 𝑆 of the nodes. The
transfer nodes are omitted from the picture for clarity.
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𝑐∗ = LinePM(𝜔) = 4 · 8 + 3 · 10 = 62

It turns out that in this specific example, there does not exist a pair of unimodal
matrices𝑊𝑟𝑒𝑑 and𝑊𝑔𝑟𝑒𝑒𝑛 such that𝑊𝑟𝑒𝑑 +𝑊𝑔𝑟𝑒𝑒𝑛 = 𝑊 for which

∑︁
𝑚∈𝑀 𝑐

∗
𝑚 = 𝑐∗. To

achieve the optimal cost, we must allow modality transfers from red to green at point
5, indicating that the correct OD-matrix split contains a nonzero entry𝑊𝑔𝑟𝑒𝑒𝑛

56 , while
𝑊56 = 0 in the original OD-matrix.

So in this case 𝑐∗ <
∑︁
𝑚∈𝑀 𝑐

∗
𝑚 independent of choosing OD-matrices 𝑊𝑟𝑒𝑑 and

𝑊𝑔𝑟𝑒𝑒𝑛 such that𝑊𝑟𝑒𝑑 +𝑊𝑔𝑟𝑒𝑒𝑛 = 𝑊 .

The result is remarkable, because it shows that OD-matrix split that the results in the
multimodal line planning problem optimum is not always of the form𝑊 =

∑︁
𝑚∈𝑀𝑊

𝑚.
Note that the overall travel time increases due to the transfer penalties. The result shows
that using other passenger routes than shortest paths can be used to decrease costs even
in simple multimodal networks due to overlapping edges with different capacities.
The result indicates that solving the multimodal problem should be preferred, since
obtaining the correct OD-matrix split when using custom passenger assignments even
with identical PTNs can be difficult.

5.4 PTNs with limited transfer points
Thus far, we have investigated only the case of identical PTNs where the number of
modality transfer points does not affect the problem at all. This happens when routing
with shortest paths in (36) as PTN, because shortest paths routing algorithms never
use transfers due to non-zero transfer cost and corresponding edge lengths being equal
for all modalities. When routing with the Change&Go-graph, modality transfers can
be utilized since the graph does not always contain all edges or nodes of the original
multimodal PTN. Moreover, changing lines within a single modality can overall
be more costly than changing to different modality lines. Nevertheless, the choice
of passenger assignment is still the primary factor affecting the optimal cost of the
multimodal line planning problem.

However, in the multimodal integrated line planning problem (27)-(33) the pas-
senger assignment is incorporated into the parameter 𝛽 that controls the relationship
between the cost of the line concept and passenger travel time. Recall that increasing 𝛽
indicates more emphasis on lowering the cost of the resulting line concept. If we set 𝛽
high enough, the costs of the line concept are minimized close to the global minimum,
while the passenger travel time is not taken into account. In such a case, adding more
transfer points to the existing set of transfer points gives more possibilities to lower
the costs even further at the expense of passenger-friendliness.

To conclude the theoretical analysis of multimodal networks, we show that adding
a single transfer point 𝑠∗ ∈ 𝑆 in a multimodal PTN can only decrease the cost of
the line concept with multimodal integrated line planning problem when 𝛽 is large
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enough. In the following theorem, we show that this observation holds independent of
the network structure.

Theorem 5.5. Let 𝑐∗1 be the optimal cost of the multimodal integrated line planning
problem for a multimodal PTN with OD-matrix𝑊 with a set of transfer edges 𝐸′

𝑡𝑟𝑎𝑛𝑠

in the underlying PTN. Let 𝑠∗ ∈ 𝑆 be a single stop in the same multimodal PTN.
Let 𝑐∗2 be the optimal cost of the multimodal integrated line planning problem for
the same multimodal PTN with OD-matrix 𝑊 with a set of transfer edges �̃�′

𝑡𝑟𝑎𝑛𝑠 =

𝐸′
𝑡𝑟𝑎𝑛𝑠 ∪ {((𝑠∗, 𝑚), (𝑠∗, 𝑚′)) ∉ 𝐸′

𝑡𝑟𝑎𝑛𝑠, 𝑚, 𝑚
′ ∈ 𝑀} in the underlying PTN. Assume

line pools are the same for all modalities and assume 𝛽 sufficiently high. Then

𝑐∗2 ≤ 𝑐∗1.

Proof. Comparing the two problems LineAM(𝐸′
𝑡𝑟𝑎𝑛𝑠) = 𝑐∗1 and LineAM(�̃�′

𝑡𝑟𝑎𝑛𝑠) =
𝑐∗2, we see that the objective function is the same for both problems. Comparing the
constraints, we see that with 𝛽 sufficiently high, the constraint

∑︁
𝑒∈𝐸

𝑑𝑒𝑥
𝑢𝑣
𝑒 ≤ 𝛽𝑆𝑃𝑢𝑣𝑊𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑆

becomes redundant for both problems since the right hand size becomes sufficiently
high. The upper-frequency constraint

∑︁
𝑙∈𝐿 (𝑠1 ,𝑠2 )

𝑚

Cap𝑚 𝑓𝑚𝑙 ≤ Cap𝑚𝑈𝑚 ∀ 𝑚 ∈ 𝑀, (𝑠1, 𝑠2) ∈ 𝑆 × 𝑆

also stays the same since transfer edges don’t appear in the constraint.
However, the flow constraint

Θ𝑥𝑢𝑣 = 𝑏𝑢𝑣 ∀ 𝑢, 𝑣 ∈ 𝑆

is affected. Indeed, the set of entries in 𝑥𝑢𝑣 are appended with the added entries
corresponding to the added transfer edges. This means there now exists new feasible
combinations of values of 𝑥𝑢𝑣

𝑒′ , 𝑒
′ ∈ {{(𝑠1, 𝑚), (𝑠2, 𝑚)} : (𝑠1, 𝑠2) ∈ 𝐸𝑚, 𝑚 ∈ 𝑀} that

satisfy the flow constraint. In turn, this means that the right-hand size of the constraint

∑︁
𝑙∈𝐿 (𝑠1 ,𝑠2 )

𝑚

Cap𝑚 𝑓𝑚𝑙 ≥
∑︁
𝑢,𝑣∈𝑆

𝑥𝑢𝑣𝑒 ∀ 𝑒 ∈ {{(𝑠1, 𝑚), (𝑠2, 𝑚)} : (𝑠1, 𝑠2) ∈ 𝐸𝑚, 𝑚 ∈ 𝑀}

has now more feasible values. Consequently, the decision variables 𝑓𝑚𝑙 on the
left-hand side that directly affect the objective function value have now more feasible
combinations. On the other hand, by setting 𝑥𝑢𝑣

𝑒′ = 0, we always obtain
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LineAM(𝐸′
𝑡𝑟𝑎𝑛𝑠) = LineAM(�̃�′

𝑡𝑟𝑎𝑛𝑠)

In conclusion,

𝑐∗2 ≤ 𝑐∗1

□

Note that the goal of setting 𝛽 sufficiently high is to make sure that the route
constraint (31) is completely relaxed from the integrated optimization problem and
only the cost of the line concept is accounted. It turns out we can always compute a
fixed value for 𝛽 so that this constraint does not affect the problem at all. By setting
𝛽 = max{𝑑𝑒, 𝑒 ∈ 𝐸} · max{𝑊𝑢𝑣, 𝑢, 𝑣 ∈ 𝑆} · |𝐸 |, the left-hand side of the constraint
can never be higher than the right-hand side, essentially neglecting the effect of the
route constraint.

The above result confirms that adding more transfer points to the existing set of
transfer points in any multimodal PTN can only make the optimal cost better when
performing multimodal integrated line planning with only the cost of the line concept
accounted (that is, with 𝛽 sufficiently high). In essence, the result shows that with the
most cost-oriented passenger assignment possible, adding more transfer options can
only decrease the cost of the resulting line concept. It should be noted that simply
increasing the number of transfer points does not guarantee improvement. Indeed,
even with same number of transfer points for two multimodal problems where transfer
points are different, we can arrive at different optimal values for the cost of the line
concept.

53



1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 9: Illustration of the multimodal PTN used in the experiments. In the picture,
red nodes represent bus stops, green nodes represent tram stops and orange nodes
represent stops with both modalities with transfers allowed to other modalities. For
simplicity, the transfer nodes and edges are omitted from the picture. Note also that all
edge lengths in the network are equal.

6 Experiments and Results
In this section, we present the computational results of the multimodal line planning
algorithms and analyze their performance in terms of runtime, parameters and optimal
objective function values. For each of the experiments, we use the same grid-like
multimodal PTN shown in Figure 9. We also use the same set of problem parameters
presented in Appendix A and the same OD-matrix for each experiment to make
the results comparable. All computations and evaluation for the experiments are
performed using the LinTim algorithm environment for mathematical public transport
optimization that contains algorithms for line planning in a single software [20].

The line pools for all of the problems are generated separately for both modalities.
We first split the OD-matrix using the shortest paths OD-matrix splitting to obtain
modality specific OD-matrices. That is, we use Algorithm 8 with 𝑁𝑢𝑣 = 1 where all
paths 𝑃1

𝑢𝑣 are shortest paths. Then we generate loads for both modalities using the
shortest path passenger assignment with Algorithm 3. Finally, we obtain the line pools
for both modalities using the iterative minimum spanning tree approach presented
in [2]. In all of the following experiments, we use the same line pools for each line
planning problem. Thus, we assume that the line pools are given to neglect the effects
of line pool generation in our experiments.
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In the experiments, the optimal cost 𝑐∗ is the optimal objective function value
of the corresponding cost-oriented line planning problem. The average travel time
is harder to calculate accurately, since passengers usually choose shortest paths in
the public transportation system, although the designed passenger assignment for the
system could be different. Moreover, the passenger behavior in the transport system
depends on other factors as well that can be difficult to model accurately. For all the
sequential models, the average travel time is calculated as

𝑇1 =

∑︁
𝑢,𝑣∈𝑆 𝑆�̃�𝑢𝑣 ·𝑊𝑢𝑣∑︁

𝑢,𝑣∈𝑆𝑊𝑢𝑣

.

Here 𝑆�̃�𝑢𝑣 is the shortest path in a multimodal Change&Go-graph induced by the
optimal line concept, including penalties for mode transfers and line transfers within a
single modality. Note that the above formula is an approximation of the actual travel
time due to the limited capacities of the vehicles. The actual travel time can be higher
since all the passengers choosing the shortest route might not fit into the vehicles with
limited capacities.

For comparisons of the integrated models, we use the average travel time calculated
as

𝑇2 =

∑︁
𝑢,𝑣∈𝑆

∑︁
𝑒∈𝐸 𝑑𝑒𝑥

𝑢𝑣
𝑒 ·𝑊𝑢𝑣∑︁

𝑢,𝑣∈𝑆𝑊𝑢𝑣

.

Note that the above formula is also an approximation since it does not always
take into account the line transfer penalties within a single modality. The actual
travel time can be higher when the integrated model is used with a PTN and not
with a Change&Go-graph. We use this travel time approximation for the integrated
model because the passenger routes in the integrated model are incorporated into the
decision variables. We obtain far more realistic comparison of the travel times over
different parameter values, since we use actual passenger routes and the proposed
capacities are never exceeded. This way, the comparison of different instances of the
integrated models is far more accurate. However, we also recognize that realistic travel
time evaluation in cost-oriented line planning is difficult since the effect of passenger
assignment to the actual travel time cannot always be determined reliably.

6.1 Comparison of the line planning algorithms
We begin the experimental analysis by comparing the different line planning algorithms
and their effects on the objective function values in line planning. For sequential
approaches, we use the different passenger assignment algorithms to create multimodal
line planning problems of type (13)-(16) and present their corresponding optimal line
costs, average passenger travel times and number of direct passengers. For integrated
approaches, we generate problems of type (27)-(33) and present the same results. For
iterative approaches, we perform two iterations where we fix all lines belonging to a
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single modality in the second iteration. More precisely, we first route passengers in a
multimodal-line-pool-induced Change&Go-network using shortest paths passenger
assignment. Then we fix all the lines belonging to a single modality, route passengers
on shortest-paths in the line-concept-induced Change&Go-network and solve the
resulting problem (23)-(26), resulting in two sets of fixed lines that form the optimal
line concept.

Figure 10: Objective function values of the different multimodal line planning
algorithms

From Figure 10 and Table 1 we first see that approaches using the Change&Go-
graph give notably lower costs than their PTN-specific counterparts. This is expected
since Change&Go-graphs allow considering line transfer penalties already in the
passenger assignment phase. However, the runtime for Change&Go-graph approaches
is clearly larger as can be seen from Table 1. This is also expected since the size of the
graph increases from the regular PTN when the graph contains all lines from the line
pool.

On the other hand, we note that Algorithm 4 and Algorithm 5 respectively for
both PTN and Change&Go-graph give generally better average travel times and higher
costs than the corresponding shortest path approaches. This is in strong contrast to the
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Table 1: Experimental results of the different multimodal line planning algorithms.
For sequential models, the runtime is the compound runtime of running the passenger
assignment and solving the corresponding line planning problem

Algorithm Optimal cost Average travel time (𝑇1) Runtime (s) Direct passengers Parameters
Shortest paths in PTN 1721.60 22.12 2.89 1358 -
Reduction in PTN 1873.90 22.09 10.17 1357 𝛾 = 50
Reward in PTN 1976.70 21.98 31.71 1373 𝛾 = 10
Shortest paths in Change&Go-graph 1517.55 22.10 10.78 1369 -
Reduction in Change&Go-graph 1517.55 22.10 141.55 1369 𝛾 = 50
Reward in Change&Go-graph 1723.10 21.34 2213.33 1484 𝛾 = 10
Integrated model in PTN 1164.70 21.57 204.29 1464 𝛽 = 1
Iterative model (first fixed tram lines) 1772.05 21.95 12.99 1364 -
Iterative model (first fixed bus lines) 1719.65 21.83 12.73 1391 -

results presented in [4] and our initial assumption that stated Reward and Reduction
could be used to decrease the costs of the line concept. Based on these results, it seems
that the graph structure and the line planning problem parameters such as capacities
and upper frequency constraints can severely affect the heuristic approaches and their
desired effect on the results of the line planning process. These effects should be
evaluated further in the future research.

As can be expected, the integrated model outperforms the other approaches in
terms of the cost and mostly outperforms the approaches also in terms of travel time.
However, this comes with huge increase in runtime, even when using PTN as the
underlying graph. In the experiments, we omit the use of Change&Go-graph with
Integrated model, since the runtimes for calculating the optima were large in contrast
to any other models.

Finally by looking at Figure 10 and Table 1, we note that neither of the itera-
tive approaches attains lower cost than the regular shortest-paths approach in the
Change&Go-graph. However, the iterative approaches attain better travel time than
most other methods in comparison. The runtimes for iterative models are slightly
larger than regular Change&Go shortest-paths, but the differences are relatively small.
Based on the results, the iterative models could be useful to achieve middle ground for
cost minimization and travel time minimization. However, the actual effects of fixing
the set of lines in the iterative process must first be analyzed in the future research.

6.2 Performance analysis of the multimodal passenger assign-
ments

We now investigate how the parameter values for different passenger assignments
affect the sequential line planning problems and their corresponding objective function
values. We present the results of different parameter values for Reduction (Algorithm 4)
and Reward (Algorithm 5).

We also present the results of the new multimodal passenger assignment cost
functions such as Weighted-Assortativity and Multimodal Reward with parameter
combinations that gave the most distinct results compared to the basic Reduction and
Reward.
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(a) Results for Reduction (b) Results for Reward

Figure 11: Objective function values of Reduction and Reward with different values
of 𝛾

Table 2: Experimental results of Reduction and Reward with different values of 𝛾

Algorithm Optimal cost Average travel time (𝑇1) Direct passengers 𝛾

1721.60 22.115 1358 1
1721.60 22.115 1358 5

Reduction in PTN 1772.35 22.115 1358 20
1873.85 22.092 1357 50
1823.55 22.123 1353 100
1619.80 22.022 1428 1
1773.70 22.706 1313 3

Reward in PTN 1722.35 22.602 1334 5
1976.70 21.980 1373 10
2180.15 23.665 1307 50

In Figure 11 and Table 2, we see that both Reward and Reduction approaches
generally generate higher costs when increasing the model parameter that gives more
emphasis to the model heuristic in contrast to the regular shortest paths. The result
shows that the heuristics aimed to minimize the line costs to concentrate passengers
on similar lines does not work as intended.

We present a simple explanation for this unexpected and unwanted behaviour. We
noted that the lines in both of the line pools for our experiments were relatively short
with the number of edges being at most 5. This suggests that regular shortest-path
routes may be particularly attractive also in terms of cost minimization since line
transfers even within a single modality are often mandatory. This is further supported
by the fact that the number of direct passengers in each of the results is only roughly a
half of the total passengers in the network (see Appendix A). The line pool generation
may also support shortest paths approaches more since the loads for both modalities
were created using shortest-paths passenger assignment with shortest paths OD-matrix
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Figure 12: Objective function values of the new passenger assignment cost functions
compared to basic Reduction and Reward

Table 3: Experimental results of the new passenger assignment cost functions.
Multimodal Reward is used with Algorithm 5 and the rest of the cost functions are
used with Algorithm 4

Algorithm Optimal cost Average travel time (𝑇1) Runtime (s) Direct passengers Parameters
Weighted Assortativity 1722.50 21.99 247.85 1378 𝛾 = 10, 𝛼 = 500
Selective Assortativity 1671.30 22.98 1329 1357 𝛾 = 10, 𝛼 = 500, 𝛽 = 4.49
Weighted Direct 1722.50 21.99 306.25 1378 𝛾 = 10, 𝛼 = 500
Selective Direct 1722.50 21.99 130.55 1378 𝛾 = 10, 𝛼 = 500, 𝛽 = 4.49
Multimodal Reward 1926.40 22.59 2008.30 1325 𝛾 = 10

splitting.
From Table 3 and Figure 12 we see that the new passenger assignment algorithms

with selected parameters give different results in contrast to regular Reward and
Reduction. Apart from Multimodal Reward, which underperforms in runtime and
both objective function values, all methods give reasonable results using the selected
parameters. We argue that most of the algorithms giving the same result is due to the
network structure in our experiments. Since most of the new algorithms are based
on the assortativity of the network, the grid-like network in our experiments with
similar assortativity over all edges makes the different algorithms perform similarly
in this case. It remains subject for future research whether these new algorithms are
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beneficial also in other settings, such as with larger graphs where the assortativity of
the edges varies in different parts of the graph.

6.3 Performance analysis of OD-matrix splitting
Next, we compare the OD-matrix splitting approach (Algorithm 7) to the sequential
multimodal line planning (Algorithm 6) and integrated line planning (27) - (33)
experimentally. We use shortest paths OD-matrix splitting for each experiment. That
is, we use the same set of modality-specific OD-matrices for each line planning
algorithm such that in Algorithm 8, 𝑁𝑢𝑣 = 1 where all paths 𝑃1

𝑢𝑣 are shortest paths.
We measure the gap between the optimal cost of the multimodal approach and the
OD-matrix splitting approach for the shortest-paths passenger assignment and the
integrated model with 𝛽 = 1. We also show comparisons for other line planning
algorithms to show the effect of OD-matrix splitting on the optimal cost and travel
time.

(a) Results in PTN (b) Results in Change&Go-network

Figure 13: Objective function values of multimodal approaches and OD-matrix
splitting approaches in sequential line planning models

Table 4: Experimental results of the line planning models with OD-matrix splitting.

Algorithm Optimal cost Average travel time (𝑇1) Runtime (s) Direct passengers Parameters
Shortest paths in PTN (sp_ptn) 1823.10 21.75 0.96 1406 -
Reduction in PTN (red_ptn) 1873.85 21.83 2.93 1394 𝛾 = 20
Reward in PTN (rew_ptn) 1924.30 22.60 142.97 1356 𝛾 = 20
Shortest paths in Change&Go-graph (sp_cg) 1468.30 21.64 5.62 1445 -
Reduction in Change&Go-graph (sp_cg) 1468.30 21.64 67.84 1445 𝛾 = 20
Reward in Change&Go-graph (sp_cg) 1621.45 21.36 1600.22 1486 𝛾 = 20
Integrated model 1 in PTN (integ_1) 1316.50 21.44 7.82 1482 𝛽 = 1
Integrated model 2 in PTN (integ_2) 1166.05 21.89 7.39 1438 𝛽 = 2
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Figure 14: Objective function values of multimodal approaches and OD-matrix
splitting approaches in integrated line planning models. The numbers 1 and 2 on the
labels indicate the value of the 𝛽 parameter in the integrated model.
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From Figure 13 and Table 4 we see that the OD-matrix split with shortest paths in
PTN gives roughly 100 units higher cost than the corresponding multimodal shortest-
paths. We also see that both OD-matrix split integrated models give slightly higher
costs than multimodal ones, as can be seen from Figure 14. From Table 4 and Table
1, we confirm that all OD-matrix split algorithms, except Reward in PTN, perform
significantly faster in terms of runtime than the multimodal ones.

This result supports our theoretical results in the previous section. Given an OD-
matrix split that allows the same passenger routes than in the multimodal algorithm
with shortest paths, we can arrive at equal or higher cost using OD-matrix splitting
whether the unimodal shortest paths are precisely the subpaths of the multimodal
shortest paths. This results shows an important trade-off between the tractability
(runtime) and the quality of the solution in terms of cost minimization. Overall,
OD-matrix splitting can now be confirmed a great tool to obtain close to optimal
solutions in multimodal line planning with significantly lowered runtime and increased
tractability.

As can be seen from Table 1 and Table 4, the OD-matrix split approaches with
shortest paths in Change&Go-network gives better performance in terms of both
objective functions and runtime than the multimodal one. This result shows that
splitting the multimodal OD-matrix using shortest paths in PTN environment makes the
actual shortest paths assignment infeasible in the corresponding Change&Go-network.
In other words, the shortest paths in PTN are not necessarily the same shortest paths in
Change&Go-network and therefore the OD-matrix splitting approach does not allow
the use of actual shortest paths in the Change&Go-network. This limitation can change
the objective function values in the OD-matrix splitting approach and in our case, we
indeed obtain better cost compared to the multimodal shortest paths. However, we
recognize that the cost improvement in this case probably comes with an increase of
actual travel time in the line concept, although the evaluated travel time seems to be
decreasing. Since the travel times of the passenger assignments are higher in all of the
OD-matrix split approaches, we argue that the evaluated travel times in Figure 13 and
Table 4 are not sustainable with the capacity limitations of the actual line concepts.

6.4 Performance analysis of the integrated multimodal line
plans

We proceed with the performance analysis of the multimodal integrated model (27)-
(33). We investigate the effect of parameter 𝛽 to the objective function values for the
integrated case. We use 𝑇2 for the average travel time evaluation to capture the effects
of 𝛽 on the travel time more realistically with the integrated model.

Figure 15 illustrates that increasing the 𝛽 parameter in the multimodal integrated
model decreases the cost of the line concept by increasing the average travel time
for the passengers. This is clearly intended behavior as increasing the 𝛽 parameter
relaxes the required travel time constraint in the integrated model. Interestingly, the
decrease in the optimal cost is most notable with only a subtle increase of 𝛽. Since
travel time is not part of the objective, even small increase in 𝛽 can prevent obtaining
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Figure 15: Objective function values of the multimodal integrated model with different
parameter values

Table 5: Experimental results of the multimodal integrated model with different
parameter values

Algorithm Optimal cost Average travel time (𝑇2) Direct passengers 𝛽

1164.70 21.77 1464 1
1115.15 22.05 1470 1.05

Integrated model in PTN 1065.45 22.41 1456 1.1
1065.45 22.75 1446 1.2
1064.85 23.26 1467 1.5
1064.85 24.72 1451 2

optimal solutions with lower travel time. From Table 5, we see that after the point
where 𝛽 = 1.1, the decrease in the cost is really small, while the average travel still
increases considerably. There is still room for future research to measure the effects of
altering 𝛽 for different problem parameters and different underlying PTN structures.
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(a) Results with 𝛽 = 1 (b) Results with 𝛽 = 100000

Figure 16: Objective function values of multimodal integrated model for different
number of transferable stops. Note that we always add stops to the previous set of
transferable stops in a fixed order when increasing the number of transfer options.
With high 𝛽, the entry 6 with infeasibly high travel time is removed from the plot for
clarity.

6.5 Cost efficiency of integrated line planning
The final part of the experiments in this work is to examine the cost efficiency of
integrated line planning with different numbers of transferable stops in the network.
As Theorem 5.5 shows, the optimal cost of the integrated line planning problem (27) -
(33) can only decrease when adding more transfer points to the existing set of transfer
points, assuming 𝛽 is sufficiently high. Using our example dataset, we test how much
decrease there is for each added transfer point and investigate whether some stops
provide more efficient solutions than other added stops.

We also test the effect of adding more transfer possibilities to the network when
𝛽 is set lower, and show how the Objective function values change when adding
more transfer stops. Again, we investigate whether adding certain stops give notable
improvement to all of the objectives and see how different objective values vary with
different sets of transfer stops. As an average travel time evaluation, we use 𝑇2 to
capture the changes in the travel time more realistically with the integrated model.

In this section, we use different problem parameters (Appendix A) than in the
previous experiments to limit the number of reasonable line concepts in the problem.
Namely, we use different capacities and different upper frequencies for the problem,
but still use the same OD-matrix and PTN structure as in the previous section. The
reason for this is to reduce the runtime for calculating the solutions, since the original
parameters resulted in huge runtimes for obtaining the results. Moreover, we add
transfer stops in a fixed order in each of the experiments to make sure that the results
from different experiments are comparable.

Based on Figure 16 and Table 6, we confirm that increasing the number of stops can
only improve the optimal cost for sufficiently high 𝛽, which is according to Theorem
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Table 6: Experimental results of multimodal integrated model for different number of
transferable stops

Algorithm Optimal cost Average travel time (𝑇2) Direct passengers Transfer stops
709.75 24.59 1452 1
709.60 23.25 1442 2
709.60 23.22 1442 3

Integrated model in PTN (𝛽 = 1) 709.60 22.41 1442 4
709.60 22.27 1406 5
708.55 21.83 1442 6
708.55 21.77 1442 7
708.55 21.77 1442 8
659.45 26.88 1421 1
609.15 27.69 1288 2
609.15 27.81 1288 3

Integrated model in PTN (𝛽 = 100000) 609.15 1861773.70 1288 4
609.15 2686595.80 1272 5
608.7 12246686.94 1271 6
608.7 1311888.48 1310 7
608.7 2639461.11 1310 8

5.5. On the other hand, we witness that adding more transfer options improves both
objective functions when 𝛽 = 1. This observation clearly shows that in our example
network, the line concepts with low travel times also imply low costs for the line
concept. Again, this implies dominance of passenger assignments with low travel
times even for cost optimization, which could be due to shorter line lengths in the line
pool.

From Figure 16 and Table 6, we also see that with high 𝛽 the costs for all sets of
transfer points are significantly lower than with any of the 𝛽 = 1 transfer options. This
is expected since higher 𝛽 gives more emphasis on the cost minimization. Moreover,
after 3 transfer points, we receive line concepts with impractically long travel times
that could not be used in real life scenarios. This is known behavior as explained in the
theoretical examples of [4]. With 𝛽 sufficiently high, only the costs of the line concept
are accounted in the model and the overall practicality of the solution is completely
neglected.

The final key observation in this experiment is that for different values of 𝛽, the
number of transfer options with the most significant cost increase is also different.
Here we recognize that finding the most significant cost improvements using different
model parameters and different transfer options depends mostly on the properties of the
underlying PTN. Therefore, further research remains to investigate whether efficient
transfer options for best possible solutions can be obtained analytically. For example,
comparing the effects of model parameters against different transfer options for large
number of different PTNs could reveal a connection between good parameter choices
and properties of the transfer options. Moreover, separate heuristics for obtaining
efficient transfer options could be investigated in the future.
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7 Summary and Conclusions
In this work, we introduced a formal definition for multimodal public transport
networks and an approach for constructing multimodal public transport networks from
regular public transport networks with a single vehicle modality. We developed several
cost-oriented line planning models and algorithms that support multimodal public
transport networks in line planning and presented mathematical formulations for these
models. In addition, we have introduced an OD-matrix splitting approach that can be
used to split multimodal line planning problems into a set of unimodal problems to
improve the computational performance in multimodal line planning.

The results show that the sequential line planning model with shortest paths
passenger assignment and the integrated line planning model attain optimal line
operating costs with a reasonable passenger travel time for the given problem instance.
However, the alternate passenger assignments designed to lower the line operating
costs produce generally higher or equal optimal costs than the regular shortest path
approaches with altering passenger travel times. We argue that these results arise
from the network properties and the properties of the line pools in our multimodal
problem instance. We see that by altering model parameters, these models produce
different distinct results in terms of different objectives in line planning. Therefore,
the next steps should be taken to analyze the effects of multimodal network properties
affecting the performance of different line planning models in terms of both the model
parameters and problem parameters.

The results also show that by splitting the multimodal problems to sets of unimodal
problems with OD-matrix splitting, we can significantly decrease the total runtime of
the line planning procedure in multimodal line planning. We see that the significant
increase in computational performance comes with a trade-off. The compound
solutions of split problems generally give worse cost optima than their multimodal
line planning counterparts. However, we also witness cases where the OD-matrix split
limits the possible passenger assignments such that the split problems attain lower
compound cost than their multimodal line planning counterpart with effects on the
optimal travel time.

Our theoretical analysis shows that different OD-matrix splits have significant
effects on the properties of split problems and that OD-matrix splitting can be
considered an additional heuristic in the sequential line planning framework. The
theoretical analysis also suggests that for each sequential multimodal line planning
problem, there exists an OD-matrix split that gives compound solutions identical to
the multimodal line planning problem. Future studies should be aimed to further
investigate the effects of OD-matrix splits to the line planning problem, especially
whether different types of splits can be used to obtain cost-optima with different
emphasis on passenger objectives. Moreover, general approaches for obtaining suitable
OD-matrix splits for multimodal problems to generate desired compound solutions
should also be investigated.
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A Parameters for computational experiments
– Vehicle capacities

Cap𝑔𝑟𝑒𝑒𝑛 = 50
Cap𝑟𝑒𝑑 = 60

– Upper frequencies

𝑈𝑔𝑟𝑒𝑒𝑛 = 40
𝑈𝑟𝑒𝑑 = 50

– Max iterations for iterative passenger assignments

𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 15

– Modality transfer penalty

𝑑𝑚 = 10

– Line transfer penalty

𝑑𝑡 = 6

– Edge length

𝑑𝑒 = 6

– Number of lines in the line pool

|L0
𝑔𝑟𝑒𝑒𝑛 | = 20

|L0
𝑟𝑒𝑑

| = 15

– Total number of passengers in the OD-matrix∑︁
𝑢,𝑣∈𝑆𝑊𝑢𝑣 = 2546

Modified parameters for cost efficiency experiments in Section 6.5

– Vehicle capacities

Cap𝑔𝑟𝑒𝑒𝑛 = 100
Cap𝑟𝑒𝑑 = 120

– Upper frequencies

𝑈𝑔𝑟𝑒𝑒𝑛 = 20
𝑈𝑟𝑒𝑑 = 25
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