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Abstract

This thesis aims to demonstrate how disjunctive programming can be used to model raw
material procurement contracts in the context of a two-stage stochastic mixed integer
linear programming (MILP) production planning problem. We will see that disjunctive
programming provides an efficient framework for defining the constraints needed
to model raw material procurement contracts. More specifically, we will analyze a
simple two-stage stochastic production planning model where first-stage variables
represent decisions regarding contracts and second-stage variables correspond to
production planning decisions. We conclude the advantage of implementing the
stochastic model is not as great as we initially thought. Namely, the Value of the
Stochastic Solution (VSS) was lower then expected. Aside from this, the literature
review in this area suggests most existing works are concerned with industry specific
applications. Hence, our other goal is to introduce an example application that is easier
to understand than the more sophisticated application-specific works available in the
literature. The model is implemented using Julia programming language and makes
use of the DisjunctiveProgramming.jl library. Overall, we concluded that disjunctive
programming is a useful framework that can simplify and expedite the modeling
process by providing a higher level of abstraction. However, there is still quite a bit
of work to be done on scalability and performance if these types of models are to be
deployed in the industry.

Keywords linear programming, MILP, disjunctive programming, supply chain
optimisation
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Chapter 1

Introduction

In this thesis, we investigate a two-stage stochastic production planning model. First-
stage decisions are given by the result of deciding a supply contract for raw materials
in advance, while second-stage decisions arise from the production planning problem
itself. We assume raw material prices and customer demand (e.g. how much demand
there is for the products we sell per customer) to be the stochastic parameters of our
model. In practise, this means having multiple scenarios in the model which will be
averaged over in the objective function. The importance of contracts in our model is
that they allow us to more greatly exploit certain demand situations (for example, by
buying in bulk at a discount if demand is very high). One interesting part of the model is
that we model the structure of the contracts via disjunctive programming. Disjunctive
programming involves modeling constraints using the logical disjunction operator
V. While the constraints used could certainly be modeled without the framework of
disjunctive programming, we found it highly useful during the modeling process as it
allowed us to operate at a higher level of abstraction and think about the modeling
more clearly.

With the exception of the disjunctive programming constraints, the model imple-
mented is fairly generic. We used terminology common to the forestry industry such
as “paper machine” for describing the singular unit or node where production occurs
and “paper mill” to describe groups of machines with common characteristics (e.g.
distance to a customer, shared inventory space etc.). However, we did not attempt to
model any specific process in the paper industry and the model implemented could
likely apply in a number of different cases. Also in all of our numerical experiments
there is only ever a single paper machine per paper mill. We never explored the
avenue of having multiple paper machines grouped under a single mill (although the
formulation of our model could support this if desired).

In terms of our findings, the focus of this thesis was verifying existing models
and consolidating the work done by others into a simpler form. Due to the inability
to find an open-source implementation of disjunctive constraints for a non-trivial
optimization model, we have implemented an optimisation model inspired by the
ones already existing in the literature (see [1] and [12] for example). We hope it
will be useful for those seeking to understand disjunctive programming to have a
simple but non-trivial example available that is written in a modern programming



language like Julia. We also believe that disjunctive programming is useful because it
abstracts otherwise relatively opaque-looking mixed-integer linear program (MILP)
constraints into a form that is more tractable to explain to less technical personal such
as senior management or auditors. In practise, this is likely the main gain of using the
disjunctive programming approach. The reader can think of it as a black box for which
higher-level disjunctive constraints are given as input and traditional MILP constraints
are given as output — not entirely different from how a compiler or interpreter takes a
high-level language as input and produces machine code as output.
The remainder of this thesis is structured as follows:

* Section 2 gives a brief introduction to disjunctive programming. We also give a
brief overview of modeling contracts and give a tutorial introduction of how it
can be used to create the disjunctions used in our model. A brief overview of the
literature is also given.

* Section 3 gives descriptions of the optimisation model itself and defines needed
notation.

* Section 4 describes the process we used to synthesize input data for the model. We
then describe the results of several numerical experiments for both a deterministic
version of the model as well as the full two-stage stochastic program.

¢ Section 5 concludes the work and addresses various difficulties and limitations
that were encountered during the development of the thesis. Avenues for future
work are also discussed.



Chapter 2

Method

2.1 Disjunctive programming

Figure 2.1: Example of a feasible region for a disjunctive programming problem.

In this section, we give a brief summary of disjunctive programming and how it
can be used to model various decisions. We assume the reader has a basic familiarity
with MILPs and common terminology used in the field of optimization. Our main
reference when writing this section was [4]. We also recommend [1] which gives a
more detailed theoretical introduction. Disjunctive programming is concerned with
modeling constraints defined using the following logical operators: V (or), A (and),
and — (negation). We will focus on V since this is all what is needed to model the
contracts used in our model. Before investigating how to model contracts, we will
start with a simple example. Consider a generic maximization problem

P : max f(x)

xeS

where f is a real valued convex function f : R> — R and S € R?. If § is a square
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region then it is straightforward to model S with linear constraints. However, suppose
that S = §; U S, where S and S, are two disjoint square regions (see Figure 2.1). In
this case x € R? is a feasible solution if it lies in either S; or S». We can then no longer
model S using standard linear programming constraints.

We can, however, model the region S using disjunctive constraints. Let x =
(x1,x2) € R? and y1, y» € {0, 1}. Then S is determined by the following constraints:

Y1 y2
1<x1<2|Vvi3<x1<4
1 <xp <2 1<xp <2

where y; + y, = 1. Disjunctive programming allows one to transform these logical
constraints into traditional 0-1 MILP problems that can be solved using standard
algorithms such as branch and bound. There are two main approaches to doing this
transformation: the big-M method and the convex hull method. We will perform the
reformulation for both cases.

The simpler reformulation option is the big M-method. In this method, the
following reformulation is produced of the disjunctive constraints:

1-M(-y)) <x; <2+M(1-y)
1-M(1-y;) <x2<2+M(1-y))
3-M(1-yy) <x1 <4+M(1-y»)
1-M(1—-y)) <xp<2+M(1-y»)

where M is a suitably large real number. The convex hull method is more complicated
but yields a tighter relaxation. For each x; introduce two new variables x;1, x;» and
impose x; = x;1 + x;2. Using the current example, the full set of constraints using the
convex hull method is then:

lelyl <xp1 < Xijlyl (2.1)
X5y < xo1 < x5y (2.2)
xbhya < x1p < xbys (2.3)
x5ya < x2 < x5ya (2.4)
yi <xi1 <2y (2.5)

y1 < x21 <2y (2.6)

3y2 < x12 <4y (2.7)

y2 <x20 < 2y; (2.8)

where the xg. and xiLj are upper and lower bounds respectively for each component of
the variable decomposition.

Intuitively speaking, we decompose each dimension of x € R? to be responsible
for fulfilling a certain disjunction. For example x1; is the part of x; that will fulfill the
second disjunction’s constraints. And, constraints (1) - (4) imply that if one component
of x is fulfilling the second disjunction then necessarily the other component will



be constrained to zero. So that x; as a whole will fulfil the constraints of the second
disjunction. The linear programming relaxation using the convex hull method is
tighter at the cost of having a larger number of variables. There are theoretical
justifications (in [1]) which show that the convex hull formulation is "optimal" in
a sense (e.g. under certain conditions the resulting relaxation yields the closed
convex hull of the polyhedrons determined by each disjunction constraint). These
considerations are outside the scope of our work. Also, in practise the reformulation of
the disjunctions should be something handled by an external software package such as
DisjunctiveProgramming.jl for Julia or Pyomo for Python. In the practical workflow,
the modeler would not need to write down the formulations themselves; rather, they
would specify only the disjunctions and not need to be aware of the underlying MILP
constraints. In our work, due to some issues using DisjunctiveProgramming.jl, we
were only able to use the big M reformulation option. The other reformulation options
seemed to be in less mature stages of development and caused issues with other
constraints in our model.

2.2 The contract selection problem

Here we briefly clarify what is meant by “contract” in this thesis. A contract is an
agreement between the manufacturer and the raw material supplier to provide raw
material r at a price p in time periods ?1, . . ., t,, for some arbitrary positive integer n.
There will also be specific logical conditions that must be fulfilled in order for the
discount to be achieved. In this thesis, we will model four different types of contracts
which are commonly analyzed in the contract modeling literature. We will model
these mathematically, but at a high level they are:

* Fixed price contract (FIXED): the supplier agrees to sell raw material r to the
manufacturer at the spot market price at time ¢.

* Discount after a certain amount (DACA): the supplier agrees to sell raw material
r to the manufacturer for price p up to a certain quantity sold ¢ and then a lower
price p, after this threshold is broken. We will often refer to the distinct parts of
this contract as first-stage price (p) and second-stage price (p;) respectively.
We refer to the specific volumes required to obtain a discount as the discount
limits of the contract.

* Bulk discount (BULK): the supplier agrees to sell raw material r to the manufac-
turer for price p given that the quantity sold is larger then some discount limit
q. In contrast to DACA type contracts, the manufacturer must buy the entire
quantity to receive any discount and the entire quantity will be discounted.

* Fixed duration contract (FD): the supplier agrees to sell raw material r to the
manufacturer at a fixed prices py, pa, or p3 for 1, 2 or 3 months respectively
provided the quantity purchased exceeds the discount limit for each length of
time. For example, a raw material X might be sold at a fixed price of 10 euros
per ton for 2 months provided the purchaser buys at least 5 tons of the material



per ton. FD contracts are necessarily more complicated decisions than the other
contract types. If the solver chooses to buy a raw material using FD contracts,
it must then also choose which length of time (1, 2 or 3 months) is the most
optimal.

The contract selection problem as defined in [3] consists of choosing which of the
above contracts to engage in at each time period of the desired planning horizon. The
major part of this thesis is concerned with using disjunctive programming to model
each of the above contract types and produce a MILP which gives an optimal solution
to the contract selection problem. We will use the abbreviations in parentheses to refer
to each type of contract.

2.3 Modeling contracts with disjunctive program-
ming

In this section, we will show how each of the contract types described in Section 2.2
can be modeled using disjunctive programming. We will also use this chapter as an
opportunity to introduce the reader to some of the notation that will be used in later
sections. To begin with, we will start by modeling DACA contracts.

To model a DACA contract, we require that cgétCA, the total cost of procuring raw

material type r at time ¢ under DACA contract by paper mill m to be

cDACA _ ¢DACA,1 /DACAL ¢DACA,2rDACA,2 (Vm € M,Vr e RNt €T) (2.9)

mrt rt mrt rt mrt

,B’;CA’I is the amount procured without any discount and r

et 18 the amount
procured with discount. The prices ¢,D,ACA’1 and ¢2ACA’2 are the prices guaranteed

when the amount purchased is below or above the discount limit c2ACA, Thus,

¢rD,ACA’2 will generally be lower to make the contract attractive. As was done in the

first disjunctive programming example, we will also need to introduce binary variables
Zf,CA’l, Z/thA’z indicating if the contract has been fulfilled (e.g. the amount of the
raw material the buyer has bought exceeds the threshold needed to get a discount). We

can then form the following disjunction constraints:

where r DACA.2 ;

DACA, 1 DACA,2
DAgArll C DACAmlrt C
. DACA .1 _ _DACA
0<r,; <o VAt =0 (Vm € M,¥r € R,¥Yt € T) (2.10)
DACA,2 -0 rDACA,2 >0

mrt mrt

In words, this says that if the buyer chooses a DACA contract at time ¢, then the first
rn'iélCA’] will be bought at price ¢Ir)tACA’1 while any excess over O'BACA will be bought
at the discounted price (/)BACA’Z. This highlights how disjunctive programming can be
used to efficiently model the various clauses and stipulations of a typical procurement
contract.

The next contract type, BULK, is similar to DACA but now the discount applies
uniformly across the entire purchased quantity provided the amount purchased exceeds

some pre-defined threshold. Let c?A“A denote the cost of procuring raw material r at



time ¢ under the BULK contract type. Similar to the DACA contract type, we have a
threshold parameter o-BULK which is the amount required to be bought in bulk in order
for the buyer to get a discount on the entire purchase. There are also two indicator
variables sE}rJtLK’l , El[rleK’z indicating if the contract has been fulfilled. We then have

the disjunctive constraints:

BULKI BULK,2
mrt
cBULK — "BULK,| BULK BULK _ 4BULK.2 BULK
= ¢, ot A Y | Cort s = D ot (Vm e M,Vr e R,Vt €T)
0 < r’]zEJ[LK < oBULK rBULK > 5BULK
(2.11)
where ¢BULK ! ¢IV3IULK’2 represent the price of the raw material with and without the

bulk discount respectively.

Lastly, we describe the FD-type contracts with disjunctive programming. This
example is of particular interest in that it shows how more than one disjunction can be
used to encode fairly complicated logical conditions in a compact manner. Recall that
FD-type contracts give the buyer the option to buy raw materials at a fixed price in a
given time period provided they agree to buy a minimum amount in each period.

Let cfP denote cost of procuring raw material r at time ¢ under the FD contract
type, let ¢F Dk k € {1,2,3} denote the fixed price agreed to purchase raw material r
at for the next k months, let rfD denote the amount of raw material r purchased at
time ¢ under FD contract. Finally let O'FD ¥ denote the k-th stage discount limit for the
contract. This is the minimum the buyer must procure for the next k months if they
seek a fixed price. We can then form the disjunction constraints

FD 3
S
FD,2 7 ¢FD FD
Surt mrl mrt  mrt
FD,1 FD _ FD,2 FD I’FD — FD,2 FD
St Conrt = nf:rlg Zrmrt mr(t+l) rt mr(t+1)
FD FD,1_FD FD _ 4+FD2 FD
mrt — ¢rt Pt | V Cmr(l+1) ¢Vt r2r(t+1) v rmr(t+2) ¢rtF m3r(l‘+2) (2.12)
FD FD,1 FD FD, ,FD
Fort 2 Oy Finrt 2 Oy FD.2 F]sm’l‘ = Oyt FD.3
FD s
rmr(z+1) 2 Oy i rmr(r+1) = Oy
7 > O_FD,3
mr(t+2) — 1t
forallm e M,r € R, t € T. Here the sED:1 GFD2 o hd sFP3 are the usual indicator

mrt *“mrt ° mrt
variables controlling if the price will be fixed for one, two or three months respectively.

While the above logics could certainly be encoded in an optimisation model without
the help of disjunctive programming, we believe disjunctive programming provides an
excellent high-level language for modeling complex business ideas such as contracts
in optimization models. Existing packages such as DisjunctiveProgramming.jl can
then be used to reformulate the disjunctive constraints into MILP constraints that may
be provided to off-the-shelf solvers. More practically, when presenting models to
business-users and management, the logically equivalent disjunction constraints can
be presented and explained over the less straightforward MILP constraints.
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2.4 Literature Review

At its core, the problem addressed in this thesis belongs to the field of supply chain
management (SCM). The precise definition of SCM is not exactly straightforward with
many interpretations existing in the literature. For example, see [10] for an in-depth
review of this question from a business perspective. However, for our purposes, it is
enough to have a pragmatic understanding. We directly quote [17]: a supply chain is
two or more parties linked by a flow of goods, information, and funds. In our problem,
there are three parties between which goods flow: the raw material suppliers, the
manufacturer and the customers. The manufacturer has prior information about the
customers in the form of historical data and the resulting forecasts.

Since firms often must hedge against future uncertainty in demand and prices,
making a decision regarding raw material procurement contracts is an integral step in
the SCM process. We believe the global uncertainty in recent years and its resulting
impact on raw material prices suggests that contract decisions must be integrated
directly into a firm’s decision support tools and not left in the hands of heuristics
or manual processes. In [17], a foundation is given on which most modern contract
modeling papers are built upon. The authors discuss the different aspects of common
procurement contracts in SCM and give various modeling approaches. However, the
focus is less on the optimal selection and more on clarifying the different types of
contracts. While there is no mention of disjunctive programming it is likely that the
different contract types used in our paper (which were originally used in [12] and [3])
originally stem from the work done in [17].

The literature on contract modeling using disjunctive programming is relatively
small with [3], [12] and [16] being the main examples. There could be a few reasons
for this, one being that modern optimization libraries (e.g. Julia’s JuMP and Python’s
Pyomo) have only recently begun to produce mature libraries that automate the
process of converting disjunctive programming formulations to MILP constraints (see
DisjunctiveProgramming.jl or PyOMO.GDP for example). Without these libraries, the
process of manually calculating the MILP constraints corresponding to a disjunctive
program can be tedious and seem ad-hoc to someone without prior knowledge in
modeling and optimisation. Another reason could be the large increase in solution
time that comes with introducing different types of contracts which we saw first hand
in our work.

Both [3] and [12] use disjunctive programming to model the contract selection
problem in the context of chemical process networks. The former work’s model is
stochastic while the latter uses a deterministic formulation. The model used in [3] is
reasonably similar to the one in this thesis, however, we opted for a simpler model
and did not make use of a demand-response function (i.e. manufactured goods price
as a function of demand). From our knowledge, we believe [3] and [16] to be the
only references using disjunctive programming to model contracts in problems with
uncertainty in the context of supply chain optimization. However, [16] makes the
reliability of supplier deliveries uncertain which is unique. The method of using
disjunctive programming also differs in [16] compared to our own work. While our
model consists of single sets of disjunctions with indicator variables (one for each
contract type), [16] have a single disjunction which selects between three different
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similarly structured contracts with different numerical parameters (e.g. discount or
minimum quantity requirements). Two of the contract types studied by [16] are nearly
identical to the so-called DACA contract we defined earlier with the third being a more
complex type involving interest rates. Interestingly, they also make use of generalized
disjunctive programming in their model while we are restricted to classical disjunctive
programming constraints. The generalized disjunctive programming can consist of
a larger set of logical operators such as negation (—) or and (A) as well as having
multiple disjunctions nested inside one another.

On the other hand, there are several works modeling contracts without the explicit
use of disjunctive programming. In [8] the authors study the optimal contract selection
problem in the case of liquefied natural gas (LNG) contracts. They model a single
contract type with an MILP choosing the optimal selection of contract parameters. An
MILP model for optimal procurement of wood supply is studied in [14]. The authors
focus on the case of flexibility in contracts. Specifically, the buyer has the ability to
buy more or less than the agreed amount. Each contract in the model has different
parameters for flexibility and the model will choose whichever is optimal. The model is
a traditional MILP without disjunctive constraints. They also modeled in greater detail
the process of transporting raw materials by introducing transportation costs for initial
raw material delivery as well as transportation between the manufacturer’s owned
storage sites. Individual suppliers are also modeled and can have different features and
offer different types of contracts (differing from our own model where suppliers are
abstracted away and only different types of contracts can be selected from). The same
authors generalized this model in [15] to the case of stochastic programming. Similar
to our own work, it is a two-stage stochastic program where first-stage decisions
concern the contract types and second-stage decisions are associated actual production
plan.

The aforementioned works [8], [14] and [15] highlight an important point in our
view. Namely, in the contract selection literature, there seems to be two different
problems that are both grouped under the label of the contract selection problem.
First, there is the problem of choosing between contract types with differing logical
structure and second, there is the problem of selecting between contracts of differing
parameters but shared logical structure. Examples of the former include our own work
as well as [3] and [12] while [8], [14] and [15] give examples of the latter. We believe
it is an important distinction to make since the formalism of disjunctive programming
could seem unnecessary and overly complicated to use if the problem targets selecting
between contracts of differing parameters but with a shared logical structure. For
example, [14] uses the following (we have simplified for the example) constraint to
impose the logic of the contract on the optimization model:

(F7 +1)Q42¢ > Xg (2.13)
(Fg +1)Qgz¢ < X (2.14)
where F’ g ( Fy) is a multiplier indicating how far one can deviate above the nominal

value Q, of the contract (e.g. we request more (less) raw material then initially agreed),
74 a binary variable indicating if contract g is used and lastly x, the amount actually

12



procured under contract g. It would be unnecessary to introduce the abstraction of
disjunctive programming in this case. In general, disjunctive programming is most
useful when the business problem under consideration consists of several different
alternatives (in our case contracts) that have a distinct internal logical structure.
From reviewing the literature we conclude that there is, in general, not much work
done on using disjunctive programming in the context of supply chain management
and optimisation. There is also some ambiguity on what exactly is meant by the
contract selection problem which we attempted to clarify in the previous discussion.
The remainder of the thesis is an attempt to contribute to the existing literature by
providing a simple example of disjunctive programming in the context of supply chain
management. The source code is freely available at the author’s GitHub repository
(see [7]) and could hopefully be used as a model for future works in the literature.
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Chapter 3

Modelling approach

In this section, we describe the two-stage stochastic programming optimisation model
we will analyze. The problem of deciding what contracts will be undertaken at each
planning period is understood as something that must be decided “in advance” and
will thus be independent of the stochastic scenarios in the model. The second-stage
decisions consist of deciding the production plan itself and will be scenario-dependent.

3.1 Contract decisions

Here we primarily describe the parts of the model that are related to the modeling and
selection of contracts.

Sets
A = {FIXED, DACA, BULK, FD} set of contract types
S ={S0,...,Sn} set of scenarios
Parameters

gbff;i acAteT,reR,ie{l,2,3} i-th stage price of raw material r at time ¢
under contract type a

o-r"t’i acA,teT,reR,ic{l,2,3} i-thstage discount limit for material r at time
¢ under contract type a

14



Decision variables
Binary decision variables
Ly A€EAmeM,reRteT contract type a is used by mill M to procure
raw material r in period ¢
s%l a € Abm € M,r € R,t € stagei of contract type a is used by mill m to
T,ie{l1,2,3} procure raw material r at time ¢
l,%}r, meM,reRteT time period t is the second month of a two-
month FD contract used by mill M to procure
raw material r
Bl meM,reRteT time period ¢ is the second month of a three-
month FD contract used by mill M to procure
raw material r
12 meM,reRteT time period ¢ is the third month of a three-

month FD contract used by mill M to procure
raw material r

Continuous decision variables

r

c

C

@iy e M,re Rt €T,ie{l,2} tons of raw material r purchased by mill M

mrt

under contract type a at i-th stage price under
DACA contract at time ¢

o a€AmeMreRteT cost of raw material r purchased by mill M
with contract type a at time ¢

onstraints

The total cost for materials procured via FIXED type contracts is simply the market
rate multiplied by the amount purchased.

FIXED _ FIXED_FIXED
mrt - ¥Yrt mrt (31)

The disjunctions for DACA contracts are given by:

DACA, I DACA 2
DA(n:,th DACAnfrt
. DACA 1 _ __DACA
0<r,; < oy, Vor, o =0, (Vme M,YNr e RVt e€T) (3.2)
DACA2 _ /DACA2 S

mrt mrt

The sum of non-discounted and discounted volumes for DACA contracts make the
total.

rDACA = pDACAT 4 pDRCA2 - (Vm € MVt € T,Vr € R) (3.3)

mrt mrt mrt

The total cost of DACA type contracts is given by summing the costs of the non-
discounted and discounted volumes.

CDACA — ¢]r)lACA,1rDACA,1 + ¢DACA,2rDACA,2 (Vm € M,Vr € RVt € T) (34)

mrt mrt rt mrt
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The disjunctions for BULK contracts are given by:

BULKI BULK,2
mrit
BULK _ yBULK,1 BULK BULK _ ;BULK,2 BULK
Cmrt BU(fK gﬁffl{ Yot BUEK 4 BU’I:nI%” (Y € M. ¥r € V1 el)
O0<rp,; <0y Tmre 2 Oy
(3.5)
The disjunctions for FD contracts are given by:
SFD 3
FD,2 7 ¢FD FD
Smrt mrt 1gnDrtz mrt
FD,1 FD _ ,FD2 FD FD _ FD
Smrt Conrt = ¢n}z§% 2rmr[ rmr(t+1) r]t-7D 2"6r(t+1)
FD _ (FD.1_FD FD = 2. FD —
Conrt = ¢rz FDrTrt N Cmr(t+l) ¢ FDrzr(Hl) N rmr(t+1%])) ¢rt rm3r(t+2) (36)
FD #FD ;
Finrt 2 Oyt Finrt 2 Oyt FD2 F’Bﬂrt = Ot FD3
FD . .
P (e41) 2 0,y | U 2 Oy
FD > oFD3
mr(t+2) — T rt
forallme M,re R,t T
We can only procure raw materials using active contracts:
row <Mz, (Yae A Yme M,Nt € T,Vr € R) (3.7)

for large M € R.
For each mill, raw material type, we can only choose one type of contract in a
single time period:

>z, <1 (YmeM\VreRVieT) (3.8)

acA

Contract stages are mutually exclusive in DACA and BULK contract types:

@l 4 @2 (Yme M,Yr € RVt €T) (3.9)

Zonrt = Syt + Smrt

where a € {BULK,DACA}. Contract stages are also mutually exclusive in FD
contracts. However, we need some extra variables to ensure the contract is binding in
future time periods if selected:

-2

Zmrt mrl

132

+030 432 Z s'7 (Vm e M,Vr € RVt € T) (3.10)

mrt
ie{1,2,3}

To make Equation (3.10) work we also need the following:

Lot = Spip_yy  (Ym € MVr € RVI €T) (3.11)
Blo= sfjfg_l) (Vm € M,Nr € RNt € T) (3.12)
Lot = Spi_ay (Ym € MVr € RVI €T) (3.13)

Constraints (3.11) - (3.13) ensure that when the model selects an FD contract at period
t then it will be forced to select it again in the next one or two periods (depending on
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which stage was selected). For example, suppose the model decided to take a 3-month
FD contract at time #’. Then constraints (3.12) and (3.13) ensure lfnlr (+1) and lizr (42)
will be set to 1. This means that the mutual exclusivity constraint (3.10) will force FD
to be chosen in periods ¢’ + 1 and ¢’ + 2 as we would expect for a 3-month binding
contract.

There are a few technicalities regarding this notation. For FIXED type contracts
</)f;i has no dependency on i since FIXED contracts use only the market spot price
with no discount possible. Hence we will drop i when using this variable for FIXED
contracts. Similarly, DACA and BULK contracts only have a single discount limit. So
o' has no dependency on i for a € {DACA, BULK}. Thus we will also drop the i
when using this variable in the context of DACA and BULK contracts. In variables
that depend on i € {1,2,3}, it is possible the variable is undefined for i = 3. For
example, DACA contracts do not have a third stage so sB‘i‘,CA’3 will be undefined. In
all these cases the reader should assume the variable will be constrained to 0 for i = 3.
Lastly, FIXED contract material prices are stochastic and implicitly depend on s € S.

We decided not to make it explicit here for simplicity.

3.2 Production planning model

In this section, we describe the parts of the model dealing with production planning.

Sets

The customers in C are buying products produced by the paper machines in set U.
Note that the elements of M are subsets of U so that each paper machine can belong
to the same mill. The set T is the number of planning periods. In each planning
period, the complete production schedule must be designed and a contract type de-
cided for each raw material in R needed to produce the products of P that are in demand.

U set of paper machines
M c 2V set of paper mills

set of paper products
R set of raw materials
C set of customers

T set of time periods

~
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Parameters

apr peEPrer conversion factor to convert 1 ton of product
p into required raw material r

5 s

peP,teT,ceC,seS demand in time period ¢ for product p from

cpt . .

customer c in scenario s

ky ueU monthly production capacity of paper machine
u.

Adew ceCmeM logistics costs for transporting products from
paper machine u to customer ¢

0, meM storage costs per ton of product or raw material
stored at mill m

Ypr peEPteT price per ton of product p at time ¢

™ ses probability of scenario s

Ym mMEM maximum inventory space for mill m

Decision variables

Cont. decision variables

Xepr C€C,pePuclUitel,ses
depyy pPEP1eT,ceCses
wgmp, ceCmeM,peP,teT,seS

Vourt meM,reRteT,seS

s
qcput

Objective function

The objective function is

pePuclU,ceC,teT,seS

tons of paper product p produced by paper
machine u in time ¢ for customer c¢ in scenario
s

demand in time period ¢ for product p from
customer c allocated to machine u in scenario
s

tons of paper product p in storage at mill m
at time ¢ for customer c in scenario s

tons of raw material r in storage at mill m at
time ¢ in scenario s

tons of unfulfilled demand from customer ¢
for product p by paper mill u at time 7 in
scenario s

EXP. PROFIT = Z n*(SALES; — ICOSTS; — RCOST — LCOSTy) (3.14)

ses
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where

SALES; = " 3" > i (Xlpus = @lpur) (3.15)
pEP teT uelU

RCOST= ) 3" > ¢t (3.16)
reR teT acA

ICOSTy = > 3" (). > Whpi + Y ¥ourt) (3.17)
meM teT pEP ceC reR

LCOST, = 3" %" 3 3 deuklpu (3.18)

teT ueU ceC peP

Specifically, SALES; is the revenue received from selling products to customers. The
variable ¢,,,, acts as a penalty for when demand is not completely fulfilled. The
variable RCOST is the costs of procuring raw materials and ICOST; is the costs of
storing raw materials and finished products in inventory. Lastly, LCOST; is costs of
logistics of transporting product p to customer c.

Constraints
Customer demand is distributed to each paper machine to maximise the profit.

Dy =62 (3.19)
uelU

Demand should be balanced taking into account existing inventory and currently
produced products. If it is not feasible to satisfy demand, g, will supply the shortfall
which is deducted from the objective function.

N
+Wem pr

(Vt e T,Vp € P,Yc e C,Yu e U,Vs €5)

(3.20)
where m’ is the mill containing the paper machine u. Products can only be produced
if the necessary materials have been purchased or already exist in inventory.

Vo) * D Tt = Yot D D @prxip (V1 €T, Vp € P,Vr € R,Ym € M, Vs € S)
acA ceC uelU
(3.21)

Each paper mill (e.g. grouping of paper machines) has a fixed size inventory. In this
inventory we can store a mixture of raw materials and products. The total quantity
stored cannot exceed a fixed amount.

DD Wi+ D Vet Svm (Yme MVt €T, Vs € ) (3.22)
pEP ceC rer

S S S
deput tXepurtW d

_ s
cem’p(t—1) — “cput

Similarly, each paper machine has a maximum capacity of paper it can produce in a
single month.

> Xy <ku (VLETVueUVses) (3.23)
pEP ceC

Lastly, we have non-negativity: all continuous decision variables are non-negative.
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Chapter 4

Numerical results

4.1 Data generation

As mentioned, our model is a two-stage stochastic MILP with raw material prices
and demand being the sources of uncertainty. Our data largely comes from synthetic
data creation processes. Namely, our demand data is generated by using bootstrap
re-sampling on historic time-series of wood pulp price data sourced from [9]. Bootstrap
sampling consists of re-sampling a single sample of data in an attempt to approximate
the underlying sampling distribution (see [11] for a more detailed introduction). In
our case, we start from a time series of prices

Pls.--sPn-

100 1 —— pulp_price

90 4

80

70 1

60 1

T T T T T T T T T T
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
date

Figure 4.1: Sample of pulp prices used as input to the data generation process for our
model.
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We would like to generate new time series data that is somehow similar to this original
sample. Traditionally, bootstrap re-sampling consists of taking random selections with
replacements from the original sample to create a new sample. For example,

P4,P1,P1,P2,-.., P4

could be a valid bootstrap re-sampling where the number of terms in the sample is still
n which is the same as the original sample. However, in the case of time-series data,
we traditionally expect some degree of autocorrelation to exist in the data. Hence, we
need to modify our re-sampling procedure to take this into account. One way to do this
is called block bootstrapping (thoroughly described and analyzed in [6]). This method
allows us to create new time-series data from a single sample while also taking into
account the local qualities of the original sample. Briefly, this process is as follows:

1. Given time-series dataT : py, ... p,, form [ blocks By, ..., B; of length k where
By ={p1,p2,--->Pk}> Bo = {Pr+1> Pk+2 - - -» P2k} and so on so that the union
of the B; is equal to T (assuming for simplicity that the number of data points in
the original sample is divisible by /).

2. Next, instead of re-sampling from the original time series with replacement, we
re-sample [ sets from the collection {Bj, ..., B;} with replacement.

3. Lastly, form a new time series 7" by taking the union of the / sets we randomly
selected from the previous step.

In this way, provided k is not too small, we preserve the local dependency of the
original sample. There are various theoretical results summarized in [6] on the
statistical proprieties relating 7 and 7”. However, for our purposes, we take a pragmatic
approach and simply use bootstrap re-sampling as a means to efficiently generate
more data. For examples of the output of bootstrap re-sampling, refer to Figures 4.2a
to 4.2d. In general, we believe this process was successful in generating a diverse
number of scenarios. Qualitatively, we can see fairly realistic market scenarios of
sudden increases and decreases as well as periods of relative stability.

In terms of how this data will be used in the model, each type of raw material
will have several scenarios of pricing data that will be generated by using bootstrap
re-sampling. In order to get more diverse trends for each raw material, we decided to
also change the dates from which we sample from the original time series in Figure
4.1. For example, one raw material might have its data generated by re-sampling from
the year 2013 while another from the year 2020 and so on. In this way, each raw
material will have its own distinct statistical characteristics and typical trends.

Lastly, we also have a simple data-generating process for the customer demand
data. This process is purely synthetic and does not rely on external data sources.
Specifically we assume that for a product 7, time period ¢, customer ¢ and scenario s
the demand is

D(i,t,c,s) =asin(Yjt +Z.+ X) +aX + W, 4.1)
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100 1 — pulp_price —— pulp_price
82.54
95 4
80.04
90 4
77.5 4
85
75.0 1
80
72.5 1
75 1
70.0 4
701 675
65 4
Jan Feb Mar Apr May Jun Jul  Aug Sep Oct MNov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2021 2021
date date
(a) Sample 1 (b) Sample 2
—— pulp_price
7254 pulp_price
854
70.0 4
50 67.5
65.0
75 62.5
60.0
701 57.5
55.0 4
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb  Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2021 2021
date date

(c) Sample 3 (d) Sample 4

Figure 4.2: Various samples from the block bootstrap process using one year (2021 Jan -
2021 Dec) of the time series in Figure 4.1 as input.
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Demand by Scenario, Customer C7. Product P3 Y B2 -

SCENARIO @50 @571 @52 @53 @54 @55 @55 @57 @58 @59
200

150

Demand
g

50

202102 202104 202106 202108 202110 202112
CALMONTH

Figure 4.3: Example demand generated by our data generation process for a specific
customer and product.

where the X;,Y;, Z. and W; are uniformly distributed random variables as follows:

X ~U(0,1)
Yie ~U(1,2)
Z. ~ U(0,5)
Wie ~U(0, 1)

and a > 0 is a positive real number. The above parameters were purely chosen for
convenience and to limit the time spent searching for data. An example of how the
demand data looks as a result of this data generation process can be found in Figure
4.3.

In general, we believe there is opportunity for improvement in our data gener-
ation methodology. We found the problem of generating realistic data to be fairly
challenging. This again reflects the fact that we were mainly focused on under-
standing the implementation details of disjunctive programming and less on the
actual realism of the underlying data in this project. The Python script that per-
forms both main data generation tasks mentioned in this section can be found in
data_generation/gen_input_file.py located at [7]. This script generates all
the parameters necessary to formulate the optimization model described in the next
sections.

4.2 Technical information

The model in this thesis was implemented using the Julia programming language
along with the DisjunctiveProgramming.jl package (see [13]). Preparation of some of
the input data was also performed in Python. The Gurobi solver (see [5]) was used to
solve all instance of our model with MIPGap set to 0.05%. Computational experiments
were performed on a Windows 10 Professional computer with an AMD Ryzen 5 PRO
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Total Demand by Month
PRODUCT @F0 ®P1

2

|I ,Jujlllll

Month

Demand (tons)

Figure 4.4: Customer demand from problem instance O of the de-
terministic model. Data can be found in CustomerDemand tab of
paper_det_examples/high_demand/RESULT_0.x1sx located in [7].

2500U 2.00 GHz processor and 16 GB of RAM. Source code and input data used can
be found at [7].

4.3 Deterministic model

In this section, we will analyze the model performance considering only one scenario
(e.g. without any stochasticity in the demand or raw material market prices). See
Table 4.2 for the list of parameters used in this example. The deterministic model
is useful as introducing stochasticity gives a significant performance overhead when
solving the model to optimality. Hence, the deterministic setting allows us to scale up
the model to more closely resemble reality while having acceptable solution times.
However, the scale of our parameters are quite small in relation to reality. The structure
of this section is as follows: first, we will visualise the input data used as well as the
general structure of the problem; second, we will solve the problem considering several
instances of randomized input data; lastly, we will analyze the numerical results and
indicate some basic conclusions. We also perform a rudimentary cost-benefit analysis
to estimate how profitable introducing the complexity of modeling the contracts is.
The input data used for all problem instances in this section can be found in the
paper_det_examples folder of [7].

As mentioned earlier, we will analyze the model performance considering several
randomized instances of input data (an instance meaning one specific result of the data
generation process described in Section 4.1). However, we will keep the parameters
of the model constant to those given in Table 4.2 unless otherwise stated. Figure
4.7 gives a high-level schematic for the model. Raw materials flow from suppliers
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Raw Material Prices by Month
RAW MATERIAL @RO @R1

0

202102 202104 202106 202108 202110 202112
Month

Price (EUR)
2 B

g
=}

r
1=}

Figure 4.5: Raw material prices (per ton) from problem instance 0 of
the deterministic model. Data can be found in CustomerDemand tab of
paper_det_examples/high_demand/RESULT_0.x1sx located in [7].
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Percentage of Total Raw Material Procured by Contract Type
Contract @ BULK @ DACA @FD @FIXED
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Month
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Figure 4.6: Contract selections per each period as a percentage of the total amount
of raw material produced. Data can be found in RawMaterialContract tab of
paper_det_examples/high_demand/RESULT_0.x1sx located in [7].
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Raw Materials (RO, R1)

Cc1

Figure 4.7: High-level schematic of the deterministic model.

to three production units PM0O, PM1 and PM?2 which in turn produce products PO
and P1 taking into account the demand of customers CO and C1. It is also possible
for excess raw material or excess product to be stored in inventory. See Figures 4.4
and 4.5 for an idea of how the demand and raw material prices look for a typical
instance of the deterministic model. Lastly, see Figure 4.6 for an example of how the
different contract types are used in solving the problem instances. Now that the reader
is more accustomed to the data of the problem, we will move on to actually solving
the problem instances.

The input data of the problem instances are randomly generated using the process
described in Section 4.1. Because of the random nature of the data generation process,
we will solve the problem several times considering different instances of the data
generation process created by the process described in Section 4.5. This will provide
a sensitivity analysis to see if small to medium perturbations in the input data result
in different contract selections and also to evaluate the stability of the objective
value. The results of generating and solving ten problem instances can be found
in Table 4.1 and the input data used for each scenario can be found in the folder
paper_det_examples/high_demand/ at [7]. The columns BULK, DACA, FD and
FIXED indicate what percentage of the total purchased raw materials was purchased
using the respective contract type. Looking at the Table 4.1, there are a few things
that one could point out. First, on average the model obtains an objective value of
approximately 14 million EUR with the exception of instances 1, 4 and 7 which have a
noticeable jump to around 20 million EUR. This is due to larger amounts of demand
in these cases in comparison to the other instances. In all cases, the BULK contract
type was used to purchase the largest percentage of the raw materials (see the BULK
column of Table 4.1). There is also no instance which uses the FIXED contract type.
This is because the FIXED contract type uses the market rate to purchase a particular
material. The other contract types are all tied to the market rate so FIXED contracts
would only be applicable in the case of high inventory costs (so that the model cannot
group small demands together) and low demands (so that discounts will not apply).
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Instance Obj. value Runtime (min) BULK DACA FD FIXED

0 13023671 3.6 52.7 27.8 196 0
1 23027574  20.7 63 8.2 289 O
2 14979594 1.2 56.2 0 438 0
3 10486945 1.2 65.4 15 19.6 0
4 21541664 3 68.7 13.5 179 0
5 17983085 1.2 79.6 20.4 0 0
6 11985918 1 54.1 24.6 213 0
7 20671034 114 70.5 0 295 0
8 15261114 2 85.2 5.5 92 0
9 15510437 1.4 72.7 10.3 17 0

Table 4.1: Results from running ten problem instances (high demand, a = 500). Data
files for these instances are placed in paper_det_examples/high_demand/ located
in [7].

For example, in Table 4.3 we ran a similar experiment after reducing the amplitude a in
Equation 4.1 from the data generation process. In the numerical experiments in Table
4.3 we also set all parameters to 1 to try to speed up performance. In our experience
this did not impact the resulting contract portfolio. That is, with all parameters set to 1
and a = 500, we see a similar contract portfolio as Table 4.1. In Table 4.3, we can
see BULK is preferred 100 percent of the time in almost all cases. This is because
the model tends to buy in bulk at a single or small number of early periods and store
the rest in inventory. For example in Instance 0, almost all of the raw material was
bought in the second time period (February, 2021) and then stored in inventory to be
used in later periods. In general, it appears the contract portfolio given by the model is
highly dependent on demand. This is to be expected considering all of the contract
definitions have logic that yields a more favorable discount after a certain amount
purchased. On the other hand, if inventory costs are sufficiently high, then we will see
the FIXED contract being used more dominantly as can be seen in Table 4.4.

Parameter Size

Number of PMs

Number of Customers
Number of Products
Number of Raw Material
Number of Scenarios
Number of Periods

—_—— =N DN W

2

Table 4.2: Parameters used for deterministic model.

Overall, we found these results to be as expected. The contracts have discounts
which allow the manufacturer to take advantage of economies of scale. Thus, it is
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Instance Obj. value Runtime (min) BULK DACA FD FIXED

0 198896 0.13 95.3 0 0 47
1 89291 0.01 100 0 0 O
2 152759 0.01 100 0 0 O
3 148501 0.01 98.8 0 0 1.2
4 250150 0 99.8 0 0 02
5 105777 0.01 100 0 0 O
6 133699 0.01 100 0 0 O
7 85195 0.01 100 0 0 O
8 103553 0.01 100 0 0 O
9 212911 0.01 100 0 0 O

Table 4.3: Results from running ten problem instances (low demand, a = 20, all
parameters listed in Table 4.2 set to 1 to improve performance). See the input files in
paper_det_examples/low_demand at [7].

Instance Obj. value Runtime (min) BULK DACA FD FIXED

0 130324 1.7 80 14 0 6

1 135923 0.13 25 0 0 75
2 115933 0.13 49 0 40 10
3 93007 0.13 0 0 0 100
4 268055 0.13 68 0 19 13
5 61641 0.13 56 0 0 44
6 104276 0.13 23 0 39 38
7 184437 0.13 36 10 0 53
8 118130 0.13 13 0 39 47
9 80156 0.13 02 20 51 8

Table 4.4: Results from running ten problem instances (low demand, a = 20, all
parameters listed in Table 4.2 set to 1 to improve performance). We also increased
inventory costs significantly which caused FIXED contracts to be used more frequently.
See the input files in paper_det_examples/low_demand_high_storage_costs
at [7].

not surprising when high demand results in contracts with discounts being used and
more pessimistic situations result in purchasing by the market rate. The results of
the numerical experiment for the deterministic model confirmed to us that the model
is working correctly and gives sane results. One interesting conclusion is that it
seems the choice of contracts are relatively robust against random changes in demand
and raw material price fluctuations. Despite randomly generating the data for each
instance, there were similarities in the resulting contract choices. For example, in the
high demand case illustrated in Table 4.1, the demand time series for Instance 1 and
Instance 5 are fairly different (see Figure 4.8) yet both have a similar distribution of
contracts with BULK being the dominant one.
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Figure 4.8: Demand developments for Instance 1 and Instance 5 in high demand case
from Table 4.1.

This is also easily interpretable. The definitions of the DACA, BULK and FD
contracts are purely dependent on the total amount of demand and not on how the
demand changes over time. Provided that in total there is enough demand to fulfill the
discount limit of each contract and that inventory is available and sufficiently cheap,
DACA, BULK or FD will always used by the model since a discount will be applied
and the objective value will increase. Overall, this gave us a feeling that implementing
a stochastic formulation with multiple scenarios might not give as strong improvement
to the objective function as we initially though. We will investigate this more in the
next section.

Lastly, we conclude with a simplistic cost-benefit analysis. Intuitively, the presence
of contracts in the model allows us to take advantage of economies of scale and signifi-
cantly reduce costs. The cost of modeling contract types is that we transform what was a
production planning problem that did not distinguish between contract types into a more
complicated MILP. To estimate the potential advantage of modeling different contract
types, we have computed objective values considering several input data instances.
The input data can be found in paper_det_examples/high_demand_simplified
at [7]. For each instance, we solved the problem with and without contracts. The results
can be seen in Table 4.5. In general, there was a reasonable benefit in implementing
the MILP constraints to model different contract types with an average 3.8 percent
increase in the objective value. Of course, in practise the benefit will depend on market
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conditions. If demand is high and contracts exist with significant discounts, we could
see even larger improvements. On the other hand, if demand is low and discount rates
are not favorable then there is little benefit in introducing different contracts.

In conclusion, this section was a basic analysis of the deterministic case of our
model. That is, we did not introduce stochasticity into demand or raw material market
prices. We conducted an overview of the input data as well as performed several
numerical experiments that validated our intuitions about the model behavior. It was
noted that contract selections appear to be robust against random changes in the input
data and that this could potentially affect the value of implementing a stochastic model.
Lastly, we quantitatively estimated the potential benefit of modeling different contract
types in our planning problem and concluded that there was a reasonable increase
in objective values as exhibited in 4.5; however, the magnitude of the increase will
necessarily depend on the market conditions and industry practises.

Instance Obj. value (contracts) Obj. value (no contracts) Absolute chg Pct. chg

0 2696720 2549349 147371 5,8
1 4801842 4659040 142802 3,1
2 5880741 5649311 231430 4,1
3 4390298 4220882 169416 4

4 3587040 3450037 137003 4

5 2324270 2281367 42903 1,9
6 3975660 3855006 120654 3,1
7 6487264 6287059 200205 3,2
8 4522111 4366880 155231 3,6
9 3394824 3230683 164141 5.1

Table 4.5: Objective value comparison with and without contracts. As be-
fore all parameters listed in Table 4.2 were set to 1 and the input data from
paper_det_examples/high_demand_simplified was used located in [7]. The
column Obj. value (contracts) contain the objective value of solving the model with
modeling contract types. Similarly Obj. value (no contracts) contain the objective
value of solving the model without modeling contract types. Lastly, Absolute chg
and Pct. chg give the difference and percent difference between the objective values
respectively.

4.4 Stochastic model

In the previous section, we analyzed the model in the deterministic case. For an
individual instance, there was no stochasticity in demand or raw material prices. We
will now introduce randomness in raw material prices and demand so that the model
becomes a two-stage stochastic programming problem. The first-stage decisions will
be choosing which contract types to use at each time period. The second stage decisions
will be from the production planning model itself. Specifically these second-stage
decisions are the decision variables that were defined in Section 3.2. Similar to
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Parameter Size

Number of PMs 1
Number of Customers 1
Number of Products 1
Number of Raw Material 1
Number of Scenarios 20
Number of Periods 12

Table 4.6: Parameters used for stochastic model.

the previous section, we will generate multiple problem instances using our data
generation process. However, in this case, there is now randomness in demand and
raw material prices. This means that for a single problem instance, there will be
several scenarios for demand and raw material prices instead of just a single scenario
as was done in the previous section. Naturally, introducing more scenarios, increases
the number of variables in the model and the resulting solution time. In order to
keep solve times manageable, we use the parameters given in Table 4.6. These are
much more conservative then the previously used parameters (see Table 4.2) with
the exception of Number of Scenarios which was increased to 20 since we now have
stochasticity in demand and raw materials. This is a significant simplification but
we believe it is permissible since our main interest is on understanding the contracts
selected and not so much on the realism of the underlying production planning
model. Of course, this is certainly a limitation of our work and should be kept in
mind when interpreting our results. Lastly, we also deviated slightly from the data
generation process originally presented in Section 4.1. Instead of the sinusoidal-based
method of generating demand, we opted for a slightly more complicated approach that
simulates a process with autocorrelation for each scenario. The full version of the
code can be found in data_generation/gen_input_file.py (see [7]) and Figure
4.9 should convey the general idea of having forecasts that gradually become more
uncertain into the future. The demand generation process used to generate data in the
deterministic formulation was essentially a randomized sine wave. This is enough for
the deterministic case because there is only a single fixed scenario under consideration.
However, for the stochastic formulation, there are multiple scenarios for customer
demand and as time evolves their should be more uncertainty in the customer demand
which is why we switched from the previous randomized sine wave approach. As can
be seen in Figure 4.9, scenarios will “fan out” over time reflecting increased uncertain
in the true demand.

With the above remarks in mind, this section will largely revolve around under-
standing two metrics relevant to stochastic programming models. First, there is the
Value of the Stochastic Solution (VSS). The VSS provides a measure of the value
of implementing the stochastic model (the definition we use is aligned with [3]).
Formally, VSS is given by

VSS=RP—-EV 4.2)
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where RP is the objective value of the so-called recourse problem and EV is the
objective value of the expected value problem. The recourse problem is the standard
stochastic programming formulation without modification. The expected value problem
is a completely deterministic formulation where we have replaced parameters that
vary with scenario by their expected value (hence a problem with multiple scenarios
is reduced to the case of one). The RP problem is solved first and then the first
stage decisions of the EV problem are fixed to the same values decided by the RP
problem. In this way, we can make a reasonable comparison between the stochastic
and deterministic formulations of the model. If the VSS is large, then the stochastic
formulation has some value over the deterministic form and might be worth considering
for implementation. However, if the VSS is small or zero, this suggests little benefit is
given by the stochastic formulation. That is, in some sense, stochasticity does not play
a strong role in further increasing the objective value of the problem.

The second metric is the Expected Value of Perfect Information (EVPI) as
introduced in Chapter 4 of [2]. In the context of stochastic programming, EVPI
measures the maximum amount of improvement to the objective function that could
be made if we could remove uncertainty from the model. In our case, that means we
would know the raw material prices and demand exactly so that introducing uncertainty
is not needed. Mathematically, EVPI is defined as

EVPI = WS - RP (4.3)

where RP is as defined as before and W.S (known as the wait-and-see solution) is the
probability-weighted sum of objectives from solving the problem for each scenario
under consideration. The difference between EVPI and VSS is that VSS measures
the gain from changing a fundamental aspect of the model formulation: going from a
deterministic model to a stochastic model. On the other hand, EVPI is less about the
formulation of the model and more a measure of how much we should pay to reduce
uncertainty. For example a company might want to understand how much value could
come from improving the certainty of the estimates used for the demand scenarios.
EVPI rather than VSS would be the metric to use in that case.

Using these two metrics, we can analyse the results in Table 4.7. The table is
similar to the tables used during the discussion of the deterministic model. Each
row corresponds to a solved problem instance of the model. The input data used can
be found in paper_stoc_examples at [7]. The columns are as follows: RP is the
objective value of the recourse problem, EV is the objective value of the expected
value problem, VSS is the value of the stochastic solution, VSS Pct. Chg is given
by 100 X (RP — EV)/EV and EVPI is the expected value of perfect information.
We can see our stochastic model’s VSS is generally quite a bit smaller than the 10
per cent increase the authors of [3] obtained. We believe this is mainly due to the
fact that [3] includes product selling prices in first-stage decisions in addition to
contract-type decisions. It seems plausible this would ultimately allow the model to
increase profitability and more greatly exploit certain demand patterns (e.g. set higher
prices for high demand). Because this introduces non-linearity into the problem, we
opted to only include contract decisions in our model and not have selling prices for
our products also as decision variables. However, there is a reasonably large VSS for
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some problem instances such as 7 and 8. We will analyze these in detail to see what is
driving the larger VSS.

Instance RP EV VSS  VSS Pct. Chg EVPI
0 706400 701082 5319 0.76 11646
1 1229996 1214886 15111 1.24 8408
2 274598 264214 10384 3.93 6812
3 623924 619063 4861  0.79 6584
4 1173028 1164411 8616 0.74 5997
5 942539 942303 236 0.03 5159
6 898363 877338 21025 24 7663
7 337913 314924 22990 7.3 4499
8 264331 250689 13642 5.44 7667
9 1122632 1110775 11858 1.07 7821

Table 4.7: Results for running the stochastic model 10 times.

In general, as we suggested in the previous section, the stochastic model behaves
quite differently for scenarios with low and high demand. For cases where demand is
generally lower across scenarios, the VSS is higher. For cases where demand is higher
across scenarios, the VSS is lower. This seems to be the main phenomenon driving
the difference between VSS in Instances 5 and 7 (these two instances represent the
extremes with instance 5 having low VSS and instance 7 having high VSS). Figure 4.9
provides a visualisation of the difference in the demand scenarios for the two problem
instances with Instance 7 clearly having less demand in all its demand scenarios. We
can also see in Table 4.9 that, as we would expect, Instance 5 has almost no difference
in contract choices when comparing the optimal contract portfolios between the RP
and EV problems. On the other hand, Instance 7 is the opposite. The EV problem
made substantial use of the BULK contract type in the later periods of the model while
the RP problem only used it twice.

In conclusion, we believe that there is evidence that would support the use of
the stochastic model. Namely, we found that VSS was positive in all cases and in
some specific instances such as problem instances 7 and 8 there is a material increase
in the objective function when using the stochastic model relative to the expected
value formulation. However, the benefit of the stochastic model appears to be heavily
dependent on the overall level of demand in the dataset. For cases where demand is
low (e.g. close to or below the discount limits of the contracts), it seems the stochastic
model provides a good improvement in increasing the objective function. However, in
cases where all scenarios have demand above the discount limits, first-stage decisions
appear to be quite robust in the face of uncertainty. Namely, we found that the relative
difference between the RP and EV objective function values was smaller. Thus, it is
was not possible to conclude that the stochastic model is superior in all cases.
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Demand Scenarios for Instance 7

SCENARIO @50 @51 @510 @511 @512 @513 @514 @515 @516 @517 @518 @519 @52 @53 @54 855 @56 @57 @58 959
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Demand (tons)

202102

Demand Scenarios for Instance 5

SCENARIO @50 @51 @510 @511 @512 @513 @514 @515 @516 @517 @518 @519 @52 @53 854 855 @56 957 @58 959

=)
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Figure 4.9: Demand scenarios for Instance 7 (top) and Instance (5).

Period Inst. 5,RP Inst. 5,EV Inst. 7, RP Inst. 7, EV
202101 BULK BULK FIXED FIXED

202102 FD FD DACA DACA
202103 FD FD FIXED FIXED
202104 FD FD FIXED FIXED

202105 BULK BULK DACA DACA
202106 BULK BULK FIXED FD
202107 BULK BULK FIXED FD
202108 BULK BULK BULK BULK
202109 BULK BULK BULK BULK

202110 DACA DACA FD BULK
202111 DACA BULK FD BULK
202112 BULK BULK FD BULK

Table 4.8: Differences in contract decisions between the two instances. Inst. 5, RP
and Inst. 5 EV are the contract decisions made in the regular stochastic problem and
the deterministic formulation respectively.
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Chapter 5

Conclusion

In this thesis, we implemented a two-stage stochastic MILP production planning model
where supply contracts for raw materials were modeled using disjunctive programming.
Julia was used to implement the model in practise and it was solved using the Gurobi
solver. Overall, we found that the framework of disjunctive programming seems to
provide an expressive language for modeling contracts. We conclude that the approach
of using higher-level logical operators to describe the contracts rather than traditional
MILP constraints allowed us to focus more on the big picture of the problem and less
on the technicalities of implementing the contracts-related constraints. However, it
does not mean introducing disjunctive programming is always helpful in modeling
contracts. As seen in the literature review, some problems may be structured so that
the usage of disjunctive programming would only complicate things unnecessarily.

Regarding our results, we analyzed two models with the first being a deterministic
version and the second being the full stochastic formulation. The stochastic formulation
introduced stochasticity (e.g. multiple scenarios) into the raw material price data
and product demand data. The deterministic analysis was very simplistic and it drew
our attention to the fact that simulating data for optimization problems is quite a
challenging task at times. One needs to generate data that is not biased (e.g. artificially
generating interesting behavior) but at the same time interesting enough so that the
more complicated aspects of the model have a chance to shine. We concluded that the
deterministic model appeared to work consistently with our expectations. A variety of
contracts from all types (DACA, BULK, FD and FIXED) were selected depending
on characteristics of the data. Specifically, we found that the overall level of product
demand to be a driving factor in the resulting contract selections. In cases where
demand was low, the model would group purchases together and only use the BULK
contract type as was seen in Table 4.3. On the other hand, pairing low demand with
high inventory costs resulted in increased use of the FIXED contract type as evidenced
in Table 4.4.

The results of the stochastic model were less straightforward to analyze. The
two metrics we calculated Value of the Stochastic Solution (VSS) and Expected
Value of Perfect Information (EVPI) were relatively low. A low VSS indicates that
the work of adding stochasticity to the formulation does not necessarily provide a
significant increase in the objective function. On the other hand, a lower EVPI indicates
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that the value (e.g. corresponding increase in objective value) in procuring more
exact information about demand and raw material prices is small (assuming they are
uncertain). The largest percentage change in objective we observed was only around
7 per cent upon moving to the stochastic model. As observed in the deterministic
case, the behavior of the contract choices in the stochastic model depended heavily
on the level of demand in the scenarios. Problem instances with mostly high demand
scenarios (relative to the discount limits of each contract type) resulted in solutions
with small VSS. However, instances with lower demand scenarios had a higher VSS.
When VSS was high, there was a reasonable difference in contract choices between
stochastic formulation and deterministic expected value formulation. Thus, we believe
our work suggests the stochastic model could be worth implementing in some cases
but we cannot provide a uniform recommendation.

For future work, there are quite a few avenues which should be explored. In
our view, the greatest weakness of the current work is the crude data generation
process rather than the model itself. Synthesizing the input data was consistently
the hardest part of our work. Going forward, we should revisit this process and try
to incorporate more real-world data. The parts that are randomly created should be
done in a more statistically rigorous way. Specifically, the demand data generation
process as well as the raw material price generation process were implemented in
a very ad-hoc manner that was mainly for convenience rather then being based on
existing literature. The model also has limitations that can be addressed in the future.
Firstly, we struggled to obtain reasonable solution times when integer variables and
constraints were introduced. We believe one cause of this is the underlying production
planning model. There are likely too many variables than needed and more clever
formulations could improve performance. Next, as it currently stands, the small
number of customers and products we have used in our examples means it would
not be feasible to deploy the model in practise where these parameters are typically
in the hundreds. It would be interesting to obtain access to more enterprise-grade
hardware and run the model on a larger scale. This is also something quite lacking
in the literature as a whole with many disjunctive programming works running the
model on consumer-grade desktops.

In conclusion, disjunctive programming is an effective modeling paradigm that
narrows the gap between how humans naturally think about business logic and the
corresponding description in formal language. Similar to how high-level programming
languages such as C, Java and Python abstracted assembly language and fundamentally
changed software development, perhaps concepts such as disjunctive programming
will fundamentally change mathematical modeling by allowing users with high levels
of business knowledge but comparatively less technical knowledge to formulate models
easier. One could imagine Al-assisted user-friendly tools that allow the creation of
disjunctive constraints in plain language that are then “compiled” down into MILP
constraints. The users themselves would not need to know the existence of the
MILP constraints or understand them similar to how most software developers do not
understand the assembly code produced by compiling the programs they write using
high-level languages.
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Notation guide

The reader might find Table .01 - .03 useful. Symbols as they appear in the code are
mapped to the corresponding symbol in the model as it is described in LaTeX.

Model  Code
BACAJ dacapr

H R

oo fdpr

¢],3,ULK’i bulkpr

oDACA dacalim

oBULK  bulklim

ot fdlim

@pr a

O¢pt D

Ky PC

Acu L

Om SC

Ym ST

Ypi PR

n’ Prb

Table .01: Mapping between LaTeX notation and code for parameters.

Model Code

A

M
PM
P

R

C

T
Scn

A R R ESEES

Table .02: Mapping between LaTeX notation and code for sets.
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Model Code

- z
2, slack2_1
Bl slack3_1
132, slack3_2
Bhons o

e daca
¢BULK  rcost_bulk
Ymri RI
Xeput X
Wempt I
depur demand_slack
cFD. rcost_fd
cPIXED  rcost_f
cDACA rcost_daca

mrt

SALES; sales
RCOST; rcost
ICOST, icost
LCOST; 1lcost

Table .03: Mapping between LaTeX notation and code for variables.
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