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Abstract
Accurate classification of wood and leaf components is essential for understanding forest
structure and estimating biophysical parameters. Classifying these components remains
challenging due to variations in species characteristics and differences in data acquisition
geometry. This thesis presents an unsupervised method for classifying wood and leaf
points in LiDAR point clouds, developed using an adaptive radius search algorithm for
geometric feature extraction combined with a Gaussian mixture model classifier.

The objective of this thesis was to automate the selection of the optimal local
neighbourhood for each point to improve geometric feature extraction compared to
previously applied fixed neighbourhood sizes. The adaptive radius search algorithm,
originally introduced for urban point clouds, identifies the optimal neighbourhood by
minimising Shannon’s entropy, thus adapting the scale to capture the geometric structure
of each point’s neighbourhood. The extracted geometric features were further classified
independently using a two-component Gaussian mixture model. Final classification was
conducted as a weighted sum of the individual feature classifications.

Since the algorithm performs without manually labelled datasets, it is well suited for
application to large-scale forest datasets and different data acquisitions. The performance
of the unsupervised wood and leaf classification algorithm developed in this thesis was
evaluated on three different LiDAR datasets consisting of Terrestrial Laser Scanning
(TLS), Unmanned Aerial Vehicle (UAV), and Airborne Laser Scanning (ALS). The
unsupervised wood and leaf classifier achieved average overall accuracies of 85% and
91% on Scots pines of TLS and UAV datasets, respectively, and the performance on TLS
datasets was comparable to supervised methods. In the sparser ALS data, classification
performance degraded, with lower precision and recall due to reduced geometric detail,
indicating a point density threshold below which the unsupervised classification of this
thesis becomes unreliable.

Overall, the results confirmed that adaptive neighbourhood optimisation enhances
wood and leaf classification by improving feature quality and classification accuracy. The
method demonstrated robust performance across different tree species as well as data
acquisitions.

Keywords Unsupervised wood and leaf classification, adaptive radius search
algorithm, Gaussian Mixture Model, TLS, UAV, ALS, laser scanning
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Tiivistelmä
Puiden runko- ja lehvästöpisteiden luokittelu laserkeilauspistepilvistä on keskeinen osa
metsäekosysteemien tutkimusta ja niiden biofysikaalisten tunnusten, kuten biomassan
ja lehtialaindeksin, arviointia. Tässä työssä kehitettiin ohjaamatonta oppimista hyödyn-
tävä algoritmi, joka luokittelee puiden runko- ja lehvästöpisteet käyttäen mukautuvaa
sädehakualgoritmia yhdessä Gaussin sekoitemallien kanssa.

Työn tavoitteena oli automatisoida optimaalisen paikallisen naapuruston mää-
rittäminen jokaiselle pisteelle, jotta pistepilven geometrisen rakenteen kuvaaminen
tehostuisi verrattuna aiemmin käytettyihin vakiokokoisiin naapurustoihin. Alun pe-
rin rakennusten pistepilviaineistoille kehitetty mukautuva naapurustohaku määrittää
kullekin pisteelle parhaiten soveltuvan mittakaavan minimoimalla naapuruston Shan-
nonin entropian, mikä mahdollistaa pisteen lähiympäristön tarkemman mallintamisen.
Pisteille lasketut geometriset piirteet luokiteltiin Gaussin sekoitemalleja hyödyn-
täen ja lopullinen puu- tai lehtipisteluokitus muodostettiin yhdistämällä useiden
binääriluokitusten tulokset painotetun summan avulla. Menetelmä soveltuu laajojen
metsäpistepilvien käsittelyyn ja monipuolisten kaukokartoitusaineistojen hyödyntämi-
seen, sillä se ei vaadi manuaalisesti luokiteltua opetusaineistoa.

Kehitetyn luokittelualgoritmin suorituskykyä arvioitiin kolmella eri laserkeilauso-
petusaineistolla: maa- (TLS), drooni- (UAV) ja lentolaserkeilausaineistolla (ALS).
TLS- ja UAV-aineistoissa kehitetty luokitusmenetelmä saavutti mäntyjen osalta keski-
määrin 85 %:n ja 91 %:n kokonaistarkkuudet ja erityisesti TLS-datassa menetelmän
suorituskyky oli verrattavissa muihin ohjattuihin opetusalgoritmeihin. Pistetiheydel-
tään harvemmissa ALS-aineistoissa luokitustarkkuus heikkeni selvästi geometristen
yksityiskohtien puutteen vuoksi.

Tulokset osoittivat, että luotettavan luokitustarkkuuden saavuttaminen edellyttää
tietyn pistetiheyden ylittymistä. Tulokset vahvistivat mukautuvan naapurustokoon
optimoinnin merkityksen rungon ja lehvästön erottelussa, sillä dynaaminen naa-
purustokoko paransi sekä piirteiden laskennan laatua että luokituksen tarkkuutta.
Menetelmä osoitti myös vahvaa suorituskykyä eri puulajeilla ja laserkeilausaineistoilla,
mikä korostaa sen monipuolista soveltuvuutta eri metsäaineistoissa.

Avainsanat Ohjaamaton runko- ja lehvästöpisteiden luokittelu, mukautuva
naapurustokoon optimointialgoritmi, Gaussin sekoitemalli, TLS, UAV,
ALS, laserkeilaus
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Symbols and abbreviations

Symbols
𝐴3𝐷 Anisotropy
𝐶 Covariance matrix
𝐶3𝐷 Curvature
𝐷3𝐷 Local point density
𝐸 𝑓 Shannon entropy function
𝐿 Likelihood function
𝐿3𝐷 Linearity
𝑛 Number of points in local neighbourhood
N Normal distribution
𝑃3𝐷 Planarity
𝑄 Expected complete data log-likelihood function
𝑟 Radius of a local neighbourhood
𝑟∗
𝐸 𝑓

Optimal radius minimising entropy
R The set of real numbers
𝑆3𝐷 Sphericity
𝑉3𝐷 Verticality
V𝑟
𝑥 Neighbourhood of point 𝑥 with radius 𝑟

𝑤𝑖 Mixture weight of Gaussian component 𝑖
𝑦̂𝑘 Predicted label of data point 𝑘
𝛼1𝐷 Linearity feature ratio
𝛼2𝐷 Planarity feature ratio
𝛼3𝐷 Scattering feature ratio
𝛽 Lagrangian multiplier
𝛾𝑘𝑖 Responsibility of component 𝑖 for data point 𝑘
𝜆𝑖 𝑖th eigenvalue of covariance matrix
𝜇𝑖 Mean vector of Gaussian component 𝑖
𝜎𝑖 Standard deviation along principal component 𝑖
𝜎1 First principal component (standard deviation along first principal direction)
Σ𝑖 Covariance matrix of Gaussian component 𝑖
𝜃 Set of model parameters
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Abbreviations
3D Three-dimensional
AdaBoost Adaptive boosting
AGB Above-ground biomass
ALS Airborne laser scanning
CANUPO Caractérisation de nuages de points
CC CloudCompare
DBH Diameter at breast height
DBSCAN Density-based spatial clustering of applications with noise
E-step Expectation step
EM Expectation-maximisation
FGI Finnish Geospatial Research Institute
GMM Gaussian mixture model
k-NN K-nearest neighbours
LAI Leaf area index
LDA Linear discriminant analysis
LiDAR Light detection and ranging
LeWoS An automated leaf and wood separation method
M-step Maximisation step
ML Maximum likelihood
NB Naive Bayes
PAI Plant area index
PCA Principal component analysis
RF Random forest
SP Shortest-path
SVM Support vector machine
TLS Terrestrial laser scanning
UAV Unmanned aerial vehicle
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1 Introduction
Laser scanning technology, providing Light Detection and Ranging (LiDAR) data,
is applied across various fields, including forestry, robotics, and automated vehicles.
Within forestry, Terrestrial Laser Scanning (TLS) has emerged as a new tool for
capturing 3D measurements that were not previously possible with field surveys,
enabling non-destructive monitoring of vegetation structures and dynamics. In action,
TLS emits low-energy infrared laser pulses with high reflectance over vegetation
to capture XYZ coordinates of tree points (Campos et al., 2021). Due to the laser
beam’s high penetrability, multiple returns per pulse are recorded, resulting in dense,
high-resolution three-dimensional point clouds of the forest environment (Wehr &
Lohr, 1999). Point clouds provide valuable information on forest structures and tree
growth. Each 3D point in the cloud is defined by its geometric coordinates as well
as the intensity of the emitted laser beam, allowing for the computation of the tree’s
structural parameters, such as height, canopy area, Diameter at Breast Height (DBH),
Above-Ground Biomass (AGB), Plant Area Index (PAI) and Leaf Area Index (LAI).

Tree height and DBH can often be estimated with centimetre-level precision using
structural analysis techniques such as fitting cylinders to stems or estimating canopy
surfaces (Boucher et al., 2021). In contrast, directly estimating metrics such as AGB
and LAI is more challenging, since both require accurate separation of wood and
leaf components. In practice, AGB indicates forest productivity and carbon storage,
whereas LAI represents the total leaf surface area per unit ground area and determines
the amount of light intercepted by plants for photosynthesis.

Separating wood and leaf points accurately remains a challenge due to the similar
geometric structure of leaves and wood parts of the tree. Wood and leaf classification
is typically divided into supervised and unsupervised methods. Supervised machine
learning techniques have demonstrated high classification accuracy, but require
manually labelled datasets. Creating such datasets is labour-intensive and time-
consuming, limiting the benefits of supervised approaches for large-scale forest
applications. In contrast, unsupervised methods rely solely on the geometric and
radiometric properties of the LiDAR point cloud and do not require manually labelled
data, thus providing a more efficient alternative for processing large datasets.

A key challenge in unsupervised wood and leaf classification is the tuning of
algorithm parameters, such as neighbourhood size and feature distribution thresholds
for class separation. Selecting an optimal neighbourhood size, and thus the search
radius applied for feature extraction, is particularly difficult due to variations according
to multiple factors, including point density, tree architecture, and species-specific
structural characteristics. A radius that is too small may fail to capture the local
neighbourhood structure, while an excessively large radius can include features
from unrelated structures. Therefore, a suboptimal radius can significantly reduce
classification accuracy. Although radius is one of the most important parameters
in wood and leaf classification, a fixed radius remains commonly applied. Tree
architecture further complicates generalisation, as coniferous and deciduous species
exhibit distinct structural traits, making it difficult for a non-adaptive algorithm to
perform consistently across various tree species.



This thesis aims to improve the parametrisation of an unsupervised wood and leaf
separation method. In consequence, the objective is to implement a classification
algorithm that automatically adapts to varying point cloud characteristics, thus reducing
the need for manual tuning and enhancing classification accuracy across different
datasets. The central hypothesis focuses on how an adaptive radius search method
could improve unsupervised wood and leaf classification when applied to forest LiDAR
data. In order to demonstrate the consistence of the adaptive radius approach, the
study particularly investigates an adaptive neighbourhood search method originally
developed for building point cloud classification by Demantké et al. (2011), and
proposes its adaptation to tree point clouds. The method iteratively identifies the
neighbourhood size that minimises local geometric entropy, therefore capturing the
relevant structural scale. Although this approach has demonstrated success in urban
datasets, it has not been applied to cases in forestry. The thesis thus supports that
integrating adaptive radius selection with an unsupervised classification, specifically
a Gaussian Mixture Model (GMM) classifier using geometric features, can yield
a robust algorithm capable of accurately separating wood and leaf points across
various species and point cloud densities. The study evaluates the method on different
geometries and tree species acquired from several LiDAR datasets. In addition, the
density threshold beyond which the proposed unsupervised wood and leaf classification
becomes unreliable is examined.

To provide context for the proposed approach, the thesis is organized as follows.
Section 2 reviews the relevant literature on wood and leaf classification, covering prior
supervised and unsupervised methods and their known advantages and limitations.
Section 3 presents the theoretical background for the proposed method, including
an overview of the adaptive radius search algorithm, the set of geometric features
employed, and the Gaussian mixture model formulation for unsupervised classification.
Section 4 describes the research materials and methods; it introduces the terrestrial
laser scanning, Unmanned Aerial Vehicle (UAV) and Airborne Laser Scanning (ALS)
datasets used in the study and details the implementation of the adaptive classification
algorithm. Section 5 reports the results of experiments, and compares the algorithm’s
classification performance across the different data sources and tree species. Section 6
discusses the findings, by examining the algorithm’s performance in context, outlining
its limitations and drawing comparisons with existing methods. Finally, Section 7
concludes the thesis by summarising the contributions of the work and suggesting
directions for future research.
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2 Literature review
Accurate classification of wood and leaf components presents a significant challenge
due to difficulties from variations in data acquisition and different tree species. The
most common approaches for wood and leaf separation are supervised and unsupervised
machine learning methods. Supervised methods require training datasets consisting of
manually classified wood and leaf point clouds, whereas unsupervised methods rely
solely on the radiometric and geometric properties of the tree point cloud.

Research on wood and leaf classification began to gain attention in 2006, when
Lalonde et al. (2006) proposed an unsupervised approach based on a Gaussian mixture
model. The research was further advanced by studies such as Xu et al. (2007) and Livny
et al. (2010), applying Shortest-Path (SP) analysis to achieve point-wise classification.
In 2012, Brodu and Lague (2012) introduced supervised machine learning to the field,
achieving an average overall accuracy of up to 98%. Since then, both supervised
and unsupervised approaches have been researched, each presenting strengths and
limitations. More recently, in 2018, deep learning methods have been employed. For
instance, Xi et al. (2018) applied deep learning to wood and leaf classification, further
advancing supervised methods.

2.1 Supervised methods
Extensive research has been conducted to propose supervised learning methods, which
rely on four well-known machine learning algorithms: Random Forest (RF), Support
Vector Machine (SVM), Gaussian mixture model, and Naive Bayes (NB). RF is
a decision tree machine learning algorithm, constructing an ensemble of trees by
training each on randomly selected subsets of the original data (Wang et al., 2017).
The method provides accurate and robust classification, achieving high performance
even when applied to noisy datasets (Geiß et al., 2015). The SVM algorithm is based
on finding a hyperplane that maximises the distance between the nearest vectors
in the wood and leaf classes (Wang et al., 2017). The hyperplane is positioned to
achieve the largest possible margin between these classes, resulting in wood and leaf
point separation. Both GMM and NB algorithms utilise probability distributions
to separate wood and leaf components. The Gaussian mixture model estimates the
likelihood of observing a given feature value by modelling each class as a Gaussian
distributed random variable. In binary classification, the overall continuous probability
density function is mathematically expressed as a linear combination of two Gaussian
components, each representing a single class (Ma et al., 2016). Similarly, naive Bayes
relies on Bayes’ theory and assumes conditional independence between features within
a given class. It assigns a label to a point based on the class with the highest probability
(Wang et al., 2017).

Wang et al. (2017) compared the performance of the four well-known machine
learning algorithms. The study was conducted on two isolated trees, with 26 features
extracted from the point clouds. Results indicate that the RF classifier achieved the
highest accuracy, with 98% accuracy using 26 features and 94% accuracy using 5
features. NB, in contrast, performed the worst, with 87% accuracy using 26 features
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and 90% accuracy using 5 features. The other algorithms exhibited similar performance
to RF, demonstrating less than 1% accuracy. Since the study was conducted on two
isolated trees, the performance of these algorithms should be further validated by using
different species and more complex ecosystems. Ma et al. (2016) applied an improved
salient feature-based approach to separate wood and leaf classes. In the method, the
Gaussian mixture model parameters were estimated by application of the Expectation-
Maximisation (EM) algorithm, assigning iteratively posterior probabilities to train
points from each class based on their spatial distributions. The resulting GMM was
further utilised to distinguish wood from leaf components. After the separation, six
filters were applied to improve the results. With this method, the accuracy achieved
without filters ranged from approximately 65% to 73%, while with filters, it increased
to between 84% and 98%. Despite Ma et al. (2016) achieving accuracies above 80%,
the radius for identifying neighbouring points was determined empirically.

Various studies extract tree features from point clouds by employing fixed nearest
neighbour search radius methods. Zhu et al. (2018) introduced a variation of the
adaptive radius search algorithm for feature extraction and compared its performance
with the conventional fixed radius approach. The optimal radius is chosen from a
set of three predetermined radii, based on the tree’s DBH, as the radius minimising
Shannon entropy. Several search radii were tested across different forest plots to
compute geometric and radiometric features, which were then compared with the
results obtained by the fixed radius method. The adaptive radius method demonstrated
more accurate classification and greater robustness. The key advantage of the adaptive
near-neighbour radius search is the ability to adjust to different scenarios, such as
variations in the dimensionality of local point clusters. For instance, depending on
the search radius, the stem of the tree could be classified as either a two-dimensional
or a one-dimensional structure, demonstrating the limitations of the fixed radius
near-neighbour search (Zhu et al., 2018).

Zhu et al. (2018) further researched the classification accuracy of geometric
and radiometric features, both individually and in combination. The accuracy was
assessed by applying a random forest classifier with the geometric and radiometric
features. The study concluded that radiometric features alone provided an average
overall accuracy of 45.8%, whereas geometric features achieved an accuracy of 70.4%.
Combining both geometric and radiometric features improved the overall accuracies
to between 84% and 90%. Radiometric features provide additional information for the
classification due to the different spectral properties of leaf and wood components,
thereby increasing separation accuracy. However, the difference is not significant
enough for the radiometric features alone to separate effectively wood from leaf
components.

Moorthy et al. (2020) introduced an alternative method that avoids using a
neighbourhood radius, instead relying on different neighbourhood sizes for computing
the features. The applied classifiers were random forest, XGBoost and LightGBM.
Both XGBoost and LightGBM algorithms construct each decision tree based on the
outcomes of the previous trees (Moorthy et al., 2020). The machine learning classifiers
were trained with 60 decision trees, as the study´s findings indicated that utilising
more than 60 decision trees would not yield any improvements in the results. The
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performance of the three methods was found to be similar. However, the RF classifier
slightly outperformed the other algorithms, displaying an average accuracy of 94.2%.
Despite achieving accurate results, Moorthy et al. (2020) concluded that no single
algorithm is universally suitable for all datasets and that the proposed method failed
for some individual trees.

Xi et al. (2020) compared the performance of nine deep learning classifiers:
FCN-VGG, ResNet-50, ResNet-152, Inception-ResNet-v2, UNet, DenseNet, PSPNet,
Superpoint Graph, and PointCNN, with six machine learning algorithms, consist-
ing of k-Nearest Neighbours (k-NN), Support-Vector Machines, Adaptive Boosting
(AdaBoost), random forest, naive Bayes and Linear Discriminant Analysis (LDA).
Each point cloud plot scan was divided into blocks of 96x96x96 voxels with a spatial
resolution of 0.06 m (Xi et al., 2020) and was provided as input to the deep learning
classifier. The algorithm was trained on 623 blocks and tested on 190 blocks, with
each voxel characterised by three attributes: point occupancy, laser intensity, and
height. The deep learning model produced an output block of 96x96x96 labels, which
were further transformed into point-wise labels to produce the final classification.

The machine learning algorithms were trained using 56 geometric and radiometric
features. Among the nine deep learning classifiers tested, overall accuracies ranged
from 83% to 94%, with the highest accuracy achieved by UNet and the lowest by
PointCNN. For the machine learning algorithms, accuracies ranged from 78% to 92%,
with NB achieving the lowest precision and RF the highest. These machine learning
results were consistent with those reported by Wang et al. (2017).

Supervised machine learning algorithms are robust classification approaches,
achieving high accuracy in wood and leaf separation. Despite the effectiveness of
supervised methods, these approaches preserve issues. Machine learning, along with
recent deep learning algorithms, requires significant computational time and manually
labelled training data. Generating manually labelled training data is labour-intensive
and prone to human error. Unsupervised methods bypass these challenges by separating
wood and leaf components, relying on the radiometric and geometric properties of the
point cloud.

13



2.2 Unsupervised methods
Unsupervised methods employ the geometric and radiometric features of the point
cloud for wood and leaf separation. Several studies have demonstrated that among
radiometric features, only intensity provides meaningful results. Zhu et al. (2018)
validated this further by examining the performance of various radiometric features,
including intensity, Riegl’s pulse deviation, as well as red, green and blue channels
from a digital camera. The study concluded that while intensity was the only feature
providing significant results, other features had an importance of less than 2%.

Wang et al. (2020) developed an automated wood and leaf separation method
relying only on the geometric features of the point cloud. The Leaf and Wood
Separation algorithm (LeWoS) comprises three primary steps consisting of graph-
based segmentation, class probability estimation and class regulation. With graph-
based segmentation, the problem is transformed into a search for connected graph
components, where the graph is constructed by utilising point cloud density and point-
wise feature information (Wang et al., 2020). In the class probability estimation, wood
and leaf components are identified from the connected graph by the parameters linearity
and size, which are generated from each segment of the graph-based segmentation.
Both linearity and size require threshold values for separation, which traditionally are
manually fixed and fine-tuned. However, Wang et al. (2020) employed another approach
by applying class probability to determine the threshold values, which resulted in
spatially smoothed final classification. The advantage of the LeWoS algorithm is
the requirement of only one defined parameter, allowing universal applications with
different datasets. The accuracies achieved by Wang et al. (2020) were between 87.7%
and 91.5% for different threshold values.

Tao et al. (2015) performed wood and leaf separation by applying shortest-path
algorithms. The method consists of dividing tree point clouds into circles, arcs and
line segments. Thresholding is further applied to the circles and line segments to
eliminate shapes with a radius or length smaller than the threshold value. Skeleton
wood points are extracted by using Dĳkstra’s shortest-path algorithm to connect central
points derived from 2D projections of circular and linear features across horizontal
segments. The final classification is achieved by applying KDTree range searching
with a constant radius. The shortest-path method demonstrated effectiveness in wood
and leaf separation, especially in detecting larger branches, achieving an average kappa
coefficient of 0.83. However, the fixed search radius resulted in the misclassification
of smaller branches in reason for their similar size to leaves, hence resulting in their
elimination in the thresholding.

TLSeparation is a similar approach, developed by Vicari et al. (2019), which ex-
pands the classification further by combining pointwise and path-analysis classification
in the geometric approach. Four different algorithms were used in total, two of which
rely on geometric features computation at the point level, while the other two employ
shortest-path algorithms. By applying geometric features from literature, Vicari et al.
(2019) aimed to obtain distribution models from GMM. Expectation-maximisation
algorithms were then combined with GMM to classify distribution models into a set
of classes. Shortest-path algorithms were further applied to represent the tree structure
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as a network. Henceforth, SP analysis was employed in the study to observe paths
with a high frequency of occurrence and classify them as wood parts. On average,
Vicari et al. (2019) achieved accuracies between 77% and 89%. The advantage of
combining multiple methods is to provide a fully automated tool that is also robust
and transferable.

Employing the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm, Ferrara et al. (2018) differentiates from using geometric
features by separating the point cloud into voxels. Voxels are further categorised
as active or inactive depending on the point counts. The DBSCAN algorithm is
subsequently applied to cluster these voxels, and the cluster containing the largest
number of voxels is identified as wood. One of the main benefits of the DBSCAN
algorithm is its efficiency when dealing with large datasets. The authors achieved
accuracies varying from 94% to 96%. Despite achieving high accuracies, the algorithm
still requires fine-tuning of two parameters, consisting of the radius Eps, representing
the Eps-neighbourhood of a point and MinPts corresponding to the minimum number
of points in an Eps-neighbourhood (Ferrara et al., 2018).

Hui et al. (2021) developed a method for separating wood and leaf components
utilising mode points evolution. Initially, mean shift segmentation segments the point
cloud into clusters, each with its centre defined as a mode point. The mode points
further form the graph structure, with nodes representing these points and edges
weighted by their pairwise distances. Within this graph, wood nodes are identified
using analysis of path occurrence frequency, with leaf nodes determined by retracing
the paths. To enhance detection accuracy, an evolution process is applied to the
nodes, refining the separation of wood and leaf components. The final classification
is achieved by merging the segments based on the mean shift results, leading to an
average overall accuracy of 89%.

Shcherbcheva et al. (2023) conducted a study in which wood and leaf separation
was performed by a Gaussian mixture model with two components. The study extracted
geometric features across eight different radii for classification. The geometric features
consisted of linearity, anisotropy, sphericity, surface variation, verticality and the first
principal component. Each feature was used as an input to the GMM for classification.
A point was labelled as wood if it was classified as such by any feature at any radius,
resulting in a method that is prone to overclassification. Following classification,
Shcherbcheva et al. (2023) applied DBSCAN for post-processing, achieving an average
overall accuracy of 85%.

Generally, unsupervised methods demonstrate lower classification accuracy in
comparison to supervised methods. Ali et al. (2024) compares the performance of the
random forest algorithm with three fully automated wood and leaf classifiers: LeWoS
(Wang et al., 2020), TLSeparation (Vicari et al., 2019), and CAractérisation de NUages
de POints (CANUPO). Geometric features have demonstrated high performance in
wood and leaf classification, leading automated classifiers to utilise these features from
point clouds. CANUPO combines supervised learning with geometric features for
wood and leaf separation. The geometric components, including Principal Component
Analysis (PCA) and point density, are provided as inputs for a support vector machine
to learn the relationship between geometric features and the labelled wood and leaf
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parts of the tree (Ali et al., 2024). To enhance the accuracy, semi-supervised learning
incorporates information from unlabelled points. Additionally, the method optimises
computation by performing multiscale feature analysis on subsampled core points,
balancing computation time with spatial resolution (Ali et al., 2024).

Applying the four leaf and wood classification algorithms resulted in accuracies of
95% for RF, 90% for LeWoS, 89% for CANUPO, and 81% for TLSeparation. Ali
et al. (2024) observed that the accuracy obtained for RF was lower than Wang et al.
(2017) but higher than Zhu et al. (2018), possibly due to differences in neighbourhood
radius and the selection of multi-scale features (Ali et al., 2024). The accuracy of the
LeWoS algorithm was similar to that reported by Wang et al. (2020). However, the
accuracy of TLSeparation was lower than that achieved by Vicari et al. (2019), which
might be a result of differences in parameter optimisation.

Unsupervised methods demonstrated high performance with wood and leaf clas-
sification, relying solely on the properties of tree point clouds without the need for
manually labelled training data. Methods applying the search radius tend to under-
perform compared to voxel-based segmentation. Nonetheless, unsupervised methods
offer the advantage of handling larger datasets with more efficient running times
compared to supervised methods. However, supervised methods generally achieve
higher classification accuracies than unsupervised approaches.
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3 Background
The literature review in Section 2 highlights the strengths and limitations of both
supervised and unsupervised methods for wood and leaf classification. While super-
vised methods generally yield higher accuracy, they require labour-intensive manually
labelled datasets. In contrast, unsupervised methods are suitable for large-scale forest
datasets since manually labelled datasets are not required. Gaussian mixture models
have demonstrated robust performance in separating wood and leaf components as
indicated by Shcherbcheva et al. (2023) and Vicari et al. (2019), resulting in GMM
representing an effective choice for unsupervised wood and leaf classification in this
study.

This section presents the theoretical basis of wood and leaf separation algorithm. It
begins by describing the adaptive radius search method applied to determine optimal
local neighbourhoods for feature computation. Following this, the Gaussian mixture
model is introduced as the probabilistic approach applied to classify points into wood
and leaf classes based on their geometric features. Thus, the proposed unsupervised
method consists of three main steps, computation of an optimal neighbourhood radius,
introduced in Section 3.1, extraction of geometric features, introduced in Section 3.2,
and classification of the data using a Gaussian mixture model with two components,
each corresponding to either the wood or leaf part of the tree, introduced in Section
3.3.

3.1 Adaptive radius search method
The adaptive radius search method, introduced by Demantké et al. (2011), determines an
optimal neighbourhood radius for each point in a point cloud by minimising Shannon’s
entropy. This methodenables the adaptive selection of local neighbourhoods, improving
the accurate capture of geometric features in point cloud data.

Let 𝑃 ∈ R3 denote the set of all points in the point cloud and x = (𝑥, 𝑦, 𝑧)𝑇 ∈ 𝑃 be
an arbitrary point. The neighbourhood of x with radius 𝑟 , denoted asV𝑟

𝑥 , is defined as
the set of all points within distance 𝑟 from x,

V𝑟
𝑥 = {xi ∈ 𝑃 | ∥x − xi∥ ≤ 𝑟} .

To analyse the spatial distribution within this neighbourhood, the covariance matrix is
computed based on the centred coordinates of all points inV𝑟

𝑥 as

𝐶 =
1
𝑛
𝐾𝑇𝐾,

where 𝐾 = (x1 − x, x2 − x, . . . , xn − x)𝑇 is the matrix of centred neighbourhood
points. The centre of gravity of the neighbourhood x, with 𝑛 points, is computed as
the mean of these 𝑛 points by

x =
1
𝑛

𝑛∑︁
𝑖=1

xi, xi ∈ V𝑟
𝑥 .
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As the covariance matrix 𝐶 is symmetric and positive semi-definite, all its eigenvalues
are non-negative. Therefore, it can be diagonalised through eigenvalue decomposition,

𝐶 = 𝑅Λ𝑅𝑇 ,

where 𝑅 is an orthogonal matrix with columns representing the eigenvectors of 𝐶 and
Λ = diag(𝜆1, 𝜆2, 𝜆3) is a diagonal matrix containing the corresponding eigenvalues,
ordered such that 𝜆1 ≥ 𝜆2 ≥ 𝜆3. The eigenvalues (𝜆1, 𝜆2, 𝜆3) describe the variance of
the neighbourhood along the principal component directions, with larger eigenvalues
indicating greater dispersion in that direction. To characterise this variation, the
standard deviations along the principal directions are derived in Equation (1) by

𝜎𝑖 =
√︁
𝜆𝑖, 𝑖 ∈ {1, 2, 3}. (1)

The standard deviations 𝜎𝑖, defined in Equation (1), measure the distribution of
points along the principal directions and form the basis for computing various geometric
features. Three of such geometric features, proposed by West et al. (2004) and adapted
by Demantké et al. (2011), characterise the local structure of the neighbourhood. The
first feature 𝛼1𝐷 represents the likelihood of the local points having a linear shape, the
second 𝛼2𝐷 quantifies planarity, and the third 𝛼3𝐷 measures scatter behaviour within
the neighbourhood. The geometric features are defined in Equation (2) as

𝛼1𝐷 =
𝜎1 − 𝜎2
𝜎1 + 𝜎3

, 𝛼2𝐷 =
𝜎2 − 𝜎3
𝜎1 + 𝜎3

, 𝛼3𝐷 =
𝜎3

𝜎1 + 𝜎3
. (2)

The optimal search radius is determined by evaluating Shannon entropy over
the discrete probability distribution {𝛼1𝐷 , 𝛼2𝐷 , 𝛼3𝐷} (Demantké et al., 2011). A
lower entropy value indicates a well-defined structure, as one geometric characteristic
dominates over the others (Demantké et al., 2011). The entropy function is given in
Equation (3) by

𝐸 𝑓 (V𝑟
𝑥 ) = −

3∑︁
𝑖=1

𝛼𝑖𝐷 ln(𝛼𝑖𝐷), (3)

The optimal neighbourhood radius 𝑟∗
𝐸 𝑓

for each point, given in Equation (4), is
determined as the value minimising the entropy function.

𝑟∗𝐸 𝑓
= arg min
𝑟∈[𝑟𝑚𝑖𝑛,𝑟𝑚𝑎𝑥]

𝐸 𝑓 (V𝑟
𝑥 ). (4)

Minimising entropy allows the method to adaptively determine a neighbourhood
size that best captures the local geometric structure of the point cloud. The search
range [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥] defines the minimum and maximum allowable radii, and its selec-
tion depends on the characteristics of the dataset. The procedure for selecting the
neighbourhood radius is described in further detail in Section 4.2.
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3.2 Geometric features
Geometric features are selected to capture the structural properties of the local
neighbourhood. Various studies (Shcherbcheva et al., 2023; Xi et al., 2020; Vicari et
al., 2019; Wang et al., 2017) suggest the application of curvature, linearity, anisotropy,
verticality, local point density, the first principal component, sphericity and planarity
for classifying wood and leaf components of the tree point cloud.

In particular, Wang et al. (2017) found local point density to be beneficial in
classification, while both Shcherbcheva et al. (2023) and Wang et al. (2017) utilised
curvature, linearity, anisotropy, verticality, sphericity, and planarity in differentiating
between wood and leaf structures. Ali et al. (2024) and Shcherbcheva et al. (2023)
demonstrated the advantages of including the First Principal Component to provide
additional information about the tree structure. Previous studies (Shcherbcheva et al.,
2023; Wang et al., 2017; Weinmann et al., 2014) further suggest that these geometric
features exhibit distinct patterns between wood and leaf components. For example,
branches tend to be more linear, tree stems generally have lower curvature, stem
and branch points form anisotropic neighbourhoods due to their continuous surfaces,
whereas canopy regions exhibit more scattered neighbourhoods (Shcherbcheva et al.,
2023).

Each geometric feature characterises specific properties of the local neighbour-
hood. Curvature is computed as the ratio of the smallest eigenvalue to the sum of all
eigenvalues, corresponding to the amount of variance explained by the first principal
component. Linearity and anisotropy describe the elongation of a neighbourhood.
Linearity is measured as the difference between the largest and second-largest eigen-
values, and anisotropy as the spread between the largest and smallest eigenvalues.
Verticality measures how well the normal vector of the local neighbourhood aligns with
the vertical axis, making it effective for detecting the tree trunk. Local point density
calculates the number of points within a sphere of the optimal radius, distinguishing
solid wood structures from more dispersed leaves. The First Principal Component
represents the standard deviation along the first principal direction, and sphericity
measures how isotropically distributed the points are within the neighbourhood.

These features were selected based on their ability to capture key geometric
characteristics of the local neighbourhoods, and the linear combination of these
features is utilised to provide accurate separation of wood and leaf components. The
geometric features are defined by the eigenvalues of the neighbourhood covariance
matrix, introduced in Equation (3.1). Table 1 summarises the mathematical form of
the geometric features applied in this study for wood and leaf classification.
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Feature Notation Formula

Curvature 𝐶3𝐷
min(𝜆𝑖)∑︁

𝑖 𝜆𝑖

Linearity 𝐿3𝐷
𝜆1 − 𝜆2
𝜆1

Anisotropy 𝐴3𝐷
𝜆1 − 𝜆3
𝜆1

Verticality 𝑉3𝐷 1 − |𝑁𝑧 |

Local Point Density 𝐷3𝐷
𝑛

4
3𝜋𝑟

3

First Principal Component 𝜎1
√︁
𝜆1

Sphericity 𝑆3𝐷
𝜆3
𝜆1

Planarity 𝑃3𝐷
𝜆2 − 𝜆3
𝜆1

Table 1: The table presents the geometric features and their definitions. The variable
𝜆𝑖 is the 𝑖th eigenvalue of the local covariance matrix, where 𝑖 ∈ 1, 2, 3, 𝑛 is the number
of points in the local neighbourhood and 𝑁𝑧 is the z-component of the normal vector.
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3.3 Gaussian Mixture Model
A Gaussian mixture model is a probabilistic clustering algorithm representing data as a
combination of multiple Gaussian distributions. Unlike traditional clustering methods,
GMM estimates the probability that a data point belongs to a specific cluster, allowing
for a more flexible data representation, particularly in scenarios where clusters overlap.

The model is mathematically defined as a weighted sum of Gaussian components,
each characterised by its own mean and covariance matrix, approximating the overall
data distribution. For classification, GMM computes the posterior probability of a
data point belonging to each component by applying Bayes’ rule, and assigns the point
to the most likely one. The assignment relies on the model parameters — weights,
means and covariances — of the components. To determine the optimal parameters
for the model, GMM employs the expectation-maximisation algorithm, where the
likelihood of the observed data is maximised iteratively.

3.3.1 Mathematical definition

In GMM, a probability density function of a 𝐷-dimensional feature vector x ∈ R𝐷 is
represented as a weighted sum of 𝑁 Gaussian distributions, defined in Equation (5) as

𝑝(x | 𝜃) =
𝑁∑︁
𝑖=1

𝑤𝑖N(x | 𝝁𝑖,𝚺𝑖), (5)

where 𝑤𝑖 denotes the mixture weights, satisfying
∑︁𝑁
𝑖=1 𝑤𝑖 = 1 and 𝜃 = {𝑤𝑖, 𝝁𝑖,𝚺𝑖},

for 𝑖 = 1, . . . , 𝑁 represents the set of model parameters. The multivariate Gaussian
distribution for each component 𝑖, N(x | 𝝁𝑖,𝚺𝑖), is defined in Equation (6) as

N(x | 𝝁𝑖,𝚺𝑖) =
1

(2𝜋)𝐷/2 |𝚺𝑖 |1/2
exp

(︃
−1

2
(x − 𝝁𝑖)𝑇𝚺−1

𝑖 (x − 𝝁𝑖)
)︃
. (6)

Each Gaussian component is defined by a mean vector 𝝁𝑖 and a covariance matrix 𝚺𝑖.
Together with the mixture weights, these parameters characterise the overall structure
of the Gaussian mixture model.

The likelihood of the data X = {x1 . . . xK}, given 𝐾 observations, under the GMM,
is defined by the product of the individual densities, as expressed in Equation (7).

𝐿 (X | 𝜃) =
𝐾∏︂
𝑘=1

𝑝(x | 𝜃). (7)

Since the likelihood function depends non-linearly on the parameters of 𝜃, direct
maximisation is not feasible. Instead, Maximum Likelihood (ML) estimates for
the parameters are determined iteratively by applying the expectation-maximisation
algorithm.
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3.3.2 Expectation-Maximisation algorithm

The expectation-maximisation algorithm is an iterative method applied to estimate
ML parameters in models with incomplete or unobserved data, referred to as latent
variables. These latent variables are influenced by the observed data but are not
directly measurable. In mixture models, for instance, latent variables indicate the
specific mixture component to which each data point is assigned.

The expectation-maximisation algorithm consists of two primary steps. In the
Expectation step (E-step), the expected value of the likelihood function is computed
based on the current parameters. This is followed by the Maximisation step (M-step),
during which the parameters are updated to optimise this expected value. The iterative
process is continued until convergence, resulting in a stationary point where the
derivative of the likelihood approaches zero. While effective, the algorithm may
converge to local maxima or yield singular solutions, such as a mixture component
collapsing to zero variance.

Expectation step

A latent variable 𝑧𝑘 is introduced to indicate which Gaussian component generated
each observation x𝑘 , defined by

𝑧𝑘 = {1, 2, . . . , 𝑁}.

An indicator function is defined to indicate whether observation x𝑘 was generated by
component 𝑖, as

𝐼 (𝑧𝑘 = 𝑖) =
{︄

1, if 𝑧𝑘 = 𝑖
0, otherwise.

Let 𝑍 = {𝑧1, . . . , 𝑧𝐾} denote the vector of all latent variables. Given the dataset 𝑋 ,
the complete data likelihood function is expressed as the product of the likelihoods
across all observations and components. The function is defined in Equation (8) as

𝐿 (𝑋, 𝑍 | 𝜃) =
𝐾∏︂
𝑘=1

𝑁∏︂
𝑖=1
[𝑤𝑖N(xk | 𝝁𝒊,𝚺𝒊)] 𝐼 (𝑧𝑘=𝑖) (8)

Taking the logarithm of the complete data likelihood function in Equation (8) yields
the complete data log-likelihood function, given in Equation (9) by

𝑙 (𝑋, 𝑍 | 𝜃) = log 𝐿 (𝑋, 𝑍 | 𝜃) =
𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1

𝐼 (𝑧𝑘 = 𝑖) log (𝑤𝑖N(xk | 𝝁𝒊,𝚺𝒊)) . (9)

Since the latent variables 𝑍 are unobserved, the expectation of the complete data
log-likelihood is computed with respect to the posterior distribution of 𝑍 given the
observed data and current parameter estimates 𝜃 (𝑘) . The expected value yields the
function 𝑄(𝜃 | 𝜃 (𝑘)), defined in Equation (10) by
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𝑄(𝜃 | 𝜃 (𝑘)) = E𝑍 |𝑋,𝜃 (𝑘 ) [𝑙 (𝑋, 𝑍 | 𝜃)]

= E𝑍 |𝑋,𝜃 (𝑘 )

[︄
𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1

𝐼 (𝑧𝑘 = 𝑖) log (𝑤𝑖N(xk | 𝝁𝒊,𝚺𝒊))
]︄

=

𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1
E𝑍 |𝑋,𝜃 (𝑘 ) [𝐼 (𝑧𝑘 = 𝑖)] log (𝑤𝑖N(x𝑘 | 𝜇𝑖, Σ𝑖)) .

(10)

The expected value of the indicator variable 𝐼 (𝑧𝑘 = 𝑖) corresponds to the posterior
probability that data point x𝑘 was generated by component 𝑖, under the current
parameter estimates 𝜃 (𝑘) , as shown in Equation (11).

E[𝐼 (𝑧𝑘 = 𝑖)] = 𝑃(𝑧𝑘 = 𝑖 | x𝑘 , 𝜃 (𝑘)). (11)

By applying Bayes’ theorem to Equation (11), the expected value evaluates to as
follows in Equation (12).

𝛾𝑘𝑖 = E[𝐼 (𝑧𝑘 = 𝑖)] =
𝑝(x𝑘 | 𝑧𝑘 = 𝑖, 𝜃 (𝑘))𝑝(𝑧𝑘 = 𝑖 | 𝜃 (𝑘))

𝑝(x𝑘 | 𝜃 (𝑘))

=
𝑤
(𝑘)
𝑖
N(x𝑘 | 𝜇(𝑘)𝑖 , Σ

(𝑘)
𝑖
)∑︁𝑁

𝑗=1 𝑤
(𝑘)
𝑗
N(x𝑘 | 𝜇(𝑘)𝑗 , Σ

(𝑘)
𝑗
)

(12)

The resulting responsibility 𝛾𝑘𝑖 represents the probability that observation xk belongs
to component 𝑖, given the parameter estimates. If xk is close to the mean 𝜇𝑖, the
corresponding responsibility is high, indicating that xk is classified as belonging to
component 𝑖.

The expectation step of the EM algorithm computes the expected value of the latent
variables by evaluating their posterior probabilities given the observed data and current
parameter estimates, providing the responsibility equation. These responsibilities are
further applied in the maximisation step to update the parameters iteratively until
convergence.

Maximisation step

The maximisation step updates the model parameters 𝜃 by maximising the function
𝑄(𝜃 | 𝜃 (𝑘)). In the expectation step, the function 𝑄(𝜃 | 𝜃 (𝑘)) was defined according to
Equation (10). Replacing the expected value with 𝛾𝑘𝑖, as defined in Equation (12),
yields Equation (13).

𝑄(𝜃 | 𝜃 (𝑘)) =
𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1

𝛾𝑘𝑖 log
(︁
𝑤𝑖N(x𝑘 | 𝝁𝑖,𝚺𝑖)

)︁
=

𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1

𝛾𝑘𝑖
[︁
log𝑤𝑖 + logN(x𝑘 | 𝝁𝑖,𝚺𝑖)

]︁
.

(13)
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The logarithmic Gaussian probability density function of Equation (13) is expanded
in Equation (14).

logN(x𝑘 | 𝝁𝑖,𝚺𝑖) = log
[︃

1
(2𝜋)𝑑/2 |𝚺𝑖 |1/2

exp
(︃
−1

2
(x𝑘 − 𝝁𝑖)𝑇𝚺−1

𝑖 (x𝑘 − 𝝁𝑖)
)︃]︃

= −𝑑
2

log(2𝜋) − 1
2

log |𝚺𝑖 | −
1
2
(x𝑘 − 𝝁𝑖)𝑇𝚺−1

𝑖 (x𝑘 − 𝝁𝑖).
(14)

Substituting Equation (14) into Equation (13) yields the expanded form of the function
𝑄(𝜃 | 𝜃 (𝑡)), as given in Equation (15).

𝑄(𝜃 | 𝜃 (𝑘)) =
𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1

𝛾𝑘𝑖

[︃
log𝑤𝑖 −

𝑑

2
log(2𝜋) − 1

2
log |𝚺𝑖 | −

1
2
(x𝑘 − 𝝁𝑖)𝑇𝚺−1

𝑖 (x𝑘 − 𝝁𝑖)
]︃

=

𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1

𝛾𝑘𝑖

[︃
log𝑤𝑖 −

1
2

log |𝚺𝑖 | −
1
2
(x𝑘 − 𝝁𝑖)𝑇𝚺−1

𝑖 (x𝑘 − 𝝁𝑖)
]︃
.

(15)

Since the constants 𝑑 and log(2𝜋) of Equation (15) do not affect the optimisation,
they can be omitted from the maximisation step.

To find the parameters maximising𝑄(𝜃 | 𝜃 (𝑘)) under the constraint that the mixture
weights sum to one, the Lagrange multiplier method is utilised. The optimisation
problem is formulated in Equation (16) as

max 𝑄(𝜃 | 𝜃 (𝑘))

subject to
𝑁∑︁
𝑖=1

𝑤𝑖 = 1,
(16)

where the function 𝑄(𝜃 | 𝜃 (𝑘)) is defined in Equation (15). The Lagrangian function,
of the optimisation problem of Equation (16), is defined in Equation (17) by

L = 𝑄(𝜃 | 𝜃 (𝑘)) + 𝛽
(︄
𝑁∑︁
𝑖=1

𝑤𝑖 − 1

)︄
, (17)

where 𝛽 represents the Lagrangian multiplier. The optimal parameters are located at
the stationary points of the Lagrangian, obtained by solving the system of equations
defined in (18).

∇L = 0

∇𝑄(𝜃 | 𝜃 (𝑘)) + 𝛽 ∇
(︄
𝑁∑︁
𝑖=1

𝑤𝑖 − 1

)︄
= 0.

(18)

The parameter updates are obtained by differentiating the Lagrangian with respect to
each of the model parameters 𝑤𝑖, 𝜇i and 𝚺i as presented in Equations (19), (20) and
(21) respectively.
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Maximising 𝑤𝑖
Derivative of the Lagrangian with respect to 𝑤𝑖 yields

𝜕L
𝜕𝑤𝑖

=
𝜕

𝜕𝑤𝑖

[︄
𝑄(𝜃 | 𝜃 (𝑘)) + 𝛽

(︄
𝑁∑︁
𝑖=1

𝑤𝑖 − 1

)︄]︄
=

𝐾∑︁
𝑘=1

𝛾𝑘𝑖

𝑤𝑖
+ 𝛽 = 0

𝑤𝑖 = −
1
𝛽

𝐾∑︁
𝑘=1

𝛾𝑘𝑖

Applying the constraint
𝑁∑︁
𝑖=1

𝑤𝑖 = 1 provides

𝑤∗𝑖 =
1
𝐾

𝐾∑︁
𝑘=1

𝛾𝑘𝑖 .

(19)

Maximising 𝝁𝑖
Derivative of the Lagrangian with respect to 𝝁𝑖 yields

𝜕𝑄

𝜕𝝁𝑖
=

𝜕

𝜕𝝁𝑖

[︄
𝑄(𝜃 | 𝜃 (𝑘)) + 𝛽

(︄
𝑁∑︁
𝑖=1

𝑤𝑖 − 1

)︄]︄
=

𝐾∑︁
𝑘=1

𝛾𝑘𝑖𝚺
−1
𝑖 (x𝑘 − 𝝁𝑖) = 0

𝐾∑︁
𝑘=1

𝛾𝑘𝑖𝚺
−1
𝑖 x𝑘 −

𝐾∑︁
𝑘=1

𝛾𝑘𝑖𝚺
−1
𝑖 𝝁𝑖 = 0

𝝁∗𝑖 =

∑︁𝐾
𝑘=1 𝛾𝑘𝑖x𝑘∑︁𝐾
𝑘=1 𝛾𝑘𝑖

.

(20)

Maximising 𝚺𝑖
Derivative of the Lagrangian with respect to 𝚺𝑖 yields

𝜕𝑄

𝜕𝚺𝑖
=

𝜕

𝜕𝚺𝑖

[︄
𝑄(𝜃 | 𝜃 (𝑘)) + 𝛽

(︄
𝑁∑︁
𝑖=1

𝑤𝑖 − 1

)︄]︄
= −1

2

𝐾∑︁
𝑘=1
𝛾𝑘𝑖

[︁
𝚺−1
𝑖 − 𝚺−1

𝑖 (x𝑘 − 𝝁𝑖) (x𝑘 − 𝝁𝑖)𝑇𝚺−1
𝑖

]︁
= 0

𝚺∗𝑖 =

∑︁𝐾
𝑘=1 𝛾𝑘𝑖 (x𝑘 − 𝝁𝑖) (x𝑘 − 𝝁𝑖)𝑇∑︁𝐾

𝑘=1 𝛾𝑘𝑖
.

(21)
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The parameters maximising the function 𝑄(𝜃 | 𝜃 (𝑘)), derived in Equations (19),
(20) and (21), are summarised in Equation (22).

𝑤∗𝑖 =
1
𝐾

𝐾∑︁
𝑘=1

𝛾𝑘𝑖, 𝝁∗𝑖 =

∑︁𝐾
𝑘=1 𝛾𝑘𝑖x𝑘∑︁𝐾
𝑘=1 𝛾𝑘𝑖

, 𝚺∗𝑖 =

∑︁𝐾
𝑘=1 𝛾𝑘𝑖 (x𝑘 − 𝝁𝑖) (x𝑘 − 𝝁𝑖)𝑇∑︁𝐾

𝑘=1 𝛾𝑘𝑖
,

where

𝛾𝑘𝑖 =
𝑤
(𝑘)
𝑖
N(x𝑘 | 𝜇(𝑘)𝑖 , Σ

(𝑘)
𝑖
)∑︁𝑁

𝑗=1 𝑤
(𝑘)
𝑗
N(x𝑘 | 𝜇(𝑘)𝑗 , Σ

(𝑘)
𝑗
)
.

(22)

The E-step and M-step are repeated iteratively until convergence. Convergence is
achieved when the log-likelihood function no longer changes significantly between
iterations, satisfying the condition

|ℓ(𝜃 (𝑘+1)) − ℓ(𝜃 (𝑘)) | < 𝜖,

where 𝜖 denotes a predefined threshold value.
Once the parameters of the GMM have been estimated with the expectation-

maximisation algorithm, classification is performed by computing the posterior
probability of a point x𝑘 belonging to each component 𝑖, as defined in Equation (12).
The predicted class label 𝑦̂𝑘 is further assigned to the component with the highest
posterior probability, as presented in Equation (23).

𝑦̂𝑘 = arg max
𝑖
𝛾𝑘𝑖 . (23)

Each point x𝑘 is assigned to the most probable Gaussian component according to the
computed responsibilities 𝛾𝑘𝑖. In the case of wood and leaf classification, where a two
component GMM is applied, each component represents either the wood or the leaf
class, resulting in a binary classification.
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4 Research material and methods
This section presents the data and methods applied to classify wood and leaf components
in individual tree point clouds. Section 4.1 introduces the three types of point cloud
datasets applied in the study, consisting of terrestrial laser scanning, unmanned
aerial vehicle and airborne laser scanning. Section 4.2 describes the classification
methodology, which incorporates adaptive radius search, Gaussian mixture models
and post-processing denoising, while Section 4.3 introduces the classification metrics
applied in this study for result analysis.

4.1 LiDAR datasets
The study involves point cloud data collected with three different data acquisition
geometries, TLS, UAV and ALS data. These datasets were selected to evaluate
how acquisition geometry, point cloud density and viewing perspective affect the
performance of wood and leaf classification. TLS data offers the highest point density
and detailed coverage of tree structures. UAV data, captured from an aerial perspective
at close range, provides a balance between canopy visibility and ground coverage.
ALS data, acquired from a helicopter, represents a sparse and top-down scanning
geometry, typically resulting in reduced penetration into dense foliage. However, this
type of data collection enables large-scale analysis with relatively low acquisition time.
Different datasets allow for an evaluation of the algorithm’s performance for different
data qualities and perspectives. In addition, the point clouds consist of diverse tree
species, providing a basis for assessing the classification of different tree architectures.

Pre-processing was performed on all datasets to segment individual trees, resulting
in individual tree point clouds acting as input for the proposed method. Each point
within the tree point cloud contains information of the 𝑥, 𝑦, and 𝑧 coordinates, along
with intensity and manual classification labels. The classification label is a binary
variable, with wood points labelled as 1 and leaf points as 0.

4.1.1 Terrestrial Laser Scanning

Liang et al. (2018) conducted terrestrial laser scanning surveys in April and May
2014 using a Leica HDS6100 scanner with a laser wavelength between 650–690 nm,
achieving a spatial resolution of ±2mm at 25 m. The scanner’s field of view was
360◦ × 310◦, and data were collected in high density mode with an angular resolution
of 0.036◦, resulting in a point spacing of 15.7 mm at 25 m in both horizontal and
vertical directions. Each full scan took approximately three minutes to complete
(Liang et al., 2018). Data collection followed a multi-scan approach, with each sample
plot scanned from five different positions: one at the centre and four in the quadrants,
each spaced 11.3 m from the centre. Scanner positions were adjusted based on forest
structure to avoid obstructions such as nearby tree stems (Liang et al., 2018).

The dataset includes TLS point clouds from three test plots representing different
levels of forest complexity (easy, medium, and difficult). Each label contains two
plots comprising single and multi-scan datasets. The TLS perspective provides strong
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returns from lower branches and stems but is often incomplete in capturing the upper
canopy structure. In less dense plots, tree visibility was high in both single and multi-
scan data, whereas in dense forests, significant occlusion reduced tree completeness
even in multi-scan datasets (Liang et al., 2018). The TLS dataset was made publicly
available for non-profit research purposes (Liang et al., 2018).

For this thesis, three test plots from each complexity category were selected as
datasets for wood and leaf classification, all belonging to multi-scan TLS data. Three
sample trees from each test plot are presented in Figure 1, alongside representations
of the manually classified tree point clouds in Figure 2.

(a) Scots pine from plot 1 (b) Scots pine from plot 3 (c) Norway spruce from plot 5

Figure 1: TLS data of tree point clouds from three different forest plots

The TLS data includes trees with incomplete canopy or stem structures, as well
as noise introduced by the scanner, visible in Figure 1a. Figure 1 shows manually
classified trees, revealing missing sections in both canopy and stem, which become
more evident after examining the classified trees presented in Figure 2. The missing
stem shown in Figure 2a, together with the misclassified leaf points at the top of
the Norway spruce in Figure 2c, demonstrate the challenges involved in wood and
leaf classification. Further imperfections in the datasets, including missing points,
mislabelled references and scanner-induced noise, may compromise the accuracy of
the classification process.
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(a) Scots pine from plot 1 (b) Scots pine from plot 3 (c) Norway spruce from plot 5

Figure 2: Manually classified tree point clouds from three different forest plots

4.1.2 Unmanned Aerial Vehicle

The performance of the wood and leaf separation algorithm on UAV point clouds is
particularly important given the increasing use of UAV-based laser scanning for forest
monitoring, as UAV scanners can cover larger areas faster than TLS scanners. Accurate
functioning of the classification algorithm with UAV data supports the application of
non-destructive AGB estimation, as demonstrated by Brede et al. (2022), provided
that the resolution of the individual tree point clouds is sufficient.

Puliti et al. (2023) introduced the FOR-instance dataset, a curated and machine
learning-ready dataset designed for benchmarking semantic and instance segmentation
of forest point clouds. The dataset consists of five UAV-based laser scanning collections
obtained from Norway, the Czech Republic, Austria, New Zealand, and Australia,
representing different forest types. Data acquisition was conducted using Riegl
VUX-1 UAV and Riegl MiniVUX-1 UAV sensors, capturing high-density 3D point
clouds with varying sampling designs, including plot-based and wall-to-wall scanning
approaches. The UAV flights followed two distinct patterns: a parallel flight pattern,
where flight lines were aligned in a single direction and a double-grid flight pattern,
where perpendicular flight lines were used to increase coverage and minimise occlusion
effects (Puliti et al., 2023).

To ensure high-quality annotations, the dataset was manually labelled using
CloudCompare (CC). Individual trees were assigned unique identifiers and further
categorised into stems, woody branches, live branches, terrain, and low vegetation.
The annotation process was conducted over six months by multiple annotators and
later reviewed for accuracy. Additionally, reference spheres with a fixed 198 mm
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radius were deployed in each plot for data registration, achieving an average alignment
accuracy of 2.1 mm. The dataset is divided into development and test subsets, allowing
researchers to evaluate segmentation methods (Puliti et al., 2023).

A Czech Republic dataset, referred to as the CULS dataset, was selected for this
study due to its sparse forest structure and relatively low point density. The point
density was approximately 2600 pts/m2, allowing for more efficient processing (Puliti
et al., 2023). The CULS dataset, referred to as the UAV dataset within this thesis,
consisted of three forest plots containing a total of 47 Scots pines. Each tree was
manually classified into stem, branch or leaf points. For the purpose of this study,
stem and branch points were combined into a single wood class to enable wood and
leaf classification. Examples of three trees from different plots in the UAV dataset are
presented in Figure 3.

(a) Scots pine from plot 1 (b) Scots pine from plot 2 (c) Scots pine from plot 3

Figure 3: UAV data of Scots pine tree point clouds from three different forest plots of
the CULS dataset

Figure 3 illustrates that the UAV dataset better captures the canopy details in
comparison to the TLS dataset shown in Figure 1, with a greater focus on the canopy
than the stem. This allows evaluation of the robustness of the method across different
geometries. Figure 3c further demonstrates that the point cloud is noticeably sparse.
This lower point density may enable faster and more efficient feature computation,
although it could potentially reduce the level of geometric detail. Furthermore, a larger
neighbourhood radius may be required to capture the geometric structure in sparser
point clouds. The neighbourhood search radius will be discussed further in Section
4.2.
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Nevertheless, the UAV dataset offers several advantages. Trees are captured
from an aerial perspective, with minimal background noise and high-quality manual
classifications. This perspective is possible due to the increasing capability of UAV
platforms to fly at low altitudes while acquiring data with sufficiently high resolution.
The manually classified trees from UAV forest plots are illustrated in Figure 4. Even
though the point clouds are well captured and accurately classified, Figure 4 reveals
that the smallest branches are not properly detected and are therefore misclassified as
leaf points.

(a) Scots pine from plot 1 (b) Scots pine from plot 2 (c) Scots pine from plot 3

Figure 4: Manually classified Scots pine trees of three forest plots of the CULS dataset

4.1.3 Airborne Laser Scanning

Ruoppa et al. (2025) utilised a high-resolution airborne laser scanning dataset collected
on June 22, 2021, at the scan forest test site near Evo, Finland. The data was acquired
using the HeliALS-TW system, an advanced laser scanning system developed by the
Finnish Geospatial Research Institute (FGI). This system integrates three Riegl LiDAR
scanners—VUX-1HA, miniVUX-3UAV, and VQ-840-G—referred to as scanners 1,
2, and 3, respectively. To ensure accurate positioning and orientation, the system is
equipped with a GNSS-IMU navigation system comprising a NovAtel ISA-100C IMU,
a NovAtel PwrPak7 GNSS receiver and a NovAtel GNSS-850 antenna (Ruoppa et al.,
2025).

The helicopter flew at a low altitude of approximately 80 metres above ground along
predefined circular flight paths over multiple 55 m diameter test sites to capture detailed
point clouds from two perpendicular directions. Scanners 1 and 2 were mounted at a
15-degree forward tilt, providing cross-track profiles, while scanner 3 used a conical
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scanning approach with a 40-degree cross-track and 28-degree flight direction angle.
The system’s trajectory was processed using Waypoint Inertial Explorer, with a single
virtual GNSS base station positioned near the Evo research forest. The raw LiDAR
scans were then georeferenced using Riegl RiPROCESS software, incorporating GNSS
and IMU data to ensure precise spatial alignment (Ruoppa et al., 2025).

The ALS dataset consists of two forest plots containing a total of 356 trees. Like
the UAV data, the ALS data were captured using an airborne scanner, but scanning was
performed directly from above. Although this top-down perspective effectively records
the position and general shape of trees, the resulting point clouds are relatively sparser
compared to the UAV data, which could present further challenges for extracting
geometric features. Moreover, the three scanners of the helicopter-mounted system
operated with distinct intensities, requiring wood and leaf separation to be performed
individually for each intensity. Figure 5 presents two example trees from different
ALS forest plots, while Figure 6 shows the same trees with manual classification,
demonstrating accurate capture of tree structure while highlighting point cloud sparsity.

Figure 5: Two different tree point clouds
of ALS dataset

Figure 6: Manual classifications of the
two different tree point clouds of ALS
dataset
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4.2 Methods
Figure 7 represents the overall workflow of the wood and leaf separation algorithm
proposed in this thesis. The workflow consists of four main steps, beginning with
an adaptive radius search for feature extraction, followed by classification using a
two-component Gaussian mixture model, then computation of a weighted sum of
feature classifications to obtain the final label, and concluding with post-processing
denoising to eliminate residual noise. Each of these steps is described in detail in
Sections 4.2.1, 4.2.2, 4.2.3, and 4.2.4, respectively.

Figure 7: Flowchart of the wood and leaf separation algorithm

4.2.1 Optimal radius search

The selection of the optimal radius follows the approach of Demantké et al. (2011),
where the optimal radius is determined as the one minimising Shannon’s entropy.
Demantké et al. (2011) originally developed the adaptive radius method as an approach
for extracting geometric features from building point clouds, and the method has not
previously been applied to forest applications such as wood and leaf classification at a
tree level. A related method by Zhu et al. (2018) implemented a variation that selects
an optimal radius from three fixed values (0.2 m, 0.3 m, and 0.4 m) by identifying the
radius that minimises entropy.

In this thesis, the adaptive radius method aims to determine the optimal local
neighbourhood for each point by identifying the radius that minimises entropy within
a specified search range, as described in the function ProcessSinglePoint of Algorithm
1. For each point in the dataset, a k-nearest neighbour search is performed using
a KDTree to determine a local neighbourhood of ten neighbours. The maximum
distance to the ten nearest neighbours defines the initial search radius, which serves
as the lower bound 𝑟 lim

min, ensuring principal component analysis (Demantké et al.,
2011). However, any initial search radius found lower than a threshold of 10 cm is set
to the latter to ensure that neighbourhoods effectively capture geometric structures
(Shcherbcheva et al., 2023; Zhu et al., 2018).

The upper bound 𝑟 lim
max is defined in relation to the point cloud density. For TLS

data with higher point density, an upper bound of 0.5 m is sufficient. However, due to
differences in point cloud resolution described in Section 4.1, the upper bound varies
between datasets. Sparser point clouds from UAV and ALS require a larger bound of
1.5 m to better capture the local geometric structure of the neighbourhood.
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To determine the optimal neighbourhood size, the algorithm iterates through
potential radii within the defined range, incrementing by a predefined step size 𝑠. The
selection of the step size represents a trade-off between accuracy and computational
efficiency. Although parallel computation was implemented, processing large datasets
remains computationally intensive and time-consuming.

For each candidate radius, the covariance matrix of the local neighbourhood
is computed, and its eigenvalues are obtained. These eigenvalues are applied to
compute Shannon’s entropy, and the radius minimising entropy is selected as the
optimal neighbourhood radius 𝑟∗. Once the optimal neighbourhood is determined, the
covariance matrix is recomputed for the optimised neighbourhood, and its eigenvalues
are obtained again. From these values, a set of geometric features is derived, consisting
of curvature (𝐶3𝐷), linearity (𝐿3𝐷), anisotropy (𝐴3𝐷), sphericity (𝑆3𝐷), planarity
(𝑃3𝐷), and verticality (𝑉3𝐷). Additionally, the 3D point density (𝐷3𝐷) is computed
based on the number of neighbours within the selected radius. The final output of
Algorithm 1 is a vector containing these computed features for a single point.

The overall feature computation for the entire dataset follows Algorithm 2. This
process initialises an empty feature set and iterates over all points in the dataset, calling
the ProcessSinglePoint function in Algorithm 1 for each point to extract geometric
features with the optimal search radius. The resulting feature vectors are stored in a
data frame, where each row corresponds to a point in the dataset and each column
represents a different geometric feature. The final output is a dataset containing
point-wise geometric features, serving as input for further classification. Due to
its point-by-point analysis, the adaptive radius search algorithm is computationally
intensive; thus, parallelisation was required to improve computation speed.
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Algorithm 1 Pseudocode for ProcessSinglePoint function
Require: A query point xi = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]𝑇 , dataset x = [(𝑥1, 𝑦1, 𝑧1), . . . , (𝑥𝑛, 𝑦𝑛.𝑧𝑛)]𝑇 ,
T= KDTree, 𝑠 = Step size

1: 𝑟 lim
min ← 𝑟∗1, 𝑟 lim

max ← 𝑟∗2
2: 𝑛← Length of the dataset x
3: 𝑑 ← Distances to 𝑛 neighbours by applying T
4: 𝑟min ← max(𝑑)
5: 𝑟∗ ←∞, 𝐸∗ ←∞
6: if 𝑟min ≤ 𝑟 lim

min then
7: 𝑟min ← 𝑟 lim

min
8: end if
9: if 𝑟min < 𝑟

lim
max then

10: 𝑟max ← 𝑟 lim
max

11: for 𝑟 in range[𝑟min, 𝑟max, 𝑠] do
12: inds_𝑟 ← Indices of the neighbouring points within the radius 𝑟
13: 𝑋 ← x[inds_𝑟]
14: 𝑘 ← Length of X
15: 𝐶 ← 1

𝑛
[(𝑋 − 1

𝑘

∑︁𝑘
𝑖=1 𝑋𝑖)𝑇 (𝑋 − 1

𝑘

∑︁𝑘
𝑖=1 𝑋𝑖)]

16: 𝜆← Sorted eigenvalues of 𝐶
17: 𝜎 ←

√
𝜆

18: 𝛼←
[︂
𝜎1−𝜎2
𝜎1+𝜎3

,
𝜎2−𝜎3
𝜎1+𝜎3

,
𝜎3

𝜎1+𝜎3

]︂
19: 𝐸 ← −∑︁3

𝑖=1 𝛼𝑖 log𝛼𝑖
20: if 𝐸 < 𝐸∗ then
21: 𝐸∗ ← 𝐸

22: 𝑟∗ ← 𝑟

23: end if
24: end for
25: else
26: 𝑟∗ ← 𝑟min
27: end if
28: inds_𝑟∗ ← Indices of the neighbouring points within the optimal radius 𝑟∗
29: 𝑋∗ ← x[inds_𝑟∗], 𝑘∗ ← Length of X
30: 𝐶∗ ← 1

𝑛
[(𝑋∗ − 1

𝑘

∑︁𝑘
𝑖=1 𝑋

∗
𝑖
)𝑇 (𝑋∗ − 1

𝑘

∑︁𝑘
𝑖=1 𝑋

∗
𝑖
)]

31: 𝜆∗ ← Sorted eigenvalues of 𝐶∗, 𝜎1 ←
√
𝜆1

32: 𝐶3𝐷 ← min(𝜆𝑖)∑︁
𝜆𝑖

33: 𝐿3𝐷 ← 𝜆1−𝜆2
𝜆1

34: 𝐴3𝐷 ← 𝜆1−𝜆3
𝜆1

35: 𝑆3𝐷 ← 𝜆3
𝜆1

36: 𝑃3𝐷 ← 𝜆2−𝜆3
𝜆1

37: 𝑉3𝐷 ← 1 − |𝑁𝑧 |
38: 𝐷3𝐷 ← 𝑛

4
3 𝜋(𝑟min)3

39: return [𝐶3𝐷 , 𝐿3𝐷 , 𝐴3𝐷 , 𝑆3𝐷 , 𝑃3𝐷 , 𝑉3𝐷 , 𝐷3𝐷 , 𝜎1]
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Algorithm 2 Pseudocode for computing features with adaptive radius
Require: dataset X = [(𝑥1, 𝑦1, 𝑧1), . . . , (𝑥𝑛, 𝑦𝑛, 𝑧𝑛)]𝑇 , 𝑠∗=Step size

1: 𝑛← 11, 𝑠← 𝑠∗

2: T ← KDTree from dataset x
3: F ← ∅, Initialisation of the feature set
4: for all xi ∈ x do
5: F𝑖 ← ProcessSinglePoint(𝑥𝑖,X,T , 𝑛, 𝑠)
6: Append F𝑖 to F
7: end for
8: Define column names Cnames
9: D ← DataFrame(F , Cnames)

10: return D

4.2.2 Classification utilising Gaussian Mixture Model

After the geometric features have been extracted, classification is performed by
applying an independent cross-scale salience method, where each feature, including
intensity, is considered independently to assess whether a point belongs to the wood
or leaf class. For each feature type, a Gaussian mixture model with two components
is fitted to model the distribution of feature values across the point cloud. Points are
further classified based on whether the feature value is above or below the mean of the
two GMM component means. As each feature contributes with varying influence to
the classification, a weighted sum approach is applied to obtain the final classification.

4.2.3 Weighted sum of features

The weighted sum approach is applied to assign each feature a weight based on its
significance in distinguishing wood and leaf components, additionally allowing the
algorithm to adapt to different geometries and data acquisitions. Feature weights
depend on the dataset as well as its resolution. The significance of each feature was
determined based on its distribution and whether it contributes to distinguishing wood
from leaf more than other features. The weighted sum is implemented in Equation
(24) as

𝑆 = 𝑤1𝐹1 + 𝑤2𝐹2 + . . . + 𝑤𝑛𝐹𝑛, (24)

where 𝐹𝑖 denotes the feature classification and 𝑤𝑖 the corresponding weight assigned
to it. Several features were tested, and those with poor performance were excluded
from the analysis. Experimentation showed that features such as eigenvalues, the sum
of eigenvalues, eigenentropy, and omnivariance did not significantly contribute to the
separation and were therefore removed, consistent with the findings of Shcherbcheva
et al. (2023). A selection of some included and excluded features is illustrated in
Figure 8 to demonstrate the selection process.
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(a) Sphericity (b) Verticality (c) Anisotropy

(d) First eigenvalue (e) Eigenentropy (f) Curvature

Figure 8: Geometric features of Scots pine tree of TLS dataset
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Figure 8 presents example features of a Scots pine tree from the TLS dataset. The
first eigenvalue and eigenentropy, shown in Figures 8d and 8e, respectively, contributed
little to the classification. In both of these features, the lower part of the stem exhibited
different feature values compared to the upper part. Additionally, there was no clear
distinction between the leaves in the canopy and the branches, leading to the exclusion
of these features from the wood and leaf classification.

Curvature, presented in Figure 8f, did not effectively distinguish between leaves
and branches in the upper part of the tree. Nonetheless, it was included in the analysis
given that it successfully captured the stem structure along with the lower branches.
Verticality, as seen in Figure 8b, captured the stem accurately up to the top of the tree
but was less effective in detecting smaller branches. Since the tree stem is generally
difficult to capture, verticality provided valuable information for the classification,
resulting in its inclusion in the feature set.

Sphericity and anisotropy, illustrated in Figures 8a and 8c, respectively, were able
to capture both the stem and the branches in the upper parts of the canopy and were
therefore included in the wood and leaf separation.

In general, the selection of features was implemented by evaluating the classification
performance of each feature individually. If a feature alone achieved a classification
accuracy of approximately 70% or higher, it was included for the final classification,
and its weight was determined based on its distribution. Feature weights were adjusted
independently for each feature and varied between datasets depending on the point
cloud density. The assigned weights for each data type are summarised in Table 2.

Weights TLS UAV ALS

Curvature 1.0 0.5 1.0

Linearity 0.0 1.5 1.0

Anisotropy 3.0 1.5 1.0

Verticality 2.0 3.0 3.5

Local point density 2.0 0.5 0.0

First principal component 2.0 1.5 2.0

Sphericity 3.0 1.0 0.5

Planarity 0.5 3.5 2.0

Sum 13.5 13.0 11.0

Table 2: Weights of each feature in each dataset
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By examining Table 2, it becomes evident that the feature weights are dependent
on the dataset and, more specifically, on the point cloud density. Variations in feature
performance across different data types are illustrated in Figure 9. For instance, Figure
9a demonstrates that while sphericity is effective for TLS data, it fails to capture any
structural components in the UAV or ALS data. Linearity and planarity, shown in Figures
9b and 9c, respectively, are more informative in the UAV and ALS point clouds than
in the TLS dataset but tend to misclassify wood points in the process. Despite the
misclassifications, these features are still assigned a higher weight, as the sparsity of UAV
and ALS datasets limits the ability of geometric features to perfectly distinguish between
wood and leaf structures. In the denser TLS dataset, linearity was assigned a weight
of zero due to its tendency to misclassify parts of the trunk. Planarity was similarly
assigned a smaller weight for this reason. Since distinguishing wood and leaf points is
less challenging in TLS data, feature misclassifications have a larger impact than in UAV
and ALS datasets.

(a) Comparison of sphericity feature

(b) Comparison of linearity feature
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(c) Comparison of planarity feature

Figure 9: Comparison of Scots pine trees from the TLS, UAV and ALS datasets using
different features

In general, the feature weights were determined by analysing the distribution of
each feature separately for each dataset. Figure 10 illustrates the distributions of the
geometric features across 50 trees in the TLS data.

In the TLS dataset, wood points outnumber leaf points; hence, features showing
a strong association with wood are prioritised in the analysis. As shown in Figure
10, linearity does not exhibit a clear dominance of wood points in its distribution.
Instead, it displays two distinct peaks, representing wood and leaf points, leading to the
exclusion of this feature. Anisotropy and sphericity share a similar pattern, with one
peak representing wood points and a smaller secondary peak indicating leaf points.
This clear separation between the two classes aligns with the expected distribution
of wood and leaf points and led to these features being assigned the highest weights.
Verticality, local point density, and the first principal component were each assigned a
weight of one, as reported in Table 2. These features successfully capture many wood
points but fail to detect a sufficient number of leaf points, leading to misclassification
of some leaf points as wood. This is evident from their distributions in Figure 10,
which are heavily skewed toward wood-dominated values. Finally, planarity was given
the lowest non-zero weight due to its distribution, which displays a clear wood peak
but is otherwise relatively uniform.
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Figure 10: Histograms of geometric features of TLS data

After determining the feature weights, a weighted sum was computed for each
point to classify it as wood or leaf. In the TLS dataset, points with a weighted sum of
8 or more were classified as wood. For the UAV data, the threshold was increased to
11, and for the ALS data, it was set to 9. These thresholds were determined based on
the point cloud density of each dataset. Specifically, TLS, with the highest density,
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required only 8 out of a possible 13.5, whereas the sparser UAV dataset required 11
out of 13. In comparison, ALS, with a similar resolution to UAV, used a threshold of 9
out of 11. This indicates that as point cloud density decreases, a higher proportion of
features must agree for a point to be classified as wood. Such an approach ensures that
the algorithm maintains classification reliability and avoids incorrectly labelling all
points as wood in sparser datasets.

During testing, it was observed that features with left-skewed distributions occa-
sionally caused the GMM to assign clusters in reverse, resulting in wood points being
classified as leaf and vice versa. To address this issue, the classification direction for
these features was adjusted manually. These adjustments varied across datasets due to
differences in feature distributions between the TLS, UAV, and ALS point clouds.

4.2.4 Post-processing denoising

The final step in the wood and leaf separation algorithm was post-processing denoising.
The predicted labels, indicating whether each point belonged to the wood or leaf
class, were post-processed to improve the overall quality of the results. This step
involved denoising the classified point cloud to eliminate noisy points that may have
been misclassified. The distribution of the classified wood points was examined
by computing the mean distance to each point’s k-nearest neighbours. If this mean
distance exceeded a specified threshold, defined as a function of the global mean
and standard deviation, the point was identified as an outlier and reclassified as leaf.
Specifically, a point was considered noise if it lay farther than a threshold distance from
its 20 nearest neighbours, where the threshold was computed as the average of all such
distances plus 1.7 times their standard deviation (Shcherbcheva et al., 2023). Following
denoising, the updated point cloud was saved, including both the classification labels
and the computed geometric features. Lastly, classification performance was evaluated
by comparing predicted labels against the manual classification by applying accuracy,
precision, recall and F1-score metrics.
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4.3 Classification metrics
This section introduces the key performance metrics applied in this study to evaluate
different aspects of binary classification performance. These metrics, consisting of
accuracy, precision, recall, and F1-score, are essential for understanding the strengths
and limitations of the separation algorithm.

Accuracy measures the overall correctness of the model and is defined as the
ratio of correctly predicted instances to the total number of predictions, as shown in
Equation (25).

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 . (25)

In Equation (25), 𝑇𝑃, 𝑇𝑁 , 𝐹𝑃, and 𝐹𝑁 respectively denote true positives, true
negatives, false positives, and false negatives. While accuracy provides a general
measure of performance, it can be misleading in cases of class imbalance. For instance,
overall accuracy may remain high even if the minority class is poorly predicted.

To better assess classification reliability, precision and recall are applied. Precision,
defined in Equation (26),

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃, (26)

indicates the proportion of predicted positive instances that are truly positive. High
precision implies that the algorithm produces few false positives. Recall, defined in
Equation (27),

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , (27)

measures the model’s effectiveness in capturing all actual positive instances. High
recall implies successful identification of most true positives. To balance the trade-off
between precision and recall, the F1-score is employed. It is computed as the harmonic
mean of precision and recall, as defined in Equation (28),

F1-score = 2 · Precision · Recall
Precision + Recall

=
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 . (28)

The F1-score is particularly beneficial for evaluating classifiers on imbalanced datasets,
as it provides a single measure considering both false positives and false negatives. It
is exclusively high when both precision and recall are high, yielding a robust metric
for summarising classification effectiveness on the positive class.
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5 Results
This chapter presents the performance of the wood and leaf classification algorithm
on three LiDAR datasets — TLS, UAV, and ALS. The algorithm’s effectiveness is
evaluated on each dataset by applying performance metrics. For each data source, the
metrics are reported along with their standard deviations, and the results are further
compared. As tree species may influence the performance of the wood and leaf
separation algorithm, the analysis also includes a species-wise evaluation focusing on
the three most common tree species in Finland: Scots pine (Pinus sylvestris), Norway
spruce (Picea abies), and silver birch (Betula pendula). The analysis concludes by
examining how the point cloud density affects the performance of the proposed wood
and leaf separation algorithm.

5.1 Classification results across LiDAR datasets
The overall classification results of the wood and leaf separation algorithm using three
different LiDAR data sources are summarised in Table 3 along with the standard
deviation of each metric. Performance is evaluated by applying accuracy, precision,
recall, and F1-score metrics.

Data Source Accuracy Precision Recall F1-Score
TLS 0.794 ± 0.104 0.739 ± 0.300 0.635 ± 0.202 0.665 ± 0.250
UAV 0.916 ± 0.019 0.764 ± 0.124 0.426 ± 0.091 0.543 ± 0.097
ALS 0.875 ± 0.046 0.091 ± 0.117 0.103 ± 0.091 0.086 ± 0.094

Table 3: Classification performance metrics with standard deviations for each data
source, considering all species combined

Table 3 shows TLS data achieving an average accuracy of 0.794, precision of
0.739, recall of 0.635, and F1-score of 0.665. Approximately 79.4% of the points
are correctly classified, as indicated by these values. A precision of 73.9% suggests
that most wood predictions are correctly labelled, while a recall of 63.5% indicates
the classifier detects approximately two-thirds of actual wood points. The F1-score
of 66.5% reflects this balance between precision and recall. Among the three data
sources, TLS achieves the highest recall and a relatively high F1-score, indicating that
a higher point density, combined with a ground-level scanning geometry, facilitates
more accurate wood point detection. However, moderate precision implies that some
wood points were incorrectly classified, potentially due to the complexity of certain
species such as the dense foliage of Norway spruce, which can hinder laser beam
penetration to the wood material.

For UAV data, the classifier achieves the highest overall accuracy of 0.916,
with precision also relatively high at 0.764; however, recall drops to 0.426. This
inconsistency suggests that while the classifier accurately labels wood when it is
predicted as such, it fails to detect many actual wood points. The F1-score of 0.543 is
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lower than that of TLS despite UAV’s higher accuracy, suggesting UAV data leads
to incomplete predictions by classifying only the most evident wood structures. The
imbalance between wood and leaf points inflates accuracy, as wood points dominate
within the point cloud. Limitations in capturing inner canopy structure and finer wood
details likely contribute to the reduced recall in UAV data.

ALS results are particularly distinct. Despite an accuracy of 0.875, precision
and recall are significantly lower at 0.091 and 0.103. The resulting F1-score is only
0.086, indicating a failure to classify wood points effectively. The classifier appears
to label nearly all points as wood, an approach that yields high accuracy when wood
points dominate the dataset but fails to identify actual wood instances. A precision
of 9.1% suggests that only one in eleven wood predictions is correct, and a recall of
10.3% indicates that a vast majority of actual wood points are misclassified. The near-
zero F1-score confirms the classifier does not distinguish wood and leaf components
correctly in the ALS data. The outcome is likely due to the sparse ALS point cloud,
lacking sufficient detail to support effective geometric feature extraction.

The standard deviations reported in Table 3 provide insight into the consistency
of the classification. UAV metrics demonstrate the lowest variability across trees,
with accuracy varying by only ±0.019, and precision, recall and F1-score remaining
relatively stable. This consistency indicates that the classifier’s performance is
predictable across the UAV dataset, suggesting that the tree point clouds within the
dataset exhibit similar structural characteristics. This is made clear by the exclusive
presence of Scots pines. TLS metrics exhibit greater variability, with a precision
standard deviation of ±0.300 suggesting notable differences in classification quality
across trees. Recall also fluctuates more in TLS data, with a standard deviation of
±0.202 reflecting inconsistent wood detection. These inconsistencies likely result
from the presence of different geometric structures of tree point clouds and species
variation within the dataset.

Figure 11 illustrates the distribution of classification metrics for each data source.
TLS box plots show a wider spread, confirming variation in performance across tree
species. UAV box plots are tighter, consistent with the low standard deviations and
the homogeneous composition of the UAV dataset. ALS box plots reflect low median
values and substantial variability, particularly in precision and recall, indicating the
classifier’s inconsistency in distinguishing between wood and leaf classes across
different tree species.
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Figure 11: Overall distribution of classification metrics by data source

Results confirm that both the species and density of point cloud data significantly
influence classification performance. Dense, high-quality data facilitates accurate
wood and leaf separation, while sparse data leads to class imbalance issues and limited
feature extraction. As point density decreases, the distance between points increases
and a larger neighbourhood radius is required. As a result, the larger radius captures
nearby structures and blurs the distinction between wood and leaf components in the
case of a branch.

The variation observed in Figure 11 and the standard deviations in Table 3 between
TLS, ALS, and UAV results can also be explained by species composition. The UAV
dataset includes only Scots pines, whereas TLS and ALS also include Norway spruces
and silver birches. Norway spruce, with densely packed needles and complex canopy
structures, provides a more challenging classification. The high foliage density reduces
laser penetration, often occluding the underlying wood and limiting the quality of
geometric features extracted for classification. This structural complexity affects both
the data quality and the effectiveness of the classification method, contributing to
reduced consistency in performance across individual trees. Additionally, intensity
offers limited contribution due to mixed values that fail to clearly separate wood and
leaf components. As a result, the method relies primarily on geometric features,
increasing the challenge in structurally complex species such as Norway spruce.

In contrast, Scots pine is more straightforward to separate due to its open branching
and tufted needles. The presence of Norway spruces in TLS datasets likely contributes
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to performance fluctuations. These observations support the importance of species-
wise performance evaluation in order to enhance the understanding of algorithm
behaviour across tree and data types.

5.2 Classification results across tree species
To investigate the effect of tree species on classification performance, a species-wise
analysis was conducted. The number of trees representing each species in the datasets
is presented in Table 4.

TLS UAV ALS
1 2 3 1 1 2 3

Number of Trees 128 45 8 47 60 19 156

Table 4: Number of trees per species and data source. Scots pine, Norway spruce and
silver birch are labelled as 1, 2 and 3 respectively

Table 5 presents the classification results for each tree species — Scots pine,
Norway spruce, and silver birch — across the TLS, UAV, and ALS point cloud datasets.
Figures 12a, 12b, and 12c display box plots for accuracy, precision, recall, and F1-score
for each species, illustrating both average classification performance and variability
across the different data sources. Each species is analysed in turn, focusing on how the
metric values and their variation relate to its structural characteristics and the point
cloud density of each LiDAR data source.

Data Source Accuracy Precision Recall F1-Score
TLS

Scots pine 0.850 ± 0.040 0.893 ± 0.099 0.733 ± 0.094 0.801 ± 0.086
Norway spruce 0.715 ± 0.097 0.282 ± 0.221 0.404 ± 0.180 0.300 ± 0.175
Silver birch 0.834 ± 0.032 0.977 ± 0.014 0.826 ± 0.044 0.895 ± 0.030

UAV
Scots pine 0.916 ± 0.019 0.764 ± 0.124 0.426 ± 0.091 0.543 ± 0.097

ALS
Scots pine 0.899 ± 0.025 0.217 ± 0.150 0.160 ± 0.105 0.177 ± 0.114
Norway spruce 0.842 ± 0.091 0.032 ± 0.075 0.074 ± 0.075 0.032 ± 0.057
Silver birch 0.874 ± 0.041 0.050 ± 0.057 0.085 ± 0.077 0.057 ± 0.061

Table 5: Species-wise classification performance metrics with standard deviations
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(a) Overall distribution of classification metrics of Scots pine

(b) Overall distribution of classification metrics of Norway spruce
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(c) Overall distribution of classification metrics of silver birch

Figure 12: Overall distribution of classification metrics species-wise

TLS data yielded the strongest overall classification performance across Scots
pines and silver birches, as shown in Table 5. For Scots pine, the classifier achieved an
accuracy of 0.850, a precision of 0.893, a recall of 0.733, and an F1-score of 0.801,
with relatively low standard deviations. The narrow interquartile ranges in Figure
12a, with only a few outliers, further confirm a consistent performance across Scots
pine trees in the TLS dataset. The presence of outliers is expected given the large
sample size of 128 Scots pine trees, as shown in Table 4. These metrics reflect not
only the overall proportion of correctly classified points but also how the algorithm
distinguishes effectively between wood and leaf points. This overall reliability is
likely attributed to the relatively sparse canopy structure of Scots pines and the clear
geometric distinction between their thin needle clusters and woody branches, which
can be captured effectively in dense TLS point clouds. Therefore, thresholds derived
from geometric features are more feasible to detect using the GMM due to the clarity
of structural separation.

An example Scots pine tree from the TLS dataset is analysed in Figure 13, where
the classification accuracy is 0.87, precision is 0.96, recall is 0.79, and F1-score is 0.87.
Figure 13 presents, side by side, the manual classification of the entire tree in Figure
13a, the classification result from the algorithm in Figure 13b, the manual classification
of the wood component in Figure 13c, and the algorithmic wood classification in
Figure 13d.
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(a) Manual classifica-
tion

(b) Classification algo-
rithm

(c) Manual classifica-
tion

(d) Classification algo-
rithm

Figure 13: Classification results of Scots pine from TLS data

Figure 13 reveals that despite the example tree exhibiting high accuracy, precision,
recall, and F1-score, the algorithm struggles to capture smaller branches as the
geometric features of these branches tend to blend with those of the leaves, as shown
when comparing Figures 13c and 13d. Additionally, the stem becomes more difficult
to detect in the upper canopy region, where a significant portion is misclassified as
leaf. At the very top of the tree, the stem is missing, as seen in Figure 13c, resulting in
misclassification by the algorithm in that part. This misclassification is particularly
visible when comparing Figures 13b and 13a. These errors are likely intensified by
scanner noise and missing parts of the point cloud, both of which negatively impact
the algorithm’s ability to accurately separate wood from leaf structures, as illustrated
in Figure 13d.

Silver birch exhibited different behaviour, partly due to the more distinct intensity
separability between wood and leaf components compared to coniferous species.
Although TLS accuracy for birch was slightly lower (0.834), its precision (0.977),
recall (0.826), and F1-score (0.895) were all higher than those of Scots pine. The
high precision indicates that when the classifier predicted a point as wood or leaf,
it was correct nearly all the time, with very few misclassifications. The high recall
shows the classifier also successfully identified most actual wood and leaf points. This
combination of high precision and recall produces a strong F1-score, suggesting a
well-balanced and effective classification. Low standard deviations across all metrics
indicate high consistency among trees. This is visible in Figure 12c, where TLS box
plots are tight with minimal variation and no outliers. Silver birch’s broad, flat leaves
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likely offer clearer geometric separation from branches, benefiting from the detail in
TLS data and supporting more reliable classification. Comparing silver birch and
Scots pine may not reflect the overall performance of the algorithm, since, as presented
in Table 4, only eight silver birches are available in the TLS dataset compared to 128
Scots pines. The effect of this algorithm on silver birch thus requires further study,
which will be discussed in Section 6.

A silver birch example tree from the TLS dataset is analysed in Figure 14. The
classification accuracy for this tree is 0.82, precision is 0.97, recall is 0.80, and
F1-score is 0.88. Figure 14 presents, side by side, the manual classification of the tree
(Figure 14a), the classification obtained with the wood and leaf separation algorithm
(Figure 14b), the manual classification of the wood component (Figure 14c), and the
algorithmic wood classification (Figure 14d). The analysis of Figures 14c and 14d
shows that most parts of the stem are captured by the separation algorithm. However,
smaller branches remain challenging even for silver birch. The upper part of the tree is
also difficult to capture due to the thin stem. Nonetheless, the metrics align with the
visual classification results, as observed by comparing Figures 14a and 14b. In Figure
14d, wood and leaf parts are mostly captured, with some misclassifications occurring
within the leaf regions. A substantial portion of the stem is correctly identified, but
smaller branches are often misclassified as leaves because their geometric features
resemble those of leaves.

(a) Manual classifica-
tion

(b) Classification algo-
rithm

(c) Manual classifica-
tion

(d) Classification algo-
rithm

Figure 14: Classification results of silver birch from TLS data
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Norway spruce, by contrast, shows the weakest results with TLS. Accuracy is
lower at 0.715, while precision (0.282), recall (0.404), and F1-score (0.300) are all
substantially lower than those of Scots pine and birch. Low precision indicates that
many points classified as wood or leaf are incorrect, and low recall reveals that many
true wood or leaf points are missed. The resulting low F1-score reflects a poor balance
between detecting relevant classes and avoiding misclassification. Moreover, these
metrics have the largest standard deviations, indicating significant variation between
individual trees. This is confirmed in Figure 12b, with TLS box plots showing broad
spreads and several outliers, particularly for recall and F1-score. This variability is
likely due to the dense and conical structure of spruces, with the geometric distinction
between wood and leaf reduced by fine and evenly distributed needles, therefore
impeding classification even with high-resolution TLS data.

Further analysis of Norway spruce is conducted by analysing an example tree from
the TLS dataset, shown in Figure 15. The classification accuracy for this tree is 0.80,
precision is 0.66, recall is 0.64, and F1-score is 0.65. Figure 15 presents a comparative
view of the manual classification of the tree (Figure 15a), the classification obtained
with the wood and leaf separation algorithm (Figure 15b), the manual classification of
the wood component (Figure 15c), and the algorithmic wood classification (Figure
15d).

(a) Manual classifica-
tion

(b) Classification algo-
rithm

(c) Manual classifica-
tion

(d) Classification algo-
rithm

Figure 15: Classification results of Norway spruce from TLS data
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Figure 15 shows that although the metrics for spruce are above average, the
classification includes many misclassified points, as observed in Figure 15d. However,
given the structure of Norway spruce, even manual classification from point cloud
data is extremely challenging and prone to errors, as seen in Figure 15c, by the
missing branches in the upper half of the tree. Additionally, the scanner exhibits
difficulties in penetrating the dense canopy structure. Examining Figures 15a and 15c
reveals that most of the upper part of the tree is classified as wood, resulting in the
misclassification of many needles. Due to misclassifications in the reference data,
assessing the algorithm’s true performance in wood and leaf separation for Norway
spruce is difficult.

In the UAV dataset, only Scots pine is included. It achieves the highest accuracy
across all species and data types at 0.916, indicating that most points are classified
correctly. However, precision (0.764), recall (0.426), and F1-score (0.543) remain
lower compared to TLS. The low recall indicates that many actual wood or leaf
points are missed. Although a moderately high precision suggests that the model
often produces correct predictions, it is less reliable than TLS. This imbalance is
reflected in the lower F1-score. Standard deviations for precision and F1-score are
slightly higher than those in TLS, indicating greater variability between trees. This
variability is evident in the box plots in Figure 12a, demonstrating wider spreads
and several outliers, particularly in precision. High accuracy likely results from the
predominance of wood points in the UAV data, as predicting most points as wood
yields a high proportion of correct labels. However, lower recall demonstrates the
classifier’s limited ability to detect all relevant wood points.

A Scots pine example tree from the UAV dataset is analysed in Figure 16. The
classification accuracy for the tree is 0.92, precision is 0.95, recall is 0.46, and F1-score
is 0.62. Figure 16 provides a visual comparison between the manual classification of
the tree (Figure 16a), the classification obtained with the wood and leaf separation
algorithm (Figure 16b), the manual classification of the wood component (Figure 16c),
and the algorithmic classification of the wood component (Figure 16d).
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(a) Manual classifica-
tion

(b) Classification algo-
rithm

(c) Manual classifica-
tion

(d) Classification algo-
rithm

Figure 16: Classification results of Scots pine from UAV data

Analysis of Figure 16 demonstrates that high accuracy and precision alone do
not sufficiently assess the quality of wood and leaf separation. Figures 16c and 16d
show that despite high precision and accuracy, the low recall of 46% indicates the
model captures less than half of the actual wood points, underscoring the importance
of analysing recall. Figure 16b illustrates the difficulty in capturing parts of the stem
due to the sparsity of the point cloud, where the algorithm successfully identified a
lot of the stem in TLS data, as demonstrated in Figures 13d and 14d. In addition to
the model’s difficulty in capturing most wood points within the UAV point cloud,
data sparsity also complicates manual classification of wood and leaf components, as
shown in Figures 16a and 16c. The upper part of the tree in Figure 16c lacks labelled
branches connecting to the canopy visible in Figure 16a. Furthermore, many wood
points are misclassified as leaves in the reference data.

The ALS data demonstrates the weakest overall performance, particularly in terms
of precision, recall, and F1-score, although accuracy remains relatively high. For Scots
pine, ALS achieves an accuracy of 0.899, but precision (0.217), recall (0.160), and
F1-score (0.177) are significantly lower compared to TLS and UAV. Low precision
and recall indicate both a large number of misclassified points and many missed wood
or leaf points. These metrics are reflected in Figure 12a, displaying wide box plots
and several outliers, particularly in precision and recall.

Figure 17 presents a classified Scots pine tree. The classification accuracy for this
tree is 0.92, the precision is 0.59, the recall is 0.42, and the F1-score is 0.49. Figure
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17 presents the tree’s manual classification (Figure 17a), the classification obtained
with the wood and leaf separation algorithm (Figure 17b), the manual classification
of the wood component (Figure 17c), and the algorithmic classification of the wood
component (Figure 17d).

(a) Manual classifica-
tion

(b) Classification algo-
rithm

(c) Manual classifica-
tion

(d) Classification algo-
rithm

Figure 17: Classification results of Scots pine from ALS data

Similar to the UAV Scots pine results in Figure 16d, Figure 17d demonstrates
the algorithm’s difficulty in capturing the full stem of the tree in ALS data. The
Scots pine example contains many missed and misclassified points, especially when
comparing Figures 17a and 17b. The sparsity of the dataset is particularly evident
in Figure 17c. When examining the stem region, the point density is insufficient to
facilitate the reliable extraction of geometric features indicating structural components
or orientation. Similar difficulties are observed in Norway spruce and silver birch.

For Norway spruce in the ALS dataset, the algorithm yields an accuracy of 0.842,
but precision (0.032), recall (0.074), and F1-score (0.032) are extremely low. These
values indicate the classifier rarely makes correct predictions and often entirely misses
relevant points. High variability is evident in both metric standard deviations and the
box plots in Figure 12b, showing multiple outliers. The low point density of the ALS
data, combined with the complex geometry of spruce trees, limits the detection of
meaningful separation between wood and leaves.

Similarly, silver birch in ALS exhibits poor results. Accuracy is 0.874, while
precision (0.050), recall (0.085), and F1-score (0.057) remain low, with large standard
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deviations. The classifier often fails to distinguish between wood and leaf components.
This is illustrated by broad box plots and numerous outliers in Figure 12c, especially
in recall and F1-score. Although accuracy remains relatively high, it is a result of the
dominance of the wood class rather than true classification success.

Overall, the results confirm that denser point clouds improve wood and leaf
separation. TLS consistently outperforms the other data types in precision, recall,
and F1-score, particularly for Scots pine and silver birch. UAV achieves the highest
accuracy for Scots pine but shows lower recall and F1-score, indicating a substantial
number of relevant points were missed despite classifying most points correctly. ALS
data produces the poorest results in precision, recall, and F1-score for all species,
particularly for Norway spruce and silver birch. The high accuracies observed in the
ALS dataset are a result of class imbalance, as wood points dominate the data. By
predicting all points as wood, a high accuracy would be achieved. This underlines
the importance of evaluating all metrics beyond accuracy when assessing classifier
performance. Nonetheless, this study aims to evaluate the algorithm’s limitations and
determine the point cloud densities at which its performance begins to decline.

5.3 Effect of point density on classification performance
The ALS data achieved worse classification metrics than both the TLS and UAV data.
The poor performance is directly attributed to the sparser point cloud. In a dense
dataset, the algorithm accurately captures the geometric features that describe local
structures. However, as the dataset becomes sparser, the geometric characteristics
of leaves and wood start to resemble each other more closely, making it harder to
distinguish between them. This causes the classification algorithm’s effectiveness to
collapse, yielding much lower precision and recall for the ALS data.

To further examine how point cloud density affects classification, the density of a
high-resolution point cloud is reduced to observe the changes in performance metrics.
As an example, the Scots pine tree from the TLS dataset (Figure 13) is analysed for
the experiment. Initially, with the full-density point cloud (approximately 87 600
points/m2), the classification metrics were high: 0.87 accuracy, 0.96 precision, 0.79
recall, and 0.87 F1-score. The point cloud of this tree was further downsampled
to lower densities by removing points within a specific distance from each other,
thereby increasing the spacing between points. The classification performance was
re-evaluated at each level. The resulting metrics, along with the corresponding average
point densities, are presented in Table 6.
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Point density (points / m2) Accuracy Precision Recall F1-Score
87 609 0.8702 0.9623 0.7888 0.8669
6 665 0.7956 0.4217 0.6047 0.4969
2 145 0.7954 0.3257 0.5637 0.4129
1 218 0.7737 0.2662 0.5362 0.3558

Table 6: The affect of point cloud resolution in wood and leaf separation of a Scots
pine from TLS data

At the original resolution of roughly 87 600 points/m2, the classification performed
well. Reducing the density to about 6 700 points/m2 caused all metrics to decline,
with precision dropping the most. Notably, the accuracy remained relatively high
across all densities, as visible in Table 6, likely due to wood points dominating the
point cloud. When the density was further reduced to approximately 2 100 points/m2,
comparable to the UAV dataset’s density, the metrics fell to a level similar to those
observed for actual UAV data. However, the precision in this downsampled case
was much lower than the precision obtained from the real UAV dataset, since the
feature weights have not been adjusted accordingly, demonstrating the importance
of adjusting the weights depending on the dataset’s density. Finally, at the lowest
density of approximately 1 200 points/m2, the classification metrics degraded to a
level approaching the performance on the ALS data. The classification outcomes at
these different point densities are visualised in Figure 18, which demonstrates the
Scots pine point cloud and its classification results at each resolution, including both
the entire tree classification and the wood points classification for clarity.
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(a) Classification of
the tree with original
point density

(b) Classification of
the tree with point
density of 6700
points / m2

(c) Classification of
the tree with point
density of 2100
points / m2

(d) Classification of
the tree with point
density of 1200
points / m2

(e) Classification of
the wood with origi-
nal point density

(f) Classification of
the wood with point
density of 6700
points / m2

(g) Classification of
the wood with point
density of 2100
points / m2

(h) Classification of
the wood with point
density of 1200
points / m2

Figure 18: Classification visualisations with different point densities
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As shown in Figures 18c and 18d, the tree at the two lowest densities of 2,100
and 1,200 points/m2 resembles the typical point density and visual sparsity of UAV
and ALS datasets, respectively. Correspondingly, the classification results in Figures
18g and 18h indicate that the algorithm labels nearly all points as wood. This occurs
because the classifier is still using feature weightings optimised for the high-density
TLS data, which do not transfer well to much sparser point clouds.

Overall, it is evident that as the point cloud resolution decreases, the classification
performance worsens significantly since the method relies on geometric feature
extraction and the feature values no longer reflect the local structure as the distance
between points increases. However, this experiment revealed that the number of
points does not affect the algorithm’s performance. It is rather the spacing between
them, indicating that the distance between points in the cloud has a crucial role in the
performance.
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6 Discussion

6.1 Wood and leaf separation algorithm
The thesis explored an alternative unsupervised approach for wood and leaf classi-
fication. Since the adaptive radius yields one optimal neighbourhood radius and,
subsequently, an optimal set of geometric features, an experiment was conducted
combining information from two optimal radii at different scales. This approach was
inspired by Shcherbcheva et al. (2023), who performed wood and leaf classification
by combining features obtained with multiple radii. In the thesis experiment, each
point had two sets of optimal geometric features derived from both a smaller and
a larger neighbourhood radius. Results were merged using logical OR and AND
operators. The assumption was that a second set of geometric features could capture
additional wood points missed by a single radius approach. However, this method
degraded accuracy compared to using a single optimal adaptive radius, achieving
average overall accuracies of 40 to 60%. Through a series of trials, it became evident
that applying one optimal radius per point yielded the best performance. Therefore, the
combination of two optimal radii was not further explored or reported in this thesis.
This finding supports the idea that an appropriately chosen single scale can capture
the key geometric structure of a neighbourhood, whereas combining scales may lead
to misclassification and overfitting.

A key aspect of this study’s wood and leaf separation algorithm was the computation
of geometric features using the adaptive radius search method. Rather than applying
a single radius for all points or using a small set of discrete radii, the algorithm
finds an optimal radius for each point by minimising Shannon’s entropy of the local
neighbourhood. As described in Section 4.2, this approach, based on Demantké et al.
(2011), was originally developed for building point clouds and had not been explored
in the case of tree point clouds, even though the search radius is one of the most
important parameters for computing geometric features. Implementing the adaptive
radius search for tree point clouds allowed the features to adjust to the local geometry
of the neighbourhood. For instance, a large branch or stem was assigned a larger
neighbourhood, whereas smaller branches retained a small optimal radius.

The optimal radius was found by iterating through different possibilities within
a search range. The search range relied on the resolution of the dataset and was set
manually. However, future research could further optimise the search range by basing it
on computed point cloud density. The radius search was bounded between a minimum
of 0.10 m, and a dataset-dependent maximum was set to 0.5 m for dense TLS data and
extended to 1.5 m for sparser UAV and ALS datasets.

Once the optimal neighbourhood was found for each point, a set of geometric
features was computed to characterise the local neighbourhood shape. However, not all
features contributed equally to the separation of wood and leaf, with variations across
datasets. Multiple features were evaluated, and those demonstrating poor classification
performance were excluded. Only features that individually achieved at least 70%
classification accuracy were included in the analysis.
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A two-component GMM classification was further applied independently to each
chosen feature, resulting in binary classifications. Each feature classification was
assigned a weight based on its importance in wood and leaf separation, with weights
adjusted for each dataset according to feature distributions. Although the weighting
process was conducted empirically in this study, future research could automate
the weight assignment to enhance the algorithm’s universality. The application of a
weighted sum of features ensured that each feature contributed to a point’s classification,
with more informative features having greater influence. This approach enhanced
algorithm robustness across TLS, UAV, and ALS datasets.

Implementing the adaptive radius search involved substantial computational cost.
Processing millions of points across varying radii is computationally intensive, proving
efficiency crucial. The step size in radius search (𝑠 in Algorithm 1) represented
a trade-off between accuracy and computational efficiency. While a smaller step
size increased the likelihood of accurately identifying the true entropy minimum, it
significantly raised the number of iterations and runtime. A balanced step size was
therefore selected to preserve classification accuracy while limiting computational
cost. Manual fine-tuning demonstrated that for TLS data, increasing the step size
beyond 35 yielded no improvement in results past the fourth decimal place. In contrast,
for airborne data, a larger step size negatively affected accuracy due to the increased
space between points. Therefore, UAV and ALS results improved when the step size
was reduced to 25.

Since the algorithm requires finding an optimal neighbourhood radius for each
point individually, the originally implemented brute force radius searches were
computationally intensive. Parallelisation was therefore implemented by distributing
the workload, reducing runtime. This parallel approach transformed the initial
nested-loop algorithm into a method capable of processing entire point cloud datasets
efficiently. Although further optimisations or approximation techniques may be
necessary for large-scale applications, the parallelised implementation applied in this
thesis was sufficient to process the full datasets within a reasonable time. Tuning
algorithm parameters, along with parallelisation, ensured its practicality across varying
data sources.

6.2 Performance across applied data acquisitions
The proposed wood and leaf separation algorithm utilising the adaptive radius approach
demonstrated strong overall accuracy, with performance varying across the TLS, UAV,
and ALS datasets. A species-wise analysis provided further insights into algorithm
performance. Scots pine, with its relatively open canopy and long needles, yielded
reliable classification results, aligning with the species’ structure. The sparse canopy
allowed the algorithm to compute geometric features that effectively distinguished
between wood and leaf components. Finer branches were more likely to be detected,
as their geometry was less occluded with leaf points due to limited overlap in the
neighbourhood structure.

Silver birch, which exhibited the most distinct intensity between leaf and wood
components among all tested species, achieved the best overall performance. However,
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the sample size of silver birch was small, consisting of only eight trees compared to
128 Scots pines, suggesting that this high accuracy may not generalise without further
testing. Nevertheless, the results were consistent from a structural point of view. Silver
birch trees had broad, flat leaves that occupied much of the surrounding space in their
local neighbourhood. In cases where the optimal neighbourhood was computed for
a point located on a leaf, the radius was expected to include primarily leaf points,
facilitating accurate classification by the algorithm.

In contrast, Norway spruce emerged as the most challenging species. The
algorithm struggled to differentiate small spruce branches from needles, as the dense
needles’ neighbourhoods blended with the small branches, causing their geometric
features to overlap. Additionally, the stem often remained obscured within dense
foliage, complicating the identification of woody structures. Future work could test if
improvement can be obtained in the classification performance for Norway spruce by
using separate radius search ranges for small branches and the stem.

Most studies in the field have focused on wood and leaf separation utilising TLS
datasets. However, complete 3D modelling of tree point clouds often requires the fusion
of UAV and TLS data, which in turn demands different parametrisation. Therefore,
this study aimed to generalise the method across various data acquisition types, given
the increasing use and potential of UAV and ALS. UAV point clouds, however, tended
to misclassify more wood points due to the greater distances between points, which
limited geometric feature extraction and thus blurred the distinction between wood
and leaf components.

ALS data presented limitations in distinguishing between wood and leaf classes.
At such low point densities, the classifier tended to predict the dominant class for most
points. The relatively high accuracy for ALS spruce and birch resulted from class
imbalance rather than true classification performance.

These results confirm that point cloud resolution significantly influences classifier
performance, even with the adaptive radius search method. The study managed to
identify the point density threshold at which the unsupervised classification algorithm
becomes unstable. The results confirmed that, with UAV data, performance remains
adequate. However, the algorithm failed to well handle datasets as sparse as the ALS
data, highlighting the limitation that no single algorithm can be universally applicable
across all tree species and data acquisitions.

6.3 Comparison with existing methods
Prior studies have explored both supervised and unsupervised algorithms for wood
and leaf separation. The accuracy achieved by the method presented in this thesis
on TLS data aligns with existing unsupervised algorithms, though some methods
outperform it. For instance, Ali et al. (2024) evaluated several classifiers on TLS
datasets, reporting accuracies of 95% for the supervised random forest, 90% for the
unsupervised LeWoS algorithm, 89% for the supervised CANUPO, and 81% for
the unsupervised TLSeparation. In comparison, the method described in this thesis
achieved an accuracy of approximately 85% on TLS datasets, excluding Norway
spruce.
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The unsupervised GMM approach presented here is competitive with CANUPO, a
supervised classifier using similar geometric features, and approaches the accuracy
of the LeWoS method. The comparable performance of this study’s unsupervised
algorithm to a supervised method, such as CANUPO, highlights its effectiveness.
However, accuracy is not the sole consideration. A key advantage of the proposed
method is its data efficiency and adaptability. Unsupervised methods handle larger
datasets without requiring manually labelled data and can be more easily applied
across forest sites.

Many automated wood and leaf classifiers apply similar geometric features. For
instance, CANUPO applies a supervised SVM on geometric features derived from
PCA and point density, whereas this study’s method applies GMM to individual
geometric features, combining them into a classification through a weighted sum. The
success of the weighted feature sum approach suggests that, even without advanced
learning algorithms, geometric features alone provide sufficient information to separate
wood from leaves. The adaptive radius further enhances this by computing features at
an appropriate scale for each point, improving their quality.

Ali et al. (2024) noted that variations in chosen neighbourhood radii and the use
of multi-scale features could lead to differences in accuracies. Interestingly, Ali et
al. (2024) observed that their random forest classifier achieved lower accuracy than
that reported by Wang et al. (2017) but higher than that of Zhu et al. (2018), likely
due to differences in multi-scale feature selection and radius choices. This thesis
method selected a single adaptive scale rather than incorporating multi-scale features.
Additionally, the geometric features applied in this study are similar to those in Wang
et al. (2017), which achieved the highest accuracies among the supervised methods.
However, the exceptionally high accuracy achieved by Wang et al. (2017) could be
attributed to the limitations of the two-tree dataset used in their study.

In summary, the GMM with adaptive radius method performs competitively among
unsupervised algorithms, approaching the lower performance range of supervised
methods, while requiring no training data. This offers a significant advantage for
large-scale forestry applications. The findings align with the broader understanding in
the field, suggesting that supervised methods typically yield higher accuracy, while
unsupervised methods offer greater flexibility and efficiency. Future developments
could aim to integrate aspects of both approaches, such as applying geometric features
as unsupervised methods do, while learning optimal weightings or neighbourhood
searches from data. A semi-supervised extension could enhance precision, particularly
for challenging cases such as Norway spruce, as also noted by Ali et al. (2024).

Overall, the adaptive radius GMM method is effective under certain conditions
and compares well with existing approaches. However, it remains unclear what the
tree species or the quality of point clouds utilised in previous studies were and whether
their reported high accuracies resulted from exceptionally well-captured data. Factors
such as data density, species complexity, and class imbalance continue to influence
the algorithm’s performance. These results emphasise the importance of adaptive,
data-driven parameter selection in point cloud analysis. Challenges such as penetrating
dense spruce canopies or processing incomplete data may require further development.
With refinement and potential integration with supervised techniques, this approach
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could evolve into a powerful tool for forest point cloud analysis, combining the strengths
of both unsupervised and supervised methods to enhance robustness and applicability.

6.4 Recommendations for future work based on advantages
and limitations

While the proposed wood and leaf separation algorithm provided accurate results,
limitations of this study’s unsupervised approach can be highlighted to guide further
improvement. The presence of scanner noise or missing parts of the point cloud reduced
the algorithm’s classification performance. For instance, when tree crowns were not
fully captured by the scanner, the computed geometric features failed to represent the
true local structure, leading to misclassification. This issue was particularly noticeable
with TLS data, where incomplete capture of the upper parts of the trees resulted in
poorer classification. Although the UAV and ALS datasets captured the overall tree
structure, their lower point cloud density in these datasets restricted the algorithm’s
ability to accurately capture the local geometry of the neighbourhood, resulting in
misclassification. To address these limitations, the fusion of TLS and UAV data could
provide a more complete and dense dataset, but future studies are required to evaluate
the parametrisation requirements in data fusion scenarios.

Class imbalance in the data represents another challenge for evaluation metrics.
In all datasets, the number of wood points exceeded the number of leaf points, and
the unsupervised classifier does not account for this imbalance. This issue was most
evident in the ALS results, where the classifier labelled the majority of points as wood,
resulting in high overall accuracy but very low precision and recall for the wood class.
This scenario highlights why accuracy alone is a misleading metric in imbalanced
datasets. Although other metrics were incorporated in the evaluation, the algorithm
itself does not explicitly address class imbalance.

Norway spruce presented classification difficulties, raising questions about the
generalisability of the method across species. The adaptive radius method occasionally
failed to identify a scale capable of distinguishing foliage points from non-foliage
within Norway spruce point clouds. At small radii, the local neighbourhood of a
spruce needle often included parts of adjacent small branches, whereas at larger
radii, multiple branches and needles were included. Future research could explore
density-specific neighbourhood radius search bounds to better capture geometric
features of foliage points. While earlier supervised studies, for instance Xi et al. (2018),
characterised wood and leaf separation as species-independent, the present findings
challenge this view concerning unsupervised classification. Although the algorithm
did not incorporate any species-specific parameters, its performance was influenced
by species-specific characteristics.

In contrast to Norway spruce, the method performed well on Scots pine and
broadleaved silver birch, indicating that the adaptive radius search algorithm effectively
adapted to different tree structures and captured their geometric properties. However,
limited sample sizes restricted the assessment of generalisability on silver birch, and
conclusions regarding species effects should require validation on larger datasets.
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Nonetheless, prior research indicates that leaf and wood classification tends to be more
effective for deciduous species (Ferrara et al., 2018; Chen et al., 2025). The dominance
of Scots pine, particularly in the UAV dataset, contributed to high classification
accuracy, as the method handles this species relatively well. Further research could
include a broader range of tree species to assess the method’s applicability more
comprehensively.

The unsupervised nature of the classifier introduced additional limitations. As
the GMM is not based on manual labels, it classifies points based solely on feature
distributions. While this allows application without training data and enables gen-
eralisation across datasets, it may lead to misclassification. The lack of supervision
also required manual tuning of parameters, such as feature weights and radius ranges,
which were dataset-specific. Application to new datasets with differing characteristics
may necessitate reconfiguration. The weight tuning process, as noted earlier, could be
automated in future by analysing point cloud properties. Despite these limitations, the
unsupervised approach demonstrated strong performance in this context, achieving re-
liable accuracy without labelled data. This is particularly advantageous for large-scale
datasets where manual classification is impractical. Overall, the study confirmed the
original hypothesis and demonstrated that the adaptive radius search method enhances
feature extraction and improves accuracy in wood and leaf classification.
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7 Conclusion
This thesis demonstrated that adaptive radius search improved unsupervised wood
and leaf classification in forest LiDAR data, validating the central hypothesis. By
automatically determining an optimal neighbourhood radius for each point, the
method enhanced geometric feature quality and improved classification accuracy
across datasets. The unsupervised classifier achieved performance comparable to
supervised algorithms in high-density scans without relying on manually labelled
training data, highlighting its practicality and efficiency. Selecting point-specific
optimal neighbourhoods reduced manual parameter tuning and ensured consistent
classification performance across diverse tree species and acquisition geometries.

Achieving accuracies similar to supervised methods was particularly significant
in a field demanding extensive manual labelling, a process both labour intensive and
time consuming. Demonstrating such performance with a fully unsupervised approach
emphasised its effectiveness and aligned with current efforts to minimise dependence
on labelled data. The capability to classify wood and foliage without supervised training
offered clear benefits for large-scale and long-term forest monitoring applications.

Nevertheless, some limitations persisted. This study showed that while the al-
gorithm performed effectively with point cloud densities comparable to UAV data,
performance declined with sparser datasets such as ALS. Variation in data acqui-
sition methods and tree species prevented the universal applicability of any single
classification approach. Overall, this study confirmed the objective of developing an
adaptable and effective wood and leaf classification algorithm. Continued refinement
and integration of emerging techniques could establish this adaptive unsupervised
approach as a robust foundation for fully automated forest point cloud analysis.
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