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Abstract
This thesis develops an optimization model that secures financing of future pension
obligations of a pension provider in the Finnish regulatory framework. Due to the
expected growth of the liabilities of pension funds this asset and liability management
problem is increasingly relevant.

We consider and apply relevant risk measures from literature. A formulation based
on the Conditional Value at Risk (CVaR) of the solvency capital of the pension fund
was found to be the most applicable model. The solution significantly increased the
efficiency of the portfolio compared to portfolio returns based CVaR optimization.

We use a scenario-based approach that incorporates the uncertainty of the market
assumptions in the optimization. The scenarios are sampled from a multivariate
normal distribution.

Because of the complexity of the problem we explore multiple models. All
variations are based on how the solvency of the pension provider changes as a function
of the portfolio allocation. The aim is to minimize the possibility of bearish scenarios
where a fund is not able to meet the required capital. The portfolios are constrained
with a solvency requirement to be admissible with the Finnish legislation.

The computational results highlight a trade-off between the complexity and
reliability. While the complex statements are likely to reflect reality more accurately
the solutions are inconsistent. A reason is that the optimization algorithms may
have converged to local optima. Models are evaluated based on their consistency,
convergence, objective function value and their practical feasibility.

Keywords Asset and liability management, pension funds, portfolio optimization,
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Tiivistelmä
Tässä diplomityössä kehitetään optimointimalli, joka turvaa työeläkevakuutusyh-
tiön vakavaraisuuden Suomen lainsäädännön mukaisesti. Työeläkevakuutusyhtiöiden
vastuuvelkojen odotetun kasvun vuoksi tämä ongelma on ajankohtainen.

Työssä tarkastellaan ja sovelletaan kirjallisuuden pohjalta kuuluvia riskimittareita.
Soveltuvimmaksi malliksi osoittautui vakavaraisuuspääoman ehdolliseen tappioar-
voon (CVaR) perustuva formulointi. Ratkaisu lisäsi merkittävästi salkun tehokkuutta
verrattuna salkun tuottoon perustuvaan CVaR-optimointiin.

Työssä käytetty skenaarioihin pohjautuva metodologia sisällyttää optimointiin
markkinaoletuksiin liittyvän epävarmuuden. Skenaariot poimitaan moniulotteisesta
normaalĳakaumasta.

Ongelman monimutkaisuuden vuoksi arvioidaan erilaisia malleja, joista kaikki
perustuvat siihen, miten työeläkevakuutusyhtiön vakavaraisuus muuttuu salkkupää-
töksien mukaan. Pyrimme minimoimaan mahdollisuuden laskuskenaarioihin, joissa
työeläkevakuutusyhtiö ei pysty täyttämään vaadittua pääomaa. Salkkuja rajoittaa
vakavaraisuusvaatimus, jotta ne täyttävät Suomen lainsäädännön vaatimukset.

Ongelman muotoilun monimutkaisuuden ja tulosten luotettavuuden välillä on
käänteinen yhteys. Vaikka monimutkaisilla formuloinneilla saatetaan kuvata todelli-
suus tarkemmin, niiden ratkaisut ovat epäjohdonmukaisia. Syynä on se, että käytetyt
optimointialgoritmit ovat saattaneet konvergoitua paikallisiin optimeihin. Malleja ar-
vioitiin niiden johdonmukaisuuden, konvergenssin, tavoitefunktion arvon ja käytännön
toteutettavuuden perusteella.

Avainsanat Portfolio-optimointi, riskimittarit, skenaarioiden luonti, stokastinen
optimointi, työeläkevakuutusyhtiö, varojen ja vastuiden hallinta
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Symbols and abbreviations

Symbols

𝒙 Portfolio weights
𝒚 Return samples
𝐶 Solvency capital
𝐿 Solvency liability
𝑅 Solvency ratio
𝐴 Assets
𝑃 Portfolio returns
𝑟 Solvency requirement
𝜚 Risk class correlation matrix
Σ Covariance matrix

Abbreviations
FTO Fund transfer obligation
MVO Mean-variance optimization
VaR Value-at-Risk
CVaR Conditional Value-at-Risk
ALM Asset-liability management
CMA Central market assumption
GA Genetic algorithm
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1 Introduction

Asset-liability management (ALM) is central in financial optimization, especially in the
pension fund industry. This significance is highlighted by the societal reliance on these
funds to fulfill future pension obligations. The essence of ALM lies in formulating
a strategic approach to investments that aims to guarantee liability coverage across
various time horizons.

This thesis focuses on how a pension fund can optimize its portfolio under the
specific rules and conditions the Finnish pension fund system is subjected to. The aim
is to find and compare optimization methodologies such that the objective matches the
goals of a pension fund; the risk related to the market assumptions is considered in a
comprehensive way; and the results are produced in a computationally feasible way.

The main contribution of the thesis is a stochastic programming model. It
incorporates the explicit regulations a Finnish pension fund is subject to and minimizes
the risk related to the solvency capital. This relies on a scenario-based approach which
incorporates uncertainties related to the market assumptions in the optimization. The
scenarios are generated by sampling asset class returns from a multivariate probability
distribution.

The literature often proposes a multistage stochastic programming (MSP) model
for the ALM problem of pension funds because financial results depend on investment
returns as well as the decision policy over assets and liabilities. Oliveira et al. (2017)
examine a multistage stochastic programming (MSP) model applied to the Brazilian
pension fund industry. They apply a probabilistic value at risk constraint to obtain
a positive funding ratio with high probability. Duarte et al. (2017) apply a linear
stochastic programming model with a concave utility function for the risk aversion of
insolvency. The methodology used in this thesis has similarities with these two papers.

The goal of a pension fund is to secure financing of its future pension liabilities. As
a single stage optimization model, the objective of a pension fund can be formulated by
optimizing the risk and return trade-off of the portfolio while maintaining the legally
required solvency metrics. The aim is to minimize the risk related to the deviations
within the solvency capital of the fund while maintaining a given level of expected
return. Such model yields a set of portfolios that form a constrained efficient frontier.
Using this approach the portfolio of a pension fund can be viewed as the allocation
within this set that meets the target expected return of the fund. The objective function
is linear which makes the model computationally efficient.

A single stage model is limited in that the target expected return of the portfolio



needs to be given as an input parameter. For this reason, we explore formulations
which minimize the risk of not meeting the future solvency requirements. A key
consideration in formulating the problem statement is the reliability of the chosen risk
measure and the convergence of the solution. The regulations imply a non-convex
problem which may cause the algorithms to converge to local extrema. In navigating
this difficulty, we examine multiple alternative problem statements. The aim is to
start with a reliable simplification of the problem and then explore more complicated
statements. In the more complicated formulations, the objective function is nonlinear,
which makes the models computationally more demanding.

The optimization models are solved in three steps. The first step is to generate
the asset class return scenarios. The second step is to model the liabilities. These
are scenario-dependent, and they are affected by the combined portfolio returns of
all private pension providers in Finland. The third step is to run the optimization
algorithm to minimize the chosen objective function. The chosen time horizon is
between 5 and 10 years.

The results of any portfolio optimization methodology depend on the choice of
input values. The assumptions regarding the financial markets can change significantly
in relatively short periods of time. Thus, the long term strategic allocation should be
robust to small changes in the market assumptions and also the optimization framework
should allow the modification of these values in an efficient way. Traditional portfolio
optimization methods such as mean-variance have been criticized due to their lack of
robustness. However, they provide important benchmarks for comparing the different
methodologies.

In the real-world, the investors’ goals and the market assumptions are uncertain
and thus the choice for the objective function is not obvious. For example, should
one prioritize highest returns, lowest risk, diversification, or liquidity. In this thesis,
the focus is on the asset-liability metrics which are calculated based on the returns of
the generated scenarios. In a practical sense, an optimal portfolio should be one that
performs well across a variety of different metrics.

This thesis is structured as follows. Chapter 2 reviews the investment literature on
portfolio optimization, risk measures and previous ALM-models. Chapter 3 discusses
the Finnish regulatory framework. It also describes how the liabilities are modelled
and the how the solvency requirement is accounted for in the optimization. Chapter
4 presents how the asset class returns are sampled from multivariate probability
distributions. Chapter 5 discusses the problem statements and the algorithms for
solving the problem. Chapter 6 discusses the results, including their sensitivity with
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regards to the inputs. Chapter 7 concludes.
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2 Portfolio optimization theory

2.1 Modern portfolio theory

Modern portfolio theory or mean-variance (MVO) optimization provides guidance to
assembling a portfolio of assets such that the expected return is maximized for a given
level of risk. It was introduced in a Nobel prize winning article Markowitz (1952).
It is a celebrated formalization of diversification in investing. The theory shows that
by combining assets in a particular way one can produce a portfolio whose expected
return reflects its components, but with considerably lower risk. The key idea is to
construct a portfolio whose total return and risk ratio is higher than the individual
assets. The risk of the portfolio is measured as the variance of the returns. Investors
are assumed to prefer a less risky portfolio for a given expected return.

Let 𝒓 ∈ R𝑘 be the vector describing the rate of return where 𝑘 is the number of
assets. For each asset 𝑖 ∈ 𝑘 the expected return 𝜇 is defined as 𝜇𝑖 = 𝐸 (𝑟𝑖). Let 𝒙 ∈ R𝑘

denote the portfolio weights. The rate of return of the portfolio is 𝒙𝑇 𝒓 with mean 𝝁𝑻𝒙

and variance 𝒙𝑇𝚺𝒙, where 𝚺 is the covariance matrix of the rates of returns.
The quadratic form of the mean-variance problem is defined as

min
𝑥∈R𝑘

𝒙𝑇𝚺𝒙 (1)

𝑠.𝑡. 𝒙𝑇 𝝁 = 𝑅 (2)

𝒙𝑇 𝒆 = 1, (3)

where 𝒆 is a vector of ones and 𝑅 is a fixed level of required portfolio return.
When only equality constraints are applied the problem can be solved analytically.

In practice, the mean-variance formulation is often used with inequality constraints
such as long only constraint (𝑥𝑖 ≥ 0,∀𝑖) and bounds for specific assets. Then the
problem can be solved with numerical optimization methods.

The set of optimal portfolios that are obtained when the mean-variance problem is
solved as a function of 𝑅 define the efficient frontier which is is typically presented in
the mean-volatility space.

Even though the mean-variance optimization is a widely accepted in investment
theory, applying it in practice can be problematic, especially for a pension fund.
Without the short short selling constraint, it is likely to set large negative weights on
some assets which are not available for many institutional investors. On the other hand,
with the short selling constraint, the resulting portfolios may be undiversified corner
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solutions. The lack of diversification stems from the assumption of perfect certainty
regarding the input parameters. This assumption is unrealistic since the parameters
involve significant uncertainties.

The sensitivity of the mean-variance portfolio has been studied thoroughly in the
literature. Michaud and Michaud (2008) and Best and Grauer (1991) empirically
show that even small errors in the estimation of an assets expected return might have
the effect to disregard it completely from the efficient frontier. The instability of the
resulting portfolio over time has also been shown by DeMiguel and Nogales (2009). In
practice this makes it challenging to use MVO because the market assumption typically
change in short timeframes. Following the MVO portfolio would then likely lead to
excessive amount of trading costs. Merton (1980) concludes that the instability is
mostly due to the estimation errors regarding the expected return. Chopra and Ziemba
(1993) show that the errors within the expected return estimation have more than a ten
fold difference compared to the errors within the variances or the covariances.

2.2 Conditional Value-at-Risk optimization

Conditional value-at-risk (CVaR), also known as mean excess loss or tail value-at-risk,
is a coherent risk measure (Rockafellar and Uryasev 2000). A function 𝜍 : 𝐿∞ → R is
said to be coherent if it satisfies the following properties for a set of random variables
𝒛 ∈ 𝐿∞ representing financial positions:

1. Normalized: 𝜍 (0) = 0

2. Monotonicity: Consider two random variables, 𝑧1 and 𝑧2, e.g., the returns from
two portfolios. If 𝑧2 > 𝑧1 in all feasible future states then 𝜍 (𝑧2) < 𝜍 (𝑧1). This
imples that a financial security that always has higher return in all future states
has less risk of loss.

3. Sub-additivity: 𝜍 (𝑧1 + 𝑧2) ≤ 𝜍 (𝑧1) + 𝜍 (𝑧2).

4. Positive homogeneity: if 𝜆 > 0, 𝜍 (𝜆𝑧1) = 𝜆𝜍 (𝑧1).

5. Translation invariance: For any random variable 𝑧 the addition of additional
outcome with a certain positive return 𝑎 will reduce the risk by that amount,
𝜍 (𝑧 + 𝑎) = 𝜍 (𝑧) − 𝑎.

CVaR can be viewed as a variant of the popular Value-at-risk (VaR) measure. The
𝛽-VaR of a portfolio is the lowest amount 𝛼 such that, with probability 𝛽, the loss will
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not exceed 𝛼. The 𝛽-CVaR is the conditional expectation of losses above the amount
𝛼. Informally, and non-rigorously this means saying that "what is the average loss in
cases so severe they occur only 𝛽 percent of the time" Based on their definitions a low
𝛽-CVaR portfolio must have a low 𝛽-VaR as well. The most commonly used 𝛽 values
are 0.9, 0.95 and 0.99.

It has been shown that CVaR has better characteristics than VaR (Artzner et al.
1999). VaR lacks desirable mathematical characteristics such as subadditivity and
convexity. It is coherent only when it is based on standard deviations of normal
distributions (McKay and Keefer 1996). In the minimization of VaR, there can be
multiple local extrema, which makes its use unpredictable. Pflug (2000) proved that
CVaR has the following properties: transition-equivariant, positively homogeneous,
convex, monotonic w.r.t. stochastic dominance of order 1, and monotonic w.r.t.
monotonic dominance of order 2.

Following the notations of Rockafellar and Uryasev (2000), let 𝑓 (𝒙, 𝒚) be the
loss function associated with decision vector 𝒙 ∈ R𝑛 and random vector 𝒚 ∈ R𝑚.
The decision vector represents the portfolio weights that are chosen from the set of
available portfolio weights 𝑋 ∈ R𝑛 and the vector 𝒚 stands for the uncertainties that
impact the loss function. For each 𝒙, the loss 𝑓 (𝒙, 𝒚) is a random variable having a
distribution in R induced by 𝒚. Let 𝜌(𝒚) represent the underlying probability density
function of 𝒚 ∈ R𝑚. It is not necessary to have an analytical expression for the density.
It it sufficient to generate random samples from 𝜌(𝒚). The procedure for the sampling
is described in Chapter 4.

The probability of 𝑓 (𝒙, 𝒚) not exceeding a threshold 𝛼 is given by

𝜓(𝒙, 𝛼) =
∫

𝑓 (𝒙,𝒚)≤𝛼

𝜌(𝒚) 𝑑𝒚. (4)

For a given 𝒙, Equation (4) represents the cumulative distribution function of the
loss function which is fundamental in defining both Var and CVaR measures. We
assume that it is non-decreasing and continuous everywhere with respect to 𝛼. In
reality, 𝜓(𝒙, 𝛼) is continuous from the right but may not be from the left if there are
discontinuous jumps in the distribution.

Let the 𝛽-VaR and 𝛽 -CVaR values for the random variable representing the loss
be denoted as 𝛼𝛽 (𝒙) and 𝜙𝛽 (𝒙). They are defined as

𝛼𝛽 (𝒙) = min {𝛼 ∈ R : 𝜓(𝒙, 𝛼) ≥ 𝛽} (5)
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and

𝜙𝛽 (𝒙) =
∫

𝑓 (𝒙,𝒚)≥𝛼𝛽 (𝒙)

𝑓 (𝒙, 𝒚)𝜌(𝒚) 𝑑𝒚 (6)

Equation (5) for VaR describes the left endpoint of the nonempty interval consisting
of the values 𝛼 such that 𝜓(𝒙, 𝛼) = 𝛽. This follows directly from the assumption
that 𝜓(𝒙, 𝛼) is continuous and non-decreasing with respect to 𝛼. In case 𝜓 contains
flat spots, the interval may contain more than a one single point. The probability
that 𝑓 (𝒙, 𝒚) ≥ 𝛼𝛽 (𝒙) in Equation (6) is equal to 1 − 𝛽. This means that 𝜙(𝒙) is the
conditional expectation of the loss associated with 𝒙 relative to that loss being greater
or equal to 𝛼𝛽 (𝒙). The key approach for the CVaR is to characterize 𝛼𝛽 (𝒙) and 𝜙𝛽 (𝒙)
in terms of a function 𝐹𝛽 on 𝑋 × R. It is defined as

𝐹𝛽 (𝒙, 𝛼) = 𝛼 + (1 − 𝛽)−1
∫

𝑦∈R𝑚
[ 𝑓 (𝒙, 𝒚) − 𝛼]+ 𝜌(𝒚) 𝑑𝒚, (7)

where

[𝑡]+ =

⎧⎪⎪⎨⎪⎪⎩
𝑡, if 𝑡 ≥ 0 ,

0, if 𝑡 ≤ 0 .

The definition of 𝐹𝛽 (𝒙, 𝛼) can be approximated by sampling the probability
distribution of 𝒚 based on to its density 𝜌. Let the collection of vectors that the
sampling generates be 𝒚1, ..., 𝒚𝒒. The approximation to 𝐹𝒙,𝛼 can be stated as

�̃� (𝒙, 𝛼) = 𝛼 + 1
𝑞(1 − 𝛽)

𝑞∑︁
𝑘=1

[︁
𝑓 (𝒙, 𝒚𝑘 ) − 𝛼

]︁+
. (8)

This expression for �̃� (𝒙, 𝛼) is convex and piecewise linear with respect to 𝛼.
Though it is not differentiable with respect to 𝛼, it can be minimized with various
optimization algorithms.

Under the above assumptions, Rockafellar and Uryasev (2000) provide the following
two theorems.

Theorem 1 𝐹𝛽 (𝒙, 𝛼) is convex and continuously differentiable as a function of 𝛼.
The 𝛽-CVaR of the loss associated with any 𝒙 ∈ 𝑋 can be determined from

𝜙𝛽 (𝒙) = min
𝛼∈R

𝐹𝛽 (𝒙, 𝛼). (9)
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The set consisting of the values of 𝛼 for which the minimum is attained, given by

𝐴𝛽 (𝒙) = argmin
𝛼∈R

𝐹𝛽 (𝒙, 𝛼), (10)

is a nonempty closed bounded interval. The 𝛽-VaR of the loss is given by

𝛼𝛽 (𝒙) = left endpoint of 𝐴𝛽 (𝒙). (11)

In particular, it holds that

𝛼𝛽 (𝒙) ∈ argmin
𝛼∈R

𝐹𝛽 (𝒙, 𝛼) (12a)

𝜙𝛽 (𝒙) = 𝐹𝛽 (𝒙, 𝛼𝛽 (𝒙)). (12b)

Theorem 2 Minimizing the 𝛽-CVaR of the loss associated with 𝒙 over all 𝒙 ∈ 𝑋 is
equivalent to minimizing 𝐹𝛽 (𝒙, 𝛼) over all (𝒙, 𝛼) ∈ 𝑋 × R.

min
𝑥∈𝑋

𝜙𝛽 (𝒙) = min
(𝒙,𝛼)∈𝑋×R

𝐹𝛽 (𝒙, 𝛼). (13)

in Equation (13) a pair (𝒙∗, 𝛼∗) achieves the second minimum if and only if 𝒙∗ achieves
the first minimum and 𝛼∗ ∈ 𝐴𝛽 (𝒙∗). In case where the interval 𝐴𝛽 (𝒙∗) reduces to
a single point, the minimization of 𝐹 (𝒙, 𝜶) over (𝒙, 𝛼) ∈ 𝑋 × R produces a pair
(𝒙∗, 𝛼∗), which is not necessarily unique, such that 𝒙∗ minimizes the 𝛽-CVaR and
𝛼∗ gives the corresponding 𝛽-VaR. 𝐹𝛽 is convex with respect to (𝒙, 𝛼), and 𝜙𝛽 (𝒙) is
convex with respect to 𝒙, when 𝑓 (𝒙, 𝒚) is convex with respect to 𝒙, in which case, if
the constraints are such that 𝑋 is a convex set, the joint minimization is an instance of
convex programming.

The proofs of Theorems (1) and (2) are in Rockafellar and Uryasev (2000). The
usefulness of the formulas in Theorem (1) is that continuously differentiable convex
functions can be minimized numerically. Also, the 𝛽-CVaR can be calculated without
first having to explicitly calculate the 𝛽-VaR based on its definition. It can be obtained
as the by-product of the methodology, even though the extraction of it requires extra
effort in determining the left endpoint of 𝐴𝛽 (𝒙).

Theorem (2) states that for the purpose of determining an 𝒙 that minimizes 𝛽-CVaR
it is not needed to work directly with the function 𝜙𝛽 (𝒙). This is useful because the
value 𝛼𝛽 (𝒙) may have troublesome mathematical properties. The minimization of
𝐹𝛽 (𝒙, 𝛼) is in the category of stochastic optimization because of the presence of a
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expected value in the definition of 𝐹𝛽 (𝒙, 𝛼).
To demonstrate the CVaR optimization and its connection to MVO, let us consider

a case where the decision vector 𝒙 represents portfolio 𝒙 = (𝑥1, ..., 𝑥𝑛) where 𝑥 𝑗 is the
position in asset 𝑗 , expressed as its share of the portfolio. For simplicity, we exclude
short positions and assume the assets sum up to one. That is

𝑥 𝑗 ≥ 0, for 𝑗 = 1, ..., 𝑛, with
𝑛∑︁
𝑗=1
𝑥 𝑗 = 1. (14)

The random vector that represents the return on each asset 𝑗 is denoted as
𝒚 = (𝑦1, ..., 𝑦𝑛). The distribution of 𝒚 constitutes a joint distribution of the returns for
each of the assets and is independent of 𝒙. It has density 𝜌(𝒚).

The portfolio returns are the sum of the returns of the individual assets in the
scaled by the proportions 𝑥 𝑗 . The loss function is given by

𝑓 (𝒙, 𝒚) = − [𝑥1𝑦1 + · · · + 𝑥𝑛𝑦𝑛] = −𝒙𝑇 𝒚. (15)

The loss associated with 𝒙 will be continuous if 𝜌(𝒚) is continuous with respect to 𝒚

(Kibzun and Kan 1996). In this case, the objective function we focus in connection
with the 𝛽-VaR and 𝛽-CVaR is

𝐹𝛽 (𝒙, 𝛼) = 𝛼 + (1 − 𝛽)−1
∫

𝑦∈R𝑚

[︁
−𝒙𝑇 𝒚 − 𝛼

]︁+
𝜌(𝒚) 𝑑𝒚. (16)

Let 𝜇(𝒙) and 𝜎(𝒙) denote the mean and variance of the return of the portfolio 𝒙.
We can define these in terms of the mean 𝒎 and covariance 𝑉 of the vector of asset
returns 𝒚 as

𝜇(𝒙) = −𝒙𝑇𝒎 (17)

𝜎2(𝒙) = 𝒙𝑇𝑉𝒙 (18)

A constraint that only portfolios that can be expected to return at least a given
amount 𝑅 will be allowed can be added to the optimization. This is

𝜇(𝒙) ≤ −𝑅 (19)

An approximation of 𝐹𝛽 by sampling the probability distribution 𝒚 yields the
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function

�̃� (𝒙, 𝛼) = 𝛼 + 1
𝑞(1 − 𝛽)

𝑞∑︁
𝑘=1

[︁
−𝒙𝑇 𝒚 − 𝛼

]︁+
. (20)

There is a connection to the minimization the variance

min𝜎2(𝒙) over 𝒙 ∈ 𝑋. (21)

to the minimization 𝛽-CVaR and 𝛽-VaR. Rockafellar and Uryasev (2000) prove
the following proposition

Proposition 1 Suppose that the loss associated with each 𝒙 is normally distributed,
as holds when 𝒚 is normally distributed. If 𝛽 ≥ 0.5 and the constraint (19) is active
in any two of the problems of minimizing variance, VaR, CVaR, then the solutions to
those two problems are the same; a common portfolio 𝒙∗ is optimal by both criteria.

In an empirical experiment, Rockafellar and Uryasev (2000) reached an accuracy of
less than 1% difference between the VaR, CVaR and the minimum variance approaches
with using a sample size of 10 000.

2.3 Expected shortage

The expected shortage is a less common risk measure. It is closely related to the
CVaR. The expected shortage 𝐸𝑆(𝜂, 𝒙) is the conditional expectation of the loss
function above a pre-fixed value 𝜂. The shortfall probability 𝜁 (𝜂, 𝒙) is the probability
that the loss function is above the given level 𝜂. The expected shortage is defined as
(see Conejo et al. 2010)

𝐸𝑆(𝜂, 𝒙) = 𝜂 + (1 − 𝜁 (𝜂, 𝒙))−1
∫

𝑦∈R𝑚
[ 𝑓 (𝒙, 𝒚) − 𝜂]+ 𝜌(𝒚) 𝑑𝒚. (22)

The definition is similar to the definition of CVaR in Equation (7). Except that instead
of having a pre-fixed probability 𝛽 that determines the amount 𝛼, there is a pre-fixed
value 𝜂 that determines the shortfall probability 𝜁 (𝜂, 𝒙).

Ogryczak and Ruszczyński (1999) consider expected shortage an intuitive mul-
tidimensional risk measure, which has the most general dominance relation for all
risk-averse preferences. They state that the risk measure has the following properties for
a convex loss function: continuous, convex, nonnegative and nondecreasing ∀𝜂 ≥ 𝜂0.
𝜂0 describes the smallest value of the loss function.
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The upside compared to CVaR is that it focuses on a specific benchmark which
may not be the tail-end scenarios. It is context dependent which risk measure is
most suitable. The use of a fixed target 𝜂 causes the expected shortage not to satisfy
coherence (Conejo et al. 2010).

2.4 Asset and liability management models

Most of previously built ALM models do not consider regulatory requirements
explicitly. The regulations are in the center of the decision making process of a pension
fund. Thus, it is relevant to include these to the optimization model.

Multistage stochastic optimization models have often been applied to the pension
fund industry. Gülpinar and Pachamanova (2013) present an ALM model with time-
varying investment opportunities. They numerically compare robust-optimization-
based strategies to the classical stochastic programming approach. Yao et al. (2013)
investigate a continuous-time mean-variance ALM problem.

Oliveira et al. (2017) present a multistage scenario-based procedure for the ALM
problem. They maximize the terminal value of the fund’s portfolio and apply a VaR
constraint to maintain the required solvency level with high probability. The solution
is obtained as the average weights for the first time step. This method is based on the
Michaud and Michaud (2008) resampling solution. Because the weights are solved
for each scenario separately, they approximate the optimal solution, but thus is not a
stochastic program per se.

Ferstl and Weissensteiner (2011) consider a multi-stage setting under time-varying
investment opportunities and apply a CVaR optimization to the ALM problem of a
pension fund. They use a first-order unrestricted vector autoregressive process to
model asset returns and state variables and Nelson/Siegel parameters to account for
the change in the yield curve.

Duarte et al. (2017) consider the regulatory framework in the Solvency II project.
They offer the closest match to the goal of this thesis which is to find the porfolio that
minimizes the risk of insolvency in future timesteps within the regulatory framework
of Finland. They define the objective function as

max
∑︁
𝑠∈𝑆

𝑝𝑠

[︄∑︁
𝑡∈𝜏

(︄
𝑁𝑡 (𝑠) − 𝐾𝑚𝑖𝑛𝑡 (𝑠) −

∑︁
𝑖∈𝐼

𝜃𝐸 𝑖𝑡 (𝑠)
)︄
𝑑𝑡 (𝑠)

]︄
(23)

which consists of two portions: the assets 𝑁 above the minimum requirement 𝐾𝑚𝑖𝑛

(𝑁𝑡 (𝑠)−𝐾𝑚𝑖𝑛𝑡 (𝑠)) and the penalty for different levels 𝑖 ∈ 𝐼 of insolvency (∑︁𝑖∈𝐼 𝜃𝐸
𝑖
𝑡 (𝑠)).
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The parameter 𝑑 is the discount factor that is employed to evaluate all stages and
scenarios 𝑠 ∈ 𝑞 on the same basis. 𝐸 𝑖𝑡 is an auxiliary variable to identify the values of
insolvency in each stage and scenario that exceeds the levels 𝜑1 = 0, 𝜑2 = 0.5, 𝜑3 = 0.7.
It is defined as ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇and𝑠 ∈ 𝑞

𝐸 𝑖𝑡 (𝑠) =
[︁
(1 − 𝜑)𝐾𝑚𝑖𝑛𝑡 (𝑠) −𝑊𝑡 (𝑠)

]︁+
, (24)

where 𝑊 is the net worth of the fund. Because the objective function in Equation
(23) contains both the net assets and the penalty for the insolvency, the solution is
a function of the utility parameter 𝜃. This approach leaves the choice for the risk
aversion unaddressed. They define values for the penalty parameter as 𝜃1 = 0.1, 𝜃2 =

0.1, 𝜃3 = 0.2.
The modelling of the net assets 𝑁 and the minimum capital requirement 𝐾𝑚𝑖𝑛 is

based on the Brazilian legislation. The function for the 𝐾𝑚𝑖𝑛 is nonlinear which they
simplify by first-order Taylor approximation. They simplify the problem to a linear
program which makes it computationally efficient.

The solution to the objective function Equation (23) yields a portfolio that
maximizes a utility function which accounts for the assets above the minimum
requirement and the penalty for insolvency. It is not clear how the penalty parameter
should be defined. Furthermore, for the goal of securing the financing of the pension
liabilities, it is not obvious why the bonus for the excess assets above the minimum
requirement is necessary.

3 Finnish regulatory framework

In Finland the private sector earnings-related pension has been decentralized to
pension insurance companies, company pension funds and industry-wide pension
funds. The private-sector pension assets totaled 150 billion euros at the end of 2022
of which 95.6% is administered by pension providers. The investment portfolios
of individual pension providers differ considerably in size. The investments of all
pension providers are distributed among four primary pension providers, of which two
managing approximately 35% of the total assets each, the third oversees 25%, and the
fourth handles the remaining 5% (Pension Assets (Private Sector) 2024).

The earnings-related pension scheme is a defined and partially funded scheme.
The partial funding has been realized so that each individual pension is divided into a
funded and an unfunded component. The funded components are the responsibility of
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the pension providers.
Private sector solvency regulations are set in place because the pension providers

are liable for the funded pension components with their assets. They also engage
in mutual competition with investment profits, although the system includes a joint
and several liability. This means that the assets and liabilities of a pension provider
that goes bankrupt are shared between the others. The solvency regulations prevent
competition with excessive risk-taking since the responsibility for the mitigation of
large risks is shared among all parties in the system.

Pension providers invest the funded components of earnings-related pension
contributions as securely and efficiently as possible to ensure that there are enough
assets when the accrued pensions are to be paid out in the future. The pension providers
cover the pension expenditure that is not funded in advance with earnings-related
pension contributions accumulated in the year that the pension is paid.

The investment operations of pension providers in the private sector are tightly
regulated. Pension providers have accumulated technical reserves for future pensioners
which are calculated according to actuarial principles. Private sector pension providers
compete not only in efficiency but also in terms of investment profits and services
for the policyholders. As a result, there are system-level conditions and limitations
regarding the investment operations and related risks, as well as the solvency, of
pension providers.

Pension providers have an obligation to transfer assets into funds. This way, the
investment return becomes part of the funding of pensions paid under these pension
acts and, later, of the actual pensions paid. Pension providers meet their fund transfer
obligation with their investment return. If the investment return is not enough to cover
the obligation, it must cover the deficit from its solvency buffers. On the other hand, if
the investment return exceeds the transfer obligation, the pension provider’s solvency
buffer increases and the provider can take bolder investment risks, since it is also better
equipped to handle investment losses.

The solvency of pension providers is assessed by using various metrics, the most
important of which are solvency capital, solvency requirement, solvency position and
solvency ratio.

Pension providers can prepare for investment and underwriting risks by using their
solvency capital. Solvency capital includes, among other things, equity, valuation
differences on investments and buffer funds for risks. In order for a pension provider
to be solvent, its solvency capital must exceed the solvency requirement. The solvency
requirement is the value calculated based on the structure of the pension provider’s
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investment portfolio, to which the solvency capital is compared. The general rule is
that the greater the risks of investments, the higher the solvency requirement required
by the regulations. For calculating the solvency requirement, each pension provider
must identify the risks in each investment. The regulations on the solvency limit are
common for all private sector pension providers. Figure 1 by Pension Assets (Private
Sector) (2024) illustrates how the solvency framework fits with the total assets of a
pension provider.

Figure 1: Illustration of the solvency framework of a pension provider

Because the solvency capital must exceed the solvency requirement, each pension
provider needs to minimize the risk of violating the constraint. Solvency position
describes the ratio between the solvency capital and the solvency requirement. It
can be modelled as a bankruptcy if the solvency position of a pension provider falls
below one. However, in reality extra restrictions are imposed on the pension provider’s
activities and bankruptcy occurs after some time has been spent under the limit.

The solvency requirement also depends on the solvency ratio. The current
regulation makes it risky for an individual pension provider to deviate much from the
system. The liabilities of each provider depend on the average solvency of the system.
If the average solvency of the system is significantly higher than the solvency of an
individual company the liabilities can grow at a faster pace than the assets. This is
due to the limitations on the risk-taking abilities for the company. Furthermore, if the
market follows the expected path, this inevitably leads to a downward loop for the
solvency of the company, which leads to having a smaller solvency capital than the
margin.
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3.1 Liability modelling

The liabilities are modelled in two separate ways for the system of private pension
providers in Finland on one hand, and the individual company that the optimization
is performed on on the other hand. In reality, each company represents a part of the
system. However to reduce the complexity and computation time, we assume the
solvency of the system and the solvency of the individual pension fund are independent
of each other.

The modelling of the system requires assumptions about the weighted average
portfolio of the pension providers in Finland. This can be estimated with sufficient
accuracy from the annual financial statements of the companies.

The solvency of the system 𝑝 is defined as

𝑝 =
∑︁
𝑓

𝑤 𝑓 𝑝 𝑓 , (25)

where

𝑝 𝑓 = max{
𝐶 𝑓

𝐿 𝑓
, 0.1}, (26)

𝑤 𝑓 =
min{0.15, 𝐿 𝑓∑︁

𝑓 𝐿 𝑓
}∑︁

𝑓 min{0.15, 𝐿 𝑓∑︁
𝑓 𝐿 𝑓

}
(27)

and 𝑓 represents an individual pension fund. Equation (27) limits the maximum
weight that a particular company can have to the system solvency 𝑝 to 25 %.

Equity-linked buffer fund (EBF) is used to provide for increased investment risks.
The amount of this buffer depends on the pension providers’ average returns on listed
equities. Let 𝑧𝑖,𝑡 denote the assumed weight the system has on the asset 𝑖 at time 𝑡 and
𝑦𝑖,𝑡 the sampled returns from 𝜌(𝒚𝑡). Then, the equity-linked buffer fund is defined as

EBF𝑡 = (1 + 𝑦𝑒,𝑡) − 1.01, (28)

where 𝒚𝒆 is the equity return of the assumed system portfolio. Because equities are
modelled as one asset class, the multiplier for the 𝒚𝒆 is one. If equities were examined
with a larger universe containing more assets (e.g. US equities as 𝑒1 and European
Equities as 𝑒2). The EBF would be

EBF𝑡 = (1 +
∑︁𝑒𝑛
𝑖=𝑒1

𝑧𝑖,𝑡𝑦𝑖,𝑡∑︁𝑒𝑛
𝑒1
𝑧𝑖,𝑡

) − 1.01. (29)

22



The buffer fund for pooled pension components is supplemented annually by the
technical rate of interest 𝑏16. It is defined as

𝑏16 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.36(1 − 𝜆)𝑝 − 0.057, if 𝑝 ≤ 0.198 ,

0, if 0.198 ≤ 𝑝 ≤ 0.218 ,

0.15(1 − 𝜆)𝑝 − 0.057, if 𝑝 ≤ 0.198 .

(30)

The parameter 𝜆 is set to be 0.2 by the Finnish law and the discount rate 𝑖0 to
0.03 (Tela 2023). The fund transfer obligation (FTO) is the multiplier at which the
liabilities of the pension funds change between consecutive time steps. It is defined as

FTO = 𝑏16 + 𝑖0 + 𝜆EBF. (31)

We denote the part of the transfer obligation that does not include the technical
rate of interest TO. It is defined as

TO = 𝑖0 + 𝜆EBF. (32)

The recursive formulas for the solvency metrics for the system are

𝐴𝑡 = 𝐴𝑡−1𝑃𝑡 , (33)

𝑃𝑡 =
∑︁
𝑖

𝑧𝑖,𝑡𝑦𝑖,𝑡 , (34)

𝑝𝑡 =
𝐴𝑡−1

𝐿𝑡−1
− 1, (35)

EBF𝑡 = (1 + 𝒛𝒆,𝒕𝒚𝑒,𝑡) − 1.01, (36)

𝑏16𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.36(1 − 𝜆)𝑝𝑡 − 0.057, if 𝑝𝑡 ≤ 0.198 ,

0, if 0.198 ≤ 𝑝𝑡 ≤ 0.218 ,

0.15(1 − 𝜆)𝑝𝑡 − 0.057, if 𝑝𝑡 > 0.218 ,

(37)

FTO𝑡 = 𝑏16𝑡 + 𝑖0 + 𝜆EBF𝑡 , (38)

TO𝑡 = 𝑖0 + 𝜆EBF𝑡 , (39)

𝐿𝑡 = (1 + FTO𝑡)𝑙𝑡−1. (40)

These solvency metrics can be calculated based on the sampled returns 𝒚 and the
assumed system portfolio 𝒛. They are input values for the optimization model for the
individual company.
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3.2 Solvency requirement

For the calculation of the solvency requirement, also known as margin or limit, the
Finnish law defines explicit formulas and necessary input values (Finlex 2015). The
law ensures that each company has the requisite funds and level of diversification in
their portfolio.

The exact calculation of the solvency requirement is computationally intensive
and approximations are needed to reduce the computation time. Options are examined
through their delta-hedged exposure value instead of market value. This approximates
the asset’s value change in response to small movements in the underlying asset’s price.
The computations with regard to options become far less complex and time consuming
while still maintaining reasonable level of accuracy. Typically the solvency requirement
is calculated based on individual investments. As the goal is to optimize a portfolio,
the requirement is calculated based on asset classes instead of individual investments.
The law defines eighteen risk classes which serve as the basis for calculating the
requirement. Each asset class in the portfolio can be exposed to multiple risk classes.
The exposures that each asset class has to a specific risk class can be calculated with a
matrix 𝐸 which is defined such that 𝐸𝑖, 𝑗 is the fraction of weight that asset class 𝑖 has
to the risk class 𝑗 .

For each risk class 𝑗 , the law provides the default loss 𝑆 𝑗 and the expected return
𝑚 𝑗 which are shown in Table 2. A constant describing the risk of debt 𝜏 has been
set to 3. Let us denote the correlation matrix between the risk classes as 𝜚 and the
exposure to a given risk class as 𝑎. The portion which is debt on a given investment is
denoted as 𝑙. Table 3 shows the values of 𝜚.

To calculate the requirement, one has to solve the stress value vector 𝑽 ∈ R 𝑗 and
the expected return 𝝁 ∈ R 𝑗 . With a few exceptions these are defined as

𝑉 𝑗 =
∑︁
𝑖

𝑎𝑖, 𝑗 min{(1 + 𝜏𝐿𝑖)𝑆 𝑗 , 1}, (41)

𝜇 𝑗 =
∑︁
𝑖

(𝑚 𝑗 + 𝐿𝑖 (𝑚 𝑗 − 𝑚6))𝑎𝑖, 𝑗 . (42)
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The risk classes 6–10 and 15–16 are calculated with the modified formulas

𝑚∗
6 = 𝑚6𝑑

𝛾

𝑖
, (43)

𝜇6 =
∑︁
𝑖

(𝑚∗
6 + 𝐿𝑖 (𝑚

∗
6 − 𝑚6))𝑎𝑖, 𝑗 , (44)

𝑆∗6 = 𝑆6𝑑𝑖 − 𝑚∗
6, (45)

𝑉6 =
∑︁
𝑖

𝑎𝑖, 𝑗 min
[︁
(1 + 𝜏𝐿𝑖)𝑆∗6; 1

]︁
, (46)

𝑉𝑘 =
∑︁
𝑖

𝑎𝑖,𝑘 min [(1 + 𝜏𝐿𝑖) (𝑆𝑘𝑑𝑖 − (𝑚𝑘 + 𝐿𝑖 (𝑚𝑘 − 𝑚6))), 1] (47)

𝑘 ∈ [7, 8, 9, 10], (48)

𝑉15 = 𝑙 (𝑖0 + 𝑏16 + 𝐶 − 𝜆𝑆15), (49)

𝜇15 = −𝑙 (𝑖0 + 𝑏16 + 𝐷 + 𝜆𝑚 𝑗 ), (50)

𝑉16 = Λ𝑚16, (51)

𝜇16 = Λmin[𝑆16, 1] . (52)

(53)

The constant 𝑚6 describes the expected return of the interest rate risk class. Table 1
lists the input parameters. The value-column describes whether the parameter is a
constant or needs to be given as an input value. That is, the values are not determined
explicitly by the law and are fund specific.

The solvency requirement 𝑟 is defined as

𝑟 =

√︄
(𝑽 + 𝝁)𝑻 𝝔(𝑽 + 𝝁) +

∑︁
𝑗

(𝛽2𝐵2
𝑗
) −

∑︁
𝜇 𝑗 +

∑︁
𝑘

𝐾𝑘 , (54)

Notation Description Value
𝑑 Modified durations Input
𝛾 Curvature of the yield curve 0.134
𝐿 Solvency liability Input
𝑙 Fraction that is debt on given asset Input
𝑏16 Technical rate of interest Input
Λ Old-age and disability pension liabilities up to and including Input
𝐶 Expected decrease in solvency 0.5
𝐷 Expected increase in the technical rate of interest 0.004

Table 1: Variables in the solvency requirement formulas.
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where 𝛽 is defined as 0.08 for the risk classes 1-4 and 0 for the rest. 𝐵 𝑗 is the difference
between long and short positions. Since options based on their exposure value 𝐵 is set
to 0. 𝐾𝑘 is an exception that is added when a company has too much exposure to a
single real estate investment. It requires that more than 15% of the assets are invested
into the given real estate. In reality, pension funds do not invest into a single real estate
within this magnitude and thus it is very unlikely to happen. Therefore 𝐾 is set to 0.

The formula for approximating the solvency requirement reduces to

𝑟 =

√︃
(𝑽 + 𝝁)𝑻 𝝔(𝑽 + 𝝁) −

∑︁
𝜇 𝑗 . (55)

Furthermore, the minimum requirement is defined as 5% of the total assets of the
pension provider. Equation (55) is non-convex. This is due that 𝜚 is not positive
semidefinite. That is, the eigenvalues of 𝜚 are not strictly positive.

Table A1 and Table A2 in the appendix show the solvency requirement input
matrix 𝐸 and the necessary solvency requirement inputs.

Risk class 𝑆 𝑗 𝑚 𝑗

1 0.320 0.080
2 0.300 0.080
3 0.330 0.080
4 0.350 0.100
5 0.320 0.080
6 0.020 0.033
7 0.000 0.000
8 0.015 0.005
9 0.025 0.010
10 0.050 0.020
11 0.090 0.065
12 0.140 0.075
13 0.145 0.000
14 0.290 0.015
15 0.316 0.080
16 0.008 0.000
17 1.000 0.150
18 * 0.000

Table 2: The stress values and expected return for each risk class.
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Table 3: The correlation matrix between the risk classes 𝜚.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0.800 0.700 0.700 0.700 -0.200 0 0.600 0.700 0.700 0.200 0.200 0 0 0.890 0.200 0 0.430
0.800 1 0.700 0.700 0.700 -0.200 0 0.600 0.700 0.700 0.200 0.200 0 0 0.890 0.200 0 0.410
0.700 0.700 1 0.700 0.700 -0.200 0 0.600 0.700 0.700 0.200 0.200 0 0 0.860 0.200 0 0.410
0.700 0.700 0.700 1 0.700 -0.200 0 0.600 0.700 0.700 0.200 0.200 0 0 0.860 0.200 0 0.290
0.700 0.700 0.700 0.700 1 0 0 0.600 0.700 0.700 0.200 0.200 0 0 0.780 0.200 0 0.350
-0.200 -0.200 -0.200 -0.200 0 1 0 -0.400 -0.400 -0.400 0 0 0 0 -0.240 0.200 0 -0.210

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0.180
0.600 0.600 0.600 0.600 0.600 -0.400 0 1 0.900 0.800 0.100 0 0 0 0.690 0.200 0 -0.250
0.700 0.700 0.700 0.700 0.700 -0.400 0 0.900 1 0.900 0.100 0 0 0 0.800 0.200 0 0.150
0.700 0.700 0.700 0.700 0.700 -0.400 0 0.800 0.900 1 0.100 0 0 0 0.790 0.200 0 0.300
0.200 0.200 0.200 0.200 0.200 0 0 0.100 0.100 0.100 1 0.800 0 0 0.120 0.200 0 0.390
0.200 0.200 0.200 0.200 0.200 0 0 0 0 0 0.800 1 0 0 0.120 0.200 0 0.380

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.050
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.370

0.890 0.890 0.860 0.860 0.780 -0.240 0 0.690 0.800 0.790 0.120 0.120 0 0 1 0.190 0 0.410
0.200 0.200 0.200 0.200 0.200 0.200 0 0.200 0.200 0.200 0.200 0.200 0 0 0.190 1 0 0.200

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0.430 0.410 0.410 0.290 0.350 -0.210 -0.180 -0.250 0.150 0.300 0.390 0.380 0.050 0.370 0.410 0.200 0 1
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4 Scenario generation

The scenario generation lies at the core of portfolio optimization. The presented method
aims to quantify the uncertainty into the scenarios. It is important to acknowledge
that there is no "optimal" portfolio for all outcomes but the aim is to look beyond
traditional portfolio construction methods to prepare for the increasingly uncertain
markets (Chan, Meschenmoser, et al. 2021).

Incorporating the uncertainty serves two key purposes. Investors never have the
full certainty about the specific value for the expected returns. Accounting for this can
be done by adding an estimate of uncertainty with regards to the input variables. The
estimates can capture the variation in levels of uncertainty in the cross section of time
and asset classes. This makes sense, because the lower ability to estimate returns for a
given asset class should warrant higher uncertainty around its expected return. This
should be reflected in the results of the portfolio construction.

The expected return and the uncertainty estimates are provided in BlackRock
(2024). The methodology of combining the central market assumption (CMA) and
the volatility of the asset class is also discussed in Chan, Henderson, et al. (2018).

The scenarios are generated by simulating the mean return expectations as well as
the asset returns around those means. The uncertainty estimates and the asset return
around the simulated means are assumed to be normally distributed. This approach
requires assumptions about how the uncertainty estimates for different asset classes
are correlated, which is challenging to quantify. As a baseline, we consider two cases.
First, the correlation matrix for the uncertainties is the same as for the returns. Second,
the estimates are uncorrelated.

Let us denote the standard deviations of the uncertainty estimates as 𝝈1 ∈ R𝑎 and
the standard deviations around the means as 𝝈2 ∈ R𝑎, Where 𝑎 is the number of asset
classes. The following procedure illustrates the sampling process:

1. Compose covariance matrix Σ1 for the uncertainties. That is

Σ2 = diag(𝝈1) · Corr · diag(𝝈1),

where Corr is the assumed correlation matrix of the uncertainties.

2. Sample 𝑛 sets of central market assumptions, with mean equal to the expected
return and covariance matrix Σ1.

3. Sample 𝑇 sets of returns with asset class covariance matrix Σ2 for each CMA.
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Table A3 in the appendix shows the asset class correlation assumptions Corr. The return
distribution of this sampling process transforms the standard deviation of the assets
based on the covariance matrices Σ1 and Σ2. The standard deviation of the sampled
returns for each asset follow equation 𝜎3𝑖 =

√︃
𝜎2

1𝑖 + 𝜎
2
2𝑖 + 2 Cov(𝑢𝑖, 𝑔𝑖),∀𝑖 ∈ 𝑎, where

𝑢 is the random variable for the CMA and 𝑔 is the random variable for the assumptions
around the CMA. Let us denote the covariance matrix of the sampled returns as Σ3.
This is one way of robustifying the scenario generation with regard to the uncertainty
within the market assumptions. Also other ways of robustification such as shrinkage
have been proposed (Ledoit and Wolf 2003).

The market assumptions were updated in September 2023. The covariance matrix
is calculated based on historical returns of proxy indices. The number of assets was
limited to 13 to reduce the computation time of the optimizations. Table 4 shows the
asset classes, the corresponding Blackrock references and the Bloomberg tickers for
the proxy indices. The sampled returns 𝒚𝑠,𝑡 are denoted such that there is a vector of
asset returns for each time 𝑡 ∈ 𝑇 and scenario 𝑠 ∈ 𝑞.

Blackrock does not differentiate between Investment grade bonds and Corporate
bonds. These are assumed to have the same expected returns and uncertainties.
The market assumptions are provided separately in terms of Euros and US dollars.
Currency is modelled as the difference between the Euro equity assumptions and the
US dollar equity assumptions.

Figure 2 shows the densities of the cumulative returns of Equity, Government
bonds, Currency and Real estate. The x-axis indicates the total return. These are

Asset class Abbreviation Blackrock reference Ticker
Cash CASH EMU cash EGB0
Government bonds GOV EMU treasury bonds BERPG3
Emergin market debt EMD EM debt JGENVUEG
Investment grade IG EMU corporate bonds QW5A
High yield HY Global high yield bonds IBOXXMJA
Equity EQ Europe large cap equities MSDEE15N
Private equity PE Global private equity LPX50TR
Private debt PD Global aggregate bonds CDLI
Hedge funds HF Hedge funds HFRIAWC
Real estate RE Global core real estate NPNCRE
Corporate finance CF EMU corporate bonds QW5A
Infrastructure INFRA Global infrastructure equity DJBEIET
USDEUR USDEUR * *

Table 4: Asset classes, Blackrock references and Bloomberg tickers.
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created with 20000 samples. The densities illustrate the risk related to each asset.
The log-normal distribution of the cumulative returns of government bonds take the
smallest deviations and equities have the largest. The upside potential in equity returns
is significantly higher than that of other asset classes.

The chosen time step for the arithmetic returns is 1 year. The reason behind this is
two-fold. First, the focus of the optimization horizon is between 5–10 years and the
number of time steps needs to be limited to reduce computation time. Second, this
gives an intuitive way to handle the annualized input data.

Figure 2: Densities of the 10-year cumulative returns of the sampled distributions.
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Figure 3 shows the density distribution of the arithmetic return samples for equities
and government bonds. The normal distribution based on the volatility of the asset
is added as the dashed line. The sampled arithmetic returns are normally distributed
with a standard deviation 𝝈3. Table 5 shows the standard deviations of the input and
output values of the sampling process.

Figure 3: The densities of arithmetic returns.

Table 5: Standard deviations (%) of sampling inputs and outputs.

Asset class 𝜎1 𝜎2 𝜎3

CASH 0.0 1.4 1.4
GOV 1.6 3.3 3.7
EMD 4.0 8.7 9.5

IG 1.1 2.7 2.9
HY 2.2 4.7 5.2
EQ 3.3 18.8 19.0
PE 13.1 26.0 29.1
PD 0.6 9.1 9.1
HF 9.4 3.4 10.0
RE 5.3 12.7 13.8
CF 1.1 2.4 2.6

INFRA 20.1 16.2 25.8
USDEUR 0.6 9.2 9.2
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The incorporation of the uncertainty with regards to the CMA becomes increasingly
important when the time horizon is long. Figure 4 illustrates the development of
the interquartile range of the cumulative returns, with different time horizons. The
difference between the adjusted and the CMA interquartile range expands exponentially
with time. The summary statistics of the arithmetic returns are shown in Table 6.

Figure 4: Interquartile ranges for equities and government bonds.

The correlation assumption of the uncertainty estimates does not influence the means
or the standard deviations of the individual assets. It only changes the correlations
between the assets in the case that the uncertainty estimates are assumed to have zero
correlation.
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Table 6: Summary statistics of the arithmetic returns.

Min. 1st Qu. Mean 3rd Qu. Max. Sd Skewness Kurtosis

CASH -0.039 0.019 0.029 0.039 0.087 0.014 -0.009 3.000
GOV -0.140 0.010 0.035 0.059 0.193 0.037 0.003 2.998
EMD -0.378 -0.012 0.052 0.116 0.454 0.095 -0.007 2.990

IG -0.094 0.020 0.040 0.059 0.163 0.029 -0.002 2.984
HY -0.179 0.019 0.053 0.088 0.288 0.052 -0.007 2.995
EQ -0.725 -0.040 0.089 0.218 0.954 0.190 -0.002 2.987
PE -1.266 -0.124 0.072 0.267 1.381 0.291 0.001 3.009
PD -0.412 -0.025 0.037 0.098 0.438 0.091 -0.003 3.002
HF -0.399 -0.003 0.065 0.132 0.552 0.100 0.013 3.003
RE -0.630 -0.070 0.023 0.116 0.622 0.138 -0.001 2.991
CF -0.088 0.022 0.040 0.057 0.171 0.026 0.00003 3.003

INFRA -1.136 -0.100 0.073 0.247 1.488 0.258 -0.007 3.005
CURRENCY -0.417 -0.045 0.017 0.079 0.429 0.092 -0.001 3.009
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5 Models

The alternative problem statements are described in the following subsections. Multiple
problem statements are explored because there is trade-off between complexity and
reliability of the result due to the difficulty of obtaining the extremum. The target is to
define a statement that matches the goal of a pension fund and is numerically solvable.
The solution should secure the financing of the future pension liabilities.

We formulate the statement stochastically. It means that we optimize across the
scenarios where the portfolio used in each scenario is consistent. If we solved the
problem for each scenario separately, the program would lose its stochastic nature and
we would have to lean on the resampling solution (Michaud and Michaud 2008).

We start with a model which is based on the fundamental investment theory for risk
and return. We use CVaR as it is a tested risk measure which can be specifically directed
for the tail risk of the solvency capital of a pension fund, instead of portfolio returns.
This can be formulated within a linear objective function, making it computationally
efficient and reliable in finding the extremum. To achieve this, the parameter 𝛽 and
the target return have to be specified. This is a disadvantage of the simplification,
as it is not known which the parameter values should be. We have to use common
sense values which can be assumed based on intuition and industry standard. As the
simplification is founded on the standard framework, it enables comparison with the
traditional CVaR optimization. The difference between the two solutions gives insight
into how the risk modification influences the results. The mere difference between the
two can be informative.

We then continue by aiming to formulate the statement, without having to specify
the parameter 𝛽 and the target return. This is done by modifying the loss function of
the problem statement to include the solvency requirement. This makes the objective
function nonlinear which makes it computationally inefficient. Furthermore, it is
not clear whether the objective function should or can be based on minimizing the
probability of bankruptcy or the monetary amount in case of falling short of the
solvency requirement. This is important for solving the problem statement in terms of
finding the extremum. The pros and cons are discussed for each model.
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5.1 Minimization of CVaR

In this section we formulate a problem statement using the CVaR risk measure. Let us
define the loss function for the problem to be the cumulative return on the capital 𝑃𝑐

𝑓1(𝒙, 𝒚) = −𝑃𝑐. (56)

The return on the solvency capital 𝑃𝑐 depends on the cumulative portfolio returns
𝑃𝑇 , the initial solvency capital 𝐶𝑡0 and the cumulative fund transfer obligation FTO𝑇 ,
i.e,

𝑃𝑐 = (1 + 𝐶𝑡0)𝑃𝑇 − FTO𝑇 . (57)

The cumulative return 𝑃𝑇 is calculated by compounding the annual return

𝑃𝑠,𝑇 =

𝑇∏︂
𝑡=1

(1 + 𝒙⊺𝒚𝑠,𝑡) − 1,∀𝑠 ∈ 𝑞, (58)

where the vector 𝒙 denotes the asset weights and 𝒚𝑠,𝑡 the sampled asset return vector
at time 𝑡 ∈ 𝑇 and scenario 𝑠 ∈ 𝑞.

FTO𝑇 is calculated by compounding the annual fund transfer obligation

FTO𝑠,𝑇 =

⊺∏︂
𝑡=1

(1 + FTO𝑡) − 1,∀𝑠 ∈ 𝑞. (59)

The annual fund transfer obligation FTO𝑡 is calculated using the formulas (33–40).
Let us define a parameter pt for a solvency position target. This parameter defines
the amount of buffer with which the resulting portfolio is above the legal limit. The
law requires that the parameter needs to be larger than one. As the baseline we use
a position target of 1.2 but this is an adjustable parameter. If the parameter value is
high, the portfolio has a smaller risk for breaching the legal limit in the near future.
However, as a consequence, it constrains the feasible portfolio to be less efficient.
This means that in the long term using a less efficient portfolio increases the risk for
insolvency. In theory, we want to keep the parameter as small as possible but big
enough to accommodate the portfolio adjustments in market stresses. This is to always
maintain the solvency position above one.
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The problem statement is

min
𝒙

𝛼+ 1
𝑞(1 − 𝛽)

𝑞∑︁
𝑘=1

[︁
−𝑃𝑐𝑠,𝑇 − 𝛼𝑠,𝑇

]︁+ (60)

s.t. (61)

𝑃𝑠,𝑇 =

𝑇∏︂
𝑡=1

(1 + 𝒙⊺𝒚𝒔,𝒕) − 1,∀𝑡 ∈ 𝑇,∀𝑠 ∈ 𝑞, (62)

𝑃𝑐𝑠,𝑇 = (1 + 𝐶𝑡0)𝑃𝑇 − FTO𝑇 , (63)
𝑘−1∑︁
𝑖

𝑥𝑖 = 1, (64)

pt𝑟𝑡0 ≤ 𝐶𝑡0 , (65)

𝑡𝑟 ≤ 1
𝑞

𝑞∑︁
𝑠=1

𝑃𝑠,𝑇 , (66)

𝑥𝑖 ≥ 0,∀𝑖 ∈ 𝑘, (67)

𝑥𝑖 ≤ 1,∀𝑖 ∈ 𝑘, (68)

where the specified target return denoted as 𝑡𝑟 . Here the solvency requirement constraint
pt𝑟𝑡0 ≤ 𝐶𝑡0 ensures that the portfolio is feasible for any given starting solvency capital
and the solvency position is above target level pt. Currency is modelled as an overlay.
All non-overlay assets must sum to 1 and the currency weights can take values from
the range 0 to 1. Short positions are not allowed.

Since the FTO𝑠,𝑇∀𝑠 ∈ 𝑞 is determined as a function of the portfolio of the system
of pension providers, the suggested program captures the risk of deviating from the
systems portfolio. The 𝛽 probability is given as an input and controls the amount
of the tail risk to be included in the optimization. We use the standard 0.9 as the
default, but test the sensitivity of the model by also using alternative values. The
fact that a constant 𝛽 needs to be specified for each solvency level is a drawback of
this formulation. Intuitively, the lower the solvency capital, the bigger the tail that
should be included in the optimization because the risk of breaching the solvency
limit is higher. The time parameter 𝑇 defines for how long the return on the capital is
accumulated.

36



5.2 Minimization of expected shortage

Instead of investing in capital efficient portfolios, the objective of a pension fund can
also be defined in terms of meeting the future requirements. In theory such formulation
is a more accurate effort. This is because the CVaR formulation does not address the
optimal risk level that the fund should take and also requires an assumption for the 𝛽-
probability parameter.

We define the loss function 𝑓2(𝒙, 𝒚) as the difference between the requirement
and the solvency capital. When the parameter 𝜂 is set to zero the expected shortage
equates to minimizing the expected amount that the fund is insolvent

𝑓2(𝒙, 𝒚) = 𝑟 − 𝐶. (69)

The loss function is calculated as a percentage of the liabilities in the beginning but
it describes the difference between the capital and the requirement. For each timestep
we have the distribution of the loss function. Having the loss function in terms of
the actual amounts makes it possible to examine across all timesteps with a discount
factor 𝑑.

The portfolio weights vector 𝒙 is defined to be constant across all timesteps 𝑡 ∈ 𝑇
and scenarios 𝑠 ∈ 𝑞. The fact that the weights stay the same over all scenarios makes
the program stochastic. The restriction that at each timestep the weights remain the
same simplifies the problem. In this case, the problem statement answers to the
following question. Which constant portfolio weights minimize the expected amount
by which the pension provider violates the regulations on a given time horizon and
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initial state? The problem statement is defined as follows

min
𝒙

1
𝑞𝑇 (1 − 𝜁)

𝑞∑︁
𝑘=1

𝑇∑︁
𝑡=1

[︁
𝑟𝑠,𝑡 − 𝐶𝑠,𝑡

]︁+
𝑑𝑡 (70)

s.t. (71)

𝑃𝑠,𝑡 =

𝑘∑︁
𝑖=1

𝑥𝑖𝑦𝑠,𝑡,𝑖, (72)

𝐴𝑠,𝑡 = 𝐴𝑠,𝑡−1𝑃𝑠,𝑡 , (73)

𝐶𝑠,𝑡 = 𝐴𝑠,𝑡 − 𝐿𝑠,𝑡 , (74)

𝐿𝑡0 = 1, (75)
𝑘−1∑︁
𝑖

𝑥𝑖 = 1, (76)

𝑟𝑠,𝑡0 ≤ 𝐶𝑠,𝑡0 , (77)

𝑥𝑖 ≥ 0,∀𝑖, (78)

𝑥𝑖 ≤ 1,∀𝑖. (79)

The parameter 𝑑𝑡 is the discount factor which is set to 3%. The discount factor treats
all timesteps on the same basis. The total number of points where the loss function is
evaluated is the number of scenarios 𝑞 times the number of timesteps within those
scenarios 𝑇 . The assumption about the discount rate impacts the risk level of the
resulting portfolio. This is because the higher the discount rate, the more importance
is given to breaching the requirement in the near future. If the capital level is sufficient
to cover the increases in the liabilities for a few years, this gives a lower risk level
portfolio.

The requirement at each time step and scenario 𝑟𝑠,𝑡 is calculated with Equation
(55). The solvency liabilities and the necessary input parameters for each timestep
and scenario can be pre-calculated with the recursive formulas (33)–(40) such that the
only decision variables are the portfolio weights 𝒙. The necessary input values are the
𝑏16𝑠,𝑡 , the FTO𝑠, 𝑡 and the TO𝑠,𝑡 which are calculated based on the performance of the
system of private pension providers.

The portfolio weights need to satisfy the requirement at the initial state 𝑡0. The
initial state is the same for each scenario and thus does not include stochasticity.
Without the requirement constraint for the initial state the solutions might not be
applicable. That is, the risk measure might be minimized even if the requirement is
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not satisfied in the beginning. The solution may then include a loss for the beginning
state in case it decreases the loss for future timesteps. Whether the constraint is active
reflects the a balance between the discount factor and the behavior of the loss function
between timesteps.

Using the expected shortage risk measure instead of CVaR has the benefit that
it is not known which 𝛽 level most effectively limits the violation of the solvency
requirement. Furthermore, a change in the initial solvency ratio changes the position
at which we want to optimize the density distribution of the loss funtion. Consider the
case where the initial solvency capital is small and the company is near bankruptcy.
The probability of ending up below the requirement is roughly 50% after the first
year. Minimizing a a typical 𝛽 level of 0.9 is then far too conservative. Fixing the
𝜂-parameter to zero in Equation (22) forces the program to minimize the part of the
distribution that violates the requirement regardless of the initial solvency. Figure 5
illustrates this. The x-axis describes the values of the loss function in Equation (69)

The reason why the expected shortage is preferred over to the shortfall probability
is two-fold. In theory, minimizing the shortfall probability is aligned with the goals of
a pension fund but it has limitations in practice. When the probabilities are calculated
based on scenarios the values of the objective function are discrete. The algorithms
used to solve such problems require a stopping criterion to monitor the change in
the objective function wrt. a change in the decision variables. A discrete objective
function values can cause the algorithms to converge prematurely, often at the first

Figure 5: The density of the loss function
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iteration. How effectively the solution space is searched for depends on the choice of
the algorithm and the number of samples but the problem of premature convergence
remains.

Second, there is a need for robustness in representing reality. Bankruptcy does not
necessarily occur exactly at 𝜂 = 0 of the loss function. That is when extra restriction are
posed to the pension providers activities and the actual bankruptcy occurs in case the
investment profits are not sufficient for a quick recovery. This means that the penalty
is proportional to the amount of violating the requirement. In practice, optimizing the
expected shortage versus the shortfall probability can be a hedge against a model risk.
That is, the liability modelling and the calculation of the requirement both contain
some approximation. This can lead to some errors. The solutions between the two
risk measures should resemble one another similarly to the difference between CVaR
and VaR.

By not including the negative part of the loss function means that the solvency
position is not directly optimized. This is desirable as high solvency position serves
no benefit other than cover for short term fluctuations. On the other hand the positive
part of the loss function leads to bankruptcy which ought to be minimized.

5.2.1 Dynamic strategy optimization

The restriction that the portfolio weights remain constant is a major simplification. In
reality pension funds can adjust their portfolio at any given time. Pension funds may
want to meet the changes in the solvency metrics during the scenarios with a change in
their portfolio weights. In bearish scenarios where the the capital hits the requirement
pension funds need to modify the portfolio such that requirement is satisfied up to the
point where the requirement is 5% of the assets.

In this section, we allow for the modification of weights during the scenarios while
maintaining the stochastic nature of the program. Consider solving the minimization
of expected shortage with varying the initial solvency ratio. This yields a strategy that
serves as a approximation for the problem formulation.

In order to find how the weights should be modified, we examine a rule based
allocation policy based on the solvency metrics. The solvency ratio 𝑅𝑠,𝑡 remains a
consistent measure of the risk taking abilities of the pension fund at each timestep and
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scenario. Consider the 𝑘 × 𝑚 matrix

𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑥11 𝑥12 · · · 𝑥1𝑚

𝑥21 𝑥22 · · · 𝑥2𝑚
...

...
. . .

...

𝑥𝑘1 𝑥𝑘2 · · · 𝑥𝑘𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where each column represents a different solvency ratio and each row represents the
portfolio weights. At any timestep and scenario the portfolio of the pension fund is a
column 𝑋· 𝑗 , where the index 𝑗 is selected as a function of the solvency ratio.

The range on different solvency ratios 𝑅 is chosen to be [0.05,0.5] and the number
of columns 𝑚 is set to 10. The index 𝑗 can then be selected with the following
expression

𝑗 (𝑅) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝑅 ≤ 0.05 ,⌊︁R×100

5
⌋︁

if 0.05 ≤ 𝑅 ≤ 0.5 ,

10, if 𝑅 ≥ 0.5 .

(80)

where ⌊·⌋ represents the floor function which rounds down to nearest integer. Let us
denote the vector of the ending points of the sections ([0.05, 0.1, . . . , 0.5]) as 𝒗.

The range of different solvency ratios is limited to [0.05, 0.5] which represents the
range at which all the pension providers operate. In practical terms, a solvency ratio
beyond 0.5 means that the company is solvent and the risk of violating the requirement
is small. The minimum requirement is 5% of the total assets and thus a solvency
ratio of 0.05 is the bound of the minimum acceptable solvency level. The number
of columns 𝑚 determines how closely the strategy is matched to the solvency ratios.
There are two key considerations to take into account. First, 𝑚 impacts on the number
of samples needed to accurately find a feasible solution for each column. Consider an
example where 𝑚 = 1000. Then the probability that the solvency ratio at any timestep
or scenario is within a specific section is small. It is possible that the objective function
is evaluated so that a given column does not impact the solution. In this case, the
number of samples would also have to be increased. Second, in this program following
a strategy does not include trading costs. Dividing the strategy into larger sections
mitigates this drawback because a shift in the weights between consecutive timesteps
occurs only when the solvency ratio changes sections ( 𝑗𝑡 ≠ 𝑗𝑡+1).
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The problem statement is formulated as follows

min
𝑋

1
𝑞𝑇 (1 − 𝜁)

𝑞∑︁
𝑠=1

𝑇∑︁
𝑡=1

[︁
𝑟𝑠,𝑡 − 𝐶𝑠,𝑡

]︁+
𝑑𝑡 (81)

s.t. (82)

𝑃𝑠,𝑡 =

𝑘∑︁
𝑖=1

𝑥𝑖, 𝑗𝑡−1𝑦𝑠,𝑡,𝑖, (83)

𝐴𝑠,𝑡 = 𝐴𝑠,𝑡−1𝑃𝑠,𝑡 , (84)

𝐶𝑠,𝑡 = 𝐴𝑠,𝑡 − 𝐿𝑠,𝑡 , (85)

𝐿𝑡0 = 1, (86)

𝑅𝑠,𝑡 =
𝐶𝑠,𝑡

𝐿𝑠,𝑡
, (87)

𝑗𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝑅𝑠,𝑡 ≤ 0.05 ,⌊︂
𝑅𝑠,𝑡×100

5

⌋︂
, if 0.05 ≤ 𝑅𝑠,𝑡 ≤ 0.5

10, if 𝑅𝑠,𝑡 ≥ 0.5 ,

,∀𝑠 ∈ 𝑞, 𝑡 ∈ 𝑇, (88)

𝑘−1∑︁
𝑖

𝑥𝑖, 𝑗 = 1,∀ 𝑗 ∈ 𝑚, (89)

𝑥𝑖, 𝑗 ≥ 0,∀𝑖 ∈ 𝑘,∀ 𝑗 ∈ 𝑚, (90)

𝑥𝑖, 𝑗 ≤ 1,∀𝑖 ∈ 𝑘,∀ 𝑗 ∈ 𝑚, (91)

𝑟 (𝑋., 𝑗 ) ≤ 𝑣 𝑗 ,∀ 𝑗 ∈ 𝑚. (92)

Each column of 𝑋 is subject to similar constraints as the constant allocation optimiza-
tion. The columns are constrained to sum to one without the currency overlay and
no short positions are allowed. The requirement constraint is added for each column
separately. This is to make the strategy feasible for every given initial solvency ratio.

The strategy optimization need to maintain the stochastic nature even though the
portfolio weights follow the solvency ratio. This is because the allocation policy is
fixed across all scenarios.

The impact of the initial solvency for the strategy. If the the number of time steps
would be large the initial solvency should not have significant impact on the solution.
However, because the number of timesteps is 10 it may affect them.

The index 𝑗 could be selected in multiple ways based on the solvency ratio. The
floor function is chosen because it guarantees that the initial solvency requirement
constraint is satisfied. This choice also impacts the convergence of the optimization.
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Testing implies that for example linear interpolation between the columns severely
increases the number of iterations.

5.3 Minimization of insolvency probability

An intuitive objective function would be to minimize the number of scenarios where a
violation of the solvency requirement happens. We introduce a binary variable 𝐵𝑠,𝑡 to
indicate whether the company is violating the law at a scenario 𝑠 and timestep 𝑡. That
is

𝐵𝑠,𝑡 =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑟𝑠,𝑡 − 𝐶𝑠,𝑡 < 0 ,

1, if 𝑟𝑠,𝑡 − 𝐶𝑠,𝑡 ≥ 0 .
(93)

The following problem statement scan be defined as

min
𝑋

1
𝑞

𝑞∑︁
𝑠=1

𝑇∏︂
𝑡=1

𝐵𝑠,𝑡 (94)

s.t. (95)

(83) − (92), (96)

The cumulative product of the binary variable 𝐵 in Equation (94) captures whether
a violation has happened during a scenario. The optimal value for this problem
statement minimizes the probability of breaching the limit with a fixed allocation
policy. This provides an obvious benefit and matches closely to the goals of a pension
fund. This statement is the same as maximizing the number of scenarios where a
violation does not happen.

To the author’s knowledge, such an objective function has not been studied in
the literature. It contains the non-convexity of the requirement within the objective
function and gets discrete values based on the number of samples. Finding a global
optimum to this statement is difficult and potentially unrealistic. However, using the
algorithms presented in the next chapter, we seek solutions that may be useful and
could be compared to the previous problem statements.
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5.4 Algorithms and convergence

This section describes how the results are obtained for each problem statement.
Because of the non-convexity of the solvency requirement, the choice of the algorithm
and initial guess have a key role in obtaining the results. The used algorithms are:

• SLSQP: Sequential quadratic programming

• Cobyla: Constrained Optimization by Linear Approximations

• GA: Genetic algorithm

These algorithms are chosen because they can handle nonlinear constraints, are
derivative free and return a solution within reasonable runtime.

SLSQP algorithm, based on the implementation Kraft (1994) is used to solve
the CVaR formulation. This algorithm is fast. Furthermore, we assume it finds the
extremum with a feasible initial guess. With feasbile initial guess SLSQP algorithm
and Cobyla returned the same solution. However, without one the SLSQP found a
better solution. It numerically approximates the Jacobian which typically makes it
more accurate compared to other mentioned algorithms. The algorithm may encounter
difficulties when faced with discrete objective function values, potentially hindering
its progression. Testing showed that in the probability based optimization this returned
the second iteration. SLSQP is able to handle nonlinear constraints. The algorithm
optimizes successive second-order (quadratic/least-squares) approximations of the
objective function via BFGS updates, with first-order approximations of the constraints.

The Cobyla algorithm is used to solve the models with a nonlinear loss function. It
has the following characteristics: it leverages linear approximations, operates without
derivatives, maintains continuous iteration even with discrete objective function values,
and is fast. The methodology involves constructing successive linear approximations of
the objective function and constraints using a simplex of 𝑛+1 points (in 𝑛 dimensions),
and optimizing these approximations within a trust region at each step. This algorithm
was introduced by Powell (1998).

The GA can be used to test the convergence of the solution. This is done by giving
the solution of the Cobyla algorithm as an initial guess. If the GA manages to improve
the value of the objective function it proves that the initial guess was not a global
optimum. Without such an initial guess, the GA is too slow in improving the objective
value. The algorithm continues iterating until a specified number of iterations have
passed without improvement. The implementation is based on Scrucca (2013). The
GA can be modified and parallelized marginally for faster performance.
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The approach to solve the problem statements is a local convergence to the global
minimum. The main idea is that if the start is close enough to the global optimum, the
algorithm converges to it with high probability. The strongest results of an optimization
problem would be convergence no matter how the algorithm is initialized, as would
be the case in convex optimization. We are not able to achieve this in the models
with a nonlinear loss function. We assume this is due to the non-convexity of the
requirement. We first solve the minimization of expected shortage. This result is used
as an initial guess in the dynamic strategy optimization.

Nonlinear loss functions can be very difficult to minimize. Work on this thesis
made it evident that the runtime of these models increases exponentially. Moreover,
the initial guess employed for optimization can drastically alter the final result,
introducing unpredictability and potential inaccuracies. Recognizing these challenges,
the effort was to reformulate the problem to render it convex. One approach involved
approximating 𝜚, by the nearest positive semi-definite matrix. While this adjustment
aims to enhance tractability, it introduces considerable changes in the requirement
values. For this reason this approach was not used.
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6 Results

This section presents the solutions for all the models, carries out sensitivity analyses
and compares the solutions with each other. The computations were performed in an
Azure Kubernetes Service (AKS) pod configured with 1 vCPU and 6 GB of RAM.

6.1 CVaR

Figure 6 shows the capital efficient frontier of the problem statement (60)–(68). We
obtain the frontier by varying the target return between the return of the minimum risk
portfolio and the maximum of the expected return of the individual assets.

The X-axis indicates the risk related to the 0.9-CVaR of the capital returns
𝑃𝑐𝑠,1∀𝑠 ∈ [1, 20000]. The Y-axis reports the specified target return. The figure
contains the frontier also for the traditional CVaR (red dots) where the risk related to
the capital is calculated separately.

The optimizations are run for a given initial solvency ratio. The portfolios (in the
figures) were produced with an initial solvency ratio of 0.2. Some other solvency ratio
could have been chosen as well.

Both portfolios are constrained to be above the position target 1.2. In Figure 6
the uncertainty estimates are assumed to be uncorrelated. The highlighted green area
describes the difference in efficiency between the traditional CVaR and the presented
model. The difference of efficiency is the largest with the lowest risk portfolios and
the difference shrinks as the expected return increases.

The CVaR formulations are solved with SLSQP algorithm. The initial guess for
each portfolio on the frontier is the previous point. Before optimizing we do not know
what the maximum target return is that still satisfies the position target constraint.
Finding the feasible range requires to monitor, if the optimization produces portfolios
that satisfy both the target return and the position target. Because this point is not
known beforehand, solving the full frontier gives values for which there is no feasible
solution. The unfeasible portfolios can be filtered based on whether or not both
constraints are satisfied. Solving the frontier of 50 portfolios with 20000 scenarios
takes roughly 2 minutes.

Table 7 shows weights for selected portfolios of the capital efficient frontier. The
weights on the frontier are in Figure 7. Table 7 includes the range for the filtered
weights, based on if both the position and the return target are satisfied. The weights
plot includes the unfiltered weights. We divided the range into 50 points. This resulted
in filtering 9 of the last portfolios.
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Figure 6: Capital efficient frontier for uncorrelated uncertainties.

Table 7: Capital efficient portfolios for uncorrelated uncertainties.

Expected return 4.6 5.0 5.4 6.2 7.1 8.0

CASH 43.528 29.914 12.735 0 0 0
GOV 0 0 0 0 0 0
EMD 0 0 0 0 0 0

IG 13.479 15.190 18.010 8.351 0 0
HY 5.836 10.226 15.769 33.148 46.850 13.489
EQ 18.899 19.614 20.495 23.404 28.409 26.127
PE 0 0 0 0 0 0
PD 0 0 0 0 0 0
HF 3.255 5.529 8.293 15.904 24.741 31.030
RE 1.087 0.490 0 0 0 0
CF 13.725 18.823 24.442 19.023 0 0

INFRA 0.190 0.214 0.257 0.169 0 29.354
USDEUR 3.384 5.373 8.074 17.204 29.843 53.384

47



Figure 7: Capital efficient frontier weights for uncorrelated uncertainties.

Table 8 shows the weights for selected number of portfolios of the traditional CVaR
frontier. The weights of this frontier are visualized in Figure 8.

Table 8: Portfolio returns efficient portfolios for uncorrelated uncertainties.

Expected return 4.6 5.0 5.4 6.2 7.1 8.0

CASH 13.351 0.239 0 0 0 0
GOV 0 0 0 0 0 0
EMD 0 0 0 0 0 0

IG 18.366 19.633 12.190 0 0 0
HY 20.753 25.141 35.413 54.215 48.341 10.817
EQ 2.591 3.277 5.038 8.941 18.136 24.584
PE 0 0 0 0 0 0
PD 0 0 0 0 0 0
HF 10.047 12.037 16.544 25.645 33.523 30.596
RE 0 0 0 0 0 0
CF 34.625 39.387 30.709 11.200 0 0

INFRA 0.268 0.286 0.106 0 0 34.003
USDEUR 8.502 10.619 16.259 27.563 44.848 52.966

Figure 9 shows the capital efficient frontier for the returns with correlateduncertainty
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Figure 8: Portfolio returns efficient frontier weights for uncorrelated uncertainties
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assumption. The efficiency improvement is not as significant as with the uncorrelated
case. The amount of improvement the model achieves compared to the traditional
CVaR optimization dependens on the underlying market assumptions. Figure 10
shows the relative difference in Sharpe ratios between the capital based and the
portfolio returns based optimizations across the frontiers. Under both uncertainty
correlation assumptions the difference is the greatest with the lowest expected return
and decreasing with higher expected returns.

Table 9: Portfolio returns efficient frontier for correlated uncertainties.

Expected return 3.5 3.9 4.5 5.6 6.7 8.2

CASH 62.272 44.154 21.791 0 0 0
GOV 0 0 0 0 0 0
EMD 0 0 0 0 0 0

IG 14.537 15.452 16.220 3.807 0 0
HY 3.531 9.537 16.817 38.412 60.646 10.117
EQ 0.916 1.710 2.774 5.992 11.598 23.804
PE 0 0 0 0 0 0
PD 0 0 0 0 0 0
HF 2.240 4.914 8.443 16.772 27.005 31.969
RE 0.231 0 0 0 0 0
CF 16.273 24.233 33.955 35.017 0.750 0

INFRA 0 0 0 0 0 34.110
USDEUR 1.457 4.484 8.399 19.689 34.521 53.474

6.1.1 Sensitivity

Table 11 shows the resulting portfolios with varying the values of the 𝛽 parameter.
This has a very small effect on the composition of the portfolios. These were calculated
with a fixed target return of 6%.

Table 12 shows the resulting portfolios with varying the initial solvency ratio and
with fixed target return of 6%. The requirement constraint depends on the solvency
ratio. The smaller the initial solvency ratio, the more the set of allowed portfolios
is reduced. This results, for example, in higher weight for government bonds and
smaller equity weight. In the higher initial solvency ratios, the requirement constraint
is not active with 6% target return. The resulting portfolios are different because the
solvency ratio determines with which ratio the portfolio returns and the change in the
liabilities are weighted.
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Figure 9: Capital efficient frontier for correlated uncertainties.

Figure 10: Relative difference in Sharpe ratios across the frontier under both uncer-
tainty correlation assumptions.
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Table 10: Capital efficient frontier for correlated uncertainties

Expected return 4.6 4.9 5.4 6.2 7.1 8.1

CASH 46.318 33.351 15.645 0 0 0
GOV 0 0 0 0 0 0
EMD 0 0 0 0 0 0

IG 14.494 16.030 16.899 5.961 0 0
HY 4.037 8.102 14.405 31.598 49.131 20.558
EQ 19.186 20.015 20.804 23.410 27.933 28.182
PE 0 0 0 0 0 0
PD 0 0 0 0 0 0
HF 2.965 5.194 7.942 14.892 22.936 33.639
RE 1.264 0.248 0 0 0 0
CF 11.736 17.060 24.305 24.139 0 0

INFRA 0 0 0 0 0 17.621
USDEUR 3.107 5.520 8.317 17.690 29.516 55.636

Table 11: Sensitivity of asset class weights with regards to the 𝛽-parameter.

𝛽 0.9 0.8 0.7 0.6 0.5

CASH 0 0 0 0 0
GOV 0 0 0 0 0
EMD 0 0 0 0 0

IG 12.289 11.553 11.507 12.024 11.169
HY 27.692 28.183 28.028 28.484 28.432
EQ 22.295 22.326 22.206 22.016 21.982
PE 0 0 0 0 0
PD 0 0 0 0 0
HF 13.508 13.510 13.835 13.914 13.975
RE 0 0 0 0 0
CF 23.932 24.321 24.376 23.442 24.325

INFRA 0.284 0.107 0.049 0.122 0.116
USDEUR 14.212 14.061 14.162 14.101 14.146
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Table 12: Asset class weights with varying intital solvency ratio.

𝑟𝑡0 0.05 0.1 0.15 0.2 0.25 0.3

CASH 0 0 0 0 0 0
GOV 0.256 0.042 0 0 0 0
EMD 0 0 0 0 0 0

IG 0 0.009 0.131 0.123 0.119 0.113
HY 0.138 0.283 0.268 0.277 0.284 0.292
EQ 0.167 0.229 0.230 0.223 0.218 0.212
PE 0 0 0 0 0 0
PD 0 0 0 0 0 0
HF 0.158 0.128 0.130 0.135 0.139 0.143
RE 0 0 0 0 0 0
CF 0.099 0.304 0.239 0.239 0.237 0.237

INFRA 0.182 0.006 0.003 0.003 0.002 0.002
USDEUR 0.120 0.137 0.136 0.142 0.146 0.150
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6.2 Minimization of expected shortage

Figures 11 and 12 show the results for the minimization of expected shortage. The are
performed with both the uncorrelated uncertainty returns and the correlated uncertainty
returns.

Figure 11: Minimization of expected shortage with varying solvency ratios (correlated
uncertainties).

6.2.1 Dynamic strategy optimization

Figures 13 and 14 show the portfolios for the dynamic strategy optimization for each
solvency ratio. Figure 15 shows the evolution of the objective function for the GA.
The shape of the progression indicates that the objective could be improved even
further with more iterations. The fact that the objective value is improved and the
cobyla algorithm’s stopping criterion was satisfied shows that the cobyla algorithm
had converged to a local extrema.

6.3 Minimization of insolvency probability

Figure 16 and Figure 17 show the portfolios for the minimization of insolvency
probability for each solvency ratio.
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Figure 12: Minimization of expected shortage with varying solvency ratios (uncorre-
lated uncertainties).

Figure 13: Dynamic strategy optimization with varying solvency ratios (correlated
uncertainties).
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Figure 14: Dynamic strategy optimization with varying solvency ratios (uncorrelated
uncertainties).

Figure 15: Evolution of the GA.
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Figure 16: Minimization of insolvency probability with varying solvency ratios
(correlated uncertainties).

Figure 17: Minimization of insolvency probability with varying solvency ratios
(uncorrelated uncertainties).
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6.4 Comparative analysis

Table 13 and Table 14 show metrics for the different optimization results. The
minimization of expected shortage is calculated as a constant portfolio with different
initial solvency ratios but the metrics are calculated based on the strategy it yields.

When the uncertainty correlations are assumed to be uncorrelated, the shift from
the constant to the dynamic formulation reduces the expected shortage by 59.4%
reducing the number of bankruptcy scenarios by 230 out of 10000 scenarios. The
minimization of insolvency probability finds a strategy with the lowest probability of
bankruptcy (49.3%). This increases the expected shortage of the strategy significantly.
The runtimes of the strategy based algorithms are between 8 and 31 hours which
makes them impractical in terms of the sensitivity analysis on the parameters and
assumptions.

With the correlated uncertainty assumption the minimization of insolvency proba-
bility achieved an objective value 24.5%.

Figure 18 shows the mean Fund transfer obligation for each timestep and the long
term average. It has an upward trend where the value for the first year is 5.3% and
for the 10-th year 7.3%. The 10-year annual average is 6.01%. The slope of the
curve seems to flatten between the 3-10 year period. The initial decline is likely due
to the 𝑏16 formula. The initial value is given as an input value while the rest are
calculated. The upward trend suggests that the optimizations are likely to yield higher
risk portfolios the longer the time period is selected.

Figure 19 and Figure 20 show the optimization results within the mean-volatility
space. The 10-year annual average fund transfer obligation is marked as the dashed
line. The portfolios are numbered within the order of the solvency ratios (1=0.05, ...,
10=0.5).

These results are not associated with clear frontiers, which highlights the difficulty
of drawing definitive conclusions based on these optimizations. With both uncertainty
correlation assumptions, the constant minimization of expected shortage exhibits
smaller dispersion within the portfolios compared to the dynamic approach. This is
expected as the dynamic strategy optimization includes the freedom to modify the
risk level based on the solvency ratio. The minimization of insolvency probability has
the largest dispersion within the portfolios. There is an increased concentration of
portfolios around expected return of 6.25%.

The correlation assumption for the uncertainties affects significantly the volatility
of the portfolio returns. When they are assumed to be correlated the volatilities range
between 4.3–10.5% and when uncorrelated between 10.9–28.3%.
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Table 13: Cross comparison of the objective values (uncorrelated).

Expected shortage Probability of bankruptcy Runtime (s)

ES (constant) 2.950 0.575 ≈ 30000
ES (strategy) 1.196 0.552 ≈ 80806
Probability 2.422 0.493 ≈ 59700

Table 14: Cross comparison of the objective values (correlated).

Expected shortage Probability of bankruptcy Runtime (s)

ES (constant) 0.459 0.413 ≈ 33600
ES (strategy) 0.414 0.433 ≈ 108585
Probability 0.990 0.246 ≈ 33000

Figure 18: Time series of the mean FTO.
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The lowest expected return is observed with the lowest solvency ratios. These
portfolios are below the long term mean FTO due to the solvency requirement
constraint. There are also portfolios below the long term mean FTO where the
solvency requirement constraint is not active. This is unexpected and potentially
brings forth shortcomings of the models with the selected parameters. With a portfolio
where the expected return is below this line, the solvency ratio of the pension fund is
decreasing on average. It may be that with a time period of ten years, the program is
not able to capture this, the sample size of 10000 is not enough, or the solutions have
converged to local extrema.

Figure 19: Optimization results in the mean-volatility space (uncorrelated uncertain-
ties).

Figure 20 and Figure 19 could also be presented with the solvency capital CVaR
risk measure. However, the solvency ratio affects the value of the risk, and thus it is
clearer to compare portfolios with different solvency ratios with a risk measure that is
not affected by it.
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Figure 20: Optimization results in the mean-volatility space (correlated uncertainties).
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7 Summary

This thesis has explored multiple problem statements for optimizing the portfolio
of a pension fund within the Finnish regulatory framework. All the optimizations
were based on how the liabilities change as a function of the portfolio decisions.
We succeeded in formulating the problem in a way which captures the solvency
requirement by programming the equations defined in the law, making the necessary
assumptions and gathering the needed input values.

We were not able to explicitly formulate a definite and solvable minimization
problem. It is why we explored multiple models. The key difference between the
models is the difference between the loss functions applied and their feasibility in
practical use.

The capital based CVaR formulation uses a linear loss function which is easier to
solve but requires adjustment of extra parameters. These are the 𝛽-probability, the
target return, the position target, and time. This formulation shows consistent results.
The portfolios did not exhibit large deviations in asset weights with the adjustment
of the input parameters. Furthermore, it can be compared easily to the traditional
portfolio returns based CVaR formulation. This makes it possible to examine how the
weights of the asset classes change when the risk is directed to the solvency capital of
the pension provider. The portfolio returns based formulation is used as a benchmark.
The comparison showed significant differences in the sharpe ratios when the risk was
defined in terms of the 0.9-CVaR of the solvency capital. It can be concluded that the
minimization of CVaR is the most useful method for practice.

In the models with a nonlinear the loss function, the expected return is solved
indirectly and there is no need to define the parameter 𝛽 nor the target return.
The difference between the dynamic strategy optimization and the minimization
of expected shortage is the assumption whether the portfolio policy is constant or
dynamic. Both models are included for comparison. The solution for the minimization
of expected shortage is also used to produce the initial guesses for the dynamic
strategy optimization. They minimize the expected amount that the fund is insolvent.
Minimization of insolvency probability is included for its theoretical accuracy in
minimizing the bankruptcy probabilities.

All models with a nonlinear loss function exhibit large deviations in asset weights
across the strategies. Each model returned the lowest objective value for their respective
objective function. The shift from the constant to the dynamic strategy created more
dispersion within the portfolios as expected. The dynamic strategy improved the

62



objective values when the model explicitly minimized not meeting the future solvency
requirements. This highlights the significance of the program having the freedom to
modify the weights during the scenarios in such formulations.

The genetic algorithm showed that we were not able to find global extremum
with the models that had nonlinear loss function. Without a reliable extremum it is
hard to identify what causes the inconsistency within the results. The runtimes of
the algorithms prohibited adequate sensitivity analysis. Increasing the sample size
could lead to more consistent results. The discount factor of the expected shortage risk
measure is likely to affect the resulting portfolios. An increase within selected time
period of the program may also yield higher risk portfolios. The dynamic strategy
optimization consists of defining a 𝑘 × 𝑚 matrix, where each column represents a
different solvency ratio and each row represents the portfolio weights. The number of
portfolios 𝑚 in a given strategy is likely to effect the number of required samples for
consistent results.

Due to the unreliability of the solutions the most useful way to use the algorithms
with a nonlinear loss function would be to start with a predetermined strategy as an
initial guess and monitor the change within the objective value and the asset weights.

The choice of the algorithm could be researched further. It is likely that there
are suitable algorithms for such problems in addition to those presented in previous
sections. Almost certainly the GA could be tailored further for this task.

Two fixed correlation assumptions of the uncertainties were examined in the
sampling process, assuming that they are either correlated or fully uncorrelated. This
was practical decision to simplify the process. In reality, the correlations of the
uncertainties are likely to be somewhere in between these two extreme cases. An
idea for further research is to link the correlation assumption of the uncertainties to
a parameter. This would allow for a continuous analysis between the two extremes.
While having the two sets of returns makes it challenging to single out a specific
portfolio as the best one, it does not prohibit the comparison of the models.
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A Appendix

Table A1: The exposures each asset class has to a specific risk class 𝐸 (Ch. 3.2).

Asset class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CASH 0 0 0 0 0 0.200 0 0.100 0.100 0 0 0 0 0 0 0 0 0
GOV 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
EMD 0 0 0 0 0 1 0.070 0.050 0.440 0.440 0 0 0 0 0 0 0 0

IG 0 0 0 0 0 1 0.050 0.070 0.870 0.010 0 0 0 0 0 0 0 0
HY 0 0 0 0 0 1 0 0.025 0.025 0.950 0 0 0 0 0 0 0 0
EQ 0.480 0.320 0.150 0.050 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PE 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
PD 0 0 0 0 0.160 0.840 0 0 0 0.840 0 0 0 0 0 0 0 0
HF 0.008 0.093 0 0.232 0 0.077 0 0.213 0 0.024 0 0 0 0.038 0 0 0.099 0
RE 0 0 0 0 0.065 0.030 0 0 0 0.035 0.300 0.600 0 0 0 0 0 0
CF 0 0 0 0 0 1 0 0.300 0.680 0.020 0 0 0 0 0 0 0 0

INFRA 0 0 0 0 0.150 0 0 0 0 0 0 0 0 0 0 0 0 0.850
USDEUR 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Table A2: Inputs for solvency requirement calculation.

Asset class Modified duration Spread duration Lever

1 CASH 0.250 0.250 0
2 GOV 3.200 3.200 0
3 EMD 5 5 0
4 IG 6 6 0
5 HY 3 3 0
6 EQ 0 0 0
7 PE 0 0 0
8 PD 0.600 2.600 0.010
9 HF 4.500 4.500 0
10 RE 2 2 0.100
11 CF 0.580 3.500 0
12 INFRA 0 0 0.012
13 USDEUR 0 0 0

Table A3: Asset class correlation assumptions.

CASH GOV EMD IG HY EQ PE PD HF RE CF INFRA USDEUR

CASH 1 0.420 -0.100 0.140 -0.140 -0.440 -0.460 -0.440 -0.470 -0.500 0.140 -0.390 -0.180
GOV 0.420 1 0.290 0.770 0.320 0.110 0.066 -0.073 -0.096 -0.410 0.770 0.200 -0.011
EMD -0.100 0.290 1 0.800 0.950 0.720 0.700 0.460 0.680 -0.370 0.800 0.520 0.420

IG 0.140 0.770 0.800 1 0.810 0.530 0.500 0.270 0.380 -0.450 1 0.480 0.240
HY -0.140 0.320 0.950 0.810 1 0.780 0.750 0.500 0.720 -0.330 0.810 0.620 0.360
EQ -0.440 0.110 0.720 0.530 0.780 1 0.940 0.680 0.860 0.023 0.530 0.820 0.230
PE -0.460 0.066 0.700 0.500 0.750 0.940 1 0.710 0.850 0.042 0.500 0.750 0.210
PD -0.440 -0.073 0.460 0.270 0.500 0.680 0.710 1 0.800 0.460 0.270 0.700 0.150
HF -0.470 -0.096 0.680 0.380 0.720 0.860 0.850 0.800 1 0.097 0.380 0.710 0.340
RE -0.500 -0.410 -0.370 -0.450 -0.330 0.023 0.042 0.460 0.097 1 -0.450 0.280 -0.160
CF 0.140 0.770 0.800 1 0.810 0.530 0.500 0.270 0.380 -0.450 1 0.480 0.240

INFRA -0.390 0.200 0.520 0.480 0.620 0.820 0.750 0.700 0.710 0.280 0.480 1 0.010
USDEUR -0.180 -0.011 0.420 0.240 0.360 0.230 0.210 0.150 0.340 -0.160 0.240 0.010 1

Tables A4–A15 show the results of the optimizations with nonlinear loss function.
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Table A4: Expected shortage portfolios with varying solvency ratio (0.05-0.25) for
uncorrelated uncertainties.

0.05 0.1 0.15 0.2 0.25

CASH 0 21.411 10.655 6.684 4.729
GOV 31.824 11.922 6.617 5.972 5.353
EMD 0.112 0.644 1.652 2.277 2.300

IG 0 0.001 3.819 9.580 2.929
HY 0.001 3.703 6.336 6.753 7.170
EQ 16.611 27.261 34.657 34.333 34.069
PE 0.000 10.836 10.709 10.336 10.423
PD 0.002 0.004 2.229 5.886 8.954
HF 19.770 9.043 8.548 8.507 8.410
RE 4.641 8.289 8.110 8.199 8.128
CF 26.130 5.527 5.289 0.143 6.172

INFRA 0.910 1.359 1.379 1.330 1.362
USDEUR 1.662 12.311 7.277 36.168 10.419

Table A5: Expected shortage portfolios with varying solvency ratio (0.3-0.5) for
uncorrelated uncertainties.

0.3 0.35 0.4 0.45 0.5

CASH 8.690 14.618 9.105 12.131 8.311
GOV 6.098 9.106 6.897 5.878 5.704
EMD 2.241 2.491 2.149 1.578 1.952

IG 8.915 2.161 5.811 7.803 6.710
HY 4.569 5.321 6.951 4.964 9.194
EQ 33.818 33.692 33.166 33.411 33.779
PE 10.310 10.318 10.201 10.339 10.193
PD 3.483 4.338 6.783 4.601 3.328
HF 8.319 8.287 8.050 8.034 7.926
RE 8.132 7.850 7.694 7.965 7.999
CF 4.142 0.547 1.995 2.093 3.610

INFRA 1.282 1.270 1.197 1.203 1.294
USDEUR 12.919 11.147 12.756 7.460 4.498
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Table A6: Expected shortage portfolios with varying solvency ratio (0.05-0.25) for
correlated uncertainties.

0.05 0.1 0.15 0.2 0.25

CASH 0.00001 3.095 8.699 16.575 7.359
GOV 27.741 17.217 6.405 9.666 4.864
EMD 0.00001 0.260 1.745 0.065 1.362

IG 0.00003 0.0001 5.326 5.913 10.390
HY 3.164 15.404 13.836 7.547 7.871
EQ 20.030 30.514 32.761 33.043 30.332
PE 0.0001 5.408 5.692 8.052 7.072
PD 0.001 0 1.449 0.040 4.594
HF 9.690 9.329 8.909 7.385 7.330
RE 1.764 5.805 5.229 4.571 7.306
CF 31.633 11.207 8.832 6.172 9.529

INFRA 5.977 1.761 1.117 0.970 1.989
USDEUR 4.200 18.599 20.714 21.516 20.079

Table A7: Expected shortage portfolios with varying solvency ratio (0.3-0.5) for
correlated uncertainties.

0.3 0.35 0.4 0.45 0.5

CASH 13.145 5.220 13.240 7.218 7.184
GOV 5.796 4.515 5.484 8.791 8.337
EMD 2.011 6.918 7.249 5.856 11.554

IG 4.766 6.207 4.600 4.457 8.612
HY 11.102 10.586 6.459 11.340 8.018
EQ 34.148 29.410 28.123 21.320 25.865
PE 5.783 8.018 9.779 10.608 7.544
PD 3.079 5.174 5.078 6.022 6.285
HF 7.862 7.784 7.160 5.315 3.412
RE 7.917 6.510 9.281 7.810 3.061
CF 2.745 9.511 2.916 8.797 5.858

INFRA 1.646 0.147 0.629 2.467 4.269
USDEUR 18.280 16.148 19.345 10.790 18.488
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Table A8: Dynamic strategy optimization portfolios with varying solvency ratio
(0.05-0.25) for uncorrelated uncertainties.

0.05 0.1 0.15 0.2 0.25

CASH 0.005 23.492 8.510 11.533 4.187
GOV 23.567 15.240 6.195 3.444 4.738
EMD 0.177 0.502 1.785 2.232 2.846

IG 0.035 0.046 4.260 8.032 2.915
HY 0.018 3.929 10.312 6.037 4.882
EQ 21.656 28.499 34.204 39.049 42.989
PE 0.324 8.854 11.870 9.948 10.918
PD 0.288 0.005 1.946 4.336 4.627
HF 0.446 10.855 8.873 8.483 8.097
RE 3.653 5.662 7.772 5.496 7.462
CF 49.044 1.956 2.885 0.159 5.079

INFRA 0.787 0.961 1.388 1.248 1.261
USDEUR 3.219 9.267 7.408 36.411 10.383

Table A9: Dynamic strategy optimization portfolios with varying solvency ratio
(0.3-0.5) for uncorrelated uncertainties.

0.3 0.35 0.4 0.45 0.5

CASH 9.231 13.085 8.243 12.057 8.153
GOV 3.404 10.251 2.715 5.102 5.899
EMD 2.428 2.432 2.334 0.984 2.845

IG 12.862 2.115 4.318 8.033 7.148
HY 5.219 4.936 5.434 5.340 8.645
EQ 28.443 35.039 38.563 33.548 29.226
PE 11.575 10.195 10.669 10.640 13.581
PD 2.612 0.038 8.253 5.565 3.687
HF 10.156 7.837 8.931 7.900 8.960
RE 8.248 12.150 7.213 7.819 8.184
CF 4.509 0.531 1.728 1.723 2.177

INFRA 1.313 1.392 1.601 1.290 1.496
USDEUR 14.187 9.877 11.316 8.167 3.842
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Table A10: Dynamic strategy optimization portfolios with varying solvency ratio
(0.05-0.25) for correlated uncertainties.

0.05 0.1 0.15 0.2 0.25

CASH 0.298 3.131 13.436 16.477 7.276
GOV 27.337 17.258 2.165 6.397 4.905
EMD 0.020 0.045 2.329 0.137 1.262

IG 0.011 0.047 5.250 7.414 10.232
HY 3.150 15.409 18.604 6.272 7.992
EQ 19.655 30.438 29.435 35.953 33.229
PE 0.013 5.508 6.740 7.878 6.822
PD 0.002 0.936 1.386 0.058 2.404
HF 9.575 8.401 5.536 7.317 7.190
RE 3.255 5.851 5.804 5.849 7.275
CF 30.988 11.237 8.241 5.978 9.401

INFRA 5.696 1.738 1.075 0.270 2.011
USDEUR 4.327 18.648 20.728 24.922 20.180

Table A11: Dynamic strategy optimization portfolios with varying solvency ratio
(0.3-0.5) for correlated uncertainties.

0.3 0.35 0.4 0.45 0.5

CASH 11.016 4.735 12.759 5.343 2.936
GOV 4.535 4.985 5.154 8.532 2.032
EMD 2.236 4.848 6.323 4.555 11.777

IG 4.237 6.732 4.530 4.857 7.331
HY 9.968 11.472 6.800 8.652 13.991
EQ 32.184 29.766 28.377 24.686 26.652
PE 9.244 9.201 9.747 10.702 7.909
PD 4.117 3.972 3.713 7.344 5.077
HF 8.846 7.786 7.185 6.264 3.078
RE 9.092 6.464 10.465 8.063 3.272
CF 2.710 9.681 4.389 8.449 6.138

INFRA 1.815 0.358 0.558 2.554 9.806
USDEUR 30.015 21.268 19.392 10.850 18.523
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Table A12: Minimization of insolvency probability portfolios with varying solvency
ratio (0.05-0.25) for correlated uncertainties.

0.05 0.1 0.15 0.2 0.25

CASH 0.219 5.136 8.331 2.907 11.003
GOV 34.953 12.411 4.073 13.961 5.893
EMD 0.022 0.047 2.869 0.154 1.098

IG 0.017 0.087 7.928 8.443 8.315
HY 2.681 26.641 18.777 13.714 12.789
EQ 17.967 25.113 27.083 31.372 25.196
PE 0.013 0.074 0.807 2.565 10.245
PD 0.002 1.106 1.487 0.039 1.559
HF 3.083 15.816 7.124 12.092 9.304
RE 4.453 3.575 2.725 4.923 2.590
CF 35.363 8.069 17.547 9.535 10.629

INFRA 1.227 1.927 1.251 0.295 1.379
USDEUR 2.003 19.987 17.417 18.446 29.247

Table A13: Minimization of insolvency probability portfolios with varying solvency
ratio (0.3-0.5) for correlated uncertainties.

0.3 0.35 0.4 0.45 0.5

CASH 14.593 7.502 15.444 6.179 4.756
GOV 9.061 5.442 7.698 8.238 1.832
EMD 1.606 0.528 11.866 5.060 9.505

IG 4.461 5.503 3.889 5.583 11.616
HY 13.123 15.124 5.841 12.077 6.479
EQ 21.812 19.695 19.043 25.360 23.896
PE 13.030 10.839 7.442 8.515 8.019
PD 3.337 6.576 2.044 6.712 5.882
HF 12.303 8.150 12.448 6.532 4.524
RE 4.063 4.249 10.810 6.358 3.755
CF 1.602 15.927 2.600 7.782 8.953

INFRA 1.008 0.465 0.874 1.606 10.783
USDEUR 40.957 19.840 7.118 14.181 29.293
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Table A14: Minimization of insolvency probability portfolios with varying solvency
ratio (0.05-0.25) for uncorrelated uncertainties.

0.05 0.1 0.15 0.2 0.25

CASH 0.008 28.474 8.144 19.305 4.565
GOV 26.864 16.034 6.535 3.501 5.662
EMD 0.387 0.616 1.470 2.533 3.128

IG 0.028 0.037 4.565 10.177 2.393
HY 0.020 2.722 10.802 8.460 4.365
EQ 23.544 38.927 40.135 26.074 36.600
PE 0.186 0.004 6.258 5.837 10.821
PD 0.313 0.006 2.071 4.854 3.963
HF 0.444 5.645 8.302 11.511 12.076
RE 3.586 4.847 7.497 6.587 8.973
CF 44.438 1.560 2.910 0.126 6.235

INFRA 0.183 1.129 1.312 1.034 1.218
USDEUR 3.352 7.594 5.953 21.236 8.706

Table A15: Minimization of insolvency probability portfolios with varying solvency
ratio (0.3-0.5) for uncorrelated uncertainties.

0.3 0.35 0.4 0.45 0.5

CASH 9.510 16.469 7.201 13.368 4.002
GOV 1.861 7.910 2.652 5.500 8.311
EMD 2.241 2.313 2.851 0.868 1.084

IG 11.327 2.289 4.546 10.116 5.495
HY 5.097 5.851 4.454 10.073 12.793
EQ 30.620 30.633 32.255 28.147 20.533
PE 12.120 12.997 12.185 9.708 15.562
PD 2.646 0.030 9.582 5.002 2.850
HF 11.173 9.975 9.884 7.642 15.138
RE 7.515 9.768 11.421 5.853 10.575
CF 4.330 0.473 1.129 1.649 2.133

INFRA 1.560 1.293 1.839 2.073 1.524
USDEUR 13.384 10.956 17.231 9.805 2.358
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