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Abstract
The performance of an elevator system is often perceived through direct
metrics of passenger service level, but the climate crisis creates an increasing
need to consider energy efficiency as an integral element of performance. The
performance of an elevator group is highly dependent on its control method.
A central part of elevator group control is the call allocation system that is
responsible for determining the best car to serve each call.

This thesis develops a multiobjective optimization model for call allocation
with three objectives: energy consumption of the elevator group, time to
destination of passengers, and waiting time. An achievement scalarizing value
function is formulated to transform the multiobjective optimization problem
to a single objective problem. Decision maker preferences are included in the
value function as a reference point that is adjusted based on traffic intensity.
The single objective problem is solved with the same genetic algorithm already
used in the production version of the KONE call allocation system. The
performance of the new call allocation method is tested with simulations in
three different elevator groups.

In the simulations, overall energy consumption is reduced 4–20% depending
on the elevator group. Waiting time increased in the smallest elevator group by
5% but decreased in the other two groups by 10% and 19%. The reductions
in these two objectives came at the cost of a 3–11% increase in time to
destination. The behavior of the system follows known preferences on a
general level, with most energy consumption reductions, and increases in time
to destination, occurring in low traffic. These results are sufficient for a proof
of concept, but additional testing and development is recommended before
considering deployment. Work on preference elicitation is recommended to
improve the possibilities for further development of call allocation methods.
Keywords Achievement scalarizing function, multiobjective optimization,

energy consumption, call allocation, elevator traffic
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Tiivistelmä
Hissijärjestelmän suorituskyky hahmotetaan usein yksinomaan asiakkaiden
palvelutasoon liittyvien mittareiden kautta. Ilmastokriisi kuitenkin luo kas-
vavan tarpeen sisällyttää energiatehokkuus keskeiseksi osaksi suorituskyvyn
mittaristoa. Hissiryhmän suorituskyky riippuu olennaisesti ryhmän ohjaukses-
ta. Keskeinen osa tätä ohjausta on hissikutsujen allokointijärjestelmä, jonka
vastuulla on määrittää paras hissikori palvelemaan kutakin kutsua.

Tämä diplomityö kehittää kolmen tavoitteen monitavoiteoptimointimallin
hissikutsujen allokointitehtävälle. Mallin kolme tavoitetta ovat hissiryhmän
energiankulutus sekä matkustajien matkustus- ja odotusajat. Tämä monitavoi-
teoptimointiongelma muunnetaan yhden tavoitteen ongelmaksi muotoilemalla
sille saavutukset skalarisoiva arvofunktio. Päätöksentekijän mieltymykset sisäl-
lytetään arvofunktioon vertailupisteenä, jota säädetään liikenneintensiteetin
perusteella. Yhden tavoitteen ongelma ratkaistaan geneettisellä algoritmilla,
joka on käytössä KONEen hissikutsujen allokointijärjestelmän tuotantover-
siossa. Kehitetyn allokointimenetelmän suorituskykyä testataan simuloinneilla
kolmessa eri hissiryhmässä.

Suoritetuissa simuloinneissa kokonaisenergiankulutus laskee 4–20% hissi-
ryhmästä riippuen. Odotusaika nousee pienimmässä hissiryhmässä 5%, mutta
laskee kahdessa muussa ryhmässä 10% ja 19%. Näiden kahden tavoitteen alen-
tamisen kustannus on 3–11% nousu matkustusajassa. Järjestelmän toiminta
noudattaa tunnettuja päätöksentekijän mieltymyksiä yleisellä tasolla: suurin
osa energiankulutuksen alenemisesta ja matkustusajan noususta tapahtuu
hiljaisen liikenteen aikana. Nämä tulokset ovat riittäviä osoittamaan käytet-
tyjen menetelmien toimivuuden, mutta laajempaa testausta ja kehitystyötä
suositellaan ennen kehitetyn järjestelmän käyttöönoton harkitsemista. Päätök-
sentekijän mieltymysten tarkempaa kartoittamista suositellaan edellytysten
luomiseksi entistä parempien hissikutsujen allokointimallien kehitystyölle.
Avainsanat Saavutukset skalarisoiva funktio, monitavoiteoptimointi,
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Chapter 1

Introduction

An elevator system is a key element in the functionality of tall buildings. In
large buildings the system has several elevator groups. An elevator group
consists of nearby elevator shafts with cars moving inside them, and landings
in the floors along the way. Landings have call giving devices close to the
elevator doors. The elevators of a group share the same call giving devices.
In modern elevators these devices have an option for each destination floor
instead of the directions ‘up’ or ‘down’. Each elevator group has one computer
that serves as a group controller.

A user of a modern elevator group orders an elevator car by indicating
their destination floor with a call giving device. The user is shown the elevator
that will answer the call and they can immediately move to the correct doors.
After some waiting time, an elevator destined for the desired direction arrives
on the landing, and the transit begins. During the transit the elevator car may
stop at other landings along the way. At the destination floor, the passenger
exits the car, completing the journey.

The performance of an elevator group is usually perceived as some metric
directly related to passenger service quality (see e.g. Al-Sharif et al., 2015;
Hirasawa et al., 2008; Jamaludin et al., 2010). The rapidly escalating climate
crisis creates an increasing need to consider energy efficiency as an integral
element of performance. Efficient operation of an elevator group is highly
dependent on the way it is controlled. The elevator company KONE has
a long history of research and development in group control methods (see
e.g. Alander et al., 1995; Siikonen, 1997; Siikonen & Ylinen, 2006). KONE’s
current production version provides excellent results in terms of passenger
service level, but optimization of energy consumption is not in industrial
production despite some promising test results (Tyni & Ylinen, 2006).

The group controller is responsible for deciding the best route for each
elevator car. With many cars and calls, this creates a complex routing problem.
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CHAPTER 1. INTRODUCTION 2

To simplify the problem, the current practice is to determine the routing of a
single elevator with heuristics (Tyni & Ylinen, 2001). Now the group controller
must decide only which car answers which call. This reduced problem is called
a call allocation problem (Ruokokoski et al., 2016). Usually the objective in
solving the call allocation problem is related to the swiftness of transportation
(see e.g. Bolat et al., 2013; Tyni & Ylinen, 2001; Valdivielso & Miyamoto,
2011). The current KONE call allocation system utilizes two objectives,
passenger waiting time and time to destination. The preferences between
the objectives are modeled with an additive value function. Even though
an additive value function has been considered appropriate for modeling
preferences between these two objectives, it may not be sufficient when energy
consumption is also considered.

This thesis develops a multiobjective optimization model for the call
allocation problem with three objectives: 1) waiting time and 2) time to
destination of passengers as well as 3) energy consumption of elevators. The
existing group control is modified to add the energy consumption objective.
The three objectives are conflicting, so tradeoffs must be made between them.
To determine the best tradeoffs, decision maker input is needed. It is not
possible to get this input during optimization, because allocation decisions
must be made quickly with the elevators constantly running. Therefore, the
problem is reduced to a single objective optimization problem, where decision
maker preferences are included in the value function. This single objective
problem is then solved with the same genetic algorithm already in use in the
existing group control (Tyni & Ylinen, 2001). The optimization model is
validated in a simulation environment to assess and visualize its performance
in different buildings and traffic situations.

The remainder of this thesis is structured as follows. Chapter 2 includes
the basic concepts of elevator traffic, discussion of preference modeling and
theory of multiobjective optimization. Chapter 3 introduces the optimization
model implemented in this thesis. Chapter 4 presents the simulation results
and discusses potential for further development. Chapter 5 concludes the
thesis by summarizing the main contributions and recommending future
research.



Chapter 2

Background

This chapter provides theoretical background and insights about the nature of
the optimization task at hand. We begin with key concepts of elevator traffic.
We discuss typical traffic situations, rules of elevator control, and definitions
of timespans of special interest in an elevator journey. In Section 2.2 we
move on to discuss requirements and preferences the optimization model
should meet. Possibilities and limitations of an additive value function are
highlighted. Section 2.3 introduces the theory of multiobjective optimization.

2.1 Basic concepts of elevator traffic
Dr Gina Barney and Dr Lutfi Al-Sharif, two veterans of elevator traffic design,
describe the components of elevator traffic in Elevator traffic handbook: theory
and practice (Barney & Al-Sharif, 2015, pp. 73-77). There are three distinct
traffic components: incoming, outgoing and interfloor traffic. Incoming traffic
consists of passengers entering the building at the entrance floor and traveling
to destinations on the upper floors of the building. When the dominant,
or only, traffic component is incoming, the situation is called an up peak
traffic condition. In typical office and public buildings, up peak occurs in the
morning. It is considered the most challenging situation for an elevator system.
Typically, if an elevator system can efficiently handle the morning up peak, it
can also handle other traffic conditions. Outgoing traffic is the opposite of
incoming, consisting of passengers traveling down to the entrance floor from
upper floors. When outgoing traffic is the dominant, or only, component, the
situation is called a down peak traffic condition. In an office building, down
peak occurs at the end of the working day. In addition to up and down peaks,
lunchtime has a discernible traffic pattern. It is typical for a lunchtime traffic
condition that there is a dominant traffic flow to and from a specific floor,

3



CHAPTER 2. BACKGROUND 4

most commonly the entrance floor. Interfloor traffic consists of passengers
traveling between different floors of the building in both directions. It can be
considered the main traffic component when no discernible pattern can be
detected.

Efficient routing of a group of elevators is generally a very complex opti-
mization task (Tyni & Ylinen, 2001). Computing time is also limited because
the solution needs to be ready and decided for a new passenger shortly after
they give a call. To cope with these limitations, the prevailing practice is
to determine the routing of a single car with a heuristic method called the
collective control principle (Tyni & Ylinen, 2001). It dictates the six rules
below (Barney & Al-Sharif, 2015, p. 239). Here the term ’landing call’ refers
to a landing with a passenger waiting to be picked up, the term ’car call’ to
a destination landing for a passenger inside the car, and the term ’call’ to
either of those two. Landing call direction refers to the direction of travel of
the passenger at that landing.

1. A car serves the calls in floor sequence in its direction of travel.

2. If a landing call direction is opposite to the car’s direction, the landing
call is bypassed.

3. If a car is full, it bypasses landing calls until there is space for new
passengers.

4. If the only calls left in a car’s direction of travel are landing calls with
opposite direction, the car moves to the furthest landing call and changes
direction there.

5. If there are no more calls in a car’s direction of travel, the car changes
direction.

6. If there are no more calls anywhere, the car remains stationary until it
starts moving in the direction of the first new call.

As this method is used for controlling a single car, the problem for determining
the routes for an elevator group reduces to a problem of allocating calls to
cars within the group.

2.1.1 Traffic definitions
There are a few globally established definitions for elevator traffic. Barney et al.
(2005) were instrumental in unifying the most central definitions introduced
here. Journey time is the time from passenger arrival to the moment when
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the passenger alights the car at the destination floor. Time to destination is
the time from passenger arrival to the moment when their elevator car starts
to open its doors at the destination floor. Waiting time is the time from
passenger arrival to the moment when their elevator car begins to open its
doors at the boarding floor. After this, the transit time begins, ending when
the elevator car doors start opening at the destination floor. We can see that
time to destination is the sum of waiting time and transit time.

Waiting time can be further divided to walking time and standing time
at the moment when the passenger stops to stand in front of the elevator
allocated for them. Call time is defined for conventional call-giving devices
(Sorsa, 2002). It is the time from registering a new call until the moment
when the call is cancelled. Usually a call is cancelled automatically when a
responding elevator car starts slowing down at the boarding floor. Interval is
the average time between successive lift car arrivals (or departures) at the
main terminal floor (Barney & Al-Sharif, 2015, p.81). Figure 2.1 illustrates
these definitions and their relationships to one another.

Previous
car

leaving

Passenger
arrives
or gives

a call

Passenger 
stands in
front of

the allocated 
lift

Call is
cancelled

Responding
lift arrives

and starts to 
open doors

Next car 
leaving

Doors start
to open at 

destination 
floor

EVENT

Departure Interval

Standing  timeWalking time

Transit TimeWaiting Time

Time to Destination

Journey Time

Call Time

Passenger 
exits the car

Figure 2.1: Definitions of timespans in elevator traffic. Illustration by Siikonen
(2020, p.9).

2.2 Requirements for the value function
In this section we discuss the preferences and requirements the developed
model should fulfill. Currently the call allocation system at KONE utilizes an
additive value function with waiting time and time to destination as attributes.
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The value function is of the form

αW W + αT T, (2.1)

where W is waiting time, T is time to destination, and αW and αT are
weighting coefficients. A natural choice would be to extend the current value
function by adding the energy consumption objective as a term αEE. Using
an additive value function is quite common. Tyni and Ylinen (2006) proposed
using it in their study of energy optimization in call allocation. Kim et al.
(1998) also used an additive value function in their call allocation method
based on fuzzy theory to solve a similar problem of three objectives. The first
subsection reviews the theory of additive value functions. The applicability
of this method with the added attribute of energy consumption is discussed
in Section 2.2.2.

2.2.1 Theory of additive value functions
We will denote with ≽ a preference relation between performance levels of
an attribute. With this notation, a ≽ b means that level a is at least as
preferable as b. Let Z be the set of all possible multi-attribute outcomes of
a decision problem, and Zi the set of all possible outcomes for the attribute
i. We can partition the set Z in two by denoting a subset of indices with I.
Set ZI is the set of attributes with indices in I, and ZI∁ is the set of all other
attributes. Thus, we have ZI ∪ ZI∁ = Z. We need this notation to define
two important concepts in the theory of additive value functions, preferential
independence, and difference independence.

Definition 2.2.1. (Dyer & Sarin, 1979). ZI is preferentially independent of
ZI∁ if

(zI , z′
I∁) ≽ (z′

I , z′
I∁) for any z′

I∁ ∈ ZI∁ and zI , z′
I ∈ ZI

⇒ (zI , zI∁) ≽ (z′
I , zI∁) for all zI∁ ∈ ZI∁ .

Definition 2.2.2. (Dyer & Sarin, 1979). The attributes Z1, ..., Zk are mutu-
ally preferentially independent if for every subset I of {1, .., k} the set ZI of
these attributes is preferentially independent of ZI∁ .

Intuitively mutual preferential independence means that preferences be-
tween different levels of attributes do not depend on the levels of other
attributes, if these other attribute levels are the same for all alternatives.
We denote with ≽d a preference relation between changes in performance
levels of an attribute. With this notation, (a ← b) ≽d (c ← d) means that
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a change from b to a is at least as preferable as a change from d to c. We
denote indifference with ∼d. It is defined as (a ← b) ∼d (c ← d) ⇔ (a ←
b) ≽d (c ← d) ∧ (c ← d) ≽d (a ← b) (Dyer & Sarin, 1979). The concept
of difference consistence gives us a relationship between the two preference
relations, ≽ and ≽d. Its rigorous definition is given in Dyer and Sarin (1979).
Difference consistence is a simple property. Loosely speaking, it just means
that preferences between attribute levels stay the same regardless of the route
that is taken to reach those levels.

Definition 2.2.3. (Dyer & Sarin, 1979). The attribute Zi is difference
independent of ZI∁ , where I = {i}, if,

for all zi, z′
i ∈ Zi, such that (zi, zI∁) ≽ (z′

i, zI∁) for some zI∁ ∈ ZI∁ ,

(zi, z′
I∁)← (z′

i, z′
I∁) ∼d (zi, zI∁)← (z′

i, zI∁) for any z′
I∁ ∈ ZI∁ .

Intuitively difference independence means that preference between changes
in the level of an attribute does not depend on the levels of other attributes,
if these other attribute levels are the same for both alternatives. We have
now discussed all the necessary definitions for the following theorem, which
describes an additive value function V (z) = ∑︁k

i=1 vi(zi), and the conditions for
its use as an accurate representation of preference relations between attributes.

Theorem 2.2.1. (Dyer & Sarin, 1979). Assume k ≥ 3, Z1, ..., Zk are
mutually preferentially independent, difference consistent, and Z1 is difference
independent of Z1∁. Then there exists functions vi : Zi → R, i = 1, ..., k, such
that for all zi, z′

i, z◦
i , z†

i ∈ Zi,

i) if z, z′, z◦, z† ∈ Z, then

z ← z′ ≽d z◦ ← z† ⇔
k∑︂

i=1
vi(zi)−

k∑︂
i=1

vi(z′
i) ≥

k∑︂
i=1

vi(z◦
i )−

k∑︂
i=1

vi(z†
i );

ii) if z, z′ ∈ Z, then

z ≽ z′ ⇔
k∑︂

i=1
vi(zi) ≥

k∑︂
i=1

vi(z′
i).

Proof. See Dyer and Sarin (1977) as cited in Dyer and Sarin (1979).
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2.2.2 Call allocation preferences
Solutions to the call allocation problem must ultimately answer the needs of
building managers. Building managers are responsible for answering the needs
of tenants and communicating requirements to KONE. For the purposes
of this thesis, the building managers are unreachable, so it is not possible
to model their preferences accurately. However, KONE experts are able to
provide some general estimates of the preferences of building managers. They
are as follows.

1. When traffic is high, only time to destination matters, because this
gives the best handling capacity for the elevator group.

2. When traffic is not high, the focus should be on minimizing energy
consumption.

3. Waiting times should stay at a reasonable level at all times.

Let us denote with E, T , and W , respectively, energy consumption, time
to destination, and waiting time. We will first consider if an extension of the
existing additive value function could be used to capture the preferences. As
suggested in the beginning of this section, we will extend the current value
function introduced in Equation (2.1) by adding the energy consumption
objective as a term αEE, and investigate the value function

V (E, T, W ) = αEE + αT T + αW W,

where αE, αT and αW are weighting coefficients.
Assume Thigh is some level for time to destination that is so high that

passengers are reaching their destinations much later than usual. Respectively,
Tlow is faster service than usual. Let us first consider a situation where
T = Tlow. We now have low traffic since the elevator system can handle the
incoming traffic without any trouble. We should therefore act according to
statement 2 and focus on minimizing energy consumption. Assume that we
have an opportunity to reduce energy consumption by one unit at the cost of
a moderate ∆T increase in time to destination. In this situation, the trade
is accepted in accordance with statement 2. This means that the change is
more preferable than no change, and we get

(E − 1, Tlow + ∆T, W ) ≻ (E, Tlow, W )
⇒V (E − 1, Tlow + ∆T, W ) > V (E, Tlow, W )
⇒αE(E − 1) + αT (Tlow + ∆T ) + αW W > αEE + αT Tlow + αW W

⇒αT ∆T > αE.
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Let us then consider a situation where T = Thigh. Now the elevator group
is struggling to handle the incoming traffic, and we should act according
to statement 1 to maximize handling capacity. Assume that we have the
same opportunity to reduce energy consumption by one unit at the cost of a
moderate ∆T increase in time to destination. In this situation, we should
focus on minimizing time to destination in accordance with statement 1 and
not accept the increase. This means that no change is more preferable, and
we get

(E − 1, Thigh + ∆T, W ) ≺ (E, Thigh, W )
⇒αE(E − 1) + αT (Thigh + ∆T ) + αW W < αEE + αT Thigh + αW W

⇒αT ∆T < αE,

which is a contradiction. This shows that the preference relations between the
three attributes E, T, and W cannot be accurately modeled with an extension
of the existing additive value function. Other methods are needed.

One important consideration when choosing a method is the ease of
preference modeling. Ideally there would be an intuitive method for each
building manager to state their preferences by selecting some parameters or
options in a user interface for the elevator system. Even though it is not in
the scope of this thesis, the chosen method should allow further development
in that direction. This thesis should provide a model where preferences can
be adjusted by changing some parameters rather than trying to find the
exact shape of the value function. The aim is to simplify the problem for the
decision maker. It should also be possible to adjust the call allocation behavior
continuously and robustly, meaning that small adjustments in preferences
should lead to small and continuous adjustments in call allocation behavior.

The realm of multiobjective optimization provides tools for creating models
where preferences are included as desirable or acceptable levels of attributes
or in some other parametric form. KONE has experimented a multiobjective
optimization method called the achievement scalarizing function a few years
ago as a possible solution to fulfill the requirements discussed here, although
fine-tuning the existing additive value function has been the main direction of
development. Creating incremental changes to the existing model seems like an
attractive alternative, despite its drawbacks. We will look at multiobjective
optimization and especially achievement scalarizing functions in the next
section.
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2.3 Multiobjective optimization
This section provides an introduction to multiobjective optimization. We
go through the concepts necessary for this thesis mostly based on the book
Nonlinear multiobjective optimization by Miettinen (1999). The interested
reader should definitely refer to the original work for a broader understanding
on multiobjective optimization. The section begins by laying a foundation
for understanding methods of multiobjective optimization. Section 2.3.1
introduces the central concepts and definitions needed, such as the concepts
of a decision maker and Pareto optimality. In Section 2.3.2 we discuss the
achievement scalarizing function approach.

2.3.1 Concepts
A multiobjective optimization problem is of the form

minimize
subject to

{f1(x), f2(x), ..., fk(x)}
x ∈ S,

(2.2)

where we have k ≥ 2 objective functions fi : Rn → R, the decision vari-
able vector x = (x1, x2, ..., xn)T , and the feasible region S (Miettinen, 1999,
p.5). In the following we denote the vector of objective functions f(x) =
f1(x), f2(x), ..., fk(x)T . The image of the feasible region f(S) = Z is called
the feasible objective region. The elements of Z are called objective (function)
vectors and denoted by f(x) or z = (z1, z2, ..., zk)T , where zi = fi(x) for all
i = 1, ..., k are objective (function) values (Miettinen, 1999, p.5).

The realm of multiobjective optimization deals with conflicting objectives.
Therefore, it is not possible to find a solution that would be optimal for all
objectives simultaneously (Miettinen, 1999, p. 11). Some solutions are still
clearly better than others. Edgeworth (1881) defined a set of points such that
movement in any direction would result in a deterioration of at least one value.
This concept was later named after Vilfredo Pareto, who developed it further
(see Pareto, 1896; as cited in Miettinen, 1999, p. 11). In our terminology, we
are interested in solutions where further improvement in any objective would
lead to deterioration in another. These are called Pareto optimal, noninferior
or nondominated solutions (Miettinen, 1999, pp. 11-12). Miettinen (1999,
p.11) defines Pareto optimality formally as follows.

Definition 2.3.1. A decision vector x∗ ∈ S is Pareto optimal if there does
not exist another vector x ∈ S such that fi(x) ≤ fi(x∗) for all i = 1, ..., k
and fj(x) < fj(x∗) for at least one index j.
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An objective vector z∗ ∈ Z is Pareto optimal if there does not exist
another vector z ∈ Z such that zi ≤ z∗

i for all i = 1, ..., k and zj < z∗
j for at

least one index j. Equivalently, z∗ is Pareto optimal if the decision vector
corresponding to it is Pareto optimal.

Figure 2.2 illustrates Pareto optimal solutions. The set of all Pareto
optimal objective vectors is called the Pareto optimal set (Miettinen, 1999,
p.12). Next, we define two variations of Pareto optimality: weak Pareto

Figure 2.2: Illustration by Miettinen (1999, p.11), showing a feasible region
S ⊂ R3 and its image, a feasible objective region Z ⊂ R2. All Pareto optimal
objective vectors are on the thick line, with z∗ as one example.

optimality and ϵ-proper Pareto optimality.

Definition 2.3.2. (Miettinen, 1999, p. 19). A decision vector x∗ ∈ S is
weakly Pareto optimal if there does not exist another vector x ∈ S such that
fi(x) < fi(x∗) for all i = 1, ..., k.

An objective vector z∗ ∈ Z is weakly Pareto optimal if there does not
exist another vector z ∈ Z such that zi < z∗

i for all i = 1, ..., k; or equivalently,
if the decision vector corresponding to it is weakly Pareto optimal.

Definition 2.3.3. A decision vector x∗ ∈ S and the corresponding objective
vector z∗ ∈ Z are ϵ-properly Pareto optimal if

(z∗ − Rk
ϵ \ {0}) ∩ Z = ∅,

where Rk
ϵ = {z ∈ Rk| dist(z,Rk

+) ≤ ϵ∥z∥} is a blunt cone and ϵ > 0 is a
predetermined scalar (Wierzbicki, 1977; Wierzbicki, 1986; Miettinen, 1999, p.
30).
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An important property of ϵ-properly Pareto optimal solutions is that
tradeoffs between them are bounded by ϵ and 1/ϵ (Wierzbicki, 1986). The set
of ϵ-properly Pareto optimal solutions is the smallest set of the three types of
Pareto optimal sets defined here. It can be extended to become the Pareto
optimal set by allowing unbounded tradeoffs. The Pareto optimal set can
be further extended to become the weakly Pareto optimal set by allowing
deterioration of an objective value without any change in the other objective
values. Figure 2.3 shows the relationship between the weakly Pareto optimal
set and the Pareto optimal set. Figure 2.4 illustrates the ϵ-properly Pareto
optimal set and how it relates to the Pareto optimal set.

Figure 2.3: Illustration by Miettinen (1999, p. 20), showing a feasible objective
region Z and the weakly Pareto optimal set with its subset, the Pareto optimal
set.

It follows from the definition of Pareto optimality that moving from one
Pareto optimal solution to the next requires a tradeoff. This is one of the
defining characteristics of multiobjective optimization. To determine the best
tradeoffs between conflicting objectives, a pure mathematical analysis is not
sufficient. Finding a set of Pareto optimal solutions is as close as we get to a
final solution of our original Problem (2.2) with the given information. To
go further, we need help from a decision maker (DM). A decision maker is
someone who knows the problem area well and is usually responsible for the
final solution (Miettinen, 1999, p.14). The DM can give valuable information
about their preferences to guide the solution process. They can, for example,
determine desirable or acceptable levels of the objective function values. These
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Figure 2.4: Illustration by Miettinen (1999, p. 31), depicting a feasible
objective region Z and the set of ϵ-properly Pareto optimal solutions as the
bold line. The end points of the Pareto optimal set are marked with z1 and
z2 for comparison. z∗ is one example of an ϵ-properly Pareto optimal solution
at the tip of the blunt cone introduced in the definition (see Definition 2.3.3).

are called aspiration levels and denoted by zī, i = 1, ..., k (Miettinen, 1999,
p.14). The vector z̄ ∈ Rk, consisting of aspiration levels, is called a reference
point.

Because the Pareto optimal set is so important when solving a multiob-
jective optimization problem, it is often useful to consider the boundaries of
this set. We begin at the lower bound. We define an ideal objective vector as
an objective vector that minimizes each of the objective functions (Miettinen,
1999, p.15).

Definition 2.3.4. The components z⋆
i of the ideal objective vector z⋆ ∈ Rk

are obtained by minimizing each of the objective functions individually subject
to constraints, i.e., by solving

minimize
subject to

fi(x)
x ∈ S

for i = 1, ..., k (Miettinen, 1999, p.16).

If the ideal objective vector would lie in the feasible objective region,
that is, if z⋆ ∈ Z, it would be the only Pareto optimal solution. In general,
however, our objectives are always conflicting, and the ideal objective vector
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is infeasible as a result. Even though it can never be reached, it is a useful
concept. For example, the decision maker may want to set their reference
point to the ideal objective vector or use it to guide their goal-setting. A
utopian objective vector z⋆⋆ ∈ Rk is even more unreachable than the ideal
objective vector. It is an infeasible objective vector whose components are
formed by

z⋆⋆
i = z⋆

i − ϵi

for all i = 1, ..., k, where z⋆
i is a component of the ideal objective vector and

ϵi > 0 is a relatively small but computationally significant scalar (Miettinen,
1999, p.16).

The ideal and utopian objective vectors together give sufficient means
to meaningfully express the lower bounds of the components of the Pareto
optimal objective vectors. The upper bounds are a bit trickier. For those, we
define the nadir objective vector using the definition by Ehrgott (2005, p.34)
with the notation from Miettinen (1999).

Definition 2.3.5. A nadir objective vector znad ∈ Rk is an objective vector
whose components znad

i are obtained by solving

maximize
subject to

fi(x)
x ∈ SP

for all i = 1, ..., k, where SP is the set of Pareto optimal decision vectors.

Figure 2.5 has a visual representation of the ideal and nadir objective
vectors on a given feasible objective region Z ⊂ R2. We can clearly see
how the ideal objective vector is feasible only in the most trivial case, but
the nadir objective vector may be feasible or infeasible depending purely
on the shape of the feasible objective region. The components of the nadir
objective vector are much more difficult to obtain compared to the ideal
objective vector, because optimization over the set of Pareto optimal decision
vectors is required (Ehrgott, 2005, p. 34). Miettinen (1999, p.16) describes
a method for estimating the nadir objective vector with a payoff table. A
payoff table, shown in Table 2.1, is formed by first finding the ideal objective
vector. We denote with xi the decision variable vector that minimizes the
objective function fi. Row i of the payoff table is formed by evaluating each
objective function in point xi. Now the main diagonal of the table forms the
ideal objective vector z⋆. An estimate for the nadir objective vector z̃nad is
formed by the maximal values of each column, that is

z̃nad
i = max

j=1,...,k
fi(xj).
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Figure 2.5: Illustration based on an image by Ehrgott (2005, p.35), showing
a feasible objective region Z ⊂ R2, the Pareto optimal set as the thick line,
the ideal objective vector z⋆ and the nadir objective vector znad.

The accuracy of the estimate depends on the shape of the feasible objective
region. The components z̃nad

i of the estimate may be lower or higher than the
real values znad

i , when there are more than two objective functions, and when a
single objective function has multiple optimal solutions (Ehrgott, 2005, p.35).
Weistroffer (1985) has demonstrated some situations where estimates based
on a payoff table do not equal the real values. For a general multiobjective
optimization problem, there is no constructive method for calculating the
nadir objective vector (Miettinen, 1999, p.17). Despite the limitations of the
payoff table approach, it can be used to form a useful estimate as long as its
robustness is kept in mind.

Many of the methods utilize scalarization in some shape or form. Scalar-
ization means that the multiobjective optimization problem is converted into
a single objective problem by constructing a real-valued (scalar) objective
function (Miettinen, 1999, p.4). It is often useful to categorize objective
functions based on how their values increase. Next, we define increasing,
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Table 2.1: Payoff table

f1(x1) f2(x1) . . . fi(x1) . . . fk(x1)
f1(x2) f2(x2) . . . fi(x2) . . . fk(x2)

... ... . . . ... . . . ...
f1(xi) f2(xi) . . . fi(xi) . . . fk(xi)

... ... . . . ... . . . ...
f1(xk) f2(xk) . . . fi(xk) . . . fk(xk)

strictly increasing, strongly increasing and ϵ-strongly increasing functions.

Definition 2.3.6. (Miettinen, 1999, pp. 8–9). Assume x1, x2 ∈ Rn. A
function fi : Rn → R is

i) increasing if

x1
j ≤ x2

j for all j = 1, ..., n implies fi(x1) ≤ fi(x2),

ii) strictly increasing if

x1
j < x2

j for all j = 1, ..., n implies fi(x1) < fi(x2),

iii) strongly increasing if

x1
j ≤ x2

j for all j = 1, ..., n and x1
l < x2

l for some l implies
fi(x1) < fi(x2),

iv) ϵ-strongly increasing if

x1 ∈ x2 − Rn
ϵ \ {0} implies fi(x1) < fi(x2),

where Rn
ϵ = {x ∈ Rn| dist(x,Rn

+) ≤ ϵ∥x∥} is a blunt cone and ϵ > 0 is a
predetermined scalar.
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2.3.2 Achievement scalarizing function approach
The idea of achievement scalarizing functions was introduced by Wierzbicki
(1982). This method is based on a reference point z̄ ∈ Rk. The central idea is
to project the reference point onto the set of Pareto optimal solutions (Branke
et al., 2008). The projection changes when the reference point is moved, so
different Pareto optimal solutions can be produced. We denote an achievement
scalarizing function as sz̄(z) : Z → R. Next, we define order-representing
and order-approximating achievement scalarizing functions by building on the
concepts of strictly, strongly, and ϵ-strongly increasing functions introduced
in Definition 2.3.6.

Definition 2.3.7. A continuous achievement scalarizing function sz̄(z) :
Z → R is order-representing if it is strictly increasing as a function of z ∈ Z
for any z̄ ∈ Rk and if

{z ∈ Rk | sz̄(z) < 0} = z̄ − intRk
+

for all z̄ ∈ Rk (Miettinen, 1999, p.108).

Definition 2.3.8. A continuous achievement scalarizing function sz̄(z) :
Z → R is order-approximating if it is strongly increasing as a function of
z ∈ Z for any z̄ ∈ Rk and if

z̄ − Rk
ϵ̄ ⊂ {z ∈ Rk | sz̄(z) ≤ 0} ⊂ z̄ − Rk

ϵ

for all z̄ ∈ Rk and with ϵ > ϵ̄ ≥ 0 (Miettinen, 1999, p.108).

With the above definitions we are now ready to present a theorem relating
these two classes of achievement scalarizing functions to concepts of Pareto
optimality, as presented in Miettinen (1999, p.109). The problem we are
solving is

minimize
subject to

sz̄(z)
z ∈ Z.

(2.3)

Theorem 2.3.1. If the achievement scalarizing function sz̄(z) : Z → R is
order-representing, then, for any z̄ ∈ Rk, the solution of Problem (2.3) is
weakly Pareto optimal. If the achievement scalarizing function sz̄(z) : Z → R
is order-approximating with some ϵ and ϵ̄ as in Definition 2.3.8, then, for any
z̄ ∈ Rk, the solution of Problem (2.3) is Pareto optimal. If in addition sz̄ is
ϵ̄-strongly increasing, then the solution of Problem (2.3) is ϵ̄-properly Pareto
optimal.

Proof. See Miettinen (1999, p.109).
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The above theorem gives us the sufficient conditions for a solution of
Problem (2.3) to be weakly Pareto optimal, Pareto optimal or ϵ-properly
Pareto optimal. It is also possible to prove the corresponding necessary
conditions. This gives us the following theorem with the form presented by
Miettinen (1999, p.110).
Theorem 2.3.2. If the achievement scalarizing function sz̄(z) : Z → R is
order-representing and z∗ ∈ Z is weakly Pareto optimal or Pareto optimal, then
it is a solution of Problem (2.3) with z̄ = z∗ and the value of the achievement
scalarizing function is zero. If the achievement scalarizing function sz̄(z) :
Z → R is order-approximating and z∗ ∈ Z is ϵ-properly Pareto optimal, then
it is a solution of Problem (2.3) with z̄ = z∗ and the value of the achievement
scalarizing function is zero.

Proof. See Wierzbicki (1986).

We are now able to completely characterize the set of weakly Pareto
optimal solutions, and, with the additional assumption of uniqueness of
solutions to Problem (2.3), also the set of Pareto optimal solutions (Miettinen,
1999, p.110). We move to consider what happens when a feasible or infeasible
reference point is chosen. To be more exact, we consider the difference
between the situations where the reference point is in the feasible set or in
a cone in the nonnegative direction from the feasible set z̄ ∈ Z + Rk

+ and
its complement z̄ /∈ Z + Rk

+. If z̄ ∈ Z + Rk
+, minimizing the achievement

scalarizing function subject to the feasible region produces a Pareto optimal
solution by allocating slack between the reference point and the Pareto optimal
set. If z̄ /∈ Z + Rk

+, the minimization produces a Pareto optimal solution
by minimizing the distance between the reference point and the feasible
set. In both cases, we reach a solution that is a projection of the reference
point on the Pareto optimal set. The behavior is the same no matter which
achievement scalarizing function formulation is chosen (Branke et al., 2008,
p.18). Achievement scalarizing functions have the advantage that any weakly
Pareto optimal or Pareto optimal solution can be reached by moving the
reference point (Miettinen, 1999, p.111). Wierzbicki (1982) shows also that
the solution to the problem of minimizing an achievement scalarizing function
depends Lipschitz-continuously on the reference point. This means that the
method has local controllability. If the decision maker moves the reference
point slightly, it does not cause drastic and unexpected changes in the solution.

There are many ways to formulate suitable achievement scalarizing func-
tions. A prevalent example is the function

sz̄(z) = max
i=1,...,k

[wi(zi − zī)] + ρ
k∑︂

i=1
wi(zi − zī), (2.4)
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where w is a fixed normalizing vector, for example wi = 1/(znad
i − z⋆⋆

i ) for
all i, and ρ > 0 is an augmentation multiplier that is sufficiently small when
compared to ϵ and large when compared to ϵ̄. This function is very useful
because it is both order-approximating and ϵ̄-strongly increasing (Wierzbicki,
1986; Miettinen, 1999, p.111). Thus, on the basis of Theorem 2.3.1, we
can guarantee that with it solutions of Problem (2.3) are ϵ̄-properly Pareto
optimal.



Chapter 3

Call allocation model

This chapter details the optimization model that is implemented in this thesis.
We begin in Section 3.1 by formulating our optimization task and then move
on to finding suitable values for the different parameters that go into it. In
Section 3.2, we discuss modifications that are required when nadir and utopian
values are unavailable.

3.1 Optimization task formulation
As shown in Section 2.3.2, the achievement scalarizing function method
has useful properties for this case. With this method, all Pareto optimal
solutions can be reached, and the solution changes continuously with changes
in preferences. We can formulate our optimization task with an achievement
scalarizing function given in Equation (2.4) as

minimize max
[︂
wE

(︂
E(x)− E

)︂
, wT

(︂
T (x)− T

)︂
, wW

(︂
W (x)−W

)︂]︂
+ ρ

[︂
wE

(︂
E(x)− E

)︂
+ wT

(︂
T (x)− T

)︂
+ wW

(︂
W (x)−W

)︂]︂
subject to x ∈ S

with the following notation:

x Allocation of calls
S Set of feasible call allocations
ρ Small augmentation multiplier
E(x) Energy consumption objective function
T (x) Time to destination objective function
W (x) Waiting time objective function
E, T , W Aspiration levels
wE, wT , wW Normalizing factors

20
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This single objective problem is solved with the same genetic algorithm
already in use in the existing group controller (Tyni & Ylinen, 2001). The
group controller generates the set of feasible call allocations S. There are
many situations when an arbitrary call cannot be allocated to any of the
cars in the elevator group. For example, one of the cars may be out of order,
some floors may be restricted to some cars due to security reasons, or mixing
of some passenger groups is not allowed. If an allocation of calls x would
contain such an allocation that a car could not answer a call given to it, the
allocation would be infeasible. These infeasible solutions are not included in
S.

Figure 3.1 illustrates two feasible call allocations. According to the general
preference statements introduced in Section 2.2.2, both of these alternatives
could be preferable. Their preference order depends on traffic intensity. In
high traffic, it would be desirable to dispatch all three elevator cars to serve
the three passengers individually, because this minimizes time to destination.
In low traffic, it would be desirable to dispatch only one elevator car to
serve all three passengers, because this would reduce energy consumption
significantly with only a modest increase in waiting time. Information about
time to destination and waiting time associated with each feasible allocation
is available to the call allocation system, but an energy consumption metric
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Figure 3.1: Desirable call allocations when focusing on reducing time to
destination (left) and energy consumption (right) in a situation where three
passengers are heading for the entrance floor and all elevator cars start there.
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is currently not included in the group controller. For the purposes of this
thesis, energy consumption is estimated with the total distance the cars must
travel in each allocation. The use of this estimate should lead to a desirable
outcome as energy is saved by minimizing car movement. Tyni and Ylinen
(2006) discussed a more elaborate model for estimating energy consumption
that could be tested as a next step in development after the current study.

The purpose of the normalizing factors wi is to scale the different objective
values so that their changes are comparable to one another. The normalizing
factors can be constructed with the nadir and utopian values, defined in
Section 2.3.1, as follows:

wE = 1
Enad − E⋆⋆

wT = 1
T nad − T ⋆⋆

wW = 1
W nad −W ⋆⋆

.

The augmentation multiplier ρ can be used to limit the tradeoffs the call
allocation system is allowed to make. By setting ρ = 0, the tradeoffs are
unbounded. This may lead to unstable behavior and spikes in the objective
values without noticeable improvement in others. A small positive value
ρ = 0.05 is tested here to prohibit completely unbounded tradeoffs. This can
be later adjusted based on possible feedback of the results of this study.

Choosing the aspiration levels for each objective is an important task. As
discussed in Section 2.2.2, ideally there would be some simple parameters that
can be used to adjust the call allocation behavior. Let us, instead of assigning
values to the aspiration levels directly, consider three parameters, λE, λT , λW ∈
[0, 1], to simplify preference adjustment. They signify, respectively, the
importance of minimizing energy consumption, time to destination, and
waiting time. Let us further define λE + λT + λW = 1 to make the parameter
values illustrate clearly where the focus of the optimization is. Without this
condition, we could have a situation where we can set all three values to zero
and it would capture the same preferences as setting them to one. According
to the preference statements introduced in Section 2.2.2, in high traffic we
should focus on minimizing time to destination and set λE = 0, λT = 1, and
λW = 0. In low traffic we will focus on minimizing energy consumption while
keeping waiting times at a reasonable level by setting e.g. λE = 0.7, λT = 0,
and λW = 0.3. Between these two extremes, there should be some simple
mechanism for tuning the parameters based on traffic intensity.

Let us denote traffic intensity with I. When I = 0, there is no traffic
at all. When I = 1, the traffic is at a level where the elevator group is at
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its maximum handling capacity. When I > 1, there is more traffic than the
elevator group can handle, and queues start to form. The simplest conceivable
method for tuning the parameters λi would be to define some threshold, e.g.
I = 0.8, and set the parameters as in low traffic before that and as in high
traffic after. Such a sudden change seems risky, so a better alternative would
be some curve that would shift a parameter continuously between the two
extremes. When I < 0.6, we can be confident that the elevator system can
handle the incoming traffic without gathering queues. After that we should
start putting more and more focus on optimizing time to destination instead
of energy consumption and waiting time. After a smooth transition period,
at I = 1, all efforts should be put in optimizing time to destination to handle
the incoming traffic without queues. The curve

1
1 + e−x

has a suitable shape for this adjustment purpose. It is called a logistic curve,
and it is plotted in Figure 3.2. It fulfills our requirements of smoothly moving
a value between two extremes during a finite transition period. This general
shape can now be used to define the parameters λi as a function of I with
the extremes discussed above and a transition period at 0.6 < I < 1. By
transforming the formula to match these specifications, we can define

λE(I) = 0.7− 0.7
1 + e−20(I−0.8)

λT (I) = 1
1 + e−20(I−0.8)

λW (I) = 1− λE(I)− λT (I)

to achieve the smooth and continuous parameter tuning shown in Figure 3.3.
These definitions are by no means the only ones that can be considered to
reflect the desired call allocation behavior. As such, they should be seen as a
starting point rather than a definitive best practice for tuning the parameters.

Using the newly constructed functions λi(I), the aspiration levels for each
objective can be set in relation to the Pareto front. With the help of the
nadir and utopian values, we define the aspiration levels as

E = (1− λE)Enad + λEE⋆⋆

T = (1− λT )T nad + λT T ⋆⋆

W = (1− λW )W nad + λW W ⋆⋆.

This gives a more concrete meaning to the parameters λi. A given λi can
now be interpreted as the relative position of an aspiration level between the
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Figure 3.2: An example of a suitable curve for tuning the parameters λi.
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Figure 3.3: Tuning of the parameters λi as functions of traffic intensity I.

nadir and utopian levels of an objective function. λi = 1 means that the
aspiration level is the utopian level, and λi = 0 means that the aspiration
level is the nadir level. Different functions λi(I) should be tested to reach the
most desirable behavior of the group control system over multiple allocations.
However, for the purposes of the current study, it is sufficient that we have
found a tuning of aspiration levels that can be said to fulfill the general
preference statements given in Section 2.2.2. When traffic is high, we try to
reach the utopian level of time to destination, even if that would mean the
other objectives reach their nadir levels. When traffic is low, we try to find a
balanced solution close to the utopian level of energy consumption, while not
compromising too much on waiting time, and allowing time to destination to
increase as high as its nadir level if necessary.
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3.2 Formulation without nadir and utopian
values

As discussed in Section 2.3.1, finding the components of the nadir objective
vector is difficult. The introduced payoff table approach provides a useful
estimation method, but its accuracy is highly dependent on the shape of the
feasible objective region. Finding the utopian objective vector is much easier,
but it also requires some information about the feasible objective region.
Because of these estimation difficulties, it is not always possible to have nadir
and utopian values for the formulation. This is the situation also in the
current study where finding the utopian and nadir values before optimization
proved to be an unattractive alternative due to computational limitations.
This section adjusts the formulation for the situation where utopian and nadir
values are unavailable.

Tyni and Ylinen (2006) introduced a viable technique to overcome these
difficulties by using the sample mean and the sample standard deviation
(Ross, 2014, pp. 208–219) of the generated solution candidates. The initial
step of the genetic algorithm used at KONE involves generating 50 feasible
solutions at random. This random sample can be used to calculate the sample
means mi and sample standard deviations si as

mi = 1
N

N∑︂
j=1

fi,j

si =

⌜⃓⃓⃓
⎷ 1

N − 1

N∑︂
j=1

(fi,j −mi)2,

where fi are the three objective functions E, T, and W , N = 50 is the sample
size, and j is the index of a solution candidate. Now we can use the sample
standard deviation to normalize the objectives instead of the nadir and utopian
values. We define the normalizing factors wi as

wi = 1
si

.

The nadir and utopian values would also be useful in reference point
adjustment. In their absence we have to set the reference point in relation
to the whole feasible objective region instead of the Pareto front. This is
much less accurate as we have no a priori knowledge of the shape of the
feasible objective region or its relation to the Pareto front. We can estimate
the boundaries of the feasible objective with the sample means and sample
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standard deviations of the objectives. Here we will use two standard deviations
to estimate the distance of the boundary from the mean, i.e. mi± si. Setting
the reference point in relation to the feasible objective region is quite crude,
and there is a possibility for some of the aspiration levels to miss the Pareto
front entirely. This would lead to optimization where one of the objectives
has almost no effect even if an effect was intended. The lower boundary is the
most reliable anchor point because we can be relatively confident that it is
close to the utopian level of an objective. Increasing the aspiration level from
that comes with a rising risk of moving past the nadir level and an untimely
loss of relevance in the optimization as a result. This effect can be visualized
with the help of Figure 2.5 in Section 2.3.1.

To avoid this risk, we will set both energy consumption and waiting time
aspiration levels to the lower boundary when traffic is low, instead of putting
more focus on reducing energy consumption. Now only the parameter λT is
needed in addition to the sample means and sample standard deviations to
redefine the aspiration levels as

T = (1− λT )(mT + 2sT ) + λT (mT − 2sT )
E = λT (mE + 2sE) + (1− λT )(mE − 2sE)
W = λT (mW + 2sW ) + (1− λT )(mW − 2sW ).

The above sets the aspiration level for time to destination to its estimated
upper bound mT + 2sT in low traffic, and to its estimated lower bound
mT−2sT in high traffic. The opposite happens to the aspiration levels of energy
consumption and waiting time. The reference point moves along a line through
the feasible objective region, with endpoints at z̄low = (Elow, T low, W low) =
(mE − 2sE, mT + 2sT , mW − 2sW ) and z̄high = (mE + 2sE, mT − 2sT , mW +
2sW ). We can visualize this by modifying Figure 2.5 to show the possible
reference points. Figure 3.4 now shows an example projection of the feasible
objective region onto the TE-plane. The reference point moves along the
solid line between the two extremes based on traffic intensity. As discussed
in Section 2.3.2, the achievement scalarizing function finds the solution by
projecting the reference point onto the Pareto optimal set. Even though it
is easy to compose an example image, we should keep in mind that we do
not have a priori knowledge of the shape or the boundaries of the feasible
objective region, so the reference point has to be set based on estimated
boundaries.

To illustrate the effect of the normalizing factor together with the aspiration
level adjustment, we can plug these into the achievement scalarizing function.
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Figure 3.4: Example projection of the feasible objective region onto the TE-
plane, with the Pareto optimal set as the thick line, the ideal objective vector
z⋆, and the reference point in high traffic z̄high and in low traffic z̄low. The
reference point moves between the two extremes along the solid line based
on traffic intensity. This illustration is based on an image by Ehrgott (2005,
p.35).

Because of symmetry, the effect is visible by considering e.g. the first term

wE

(︂
E(x)− E

)︂
= 1

sE

[E(x)− (λT (mE + 2sE) + (1− λT )(mE − 2sE))]

=E(x)−mE

sE

+ 2− 4λT .

This form can be interpreted as first scaling the energy consumption with
its sample mean and sample standard deviation, and then moving the scaled
objective value by two units in either direction. One unit in the scaled
objective value corresponds to one standard deviation which connects this
form to the estimated bounds.



Chapter 4

Simulation results

In this chapter, the call allocation system developed in this thesis is tested in
a simulation environment. Section 4.1 introduces the simulation environment,
along with the building, elevator group, and traffic models used in the simula-
tions. Section 4.2 provides a performance analysis. In Section 4.3, we attempt
to replicate the behavior of the unmodified group controller to validate the
functionality of the new system. In Section 4.4, we analyze the sensitivity of
the new system to changes in reference point adjustment. Section 4.5 begins
with a brief summary of the results from all simulations. We then move to
discuss the findings and the directions for further development that these
results give.

4.1 Simulation setup
Since its development, KONE Building Traffic Simulator (BTS) (Siikonen et
al., 2001) has become a standard tool for testing the quality of new features in
KONE group control systems. In addition to detailed simulations, it provides
the user with a host of statistical information about the performance of the
system. Even though energy consumption information is not directly available
to the call allocation system, BTS calculates it during the simulation along
with time to destination and waiting time statistics.

To evaluate the usefulness of the modifications developed in this thesis,
simulations with three different elevator group models are used. These three
models were chosen because they represent common elevator groups in typical
buildings. As such, they serve well in initial testing of the modified call
allocation system. They include a small 2-elevator group in a 9-storey office
building, a 4-elevator group in a 13-storey office building, and a larger 8-
elevator group in a 21-storey office building. All entrances in these buildings

28
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are in a non-populated entrance floor at street level. The occupied floors
above the entrance floor are evenly populated. The properties of the three
models are detailed in Table 4.1.

To get a good overview of the behavior of the new call allocation system
across many different traffic situations, the traffic of a full working day is
simulated. The daily traffic profile used in the simulations is illustrated in
Figure 4.1. Typical traffic conditions introduced in Section 2.1 are clearly
visible. There is a morning up peak, a discernible lunchtime traffic condition,
and a down peak at the end of the working day.

Figure 4.1: The daily traffic profile used in the simulations. The arrival
rate of passengers in a 5-minute period is given as a percentage of the total
population of the building.
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Table 4.1: Parameters of the three elevator group models used in simulations.
The last six parameters are the same in all simulated elevators.

Number of elevators 2 4 8
Occupied floors 1-8 1-12 1-20
Population per occupied floor 50 65 92
Top floor level [m] 32 48 80
Rated carload [persons] 10 13 24
Bypass load [persons] 8 10 19
Rated speed [m/s] 1.6 2 3.5
Acceleration [m/s2] 0.8 0.8 1
Jerk [m/s3] 1.2 1.2 1.6
Door width [mm] 900 1100 1200
Door closing time [s] 2.7 3.1 3.4
Door opening time [s] 1.4 1.4 1.4
Transfer times per passenger [s] 2.2 2 1.9
Photocell delay [s] 0.9 0.9 0.9
Start delay [s] 0.7 0.7 0.7
Floor height [m] 4 4 4
Advance door opening distance [m] 0.15 0.15 0.15
Advance door opening speed [m/s] 0.3 0.3 0.3
Door opening center center center
Control type DCS DCS DCS
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4.2 Performance analysis
To analyze the performance of the new call allocation system, daily traffic is
simulated in all three elevator group models with and without the modifications
developed in this thesis. This creates a total of six simulation runs. The
simulation results from each elevator group are introduced in separate sections,
and points of interest are highlighted.

4.2.1 2-elevator group
Changing the group control had little effect in the 2-elevator group. Figure 4.2
shows the energy consumption time series for this group. The curves of the
experimental and the production group control follow one another very closely,
and there are no major differences that would stand out from the noise. Energy
consumption for the whole day was reduced by 4%. The results for time to
destination (Figure 4.3) and waiting time (Figure 4.4) tell a similar story
of slight change, if any. Overall, both time to destination and waiting time
increased by 5%.

Figure 4.2: Energy consumption in 2-elevator group.
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Figure 4.3: Time to destination in 2-elevator group.

Figure 4.4: Waiting time in 2-elevator group.
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4.2.2 4-elevator group
The 4-elevator group reveals some hints of the impact of the change in group
control. The energy consumption time series in Figure 4.5 is largely uneventful,
with the curves staying quite close to one another. However, there are some
promising areas. In the early morning, just before lunchtime, and towards the
end of the day from 15:00 onward, there seems to be periods of systematically
lower average energy consumption with the experimental group control. For
the whole day, this adds up to a 11% reduction in energy consumption. As
we can see in Figure 4.6, time to destination shows little change. Overall,
it increased 3%. Waiting time decreased by 10% overall. The time series of
waiting time in Figure 4.7 has substantial fluctuation which makes it difficult
to identify patterns. There are periods of considerably lower waiting time with
the experimental group control around 9:00, at lunchtime, and in the early
afternoon. It is interesting to note that during the heavy traffic at lunchtime
between 11:45 and 14:30, all three objectives seem to be, on average, either
reduced or unchanged.

Figure 4.5: Energy consumption in 4-elevator group.
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Figure 4.6: Time to destination in 4-elevator group.

Figure 4.7: Waiting time in 4-elevator group.
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4.2.3 8-elevator group
The change in group control had a clear impact in the 8-elevator group.
Figure 4.8 shows lower energy consumption in all other areas except during high
traffic in the morning and lunchtime. For the whole day, energy consumption
was 20% lower with the experimental group control. This came at a cost
of time to destination, which increased 11% overall. Figure 4.9 reveals that
time to destination increased especially in the beginning and at the end of
the day. There is very little change between 9:30 and 17:00. Waiting time
decreased 19% overall. Figure 4.10 shows only brief periods where waiting
time is not lower with the experimental group control. These periods are in
early morning, late afternoon, and at lunchtime.

Figure 4.8: Energy consumption in 8-elevator group.
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Figure 4.9: Time to destination in 8-elevator group

Figure 4.10: Waiting time in 8-elevator group.
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4.3 Replication of production group control
In this section, we adjust the experimental group controller to replicate the
behavior of the production version. To show the effects of the adjustment
most clearly, simulations are run with the 8-elevator group, where the largest
changes were observed in the previous section. By setting λT = 1 instead of
the original function dependent on traffic intensity, we get the following results
when comparing the experimental group controller to the production version.
In Figure 4.11, we can see that there is very little change in energy consumption
if the experimental group controller is adjusted in this manner. The same
goes for time to destination, shown in Figure 4.12. Waiting time, shown
in Figure 4.13, decreased in a few areas while remaining mostly unchanged.
The reductions occurred during high traffic with a major incoming traffic
component in the morning and after lunch. For the whole day, there is a 1%
overall decrease in energy consumption, no change in time to destination, and
a 7% decrease in waiting time.

Figure 4.11: Energy consumption in 8-elevator group with the experimental
group controller adjusted to replicate production version behavior.
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Figure 4.12: Time to destination in 8-elevator group with the experimental
group controller adjusted to replicate production version behavior.

Figure 4.13: Waiting time in 8-elevator group with the experimental group
controller adjusted to replicate production version behavior.
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4.4 Sensitivity analysis of preference adjust-
ment

In this section, we examine the sensitivity of the experimental group controller
to changes in reference point adjustment. The reference point adjustment is
changed by modifying the tuning of the parameter λT . Figure 3.3 shows the
tuning of λT that was formulated in Chapter 3. That tuning will be called
the standard energy saving mode in this analysis. It assumes that when the
traffic intensity I < 0.6, we should focus on minimizing energy consumption
and waiting time, and move to minimizing time to destination gradually after
that. We might want to move this threshold lower, to e.g. 0.2, by using
λT (I + 0.4) instead of λT (I). This will be called the low energy saving mode,
because it minimizes energy consumption and waiting time only at the lowest
traffic intensities. Correspondingly, we might want to move the threshold
higher, to e.g. I = 1, and only move to optimizing time to destination when
the traffic is already over the handling capacity of the elevator group. Then
we would use λT (I − 0.4) instead of λT (I). This will be called the high energy
saving mode. Figure 4.14 shows the tuning of λT based on traffic intensity in
each of the three energy saving modes.

To see the effects of the difference in λT , simulations are run with the
8-elevator group, where the largest changes were observed in Section 4.2. We
begin by examining the effects on energy consumption, shown in Figure 4.15.
We can see that switching from standard to low energy saving mode increases
energy consumption substantially in low traffic in the afternoon and early
morning. The impact of high energy saving mode is more subtle. Some
decrease in energy consumption can be seen in high traffic at lunchtime and at
the end of the working day at around 17:30. Mostly the energy consumption
is similar in both high and standard energy saving modes. For the whole day,
switching to low energy saving mode increased energy consumption by 18%,
and switching to high energy saving mode caused a 5% reduction instead.

Both modes had a clear impact on time to destination, shown in Figure 4.16.
Switching to low energy saving mode decreased time to destination at both
ends of the working day, with an overall decrease of 9%. Using high energy
saving mode increased time to destination during high traffic at lunchtime
and both ends of the working day, with an overall increase of 8%. There are
also considerable changes in waiting time, shown in Figure 4.17. Low energy
saving mode increased waiting time in areas outside of high traffic and both
ends of the day, with an overall increase of 12%. On the other hand, high
energy saving mode decreased waiting time most notably during the high
lunchtime traffic, with an overall decrease of 17%.
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Figure 4.14: Three different energy saving modes are obtained by changing
the way λT is tuned based on traffic intensity.

Figure 4.15: Energy consumption in 8-elevator group with the experimental
group control in low, standard, and high energy saving modes.
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Figure 4.16: Time to destination in 8-elevator group with the experimental
group control in low, standard, and high energy saving modes.

Figure 4.17: Waiting time in 8-elevator group with the experimental group
control in low, standard, and high energy saving modes.
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4.5 Summary and discussion
This section discusses the simulation results that were presented in detail
in the previous sections. We begin with a brief summary of the results.
Table 4.2 shows the overall changes that were observed in Section 4.2 when
the production group control was changed to the experimental group control
that includes the modifications developed in this thesis. Energy consumption
decreased in all of the simulated elevator groups. More substantial reductions
were observed when group size increased. Waiting time increased in the
2-elevator group but was reduced in the 4-elevator and 8-elevator groups, with
a larger reduction in the latter. Overall time to destination increased in all
groups. The adjustment of the experimental group controller to replicate the
production version behavior, described in Section 4.3, still resulted in lower
or unchanging objective values with the experimental control. Overall, energy
consumption decreased 1%, time to destination did not change, and waiting
time decreased 7%. Finally, Table 4.3 shows the overall changes observed in
the sensitivity analysis described in Section 4.4. When the experimental group
controller was adjusted to low energy saving mode, overall energy consumption
and waiting time increased, and time to destination decreased. Opposite
effects were observed when the experimental group controller was adjusted to
high energy saving mode. By combining the results of the sensitivity analysis

Table 4.2: Change in energy consumption, time to destination, and waiting
time with the shift to the experimental group control.

Number of elevators 2 4 8
Energy consumption -4% -11% -20%
Time to destination 5% 3% 11%
Waiting time 5% -10% -19%

Table 4.3: Change in energy consumption, time to destination, and waiting
time when switching the energy saving mode from standard to low or high in
8-elevator group.

Energy saving mode low high
Energy consumption 18% -5%
Time to destination -9% 8%
Waiting time 12% -17%
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and the performance analysis, we find an additional result of interest. If we
were to switch the group control in the 8-elevator group directly from the
production version to the experimental version in low energy saving mode,
there would be a 5% reduction in overall energy consumption, and a 9%
reduction in waiting time, while time to destination would increase only 1%.

In the performance analysis, larger changes were observed when group
size increased. This may be because the amount of calls and call allocation
alternatives increases with group size. When there are more Pareto optimal
solutions to choose from, it is more likely that a change in the optimization
model will change the solution chosen. A larger group gives more room for
adjustment. Another possible explanation is the inaccuracy of the traffic
intensity measure used in tuning the reference point. Inaccuracies in the
measure that cause it to behave differently in different sized elevator groups
might lead to the group controller missing opportunities for energy optimiza-
tion when the traffic intensity estimate is higher than the actual intensity.
Development effort could be directed to validating and improving the traffic
intensity measure or to implementing traffic forecasting methods for more
accurate adjustment.

The 2-elevator group results are rather surprising because of the increase
in waiting time, as reductions in that objective were observed in the other two
groups. The increase in waiting time seems to also contribute to the larger
5% increase in time to destination when compared with the 3% increase in
the 4-elevator group. The time series of the 2-elevator group show that there
is a lot of volatility in the objective values. This is natural, when the addition
of a single passenger or the movement of a single car has a large impact on
the average of the whole elevator group. The surprising results could just
be caused by this volatility. More simulations in the 2-elevator group with
different traffic patterns would be needed to provide insight about this.

Reference point adjustment based on traffic intensity seems to produce the
intended results. The behavior of the experimental group controller can be
seen to reflect the general preference statements introduced in Section 2.2.2.
Reductions in energy consumption occurred especially during low traffic. Time
to destination increased during these times but was mostly unchanged in high
traffic periods. Feedback of these simulation results should be gathered to
gain more preference information. With it, the parameter λT used in reference
point adjustment could be set to better reflect the preferences of the decision
maker. Adjustment accuracy might also be improved by finding a way to get
estimates for the nadir and utopian values of the objectives. These could be
estimated with information from previous allocations and by using the payoff
table approach described in Section 2.3.1 for the nadir estimates. With these
estimates, the reference point could be set in relation to the Pareto front, as
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first intended and described in Chapter 3, instead of the whole feasible set.
The results of the sensitivity analysis offer additional evidence about the

general functionality of the reference point adjustment method. When the
adjustment was changed to favor reducing energy consumption and waiting
time, reductions in those objectives were observed at the cost of an increase
in time to destination. When the adjustment was changed to favor reducing
time to destination, reduction in time to destination was observed at the cost
of increased energy consumption and waiting time. However, the sensitivity
analysis was only conducted with the 8-elevator group and with limited
changes in parameters. Additional testing could be done with other elevator
groups and other parameter changes. Valuable insight could be gathered by,
for example, testing different widths of the transition period in tuning λT , or
by testing different ranges for moving the reference point in addition to the
distance of two standard deviations introduced in Section 3.2.

In this thesis, the parameter λT was set as a simple function of traffic
intensity. A different approach was introduced by Tyni and Ylinen (2006).
They had success in using a PID controller for a similar purpose. A clear
advantage of this method is its ability to make adjustments based on target
levels that are monitored over many allocations. Even though the controller
itself is more complex than the simple functions used here, it is more intuitive
to set a target level than to determine a suitable function shape. The PID
controller method could be tested and compared with the results of the current
study to see if the possibilities of that method should be explored further.

When attempting to use the experimental group controller to replicate the
behavior of the production version, waiting time decreased while the other two
objectives were mostly unchanged. This result indicates that it is possible to
reach a control behavior similar to the production version, and the production
group control could be replaced without losing essential features. The result
also shows that the developed call allocation method can find, at least in
these limited simulations, some reductions in the three objectives without
any tradeoffs in other objectives. A similar situation was observed in the
performance analysis with the 4-elevator group. There it seemed that, during
heavy traffic at lunchtime, waiting time decreased while energy consumption
and time to destination remained mostly unchanged. It may be that during
that time adjustment based on the traffic intensity estimate produced the
same reference point as the adjustment used when replicating production
group control behavior. This capability of finding some reductions without
tradeoffs may exist because the achievement scalarizing value function can
reach more Pareto optimal solutions than the additive value function of the
production group control. However, we should keep in mind that these results
are based only on simulations with the 8-elevator group and some additional
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observations with the 4-elevator group. A broader set of simulations would be
needed to confirm these findings. Another limitation is that there still were
some tradeoffs, even if those tradeoffs are not between the three objectives
considered in this thesis. Because time to destination remained unchanged
and waiting time decreased, there is by definition an increase in transit time,
as shown in Figure 2.1.

One alternative for further development would be to consider waiting time
as a constraint instead of an objective. This would likely create a control
behavior where waiting times are often near the maximum when all effort is
put in reducing energy consumption in low traffic and time to destination in
high traffic. Based on the three general preference statements, it seems this
might be desirable. An attractive property of this alternative is the ease of
preference modeling. It is simpler for a decision maker to consider a maximal
level of waiting time rather than tradeoffs between three objectives.

An interesting topic for future research would be the implementation of an
additive value function and comparison of results between it and the achieve-
ment scalarizing function approach used here. As discussed in Section 2.2.2,
an additive value function cannot be used to accurately model the preferences
for call allocation. Despite its limitations, it might be a useful approximation,
and comparisons could reveal valuable insight about the properties of the call
allocation problem.

There is plenty of work still ahead before the concepts formulated in this
thesis would be ready for deployment. More simulations are needed to test
the performance and sensitivity of the model in different situations after
this proof of concept. Additional simulations should be carried out with
residential buildings, larger elevator groups, mid-rise, high-rise, and sky-rise
groups, shuttle elevator groups, and double-deck elevators. Fine-tuning and
testing different values for the various parameters that go into the model is
also a task that is left mostly for future development.



Chapter 5

Conclusions

This thesis has developed a multiobjective optimization model for the elevator
call allocation problem with three objectives: energy consumption of the
elevator group, time to destination of passengers, and waiting time. The
optimization model utilizes an achievement scalarizing value function to
transform the multiobjective optimization problem to a single objective
problem. This problem is then solved with the same genetic algorithm
currently used in the production version of the call allocation system. An
extension of the existing additive value function was discussed and eventually
deemed inaccurate for modeling the preference relations between the three
objectives. The achievement scalarizing function approach was considered
to be a theoretically attractive option for the call allocation task. With it,
preferences can be stated in the simple form of a reference point, an ϵ-properly
Pareto optimal solution is guaranteed, any ϵ-properly Pareto optimal solution
can be reached by moving the reference point, and the solution changes
continuously with changes in the reference. The preferences for the solution
were known on a general level, and they were dependent on the amount of
traffic at the time the allocation decision was being made. Therefore, the
reference point was set in relation to the feasible set of solutions based on
traffic intensity.

This optimization model was tested with simulations in three different
elevator groups. These were groups of two, four, and eight elevator cars in
typical office buildings. A daily office traffic profile was used in the simulations.
The simulations showed a decrease of energy consumption between 4 and 20%
in the different elevator groups with the new model. Waiting time increased in
the 2-elevator group by 5% and decreased in the other two groups by 10% and
19%. These reductions came at the cost of time to destination which increased
by 3–11%. The largest changes were observed in the 8-elevator group. The
results aligned on a general level with the known preferences, with most energy
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consumption reductions, and increases in time to destination, occurring in
low traffic. The developed optimization model was also adjusted to replicate
the behavior of the production version and tested in the 8-elevator group.
This adjustment created a control behavior where energy consumption and
time to destination were mostly unchanged in comparison to the production
version, but waiting time decreased by 7% overall. A sensitivity analysis
was conducted for the preference adjustment method with simulations in the
8-elevator group. In these simulations, the preference adjustment method
functioned as expected.

These results are based on a limited set of simulations. In light of this,
the developed solution should be seen as proof of concept rather than a
perfected call allocation solution. Much more comprehensive testing, tuning,
and simulating should be carried out before making definite conclusions about
the viability of the solution. The simulation results show that the developed
model is functional, but the performance of the model is not guaranteed in
broader applications. The reductions in energy consumption and waiting time
were substantial, but so were the increases in time to destination. This is in
line with the general preference of focusing on reducing energy consumption
in low traffic at the cost of the service level. Still, demonstrating ways to
reduce energy consumption without losses in time to destination might be
required to create enough demand for this type of solution. The results of
the sensitivity analysis indicate that answering that need might be possible
with additional fine-tuning of model parameters.

Accurate preference elicitation would be a major step in developing at-
tractive call allocation solutions with multiple objectives. In this respect,
the current study was limited by the unavailability of accurate preference
information. In this situation, the ease of preference adjustment was seen
as a valuable attribute of the chosen method. More accurate preference
information would open possibilities for refining the model developed in this
thesis or for testing entirely different solutions where the preferences can be
modeled more accurately without the need for easy adjustability. An exciting
opportunity in this area would be the development of new call allocation
methods interactively with building managers who could be trusted to state
preferences to guide the solution process. They are the primary people respon-
sible for the functionality of the elevator system in their buildings. The only
way to create more sustainable elevator systems is by discovering solutions
that are both more sustainable and answer their needs better.
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