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Abstract
Wind farms have adverse effects on air surveillance radars. As no technical solution
completely removes these adverse effects, this thesis studies finding the optimal
combination of radar and wind farm placements to minimize the impact.

The performance of radars and the impact of wind farms on their performance can
be analyzed with simulation models. However, these simulations are computationally
costly. There are many alternative ways to place radars and wind farms, and simulating
the quality of one alternative takes minutes. Thus, identifying the optimal alternative
by simulating each one is time-consuming.

To identify the optimal alternative faster, this thesis presents two problem-specific
algorithms. They return optimal solutions if simple assumptions about the underlying
simulation models hold. These assumptions are based on the idea that radars improve
air surveillance, wind farms degrade radar performance, and these impacts are limited
to geographical regions. Numerical experiments show that the algorithms terminate
in hours, when the simulation of every alternative would take years. Moreover, they
returned near-optimal alternatives, despite slight violations of the assumptions.

The algorithms use the assumptions to compute alternative specific upper bounds
for air surveillance quality. Air surveillance quality represents how well surveillance
objectives are met. The algorithms work by iteratively identifying an alternative with
a high upper bound and evaluating it using simulation. Once no upper bound exceeds
an alternative’s simulated air surveillance quality, the alternative is considered optimal
and returned. The two algorithms differ in that the first introduces a basic approach,
while the second builds on it by providing more efficient search strategies for finding
alternatives with high upper bounds.

This thesis serves as a case study of developing problem-specific surrogate-assisted
optimization algorithms. These algorithms facilitate the coexistence of air surveillance
and wind farms, and maximize the utilization of air surveillance radars. Although this
thesis focused on ground-based and monostatic radars, similar algorithms could be
used with other radars, such as passive and airborne radars.

Keywords air surveillance, simulation, surrogate-assisted optimization, radar, wind
power
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Tiivistelmä
Tuulipuistot aiheuttavat haittavaikutuksia ilmavalvontatutkille. Koska haittojen täydel-
liseen postamiseen ei ole teknistä keinoa, tässä diplomityössä tutkitaan tuulipuistojen
ja tutkien sijoittelun optimointia haittavaikutusten minimoimiseksi.

Tutkien suorituskykyä ja siihen kohdistuvia tuulipuistojen haittavaikutuksia voi-
daan arvioida simulaatiomalleilla, mutta ne ovat laskennallisesti raskaita. Kaikkien
mahdollisten sijoitteluvaihtoehtojen simulointi optimaalisen ratkaisun löytämiseksi on
erittäin hidasta suuren vaihtoehtomäärän vuoksi.

Tässä diplomityössä esitetään kaksi optimointialgoritmia, jotka nopeuttavat opti-
maalisen vaihtoehdon tunnistamista. Algoritmit palauttavat optimaalisen vaihtoehdon,
jos yksinkertaiset oletukset pitävät paikkansa. Nämä oletukset perustuvat siihen, että
tutkat parantavat ilmavalvonnan laatua, tuulipuistot heikentävät sitä, ja nämä vaikutuk-
set ovat maantieteellisesti rajoittuneita. Numeeriset esimerkit osoittavat, että algoritmit
konvergoituvat tunneissa, kun kaikkien vaihtoehtojen simulointi veisi ajallisesti useita
vuosia. Lisäksi ne tuottavat lähes optimaalisia ratkaisuja, vaikka oletuksia rikottaisiin
hieman.

Algoritmit hyödyntävät oletuksia, kun lasketaan vaihtoehtojen ylärajoja ilmaval-
vonnan laadulle. Algoritmien toimintaperiaate on iteratiivisesti löytää vaihtoehto,
jolla on korkea yläraja, ja arvioida simuloiden tämän mahdollistama ilmavalvonnan
laatu. Vaihtoehto on optimaalinen, kun minkään muun vaihtoehdon yläraja ei ylitä
sen simuloitua ilmavalvonnan laatua. Työssä esitetyt kaksi algoritmia eroavat siten,
että ensimmäinen perustuu yksinkertaiseen toimintaperiaatteeseen, kun taas toinen
käyttää tehokkaampia hakumenetelmiä korkean ylärajan vaihtoehtojen löytämiseksi.

Tämä diplomityö toimii esimerkkitapauksena simulointi-optimointiin tarkoitetun
ongelmakohtaisen apumalliavusteisen algoritmin kehittämisestä. Kehitettyjen algorit-
mien avulla löydetään ratkaisuja ilmavalvonnan ja tuulivoiman yhteensovittamiseksi
ja maksimoidaan tutkien suorituskyky. Vaikka tässä työssä keskityttiin maasijoittei-
siin monostaattisiin tutkiin, vastaavia algoritmeja voitaisiin hyödyntää myös muiden
tutkien, kuten passiivisten ja ilmasijoitteisten tuktien, sijoittelun optimointiin.

Avainsanat ilmavalvonta, simulointi, apumalliavusteinen optimointi, tutka,
tuulivoima
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Sammandrag
Vindkraftsparker orsakar störningar för luftbevakningsradarer. Eftersom det inte finns
någon teknisk lösning som helt eliminerar störningarna,undersökerdetta examensarbete
optimering av radar- och vindkraftsparksplacering för att minimera dem.

Radarprestandan och vindkraftverkens påverkan på denna kan analyseras med
simuleringsmodeller. Dessa simuleringar är dock beräkningsmässigt kostsamma. Det
finns många möjliga kombinationer av radar- och vindkraftverksplaceringar, och att
simulera luftbevakningsförmågan för ett enskilt alternativ tar flera minuter. Därför är
det mycket tidskrävande att identifiera det optimala alternativet genom att simulera
varje alternativ.

Detta arbete presenterar två algoritmer för att effektivera sökandet efter ett op-
timalt alternativ. Algoritmerna returnerar optimala lösningar om antaganden om
simuleringsmodellerna uppfylls. Dessa antaganden baserar sig på att radarer förbättrar
luftövervakningen, att vindkraftverk försämrar radarprestandan, och att dessa effekter
är geografiskt begränsade. Numeriska experiment visar att algoritmerna konvergerar
inom några timmar, medan simulering av alla alternativ skulle ta flera år, samt att
algoritmerna ger nästintill optimala lösningar även när antagandena bryts.

Algoritmerna använder antagandena för att beräkna övre gränser för alternativens
luftbevakningsförmågan. Algoritmerna bygger på idén att upprepat identifiera ett
alternativ med en hög övre gräns och simulera dess luftbevakningsförmåga. När ingen
övre gräns längre överskrider luftbevakningsförmågan hos ett simulerat alternativ,
är detta alternativ optimalt. De två algoritmerna skiljer sig åt genom att den första
presenterar deras idé i en enkel form, medan den andra vidareutvecklar den med
effektivare sökstrategier för att hitta alternativ med höga övre gränser.

Detta examensarbete fungerar som en fallstudie i utvecklingen av problemspecifika
optimeringsalgoritmer som utnyttjar surrogatmodeller. Med hjälp av dessa algoritmer
är det möjligt att underlätta samexistensen mellan luftövervakning och vindkraft samt
maximera radarprestandan. Även om arbetet fokuserar på markbaserade monostatiska
radarer, kan liknande algoritmer tillämpas även på andra typer av radarer, såsom
passiva och luftburna radarer.

Nyckelord luftbevakning, simulering, surrogatmodellbaserad optimering, radar,
vindkraft
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1 Introduction

Wind farms are increasingly being constructed due to the growing demand for
renewable energy. However, wind farms adversely affect air surveillance radars,
reducing their capability of detecting and tracking targets (see, e.g., De la Vega et al.,
2013). Surveilling targets such as hostile aircraft and missiles is critical for national
security. Therefore, wind farms cannot be constructed if their adverse effects on air
surveillance are severe (Huttunen et al., 2024; Joensuu et al., 2021). The adverse
effects can be mitigated by various modifications to radars and wind farms, acquiring
more radars, and optimizing radar and wind farm placement (De la Vega et al., 2013).
However, no technical solution completely removes the effects, and acquiring more
radars is expensive. Therefore, this thesis studies the optimization of radar and wind
farm placement. The thesis considers ground-based and monostatic radars.

Optimization of radar and wind farm placement involves finding the combination
of radar and wind farm placements that maximizes air surveillance quality. In this
thesis, air surveillance quality (Virtanen, 2024) is measured by the fulfillment of
air surveillance objectives. For instance, one objective could be to provide general
situational awareness, and another to provide sufficient air surveillance to intercept
hostile missiles. The computation of air surveillance quality requires evaluating the
performance of radars with performance metrics in various geographical locations of
3D airspace. The performance metrics are obtained using an existing computational
tool that utilizes accurate yet computationally intensive simulation models (see, Lahti,
2022; Virtanen, 2024). The metrics are used to evaluate air surveillance quality using
a spatial multi-criteria value function (see, e.g., Harju et al., 2019).

Optimizing radar and wind farm placements with computationally intensive
simulations is challenging, since simulating the performance of radar and wind farm
placements is time-consuming. For instance, there are approximately 105 combinations
of placing five radars and five wind farms into the feasible sites presented in Figure
1. Simulating the radars’ performance in a single combination takes minutes, which
means evaluating all 105 alternatives would require roughly a year of computation.
Similarly, using evolutionary algorithms (see, e.g., Simon, 2013) would require the
simulation of many alternatives, making them slow and unsuitable.

Figure 1: A fictional map with 10 radar sites and 11 wind farm sites. The background
map is generated with Mapgen4 (Red Blob Games, 2018).
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Solving optimization problems involving computationally expensive simulations
has been studied in the disciplines of simulation optimization, derivative-free opti-
mization, and blackbox optimization (see, Audet and Hare, 2017; Fu, 2015; Larson
et al., 2019). These problems are often approached with surrogate models, also known
as meta-models (see, e.g., Bartz-Beielstein and Zaefferer, 2017; Chugh et al., 2019).
A surrogate model is a simpler and computationally cheaper approximation of the
original expensive simulation. It is based on learning patterns from evaluated inputs
and corresponding outputs of the original model. As computations with the surrogate
model are faster than the expensive simulations, the surrogate model can be used to
evaluate the quality of many alternatives quickly. This enables optimization algorithms
to allocate computationally expensive evaluations to the most promising candidate
solutions.

Many surrogate-assisted algorithms have been proposed for efficient optimization
using expensive simulations in various domains (see, e.g., Jin, 2011; Shahriari et al.,
2015). However, most are designed for continuous problems, where decision variables
can take any value within a range. In the context of radar and wind farm placement,
this would correspond to optimizing over continuous coordinates, meaning that radars
or wind farms could be placed anywhere within a region, rather than selecting from a
set of feasible locations. This thesis focuses on combinatorial problems where the
goal is to choose the best combination of sites from a finite set of options. While
some surrogate-assisted algorithm ideas for combinatorial problems exist (see, e.g.,
Baptista and Poloczek, 2018; Oh et al., 2019; Papalexopoulos et al., 2022), they are
not designed to leverage domain-specific information of how radars and wind farms
impact air surveillance.

As no tailored algorithm exists for the optimization of radar and wind farm
placement, this thesis introduces the quality upper bound (QUB) algorithm and
its extended variant. These algorithms leverage the insight that radars improve air
surveillance, wind farms degrade radar performance, and these effects are confined
to specific geographical regions. They combine the insight with previous simulation
results to compute upper bounds for air surveillance quality. These upper bounds are
referred to as QUBs. The proposed algorithms utilize the QUBs as their surrogate
model. They find the optimal alternative by iteratively searching for an alternative
with a high QUB and evaluating it using the expensive simulations. The purpose of
the QUB algorithm is to present the idea of using QUBs to find the optimal alternative.
The extended QUB algorithm improves this idea by utilizing more efficient methods
for finding alternatives with a high QUB.

In this thesis, the algorithms are evaluated through theoretical analysis and
numerical experiments. The theoretical analysis shows that the algorithms find optimal
alternatives if the simulations adhere to assumptions based on the insight that radars
improve air surveillance and wind farms adversely affect the radars. Numerical
experiments demonstrate that the algorithms return near-optimal alternatives within
hours, when the simulation of every alternative would take years, despite violations of
the algorithms’ assumptions.

Previous research has not addressed radar and wind farm placement optimization
when the number of alternatives is too large to evaluate each one individually. Lahti
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(2022) proposes a method for assessing air surveillance quality and wind farm impact,
but it requires simulating all alternatives. This thesis builds on that approach and
introduces algorithms to identify the optimal solution without simulating every
alternative.

Radar and wind farm placement optimization with many alternatives have been
addressed separately. Radar placement optimization has been studied with com-
putationally cheap models without considering wind farms (see, e.g., Dhillon and
Chakrabarty, 2003; Tema et al., 2024; Yang et al., 2015). In contrast, this thesis
accounts for wind farms and uses computationally intensive models. Using computa-
tionally intensive models allows for the modeling of radar performance more accurately
and leads to better optimization results. Wind farm placement has been optimized
without considering its impact on air surveillance radars (see, e.g., Cranmer et al.,
2018; Sunak et al., 2015). This thesis optimizes wind farm placement considering its
impact on air surveillance.

This thesis is outlined as follows. First, the radar and wind farm placement problem
is presented, including descriptions of decision alternatives and the computation of
air surveillance quality. Next, the QUB algorithm and the computation of QUBs are
introduced, followed by the analysis of the algorithm’s performance. This is followed
by the presentation and analysis of the extended QUB algorithm. The algorithms are
then applied to example problems, demonstrating their efficiency. The discussions
summarize the numerical experiments, describes the use of the algorithms, and offer
ideas for future research. The thesis concludes by summarizing the findings.



2 The radar and wind farm placement problem

The radar and wind farm placement problem involves placing a constrained number of
radars and wind farms to feasible sites, maximizing air surveillance quality. This quality
measures the capability of the radars to fulfill multiple air surveillance objectives,
considering the impact of the wind farms on the radars’ performance. It is quantified by
the air surveillance quality value (ASQV) presented by Virtanen (2024). This section
introduces the problem by first outlining decision alternatives, then by describing
the computation of the ASQV, and finally discussing the challenges of solving the
problem.

2.1 Decision alternatives

The decision alternatives consist of combinations of positioning radars and wind
farms, constrained by the number of feasible sites and available units. The decision
alternatives are denoted by 𝑧𝑖, where the index 𝑖 = 1, ..., 𝐼 represents a radar and wind
farm placement. The total number of alternatives is denoted by 𝐼. To illustrate the
decision alternatives, consider a scenario with 10 feasible radar sites and 11 feasible
wind farm sites, where five radars and five wind farms are to be placed. Figure 2
shows the feasible sites, while Figure 3 provides an example of a decision alternative.

Figure 2: A scenario with 10 radar sites and 11 wind farm sites.

Figure 3: An example of a decision alternative.
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The wind farm sites are assumed to be such that placing a wind farm there would
be feasible if its impact does not hinder radars’ capability to fulfill air surveillance
objectives. Thus, if a wind farm is to be built at a site, a plan exists specifying how
many wind turbines it will contain and where they will be located within the area. The
factors impacting wind farm placement, such as economic viability, environmental
concerns (see, e.g., Saidur et al., 2011), and public opinion (see, e.g., Ek and Persson,
2014) have been considered when selecting these sites and planning the individual
wind turbine placements within the wind farm.

2.2 Computation of the air surveillance quality value

The computation of the ASQV requires two components: location-specific values of
performance metrics, and air surveillance requirements (ASRs) (Virtanen, 2024). The
performance metric values represent the radars’ capability to detect and track targets,
such as cruise missiles and fighter jets. They are computed with a computational tool
(see, Lahti, 2022; Virtanen, 2024) considering factors such as terrain topography and
the adverse effects of wind farms on the radars’ performance. Thus, the tool provides
realistic performance metric values, but their computation is time-consuming. For a
more detailed description of the computational tool, see Virtanen (2024) and Lahti
(2022). The performance metrics considered in this thesis are probability of detection,
time between observations, and track accuracy. Table 1 shows descriptions of these
metrics.

Table 1: The descriptions of the performance metrics.

Name Description

Probability of detection The probability that a target is detected in a
location in the 3D-airspace

Time between observations The average time passed between observations of
the target

Track accuracy The distance between the observed and actual
position of the target

Each ASR represents an air surveillance objective. For instance, one objective
could be to provide general situational awareness, and another to provide sufficient
air surveillance to intercept hostile missiles. An ASR consists of a 3D-surveillance
zone, target type, quality statement, and priority. The surveillance zone and target
type define where the object of interest is located and what kind of object it is. The
quality statement defines two thresholds for each performance metric: the worst and
best quality levels. Values inferior to the worst quality level are considered insufficient,
while those surpassing the best quality level are deemed sufficient. The priority
specifies the importance of the ASR compared to other ASRs on an ordinal scale. For
more details about ASRs, see Virtanen (2024).

The ASQV is calculated by first computing the performance metric values and
mapping them to the 0 − 1 interval with consequence value functions (for more details
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about value functions, see e.g., Malczewski and Rinner (2015)). The consequence
value functions are ASR and performance metric-specific. They take into account the
best and worst levels of the performance metrics given in the quality statement. In this
thesis, the consequence value function for probability of detection is the increasing
piecewise linear function

𝑢 𝑗1(𝑝) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 , 𝑝 ≤ 𝛼 𝑗
𝑝−𝛼 𝑗

𝜙 𝑗−𝛼 𝑗
, 𝛼 𝑗 < 𝑝 < 𝜙 𝑗

1, 𝑝 ≥ 𝜙 𝑗

(1)

where 𝑗 is the index of the ASR, the subscript 1 denotes that the consequence value
function corresponds to probability of detection, 𝑝 is the value of the performance
metric, 𝛼 𝑗 is the worst quality level, and 𝜙 𝑗 is the best quality level.

The performance metrics track accuracy and time between observations have a
decreasing consequence value function, as a smaller value in these metrics is preferred
over a higher value. The decreasing linear consequence value function is given by

𝑢 𝑗 𝑘 (𝑝) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 , 𝑥 ≤ 𝜙 𝑗
𝑝−𝛼 𝑗

𝜙 𝑗−𝛼 𝑗
, 𝛼 𝑗 < 𝑝 < 𝜙 𝑗

0, 𝑝 ≥ 𝛼 𝑗
(2)

where the subscript 𝑘 denotes the performance metric that the function corresponds
to. The subscript value 2 corresponds to time between observations and 3 to track
accuracy.

The consequence value functions are utilized for computing the 2D fulfillment
value of an ASR (Virtanen, 2024). In the framework of Virtanen (2024), the value is
used to visualize where the ASRs are fulfilled. This value is not used for visualization
in this thesis, but as an intermediate result in computing the ASQV and the QUBs in
Section 3. Therefore, unlike in Virtanen (2024), the 2D fulfillment value of an ASR
is not normalized to the 0 − 1 interval in this thesis. The 2D fulfillment value of an
ASR is an aggregation of the consequence values across the altitudes on the same 2D
location. It is given by

𝑉2𝐷
𝑗 (𝑥, 𝑦; 𝑧𝑖) =

∑︁
𝑠∈𝑆 𝑗 (𝑥,𝑦)

𝑤 𝑗 𝑠

𝐾∑︁
𝑘=1

ℎ 𝑗 𝑘𝑢 𝑗 𝑘 (𝑧𝑖𝑗 𝑘 (𝑠)), (3)

where 𝑆 𝑗 (𝑥, 𝑦) represents all the locations within the altitude interval of the 3D-
surveillance zone at the coordinates 𝑥, 𝑦. 𝑠 is a location in the 3D-surveillance zone,
𝑤 𝑗 𝑠 are location specific weights, ℎ 𝑗 𝑘 are performance metric specific weights. The
weights 𝑤 𝑗 𝑠 represent the importance of 3D locations, and the weights ℎ 𝑗 𝑘 represent
the importance of the performance metrics. The weights 𝑤 𝑗 𝑠 sum to 1 when summed
over all 3D locations, while the weights ℎ 𝑗 𝑘 sum to 1 over all performance metrics.
𝑢 𝑗 𝑘 is the performance metric specific consequence value function, and 𝑧𝑖

𝑗 𝑘
(𝑠) is the

value of performance metric 𝑘 at the location 𝑠 for radar and wind farm placement 𝑖.
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The values of 𝑧𝑖
𝑗 𝑘
(𝑠) are computed with the computational tool. The maximum value

of the 2D fulfillment value is
∑︁
𝑠∈𝑆 𝑗 (𝑥,𝑦) 𝑤 𝑗 𝑠, since the maximum value of 𝑢 𝑗 𝑘 (𝑧𝑖𝑗 𝑘 (𝑠))

is 1.
The 2D fuflfillment value of an ASR is used to compute the fulfillment of an ASR.

The fulfillment of an ASR reflects how well the air surveillance objective that the ASR
represents is fulfilled. It is given by

𝑉 𝑗 (𝑧𝑖) =
∑︁

(𝑥,𝑦)∈𝑆2𝐷
𝑗

𝑉2𝐷
𝑗 (𝑥, 𝑦; 𝑧𝑖), (4)

where (𝑥, 𝑦) ∈ 𝑆2𝐷
𝑗

means all unique (𝑥, 𝑦)-coordinate pairs in the 3D-surveillance
zone. Equation 4 appears to differ from the formulation of the fulfillment value of an
ASR in Virtanen (2024). However, they are equivalent since

𝑉 𝑗 (𝑧𝑖) =
∑︁

(𝑥,𝑦)∈𝑆 𝑗

𝑉2𝐷
𝑗 (𝑥, 𝑦; 𝑧𝑖) (5)

=
∑︁

(𝑥,𝑦)∈𝑆2𝐷
𝑗

∑︁
𝑠∈𝑆 𝑗 (𝑥,𝑦)

𝑤 𝑗 𝑠

𝐾∑︁
𝑘=1

ℎ 𝑗 𝑘𝑢 𝑗 𝑘 (𝑧𝑖𝑗 𝑘 (𝑠)) (6)

=
∑︁
𝑠∈𝑆 𝑗

𝑤 𝑗 𝑠

𝐾∑︁
𝑘=1

ℎ 𝑗 𝑘𝑢 𝑗 𝑘 (𝑧𝑖𝑗 𝑘 (𝑠)) (7)

and Equation 7 is the formulation for the fulfillment of an ASR presented in Virtanen
(2024). This thesis uses the formulation of Equation 4 in the computation of QUBs in
Section 3. This formulation is chosen because it is notationally more convenient in the
context of the QUB computations

The fulfillment of the ASRs are used for computing the ASQV. The ASQV
represents the overall fulfillment of the air surveillance objectives. It is a weighted
sum of the fulfillments of all ASRs under consideration. These weights are calculated
using the ordinal priorities of the ASRs with the centroid weights method (see, e.g.,
Ahn, 2011). The ASQV is given by

𝑉 (𝑧𝑖) =
𝐽∑︁
𝑗=1
𝑚 𝑗𝑉 𝑗 (𝑧𝑖), (8)

where 𝑚 𝑗 are ASR specific weights and 𝐽 is the number of ASRs. The weights 𝑚 𝑗

quantify the relative importance of the ASRs, and they sum to 1.

2.3 Summary and challenges

To summarize, the goal of the radar and wind farm placement problem is to find the
combination 𝑧𝑖 of radar and wind farm placements that maximizes the ASQV given in
Equation 8. An optimal alternative is one that has the maximal ASQV. The radar and
wind farm placement problem is challenging since computing the ASQV for every
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alternative is time-consuming. The reasons for this are twofold. First, the number of
decision alternatives increases rapidly with the number of feasible sites. For instance,
there are approximately 105 combinations of placing five radars and five wind farms
into the sites presented in Figure 2. In contrast, there are approximately 1015 ways of
placing 10 radars and 20 wind farms into the sites of Figure 4.

Figure 4: A scenario with 21 radar sites and 35 wind farm sites

Second, computing all performance metrics for a single combination of radars and
wind farms takes minutes with the computational tool. Hence, computing them for 105

alternatives would take approximately a year, and for 1015 alternatives approximately
1010 years. The next two sections present the QUB algorithm and its extended
variant to address the challenge of finding the optimal radar and wind farm placement
combination without computing the ASQV for every alternative.
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3 The quality upper bound algorithm

This section presents the QUB algorithm developed in this thesis to address the radar
and wind farm placement problem presented in Section 2. As outlined in Section 2.3,
the challenge of finding the radar and wind farm placement with the maximal ASQV
using computationally intensive simulations is that computing the ASQV for every
alternative is time-consuming. The reason for large computational requirements is
that the evaluation of the ASQV with an existing computational tool (Lahti, 2022;
Virtanen, 2024) and Equations 3, 4, and 8 takes minutes for a single alternative, and
the total number of alternatives is large. The QUB algorithm solves the problem by
finding the optimal alternative without determining the ASQV of each one.

The QUB algorithm finds the optimal alternative by utilizing QUBs. The QUB
is an alternative-specific value greater than or equal to the ASQV that is faster to
compute than the ASQV. An alternative is optimal if its ASQV is larger than the QUB
of every other alternative. Figure 5 illustrates how the QUBs are utilized to verify that
an alternative is optimal. In the figure, alternative 4 is optimal since if the ASQVs of
alternatives 1, 2, and 3 were to be computed, they would be smaller than or equal to
their QUBs.

The property of the QUB being greater than or equal to the ASQV relies on
assumptions. These assumptions are based on the idea that placing a radar at a
site generally increases air surveillance quality, that placing a wind farm near a
radar degrades its performance, and that both effects are geographically constrained.
In addition to the assumptions, the computation of a QUB for an alternative uses
intermediate results obtained in computing the ASQVs of other alternatives. These
intermediate results consist of 2D fulfillment values of ASRs.

The QUB algorithm finds the optimal alternative by iteratively computing the QUB
of every alternative, and the ASQV of the alternative with the maximal QUB. As the
ASQV of more alternatives is determined, the QUBs of the alternatives decrease, since
there is more data for computing QUBs. Eventually, the algorithm stops when the
ASQV of an alternative is greater than or equal to the QUB of every other alternative,
as alternative 4 in Figure 5. Figure 6 demonstrates how the QUB algorithm finds the
optimal alternative through an example, where the best alternative of five is found by
computing the ASQV for three alternatives.
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Figure 5: Alternative 4 is optimal since no QUB exceeds its ASQV.

The QUB algorithm finds the optimal alternative if the assumptions on which its
computation is based hold. However, the assumptions can be violated in practice.
Violations occur, for instance, if adding radars or removing wind farms decreases per-
formance metric values, and their computation is stochastic. Violating the assumptions
may cause QUBs of alternatives to be smaller than their computed ASQVs, which can
lead to the algorithm stopping before the optimal alternative is found.

This section is structured as follows. First, the assumptions underlying the
computation of QUBs are presented. Next, the computation of a QUB for an
alternative is described. Then, the inputs, initialization, and iterative phase of the
QUB algorithm are detailed. Following this, it is shown that the algorithm finds the
optimal alternative when the assumptions, on which the computation of the QUBs is
based, hold. Finally, the consequences of violating the assumptions and the limitations
of the algorithm are discussed.
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(a) The QUBs of all five alternatives after the
ASQV of alternative 1 has been computed.
Alternative 3 has the maximum QUB. There-
fore, the ASQV of alternative 3 is computed
in the next iteration.

(b) The QUBs after the ASQV of alternative 3
is computed. Alternative 5 has the maximum
QUB. Therefore, the ASQV of alternative 5
is computed in the next iteration.

(c) The QUBs after computing the ASQV of
alternative 5. No QUB exceeds the ASQV of
alternative 5. Thus, alternative 5 is optimal.

Figure 6: An illustration of how the algorithm finds the best alternative from five
in three iterations. Figure 6a shows the QUBs and computed ASQV at iteration 1.
Figure 6b shows the QUBs and computed ASQVs at iteration 2. Figure 6c shows the
QUBs and computed ASQVs at iteration 3.

3.1 Assumptions

The computation of QUBs assumes that the calculation of the performance metric
values 𝑧𝑖

𝑗 𝑘
(𝑠) in Equation 3 is deterministic. That is, the computational tool produces
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identical output for identical input. Additionally, the computation of QUBs relies on
four assumptions regarding adding and removing radars and wind farms. Next, these
four assumptions are introduced.

The first two assumptions relate to the coverage of a radar. The coverage of a
radar is defined as a radar and site-specific 2D region. For the assumptions in this
section to hold, the coverage should include all 2D locations above which the radar
affects performance metrics at some altitudes within the ASRs’ surveillance zones.
The QUB algorithm determines a coverage for each feasible radar and radar-site pair
with a method presented in Section 3.3.

The first assumption considers the action of adding a radar, the 2D fulfillment
value of an ASR (Equation 3), and the coverage of a radar.

Assumption 1. Adding a radar increases or maintains the 2D fulfillment values of
ASRs within the radar’s coverage.

The rationale behind Assumption 1 is that adding a radar does not diminish the
capabilities of existing radars. The added radar can improve the 2D fulfillment values
of ASRs by providing additional surveillance data. Consequently, the 2D fulfillment
values of ASRs either remain unchanged or improve with the addition of a radar.
Figure 7 illustrates Assumption 1. The 2D fulfillment value of an ASR at the 2D
location depicted by the red square increases or remains unchanged due to the addition
of radar 2.

(a) (b)

Figure 7: Figure 7a shows radar 1 and Figure 7b shows radar 1 at the same location
along with radar 2. The 2D fulfillment value of an ASR at the location depicted by
a red square in Figure 7b is greater than or equal to that in Figure 7a. Blue ellipses
depict radars, and the shaded regions around them depict their coverages.

The second assumption is related to adding and removing radars that do not impact
the 2D fulfillment values of ASRs in a 2D location.
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Assumption 2. Adding or removing a radar maintains 2D fulfillment values of ASRs
outside the coverage of the radar.

The rationale behind Assumption 2 is that if an added radar does not provide
any surveillance data, it does not improve 2D fulfillment values of ASRs. Similarly,
removing such a radar does not reduce the 2D fulfillment values of ASRs. As a result,
the 2D fulfillment values of ASRs remain unchanged. Figure 8 illustrates Assumption
2 by showing a 2D location depicted by a red square, where the 2D-fulfillment value
of an ASR remains unchanged with the addition and removal of a radar.

(a) (b)

Figure 8: Figure 8a shows radar 1 and Figure 8b shows radar 1 at the same location
along with radar 2. Radar 2 cannot detect targets in the 2D location marked by a red
square. Thus, the 2D fulfillment value of an ASR at the red square is equal in the
figures. Blue ellipses depict radars, and the shaded regions around them are their
coverages.

The last two assumptions relate to adverse effect regions. An adverse effect region
is a 2D area specific to a radar, radar site, and wind farm. Similarly to the radar
coverages, the adverse effect region should include all 2D locations above which the
wind farm affects the radar’s performance at the ASRs’ surveillance zones. The QUB
algorithm has a method for determining an adverse effect region for each radar, radar
site, and wind farm triple.

The third assumption addresses the impact of the removal of wind farms in the
adverse effect region.

Assumption 3. Removing a wind farm maintains or increases the 2D fulfillment values
of ASRs within the adverse effect regions of the wind farm.

The rationale behind Assumption 3 is that wind farms impact air surveillance only
by interfering with the radar signals, which reduces the capability of radars to surveil
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targets. Consequently, removing wind farms either eliminates such interference or
does not impact air surveillance, resulting in 2D fulfillment values of ASRs being
maintained or improved. Figure 9 illustrates Assumption 3 by showing a 2D location
marked by a red square, where the removal of a wind farm increases or maintains the
2D fulfillment value of an ASR.

(a) A radar and a wind farm. (b) A radar and no wind farm.

Figure 9: The 2D fulfillment value of an ASR at the red square location in Figure 9b
is greater than or equal to that at the same location in Figure 9a. The green ellipse
depicts a wind farm and the purple-shaded region an adverse effect region. The blue
ellipse depicts a radar and the shaded region its coverage.

The fourth assumption considers the impact of adding and removing wind farms.

Assumption 4. Adding or removing a wind farm maintains the 2D fulfillment values
of ASRs outside the adverse effect regions of the wind farm.

The rationale behind Assumption 4 is that if the wind farm being added or removed
does not interfere with any radar’s ability to detect in a region, then the 2D fulfillment
values of ASRs remain unaffected in this region. Figure 10 illustrates Assumption 4
by showing a 2D location, depicted by a red square, where the 2D fulfillment value of
an ASR is not impacted by adding or removing a wind farm.
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(a) A radar and a wind farm. (b) A radar and no wind farm.

Figure 10: The 2D fulfillment value of an ASR is equal in the 2D location depicted
by a red square in Figures 10a and 10b, since the wind farm does not cause any adverse
effects in this location. The green ellipse depicts a wind farm, and the purple-shaded
region depicts an adverse effect region. The blue ellipse depicts a radar and the shaded
region its coverage.

3.2 Computation of the quality upper bound for an alternative

The difference between computing the ASQV and the QUB is that the 2D fulfillment
value of an ASR in Equation 3 is replaced with a computationally cheaper upper
bound, referred to as the 2D upper bound. Unlike the fulfillment value, this upper
bound does not require performance metrics to be evaluated with the computational
tool and instead relies on results obtained from previously assessed alternatives. The
computation of the 2D upper bound is described next, followed by an explanation of
how it is used to determine the QUB for an alternative.

As with the 2D fulfillment value of an ASR, the 2D upper bound is obtained for
a combination of an alternative, a 2D location, and an ASR. It is computed using
previously determined 2D fulfillment values of the ASR and their corresponding
alternatives. To distinguish the alternative for which the 2D upper bound is calculated
from those whose 2D fulfillment values were previously determined, the former is
referred to as the candidate alternative and the latter as the evaluated alternatives.

The 2D upper bound is computed by iterating over the previously evaluated
alternatives. In each iteration, first, the actions to transform the candidate alternative
into the evaluated alternative are identified. These actions consist of removing and
adding radars and wind farms. To illustrate identifying the actions of transforming the
candidate alternative to an evaluated one, consider the candidate alternative in Figure
11a and the evaluated alternative in Figure 11b. The alternatives only differ by the
placement of radar 2. Therefore, to transform the candidate alternative in Figure 11a
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into the evaluated one in Figure 11b, radar 2 is removed from its site in Figure 11a and
added to its site in Figure 11b.

(a) The candidate alternative. (b) The evaluated alternative.

Figure 11: The candidate alternative and the evaluated alternative differ only by the
placement of radar 2. The blue ellipses depict radars, and the shaded regions their
coverages. The green ellipse depicts a wind farm, and the purple region its adverse
effect region. The red square is the 2D location where the 2D upper bound is computed.

After determining the actions to transform the candidate alternative into the
evaluated one, the next step is to assess each action to decide whether or not it
maintains or improves the 2D fulfillment value of the ASR. The actions are assessed
with Assumptions 1-4 as described in Table 2. If every action preserves or increases
the 2D fulfillment value of the ASR, the 2D fulfillment value of the ASR of the
previously evaluated alternative is marked as an upper bound candidate. A special
case is if the candidate and the evaluated alternatives are the same. Then, no actions
are needed to transform the candidate alternative to the evaluated one. In this case, the
2D fulfillment value of the ASR of the evaluated alternative is marked as an upper
bound candidate.

Table 2: Determining when actions maintain or improve the 2D fulfillment value of
an ASR with Assumptions 1-4.

Action When does the action maintain or improve the
2D fulfillment value of an ASR?

Addition of a radar According to Assumptions 1 and 2, always.

Removal of a radar
According to Assumption 2, when the radar’s coverage does
not contain the 2D location of the 2D fulfillment
value of the ASR.

Removal of a wind farm According to Assumptions 3 and 4, always.

Addition of a wind farm

According to Assumption 4, when the adverse
effect regions of the wind farm do
not contain the 2D location of the 2D
fulfillment value of the ASR.
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To illustrate marking a 2D fulfillment value as an upper bound candidate, revisit
the example of Figure 11. Removing radar 2 from its site in Figure 11a maintains the
2D fulfillment value of the ASR in the 2D location depicted by a red square according
to Assumption 2. Adding radar 2 to its site in Figure 11b maintains or increases the 2D
fulfillment value of the ASR in the 2D location marked by the red square according to
Assumption 1. Since all actions for transforming the candidate alternative in Figure
11a to the evaluated one in Figure 11b maintains or increases the 2D fulfillment value
of the ASR, the known 2D fulfillment value of the ASR of the previously evaluated
alternative is marked as an upper bound candidate.

The 2D upper bound is the smallest of the upper bound candidates. The smallest
upper bound candidate is chosen since it provides the tightest upper bound to the 2D
fulfillment value of the ASR. If there are no upper bound candidates, the 2D upper
bound is the maximum possible value of the 2D fulfillment value of the ASR. This
value is

∑︁
𝑠∈𝑆 𝑗 (𝑥,𝑦) 𝑤 𝑗 𝑠, as presented in Section 2. Algorithm 1 shows the pseudocode

for computing a 2D upper bound. The algorithm computes the 2D upper bound for a
single location and ASR.

Algorithm 1 Computation of a 2D upper bound
Inputs: Candidate alternative, evaluated alternatives with computed 2D fulfillment
values of the ASR

1: for each evaluated alternative do
2: Identify actions to transform the candidate alternative into the evaluated

alternative
3: if all actions maintain or increase the 2D fulfillment value of the ASR then
4: Mark the 2D fulfillment value of the evaluated alternative as an upper

bound candidate
end if

end for
Return: The smallest upper bound candidate, or the maximum possible value of
the 2D fulfillment of the ASR if there are no upper bound candidates.

To compute the QUB for an alternative, the 2D upper bound is determined for each
ASR and 2D location with Algorithm 1. The 2D upper bounds are used to compute
upper bounds for the fulfillment of each ASR, similarly to how the fulfillment of an
ASR is computed in Equation 4. The upper bound for the fulfillment of an ASR,
denoted by 𝑉̂ 𝑗 (𝑧𝑖), where 𝑧𝑖 denotes alternative 𝑖 and 𝑗 the ASR, is given by

𝑉̂ 𝑗 (𝑧𝑖) =
∑︁

(𝑥,𝑦)∈𝑆2𝐷
𝑗

𝑉̂
2𝐷
𝑗 (𝑥, 𝑦; 𝑧𝑖), (9)

where 𝑉̂2𝐷
𝑗 (𝑥, 𝑦; 𝑧𝑖) is a 2D upper bound for alternative 𝑖 and ASR 𝑗 . (𝑥, 𝑦) ∈ 𝑆2𝐷

𝑗

means all unique (𝑥, 𝑦)-coordinate pairs in the 3D-surveillance zone of the ASR. The
upper bounds of the fulfillments of ASRs are used to compute the QUB similarly to
how the ASQV is computed in Equation 8. Therefore, the QUB, denoted by 𝑉̂ (𝑧𝑖) for
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alternative 𝑧𝑖, is given by

𝑉̂ (𝑧𝑖) =
𝐽∑︁
𝑗=1
𝑚 𝑗𝑉̂ 𝑗 (𝑧𝑖), (10)

where 𝑚 𝑗 are ASR-specific weights representing their importance.

3.3 Inputs, initialization, and iterative phase

The QUB algorithm takes as input a set of alternative radar and wind farm placements
and ASRs to identify the alternative that maximizes the ASQV with respect to these
ASRs. Initialization of the algorithm involves three tasks. The first is to determine the
radar coverages for each feasible radar-site pair, as these are used in the computation
of QUBs. The coverage of a radar is computed using the computational tool, which
determines the minimum altitude at each 2D location where targets are within line of
sight of the radar, accounting for terrain obstructions. The coverage of a radar consists
of all the 2D locations, for which this altitude is lower than the maximum altitude
within the ASRs’ surveillance zones.

The second of the three tasks is determining an adverse effect region for each radar,
radar site, and wind farm triple. As the radar coverages, these regions are essential
for computing QUBs. The adverse effect region for a radar, radar site, and wind farm
triple is established by first determining whether there is a direct line of sight from
the radar to the wind farm. If no line of sight exists, the wind farm cannot produce
adverse effects on the radar, and the adverse effect region is therefore empty. If a line
of sight is present, the adverse effect region consists of all 2D locations that satisfy the
following three conditions.

1. The 2D location is part of the coverage of the radar.

2. Consider a polar coordinate system centered at the radar. The absolute difference
between the azimuth coordinate of the 2D location and any wind turbine in the
wind farm is less than 8 degrees.

3. The distance between the radar and the 2D location is greater than the distance
between the radar and the wind turbine closest to the radar minus 20km.

Figure 12 illustrates an adverse effect region by showing the relevant angles and
distance on which the region is based.
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Figure 12: The adverse effect region is depicted in purple. The green triangles are
wind turbines, the radar is a blue ellipse, and the coverage of the radar is depicted in
light blue.

The third and final task for initializing the algorithm is to compute the 2D fulfillment
values of ASRs with the computational tool and Equation 3 for two initial radar and
wind farm placement combinations. These combinations are not actual alternatives,
since they are not feasible. The two combinations consist of

1. Placing a radar at all radar sites and a wind farm at all wind farm sites.

2. Placing a radar at all radar sites and no wind farms at any site.

The computed 2D fulfillment values of ASRs are stored to be used by Algorithm 1 for
computing 2D upper bounds. These radar and wind farm placement combinations are
chosen since they determine the maximum 2D fulfillment values of ASRs with and
without wind farms.

After the initialization, the algorithm enters the iterative phase. The iterative
phase starts by computing QUBs for all alternatives separately with Algorithm 1 and
Equations 9 and 10. Then, an exhaustive search is used to identify the maximum QUB
of the alternatives and the corresponding alternative. The maximum computed ASQV
is initialized to the value 0, since the ASQV of no alternative has been computed yet.

The algorithm iterates while the maximum QUB is greater than the maximum
computed ASQV. Each iteration starts by computing the ASQV for the alternative with
the maximum QUB. When the ASQV is computed, the 2D fulfillment values of ASRs
determined with Equation 3 are stored to be used with Algorithm 1 for calculating
QUBs. Thereby, computing the ASQV of an alternative impacts the QUBs. Therefore,
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after computing the ASQV of the alternative with the maximum QUB, the QUB
of every alternative is recomputed with Algorithm 1 and Equations 9 and 10. Each
iteration ends with determining the maximum QUB with an exhaustive search and
determining the maximum computed ASQV. Algorithm 2 shows the pseudocode of
the QUB algorithm.

Algorithm 2 The quality upper bound algorithm
Inputs: Set of all alternatives, ASRs
Initialization:

1: Determine radar coverages
2: Determine adverse effect regions
3: Compute the 2D fulfillment values of ASRs of two initial radar and wind

farm placement combinations
Iterative phase:

4: Compute the QUB of every alternative
5: Determine the maximum QUB and the alternative corresponding to it with

an exhaustive search
6: Initialize the maximum computed ASQV with 0
7: while Maximum QUB > Maximum computed ASQV do
8: Compute the ASQV of the alternative with the maximum QUB
9: Compute the QUB of every alternative

10: Determine the maximum QUB and the alternative corresponding to it
with an exhaustive search

11: Determine the maximum computed ASQV
end while

Return: Optimal alternative

3.4 From assumptions to optimality

The QUB algorithm (Algorithm 2) finds the alternative with the maximum ASQV if
the assumptions presented in Section 3.1 hold. This is established by first showing
that the algorithm terminates in finite time. Then, it is shown that, upon termination,
the algorithm has found the optimal alternative under the assumptions.

3.4.1 On finite time termination

Algorithm 2 terminates since all individual steps of the algorithm and the loop starting
at Step 7 terminate. Steps 1-3, 6, 8, and 11 of Algorithm 2 terminate, since they
consist of finite sequences of operations. Steps 4, 5, 9, and 10 require enumerating
all alternatives, which can be carried out given enough time, since the number of
alternatives is finite. Steps 4 and 9 involve computing QUBs with Algorithm 1 and
Equations 9 and 10, which consist of a finite number of operations. Thus, all individual
steps of Algorithm 2 terminate.
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The loop at Step 7 terminates in finite time because the number of alternatives is
finite, and the loop computes the ASQV of each alternative at most once. This follows
from the fact that the loop always selects the alternative with the maximum QUB for
ASQV computation, and once an alternative’s ASQV has been computed, its QUB
cannot exceed its ASQV. Consequently, the same alternative cannot be selected again
for ASQV computation, as this would cause the loop to terminate. Thus, the loop
terminates after a finite number of iterations.

3.4.2 On optimality

When Algorithm 2 has terminated, the loop starting at step 7 has completed. At this
point, there is no alternative whose QUB is greater than the highest computed ASQV.
Under the assumptions outlined in Section 3.1, the QUB of any alternative is greater
than or equal to its ASQV. Therefore, once the algorithm stops, it has identified the
optimal alternative, provided that the assumptions hold. It is next shown that, under
the given assumptions, the QUB is greater than the ASQV.

When the assumptions hold, the 2D upper bounds are greater than or equal to 2D
fulfillment values of ASRs. This is because Algorithm 1 chooses the 2D upper bound
from upper bounds candidates, which are greater than or equal to their respective 2D
fulfillment values under the assumptions. Consequently, the QUB of an alternative is
greater than or equal to its ASQV, since

𝑉 (𝑧𝑖) =
𝐽∑︁
𝑗=1
𝑚 𝑗

∑︁
(𝑥,𝑦)∈𝑆 𝑗

𝑉2𝐷
𝑗 (𝑥, 𝑦; 𝑧𝑖)

≤
𝐽∑︁
𝑗=1
𝑚 𝑗

∑︁
(𝑥,𝑦)∈𝑆 𝑗

𝑉̂
2𝐷
𝑗 (𝑥, 𝑦; 𝑧𝑖)

= 𝑉̂ (𝑧𝑖).

3.5 Implications of assumption violations

If the assumptions outlined in Section 3.1 are violated, the QUB algorithm is not
guaranteed to identify the optimal alternative, as the QUB of an alternative may be
smaller than its ASQV. Next, it is illustrated through an example how violating the
assumptions can cause the QUB to be smaller than the ASQV.

The 2D upper bound for the alternative shown in Figure 13a is computed using
Algorithm 1 at the location marked by a red square. This alternative is referred
to as the candidate alternative. The alternative in Figure 13b is referred to as the
evaluated alternative. Its 2D fulfillment value of the ASR has been determined with
the computational tool and Equation 3 at the 2D location depicted by the red square.

At Step 2 of Algorithm 1, the actions for transforming the candidate alternative
into the evaluated one are identified. These actions consist of removing radar 2 from
its site in Figure 13a and adding radar 2 to its site in Figure 13b. Step 3 of Algorithm
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1 analyzes whether all the actions maintain or increase the 2D fulfillment value of
the ASR at the location illustrated by the red square, which they clearly do under the
assumptions. Thus, the evaluated alternative’s 2D fulfillment value is marked as an
upper bound candidate, and since it is the only upper bound candidate, it is selected as
the 2D upper bound.

If the Assumptions 1 and 2 are violated, the 2D upper bound in the above example
may be smaller than the 2D fulfillment value of the ASR for the candidate alternative, if
it were computed. There are multiple ways in which the assumptions could be violated.
For instance, if the coverage of radar 2 in Figure 13a is too small and in reality the
radar impacts the 2D fulfillment value of an ASR at the red square, removing the radar
could diminish the 2D fulfillment value of the ASR. Furthermore, if the computation
of the 2D fulfillment value is stochastic, the 2D upper bound could be smaller than
the 2D fulfillment value by chance. When 2D upper bounds are smaller than the 2D
fulfillment values, the QUB of an alternative may be smaller than its ASQV.

(a) The candidate alternative. (b) The evaluated alternative.

Figure 13: A candidate alternative and an evaluated alternative. The blue ellipses
depict radars, and the shaded regions their coverages. The green ellipse depicts a wind
farm, and the purple region its adverse effect region. The red square is the 2D location
where the 2D upper bound is computed.

3.6 Limitations

The QUB algorithm has two main limitation. First, the QUB algorithm’s guarantee
of optimality depends on the assumptions outlined in Section 3.1 being satisfied.
Secondly, the QUB algorithm enumerates all alternatives in Steps 4, 5, 9, and 10.
As discussed in Section 2, the number of alternatives increases rapdily with the
number of feasible sites for radars and wind farms. The QUB algorithm enumerates
all alternatives iteratively, specifically in Steps 9 and 10 of the while loop that begins
at Step 7.

To illustrate the issue of iteratively performing Step 9, suppose that there are 106

alternatives and the computation of a QUB for a single alternative with Algorithm 1
and Equations 10 and 9 takes 10−2 seconds. Then, the computation of the QUB for all

31



alternatives in Step 9 takes 104 seconds, i.e., 2h 47min. As computing the ASQV of an
alternative with the computational tool and Equations 3, 4, and 8 takes minutes, Step
9 of becomes a bottleneck. The next section presents the extended QUB algorithm to
address the issue of iteratively enumareting all alternatives.

32



4 The extended quality upper bound algorithm

This section presents the extended QUB algorithm, a variant of the QUB algorithm
introduced in Section 3. The extended QUB algorithm differs from the QUB algorithm
in using more efficient search strategies. As discussed in Section 3.6, in Steps 4, 5, 9,
and 10 of the QUB algorithm (Algorithm 2), computing the QUB of every alternative
and selecting the alternative with the maximal QUB with an exhaustive search scales
poorly, as the number of alternatives increases rapidly with the number of feasible sites
for radars and wind farms. The extended QUB algorithm overcomes this challenge by
replacing these steps with a random restart hill climbing (RRHC) algorithm. RRHC
finds an alternative with a near-maximal QUB without computing the QUB of every
alternative by repeatedly calling a hill climbing search.

However, replacing Steps 4, 5, 9, and 10 of Algorithm 2 with RRHC results in an
algorithm that is not guaranteed to find an alternative whose ASQV is greater than or
equal to the QUB of every other alternative. Consequently, the algorithm does not
necessarily return an optimal alternative under the assumptions presented in Section
3.1. To ensure optimality under the assumptions, the extended QUB algorithm consists
of two phases: exploration and refinement. During the exploration phase, RRHC
is used to identify an alternative with a high ASQV, although this alternative is not
guaranteed to be optimal. In the refinement phase, this alternative is improved until
its ASQV exceeds the QUB of all others, resulting in an optimal solution under the
assumptions.

Confirming that an alternative’s ASQV is greater than or equal to the QUB of
all others in the refinement phase requires computing the QUB of every alternative,
which can be time-consuming. For example, evaluating the QUB of 105 alternatives
takes approximately 17 minutes when the QUB of a single alternative requires 10−2

seconds. Furthermore, doing so for 1014 alternatives would take around 30, 000 years.
Due to this computational cost, the refinement phase computes the QUB of every

alternative only when the total number of alternatives is less than 105. This threshold
was selected based on empirical observations from the numerical experiments in
Section 5, which indicate that, beyond 105 alternatives, the computational cost of
verifying optimality outweighs the potential improvement in solution quality. When the
number is larger, a local optimization algorithm is used instead. This algorithm returns
an alternative whose ASQV is greater than or equal to the QUBs of its neighbors.
Neighbors are defined as alternatives obtained by relocating a single radar or wind
farm.

This section is structured as follows. First, the inputs, initialization, exploration
phase, and refinement phase of the extended QUB algorithm are detailed. Next, the
RRHC in the exploration phase is presented. Then, the local optimization algorithm
in the refinement phase is introduced. Moreover, the optimality of the alternative
returned by the extended QUB under the assumptions of Section 3.1 is established.
Finally, the algorithm’s limitations are discussed, and the QUB and extended QUB
algorithms are compared.
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4.1 Inputs, initialization, exploration phase, and refinement
phase

The inputs of the extended QUB algorithm are the same as those of the QUB
algorithm: the set of all alternatives and ASRs. The extended QUB algorithm is
initialized identically to the QUB algorithm (see Section 3.3) by determining radar
coverages and adverse effect regions and computing the 2D fulfillment values of ASRs
of two initial radar and wind farm placement combinations.

After initialization, the algorithm enters the exploration phase. This phase begins
by initializing the maximum computed ASQV to 0, since the ASQV of no alternative
has yet been computed. RRHC is then employed to find an alternative with a near-
maximal QUB. The algorithm then enters a loop that continues as long as the QUB of
the alternative found by RRHC exceeds the maximum ASQV.

Each iteration of the loop consists of three steps. First, the ASQV for the alternative
found by RRHC is determined using the computational tool and Equations 3, 4, and
8. When the ASQV is computed, the 2D fulfillment values of ASRs are stored for
computing QUBs. Next, the maximum ASQV is updated by selecting the highest
ASQV among the computed ASQVs. Finally, RRHC is utilized to find an alternative
with a QUB exceeding the current maximum ASQV. Once the QUB of the alternative
found by RRHC is no longer greater than the maximum ASQV, the loop terminates
and the exploration phase ends.

When the exploration phase concludes, the algorithm transitions into the refinement
phase. All radar coverages, adverse effect regions, computed ASQVs, and 2D fulfillment
values of ASRs are carried over. The maximum computed ASQV is likewise retained.
The behavior of the refinement phase depends on the number of alternatives.

If the number of alternatives is smaller than 105, the refinement phase begins by
computing the QUB for every alternative. The alternative with the highest QUB is
then identified through exhaustive search. From this point, the algorithm enters an
iterative process that continues as long as the maximum QUB exceeds the maximum
computed ASQV.

The following steps are repeated in the iterative process. The ASQV of the
alternative with the maximum QUB is calculated, and the maximum ASQV is updated
based on this result. Following this, all alternatives with a QUB greater than the current
maximum ASQV are identified, and their QUBs are computed. The highest among
these is set as the new maximum QUB. The process terminates once no alternative
has a QUB greater than the maximum ASQV.

If the number of alternatives is greater than 105, the refinement phase applies
the local optimization algorithm, starting from the alternative with the maximum
computed ASQV. The algorithm identifies an alternative whose ASQV exceeds the
QUBs of its neighbors. Section 4.3 presents the local optimization algorithm in detail.

Once the refinement phase is complete, the extended QUB algorithm returns the
alternative with the highest computed ASQV. Algorithm 3 provides the complete
pseudocode of the extended QUB algorithm.
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Algorithm 3 The extended quality upper bound algorithm
Inputs: Set of all alternatives, ASRs
Initialization:

1: Determine radar coverages
2: Determine the adverse effect regions
3: Compute the 2D fulfillment values of ASRs of two initial radar and wind

farm placement combinations
Exploration phase:

4: Initialize the maximum computed ASQV of an alternative with 0
5: Determine the maximum QUB with RRHC
6: while Maximum QUB > Maximum computed ASQV do
7: Compute the ASQV of the alternative with the maximum QUB
8: Determine the maximum computed ASQV
9: Determine the maximum QUB with RRHC

end while
Refinment phase:

10: if The number of alternatives is less than 105 then
11: Compute the QUB of every alternative
12: Determine the maximum QUB with an exhaustive search
13: Determine the maximum computed ASQV
14: while Maximum QUB > Maximum computed ASQV do
15: Compute the ASQV of the alternative with the maximum QUB
16: Determine the maximum computed ASQV
17: Identify all alternatives with a QUB exceeding the maximum computed

ASQV
18: Compute the QUBs of these alternatives
19: Set the maximum QUB to the highest QUB computed in the last step

end while
20: else if The number of alternatives is larger than or equal to 105 then
21: Employ the local optimization algorithm starting from the alternative with

the maximum computed ASQV
end if

Return: The alternative with the maximum computed ASQV and its ASQV

4.2 Random restart hill climbing algorithm in the exploration
phase

The RRHC algorithm takes as input the set of alternatives, a maximum number of
restarts, and the maximum computed ASQV, determined in Steps 4 and 8 of Algorithm
3. Its objective is to identify an alternative with a maximal QUB, although it is not
guaranteed to do so. The algorithm continues restarting a hill climbing search from
random alternatives until either the search returns an alternative with a QUB exceeding
the maximum computed ASQV or the maximum number of restarts is reached. The
maximum number of restarts used in this thesis is 10. The pseudocode for RRHC is
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provided in Algorithm 4. The hill climbing search is presented next.

Algorithm 4 Random restart hill climbing
Inputs: Set of all alternatives, maximum number of restarts, the maximum
computed ASQV

1: Set the number of restarts and the maximum QUB to zero
2: while Number of restarts < Maximum number of restarts and

Maximum QUB ≤ Maximum computed ASQV do
3: Select a random alternative
4: Apply a hill climbing search starting from the random alternative
5: Set the result of the hill climbing search as the maximum QUB
6: Increment the number of restarts

end while
Return: The maximum QUB and the corresponding alternative

The hill climbing search in Step 6 of Algorithm 3 takes an initial alternative as
input and begins by setting it as the current alternative. The neighbors of the current
alternative are all the alternatives obtained by relocating a single radar or wind farm.
The hill climbing search iterates while the current solution has a neighbor with a
higher QUB. In each iteration, a list of all neighbors of the current alternative is
created. A random neighbor is repeatedly selected from the list of neighbors, and its
QUB is computed. If this QUB exceeds that of the current alternative, the selected
neighbor replaces it as the new current alternative, and the search continues with the
neighbors of this new alternative. If no neighbor yields a higher QUB, the algorithm
terminates and returns the current alternative along with its QUB. Algorithm 5 shows
the pseudocode of the hill climbing search.
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Algorithm 5 Hill climbing search
Inputs: Initial alternative

1: Set the initial alternative as the current alternative
2: Compute the QUB of the current alternative
3: Create a list of the neighbors of the current alternative
4: while The list of neighbors is not empty do
5: Select a random neighbor from the list of neighbors
6: Remove the selected neighbor from the list
7: Compute the QUB of the selected neighbor
8: while QUB of the selected neighbor ≤ QUB of the current alternative and

the list of neighbors is not empty do
9: Select a random neighbor from the list of neighbors

10: Remove the selected neighbor from the list
11: Compute the QUB of the selected neighbor

end while
12: if QUB of the selected neighbor > QUB of the current alternative then
13: Set the selected neighbor as the current alternative
14: Create a list of the neighbors of the current alternative

end if
end while
Return The current alternative and its QUB

4.3 Local optimization algorithm in the refinement phase

The local optimization algorithm, invoked in Step 21 of Algorithm 3, receives an
initial alternative along with its computed ASQV. It searches for an alternative whose
ASQV exceeds the QUB of all neighboring alternatives. The algorithm begins by
setting the initial alternative as the current alternative.

In each iteration, the QUBs of the neighboring alternatives are determined. If no
neighbor has a QUB greater than the ASQV of the current solution, the algorithm
terminates and returns this solution along with its ASQV. Otherwise, the neighbor
with the highest QUB is selected, and its ASQV is computed. If this ASQV exceeds
that of the current solution, the neighbor becomes the new current solution. The
iteration continues until no further improvement is found. Algorithm 6 shows the
pseudocode of the local optimization algorithm.
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Algorithm 6 Local optimization algorithm
Inputs: Initial alternative and its computed ASQV

1: Set the initial alternative as the current alternative
2: Compute the QUBs of all the neighbors of the current alternative
3: Determine the maximum QUB of the neighbors
4: while Maximum QUB of the neighbors > ASQV of the current alternative do
5: Compute the ASQV of the neighbor with the maximum QUB
6: if ASQV of the neighbor with the maximum QUB > ASQV of the current

alternative
7: Set the neighbor with the maximum QUB as the current alternative

end if
8: Compute the QUBs of all the neighbors of the current alternative
9: Determine the maximum QUB of the neighbors

end while
Return: The current alternative and its computed ASQV

4.4 From assumptions to optimality

The extended QUB algorithm returns an alternative with the maximal ASQV if the
assumptions in Section 3.1 hold and the number of alternatives is less than 105. If the
number of alternatives is at least 105, it returns an alternative whose ASQV is greater
than or equal to that of any neighbor. These results are established by first showing
that the algorithm terminates in finite time. Under the assumptions, it is shown that
the algorithm returns an alternative with the maximal ASQV when there are fewer
than 105 alternatives, and an alternative whose ASQV is at least as high as that of any
neighbor when the number is 105 or more.

4.4.1 On finite time termination

Finite time termination of the extended QUB algorithm is nontrivial due to the presence
of several iterative components. These components include the loops in Algorithms 3,
4, 5, and 6. Specifically, the loops begin at Step 6 and Step 14 in Algorithm 3, at Step
2 in Algorithm 4, at Steps 4 and 8 in Algorithm 5, and at Step 4 in Algorithm 6.

The loops starting at Steps 6 and 14 of Algorithm 3 and at Step 4 of Algorithm
6 terminate by a similar argument as the one presented in Section 3.4.1 for the loop
of the QUB algorithm. The argument is that if any of these loops were to continue
indefinitely, they would compute an alternative’s ASQV more than once. However,
each loop would halt before computing the alternative’s ASQV a second time.

The loop starting at Step 2 of Algorithm 4 stops after the maximum number of
restarts given as input to the algorithm. The loop starting at Step 8 of Algorithm 5
repeatedly removes neighbors from the list and necessarily ends once all neighbors have
been removed. Algorithm 5 also terminates, since each iteration replaces the current
alternative with one that has a strictly higher QUB, and the number of alternatives is
finite. As a result, such replacements can occur only a finite number of times. Thus,
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all the iterative components of the extended QUB algorithm terminate in finite time.

4.4.2 On optimality

When the number of alternatives is smaller than 105, the extended QUB algorithm
terminates when the while loop starting at Step 14 stops. This occurs when the
algorithm has found an alternative whose ASQV is greater than the QUB of every
other alternative. As seen in Section 3.4.2, the QUB of an alternative is greater than
its ASQV if the assumptions of Section 3.1 hold. Thus, under the assumptions, the
extended QUB algorithm returns an alternative with maximal ASQV.

For 105 or more alternatives, the extended QUB algorithm terminates when the
while loop starting at Step 4 of Algorithm 6 stops. The while loop stops when the
algorithm has found an alternative whose computed ASQV exceeds the QUB of all
its neighbors. Thus, under the assumptions, the extended QUB algorithm finds an
alternative whose ASQV is greater than or equal to its neighbors’ ASQVs.

4.5 Limitations

As discussed in Section 3.5, violating the assumptions of Section 3.1 may cause
the QUBs of alternatives to be smaller than their ASQVs. Consequently, when the
computational tool violates the assumptions, the extended QUB algorithm is not
guaranteed to return an alternative with the maximal ASQV when the number of
alternatives is smaller than 105, nor an alternative whose ASQV is greater than or
equal to its neighbors’ ASQVs when the number of alternatives is at least 105.

4.6 Comparison of the QUB algorithms

Under the assumptions, the extended QUB Algorithm identifies an optimal alternative
in problems with fewer than 105 alternatives. In problems with more alternatives,
it returns an alternative whose ASQV exceeds that of all the alternatives differing
by a single radar or wind farm placement. While this alternative can be an optimal
alternative, it is not guaranteed to be.

The QUB algorithm always returns the optimal alternative when the assumptions
hold. However, it is slower than the extended algorithm, regardless of the number of
alternatives.
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5 Numerical experiments

This section demonstrates the effectiveness of the QUB algorithms through numerical
experiments. The algorithms are applied to 11 example problems with varying sizes.
The experiments measure each algorithm’s execution time, the number of ASQV
computations, and the quality of the alternatives they return. Quality is examined by
comparing the algorithms’ outputs to one another and the known maximum ASQVs in
small problems, where the ASQV of every alternative can be computed within a few
hours. The ASQV is computed using an existing computational tool (see, Lahti, 2022;
Virtanen, 2024).

The assumptions presented in Section 3.1 are violated in the numerical experiments.
Therefore, the optimality of the returned alternatives discussed in Sections 3.4 and
4.4 is not guaranteed. The impact of the assumption violations on the quality of
the algorithms’ outputs is assessed. In the following, the example problems are first
introduced, and then the results are presented.

5.1 Example problems

The example problems include five small problems, five medium problems, and one
large problem. The objective of each problem is to place radars and wind farms to
fulfill the same 18 ASRs. The problems are introduced by first outlining the decision
alternatives, followed by descriptions of the ASRs.

5.1.1 Decision alternatives

Each small problem includes five feasible radar sites and five feasible wind farm sites.
The task is to place three radars and three wind farms at these sites. The total number
of alternatives per problem is 100. Figure 14 illustrates the feasible sites for the small
problems.

In the medium problems, there are 10 radar sites and 11 wind farm sites. The
objective is to place five radars and five wind farms. Each medium problem has
approximately 105 alternatives. Figure 15 shows the feasible sites.

The large problem contains 21 radar sites and 35 wind farm sites, with the goal of
placing 10 radars and 20 wind farms. This results in around 1015 alternatives. Figure
16 displays the feasible sites for this problem.

The radars considered in all problems are ground-based, monostatic, and have a
range of 300 kilometers. The wind farms consist of 50 wind turbines arranged in a
rectangular formation, spaced 600 meters apart. Each turbine features a tower that is
210 meters high and 8 meters wide. The blades are 90 meters long, resulting in a total
structure height of 300 meters when a blade is in the vertical position.
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(a) Small problem number 1 (b) Small problem number 2.

(c) Small problem number 3. (d) Small problem number 4.

(e) Small problem number 5.

Figure 14: The feasible radar and wind farm sites of the five small problems.
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(a) Medium problem number 1 (b) Medium problem number 2.

(c) Medium problem number 3. (d) Medium problem number 4.

(e) Medium problem number 5.

Figure 15: The feasible radar and wind farm sites of the five medium problems.
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Figure 16: The feasible radar and wind farm sites of the large problem.

5.1.2 Air surveillance requirements

The objective of all small, medium, and large problems is to maximize the fulfillment
of the same 18 ASRs. As presented in Section 2, an ASR consists of a surveillance
zone specified by a 2D zone and an altitude interval, a target type, a quality statement,
and a priority.

The target of all 18 ASRs is a cruise missile. Each of the 18 ASRs has a unique
surveillance zone with no overlap. Figure 17 depicts the 2D zones of the ASRs with
red polygons. The altitude interval is 1-3km for each ASR.

Each ASR has one of the four priorities: P1, P2, P3, and P4. Figure 18 illustrates
these priorities. Table 3 shows the weights corresponding to each priority. The weights
were computed with the centroid weights method based on the priorities (see, e.g.,
Ahn, 2011).

There are four quality statements denoted by Q1, Q2, Q3, and Q4. Table 4 details
these quality statements. Figure 19 shows the quality statement of each requirement.
The linear consequence value functions are used for the quality statements according
to Equations 1 and 2.
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Figure 17: The 2D zones of the ASRs depicted by red polygons.

Figure 18: The priorities of the ASRs depicted by text within the 2D zones.
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Table 3: The weights corresponding to the priorities

Priority Weight
P1 0.1136
P2 0.0471
P3 0.0221
P4 0.0064

Table 4: The best and worst values for each performance metric given in the quality
statement

Name of
quality statement

Probability of
detection

Time between
observations (s)

Track
accuracy (m)

Worst Best Worst Best Worst Best
Q1 0.1 0.5 45 30 3000 1000
Q2 0.1 0.7 45 10 3000 200
Q3 0.1 0.8 45 6 3000 100
Q4 0.1 0.9 45 3 3000 50

Figure 19: The quality statements of the ASRs depicted by text within the 2D zones.

5.2 Results

The results of the numerical experiments are presented for the small, medium, and
large problems. Moreover, the impact of assumption violations is discussed. The
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experiments were run on a laptop with an Intel Core i5-6300U 2.40GHz CPU and
8GB RAM.

5.2.1 Small problems

The QUB algorithm was applied to the small problems. Figure 20 shows the alternatives
that the algorithm returned. These alternatives were confirmed optimal by computing
the ASQV of all 100 alternatives in each small problem. Computing the ASQV of all
alternatives took 4 hours. The QUB algorithm terminated on average in 12 computed
ASQVs and 44 minutes. The number of computed ASQVs includes the two initial
radar and wind farm combinations at Step 3 of Algorithm 2.
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(a) Small problem number 1 (b) Small problem number 2.

(c) Small problem number 3. (d) Small problem number 4.

(e) Small problem number 5.

Figure 20: The optimal radar and wind farm placements in the five small problems.
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5.2.2 Medium problems

Computing the ASQV of all alternatives in any of the medium problems would take
approximately one year. In contrast, the QUB algorithm returned an alternative in 17
hours by computing 20 ASQVs in medium problem 1. Of the 17 hours, 15 were spent
computing QUBs.

The extended QUB algorithm terminated faster than the QUB algorithm. On
average, it halted in the medium problems in 1 hour 33 minutes and 16 computed
ASQVs. It used the refinement phase with the local optimization algorithm, since the
number of alternatives was larger than 105.

The medium problems were also solved using the refinement phase for fewer than
105 alternatives. The termination took on average 2 hours 36 minutes with 17 computed
ASQVs. The termination was slower than with the local optimization algorithm, since
the QUB of every alternative was computed, which took approximately 1 hour.

The alternatives obtained with the different refinement phases were similar. Both
refinement phases found the same alternative in medium problems 1, 2, and 3. Figure
21 shows these alternatives. However, in medium problems 4 and 5, the returned
alternatives differed in the wind farm placements. In problem 4, the ASQVs differed
by 2 × 10−3, in favor of the refinement phase for fewer alternatives. Figure 22
shows the differing alternatives in medium problem 4. Conversely, in problem 5, a
2 × 10−4 higher ASQV was obtained with the local optimization refinement phase.
Figure 23 illustrates the differences between alternatives in medium problem 5. The
differences in the returned alternatives can be explained by the assumption violations,
the randomness of RRHC, and that the refinement phases used were different. The
algorithm returning similar alternatives with both refinement phases suggests that, with
over 105 alternatives, the refinement phase yields near-optimal results despite lacking
optimality guarantees. Since both refinement phases returned similar alternatives,
but the refinement phase for problems with more than 105 alternatives completed one
hour faster, the 105 threshold was selected for the extended QUB algorithm.
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(a) Medium problem number 1 (b) Medium problem number 2.

(c) Medium problem number 3.

Figure 21: The alternatives that the algorithms returned in medium problems 1, 2,
and 3.
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(a) The refinement phase for less than 105

alternatives.
(b) The refinement phase for more than 105

alternatives.

Figure 22: The alternatives that the extended QUB algorithm returned with the
different refinement phases in medium problem 4.

(a) The refinement phase for less than 105

alternatives.
(b) The refinement phase for more than 105

alternatives.

Figure 23: The alternatives that the extended QUB algorithm returned with the
different refinement phases in medium problem 5.

5.2.3 Large problem

The extended QUB algorithm was applied to the large problem. It used the refinement
phase for more than 105 alternatives and terminated in 25 hours by computing the
ASQV of 90 alternatives. This result shows that the extended QUB algorithm is
suitable for larger problems. Figure 24 shows the returned alternative.
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Figure 24: The alternative returned by the extended QUB algorithm in the large
problem.

5.2.4 Impact of assumption violations

In the numerical experiments, assumptions of Section 3.1 were violated. Two causes
for the violations were identified. First, the radar coverages determined with the
internal method of the algorithms were too small, occasionally causing the radars to
detect targets outside their coverages. As seen in Section 3.5, too small radar coverages
violate Assumption 2. Second, the computation of the track metric is stochastic,
which violates the assumption that the computation of the performance metrics is
deterministic.

As described in Sections 3.5 and 4.5, assumption violations can cause the QUB and
extended QUB algorithms to terminate before identifying the optimal alternative. This
early termination occurs because the QUB of the optimal alternative may fall below
its ASQV. Knowing how much lower the optimal alternative’s QUB is compared to its
ASQV allows assessing how close a returned alternative is to the true optimum. For
example, suppose the QUB algorithm returns an alternative with an ASQV of 0.9, and
the optimal alternative’s QUB is known to be 10−4 below its ASQV. Then, the optimal
alternative’s ASQV cannot be greater than 0.9001. Otherwise, the loop at step 7 of
Algorithm 2 would not have terminated, because the QUB of the optimal alternative
would have been higher than the maximum computed ASQV (= 0.9). This implies
that the returned solution is within 10−4 of the optimal ASQV. Therefore, the impact
of assumption violations on the numerical experiments is evaluated by estimating how

51



much the optimal alternative’s QUB is smaller than its ASQV.
Determining exactly how much the optimal alternative’s QUB falls below its ASQV

requires identifying the optimal alternative, which involves computing the ASQV for
all alternatives. Computing the ASQV for all alternatives is time-consuming for the
medium and large problems. Instead of computing the ASQV of all alternatives, the
difference between the optimal alternative’s QUB and its ASQV is estimated.

The amount by which the optimal alternative’s QUB falls below its ASQV is
estimated based on how much other alternatives’ QUBs fall below their ASQVs. This
estimate is justified because the causes of the assumption violations reduce the QUBs
of all alternatives by a similar amount. For instance, if a radar’s coverage is too
small, as in Figure 25, the resulting QUB reduction is of similar magnitude across
all alternatives that include a radar at that site. Likewise, stochasticity in the track
performance metric lowers QUBs by similar amounts across the alternatives.

Figure 25: The coverage of a radar depicted in shaded blue, and a region where the
radar can detect targets outside its coverage depicted in red.

The amount by which QUBs of alternatives fall below their ASQVs was computed
for each algorithm run in the numerical experiments. In each algorithm run, the
algorithm computed the ASQVs for a set of alternatives. After each run, the QUB
was computed for the same alternatives whose ASQV had been computed during the
run. In all runs, the maximum difference by which an alternative’s QUB fell below its
computed ASQV was no greater than 3 × 10−3, with the median and mean differences
around 10−4 in each case. Therefore, it is estimated that the magnitude by which
the optimal alternatives’ QUBs may have fallen below their ASQVs in the numerical
experiments is 3 × 10−3.

Under the assumptions, the extended QUB algorithm with the refinement phase for
less than 105 alternatives finds the optimal alternative. Therefore, it is estimated that
the extended QUB algorithm provided alternatives in the medium problems within
3 × 10−3 of the true optimum. However, this is an estimate and not a guarantee.
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6 Discussions

This thesis developed two algorithms: the QUB algorithm and the extended QUB
algorithm. Both algorithms are designed to optimize the placement of radars and wind
farms to maximize air surveillance quality. Air surveillance quality refers to how well
the radars meet air surveillance objectives and is quantified using the ASQV.

The ASQV is computed via simulation using a computational tool. The computa-
tional tool outputs geographically dependent values of performance metrics, which are
used for determining the ASQV. Simulating all the values of the performance metrics
is computationally intensive. As a result, computing the ASQV for a single alternative
takes minutes. When there are many alternatives, identifying the optimal one by
evaluating the ASQV of every single one would be prohibitively time-consuming. The
QUB algorithms aim to solve this problem.

The QUB algorithms find optimal alternatives faster than an exhaustive search by
computing alternative-specific upper bounds for the ASQV. These upper bounds are
faster to evaluate than the ASQV. The idea of the algorithms is to iteratively identify
alternatives with a high upper bound and determine their ASQV. Once no alternative
has an upper bound that exceeds the ASQV of an alternative, the alternative is returned.
The QUB algorithm was developed to present this core idea in a simple form. The
extended QUB algorithm builds on it by using more efficient search strategies.

The upper bounds are determined using data obtained from computing ASQVs and
assumptions based on that radars improve air surveillance, wind farms degrade radar
performance, and these effects are geographically constrained. The geographically
constrained regions in which radars are assumed to enhance surveillance are referred
to as radar coverages. Similarly, the regions in which wind farms are assumed to
degrade radar performance are referred to as adverse effect regions. The algorithms
internally determine the coverage area for each feasible radar-site pair and the adverse
effect region for each radar and wind farm pair. If the assumptions hold, the algorithms
return optimal alternatives.

The algorithms were tested through numerical experiments. The goal of these
experiments was to demonstrate that the QUB algorithms can identify high-quality
alternatives more rapidly than computing the ASQV of every alternative. Next, a
summary of the numerical experiments is given. Then, based on the results of the
numerical experiments and rest of the thesis, the practical use of the algorithms is
discussed. Finally, ideas for future research are offered.

6.1 Summary of the numerical experiments

The numerical experiments demonstrated that the QUB algorithms terminate orders
of magnitude faster than computing the ASQV of all alternatives. Additionally, the
experiments demonstrated that the algorithms return near-optimal solutions despite
violations of the algorithms’ assumptions. The algorithms would have returned optimal
alternatives if the assumptions were not violated. Moreover, the numerical experiments
provided benchmark data on the algorithms’ runtimes. The extended QUB algorithm
terminated in 25 hours, computing the ASQV of 90 alternatives, when applied to the
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large problem with 1015 alternatives in Section 5.2.3. When the problems were smaller,
the extended QUB algorithm required fewer ASQV evaluations. For example, in
problems with 105 alternatives (Section 5.2.2), it evaluated 16 alternatives on average
and solved the problems in 1 hour 33 minutes on average. Small problems with 100
alternatives took on average 44 minutes in Section 5.2.1 with the QUB algorithm,
evaluating on average 12 ASQVs.

6.2 On the use of the algorithms

The extended QUB algorithm is recommended for practical use for problems of all
sizes due to its faster runtime compared to the QUB algorithm. It reliably finds
near-optimal solutions to problems. This claim was justified theoretically in Section
4.4 and empirically through the numerical experiments in Section 5.

The quality of both QUB algorithms’ outputs depends on how well the compu-
tational tool satisfies the assumptions outlined in Section 3.1. These assumptions
include that adding a radar either improves or maintains the values of the performance
metrics, while adding a wind farm does not lead to any improvement. The algorithms
also assume that the computation of performance metrics is deterministic, meaning
that identical inputs produce identical outputs. Furthermore, the algorithms assume
that adding or removing a radar only affects performance metric values within its
coverage, determined with the internal method of the algorithms. If the internal method
identifies the coverage incorrectly, performance metric values can change outside the
coverage, violating the assumption. Similarly to the coverages, the algorithms assume
that changes to wind farms impact performance metrics only within the adverse effect
regions. The adverse effect regions are determined with the internal method of the
algorithms, and if the values of the performance metrics change outside these regions,
the assumption is violated.

If the computational tool satisfies the underlying assumptions of the algorithms,
the extended QUB algorithm returns an optimal alternative when the number of
alternatives is below 105. This threshold was chosen based on empirical evidence that,
beyond 105 alternatives, the computational cost of verifying optimality outweighs the
potential gains in solution quality. The numerical experiments showed that verifying
the optimality resulted in a 2 hours 36 minutes runtime in problems of size 105. By
instead verifying that the returned alternative cannot be improved by moving a single
radar or wind farm, the runtime was 1 hour 33 minutes, with the same quality of
the outputs. Therefore, when the number of alternatives exceeds this threshold, the
extended algorithm instead returns an alternative whose ASQV cannot be improved
by moving a single radar or wind farm, which can be the optimal alternative, but is not
guaranteed to be. The QUB algorithm returns the optimal alternative for any number
of alternatives under the same assumptions, but requires more time to terminate.

If the computational tool violates the algorithms’ assumptions, the returned
alternative may not be optimal. Generally, the more closely the tool adheres to these
assumptions, the better the output quality.

The spatial overlap between radar coverage areas and adverse effect regions affects
the runtime of the QUB algorithms: less overlap results in faster termination. In this
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thesis, both radar coverages and adverse effect regions are determined as 2D areas
by the algorithms. Since radars can detect targets further away at higher altitudes,
these regions expand as the maximum altitude of the ASRs increases. Greater region
size leads to more overlap, which in turn slows down the algorithm. All numerical
experiments were conducted with a maximum altitude of 3000m. Thus, if higher
altitudes are considered, the algorithms’ runtimes could be longer than reported in the
numerical experiments.

6.3 Future research

As discussed in Section 3.5, the assumptions outlined in Section 3.1 were violated
in the numerical experiments by insufficient radar coverages, meaning that adding
and removing radars changed values of performance metrics outside their coverages
determined with the algorithms’ internal method. Additionally, the track metric was
stochastic. Future work could address these issues by modifying the internal method to
produce sufficient radar coverages. This could be done by using the same line of sight
method used in this thesis, but enlarging the regions by adding a little buffer. Another
option would be to compute radar-specific probabilities of detections with respect to
the targets of the ASRs and determine the coverages from the locations where the
probability of detection is greater than zero. Moreover, the algorithms’ performance
could be improved by minimizing the variance in track metric computations.

When computing the ASQV for a single alternative takes several minutes, op-
timizing over many alternatives becomes inevitably time-consuming. Future work
could reduce computation time by using radar performance models with lower com-
putational cost. In particular, combining the simplified models with standard integer
programming techniques (see, e.g., Wolsey, 2020) would allow fast optimization with
a large number of alternatives. For example, this approach could be used to pre-screen
promising alternatives before applying more accurate but slower models. By doing so,
the total computational burden of optimization is reduced.

The algorithms could be enhanced to terminate faster in higher altitude scenarios,
where radar coverages and adverse effect regions expand and overlap more compared
to lower altitude cases. As these regions grow, more ASQV computations are required,
resulting in longer runtimes. One approach to reducing the increased computational
cost is to modify the algorithms’ internal method to produce radar coverages and
adverse effect regions in 3D rather than 2D, causing less overlap. As part of this
approach, the algorithm could use a 3D location-specific value as a base for the upper
bound computations, instead of 2D fulfillment values of ASRs.

This thesis considered the placement of ground-based and monostatic radars.
Future work could explore optimizing the placement of other radar types, such as
passive radars (see Kuschel et al., 2019). Assumptions similar to those in Section 3.1
could be applied to different radar types, enabling the use of algorithms comparable to
those developed in this thesis.

The developed algorithms jointly optimize the placement of radars and wind farms.
These algorithms are also suitable for optimizing the placement of radars when the
locations of the wind farms are fixed. Additionally, they can be used to optimize the
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placement of wind farms when the radar locations are fixed.
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7 Conclusions

Wind farms are being constructed in increasing numbers. However, they have adverse
effects on air surveillance radars. This thesis studied the optimization of radar and
wind farm placement to minimize these effects.

The thesis’s goal was to present methods for optimally placing radars and wind
farms to maximize air surveillance quality, quantified using accurate but time-
consuming simulations. The thesis focused on placement problems where the number
of alternatives was 102 to 1015. Finding the optimal alternative by simulating every
single one would take hours to 1010 years, depending on the number of alternatives in
the problem.

To speed up the search for the optimal alternative, this thesis introduced two
domain-specific algorithms: the QUB and extended QUB algorithms. The QUB
algorithm is a simple method intended to illustrate the main algorithmic idea, which
is to find the optimal alternative by computing upper bounds for the air surveillance
quality of alternatives. These upper bounds are computed using assumptions based
on the impact of radars and wind farms on air surveillance and previous simulation
results. The alternative with the maximum upper bound is iteratively identified and
evaluated with the expensive simulations. Once no upper bound exceeds the air
surveillance quality of an alternative, the optimal alternative is found and returned.
The extended algorithm builds on the same idea but uses more efficient search strategies
for identifying alternatives with high upper bounds.

The algorithms were analyzed theoretically and tested through numerical ex-
periments. The better the simulations adhere to the algorithms’ assumptions, the
better alternatives the algorithms output. If the simulations completely adhere to
the assumptions, the extended QUB algorithm returns optimal solutions in problems
with fewer alternatives than 105. In problems with more than 105 alternatives, it
outputs an alternative that cannot be improved by moving a single radar or wind farm,
which can be the optimal alternative, but is not guaranteed to be. The QUB algorithm
always returns the optimal alternative, but the QUB algorithm is slower than the
extended QUB algorithm, regardless of the number of alternatives. The experiments
demonstrated that the algorithms terminate within hours, when the simulation of every
alternative would take years. The algorithms returned near-optimal solutions despite
deviations from their assumptions. The extended QUB algorithm is recommended for
practical use as it is faster and returns equally good radar and wind farm placements
as the QUB algorithm.

This thesis fills a gap in the existing literature by presenting radar and wind farm
placement optimization algorithms for situations when there are many alternative ways
to place the radars and wind farms. The optimization relied on accurate but time-
consuming simulations, ensuring the reliability of the solutions. Furthermore, the thesis
serves as a case study of developing problem-specific surrogate-assisted optimization
algorithms. It presents a novel algorithmic idea for optimization with computationally
intensive simulation. The developed algorithms facilitate the coexistence of air
surveillance and wind farms while maximizing the effectiveness of ground-based
monostatic air surveillance radars.
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