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Abstract

Accurate forecasting of electricity prices is essential for participants in the Nordic
electricity market, enabling effective bidding strategies, better risk management, and
efficient resource allocation. Electricity prices are often forecasted using fundamental
models, which predict the supply from various electricity production technologies.
Given that hydropower accounts for a large share of electricity production in the Nordics,
modelling hydropower supply becomes a key element in forecasting electricity prices.

Hydropower supply is determined by the opportunity cost of production, commonly
referred to as the water value, which reflects the trade-oft between using stored water for
immediate electricity generation or saving it for future use. Water values are computed
by solving a large-scale stochastic dynamic optimization problem, accounting for
uncertainties in future inflows, electricity prices and other market conditions. Water
values vary between hydropower plants due to differences in reservoir capacities,
inflow patterns and technical constraints. The water values of all hydro plants within
a price area form the hydro supply curve that describes how much hydropower is
supplied at different price levels. While the literature on computing water values for
individual hydro plants is well developed, there is a lack of literature on how this
knowledge can be applied to forecast the hydro supply curve.

This thesis aims to address gaps in the literature by providing a framework to
forecast hydro supply curves over a short-term horizon up to six weeks. We present
a forecasting model based on linear programming and the theoretical foundations
from hydropower scheduling literature. Evaluating the model is challenging, as the
true supply curve is unknown. Therefore, the model is primarily evaluated based on
qualitative analysis of the predicted supply curves. The qualitative analysis indicates
that the model provides a promising framework to model the hydro supply curve using
price forecasts and hydro production as inputs. An attractive feature of the model is its
relative simplicity, which enhances its interpretability and facilitates its application in
real-world market scenarios.

Keywords Nordic electricity market, supply curve, hydropower, stochastic dynamic
programming, water value, electricity price forecasting
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Sammandrag

Exakta elpriserprognoser dr avgorande for aktorer pd den nordiska elmarknaden, di det
mojliggor effektiva budstrategier, béttre riskhantering och effektiv resursallokering.
Elpriser prognostiseras ofta med hjidlp av fundamentala modeller som forutsidger
tillgdngen pa el fran olika produktionsteknologier. Eftersom vattenkraft star for en stor
del av elproduktionen i Norden dr modellering av vattenkraftens tillgdng en viktig
komponent vid prognostisering av elpriser.

Vattenkraftens tillgdng bestims av produktionskostnadens alternativkostnad, ofta
bendmnt vattenvirde, vilket reflekterar avvigningen mellan att anvinda lagrat vatten
for omedelbar elproduktion, eller att spara det for framtida produktion. Vattenvirden
berdknas genom att 10sa ett storskaligt stokastiskt dynamiskt optimeringsproblem, som
tar hdnsyn till osékerheter i framtida infloden, elpriser och andra marknadsforhallanden.
Vattenvirdena varierar mellan vattenkraftverk pa grund av skillnader i reservoarers
lagringskapacitet, inflodesmonster och tekniska begriansningar. Vattenvirdena for alla
vattenkraftverk inom ett prisomrade bildar vattenkraftens utbudskurva, som beskriver
hur mycket vattenkraft som produceras vid olika prisniver. Aven om litteraturen om
vattenvirden for individuella kraftverk ar vial utvecklad, saknas det litteratur om hur
denna kunskap kan tillampas for att prognostisera vattenkraftens utbudskurva.

Denna avhandling syftar till att fylla de luckor som finns i den befintliga litteraturen
genom att erbjuda ett ramverk for att prognostisera vattenkraftens utbudskurva dver en
kortsiktig tidsperiod pa upp till sex veckor. Vi presenterar en prognosmodell baserad
pa linjdr programmering som bygger pd de teoretiska grunderna fran litteraturen
om planering av vattenkraft. Att utvirdera modellen dr utmanande, eftersom den
verkliga utbudskurvan &r okédnd, och darfor utvidrderas modellen framst baserat pa
en kvalitativ analys av de forutspadda utbudskurvorna. Den kvalitativa analysen
indikerar att modellen erbjuder ett lovande ramverk for att modellera vattenkraftens
utbudskurva baserat pé prisprognoser och vattenkraftsproduktion. En attraktiv egenskap
hos modellen ér dess relativa enkelhet som forbéttrar tolkbarheten och underlittar
tillimpningar i verkliga marknadsscenarier.

Nyckelord Nordiska elmarknaden, utbudskurva, vattenkraft, stokastisk dynamisk
optimering, vattenvirde, elprisprognoser
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1 Introduction

1.1 Background

Electricity is essential for modern society, industry, and consumers, driving economic
growth, technological innovation, and daily convenience. Accurate electricity price
forecasting is crucial for the efficient operation of energy markets, the stability of
power grids, and the operations of electricity producers and consumers. Electricity
producers seek to maximize profits by generating electricity when prices are high,
while consumers and retail companies aim to purchase electricity when prices are low.
It is not possible to store electricity in large quantities and therefore supply and demand
must be continuously balanced. This special property of electricity distinguishes
electricity markets from other commodity markets and increases the volatility of
electricity prices. This makes electricity price forecasting a very challenging task.

There are several approaches to forecasting the day-ahead electricity price. Statis-
tical models use past prices as well as external information, such as temperature and
wind, to forecast the price. An example of a statistical model approach is time-series
analysis. Computational intelligence models, such as artificial intelligence have also
been used to forecast electricity prices. A third approach, which will be the focus
of this thesis, is to use fundamental models. In fundamental models the supply of
different generating technologies as well as demand are explicitly estimated. The
price can then be predicted as the intersection point between the estimated supply
and demand. Using fundamental market models to forecast electricity prices has a
number of advantages. It provides an understanding of the underlying drivers of the
price formation process. This helps in interpreting the model and understanding price
movements. Fundamental models also allow studying different price scenarios based
on different assumptions, which is vital for e.g. risk management and investment
decisions.

This thesis focuses on the Nordic day-ahead electricity market, where electricity
is traded the day before delivery and price is determined by supply and demand.
Being one of the first deregulated electricity markets in the world, the Nordic market
has been the subject of many studies on electricity price forecasting. Most of the
electricity traded in the Nordic electricity market is sold in the day-ahead market. The
day-ahead market is a blind auction, where market participants submit bids to sell or
buy electricity at given price levels. The price of electricity is found at the equilibrium
point between supply and demand. The structure of the day-ahead market is explained
in more detail in section 2.2. As the day-ahead market is the most liquid, the price on
the day-ahead market is usually taken as a reference price for traded electricity. The
day-ahead price is therefore often the most important price for market participants.

To forecast prices using a fundamental model, the supply of different production
technologies must be forecasted. A significant share of electricity production in the
Nordic countries is produced by hydropower, which generates over 50% of the region’s
electricity. Because of the dominant position of hydropower, it is vital to understand
the supply of hydropower to accurately forecast the electricity price. Hydropower is a
flexible way to produce electricity, since water can be stored in reservoirs upstream



from the power plant and used for production at a later time. The geographical features
of the watercourse affect the possibilities to store water in reservoirs. In Norway,
many reservoirs are capable of storing water for time periods up to multiple years.
Hydro production can be adjusted quickly by increasing or decreasing the flow of
water through the turbines. This flexibility provides hydro producers with possibilities
to maximize revenue by optimally allocating their production to times with higher
prices.

There is an opportunity cost associated with production of hydropower, as water
used for immediate production cannot be used for future production. This opportunity
cost will be referred to as the water value. The water value determines at what price
a hydro producer is willing to use water for production of electricity. Water values
are unique to every hydropower plant as they depend on the storage capacity of the
reservoir connected to the plant as well as the filling level of the reservoir. Furthermore,
the water value will depend on the hydro producer’s expectation about future prices and
therefore the water value is directly affected by all factors influencing the electricity
price. When water values from multiple hydro plants are aggregated, a hydro supply
curve is formed, describing how much hydropower is available for production at a
given price. The hydro supply curve is increasing as more supply becomes available
as the price increases. Predicting the hydro supply curve is challenging as numerous
factors, such as weather, fuel prices, availability of transmission lines and maintenance
influence the decisions of hydro producers. Understanding how these factors affect
the supply curves is vital to understanding the market dynamics in areas with a large
share of hydropower production.

1.2 Research objectives

This thesis has the following objectives:

1. Analyse the dynamics of water values in the Nordic electricity market and their
impact on the hydro supply curve.

2. Propose a model to forecast short-term changes in the hydro supply curve based
on information available to electricity market participants.

To analyse the main drivers of the hydro supply curves in the Nordic electricity
market, the problem of optimal allocation of hydro resources will first be studied. The
dynamics of the supply curve will be explained based on the scheduling problem.
Based on the analysis, we aim to develop a modelling framework, which can be used as
areliable indicator of upcoming changes in the hydro supply curve. Due to the extreme
difficulty in predicting the hydro supply curve, a model can be deemed satisfactory if it
can correctly predict the direction of changes in the supply curve, without necessarily
being able to predict the magnitude of the change. To analyse the hydro supply curves,
historical data of hydro production, market prices and traded electricity volumes will
be used.
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2 The Nordic electricity market

This section explains the basics of electricity trading in the Nordic region. The history
of the Nordic electricity market is briefly explained followed by the structure of the
different sub-markets. In this thesis, the Nordic electricity market will refer to the
interconnected markets in Norway, Sweden, Denmark and Finland.

Deregulation of the Nordic electricity market began with the Norwegian govern-
ment’s approval of the Energy Actin 1990, leading to the deregulation of the electricity
market starting on January 1, 1991. Over the following years, the market expanded
to include Sweden in 1996, Finland in 1998, and Denmark in 2000 [1]. The Nordic
electricity market was the first deregulated international power market in the world.
In a deregulated electricity market, power companies are not obligated to satisfy the
demand of electricity in an area of responsibility. Instead, electricity is generated
based on maximizing profit by trading electricity in the market [2]. Motivation for
the electricity market reform was to improve resource utilisation and cost efficiency.
A well functioning market would give better investment signals through Short-Run
Marginal Costs (SRMC), increase equity between consumers and reduce geographical
variations in prices [3].

The backbone of the electricity system is the transmission grid, enabling electric
power to be transmitted from the producer to the consumer. Transmitting electricity
over large distances is challenging as some of the electric power is lost as heat in the
transmission cables. To minimize losses, high-voltage transmission lines are used to
transfer electricity between local grids, which in turn use lower voltages. The national
high voltage grids are owned by the Transmission System Operator (TSO) while
regional and local grids are owned and operated by numerous smaller companies.
The Nordic electricity market is divided into multiple price areas, as seen in figure 1.
Norway is divided into five price areas, Denmark into two and Sweden into four with
Finland consisting of only one price area.

In this thesis, we describe the Net Transfer Capacity (NTC) methodology for
calculating the electricity transmission between areas. Flow-based market coupling,
which was introduced in the Nordic area starting from October 30th 2024, is outside the
scope of this thesis. The NTC transmission capacities in figure 1 represent the transfer
capacity under ideal circumstances, i.e. assuming no maintenance or other exceptional
situation affecting the grid capacity. The Available Transmission Capacity (ATC)
for a given day is reported daily by the TSO and is used as the maximum quantity
of electricity which can be traded on the given transmission line. The division into
price areas is made based on bottlenecks in the transmission system, with transmission
lines most likely to become bottlenecks forming the borders between price areas. To
enhance market liquidity it is better to have fewer price areas [4]. Price areas have
changed in the past. The current division of Norway into 5 price areas has been used
since 2010. Sweden has been divided into the same price areas since 2011. Denmark
has always been divided into the same two areas, while Finland has always been one
price area [5].

The Nordic electricity market is a decentralized market, where the balancing of
supply and demand ahead of delivery is not done by a system operator but rather
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handled by market mechanisms. The balancing of the grid during delivery is still done
by a system operator, which in the Nordic countries is the TSO of the specific country.
In a decentralized market, the price acts as a signal to market participants, ensuring
balance between supply and demand ahead of delivery [4]. To ensure balance between
electricity supply and demand in real time, electricity is traded in different markets
based on the time between transaction and delivery of electricity, which ranges from
years in the financial markets to seconds in the balance market. The timeline of the
different markets are seen in Figure 2. Physical electricity can be traded earliest one
day before delivery in the day-ahead market. After clearing of the day-ahead market,
electricity can be traded in the intraday market up until the delivery hour, in which
electricity is traded in the balancing market. The most liquid physical market is the
day-ahead market, with 696 TWh of electricity being traded in the day-ahead market
in the Nordic countries in 2023. This corresponds to 86% of all electricity produced
and consumed. The high share of electricity traded in the day-ahead market makes
the day-ahead price the most important reference price for physical electricity in the
Nordic region. In comparison, the volumes traded in the intraday and balance markets
were 21 TWh and 9 TWh [6]. The structure of the different markets are outlined in
the following sections.

Figure 1: The price areas and the NTC on borders in the Nordic and Baltic countries
as of January 1st 2024 reported by Nord Pool [5]. In addition to these connections, the
1400 MW Viking Link cable connects Denmark to Great Britain.

12
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Figure 2: Timeline of Nordic electricity markets [7].

2.1 Financial market

The financial market for Nordic electricity is operated by Nasdaq. In the financial
electricity market, futures and forward contracts are traded with maturities up to 10
years ahead. However, contracts with an expiry date more than 2-3 years into the
future are generally not liquid. Contracts in the financial market are settled against
the average price in the day-ahead market during the delivery period specified in
the contract. The delivery periods can be a day, week, month, quarter or year. The
most liquid futures products are the system products which settle against the system
price over a given time period. The system price is a reference price for the whole
Nordic region which is explained in section 2.2. Electricity Price Area Difference
contracts (EPAD) are settled against the difference between the regional price and the
system price. Contracts in the financial market are settled in cash against the average
day-ahead price in the given period and do not include physical delivery of electricity.

Most participants in the financial markets are generation companies, electricity
retailers and industrial companies, who aim to hedge their exposure to changing
electricity prices. Electricity producers and consumers may also agree on bilateral
future contracts, which have similar properties as the standardized contracts traded on
Nasdaq. The difference is that the parties can agree on different collateral agreements,
as the amount of collateral required for the market is significant.

Even if the financial market will not be the focus of this thesis, the prices in the
financial market are relevant for hydropower production, as they represent the expected
day-ahead price in the given delivery periods. Since the pricing of hydropower is
also based on future price expectations, the financial market can be used to model the
pricing of hydropower [8].
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2.2 Day-ahead market

The focus of this thesis is the day-ahead market, which has the largest turnover volumes
in the Nordic market. Since a large share of electricity is traded in the day-ahead
market, the day-ahead price acts as a reference price for all power traded. It is the direct
reference price in the financial markets and bilateral contracts are priced according
to the expected day-ahead price. The day-ahead market in the Nordic countries is
primarily operated by Nord Pool, with Epex Spot launching their platform for day-ahead
trading in 2020.

The day-ahead market is organised as a daily blind auction, where market par-
ticipants submit bids for electricity to be bought and sold each hour during the next
day. Bids must be submitted before 12:00 Central European Time (CET) on the day
before the delivery and the resulting market prices are usually available at 12:45 CET.
The bids are in the form of price-quantity pairs for each hour. The price-quantity
pairs describe how much electricity a producer is willing to sell at the given price, or
how much electricity a consumer is willing to buy at the given price. The minimum
price which can be bid is -500 €/MWh and the maximum price is 4000 €/MWh. All
market participants bid their production or consumption in the price area where it is
located, no special bids for cross border trading need to be submitted. The bids of each
market participant represents the aggregation of all assets in the market participants
portfolio. Thus, if a market participant has both production and consumption, they
will only bid according to their net positions, no bids are sent for individual production
or consumption units. Bids may also be given as block bids, in which a producer
commits to producing a given quantity of electricity over multiple hours given that the
average price in these hours is above a certain threshold price. The quantity of block
bids submitted is typically much lower compared to the quantity of hourly bids.

Bids from all market participants within a price area are aggregated into a supply
and a demand curve for the given price area. An example of aggregated supply and
demand curves is given in Figure 3. To obtain the price for each area, the imported
volume is added to the supply curve and the exported volume is added to the demand
curve. The price is the intersection point of the supply and demand curves after the
traded volumes are added. The day-ahead market employs marginal pricing, where all
accepted bids are paid the market clearing price.

The imports and exports between areas are computed using the EUPHEMIA [9]
algorithm, with the objective of maximizing social welfare given the constrained
transmission capacities between areas. Social welfare is defined as the sum of consumer
surplus, producer surplus and congestion rent. Consumer surplus is the difference
between the price bid by consumers and the actual price they are paying. Similarly
producer surplus is the difference in price received by the producer and the price
they bid. Congestion rent is the product of the price difference between neighboring
regions and the amount of electricity flowing on the transmission lines between the
regions. Bids from all day-ahead exchanges across most European countries are given
as input to the EUPHEMIA algorithm and the output is flows between areas and
the area prices. If the transmission capacity is sufficient between two areas, the two
market areas will be coupled and the price in both areas will be the same. In case the
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transmission capacity is insufficient, the areas will decouple with the price often being
higher in the area with generation deficit. Transmission capacities available for the
day-ahead market can change day-on-day based on maintenance works and forecasted
production and consumption patterns.

Understanding the supply and demand curves is one of the most important
factors when forecasting day-ahead prices using a fundamental market modelling
approach. The target in the fundamental approach is to replicate the price formation
by constructing supply curves for all production technologies as well as corresponding
demand curves. The aggregated supply curve can then be constructed by combining
the supply curves from all production technologies. The forecasted price is obtained
by running a similar welfare optimization algorithm as EUPHEMIA and the predicted
price is again found in the intersection of the forecasted supply and demand curves.
This thesis focuses on one component of the aggregated supply curve, namely the
aggregated supply curve of hydropower on a price area level.

In addition to the area prices, a so called system price is calculated for each hour
in the day-ahead market. The system price is calculated by aggregating the supply
and demand curves from all price areas in the Nordic region into a Nordic supply and
demand curve, with exports and imports to areas outside the Nordic region added. The
system price can be thought of as a Nordic price if no internal bottlenecks were present
in the electricity grid. It acts as a reference price for electricity in the Nordic region. It
is a theoretical price and no physical electricity is traded at the system price, unless
a price area happens to have the same price as the system price. It is an important
reference as many contracts in the financial market are settled according to the system
price.

140 m— SUpply curve with import
= Demand curve with export

== = Supply curve without import
== = Demand curve without export

= = Price
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100

Price (€/MWh)

20

0
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Figure 3: The supply and demand curves in Finland on the first hour of July 25th
2024. The dotted lines represent the supply curve obtained from hourly bids without
accounting for export and import. The exported and imported volumes are added to
the solid lines and price is formed at the intersection point of these curves.
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2.3 Intraday market

After the clearing of the day-ahead market, power for the next day can still be traded in
the intraday market. Trading in the intraday market is possible from the time the prices
in the day-ahead market are published up until the gate closure time, which depending
on the price area varies between 1 hour before start of delivery and the start of delivery
[10]. The bids in the intraday market are hourly bids and block bids, which work
similarly as in the day-ahead market. In contrast to the day-ahead market, the intraday
market is cleared continuously. The bidding in the intraday market is similar to the
financial market where the order book is updated in real time with bid-ask orders. The
purpose of the intraday market is to balance the supply and demand closer to the time
of delivery as producers and consumers gets more information about their available
production capacity and electricity demand. Producers of renewable electricity from
wind and solar usually cannot forecast their production perfectly one day before the
delivery hour and they can update their production commitments in the intraday market.
Because of the smaller traded volumes, the price volatility in the intraday market is
higher than in the day-ahead market. Market participants are therefore incentivized to
aim for an accurate production schedule from the day-ahead market to avoid having to
balance their positions in the intraday market, which exposes the market participant
to greater price risks. The higher volatility also provides opportunities for producers
who can adjust their production closer to delivery. Producers of e.g. hydropower can
sell more electricity in the intraday market if the price is higher than the price in the
day-ahead market and buy back some of their already sold electricity if the price is
lower in the intraday market.

2.4 Balancing market

The balancing and reserve markets in the Nordic countries are operated by the TSOs.
Although supply and demand is balanced in the day-ahead and intraday markets, they
do not guarantee operational security of the grid in real time. To ensure operational
safety, the power system must be able to handle any single fault without resulting in
load curtailment [7]. Sudden changes in electricity production or consumption can
appear within the delivery hour because of e.g. plant outages or sudden changes in
output from renewable energy sources. These deviations must be balanced to retain
balance in the electricity grid. The balancing is done by the TSO buying or selling
power in the balancing market. If there is a shortage of electricity, leading to a drop in
the grid frequency, the TSO buys electricity from market participants. The market
participant selling electricity can either be a producer increasing their production
or a consumer decreasing their consumption. Conversely, if there is oversupply of
electricity and the grid frequency is too high, the TSO can sell electricity to market
participants. In this case a producer will decrease their production and a consumer
will increase their consumption.

Some of the reserve capacity is procured by the TSO in capacity auctions, where
producers and consumers promise the availability of regulation capacity to the TSO.
Once a bid is accepted, the producer must make sure that they have production capacity
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available in case of up regulation and that they have sufficient level of production in
case of down regulation. Most reserve markets in the Nordic countries use marginal
pricing, meaning that producers are paid according to the highest and lowest bids in
hours of up and down regulation, respectively. The reserve and balancing markets
consist of several different products, defined by the speed at which the production,
or consumption, must be adjusted. Furthermore, some reserve market products also
require automatic activation. Because of the automation and fast response time
required, hydropower is one of the best suited production technologies to participate
in the balancing markets.

The reserve markets impact the prices in the day-ahead market by providing
opportunity costs. An electricity producer can bid their production in the day-ahead
market at a higher price, which can be justified by the price expectation in the reserve
market. Capacity can also be sold in the capacity market before the gate closure in the
day-ahead market. If a producer has already sold capacity, they cannot sell the same
electricity as energy in the day-ahead market as this would remove the possibility
to increase production on the request of the TSO. Since hydropower is the main
technology used for balancing the grid in the Nordic countries, it is important to
understand that the balancing market can affect the day-ahead bidding of hydropower.
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3 Introduction to hydropower in the Nordic countries

Section 2 described how the day-ahead price depends on the supply and demand of
electricity. Furthermore, the supply depends on the production technology. In this
section, we focus on the different electricity production technologies in the Nordic
countries and their impacts on the supply dynamics in the electricity market. We
look into the role of hydropower in the market, with particular focus on the bidding
behaviour of hydropower, which results in the hydro supply curve.

3.1 Electricity production

The main sources of electricity in the Nordics are hydro, nuclear, wind, solar and
combined heat and power (CHP) (see Figure 4). We have made a distinction between
two types of hydro production, run-of-river and reservoir. In addition there is also
pumped hydro, where water can be pumped from the lower reservoir to the upper
reservoir when electricity is cheap, and released through the turbine when electricity
is expensive [11]. The share of pumped hydro is small, less than 2 TWh [12] per year,
and therefore it has been included in the reservoir category. Dividing hydro production
into these two categories gives better insights into the flexibility of hydro production
in different price areas.

Most of electricity in the Nordics is generated by hydropower, as seen from Figure
4. The share of hydropower generation is especially large in all Norwegian price areas
and price areas SE1 and SE2. The two Danish price areas, DK1 and DK2, as well
as price area SE4 stand out as the only price areas with negligible hydro production
volumes. In Norway, hydro production is the dominant production technology in all
price areas. Most production is located in price areas NO2, NO4 and NOS. It can be
observed that NO1, NO2 and NO3 have significant shares of run-of-river production,
while almost all production in NO4 and NOS is from reservoirs. On the other hand, the
hydro production in Sweden is very much concentrated to the northern price areas SE1
and SE2. The share of hydro production in Finland is small compared to Norwegian
and Swedish areas, but the total hydro production volume is still significant. Compared
to other areas, Finnish hydro production is dominated by run-of-river, with almost no
reservoirs with large storage capacity. With such large hydro resources in the Nordics,
the supply of hydropower has a big impact on the day-ahead electricity price.

Many price areas are unbalanced when it comes to total production and consump-
tion, with some areas being either large exporters or importers. The two price areas
in northern Sweden, SE1 and SE2, have a large surplus of electricity from wind and
hydro while the consumption is lower. The Norwegian areas NO2 and NOS are also
large net exporters of electricity. The areas with the largest net deficit are NO1 and
SE4 located in the southern part of Norway and Sweden, respectively. These two
areas are more populated and therefore have larger consumption, while production is
limited. Electricity is thus often transferred from the northern parts of the Nordics
to the south. Furthermore, the Nordic countries have strong interconnections with
Central European countries, recall Figure 1. As the Nordic region as a whole often
has a surplus of electricity production, electricity is often exported to Central Europe.
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Figure 4: Electricity production by technology and consumption in each Nordic price
area in 2023 reported by Volue [12].

There are, however, situations when the flow of electricity goes towards the Nordics,
for example during times of high solar and wind production in Central Europe [13].
Also during cold winter days, the production capacity in the Nordics may not be
enough to cover demand and imports are needed. This is especially the case in dry
years when hydro production is limited.

The production system in Central Europe has a much larger share of fossil fuel-
based electricity production compared to the Nordic countries. Central European
prices are therefore often set by SRMC of thermal power plants. Due to the potential
need for imports of thermally generated electricity from Central Europe, SRMC of
thermal plants sets the opportunity cost for hydro producers in the Nordics [14]. In
addition to Central Europe, the Nordic market is connected to the Baltic region and
to the UK. Recently, many of the interconnectors between the Nordics and other
countries have been built and therefore there is limited data available to study how
they have influenced the prices in the Nordics.

The different production technologies can be divided into price dependent and
price independent production. Price dependent production has short-run marginal
costs and the production will depend on the market price. On the other hand, price
independent production is assumed to be bid at zero or negative prices.

Electricity generated by nuclear, solar and wind power can be assumed to be price
independent. Nuclear plants are often offered to the market at negative prices, since
it is more expensive for the plant operators to reduce the power output than to sell
the electricity at a negative price. Due to the long start-up times of nuclear power
plants, they are referred to as base load power, often producing at maximum capacity
independent of the current price. With the increasing share of renewable energy
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sources, the value of more flexibility of nuclear power plants have increased [15].
In particular, output from nuclear power plants is reduced during times of negative
prices. Electricity production from wind and solar power is also price independent, as
no fuels are used and running a wind turbine or solar plant comes with no extra cost
for the operator, except negligible wear and tear of the plant. The output of wind and
solar power is volatile as the wind speed and sunshine varies. Therefore, the volume
of wind and solar power bid to the market exhibits large fluctuations. Production from
run-of-river hydro plants can be assumed to be price independent as water can be
either used for production or spilled, but not stored in a reservoir. The generation
pattern of a run-of-river plant will depend on the inflow of water to the plant and not
on the market price.

Electricity generated by thermal power and hydro reservoirs can be assumed to
be price dependent. In this thesis, thermal plants refer to power plants fueled by oil,
gas, coal or some other fuel. The SRMC of thermal generation is determined by the
fuel prices, CO2 emissions allowance prices and plant efficiency. Most of the thermal
based electricity production in the Nordics comes from CHP. Since CHP plants also
produce heat, the decision to start up a CHP plant is dependent on the need for heating,
which in turn depends on outdoor temperature. This makes it difficult to predict the
price at which CHP is bid to the day-ahead market, as production planning is not done
only based on price, but also based on heat load.

Pricing of reservoir hydro production is more difficult as water is a free but limited
resource. Since water can be stored in the reservoir, production can be delayed to a
future time with higher prices. We will see that the production volumes from hydro
reservoir plants is strongly dependent on price and mostly independent of inflow to
the plant.

3.2 Hydropower production

Hydropower relies on the potential energy of water at higher altitude being converted
into electrical energy. A schematic picture of a hydropower plant is presented in Figure
5. The height difference between the upper and lower reservoir is called the plant head.
As the potential energy of water is linearly dependent on the height difference, a hydro
plant with larger head can produce more electricity from the same amount of water
compared to a plant with lower head. The efficiency of the conversion from potential
energy to kinetic energy depends on the design of the turbine and how the tailwater is
transported away from the turbine. Hydro plants often have multiple turbines, which
may have different characteristics, such as different efficiency curves.
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(1) Reservoir  (6) Tailrace water (11) Transformer

(2) Penstock (7) Turbine (12) Insulators

(3) Bed rock (8) Generator (13) Transmission tower
(4) Valve (9) Power house (14) Trash rack

(5) Draft tube (10) Transmission lines

Figure 5: Schematic picture of a hydropower plant [16].

Hydropower is often split into three categories, run-of-river, reservoir and pumped
hydro. In this thesis we do not explore pumped hydro in more detail and restrict
ourselves to run-of-river and reservoir hydro. Run-of-river plants are not connected to
an upstream reservoir and water can therefore not be stored for longer time periods.
The distinction between run-of-river and reservoir production can be ambiguous and
production volumes can vary depending on the source. One definition provided by
European Network of Transmission System Operators for Electricity (ENTSO-E) is
that run-of-river plants can have a maximum of 24 hours of storage [17]. Therefore,
production at run-of-river plants is very much restricted to the flow of the river as
too much or too little production would lead to flooding upstream or downstream
from the plant. Typically, production from run-of-river plants is the highest during
the spring flooding and is largely dependent on water inflow in the summer. The
head of run-of-river plants is usually lower than plants with reservoirs and therefore a
run-of-river plant usually requires more water to produce the same amount of electricity
as a reservoir plant.

Hydro reservoirs can store water to be used at a later time. In mountainous areas
larger dams can be constructed using the topography of the environment and thus
large quantities of water can be stored. The distance between the reservoir and the
power plant can be very large, even several kilometers, with water being transported
through tunnels to the plant. Hydro reservoirs have a highest and lowest allowed water
level, which may change during the time of the year. For example the lowest allowed
water may be higher during summer for recreational purposes. The allowed water
levels set a limit to how much water the operators of the hydro plant can store. If
the water level gets close to the upper reservoir limit, the producer will have to start
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producing in order to lower the reservoir. This may be unprofitable as the producer
does not necessarily receive the maximum price for the produced electricity. If the
reservoir gets too low, the producer will be forced to stop production until the water
level rises. This may also affect the profits of the producer negatively as production
may be curtailed at times of high prices.

The size of reservoirs can vary from being able to store water from weeks to
multiple years. To better understand the hydro system, it is interesting to look at the
distribution of storage capacity between different plants. The storage capacity can be
characterized by the degree of regulation (DoR), which is the ratio between storage
capacity and average yearly inflow. If the DoR is above one, it means that the reservoir
is able to store more than the average yearly inflow. The DoR is computed by summing
all reservoirs upstream from the power plant and summing all the inflows to these
reservoirs [18]. Thus, the DoR can be large even if the reservoir immediately above
the plant is small, as there may be larger reservoirs further upstream. The DoR of
run-of-river plants can also be large if the inflow to the run-of-river plant is controlled
by a hydro plant upstream.

The DoR for all hydropower plants in Norway is available from the Norwegian
Water Resources and Energy Directorate (NVE) [18]. Histograms of the DoR in
Norwegian areas are shown in Figure 6, where we have categorized each hydropower
plant into five groups based on DoR and summed up the total production capacity
within the group. No similar public data is available for Sweden and Finland to
the knowledge of the author, which makes it harder to draw conclusions about their
hydropower storage capacity. The DoR reported by NVE correspond well to the shares
of run-of-river production in figure 4. The largest shares of run-of-river production
with low DoR is found in price areas NO1 and NO3. On the other hand, most hydro
plants with a high DoR are located in price areas NO2, NO4 and NOS. In price areas
NO2, NO4 and NOS most hydro plants have somewhat high DoR at above 0.25. Most
of the very flexible production with DoR above 1 is located in price areas NO2 and
NO4. In conclusion, the storage capacity can be very different in different price areas,
which is an important consideration in the pricing of hydropower.

Another important characteristic of hydropower production is that there are hydro-
logical connections between multiple hydropower plants. Many hydropower plants
belong to the same water system, which adds more complexity to the operational
decisions of hydro producers. To illustrate the complex topology of a cascaded river
system, a schematic picture of Lule River in Northern Sweden is shown in Figure
7. The river system consists of two river branches, some smaller rivers and several
reservoirs. Water released from upstream plants becomes inflow to downstream plants.
This also allows for run-of-river plants to be operated according to the price. Even if
the storage capacity of a run-of-river plant is practically zero, water can be stored in a
reservoir upstream and then released as inflow to the run-of-river plant when the price
is higher. This partially explains why hydro production correlates very well with the
day-ahead price also in price areas with more run-of-river plants than reservoir plants.
On the other hand, there can be a significant delay between the release of water from
the upstream plant and the water arriving at the downstream plant. Depending on
the geographical distance and topology, the time span can be several hours. This is
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Figure 6: Production capacity by DoR for all five price areas in Norway.

exemplified by the Lule River (Fig. 7) where the availability of water at the downstream
run-of-river stations can be regulated by the bigger reservoirs Suorva and Tjaktjajaure.
It can therefore be argued that the division into run-of-river and reservoir plants cannot
be taken as a perfect measurement of the flexibility in a hydro system.

3.3 Hydrology

In the analysis of hydroelectric power systems, it is standard procedure to convert all
units related to hydropower production into energy equivalents. Data on reservoir
storage, precipitation, inflow and snow are given as units of energy. Energy content of
stored water is calculated using the efficiency of all downstream hydro plants. Thus,
the energy equivalent of one unit of water depends on the location of the water in the
system. A unit of water at higher altitude, which will pass through many downstream
plants, will have a higher energy equivalent compared to a unit of water at lower
altitude with a smaller number of hydropower plants downstream. The characteristics
of hydropower plants also affect the energy content of water as e.g. a plant with high
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Stora Luledlv

Sitasjaure
Sg +803,00 mdh
Dg +613,00 méh

Satisjaure
Sg +438,00 mdh
Dg +457.00 mdh

Lilla Luledlv

Lulejaura
+386,50 min

Sg +300.70 mih
Dg +312,70 mah

Sg +202,70 méh
Dy +205,50 méh

Figure 7: Example of water system with cascaded hydro plants [19]. The Lule river
in price area SE1 consists of two main branches with a total of 15 hydropower plants
and a total installed capacity of 4350 MW.

head can convert a small quantity of water into a large quantity of energy. Similarly,
precipitation and inflow can be converted to energy according to their geographical
location. Converting the precipitation amounts into inflow to reservoirs is not simple,
as the topology of the catchment area needs to be considered. Hydrological processes
such as soil moisture and evaporation further complicate this task. Hydrological
models have been developed to accurately determine the inflow to reservoirs. One
such model is the HBV (Hydrologiska Byréns Vattenbalansavdelning) model [20].
The HBV model was originally developed to help hydro producers forecast the inflow
to the reservoirs by simplifying the complex hydrological environment into a small
number of catchment areas. Despite its relative simplicity, the HBV model has proved
useful for estimating inflow to hydro reservoirs in the Nordics [20].
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Hydrological models can be used to obtain additional data besides reservoir levels
and inflow. A key indicator of the hydrological situation is the hydro balance which
measures the energy equivalent of the deviation from historical normal reservoir filling
levels as well as the deviation from historical normal snow and groundwater levels.
In early autumn when there is very little snow, most of the water in the hydrological
system has ended up in the reservoir and the hydro balance corresponds almost exactly
to the filling level of reservoirs. On the other hand, water is stored as snow in the winter
and a surplus in snow can mean that the hydro balance is positive even if reservoirs
are below normal filling level.

The availability of the hydrological data described above is somewhat limited.
Typically, the reservoir level and inflow to individual reservoirs is not public infor-
mation. The only publicly available data is the aggregated filling levels of reservoirs
in each price area. Hydro producers must report the total energy content of each
reservoir to Nord Pool on a weekly basis and the total energy content of all reservoirs
within a price areas is subsequently published. There are also third party companies
providing data on inflow, precipitation and hydro balance on a price area level. This
data is highly useful to determine how the current hydrological situation will affect
hydropower production.

The hydrological conditions follow a typical seasonal pattern during a year (Fig.
8). Inflow is low during winter, as precipitation falls as snow. During spring, the
inflow increases rapidly as the snow melts. The timing of the spring flood from snow
melt can vary from year to year. During summer, inflow stays at higher levels as snow
is still melting from the higher mountains. Snow melt at the highest altitudes can
continue into late July or early August. During autumn the inflow is usually higher
due to more rainfall. Inflow can vary significantly from year to year, which can be
seen in figure 9. The variation in inflow is low during winter as it is very rare to have
high enough temperatures to start the snow melt before March. Inflow uncertainty
becomes very large in the spring, as the timing of the spring flood changes from year
to year. The uncertainty continues to be high during the summer as the amount of rain
can differ significantly between years. Especially during autumns, storms can bring
large amounts of rain in some years, causing spikes in the inflow.

The seasonal variations in electricity demand is very different to the seasonal vari-
ations in inflow. Demand for electricity is strongly connected to outdoor temperatures
with consumption highest during winter, when the need for heating is the largest. The
yearly hydro production profile follows the yearly consumption profile closely with
more production in the winter compared to summer. This highlights the flexibility of
hydropower and the ability to store water to produce during times of high demand.
This can be observed when studying the reservoir level over the year in figure 8. The
aggregate Nordic reservoir level decreases during winter when hydro production is
greater than inflow and increases during spring and summer when inflow is greater
than production.
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Figure 9: Weekly total inflows in the Nordics during years 2014-2023. Data from
Volue [12].

3.4 Hydro supply curve and water value

In studying the bidding behaviour of hydro producers, our focus will be on the hydro
supply curve, which we define as the aggregated supply curve from all hydro producers
within a given price area. As the actual day-ahead bids of individual producers are not
published by Nord Pool, it is impossible to reconstruct the true hydro supply curve.
For clarity, the unknown hydro supply curve is referred to as the true hydro supply
curve from here on. Information about the true hydro supply curve can be obtained by
studying realized prices and realized hydro production. In areas with a large share
of hydropower, most supply bids are made by hydro producers. Therefore, it can be
assumed that a hydro plant is always the price setter [21]. If it is assumed that all
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hydropower is sold to the day-ahead market, the day-ahead price and hydro production
volume for one hour will be one point on the true hydro supply curve for that hour.
This is illustrated in Figure 10, where the 24 price-volume pairs of one day are plotted.
The price-volume pairs of several consecutive hours will hereafter be referred to as
the empirical hydro supply curve. Along with the empirical hydro supply curve we
also plot an estimation of the corresponding true hydro supply curve in Figure 10.
In an ideal case, the true hydro supply curve would be constant for multiple hours
(for example all 24 hours in a day) which would result in all points on the empirical
hydro supply curve being observations of the same true hydro supply curve. In the
example, this is not the case as the empirical supply curve is not an increasing function.
This could be because some hydropower is sold in the intraday and balancing market.
Furthermore, the true hydro supply curve can change even during short time horizons
violating the assumption of a constant supply curve. Even though the empirical hydro
supply curve is not a perfect representation of the true hydro supply curve, it still
resembles an increasing function and provides a good estimate of the true hydro supply
curve by fitting an increasing function to the empirical hydro supply curve.

Based on the example in Figure 10, it can be observed that the hydro supply curve
is a nonlinear function consisting of three distinct parts. At lower production volumes,
the curve first rises steeply, followed by a longer flatter section and another steep
rise at higher production volumes. The leftmost steep part will be referred to as the
minimum production level. The minimum production level depends on the amount of
unregulated run-of-river production and the steep part reflects the large increase in
price when going from run-of-river to reservoir hydro. The minimum production level
can only be observed during times of low hydro production, for example during times
of high wind production. The flat part in the middle represents the pricing of reservoir
hydro. In areas with a lot of production from reservoirs, the flat part will be longer
than in areas with less reservoir production. The rightmost steep part represents the
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Figure 10: Illustrative example of points on the empirical hydro supply curve and
true hydro supply curve.
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total production capacity in the price area and will be referred to as the maximum
production level. In this part, the pricing can be affected by opportunity costs in
the intraday and balancing markets. This is the case if a hydro producer expects
a possibility of high prices in other markets. Also, decreased turbine efficiency at
maximum output can explain the sharp increase in price at the maximum production
level. Another possibility is that the assumption that a hydro plant is price setting does
not always hold and instead the price is set by a e.g. a thermal plant.

We now study some examples of empirical hydro supply curves in different price
areas during three consecutive days in April 2024 (Fig. 11). The flexibility of the
production system is an important explaining factor when studying the shape of the
hydro supply curve. The price areas NO1, NO2, SE1 and SE2 were chosen as examples
as these areas are dominated by hydro production and they have varying shares of
run-of-river production. As previously mentioned, NO1 is dominated by run-of-river
production, while NO2 has larger storage capacity and a large production volume in
general. Price areas SE1 and SE2 have some storage capacity but less than NO2. The
empirical hydro supply curve in NO2 is very smooth, indicating that the assumption
of a constant true hydro supply curve holds. In this case it can be argued that the
empirical hydro supply curve gives very good information about the true hydro supply
curve. In contrast, the curve for NO1 is more scattered as there is more uncontrollable
run-of-river production, indicating that the true hydro supply curve changes more
from hour to hour and day to day. The empirical supply curves in SE1 and SE2 are
also somewhat scattered. The price-volume pairs line up quite well during the first
two days, but in the third day the curve seems to be shifted slightly higher compared
to previous days. This indicates that also the true hydro supply curve may have been
shifted upwards in the third day. The supply curves in all areas follow the same
nonlinear shape observed in Figure 10. However, it is hard to tell exactly where the
maximum production level is in areas NO1 and NO2, since there are no observations
at very high prices.

The shape of the empirical hydro supply curve can change significantly over
longer time horizons, which can be seen in Figure 12. Prices correlate better with
production volume during the winter day than during summer days. This is likely due
to the lower inflow during winter, resulting in more production from reservoir plants
than run-of-river plants. Reservoirs can better optimize their production against the
day-ahead price when inflow is low as it becomes easier to plan the production in
complex river systems (c.f. Fig. 7). When inflow is higher during summer, it may be
necessary to run relatively high hydro production, as water would be spilled otherwise.
The price level is usually higher in winter which can be seen as the supply curve being
shifted upwards. This is especially clear in SE2, where the flat part was much higher
in the winter compared to the summer. The total hydro production level can also vary
between seasons, as seen in NO1. During winter, the production from run-of-river
plants is lower while it increases in summer. This can be seen as a shift of the hydro
supply curve from left to right.

We can also see that the maximum production level varies significantly during
the year due to maintenance. Most maintenance is performed during summer months
reducing the maximum production level. This is especially noticeable in NO2, where
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Figure 11: Empirical hydro supply curves in price areas NO1, NO2, SE1 and SE2 on
three consecutive days in April 2024. Data on hydro production from Volue [12].

the maximum production level in the summer is only half compared to the winter.
To summarize, it is clear that the true hydro supply curve can change significantly
between seasons, as the price-volume pairs in Figure 12 are not points on the same
true hydro supply curve. The shifts both in production and price levels are significant
and will have a large effect on the price formation in the day-ahead market. This
highlights the importance of understanding the dynamics of the hydro supply curve to
model electricity prices.

The different parts of the hydro supply curve represent water values for different
hydro reservoirs. The water value describes the opportunity cost associated with the
use of water for electricity production and can be defined as the expected marginal
value of one unit of water stored in the reservoir. If the water value is known, the
production decision should be to produce at optimal efficiency if the price is above the
water value, and not producing when the price is below the water value. The merit
order on the hydro supply curve is decided by the water values of individual reservoirs,
which in turn depend on the filling level of the particular reservoir as well as other
reservoirs, thermal prices, consumption etc. Since some reservoirs are smaller, their
ability to store water is limited which will lead to lower water values. The shape of
the supply curve will then be determined by how much water values differ between
reservoirs in the price area. If there is a large difference in water values, the supply
curve will be steeper, while it will be flatter if the water values are more similar.

The hydro supply curve can be thought of as an aggregation of supply curves of
individual hydropower plants. The supply curve of a hydropower plant can be described
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Figure 12: Empirical hydro supply curves in price areas NO1, NO2, SE1 and SE2
during different times of the year. Data on hydro production from Volue [12].

as a step function, where the step is located at the water value. This assumption can
be validated by studying the hydro production of individual hydropower plants as a
function of the day-ahead price. In Figure 13, the relation between production and
price at Kvilldal and Tokke hydropower plants is shown for the week starting 4.2.2024.
Kvilldal is the largest hydropower plant in the Nordics with 4 turbines with a maximum
capacity of 410 MW each. The plant gets the water from lake Blésj@, which is the
largest reservoir in the Nordics. Based on these plant characteristics, it can be assumed

€MWh

120

100

Kkvilldal

m
_fte_Be

rT:_-.;--;.v ------- —re-saa e R

i

o 200

400 600 800

Production (MWh)

1000 1z00

120

100

£/MWh

Tokke

100

200
Production {MWh)

300

Figure 13: Scatter plot of hourly price and hourly hydro production at Kvilldal and
Tokke hydropower plants in price area NO2 between 4.2.2024 and 10.2.2024. The
dashed step functions represents the supply curves of these plants.
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that production can be adjusted very flexibly according to the day-ahead price. Tokke
hydropower plant is also connected to a large reservoir and the total capacity of the
plant is 430 MW and the plant has 4 turbines, each with a capacity of 110 MW. The
scatter plots indicate that the water value for the both plants was around 60 €/MWh
during this time period. The production from the individual turbines is shown as a
concentration of points slightly below 300 MW. It can be assumed that three of the
four turbines were running at close to optimal efficiency during these hours.

Comparing the production strategies at Kvilldal and Tokke, it is clear that Kvilldal
is able to better optimize the production against the day-ahead price. The efficiency
curves of the turbines could explain this difference. It can, for example, be the case
that the efficiency in Kvilldal reduces quickly if the turbines are not run close to
optimal efficiency. Another explanation for the differing production patterns could
be the ownership structure. Tokke is fully owned by Statkraft AS while Kvilldal is
also owned by other smaller companies. The ownership structure can impact how the
electricity generated by a given hydropower plant is sold to the market as bids are
based on a company’s whole production portfolio. A fully owned hydropower plant
could be better utilized in the balancing market.

In conclusion, the hydro supply curve describes at what price a given amount
of hydro production is run. We cannot observe the hydro supply curve directly, but
instead we can observe the price-volume pairs for given hours. Based on empirical
observations, the hydro supply curve does not change much over shorter time horizons,
but larger changes can be observed over time. The changes can be seen both in the
price level, corresponding to upwards or downwards shifts in the supply curve, or
changes in production level corresponding to shifting the curve left or right. Both of
these changes can happen at the same time, which can significantly alter the shape
of the hydro supply curve. The underlying reason for changes in the hydro supply
curve is that water values of individual hydropower plants change. To model the hydro
supply curve, a good understanding of the calculation of the water value is needed.
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4 Hydropower scheduling

This section presents existing methods for calculating the water value. Understanding
the underlying problem from which the water value is solved is important to explain
the fundamentals affecting the hydro supply curve. The water value is calculated by
optimally allocating hydro production under uncertainties in inflow and other market
conditions, such as fuel prices and availability of transmission lines. This problem,
which will be referred to as the hydropower scheduling problem, is a stochastic
dynamic optimization problem. We will study the formulation of the problem and
the solution methods proposed in the literature. A vast share of the literature on the
scheduling problem originates from the Nordic countries with a focus on the Nordic
electricity market. We will therefore focus on the methods developed for the Nordic
hydro systems, even though the problem has also been studied for hydro systems in
other parts of the world, such as New Zealand [22] and Brazil [23].

The first methods for hydropower scheduling and water value calculation were
developed by Stage and Larsson in the 1960’s [24]. The term water value originates
from their work. The aim of the water value method is to translate the long-term value
of stored water into short-term operational decisions [25]. The water value method
was further developed in Norway while the electricity market was still regulated. An
overview of these developments as well as current scheduling methods are given in
[26]. The methods described in [26] seem to be used by most hydro producers in the
Nordics.

The hydropower scheduling problem is a large-scale problem which is computa-
tionally difficult to solve. Therefore, the problem is usually divided into a hierarchy of
models with different time horizons and level of detail. The most common approach
is to use three models: the long-term, medium-term and short-term model [27]—[29].
Splitting the scheduling problem into sub-problems reduces the computational com-
plexity of the problem, while still allowing for long-term uncertainty in inflow and a
detailed enough model of the production system in the short-term. Figure 14 shows a
schematic picture of this decomposition. Long-term scheduling is done on a weekly
resolution with a time horizon of 3-5 years. Medium-term scheduling is also done on
a weekly resolution but with a time horizon of 12-18 months. Short-term scheduling
is done on an hourly resolution for the next 1-2 weeks. Information is passed through
the models from the longer to the shorter term. The long-term model gives price
scenarios to the medium-term model, while the medium-term model passes water
values to the short-term model. The different sub-problems make it possible to focus
on different aspects of the scheduling problem. The long-term scheduling is important
to optimally allocate production from large reservoirs, where the decision is whether
to produce during the current year or next year. Short-term scheduling is done on a
very detailed level, where specific characteristics of the hydropower plants and water
systems are taken into consideration.

The problem can be modelled from the perspective of a centrally dispatched market
or a deregulated market. In the case of a centrally dispatched market, the objective is
to meet electricity demand while minimizing cost. In contrast, in a deregulated market
the objective is to maximize profit under uncertain price and inflow. We assume that
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Long-term Scheduling (3-5 years)
Stochastic models
EMPS, SDP, SDDP
Power system simulation

Price forecasts

Medium-term Scheduling (12-18 months)
Stochastic models
ProdRisk, SDP, SDDP
Simulation of smaller water system

Water values (cuts)

Short-term Scheduling (1-2 weeks)
Stochastic or Deterministic models
SHOP, SLP
Detailed representation of hydro plants

Figure 14: Flow-chart of the different sub-problems in the scheduling problem, the
models used to solve them and information flow between sub-problems.

each participant in the decentralized market is a price taker, meaning that no single
market participant can influence prices. If all market participants are price takers,
the market is perfectly competitive and the decentralized approach should lead to the
same hydro scheduling as the centralized approach. If market competitiveness cannot
be assumed, oligopolistic behaviour needs to be taken into account, significantly
complicating the problem. From here on, we assume a perfectly competitive market. It
has been shown that the optimal dispatch schedule in the profit maximization problem
converges to the cost minimization problem if the market is competitive and the hydro
plants of different companies are isolated, i.e. not hydrologically connected [30].

The similar dispatch schedules in centrally dispatched and deregulated markets have
been verified empirically in [2] where reservoir handling before and after deregulation
is studied. They conclude that the average filling level of the reservoirs decreased by
4.6% after the deregulation. This can be explained by structural changes in the market,
such as increased transmission capacities. In view of structural changes, the reservoir
levels corresponded well to reservoir levels simulated by hydro scheduling models.
These results indicate that optimal reservoir handling is independent on whether the
problem is studied from the perspective of a central dispatcher or a producer in a
decentralized market.

4.1 Long-term scheduling

The objective of long-term scheduling is to generate a set of price forecasts by
simulating the whole power system over a longer time horizon. In our case, the system
to be simulated includes the whole Nordic region. With the large share of hydropower,
the decisions of hydropower producers will have a large influence over prices in the
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long-term. Therefore, it is particularly important to accurately simulate hydropower
production in the long-term model. As many relevant simulation variables, such
as inflow, demand, wind production and fuel costs, are unknown, the simulation
must account for uncertainties. The long-term scheduling problem must therefore
be modelled as a stochastic optimization problem. The long-term scheduling is
formulated as a hydro-thermal scheduling problem, where the objective is to use hydro
resources so that the cost of thermal generation is minimized. The complexity of
the problem requires several simplifying assumptions, of which the most important
is the aggregation of reservoirs [31]. In the aggregation step, all hydro reservoirs
and plants, usually within the same price area, are modelled as one aggregate plant.
The simulation period is divided into shorter time steps, usually one week, with the
realizations of stochastic variables known one week ahead.

To illustrate the problem, we present a simplified mathematical model of the
hydro-thermal scheduling problem, where the objective is to utilize hydropower such
that the cost of electricity production from thermal plants is minimized. We assume a
hydro-thermal system consisting of one thermal plant and one hydro reservoir plant.
The inflow to the aggregate reservoir plant is stochastic, while the demand in all weeks
is assumed known. We will further assume that the cost of thermal generation, c is
constant over the whole time period. The objective is to minimize the expected total
cost of thermal generation plus the future cost, @, of operating the system at the
end of the scheduling horizon, (equation (1)). The future cost must be included, as
the reservoir would otherwise be emptied at the end of the scheduling horizon. The
expectation is taken over the stochastic inflows, which in practice means taking the
average over several inflow scenarios. The decision variables in the problem are the
hydro generation, ¢, the thermal generation g, the reservoir level w and the spillage
u. The parameters in the model are demand d and the stochastic inflow variable
v. All of the mentioned variables are indexed and aggregated over the time steps.
The constraints in the model represent the supply and demand balance (2), the water
balance in the system (3), the hydro production (4) and maximum reservoir capacity
(5). All decision variables in the optimization problem must be non-negative (6).

T

min E cZg,+d)T (1)
=1

g +qr=d, Vi=1,...,T (2)

Wil — s — Ur + Ve = Wy, ve=1,...,T 3)

qt < Gmax, vi=1,...,T @)

Wi < Winax, Vi=1,...,T (5)

Grs 81> Wrs Uy 2 0, Vi=1,...,T (6)

In the literature, the hydro-thermal scheduling problem has been solved using
Stochastic Dynamic Programming (SDP) or Stochastic Dual Dynamic Programming
(SDDP) [26]. We give a brief outline of both solution approaches. More complete
descriptions can be found in [32]. Both methods are based on the concept of dynamic
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programming, where the problem is divided into multiple sub-problems, which are
solved iteratively. At each time step, a set of state variables are chosen, which describe
the state of the system. The future cost function will then be a function of the state
variables. In our example, the reservoir level is the only state variable. Both SDP
and SDDP rely on constructing the future cost function ®,(w;) at a given time step ¢
by solving the sub-problem (7). The sub-problem is subject to the same constraints
(2)-(6) as the complete problem. The sub-problem gives the future cost at a given time
and in a given state as the expected cost of thermal generation plus future cost in the
next step r + 1.

®;(w;) =min  E[cg; + Pry1(Wis1)] (7

In the SDP approach, the state variables (reservoir levels) are discretized into a
finite set of states. The expected future cost is calculated iteratively for each state at
each time interval, starting from the final time step 7. First, the future cost in the final
time step, ®7(wr), has to be set manually, then the future cost function at time step
T — 1 is constructed at each discrete reservoir level. For example, the expected future
cost for an empty reservoir is obtained by solving problem (7) for all inflow scenarios
during time ¢, given an empty reservoir at time 7 — 1. Repeating this process for all
reservoir levels in the state space and linearly interpolating the future costs gives the
complete expected future cost function. A snapshot of the future cost function at a
given time step is illustrated in Figure 15. At each stage, the price of hydropower
is equal to the (negative) slope of the future cost function, as this slope represents
the marginal value of water. The future cost function should always be convex as the
marginal value of water should decrease with increasing reservoir filling level. Finally,
price scenarios for each inflow scenario can then be generated by making optimal
hydro production decisions and setting the price at each stage equal to the water value.

The SDP algorithm works well if the state space, i.e. the number of reservoirs,
is small. However, the number of times the sub-problem has to be solved grows
exponentially when the number of reservoirs increases. Hence, the computational
burden becomes too high even for a moderate number of reservoirs. The curse of
dimensionality can be solved by applying SDDP [32]. Like SDP, the SDDP algorithm
uses a future cost function, but its construction process is different. The state space
does not need to be discretized and instead the future cost function is constructed by
iteratively adding linear functions to the future cost function. In Figure 15, this can
be seen as adding linear segments to the future cost function. These linear segments
are also referred to as cuts. The SDDP algorithm consists of a forward and backward
simulation. In the forward simulation, a set of inflow scenarios are simulated using the
existing cuts. The average total cost in the forward simulation gives an upper bound
for the true cost. After the forward simulation, a backward simulation is run, where
the dual of the sub-problem is solved for each scenario in the forward simulation. This
gives the expected future cost and the marginal value of water for this state which
can be added as a cut. The total cost in the backward recursion will then represent a
lower bound of the true future cost. The algorithm is iterated until the upper and lower
bound converge.
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Figure 15: Illustration of the future cost function at a given time step. In the SDP
algorithm, the future cost function is constructed by linear interpolation between

discrete points in the state space. In the SDDP algorithm linear segments are iteratively
added.

In addition to the more general SDP and SDDP approaches to the long-term
scheduling problem, there are models developed specifically for the Nordic market. A
popular model for long-term planning in the Nordic electricity market is the EMPS
model (EFI’s Multiarea Power Simulator) [26]. The EMPS model simulates the Nordic
electricity market using historical weather years, with one price scenario for each
weather year. The model first performs a strategy evaluation, which is similar to the
SDP algorithm on an aggregate reservoir. Then, a heuristic drawdown model is used to
describe the multi-reservoir characteristics of the system [26]. The long-term forecast
generated by the EMPS model is not ideal for short-term price forecasting, since the
model is aggregated on a weekly level and does not output hourly prices. In particular,
the increase of intermittent electricity production and stronger connections to Central
Europe has posed new challenges for the EMPS model, as the short-term effects from
these factors are hard to handle with aggregation and disaggregation [31]. However,
the aggregated model will be a good approximation if it can be assumed that no single
reservoir will become full before all other reservoirs are full and no reservoir is empty
before all other reservoirs are empty [26].

A challenge in the long-term scheduling is to construct inflow scenarios as inflow
has a significant temporal and spatial correlation [29]. Inflow in one week is often
positively correlated with the inflow of the previous week, and the inflow in one area
correlates positively with inflows in neighboring areas. It has been observed that
constructing inflow series using statistical methods leads to extreme scenarios being
less represented [33]. This could result in the reservoirs being emptied too early before
the spring flood or the reservoirs being filled too early, leading to spillage during
autumn. For this reason, historical time series for inflow are preferred to statistically
generated time series as the geographical and temporal correlation of the inflow is
better represented in historical data. Using historical data comes at the expense of
fewer available inflow series.
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4.2 Medium-term scheduling

The results from the long-term model cannot be used directly for the short-term
operational decisions as reservoirs are aggregated but water values for individual
reservoirs are needed for operational decisions. The medium-term model aims to bridge
this gap between the long-term and short-term scheduling by computing water values
for individual reservoirs. The reservoir specific water values can then be used as an
input to the short-term operational scheduling model [34]. In the medium-term model,
the objective is changed from cost minimization to profit maximization [26]. The
problem is formulated from the perspective of a hydro producer, who aims to optimally
schedule a water system under uncertainties in price and inflow. The geographical
area for the simulation is reduced from the whole Nordic area to individual water
systems, which enables modelling on individual reservoir level without the need for
their aggregation. Some complexity is added as the medium-term model must consider
water flows between reservoirs. However, water systems which are not hydrologically
connected can be scheduled separately, decreasing the complexity.

One model commonly used for medium-term scheduling in the Nordic region is
ProdRisk [26] which applies a combination of SDP and SDDP. The mathematical
formulation is described in detail in [35] and [29]. To compute water values for
multiple reservoirs, SDDP is preferred as the SDP algorithm would require each of the
reservoir levels to be a state variable. However, SDDP cannot be applied directly as the
expected profit is not a concave function of the price level. The price scenarios from
the long-term scheduling (EMPS model) is an exogenous variable and the temporal
correlation in prices is also estimated from the EMPS model. Ideally, the inflow
scenarios to the hydro plants should be the same inflow scenarios as in the long-term
forecast. The long-term scheduling is done on price area level. It is difficult to say
exactly how inflow on price area level should correlate with inflow to a given reservoir
within the price area. Often a simplifying assumption is made that the local inflow
and price are independent [29].

The output from the medium-term model are the future profit functions at each
time step. Like in the long-term model, the future profit function is constructed
iteratively by adding linear cuts in the SDDP algorithm and therefore the future profit
function will be a piecewise linear approximation of a true future cost function. The
slope of the linear parts can be interpreted as water values at different filling levels.
This is shown in Figure 16, which shows the future profit is plotted as a function of
reservoir size. The tangent to the future profit function is plotted at 25%, 50% and
75% filling levels. It can be observed that the future profit function is concave, which
can be interpreted as a decrease in marginal value of water with increasing reservoir
filling level.

If the water system consists of multiple reservoirs, the future profit function is a
function of the filling level of all reservoirs in the system. In particular, it is important
to note that the water value in a particular reservoir is therefore not only a function of
the filling level of the given reservoir but also dependent on the filling level of other
reservoirs. This can be interpreted so that the water value in a reservoir is lower if the
other reservoirs in the same water system are well filled. The future profit function
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Figure 16: Illustration of the future profit function with cuts.

in Figure 16 should therefore be interpreted as a one-dimensional projection of a
multi-dimensional function. The cuts would then be represented by hyperplanes and
the cuts in Figure 16 are the one-dimensional projections of these hyperplanes.

4.3 Short-term scheduling

The objective of short-term scheduling is to obtain an operational plan for a single
hydropower plant or a set of cascaded hydropower plants in a watercourse. A review of
different approaches to short-term scheduling is found in Kong et.al. [36]. Short-term
scheduling must be done on a detailed level, taking into account the efficiency curves
of turbines, hydraulic losses and other plant characteristics [36]. This level of detail
can increase the complexity of the model significantly, which can become a problem
as the operational use of short-term scheduling requires fast computation times. The
problem contains nonlinearities in the form of losses, efficiency curves and head
effects [37]. These factors can even make the problem non-convex. Solution methods
for the short-term problem include linear-programming, nonlinear programming and
integer programming. The short-term scheduling model can be either deterministic or
stochastic [38]. In a deterministic model, the prices and inflows are considered known
during the scheduling horizon, while the stochastic version considers multiple price
and inflow scenarios. The deterministic approach leads to a smaller computational
burden, which can allow for greater detail in the modelling of the system.

The complexity of the short-term scheduling problem has also lead to the develop-
ment of heuristic algorithms [39]. The short-term model requires a very detailed model
of the system, considering technical restrictions on generating units and reservoirs.
The use of heuristic methods makes it harder to model the hydro supply curve as
the operational decisions of real hydro producers may not perfectly correspond to
theoretical scheduling decisions. It is also impossible to consider all the characteristics
of watercourses and individual hydropower plants that affect the operational decisions.
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In the Nordics, a common program used for short-term scheduling is SHOP
(Short-term Hydro Optimization Program) [28], [40], which applies successive linear
programming (SLP). SLP handles nonlinearities in the problem formulation by
iteratively solving a linear optimization problem. The formulation of the short-term
problem is similar to the medium-term problem, where the objective is again profit
maximization. Compared to the medium-term problem, more constraints are added to
model the system in high detail. The short-term model is coupled to the medium-term
model through the cuts representing water values from the medium-term model. The
cuts at the end of the short-term horizon represent the value of storing water.

4.4 The bidding problem

In addition to the short-term scheduling problem, hydro producers face the bidding
problem. The short-term scheduling gives a production plan for the upcoming days
but the producer still has to decide how to optimally sell the production in different
markets. The bidding problem can be viewed as an extension of the short-term
scheduling, where the task is to construct the price-volume bids given to the market.
As the hydro supply curve is an aggregation of the bids from individual producers,
it is important to understand how individual producers bid their production to the
day-ahead market in order to understand the hydro supply curve.

Most production is sold in the day-ahead market, but opportunities in other markets,
such as the intraday and balancing markets should also be considered when preparing
bids to the day-ahead market [41], [42]. If a hydro producer sells one unit of electricity
in the day-ahead market, the ability to sell electricity in the intraday and balancing
markets are limited. The prices in different markets are unknown at the time of
bidding, with prices and dispatched volumes being revealed over time. The bids in the
day-ahead market, and thereby also the hydro supply curve can therefore be affected
by the hydro producers’ price expectations in the intraday and balancing markets.

Bidding optimization methods can be divided into deterministic and stochastic.
Previous studies indicate that stochastic methods have potential to increase the profits
of the producer. Stochastic methods may, however, suffer from significant time-
complexity which is a limiting feature as decisions need to be taken within given
time limits. Fleten and Kristoffersen [43] compare the bidding strategies given by
a deterministic and a stochastic formulation. They model the bidding problem as a
stochastic mixed-integer program with the price being a stochastic variable. They
find that a stochastic formulation yields better results compared to a deterministic
model. The stochastic approach is further developed in [44], which also find that the
total revenue can be improved by use of a stochastic bidding approach compared to a
reference heuristic method.

There has been several bidding strategies for hydropower proposed in the literature.
Three different heuristic models for hydropower bidding are presented in [45]. The
models are the expected volume methods, the water value method and a method
based on multi-scenario deterministic optimization. The most simplistic method is
the expected volume method, where bids are optimized according to a deterministic
price forecast. This method is expected to yield reasonable results as long as the price
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forecast is very reliable. The water value method is based on bidding according to
the water value, where no bids are offered below the water value and the optimal
production level is offered at the water value. This bidding behaviour yields a step
function, discussed in section 3.4. The multi-scenario deterministic method generates
several price scenarios and one bid curve is formed for each scenario. The bid curves
from each scenario are then combined to form the final bid curve. This approach better
takes uncertainty in price into consideration. Comparing the performance of the three
models, the multi-scenario deterministic model was found to give the highest profits,
but the difference between the models was small.

Understanding and modelling the bidding behaviour of hydro producers is difficult
since some producers may use heuristic methods instead of advanced optimization
tools [45]. It is hard to know exactly what methods are being applied in the industry,
as the bidding strategies are central to the operations of hydro producers and thus not
public information. The bidding behaviour of three hydropower producers in Norway
is studied in [46]. They conclude that the bidding behaviour is sometimes irrational.
There may be many factors affecting the bidding behaviour such that the producers
price expectations in the intraday and balancing markets. It is impossible to take all
factors affecting the bidding behaviour into account when trying to model the hydro
supply curve. Thus, we assume that all producers bids in a rationally.

In summary, the bids from hydropower producers should in theory reflect the water
value calculated from the scheduling models. The most important factors determining
the water value in the long-term and medium-term models are uncertainty in inflow
and cost of thermal production. However, in the short-term, the bidding process is
more complicated than the simple water value approach, where the whole volume is
bid at the water value. Characteristics of watercourses as well as portfolio optimization
can affect the bidding behaviour.
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5 Methods

In this section we propose a method to forecast the hydro supply curve for a short-
term time horizon of six weeks. Predicting the hydro supply curve is very difficult
as the current pricing of hydropower is already based on current price and inflow
expectations. Known changes in market fundamentals should therefore already be
priced into the current water values. Furthermore, changes in the supply curve over
longer time horizons are strongly influenced by weather, which cannot be accurately
predicted over longer time horizons. We first describe the data used and review
methods which has previously been used to model hydro supply curves in electricity
markets. A theoretical motivation for the proposed method is then given followed
by the mathematical formulation of the model. Finally, properties of the model are
studied followed by an overview of the model inputs.

5.1 Data

The lack of publicly available data is a major challenge when analyzing hydro supply
curves. In this section, we describe the data which will be used in the modelling part of
this thesis. The hourly hydropower production in each price area is public information
as well as the day-ahead price. We will use the hydropower production data reported
by Volue and the day-ahead price reported by Nord Pool. Assuming that hydropower
is the price setting technology, this data can be used to estimate one point on the
supply curve for each hour. A potential problem is that the realized hydro production
contains volumes sold in other markets than the day-ahead market. Some share of the
production may be sold, for example, in the intraday market, in the balancing market
or using bilateral contracts. The traded volumes in the intraday and balancing markets
have increased in recent years, due to the increase of weather dependent electricity
production from renewable sources [47].

It is hard to compensate for the hydropower traded in the intraday market. Nord
Pool reports the buy and sell volume from the intraday market but it is not possible
to know what type of production is traded. If a unit of energy is sold in the intraday
market a hydro producer may be the seller or the buyer or both. It is also possible that
none of the parties in the trade are hydro producers. For example, if a wind power
producer has underestimated their production in their day-ahead bids due to a poor
wind forecast and a retailer has underestimated the consumption of their customers,
this wind producer may sell their extra production to the retailer in the intraday market.
For these reasons, volumes traded in the intraday market were not used to adjust the
hydro production.

The volumes traded in the balancing market are easier to account for, as it can
be assumed that all volumes traded in the balancing market are hydropower. This
assumption is reasonable at least in Norway and northern Sweden where hydro
production has a dominant share of production capacity. Furthermore, hydropower is
one of the only production technologies capable of making quick and large production
changes. Price areas Finland and SE3 are the only areas with large hydro production
where this assumption does not necessarily hold. To adjust hydropower volumes, the
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buy volumes in the balancing market were added to the actual production volume,
while the sell volume was subtracted. To test whether this gives a better representation
of the volume sold in the day-ahead market, the Spearman’s rank correlation between
production volumes and day-ahead price was studied. It was observed that subtracting
volumes from the balancing market generally increased Spearman’s rank correlation
of price and hydro production, indicating that it may better represent the true hydro
supply curve. From here on, the hydro production will refer to the adjusted hydro
production, where volumes traded in the balancing markets are subtracted.

Other sources of data which were also considered are the sell volumes and
aggregated bid curves published by Nord Pool. The bid curves are aggregated on
country level in the Nordics. However, the aggregated bid curves are only available
starting from July 2022. The aggregated bid curves contain bids from all producers
and production technologies and it is impossible to know which bids are made by
hydro producers. The data from the aggregated bid curves is nonetheless interesting
as the majority of bids come from hydro producers in some areas. The shapes of the
empirical supply curve and the aggregated bid curve can be compared in these cases.
All production is not necessarily sold to the day-ahead market which makes it more
challenging to use the true bid curves for analysis. Furthermore, the aggregated bid
curves are only available on country level and not price area level. Because of these
challenges, the aggregated bid curves were not used in this thesis.

5.2 Supply curve forecasting

As seen in section 4, the literature on optimal scheduling of hydropower is well
developed. However, it is unclear how to apply the scheduling models on a macroscopic
level, with hundreds of hydropower plants. The aggregation approach used in long-term
scheduling is not sufficient for short-term price forecasting as the aggregation only
gives one water value for the whole aggregated price area and can therefore not model
short-term price fluctuations. Creating a detailed model of the hydro system and
calculating water values for individual hydro plants would in theory be an ideal way to
reconstruct the hydro supply curve. This is unfortunately not feasible due to the large
number of hydro plants and reservoirs in the Nordics. It is hard to find data on the
different hydro systems and the filling levels of individual reservoirs are unknown.
One must therefore use some approximate method to model the hydro supply curve,
which should replicate the global behaviour of the hydro producers as well as possible.

There is very little literature on the problem of forecasting the hydropower supply
curves, as noted in [48]. We have only identified four papers focusing on modelling
the hydro supply curve [21], [49]-[51]. Most of these focus only on modelling the
shape of the supply curve, with no attempt made to forecast the supply curve. The
lack of previous studies on the subject highlights the extreme difficulty in modelling
and forecasting the hydro supply curve.

The first challenge encountered when modelling the hydro supply curve is how
to estimate the true hydro supply curve from the empirical hydro supply curve. The
shape of the supply curve can differ significantly in different areas and during different
times of the year. A possible solution is to fit a parametric function to the points
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on the empirical hydro supply curve, which is explored by Dueholm and Ravn [49].
They compare the fit of three different parametric models. Their choice of parametric
models to be tested is motivated by the dynamics of the water values. Their work is
mostly concerned with finding a functional form that describes the hydro supply curve
and no attempt is made to use the model to generate predictions of the hydro supply
curve in the future.

An interesting fundamental approach to model the supply curve is to estimate the
water values of individual plants. This is done by Nycander and Soder [50], who
study the aggregated hydro supply curve in Sweden. Their objective is to explain
the short-term volatility in electricity prices by modelling the hydro supply curve.
Models for hydro-dominated electricity markets often aggregate the reservoirs and
struggle to reproduce the short-term volatility of power prices, as hydropower can
be used to flatten out large price spikes. They find that differing water values for
different hydro plants give rise to the hydro supply curve, similar to our analysis in
section 3.4. They propose a method to model the water value of individual hydropower
plants by studying their runtime, describing the fraction of time the plant is producing.
Hydropower plants with higher runtime should have a lower water value as these
plants must also produce when the price is lower. It is hard to apply their idea to
model the full hydro supply curve as production data is only available from the largest
hydropower plants and published with a delay of a couple of days.

Regression models is another option to model the hydro supply curve. This
approach is used by Jahns et al. [21]. In their model, the hydro supply curve is
modelled as a linear function, estimated from the empirical hydro supply curve.
If the supply curve is modelled as a linear function, the slope and intercept have
a clear meaning and it is possible to use these variables as the target variables in
the regression model. The influence on the hydro supply curve based on the the
aggregated filling level of reservoirs and SRMC of thermal generation is studied. Four
hypothesis about these relations are subsequently proposed and verified by studying
historical data. They conclude that modelling the hydro supply curve can help market
participants understand the market fundamentals better, which can be used to improve
price forecasts.

The hydro supply curve could also be modelled using machine learning, as done
by Tolonen [51]. The approach is based on simultaneously forecasting the price
and production and then constructing the hydro supply curve from these forecasts.
This allows for a very flexible model of the supply curve, which can also model the
nonlinearities in the supply curve. Machine learning can use a large number of features
to model complex relationships. However, it can also suffer from overfitting if too
many features are used. Furthermore, the availability of historical data to train a model
is limited as the dynamics of the electricity markets have changed a lot in recent years,
with price volatility increasing. Data older than a couple of years should therefore not
be used to train a machine learning model.
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5.3 Changes in the hydro supply curve

We proceed to study which factors influence the water values and thereby the hydro
supply curve. The analysis will be based on the theoretical models discussed in section
4. This theoretical part will focus on some of the properties that are desirable for a
model to forecast changes in the hydro supply curve.

As a base case, the empirical hydro supply curve from recent days should be a good
estimate for the hydro supply curve in the future. Since water values are calculated
based on future expectations, most predictable changes in market conditions should
already be priced into the hydro supply curve. There are however times during the year
when changes in the hydro supply curve could be expected. During spring flooding
when inflows increase, the production from run-of-river plants increase rapidly which
should move the hydro supply curve laterally to the right. The water values of reservoirs
are also likely to drop in spring, as the risk of emptying the reservoirs in the near
future decreases and the next time reservoirs risk running empty is during next winter.
Similarly water values should increase in late fall when inflow levels decrease and
there is no more a risk of spillage.

We seek to forecast the hydro supply curve during a relatively short horizon and
therefore we are mostly concerned with the theoretical properties of the short-term
and medium-term models. We assume the short-term scheduling is done for one
week. The connection between the short-term model and the medium-term model
can be illustrated with the following example. We consider a simple case where the
production system consists of only one reservoir. We assume availability of accurate
price and inflow forecasts for the next week and water values from a medium-term
model. The water values from the medium-term model describe the future profit at
each possible reservoir level in the end of the week. Let the price forecast during
each hour of the week be p; and the inflow forecast be v,. The future profit as a
function of reservoir level is @(w) and the reservoir level at the start of the week be
wo. The production during each hour of the week is denoted ¢;, with the upper limit
on production in each hour being ¢g,,,,. We use capital letters to denote aggregated
values over the week. The total inflow during the week is denoted V. We denote the
total production during the week Q and similarly Q,,,, denotes the total produced
electricity during the week if the plant is run at maximum production during each
hour. The storage capacity in the reservoir is assumed to be large such that there is no
possibility of the reservoir becoming full or empty during one week.

Deciding whether to produce hydropower is based on the trade-off between
immediate profits and expected future profit. The immediate profit is the profit during
the first week, while the expected future profit is the expected profit made after the
first week. We define both the immediate and future profit functions as functions of
the reservoir volume at the end of the week. The concept is described in [32], with
the difference that the objective is to maximize profit instead of minimizing operating
costs. Constructing the immediate profit as a function of end reservoir volume is
straightforward when the price for the coming week is assumed known. First, the
immediate profit is calculated as a function of the hydro production, which can be
done by ordering the hours from the most expensive to the cheapest. If production is
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only run for one hour, the immediate profit is the price in the most expensive hour. If
production is run for two hours, the immediate profit is the sum of the prices in the two
most expensive hours. Repeating this process, the full immediate profit function can
be constructed for all total production volumes between 0 and Q... This function can
then be translated into a function of the final reservoir level. The reservoir volume at the
end of the week can be computed from the total production as w.,q = wo—Q +V. The
highest possible final reservoir volume is then wqo + V, corresponding to no production
during the week. Similarly, the minimum final reservoir volume is wo + V — Q,4x
corresponding to full production in each hour during the week.

We illustrate the immediate and future profit functions in Figures 17a and 17b. If
more water is used in the coming week, the end reservoir level will be lower and the
immediate profit from production will be higher. However, since the final reservoir
level will be lower, the expected future profit will be smaller. The optimal final storage
level will be the reservoir level where the derivatives of the functions are the same,
with opposite signs. At this reservoir level, the marginal value of using water in the
next week is the same as the marginal value of storing water for later use. There exists
at most one such point, since both the immediate profit function and the future profit
functions are concave functions of the final reservoir level. This is illustrated in Figure
17¢, where the sum of the immediate and future profit functions are plotted. The
maximum can be found where the derivative of this function is zero. It should be
noted that scale of the future profit function is different compared to the immediate
profit function.

The shape of the future profit function in the example is almost linear, which is
realistic if the reservoir is large. When the expected future profit function is almost
always linear, the expected future profit function is much more important for computing
the water value. This follows from the fact that the water value must be the slope
at some point on the future profit function. Hence, the decisions made within the
horizon of the short-term model will have small effects on the storage level, compared
with the total size of storage. The water values of larger reservoirs should therefore
change slower over time as the reservoir level must change significantly to cause a
large change in the water value from the future profit function. On the other hand, the
production decision will increase or decrease the reservoir level quicker in a smaller
reservoir, which can lead to quicker changes in the water values.

Based on the example, we can identify how different factors should influence
the water values. In this simple model, changes in water values can happen for two
reasons, either the short-term price forecast changes or the inflow forecast changes. An
increase in the price forecast in the near future will increase the slope of the immediate
profit function and should lead to higher water values. It should also result in more
water being allocated for immediate production. The increase in the price forecast
could be due to a number of factors, such as increased consumption, lower production
from renewables or changes in transmission capacities. A change in inflow will shift
the whole immediate profit function to the left or right as the final reservoir level will
change. The water value will then change as the equilibrium final reservoir level will
also be moved left or right along the future profit function. Increasing inflow will
decrease the water value, as the final reservoir level will increase and the concave
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nature of the future profit function will lead to a smaller slope of the future profit
function and similarly decreasing inflow will increase the water value.

The example cannot only be used to study what factors influence the water values,
but also some sensitivity analysis of the water values can be done. The sensitivity of
the water value to changes in market and hydrological conditions will depend on the
curvatures of the immediate profit and future profit functions. The curvature of the
immediate profit function will depend on the short term volatility of prices. Therefore,
volatility of the water values for smaller reservoirs should be highly influenced by
short-term price volatility. For larger reservoirs, the volatility of the water value will
depend more on the curvature of the future profit function. The slope of the future
profit function changes more quickly when the reservoir is almost empty which will
make the water value sensitive to changes in the immediate profit function. The
dynamics of the water value should therefore be different during different times of
the year, with the potential for large changes being highest during autumn and spring,
when the reservoirs are almost full or almost empty.
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(a) An illustration of the immediate profit (b) An illustration of the future profit as a
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Figure 17: Visualisation of immediate and future profit functions. The optimal
reservoir level at the end of the short-term scheduling horizon is the maximum of the
total profit function, where the derivatives of the immediate and future profit function
are equal with opposite sign.
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5.4 A model to forecast the hydro supply curve

Based on the fundamental analysis in the previous section, a model to forecast the
hydro supply curve will be presented. The model will be described in two steps,
where we first present a simple model which is then refined. We have established that
hydro producers aim to optimize their production against the day-ahead price, which
will be the starting point of our approach to model the hydro supply curve. In the
model, each price area will be considered as one aggregated hydropower plant with
one aggregated hydro reservoir. The objective is to optimally allocate the production
from this aggregated hydro plant over the next week. The inputs to the model will be a
prior price forecast, minimum and maximum hourly production for the aggregated
plant and a target production level, describing the average hourly production during
the week. The prior price forecast is generated by a fundamental market equilibrium
model, which will be explained in section 5.5.

The hydro supply curve will be estimated using a linear programming approach.
The model resembles a simplified version of the short-term scheduling problem
faced by a hydro producer, which was discussed in section 4.3. We first describe a
simplified version of the model to illustrate how the hydro production is optimally
allocated. Two key objects in the optimization problem are the price-duration and
load-duration curves. In the price-duration curve, the prices are ordered from the
most expensive to the cheapest, and correspondingly in the load-duration curve, hourly
hydro production is ordered from highest to lowest. In the optimization model, a
price-duration curve is constructed from the price forecast, and the objective is to
find the optimal load-duration curve for the coming week. The resulting optimization
problem is described in equations (8)-(11). The decision variables in the optimization
problem are the points on the load-duration curve g;, where g represents the highest
production during the week and g3 represents the lowest production during the
week. The forecasted price-duration curve is denoted by p;, where p; is the most
expensive hour during the week and p g is the cheapest hour during the week. It may
be emphasized that the index i is not representing the hour within a week indexed by
time but rather the values ordered from largest to smallest. The objective function (8)
represents the total profit during the week. Constraint (9) ensures that the average
production during the week is equal to the target production g;4,g¢;, While constraints
(10) and (11) restrict the production in each hour to be within the specified minimum
and maximum production.

168

max Zl?iqz‘ (8)
i=1

s.t. T4Q qi = qtarget 9)
168 £
qi = qmin» Vi = e ey 168 (10)
qi < 9max, Vi=1,...,168 (11)
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We illustrate the properties of the simple model in Figure 18. The example given
is based on price area NOS during the week between 4.3.2024 and 10.3.2024. The
minimum and maximum production in the example were set to 1500 MWh and 6000
MWh, respectively, and the target production was set to 4250 MWh. The price forecast
used is not necessarily a perfect price forecast but rather used for illustrative purposes.

From the example, we see that the simple optimization model leads to a trivial
solution. Since the price forecast is assumed to be perfect, hydro production will
be run at maximum capacity during the most expensive hours and run at minimum
capacity in the cheapest hours. The number of hours with maximum production can
be determined by dividing the target production with the maximum production level,
which in the example leads to 119 hours of maximum production. The water value can
be found as the value of the price-duration curve at the number of production hours.
Production is run at maximum level when the price is above the water value. When
the price is below the water value, production is run at minimum. The hydro supply
curve can be constructed from the solution of the optimization problem by combining
the price duration forecast with the optimized load duration curve. This leads to 168
price-volume pairs forming the supply curve. In this simple model, the hydro supply
curve would then be a step function at the water value.

It is clear that the simple model does not explain the shape of the hydro supply curve
very well. In reality, hydro producers cannot perfectly predict prices and the production
systems are not flexible enough to perfectly adjust production according to day-ahead
price. To better take the flexibility of the production system into consideration, we
propose a revised model, where we impose a restriction on the load-duration curve
in the optimization problem. The load-duration curve for a given price area should
reflect the flexibility of hydro production in the price area. If the production is more
flexible, the production can better be adjusted according to price and hydro production
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Figure 18: Example price forecast (left), corresponding price-duration forecast
(middle) and generated hydro supply curve (right). The water value is represented
by the dashed line and determined from the price-duration forecast as the value of
the price-duration curve at the given number of production hours. Maximum hydro
production is run when the price is above the water value.
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can vary more significantly within a week. To restrict the model, a constraint was
introduced where the load-duration curve must be a linear combination of historical
load-duration curves. Constructing the load-duration curve in this way makes sure that
the distribution of hydro production during the week will be reasonable and production
1s not run only at minimum or maximum production, as observed in the simple model.
To account for seasonality effects, the historical load-duration curves are taken from
the same week in previous years. It is hard to give an exact theoretical justification for
this constraint, but it was observed to work well in practice. In short, the new model
can be summarized as follows: Given a deterministic price forecast and a target hydro
production level, find the optimal load-duration curve satisfying the constraints and
giving a total production equal to the target production.

The mathematical formulation of the revised model is otherwise identical to the
simple model (8)-(11), except for the addition of constraints (12)-(14). The variable
l;; represents the element i on the load-duration curve in historical year j, with J
being the set of historical years. The coeflicients a; represent the weights given to
the load-duration curve from historical year j and the coeflicient b shifts the overall
production level in the load-duration curve up or down. The constant b is needed to
make the problem feasible. Otherwise, there would be a risk that a very large or very
small target production would make the problem infeasible, even if it is larger than the
minimum production and smaller than the maximum production. The coeflicients a;
must be positive to ensure that the linear combination of the load-duration curves is
always increasing. Furthermore, the coefficients a; were restricted to be smaller than
1 to reduce the flexibility of the model. Larger coeflicients would allow for steeper
load-duration curves, which was not desired.

gi= ) ajlij+b, Vi=1,...,168 (12)
jeJ

aj =0, VjieJ (13)

aj <1, VjeJ (14)

We illustrate the new model using the same example as for the simple model. The
example uses the same inputs and the only difference is the addition of constraints
(12)-(14). In the example, the historical load-duration curves from years 2015 to 2023
were used to predict the supply curve in 2024. The historical load-duration curves are
presented in Figure 19 along with the optimal load-duration curve generated by the
model. It can be observed that the shape of the optimal load-duration curve follows the
shape of the historical load-duration curve. When testing the model, it was observed
that the linear combination usually results in most of the coeflicients being zero, with
usually only one or two years having non-zero coefficients. The model can therefore
be interpreted as choosing a load-duration curve from the past to match with the
price-duration forecast.

The hydro supply curve in the new model is again constructed from the solution of
the optimization problem by combining the price-duration forecast with the optimized
load-duration curve. The resulting hydro supply curve from the new model is presented
in Figure 19. Comparing the generated hydro supply curve from the new model with
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the hydro supply curve from the simple model, we see that the new hydro supply
curve looks much more realistic. The supply curve is no longer a step function but
an arbitrary increasing function, which resembles the shape of the previously seen
empirical supply curves.

An attractive feature of this model is that it captures the dynamics of the hydro
supply curve well. There are two main inputs, the price forecast and target production
level, which strongly influence the generated supply curve. If the price forecast contains
many expensive hours, it will result in an upwards shift of the supply curve. Also the
volatility of the prices in the forecast will be reflected in the generated supply curve,
with more volatile prices giving a steeper supply curve. Even if the price forecast is
unchanged, the supply curve can change based on the given target production. The
theory is that water values will be lowered if an area must produce more during the
week and increased if production can be lower. Theoretically, the dynamics of the
modelled hydro supply curve should reflect the real dynamics, where water values
increase if the price forecast increases and decrease when the price forecast decreases.
The model can also account for changes in the hydrological situation, where lower
inflow should mean less hydro production and higher inflow should mean higher hydro
production.

To illustrate the effect of changing the target production, we construct the supply
curve from the example using two alternative values for the target production. In the
high production scenario, the target production is increased by 500 MWh to 4750
MWh and in the low production scenario the production is decreased by 500 MWh to
3750 MWh. The alternative supply curves are presented in Figure 20, along with the
supply curve from Figure 19. An increase in the target production shifts the whole
curve to the right and also lowers the middle part of the curve. The production level in
the lower priced hours is increased, representing the pressure on producers with limited
storage to produce at lower prices to avoid spilling water. Similarly, the whole curve
is shifted to the left and the middle part is slightly increased if the target production
is decreased. The production during higher priced hours is decreased, representing
the increased flexibility as producers can receive better prices when less water needs
to be used. The shifts in the supply curve are somewhat similar to those observed in
the empirical supply curves, where the supply curve can simultaneously shift up and
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Figure 19: The historical load-duration curves (left) and the optimized hydro supply
curve (right) in the refined model.
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down in price level as well as production level.

The proposed model has some disadvantages. A fundamental problem with
forecasting hydro supply curves is that the supply of hydropower depends on the price
expectations. On the other hand, the price expectation depends on the current valuation
of hydropower. Since the objective is to use the generated hydro supply curve for
price forecasting, the model can be seen as a way to update a price forecast where
potential changes in water values are included. Using a price forecast to predict the
hydro supply curve can be motivated by the complexity of calculating water values. In
the current electricity market, there are numerous factors other than weather which
influence the hydro supply curves. Such factors are SRMC of thermal production,
nuclear outages, transmission outages as well as prices in neighboring areas. It is very
hard to model the individual influence of all these factors but they are all reflected in
the price forecast.

Another disadvantage of the model is that the hydrological conditions in the
historical years for the load-duration curves are not considered. In dry years, hydro
production is more flexible as the utilization is lower and production can better be
optimized against the day-ahead price. In the proposed model, it is possible that the
optimal load-duration closely follows the load-duration from a dry year even if the
current hydrological situation is not dry, leading to a supply curve that is not ideal. A
typical error in this case is that the generated supply curve becomes too flat.

The generated supply curve is heavily influenced by the price-duration forecast
and therefore the price-duration forecast should be as realistic as possible. However,
constructing a realistic price duration forecast is no simple task. In particular, using
only one deterministic price forecast does not necessarily describe the uncertainty in
the price in the next week that well. The high volatility of electricity prices means that
there should always be a possibility of either very low or very high prices, which can
be difficult to replicate in the price forecasting process. A possible improvement which
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Figure 20: Hydro supply curves obtained by decreasing (red) or increasing (blue)
500 MWh from the original target production.
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could be made is to use multiple price forecasts and construct a price-duration curve
from each forecast. The expected price duration curve would then be obtained by
averaging the price duration curves from each scenario. The multiple price scenarios
should increase the probability that very high or very low scenarios are represented,
which could result in a greater slope of the expected price-duration curve.

5.5 Model inputs

The optimization model for generating the hydro supply curve was described in the
previous section but we did not explain how the inputs are generated. The most
important input to the model presented in section 5.4 is the prior price forecast, which
is generated based on fundamental modelling of the market. The fundamental model
uses forecasts of important drivers of the electricity prices and gives a price forecast
by replicating the EUPHEMIA algorithm. The modelling setup is summarized in
Figure 21. The price forecast is converted to price-duration curves for each week in
the forecasting horizon. The price-duration curves, historical load-duration curves,
target hydro production and maximum and minimum hydro production levels are then
used to generate a prediction for the hydro supply curve for the next week.

To generate the prior price forecast an initial hydro supply curve must be generated.
The initial hydro supply curve can be generated based on the empirical hydro supply
curve in the most recent days. It is challenging to come up with a method to fit an
increasing function to the observed points. As there is only one observation for each
hour, it must be assumed that the supply curve is constant over some period of time.
Using a longer time span increases the likelihood of observing hours with very low
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Figure 21: Flow chart of the hydro supply curve prediction model.
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Figure 22: Example of a fitted supply curve using the weekly price-duration and
load-duration curves.

or very high hydro production. Thus, a longer time span will give more information
about the whole curve. On the other hand, information about changes in the hydro
supply curve over this time span is lost.

The initial hydro supply curve could be fitted using a parametric function, e.g. a
polynomial or linear function. This approach could suffer from outliers in the data and
therefore no parametric model was deemed sufficient to accurately model the shape
of the hydro supply curve. Instead, a non-parametric approach was chosen, allowing
for greater flexibility in the modelled supply curve. The non-parametric model uses
data from one week to generate one supply curve and it is hence assumed that the
supply curve stays constant for one week. The weekly supply curve is constructed as
follows. We take all price-volume observations from the last seven days. The prices
and production volumes are then sorted such that the highest price correspond to the
highest volume, the second highest price to the second highest volume and so on. This
method was chosen as it is robust to outlying observations. An example of a fitted
hydro supply curve can be seen in Figure 22. We see that the price-volume pairs in
the empirical supply curve line up well for low and medium production volumes but
the maximum production volumes appears to have changed during the week. The
fitted supply curve gives a reasonable approximation of the true unobserved hydro
supply curve, passing through the middle of the observed points. A problem with
the chosen approach is that a given week may not contain any hours with very low
or very high production, even if such extreme production volumes are possible. In
these cases a part of the supply curve remains unobserved. This was implemented by
setting the price at the minimum production level to 3 €/MWh lower than the lowest
observed price and the price at the maximum production level to 3€/MWh above the
highest observed price. The supply curve was then linearly interpolated up to these
new artificially introduced maximum and minimum points.

One of the most important inputs to the model is the target production. The
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target production should reflect the average hourly hydro production which should
be produced in a week. However, the target production should not necessarily be
interpreted as the expected hydro production for an area. There may be situations
where an area would want to produce more due to high inflow but production cannot
be increased due to low demand. In such situations water values may be lowered even
though production is not increased. Using different target production levels could be a
good idea to generate different scenarios for the hydro supply curve. Adding more
production would correspond to a scenario with higher inflow, where more hydro
production is needed in order not to fill up the reservoirs, while in a drier scenario
hydro should produce less to not empty the reservoirs.

The other inputs to the model are simpler to obtain compared to the prior supply
curve and target production. The forecasts for solar and wind production are based
on weather forecasts and the assumption that these production technologies are bid
to the day-ahead market at zero or negative prices. The consumption forecast is also
affected by weather in the form of temperature and also the time of day and holidays.
Transmission availability can be estimated based on historical data as well as market
information about upcoming outages. The prices in external markets refer to the prices
in countries neighboring the Nordic countries. These markets also influence the prices
in Nordic countries through trade. The nuclear production forecast is based on the
maintenance schedules of nuclear power plants and the assumption that nuclear power
is run at full capacity as long as the price is positive. Thermal power production is
forecasted based on the SRMC.

The model requires a maximum and minimum limit for the production in each
price area. These limits can be set based on historical data. The minimum level
of hydro production is affected by the amount of run-of-river production as well as
volumes of down regulation sold in reserve markets. The maximum production level
is mostly affected by maintenance which is usually performed in summer. During
summer, the prices are usually lower and producers can therefore minimize the revenue
loss due to maintenance. The maximum available capacity can be significantly
reduced during these times of the year. The total hydropower capacity available can be
estimated from Urgent Market Messages (UMM) publicly available from Nord Pool.
Producers are required to inform other market participants about the availability of
their plants. Planned maintenance schedules are published in advance which is useful
when estimating maximum production.
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6 Results

The model proposed in section 5.4 was tested over a six week test period in the summer
of 2024. The test period started on July 8th and ended on August 18th. The weather
during this period was quite wet, which resulted in decreasing water values throughout
the testing period. Hence, there were many weeks where the hydro supply curve
shifted downwards. The model was tested over this period to see how well it was
able to replicate this decrease in water values. The tested areas included all areas in
the Nordics with significant hydro production, which were FI, SE1, SE2, SE3, NO1,
NO2, NO3, NO4 and NOS. To construct the price forecast, the market equilibrium
model was given the realized values for transmission capacity, demand, nuclear power
production, wind power production and solar power production. This will give an
optimistic view on the performance of the model as these values are not known in
reality. This choice was made to remove effects from errors in these inputs and only
focus on errors arising from the model itself. Furthermore, this modelling setup can
be thought of as a benchmark on how well the model can generate scenarios for the
hydro supply curve given a weather scenario.

The target production in the model was set to the realized production. It is
impossible to know the realized hydro production ahead of time and the choice of the
realized production may also lead to too optimistic forecasts. It is however unclear
how to choose the target production in an optimal way and we leave this question open
for future research. At least the realized production should give reasonable values and
act as a benchmark. The minimum and maximum production levels were set manually
based on historical values. Sometimes the minimum and maximum values were also
modified based on the target production. This was especially the case in run-of-river
areas, where the minimum and maximum production was increased when the general
production level was high.

Two testing setups were studied, with different prior supply curves. First, we study
how well the model can predict the supply curve one week ahead. The prior supply
curves are constructed using the empirical supply curves from the week prior to the
test week. Thus, we obtain six independent test weeks. This test is done to see how
well the supply curve forecasting model can predict the movement in the supply curve
in the very short-term. With this shorter time horizon it is more reasonable to assume
e.g. wind production and consumption to be known.

In the second testing setup, we try to forecast the hydro supply curve multiple weeks
ahead. In this testing setup, the prior supply curves are set based on the empirical
supply curves from before the start of the six week test period, July 1st to July 7th.
This setup was used to study how well the model can predict the supply curve multiple
weeks into the future, using only information about the current hydro supply curves.
The other inputs to the market equilibrium model still contain the realized values.
In reality, the inputs to the model cannot be predicted for such a long time horizon.
However, it is interesting to see how well the model can replicate the hydro supply
curve given the realized inputs.

In both of the testing setups the prior supply curves were smoothed using a
Savitzky-Golay filter [52]. The Savitzky-Golay filter smooths a function by fitting
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polynomial functions to a subset of points. The parameters used for the filter was
a window length of 75 and polynomials of order 1. The smoothing was applied to
remove sudden jumps and increase the slope of the middle of the supply curve. When
the filter was not applied, it was observed that the hourly prices in the prior forecast
often converged to a given price level, which is undesirable as the predicted supply
curve would become too flat. The effect of the filter was however not that significant
and the model could likely be used without it.

Measuring the quality of the generated supply curves is difficult as the true hydro
supply curve, which is to be estimated, is unknown. Therefore we will mostly focus on
visual inspection of the generated supply curves and their qualitative properties rather
than doing a more quantitative analysis. One way to qualitatively study the results is
to compare the generated supply curve with the realized empirical supply curves for
some of the test weeks.

We attempt to quantify the accuracy by studying the error in price at the realized
production volume. This is an interesting measure of the performance, as hydropower
is usually price setting, and comparing the prices in the supply curves could be a good
approximation of the error of a price forecast generated based on the predicted supply
curves. The error metric chosen was Root Mean Squared Error (RMSE). Another
way to think of this error measure is to take every point on the empirical supply curve
and to compute the mean vertical distance to the predicted supply curve. We compare
the RMSE of the modelled supply curves with the RMSE of the prior supply curves.
This comparison gives an indication whether the generated supply curve would be
better than the prior supply curve. Using RMSE can be heavily influenced by outliers
and therefore the results should be used somewhat cautiously and the supply curves
should be visually inspected before drawing any stronger conclusions.

6.1 Week ahead forecasts

We first study how well the model predicts the hydro supply curve for the upcoming
week. The objective is that the predicted hydro supply curve would be better than the
prior supply curve based on observations from the previous week. The prior supply
curve already contains a lot of information about the current hydrological situation and
is therefore a very good benchmark which may be hard to beat. The RMSE values of
the prior and predicted hydro supply curves are compared in Table 1. The differences
in RMSE values were generally small. The total number of tests where the predicted
supply curve outperformed the prior supply curve were 19/36, indicating that the
predicted supply curves did not offer that much improvement. When the predicted
supply curve is worse than the prior curve, it is often not by a large margin but when
the predicted curve performs better it is sometimes by a significant margin. Comparing
the performance on individual weeks, the model performed worst on the week starting
15th of July while the performance on other weeks were quite similar.

We look into the potential causes for the errors by visually examining the prior
and predicted supply curves for two of the test weeks, the week starting 15th of July
(Fig. 23) and the week starting Sth of August (Fig. 24). These weeks were chosen to
compare a week with relatively good performance and a week with worse performance.
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8.7. 15.7. | 227. | 29.7. | 5.8. 12.8.
I Predicted | 10.61 | 8.79 | 9.44 | 844 | 6.63 | 20.97
Prior 13.15 | 836 | 17.97 | 8.57 | 887 | 22.00
NOI Predicted | 891 | 9.63 | 868 | 637 | 11.71 | 9.50
Prior 13.13 | 1442 | 11.64 | 15.45 | 11.45 | 5.71
NO2 Predicted | 5.19 | 4.11 | 9.60 | 20.31 | 10.49 | 10.92
Prior 534 1292 |9.07 | 2032 | 12.87 | 10.74
NO3 Pr?dicted 508 | 474 |2.60 | 191 |833 |7.70
Prior 537 | 401 |234 |206 |866 |7.48
NO4 Predicted | 4.76 | 4.74 | 276 |1.76 |7.84 | 7.28
Prior 4.64 | 497 |328 |124 |931 |7.30
NO5 Prc?dicted 228 | 850 |[3.53 | 267 |833 |874
Prior 278 827 394 |294 1997 |10.09
SE| Predicted | 7.47 | 5.75 | 6.83 |4.28 |4.79 | 644
Prior 12.50 | 851 | 6.76 | 7.55 |5.41 |7.00
SED Predicted | 4.71 | 745 | 6.08 |4.39 |883 |3.51
Prior 428 |662 | 723 |4.15 |8.69 |5.66
SE3 Predicted | 11.94 | 10.21 | 7.61 | 10.19 | 10.64 | 6.54
Prior 18.78 | 15.93 | 10.32 | 12.04 | 15.57 | 9.14

Table 1: RMSE values for price for the week ahead forecasts. Cells marked with
green represent the weeks and areas where the predicted supply curve outperformed
the prior supply curve.

The relatively smooth shape of the prior and generated supply curve is due to the
application of the Savitzky-Golay filter. Also the effect of extending the supply curves
can be seen, where for example a large part of the supply curve in NO4 is defined
based on the linear extension at higher production volumes.

In the week starting 15th of July the model had the worst performance judging by
the RMSE values. Looking at the generated supply curves in Figure 23, no area stands
out with a particularly poor performance. The model predicted a too high supply curve
in areas SE2, NO3 and NO4 which explains the poorer RMSE values. This could be
due to the unusually low hydro production levels seen in this area during summer of
2024 as a result of low reservoir filling levels. Therefore the hydro production profile
may not be well described by the historical load-duration curves. Another explanation
could be the use of a deterministic price forecast. If the deterministic price forecast
does not contain any hours with very low or zero prices, the model will keep the
leftmost part of the supply curve at a higher level, resulting in a higher supply curve.
In contrast, the model performed well in price areas with more run-of-river production
and lower storage capacity (NO1, SE3 and FI). This is logical as the realized hydro
production was used as the target hydro production level. The model is therefore able
to correctly predict shifts in production volume, corresponding to a left or right shift
in the supply curve. Hence, if one were able to correctly predict the weekly hydro
production levels in these areas, the model would be able to improve the supply curve
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Figure 23: Week-ahead supply curve forecasts and prior supply curves for the week
starting 15th of July.
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Figure 24: Week-ahead supply curve forecasts and prior supply curves for the week
starting 5th of August.
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prediction compared to using a constant supply curve. In areas with more run-of-river
production, it may not be valid to assume that the supply curve stays constant over one
week as changes in inflow can rapidly shift the curve to the left or to the right.

Looking at the generated supply curves in the week starting August Sth, we again
see that the performance was good in run-of-river dominated areas. Areas SE3 and
NO1 saw shifts in production volumes which were correctly predicted. The model
also improved the supply curve in Finland, where the price at higher production levels
where correctly lowered. This improvement in Finland was however most likely due to
outliers in the prior supply curve, where some rare high priced hours had an effect on
the prior supply curve. The model did, however, not predict the changes in the supply
curves in areas SE1 and SE2. In both of the northern Swedish areas, the predicted
supply curve followed the prior supply curve closely, instead of predicting lower prices
or higher production. Compared to other weeks, this week stands out as performance
in NO3 and NO4 was quite good. However, neither the prior or the predicted supply
curve managed to get down to the very low prices which were observed during this
week.

6.2 Forecasting multiple weeks

Next, we study how the model performed when the prior supply curves were set based
on the observations from the first week in July. Using these prior supply curves,
the price forecast becomes less accurate. In particular, it is possible that the general
price level is off in the forecast, as the price level is often set by hydro production. It
can therefore be expected that the errors will now be larger compared to forecasting
only one week ahead. The performance of the prior supply curves will also naturally
decrease and therefore the comparison between prior and predicted curves is still
interesting. If the predicted supply curves can offer some improvement compared to
the prior supply curves, it indicates that the model can also be used over longer time
horizons to predict in which direction the hydro supply curve will change.

We again compare the weekly RMSE values for the price in the predicted and
prior supply curves (Table 2). The errors in the first test week are exactly the same
as before, since the same prior supply curves were used this week. The performance
difference between the prior and predicted supply curves are again mixed, with the
predicted supply curve again having better performance in 19/36 tests. The weeks
and areas where the predicted supply curves outperformed the prior supply curves
however changed. The errors increase when moving further into the future both for
the predicted and prior supply curves but no clear trend can be seen when it comes to
the performance of the predicted supply curve relative to the prior supply curve.

We study the generated supply curves in the same weeks as in the previous sections
in Figures 25 and 26. The observations are very similar to the week ahead forecast.
The predicted supply curves rarely differ significantly from the prior supply curves
and the shape of the predicted supply curves are often reasonable.

During the week starting 15th of July the predicted supply curves again performed
worse compared to other weeks, as was the case for the week-ahead forecasts. The
generated supply curves look very similar compared to the ones generated in the
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week-ahead forecast. This can be attributed to the fact that the prior supply curves are
only from two weeks before the test week and there was not much time for the supply
curves to change. The model again performed well in areas dominated by run-of-river
production, but it did not predict the decrease in water values in areas SE2 and NOS.

In the week starting 5th of August, we can see that in almost all areas, the predicted
supply curve moves in the right direction compared to the prior supply curves. The
only exception is NO3, where the predicted supply curve was shifted upwards while
the prior supply curve would have been an almost perfect prediction. In NO4 the
predicted supply curve is correctly shifted upwards but the magnitude of the shift is
too large. The same holds in the Finnish price area. In all other areas, the predicted
supply curve moves nicely in the correct direction of the realization without making
too large changes. Thus, the model can also be used to model the supply curve further
into the future, but the magnitude of changes are likely underestimated.

6.3 Interpreting the results

When interpreting the results, it is important to consider that realized values were
used for many inputs to the price forecast. It should, however, be possible to obtain
satisfactory results without knowing these inputs, because only the price duration
curve really matters when generating the supply curves. The price forecast can be

8.7. 15.7. | 227. | 29.7. | 5.8. 12.8.

FI Predicted | 10.61 | 9.57 | 9.58 | 8.60 | 10.88 | 19.63

Prior 13.15 | 12.20 | 13.97 | 15.87 | 10.12 | 26.34

NOI Predicted | 8.91 | 10.26 | 13.04 | 12.45 | 15.99 | 20.02

Prior 13.13 | 17.68 | 23.96 | 18.47 | 19.95 | 20.02

NO2 Predicted | 5.19 | 5.38 | 7.44 | 20.52 | 12.09 | 14.83

Prior 534 | 577 |7.16 |21.26 | 16.14 | 16.92

NO3 Prc?dicted 5.08 | 495 |6.68 |3.14 | 10.23 | 13.35

Prior 537 | 380 |4.18 |205 |7.77 |10.62

NO4 Predicted | 4.76 | 4.86 | 7.01 |3.19 |7.78 | 12.72
Prior 464 | 788 |955 [9.72 |6.65 | 498

NO5 Pr§dicted 228 |9.16 | 11.41 | 10.93 | 14.86 | 19.60

Prior 278 | 811 | 1037 | 8.88 | 17.16 | 20.86

SE] Predicted | 7.47 | 6.16 | 10.20 | 8.50 | 9.50 | 12.84

Prior 1250 | 834 |9.24 | 10.74 | 13.69 | 14.14

SED Predicted | 4.71 | 742 |9.69 | 847 | 12.02 | 12.54

Prior 428 | 631 | 11.21 | 11.63 | 15.19 | 18.05

SE3 Pr(?dicted 11.94 | 10.48 | 10.58 | 15.82 | 14.79 | 14.81

Prior 18.78 | 24.91 | 25.64 | 32.22 | 23.53 | 24.19

Table 2: RMSE values for price when using original hydro supply curves. Cells
marked with green represent the weeks and areas where the predicted supply curve
outperformed the prior supply curve.
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Figure 25: Supply curve forecast for the week starting July 15th using prior supply
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Figure 26: Supply curve forecast for the week starting August Sth using prior supply
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quite inaccurate as long as it contains a realistic number of cheap and expensive hours
which would result in a realistic price duration curve. This can be achieved as long as
the variation in inputs resembles reality, while the exact values in the forecast are not
important.

The most likely reason for poor performance in some weeks is the choice of target
production. If inflow is high, the reservoir at the end of the week will increase even if
hydro production is running at full capacity all the time. This increased reservoir level
should decrease water values, but in the model the total hydro production during the
week is the only factor representing the hydrological conditions. The model should
be adjusted so that the target production is not set according to the expected realized
production, but rather the expected production adjusted by the deviation from normal
inflow. If inflow is higher than normal, the target production should be increased to
reflect this increase in inflow, even if the actual hydro production does not increase as
a consequence of the increased inflow.

The model performance generally varied across different areas. The areas NO3
and NO4 stand out from the rest, as the model consistently performed worse in these
areas. Furthermore, In price area NO2, the model did not predict the shape of the
supply curve very accurately. One explanation may be the large influence of low prices
from Central Europe during times of large renewable output. As the transmission
capacity between NO2 and Central Europe has increased only in recent years, the
historical load-duration curves might not be flexible enough to reduce the production
during cheaper priced hours. For the Northern Swedish areas SE1 and SE2, the model
performance was mixed with some good predicted supply curves in certain weeks
while the results were worse in others. The model had the best performance in areas
NOI1, SE3 and FI where the storage capacity is relatively small. The differences
between different areas can be attributed to differences in storage capacity. It was
expected that the model would perform worse on areas with larger storage capacities,
since the model performs the optimization on a weekly granularity. In areas with
larger storage capacity, the valuation from the long-term model will have a larger
influence on the water values and considering only one week at a time will not capture
the long-term effects.
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7 Conclusions

The water value is one of the most important drivers of electricity prices in the
Nordics. Computing the water value is very complex and requires solving a large-scale
stochastic dynamic programming problem. Solving this problem to predict the hydro
supply curve would suffer from high computational burden, high complexity and lack
of available data, highlighting the need for simpler models, which can quickly give
results with acceptable accuracy. Forecasting the hydro supply curve has become even
more complex in recent years with increased short-term price volatility, arising from
renewable energy sources. The increased volatility has changed the dynamics of the
hydro supply curve, with hydro supply curves changing quicker, especially in areas
with limited storage capacity.

Literature on forecasting the hydro supply curve is very scarce. Most of the
literature focus on pricing of hydro resources from a producer’s perspective rather than
from a price forecaster’s perspective. The literature on hydro scheduling is however
very useful to understand the water values and can be used as a theoretical background.
An explaining factor of the lack of literature could be the lack of available data in the
form of supply curves for individual regions as well as hydro production of individual
plants. The lack of literature also highlights the difficulty in predicting the hydro
supply curve and it may be questionable whether it is possible to create a satisfactory
model to forecast the hydro supply curve.

In this thesis, we presented a model to forecast the hydro supply curves in the
Nordic electricity market over a short-term time horizon. Even if the proposed model
did not manage to explain the movements in the supply curve in all areas, it still
provides a useful framework for modelling the hydro supply curve. The model is
highly explainable as it is essentially only a function of price forecasts and hydro
production. Interpreting the model results should therefore be easy and provide more
understanding of the dynamics of the hydro supply curve. The model could be used as
a decision support tool, where altering the inputs gives a supply curve corresponding
to the inputs. Especially altering the target production can give a good idea of how the
hydro supply curve should behave in a wet or dry hydrological scenario. Using the
model along with expert opinion can potentially provide insights into what direction
the hydro supply curve could move.

Several improvements could enhance the model. The deterministic price forecast
does not describe the electricity price in a perfect way as uncertainty is high and
sudden price spikes are common. Electricity producers should be pricing in the small
possibility of very high prices in the future, which is not necessarily captured in a
deterministic price forecast. One way to address this would be to use an ensemble of
price forecasts, generated from different weather scenarios. The scenarios could then
be averaged to form an expected price-duration curve, which could be used as input to
the model. This approach would better account for the uncertainty in future prices
but would be more computationally expensive because of the multiple price scenarios
which need to be generated. Another possible improvement could be to use different
time horizons for different price areas. In price areas with larger storage capacity, the
optimization could be carried out over e.g. a month instead of a week.
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