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Abstract
Neural operators have emerged as powerful surrogates for learning solution
maps of differential equations. Yet, their application to optimal control re-
mains underexplored. This thesis presents a unified control framework based
on Physics-Informed Neural Operators (PINO) for solving parametric optimal
control problems governed by ordinary differential equations. We investigate
three prominent architectures - DeepONet, Fourier Neural Operator (FNO),
and Laplace Neural Operator (LNO) - and train them using an unsupervised
approach.

The framework is benchmarked on a suite of analytically solvable control prob-
lems, including linear-quadratic regulation, oscillatory forcing, polynomial track-
ing, and singular arc problems.

Our results reveal trade-offs across architectures: FNO achieves the fastest
convergence, DeepONet excels in initial condition enforcement and prediction
accuracy, while LNO provides competitive solutions on transient-rich problems.
All experiments are reproducible, and the training pipeline is architecture-
agnostic.

This work provides the first comparative study of neural operator architectures
in a PINO-based optimal control setting and offers insights into their suitability
for physics-constrained learning tasks.

Keywords Neural operators, Optimal control, Physics-informed learning,
DeepONet, FNO, LNO
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Symbols and Abbreviations
Symbols
t time variable
x(t) ∈ Rn system state at time t
u(t) ∈ Rm control input at time t

ẋ(t) time derivative of state: dx

dt
J(u) cost function to be minimized
F (x, u, t) running cost
G(x) terminal cost
Dθ neural operator with parameters θ
R residual of the governing differential equation
λ(t) costate (adjoint) variable
µ penalty weight for physics residual
∆t discretization step size
N number of time discretization points

Operators
d

dt
total derivative with respect to time

∂

∂t
partial derivative with respect to time

∥ · ∥L2 L2 norm (squared-integral over time domain)
F ,F−1 Fourier transform and its inverse
L,F−1 Laplace transform and its inverse
Dθ(u) learned state trajectory for control input u
arg min argument that minimizes an objective function

Abbreviations
ODE ordinary differential equation
PDE partial differential equation
PINN physics-informed neural network
NO neural operator
PINO physics-informed neural operator
FNO Fourier neural operator
LNO Laplace neural operator

7



1 Introduction
Control problems are fundamental in engineering and applied sciences, whether
you need to start and shut down power plants efficiently [1], fly aircraft along
minimum-fuel trajectories [2], or optimize financial portfolios in continuous time
[3]. In each case, differential equations driven by control inputs govern the
system dynamics.

Classical theory - built on the Pontryagin Maximum Principle [4] and Hamilton-
Jacobi-Bellman equations [5] - provides the necessary conditions for optimality.
However, real-world systems introduce nonlinearities, constraints on states and
controls, making closed-form solutions extremely challenging or impossible. To
handle these complexities, practitioners commonly rely on numerical methods.
Indirect methods, such as shooting methods [6], transform the boundary value
problems into root-finding problems, but are sensitive to initial guesses. Direct
transcription and collocation [7] discretize trajectories, converting the problem
into large-scale nonlinear programs that, despite their effectiveness, require
substantial computational effort and careful tuning as problem dimensionality
grows.

Recent research studies how data-driven surrogate models can solve compu-
tational limitations and scalability issues of traditional numerical methods.
Physics-informed neural networks (PINNs) and neural operators have emerged
as particularly promising alternatives. PINNs enforce differential equations and
boundary or initial conditions as soft constraints during training, enabling them
to solve ordinary and partial differential equations effectively [8]. This led to
further development of neural operators, designed explicitly to learn mappings
between function spaces and effectively generalize solutions across parameterized
PDE families.

Deep Operator Network (DeepONet) was one of the first neural operator ar-
chitectures [9], which leveraged the universal approximation theorem to learn
operators between infinite-dimensional function spaces. In particular, DeepONet
successfully recovered solution maps for PDEs such as reaction-diffusion and
Burgers equations. Subsequently, Fourier Neural Operator (FNO) [10] was
introduced as an iterative architecture that represents the integral kernel as
a convolution in the frequency domain. More recently, the Laplace Neural
Operator (LNO) [11] was introduced as a possible alternative to FNO, which
represents the integral kernel as a convolution in the Laplace domain.

The success in learning solution operators for PDEs showed that neural operators
present significant potential as surrogate models in optimal control frameworks.
Hwang et al. [12] demonstrated that autoencoder-based operators could ap-
proximate solution operators for Poisson source and Stokes boundary control
problems. This success motivates exploration into whether alternative neural
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operator architectures can similarly serve as reliable surrogates in optimal con-
trol. More recently, Lundqvist and Oliveira [13] managed to use a DeepONet
model trained solely in a physics-informed manner to solve a control problem
constrained by diffusion-reaction PDE.

This work investigates explicitly several open questions: (i) how DeepONet,
FNO, and LNO can be adapted for optimal control problems with various
boundary or initial conditions; (ii) how differences in operator designs impact
convergence, solution accuracy, and overall control performance; (iii) inherent
limitations of neural operators as control surrogates; and (iv) whether neural
operators can be effectively trained using only physics residuals, eliminating
dependence on simulation-based datasets.

We adopt a physics-residual-based training approach, where model predictions
are supervised exclusively by governing differential equations and boundary or
initial conditions. This approach eliminates the need for costly simulations and
significantly reduces memory usage and computational demands. We generate
trajectories for some input controls to track signs of overfitting. We test if the
approach suggested for DeepONet [13] is also generalizable for an alternative
architecture.

This thesis systematically compares DeepONet, FNO, and LNO as surrogate
models, providing explicit guidelines for architecture selection, hyperparameter
tuning, and integration with solvers for practical PINO-based control applica-
tions. To thoroughly evaluate the learning behavior of each architecture, we test
multiple classes of candidate control inputs (polynomial, linear, sine, etc), iden-
tifying the most effective inputs for accurate control-state mappings. We train
all models using the Adam optimizer [14]. The architectures are tested on five
benchmark optimal control problems with known analytical solutions, and their
performance is evaluated using a relative L2 error between predicted and accurate
trajectories. FNO is further tested on one-dimensional heat, diffusion-reaction,
and Burgers constrained control problems.

The remainder of this thesis is organized as follows. Chapter 2 reviews the
theory behind optimal control, PINOs, and existing neural operators. Chapter
3 describes our training framework of the neural operators and their integration
into the optimal control problem. Chapter 4 details the benchmark control
problems, evaluation metrics, and experimental setups. Chapter 5 presents results
including convergence studies, error analyses, runtime comparisons for each
architecture, sensitivity analysis, and solutions found for the control problems.
Chapter 6 discusses practical guidelines, identified limitations, and future research
directions. Chapter 7 summarizes contributions and provides our insights.



2 Background
In this chapter, we present the theoretical foundations necessary to understand
the methods that we develop in later chapters. Section 2.1.1 defines the classical
optimal control problem and reviews commonly used numerical solution methods.
Section 2.2 introduces operator learning as a surrogate modeling approach to
solve parametric differential equations. Section 2.2.3 describes physics-informed
neural networks (PINNs) and explains how physics-based loss functions can be
incorporated into operator training. Finally, Section 2.3 discusses how we can
integrate neural operators into the optimal control problem, reviews relevant
prior work, and motivates the unified PINO-control framework proposed in this
thesis.

2.1 Optimal Control
2.1.1 Fundamental concepts

In optimal control, we seek a time–varying input u(t) that drives the system
from its initial state to meet boundary conditions while minimizing a given cost.

Problem statement. Let x(t) ∈ Rn denote the system state and u(t) ∈ Rm

the control, over t ∈ [0, T ]. Given

ẋ(t) = d
(︂
x(t), u(t)

)︂
, x(0) = x0, (1)

We minimize the cost

J(u) = G
(︂
x(T )

)︂
+
∫︂ T

0
F
(︂
x(t), u(t), t

)︂
dt, (2)

where d : Rn × Rm → Rn defines the system dynamics, F is the running cost,
i.e., the instantaneous cost rate accumulated over time, G is the terminal cost,
evaluated at the final state, and, boundary conditions may impose constraints
on the initial state x(0) = x0 and on the terminal state x(T ) or control u(T ).

Flight–control example. Consider a glider whose state

x(t) =

⎡⎢⎢⎢⎣
h(t)
v(t)
γ(t)
x(t)

⎤⎥⎥⎥⎦ ,

collects altitude h, airspeed v, flight–path angle γ, and downrange coordinate x.
The control u(t) = CL(t) is the lift coefficient. The dynamics

ḣ = v sin γ, v̇ = 1
m

(L(u)−D(v, h)), γ̇ = 1
mv

(L(u) cos γ−mg), ẋ = v cos γ,

10



incorporate lift L, drag D, and gravity g. Initial conditions are

x(0) = 0, h(0) = h0, v(0) = v0, γ(0) = γ0.

The objective is to maximize the final range x(T ) with free terminal time T and
penalizing control effort:

J(CL) = −x(T ) +
∫︂ T

0
(αCL(t)2 + βD(v(t), h(t))r)dt.

We may impose terminal requirements such as

h(T ) = hf , v(T ) ≥ vf , γ(T ) free, T free.

Figure 1 illustrates this problem setting.

Figure 1: Flight–control example: initial conditions, control profile CL(t), and
terminal objectives/constraints.

2.1.2 Existing methods

In practice, optimal-control problems, such as the flight-control example, are
typically solved using numerical methods. These methods can be split into two
main categories:

Indirect methods utilize Pontryagin’s Minimum Principle (PMP) to derive
optimality conditions [2], transforming the problem into a two-point boundary-
value problem (TPBVP). PMP introduces costate variables λ(t) and defines the
Hamiltonian as:

H(x, u, λ, t) = F (x, u, t) + λ⊤d(x, u). (3)

Optimal trajectories must satisfy:

ẋ(t) = ∂H

∂λ
, λ̇(t) = −∂H

∂x
, 0 = ∂H

∂u
, λ(T ) = ∂G

∂x(T ) . (4)
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Indirect methods typically employ shooting or multiple-shooting techniques,
iteratively simulating state and costate trajectories to meet boundary conditions.
However, they suffer from high sensitivity to initial guesses of costates, potentially
causing divergence, and numerical difficulties due to nonlinearities, stiffness, and
constraints on states and controls.

Direct methods [6, 15] discretize the optimal-control problem, converting it
into a nonlinear programming (NLP) problem. The state variables x and control
inputs u are defined at discrete time points t0, t1, . . . , tN . The objective function
then takes the form:

min
u

G(xN) +
N−1∑︂
i=0

F (xi, ui, ti)∆ti. (5)

Additionally, discrete-time dynamics constraints are imposed:

xi+1 = xi + Φ
(︂
xi, ui

)︂
∆ti, (6)

where Φ represents the numerical integration or collocation approximation.
Direct methods implicitly simulate trajectories through iterative evaluations
of these discretized equations by NLP solvers (such as IPOPT [16] or SNOPT
[17]), efficiently tackling large-scale problems. Nevertheless, direct methods face
challenges, including computational and memory demands. Solution accuracy
depends on the discretization grid density. It is also challenging to address free
terminal-time conditions or intricate path constraints.

In summary, both indirect and direct methods fundamentally rely on numer-
ical simulations. Practitioners select method based on specific computational
requirements, desired solution accuracy, and the complexity of the problem.

2.2 Operator Learning
While classical numerical methods are effective, they often require repeated
simulations and become computationally expensive - especially in iterative or
real-time control settings. This motivates the development of data-driven surro-
gates that can emulate solver behavior without explicitly solving the underlying
differential equations at each step.

2.2.1 Neural Operators

Neural operators can be a surrogate model that maps inputs - such as control
signals, source terms, or boundary conditions - to the solution of parametric
differential equations. Rather than solving each new instance from scratch, a
neural operator learns the solution operator that maps function-valued inputs
u(t) to state trajectories x(t) [18].
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Formally, let U be a space of input functions (e.g., controls or forcing terms),
and consider the parameterized initial-value problem

ẋ(t) = d
(︂
x(t), u(t)

)︂
, x(0) = x0, (7)

where x(t) ∈ Rn, u ∈ U , and d defines the system dynamics. The goal is to
learn the mapping

D(u)(t) = x̂(t), (8)

which assigns each control input u to a predicted continuous trajectory x̂(t)
defined on the targeted range [0, T ]. This operator D can be approximated by a
neural operator Dθ with learnable parameters θ.

A neural operator is a deep learning framework designed to approximate map-
pings between infinite-dimensional function spaces [18]. Unlike classical neural
networks that map finite-dimensional vectors to outputs, neural operators gen-
eralize across functional inputs, enabling fast and differentiable predictions for a
broad class of parametric equations without retraining.

2.2.2 Existing Architectures

Several neural operator architectures have been proposed, each introducing
different inductive biases and trade-offs in approximation accuracy, training
efficiency, and scalability.

DeepONet [9] is based on the universal approximation theorem for operators. It
decomposes the learning task into two networks: a branch network that encodes
the input function and a trunk network that encodes the evaluation coordinate
locations. DeepONet is simple to implement and theoretically expressive, but may
struggle with high-dimensional dynamics or long-range temporal dependencies.

Fourier Neural Operator (FNO) [10] learns operators in the frequency
domain using spectral convolutions. It begins by projecting the input to a
higher-dimensional latent space, then applies the fast Fourier transform (FFT),
multiplies the frequency coefficients element-wise by learned complex weights,
and finally transforms the signal back to the spatial domain. This architecture
leverages translation invariance and the regular structure of uniform grids,
yielding high efficiency on periodic or smoothly varying problems. Because FNO
hinges on the FFT, however, it is less effective on irregular meshes or strongly
non-periodic domains.

Laplace Neural Operator (LNO) [11] learns operator mappings in the
Laplace domain using a pole-residue decomposition. It transforms inputs via
the Laplace transform, applies learned transfer functions through a residue-pole
parametrization, and inverts back to the domain of the output function. This
approach is well-suited for systems where past inputs have lasting effects, such
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as those with decaying transients. In principle, working in the Laplace domain
captures long-term dependencies and tends to produce stable solutions.

Beyond these, many other architectures have emerged to address irregular
meshes, geometric structures, long-range dependencies, multiscale resolution,
and implicit operator representations. Based on their designs, these methods
can be grouped into operator families (see Figure 2). We briefly mention a
few of the most interesting ones. One architecture - WaveletNO, similar to
FNO and LNO, uses a wavelet transform to represent the kernel integral [19].
The Geometry-Informed Neural Operator (GINO)[20] leverages a Graph Neural
Operator (GNO) [21] to map an irregular grid to a regular one, enabling FNO
to be applied efficiently . The General Neural Operator Transformer (GNOT)
employs a normalized attention (transformer) layer to handle multiple input
functions and irregular meshes [22].

Figure 2: Each colored bubble groups representative models that share the
same kernel-parameterisation strategy: branch–trunk (e.g. DeepONet vari-
ants), spectral-kernel, transformer (attention-based adaptive kernels), graph, and
hybrid/physics-informed. New variants often blend ideas across families.

2.2.3 Physics-Informed Neural Networks (PINNs)

Physics-informed neural networks (PINNs) embed known physical laws - typically
differential equations - directly into the loss function of a neural network [8].
Instead of relying on simulation data, a PINN minimizes the residual of the
governing equations alongside any available data term.

A standard PINN approximates a solution with a feed-forward network whose
parameters θ are trained by minimizing

LPINN(θ) = Ldata(θ) + µphys Lphys(θ), (9)

where Lphys measures violation of the PDE/ODE, typically via automatic differ-
entiation, and Ldata is any metric that measures the difference between simulation
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and prediction. This in turn allows to encode physical dynamics without labeled
data at every space–time point, make the model generalizable to unseen inputs
while still obeying laws of the system, and enforce hard constraints such as initial
or boundary conditions.

Combining PINNs with neural operators (NOs) yields the best of both worlds:
NOs generalize over functional inputs, while residual penalties keep every pre-
dicted trajectory consistent with the system’s governing equations. Given a
neural operator Dθ mapping a control u ∈ U to a predicted trajectory x̂ = Dθ(u),
we can train it by minimizing

Ltrain(θ) = µdata Ldata + µphys

⃦⃦⃦
R(x̂, u)

⃦⃦⃦2
, (10)

where R denotes the physics residual. Given a differential equation of the form

F(x(t), ẋ(t), u(t)) = 0,

and a prediction x̂(t) = Dθ(u) produced by a learned operator, the residual
R(x̂, u)(t) is defined as the violation of the differential equation by the predicted
state:

R(x̂, u)(t) := F(x̂(t), dx̂
dt

(t), u(t)). (11)
A zero residual implies exact satisfaction of the governing equation. The deriva-
tive dx̂

dt
(t) can be computed using automatic differentiation [23] or numerical

differentiation on a discrete grid.

Toy residual example. For the scalar ODE

ẋ(t) + x(t)2 − u(t) = 0

the residual for the prediction x̂(t) = Dθ(u) is

R(x̂, u) = dx̂

dt
(t) + x̂(t)2 − u(t).

2.2.4 Training paradigms.

Recent works have evaluated different training paradigms combining supervision
and physics priors.

Physics-informed training (PINO): Li et al. [24] introduced the PINO
framework, which trains neural operators purely using physics residuals. Their
results showed that PINO can achieve high generalization ability to unseen data,
outperforming supervised baselines when data is scarce.

Self-supervised pretraining: Madhavan et al. [25] proposed a transformer-
based self-supervised learning approach for PDE solvers. The model is pretrained
on large unlabeled datasets using masked or contrastive objectives, enabling it
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to learn a family of solution operators across varied PDE parameters. After
fine-tuning with a small number of labeled trajectories, the model achieves faster
convergence and significantly better generalization.

Latent-space pretraining: Wang & Wang [26] introduced a method where
neural operators first learn to encode solution trajectories into a latent manifold
using autoencoder-style pretraining. This latent-code pretraining on unlabeled
data reduces complexity, and then is fine-tuned on downstream prediction tasks.

Lower-dimensional PDE-slice pretraining: Hemmasian & Farimani [27]
suggest training neural operators on low-dimensional versions of the PDE (e.g.,
1D/2D) before adapting to full-dimensional problems. This speeds up training
and reduces overfitting when supervised data is limited.

2.3 Neural Operators in Optimal Control
Classical indirect and direct methods for optimal control become computationally
expensive as problem dimensionality increases. This is critical in systems that
demand high precision and solution accuracy. Neural networks have proven
themselves to be universal function approximators, prompting many proposals
for using them as surrogates in optimal-control settings.

Physics-informed neural networks (PINNs) have shown the ability to solve
forward and inverse problems governed by differential equations [8, 28]. Building
on this, Mowlavi and Nabi applied PINNs to control problems constrained by
known differential equations [29]. Chen et al. (2019) trained a convex recurrent
neural network that learns the system’s temporal behavior and then finds the
optimal control by solving a convex model-predictive-control problem [30]. Yin
et al. (2023) proposed the Adjoint-Oriented Neural Network, a surrogate that
learns the control, adjoint, and state to obtain the optimal solution via a single
forward pass [31]. Schiassi et al. (2024) introduced Pontryagin Neural Networks
for optimal-control problems with integral quadratic cost functions [32].

Hwang et al. (2021) [12] proposed a two-phase pipeline for operator-learning
control. They employed a custom autoencoder specifically designed to control
problems governed by partial differential equations. In phase 1, they trained
an encoder for the input control u and two decoders: one that maps to the
system state and another that reconstructs the input control ûθ. In phase 2,
they froze θ and treated the input control as a trainable variable, minimizing
a combined loss consisting of the control objective and the relative trajectory
error. Tested in both supervised and data-free modes, the method successfully
approximated solutions to Poisson-, Stokes-, wave-, and Burgers-constrained
problems. Although fast and as accurate as a numerical solver, it is trained for
only a single optimal-control task.
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Motivated by the limitations of autoencoder-based two-phase approach, Lundqvist
and Oliveira (2025) [13] proposed a simpler algorithm. Given a differentiable
neural operator, they use it directly in the optimization loop, treating the control
u as a trainable parameter that minimizes the objective. The key requirement
is to include the physics residual - weighted appropriately - in the loss during
control optimization to maintain feasibility. Their study focused only on Deep-
ONet. This thesis is going to bridge the gap and extend their approach to other
neural operator architectures and test on a wider set of benchmark problems.

More recently, Feng et al. (2025) introduced the Neural Adaptive Spectral
Method (NASM), which learns the operator mapping from a problem instance
to its solution and generalizes across related control tasks [33]. The authors
criticize two-phase methods as computationally expensive and inconsistent: the
input signal may fall outside of the trained distribution, causing convergence
failure. NASM instead accepts the cost function, system dynamics, and initial
conditions as input and directly outputs the candidate optimal control function.
We found this approach refreshing, but it is still limited to a family of control
problems.

We introduce a PINO-control framework that aims to support any neural operator
architecture and apply it to any control problem. We used this framework to test
DeepONet, FNO, and LNO on a set of various benchmark problems to address
the weaknesses and strengths of the architectures. We test their robustness and
discuss possible applicability to solve control problems. We show that Neural
operators can be applied to more or less real-world problems in control problems
(problems that are constrained by differential equations). By further showing
the potential of the approach suggested by [13].
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3 Methodological approach
3.1 General idea
Suppose we have a neural operator Dθ trained to minimize the physics-residual

R(x, u) = ẋ− d(x, u) (12)

and enforce any boundary or initial conditions. In other words, Dθ acts as
a solution operator for the differential operator d, returning an approximate
trajectory x̂ for any input control function u.

To embed Dθ into an optimal-control solver, we follow the direct transcription
paradigm. We discretize the time interval [0, m] into N equal steps,

ti = i ∆, i = 0, . . . , N, ∆ = m

N
,

And recall that a standard direct method enforces (6):

xi+1 = xi + Φ(xi, ui) ∆ti,

Where Φ denotes a numerical integrator or collocation operator. Replacing Φ
with our neural operator gives the following discrete control formulation:

min
X,U

G(xN) +
N−1∑︂
i=0

F (xi, ui, ti) ∆ti, (13)

s.t. {xi}N
i=0 = Dθ

(︂
{ui}N

i=0

)︂
, (14)

x0 = y0. (15)

This formulation can have any additional boundary (BC), terminal (TC), or
initial conditions (IC).

In practice, since Dθ can be imperfect outside of its training distribution, it is
advised to include a soft penalty on the physics residual. In the same fashion, we
can include penalties on conditions posed on the trajectory x inside the objective
function. We also optionally add a term to discourage converging to overly noisy
control functions. Given µi are the weights of the particular loss component,
the control optimization problem can be formulated as follows:

min
U={ui}N

i=0

µ1

[︃
G(xN) +

N−1∑︂
i=0

F (xi, ui, ti) ∆t
]︃

⏞ ⏟⏟ ⏞
original

cost

+ µ2

N−1∑︂
i=0
∥R∥2 ∆t⏞ ⏟⏟ ⏞

physics penalty

+ µ3∥x0 − y0∥2⏞ ⏟⏟ ⏞
IC penalty

+ µ4

N−1∑︂
i=0
∥ui+1 − ui∥2

⏞ ⏟⏟ ⏞
control smoothness

s.t. {xi}N
i=0 = Dθ

(︂
{ui}N

i=0

)︂
.

(16)
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The whole PINO-control framework is summarized in the Figure 3 as a 3-step
process.

Figure 3: Overview of the PINO-control workflow. (Step 1: Preprocess-
ing) Define the original cost J(u), the physics residual R(x, u), and BC/IC
losses; generate a training dataset of control–state tuples. (Step 2: Training)
Batch (u, t) through the neural operator to predict x̂(t), compute residuals
and boundary/initial-condition penalties, assemble the composite loss, and up-
date θ via backpropagation. (Step 3: Control solve) Initialize a candidate
control u(t), evaluate x̂ = Dθ(u), form the control objective (original cost +
physics/BC/IC penalties + control-smoothness term), and iteratively refine u
by gradient descent through the operator.
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Step 3 is based on the gradient-based procedure introduced by Lundqvist and
Oliveira [13].

Algorithm 1 Gradient-based Optimization using a NO
Require: Pre-trained NO Gθ; discretized cost J̄(u)
Ensure: Optimal control u∗

1: Initialize {ui}I−1
i=0 (e.g. all zeros); set ti = i ∆t, so ui ≡ u(ti)

2: while not converged do
3: yi ← Gθ

(︂
{uk}I−1

k=0(ti)
)︂
∀i = 0, . . . , I − 1 ▷ Forward pass

4: ẏi ←
d

dt
Gθ

(︂
{uk}I−1

k=0(ti)
)︂
∀i = 0, . . . , I − 1 ▷ Time derivative via

AutoDiff or Finite difference
5: Ri ←

⃦⃦⃦
ẏi − f(yi, ui, ti)

⃦⃦⃦2

2
∀i = 0, . . . , I − 1 ▷ Residuals

6: J̄µ

(︂
{ui}

)︂
← J̄

(︂
{ui}

)︂
+ µ

I

I−1∑︂
i=0

Ri ▷ Penalized cost

7: Compute dJ̄µ

dui

∀i = 0, . . . , I − 1 ▷ Gradients via AutoDiff

8: ui ← Φ
(︂
ui,

dJ̄µ

dui

)︂
∀i = 0, . . . , I − 1 ▷ Update step

9: end while
10: return u∗ ← {ui}I−1

i=0

Algorithm 1 initializes a discretized control trajectory {ui}, computes state
predictions and their time-derivatives via automatic differentiation, assembles
the residual penalty, and updates the controls using the map Φ until convergence
[13].

In the next sections, we analyze the remaining stages of the PINO-Control
framework and outline the neural-operator architectures we have selected to
evaluate within it.

3.2 Preprocessing
Preprocessing consists of two separate parts: data generation and function
definition. Data generation process is covered in full detail in Section 4.3.

First, we discretize the control problem on a uniform grid of N + 1 time points,
u = {ui}N

i=0, x = {xi}N
i=0, ti = i ∆t.

We then implement four core routines (see Figure 3, routines are denoted by ∗),
each taking the discrete trajectories u, x, and any additional hyperparameters
(denoted by *args):

* physics_loss(u, x, *args) - computes ∥R∥2
L2 , which is the violation of

physics residual, i.e.. In a perfect case, it should be ≈ 0
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* boundary_loss(u, x, *args) - Penalizes violation of terminal or other
boundary conditions

* initial_loss(u, x, *args) - penalizes deviation of x0 from a prescribed
initial state

* objective_function(u, x, *args) - evaluates G(xN )+∑︁N−1
i=0 F (xi, ui, ti) ∆t.

Let us first consider how we treat the objective function. Any integral component
- such as the running cost

∫︁ T
0 F (x(t), u(t), t)dt - is discretized using the trapezoidal

rule, which offers a good trade-off between accuracy and simplicity. G(xN), the
terminal cost, is typically evaluated directly at the final state and added to the
integral.

Boundary and initial loss functions can be written straightforwardly, as defined
in (16). The physics loss function is generally harder to define, since depending
on the residual R, we may need to calculate derivatives of the output function
x with respect to any input variable.

Derivatives of x can be obtained in two ways:

1. Automatic differentiation:
If the neural operator is defined such that it accepts time t as an explicit
input, we can compute exact derivatives using automatic differentiation
provided by modern frameworks (e.g. PyTorch, TensorFlow). These
frameworks construct a computation graph and apply the chain rule to
evaluate derivatives efficiently and accurately [23]:

ẋ(ti) = ∂

∂t
Dθ

(︂
u(·), ti

)︂
,

∂x(ti)
∂u

= ∂

∂u
Dθ

(︂
u(·), ti

)︂
. (17)

2. Numerical differentiation:
If x is available only on a fixed grid {ti}, we can employ finite-difference
approximations:

ẋ(ti) ≈
x(ti+1)− x(ti)

∆t
,

∂x(ti)
∂u(ti)

≈
x
(︂
ui + ε, ti

)︂
− x

(︂
ui − ε, ti

)︂
2 ε

, (18)

where ε≪ 1 is a small perturbation.

If there are derivatives of u present in the physics residual, they need to be
generated along with you during the dataset generation step.

3.3 Training of the Neural Operator
Once the dataset is prepared and problem-specific loss components are defined,
we train the neural operator using a standard learning loop adapted for physics-
informed objectives.
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The dataset consists of control input functions from various families (e.g., sine,
polynomial, linear). We assume true trajectories are available only for a limited
number of control functions - or not at all. We have datasets generated using
different seeds. 20% of the training control functions have a trajectory, and the
validation set has all of the trajectories. In this way, we can judge how well the
trajectories from both are learned and see if there are signs of overfitting.

Training Procedure.

1. Training phase.
Set the model to training mode (model.train()). For each batch (u, t, . . . )
in the training loader:

(a) Perform a forward pass: x̂ = model(u, t).

(b) Evaluate the physics-informed loss:

ℓ = ℓphys(u, x̂, t) + ℓinit(u, x̂, t) + ℓbnd(u, x̂, t)

This follows the PINO framework that integrates PDE solvers via
residual losses to reduce overfitting [24].

(c) Backpropagate/update: loss.backward(); optimizer.step().

(d) Track average training loss per epoch.

2. Validation phase.
Switch to evaluation mode (model.eval()). For each batch in the valida-
tion set:

(a) Compare predicted trajectory with reference xtrue(t) using relative
L2-error loss.

Ldata = ∥x̂− xtrue∥L2

∥xtrue∥L2

(19)

(b) Log metrics and optionally visualize the worst predictions on the test
set.

3. Checkpointing.
Update learning rate (scheduler) and save model/optimizer state.

If the model fails to learn the physics dynamics, there are alternative ways to
estimate the gradients, namely spectral differentiation in Fourier space (accurate
only if the signals are periodic), Savitzky–Golay differentiator [34], etc.
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Joint (Semi-supervised) Training. For semi-supervised training, we can
combine physics-informed loss with supervised data loss:

ℓtotal = λphysℓphys + λdataℓdata

To prevent overfitting to limited supervised samples, we can employ adaptive
residual weighting - which automatically balances different loss magnitudes
- shown to enhance convergence and reduce overfitting in PINNs and NO
frameworks [35].

Curriculum: Pretraining + Finetuning. Following recent practices in
PDE operator learning, we can:

• Pre-train with physics residuals only (unsupervised) [25].

• Finetune on the few available trajectories, continuing to include physics
loss to preserve generalization to yield better accuracy [25, 26].

The built framework allows employing both options, and we will apply them
only in case the neural operator architecture is not capable to learn solely based
on physics residuals.

Our objective is to verify that Algorithm 1 can be used not only with DeepONet
exclusively. For this, we select benchmark control problems with known optimal
solutions and repeat the experiments for each studied neural operator architecture
on the same generated dataset.

3.4 Selected Neural Operator Architectures
This section presents the three neural operator architectures that we benchmark
in this thesis: Deep Operator Network (DeepONet), Fourier Neural Operator
(FNO), and Laplace Neural Operator (LNO). We describe their core mech-
anisms and explain their suitability for physics-informed training and control
optimization. A more technical introduction to these architectures is available
in Appendix A.

3.4.1 Deep Operator Network (DeepONet)

DeepONet [9] learns mappings between function spaces using a dual-branch
neural network architecture. A branch network encodes input function values
sampled at fixed sensor locations, while a trunk network encodes arbitrary query
points (e.g., time or space). Their inner product yields the predicted output:

G(f)(x) ≈
p∑︂

k=1
bk(f) tk(x) + b0,
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Where b(u) and t(t) are the outputs of the branch and trunk networks, respec-
tively.

Input
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Figure 4: Illustration of the unstacked DeepONet architecture (adapted from
[36]). Branch inputs: the function f is sampled at fixed sensor locations
x1, . . . , xm. Trunk input: a query location x ∈ Rd. The branch network encodes
the sensor values into b, the trunk network encodes x into t, and their inner
product (plus bias) yields Gθ(f)(x).

Although BranchNet and TrunkNet can, in principle, adopt any architecture
(e.g., CNNs, RNNs, graph neural networks), the original DeepONet authors
used simple feed-forward neural networks (FNNs) for both (see Figure 4). This
choice provides a good trade-off between expressive power and implementation
efficiency. In our study, we use the original unstacked variant of DeepONet (see
Appendix A for details).

Originally, DeepONet was trained in a purely data-driven manner by minimizing
the mean-squared error loss. This approach required large datasets of paired
input–output functions, which can be expensive to generate. To reduce reliance
on simulation data, it was shown that DeepONet can incorporate a physics-
informed loss by leveraging automatic differentiation through both BranchNet
and TrunkNet [37]. This concise formulation makes DeepONet a powerful
surrogate for solution operators in high-dimensional, parameterized PDEs. The
process is straightforward since Deep-O-Net can produce values on the queried
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points, and time can be learned as a separate variable.

3.4.2 Fourier Neural Operator (FNO)

The Fourier Neural Operator (FNO) [10] extends the general neural operator
iterative framework [21] by making two simplifications about the integral kernel
(see Appendix A for details). With such simplifications integral kernel can
be treated as a convolution and leverage the Fast Fourier Transform (FFT).
This enabled efficient learning of solution operators to PDEs through truncated
spectral representations.

(a)

(b)
Fourier layer

Fourier layer 2 Fourier layer TFourier layer 1

Figure 5: (a) Architecture of the Fourier Neural Operator (adapted from [10]):
the input function a(x) is lifted by a pointwise map P , passed through T Fourier
layers, and decoded by Q to produce u(x). (b) Detail of a single Fourier layer:
the feature vt(x) is transformed by FFT F , multiplied by learnable weights Rϕ,
transformed back via F−1, added to a local linear term Wvt(x), and passed
through a nonlinearity σ.

In the FNO, given an input field a(x), we lift it to a latent representation
v0(x) = P a(x) via a learnable projection P . Each Fourier layer (see Figure 5)
then updates the latent field through the iterative rule:

vt+1(x) = σ
(︃

W vt(x) + F−1
(︂
Rϕ · F

(︂
vt

)︂)︂
(x)
)︃

, (20)

where F and F−1 denote the forward and inverse fast Fourier transforms; W is
a point-wise linear weight matrix; Rϕ is a learnable complex-valued filter that
acts only on the lowest k Fourier modes; σ(·) is a nonlinear activation function
(e.g. GELU). Because the convolution is carried out in the spectral domain and
restricted to a truncated set of modes, each layer costs only O

(︂
n log n

)︂
.

FNO performs well on smooth, high-dimensional, and periodic PDEs. However,
it is restricted to fixed evaluation grids and does not support automatic differ-
entiation in a straightforward way, because FNO is trained on a grid and uses
FFT. Li et al. [24] proposed four schemes how we can treat gradients:
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1. Numerical differentiation. Finite differences (O(n)) or spectral differ-
entiation (O(n log n)). Fast but less accurate on coarse or non-uniform
meshes.

2. Pointwise autodifferentiation. Express u(x) at arbitrary x via its
truncated Fourier series,

u(x) = Q
(︃

1
K

∑︂
|k|≤K

(︂
Rk F(vT −1)k

)︂
e

i2πk·x
D

)︃
,

So derivatives are exact under autodiff. Accurate but memory- and
compute-intensive. Notice that if x is defined on a uniform grid, the
derivative can be efficiently computed with the Fast Fourier transform.

3. Function-wise (batched) differentiation. Compute derivatives in
Fourier space via the chain rule:

∂u

∂x
= Q′

(︂
vT

)︂
F−1

(︂
i2πkF(vT )

)︂
.

4. Fourier continuation. Embed non-periodic domains into larger periodic
ones (e.g. via zero-padding) to retain spectral accuracy, but evaluate PDE
residuals only on the original domain.

In this thesis, we aim to create a general framework that uses any neural operator
architecture to learn a parametric differential equation. Thus, this framework is
going to be architecture invariant (meaning that the approach should work for
any general operator).

Most existing physics-informed FNO implementations use numerical differentia-
tion (e.g., central differences or spectral) and do not include implementation
pointwise autodifferentiation or function-wise batched differentiation.

3.4.3 Laplace Neural Operator (LNO)

While the Fourier Neural Operator (FNO) [10] leverages the FFT to accelerate
convolutional integral operators in the frequency domain, it suffers from three
key limitations. First, the classical Fourier transform requires input functions
to be integrable, and thus cannot represent signals such as |x(t)| or model
unstable dynamics. Second, Fourier-based layers capture only steady-state,
periodic responses and omit any dependence on initial conditions. Third, non-
periodic domains must be artificially periodized, often degrading accuracy near
boundaries.

The Laplace transform addresses these issues by introducing an exponential
decay factor. For a causal signal x(t), its Laplace transform is

L{x}(s) =
∫︂ ∞

0
x(t) e−st dt, s = σ + iω,
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Laplace transformation naturally encodes initial values via the differentiation
properties:

L{ẋ(t)} = sL{x(t)} − x(0), L{ẍ(t)} = s2 L{x(t)} − s x(0)− ẋ(0).

As a result, the Laplace domain simultaneously represents transient (through
σ) and oscillatory (through ω) behavior while embedding initial-condition in-
formation. Motivated by these advantages, the authors proposed replacing the
Fourier layer with a Laplace layer (see Figure 6).

x

x

(a)

(b)

Laplace layer

Laplace layer

Pole-Residue
Method

Figure 6: Schematic of the Laplace layer in LNO (adapted from [11]): the input
function a(t) is lifted via P , convolved in the Laplace domain, and decoded by
Q to produce the output.

First, the input function a(x) is lifted to a higher-dimensional feature field via a
pointwise map P , yielding v(x) ∈ Rdx , and then processed by

u(x) = σ
(︂
(k(a; ϕ) ∗ v)(x)

)︂
+ W v(x),

where σ is a nonlinear activation, W a learnable linear transformation, and k
an integral kernel. The intermediate representation u is finally decoded by Q to
produce the output x(t). This overall pipeline mirrors that of FNO, but with a
key modification in how the convolution is implemented. The Laplace-domain
convolution is represented in pole-residue form:

Kϕ(s) =
N∑︂

n=1

βn

s− µn

,

with trainable poles µn and residues βn. This formulation naturally models
systems where responses decay over time, which is common in many real-world
dynamical systems.
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To date, research on a physics-informed LNO remains limited, since the ar-
chitecture is relatively new. LNO also uses a fixed time grid during training,
inheriting the same differentiability issues as FNO. In the original LNO study,
the authors trained the model purely using a data-driven approach [11], without
incorporating any physics-informed loss. Since the LNO architecture is similar
to FNO, we employ the same numerical differentiation strategy.
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4 Experimental Setup
4.1 Benchmark Problems
To evaluate the performance of neural operator architectures in optimal control
settings, we select five benchmark problems with known analytical solutions.

4.1.1 Linear ODE

This classical linear-quadratic optimal control problem (21) is a standard bench-
mark in both theoretical and numerical optimal control literature, including
Kirk [38], Bryson and Ho [2], and Vlassenbroeck and Van Dooren [39]. It serves
as a canonical test case for evaluating convergence and accuracy in direct and
indirect methods.

min
u

1
2

∫︂ 1

0
(x(t)2 + u(t)2) dt, (21a)

s.t. ẋ(t) = −x(t) + u(t), (21b)
x(0) = 1. (21c)

The analytical solution is:

x∗(t) =
√

2 cosh (
√

2(t− 1))− sinh (
√

2(t− 1))√
2 cosh(

√
2) + sinh(

√
2)

, (22a)

u∗(t) = sinh (
√

2(t− 1))√
2 cosh(

√
2) + sinh(

√
2)

. (22b)

This benchmark evaluates the capacity of neural operators to capture simple
exponential decay patterns and stable feedback control laws. It also serves as
a sanity check: if a model cannot learn this problem reliably, it is unlikely to
perform well on more complex, nonlinear, or high-frequency tasks.

4.1.2 Oscillatory Forcing

The benchmark (23) features a periodic forcing term and appears in textbooks
(e.g., Kirk [38]) as a test case for time-varying inputs.

min
u

1
2

∫︂ 1

0

(︂
x(t)2 + u(t)2

)︂
dt, (23a)

s.t. ẋ(t) = cos(4πt) + u(t), (23b)
x(0) = 0, (23c)
x(1) = 0. (23d)
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The analytical solution is:

x∗(t) = 4π

16π2 + 1 sin(4πt), u∗(t) = − 1
16π2 + 1 cos(4πt). (24)

Derivation of analytical solution (24) is available in Appendix B.1.

This problem requires the model to represent periodic behaviour in both the
state and control. In particular, spectral methods like FNO are expected to
excel due to their efficient representation of periodic structures.

4.1.3 Polynomial Target Tracking

The quadratic tracking problem (25) appears in optimal control textbooks, such
as Lewis et al. [40] and Kirk [38].

min
u

∫︂ 1

0

(︂
(x(t)− t2)2 + u(t)2

)︂
dt, (25a)

s.t. ẋ(t) = u(t), (25b)
x(0) = 0. (25c)

The analytical solution is:

u∗(t) = 2t2 − 2t + 1, x∗(t) = 2
3t3 − t2 + t. (26)

Derivation of analytical solution (26) is available in Appendix B.2.

The problem is relatively simple, as it essentially requires learning an integral
operator. However, its simplicity makes it easy for an expressive model to overfit
the data rather than learn a generalizable mapping.

4.1.4 Nonlinear ODE

This nonlinear control problem (27) is widely used in benchmarking pseudospec-
tral and direct collocation methods [41], as it combines bilinear and quadratic
terms in both state and control.

min
u

− x(1), (27a)

s.t. ẋ(t) = 5
2
(︂
−x(t) + x(t)u(t)− u(t)2

)︂
, (27b)

x(0) = 1. (27c)

Its analytical solution is:

x∗(t) = 4
1 + 3 exp(5t/2) , u∗(t) = 1

2x∗(t). (28)

By introducing nonlinearity in the system dynamics and cost, this problem chal-
lenges neural operator models to represent more complex, nonlinear input–output
maps, revealing their limitations and strengths in capturing non-affine behaviors.
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4.1.5 Singular Arc Control Problem

The so-called “cliff problem“ (29) is the canonical singular arc benchmark,
appearing in classical texts [2]. Its optimal control law is non-affine in u,
requiring higher expressivity for surrogates.

min
u

∫︂ 1

0
u(t)2 dt, (29a)

s.t. ẋ(t) = x(t)2 + u(t), (29b)
x(0) = 1, x(1) = 0. (29c)

The analytical solution is:

x∗(t) = 1− t

1 + t
, u∗(t) = − 2

(1 + t)2 −
(︃1− t

1 + t

)︃2
. (30)

Derivation of this analytical solution is available in Appendix B.3.

Singular arc problems are well known to be challenging for both classical and
machine learning approaches, due to the presence of non-smooth and non-unique
optimal controls. Successfully solving this problem indicates the ability of a
model to handle non-standard optimality conditions and more intricate solution
structures.

These benchmark problems are selected to provide a systematic and rigorous
evaluation of neural operator architectures (DeepONet, FNO, LNO) within
the PINO-control framework. Their diversity ensures a comprehensive test of
model expressivity, ability to capture oscillatory dynamics, and robustness to
nonlinear and singular behaviors. The availability of analytical solutions enables
quantitative assessment of the found solutions.

The framework for the use of neural operators in optimal control - which we
built - ensures that we can switch freely between all benchmark problems and
that it can be easily extended.

4.2 Additional Benchmark PDEs
To further evaluate the performance and generalization capabilities of the best-
performing neural operator architecture, we extend our benchmarking to more
complex PDE-constrained optimal control problems. We specifically consider
three PDEs - the Heat Equation, Diffusion-Reaction Equation, and Burgers’
Equation - in one spatial dimension, arranged in order of increasing complexity.
Our discussion is restricted to time-invariant control functions u(x), due to the
practical difficulty in generating qualitatively meaningful and time-varying con-
trols u(x, t) for neural operator training. Moreover, as our neural operators were
limited to one-dimensional input representations (FNO1D, LNO1D), addressing
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temporal variations explicitly would require transitioning to higher-dimensional
architectures such as FNO2D or LNO2D.

4.2.1 Heat Equation (1D)

We consider the controlled heat equation described by:

min
u(x)

1
2 |y(x, T )− ytarget(x)|22 + ρ

2 |u(x)|22, (31a)

s.t. ∂y

∂t
= ν

∂2y

∂x2 + u(x), (31b)

y(x, 0) = 0, y(0, t) = y(1, t) = 0. (31c)

Here, ν represents the thermal diffusivity. The target terminal profiles tested
include Gaussian distributions defined as:

ytarget(x) = A exp
(︄
−(x− x0)2

2σ2

)︄
(32)

With typical parameters A = 0.5, x0 = 0.5, and σ = 0.1, we challenge the neural
operator to learn smooth diffusive dynamics and optimal control inputs that
achieve precise spatial profiles at the final time T .

4.2.2 Diffusion-Reaction Equation (1D)

We then introduce nonlinear reaction terms, extending complexity:

min
u(x)

1
2 |y(x, T )− ytarget(x)|22 + ρ

2 |u(x)|22, (33a)

s.t. ∂y

∂t
= ν

∂2y

∂x2 − αy2 + u(x), (33b)

y(x, 0) = 0, y(0, t) = y(1, t) = 0. (33c)

Here, the reaction coefficient α introduces nonlinearity, significantly increasing
the difficulty. We use more intricate targets, such as double Gaussian profiles
defined by:

ytarget(x) = A exp
(︄
−(x− 0.3)2

2σ2

)︄
+ A exp

(︄
−(x− 0.7)2

2σ2

)︄
, (34)

with parameters A = 1.0 and σ = 0.05, requiring neural operators to capture
nonlinear reaction dynamics accurately.

4.2.3 Burgers’ Equation (1D)

Finally, we test neural operators on the viscous Burgers’ equation, widely
recognized for its challenging nonlinear convective behavior and shock formation:
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min
u(x)

1
2 |y(x, T )− ytarget(x)|22 + ρ

2 |u(x)|22, (35a)

s.t. ∂y

∂t
+ y

∂y

∂x
= ν

∂2y

∂x2 + u(x), (35b)

y(x, 0) = 0, y(0, t) = y(1, t) = 0. (35c)

The selected terminal target is a steep shock profile defined by:

ytarget(x) = 0.1
1 + exp(−50(x− 0.5)) (36)

This problem evaluates the neural operator’s capacity to handle highly nonlinear
phenomena and discontinuous solutions, thus offering an intensive assessment of
model robustness and representational power.

4.3 Dataset
To train neural operators, we implement a general-purpose dataset class, which
is able to generate functions of the different families. Each generated function
optionally includes the corresponding ground-truth trajectory x(t), computed by
numerically solving the governing ODE. The class is flexible to generate both
validation and training datasets.

4.3.1 Data generation

For each benchmark problem, we can select a list of function families. Then,
for each function, we randomly draw a family class and, if the supervision is
enabled, randomly select whether the true trajectory is going to be generated.
The dataset generating class has the following function families available:

• Gaussian Random Fields (GRF). Sample white noise in the Fourier
domain with a squared-exponential power spectral density (PSD), apply
inverse FFT, normalize, and interpolate to {ti} [42]. This family is quite
often used to train neural operators.

• Linear functions. Sample slope a ∼ U(−2, 2), intercept b ∼ U(−1, 1),
then define u(ti) = a ti + b.

• Sine waves. Sample f ∼ U(0.1, 10), A ∼ U(0.5, 2), ϕ ∼ U(0, 2π), then
define u(ti) = A sin(2πf ti + ϕ).

• Polynomial: Sample degree d ∈ {3, . . . , 7}, coefficients ck ∼ U(−3, 3),
and define

u(ti) =
d∑︂

k=0
ck tk

i .
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• Constant: Draw c ∼ U(−3, 3) and define u as a constant function u(ti) = c
for all i.

This process ensures that each family class (among selected ones) is presented
nearly equally.

Range projection. Some of the differential equations require input controls
to lie within specific bounds. Optionally, we apply a linear projection of each
control u(t) to the interval [umin, umax]. This is done via min-max normalization:

uproj(t) =

⎧⎪⎪⎨⎪⎪⎩
umin +

(︄
u(t)−min u(t)

max u(t)−min u(t)

)︄
(umax − umin), if max u(t) ̸= min u(t),

random value in [umin, umax], otherwise.
(37)

This ensures that constant or nearly constant control functions are still projected
into the target range by injecting mild random variation.

Batch preparation. Batches are prepared based on the neural operator archi-
tecture. LNO and FNO are trained on the fixed grid, and this is straightforward.
The batching process includes: define a uniform grid {ti} in the specified domain
and evaluate u(ti) at this uniform grid. Initial and boundary loss is calculated
based on the first and last points of the predicted trajectory.

DeepONet is trained on the random t grid in the specified range. The batching
process includes: sampling evaluation points {τj} in specified domain; interpo-
lating u(ti) to obtain values at τj, forming Udom, generate a vector of zeros τinit
to enforce initial condition at these points.

Validation set. To evaluate generalization, we generate a separate validation
set using the same procedure. For each control u(k)(t), we compute the ground-
truth trajectory x(k)(t) by solving:

ẋ(t) = d
(︂
x(t), u(k)(t)

)︂
, x(0) = x0,

using solve_ivp from SciPy with method “DOP853“ [43]. We found this
method the most reliable and stable for our setup, but any other can be used.

Dataset Reproducibility. For each benchmark problem, we generate only
one training and validation dataset with fixed seeds. The training set is generated
with seed 1234 and the test with 42. The scripts for data generation are available
in our Github repository [44].

4.3.2 Problem specific dataset

Each benchmark problem uses a tailored configuration of control function families
and GRF/polynomial settings. Table 1 summarizes the parameters used.
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Table 1: Dataset configuration for each benchmark problem with listed function
families: const. - constant function, lin. - linear, poly. - polynomial, grf
- GRF. Projection is done if the projection bounds are defined. The degree
range is a setting for polynomial and GRF range for GRF function families,
respectively.

Problem Function Types GRF Range Deg. Range Proj. Bound
Linear const., lin., poly, grf [0.02, 0.5] [3, 7] –
Oscillatory const., lin., poly, grf,

sine
[0.02, 0.5] [3, 7] –

Poly. Track const., lin., poly, grf,
sine

[0.02, 0.5] [3, 7] –

Nonlinear poly, grf [0.05, 0.5] [1, 5] [−1.5, 1.5]
Singular Arc poly, grf [0.05, 0.5] [1, 5] [−3, −0.5]

All training datasets consist of 100,000 training samples (with 20% supervised
trajectories) and 10,000 validation functions, uniformly discretized over m = 200
time points. We chose to use 100,000 functions for the training since, at the
early stages, we noticed that though DeepONet minimized physics loss, it was
overfitting the training dataset. We discretized over m = 200 points because
we are going to use numerical approximation of the gradients for the FNO and
LNO. Increasing the number of time points generally improves the approximation
quality, but for DeepONet, this comes at the cost of requiring a larger model
and longer training time.

Polynomial tracking and oscillatory problems benefit from a large number of
input families due to the simplicity of their governing differential equations.
Thus we added sine function family with sine functions with frequency sampled
from (0.1, 10) and amplitude from (0.5, 2).

Projection is applied only for the nonlinear problem (to stabilize physics loss due
to the quadratic control term) and the singular arc problem (to avoid numerical
solver failure from unbounded control values).

Additional note: For the singular arc problem, we generate an additional
dataset for training the LNO architecture using only sine and polynomial
function types. This variant uses sine functions with frequency sampled from
(0.1, 30) and amplitude from (0.5, 2), while preserving the same ranges for
polynomial coefficients and degrees. We generated this dataset replicating the
procedure used by Cao et al. [11]

For the Heat and Diffusion-reaction problems, we switch to a semi-supervised
learning approach. For 50% of input control functions, we generate corresponding
trajectories using a SciPy-based inverse problem solver. However, for the
Burgers’ equation, this approach proved unreliable due to solver failures and
instability. Instead, we trained the neural operator using only physics-informed
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losses, relying entirely on residual supervision. For all three PDEs, we sampled
control functions from three families: Gaussian Random Fields (GRF), single
sine waves, and composite “Fourier“ functions composed of multiple sine terms.
In total, we used 10,000 samples for both the Heat and Diffusion-Reaction
problems, and 100,000 samples for the Burgers’ problem due to the absence of
supervised trajectories.

4.4 Evaluation Metrics
First, we evaluate how well the neural operator learns. In each epoch, we
calculate physics and initial losses averaged across all batches. We define that
loss converged once the physics loss has not improved for 100 epochs.

Since some of the input controls have a labeled trajectory on both the train
and validation set, we can calculate train and validation error using average per
sample relative L2 error mentioned earlier. In this way, we can ensure that the
model does not overfit or underfit.

We also provide plots with cumulative execution time (for the training of the
neural operator, excluding time spent for plotting) to compare architectures in
terms of speed.

Once the neural operator is trained, we use it to solve a corresponding benchmark
control problem. For each benchmark problem, we provide a plot that includes:

• Trajectory plots comparing analytical solutions x∗(t) and predicted solution
x̂(t).

• Solution to find u using numerical solver (to ensure that the prediction for
the found input is correct)

• Plot with optimal input control and found control u.

We are going to use this plot to judge the approximated solution qualitatively.
To quantitatively assess the solutions, we also provide relative L2 errors between
optimal and predicted input controls u along with trajectory errors.

In addition to trajectory and control errors, we compute the true cost functional
for each predicted solution and compare it to the ground-truth optimum J(u∗).
This allows us to assess whether the approximated control is near-optimal even
if small deviations in u exist.
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4.5 Selected architectures
4.5.1 ODE Benchmark Problems

DeepONet was configured with five hidden layers of 200 neurons in both the
branch and trunk networks. The input function was sampled at 200 uniformly
spaced sensor points, and the output latent dimension was set to 200. We used
tanh activation function.

The architecture for FNO1d is configured per problem to balance expressiveness
and stability. Table 2 lists the spectral and decoder parameters used.

Problem Modes Width (Proj.) Depth (Layers) Decoder Dim
Linear 16 32 4 128
Oscillatory 16 32 4 64
Poly. Tracking 16 32 4 64
Nonlinear 16 64 5 128
Singular Arc 64 32 6 256

Table 2: FNO1d hyperparameters per benchmark problem.

The width parameter controls the size of the lifted feature space after the input
linear layer. The number of modes determines how many low-frequency Fourier
coefficients are retained in the spectral layers. The decoder consists of a two-
layer MLP with a hidden dimension specified by Decoder Dim, and the output
dimension is fixed to 1. After each Fourier layer, we use GeLU activation function.

We use at least four Fourier layers to maintain expressivity comparable to
the Laplace layer used in LNO. For the nonlinear and singular arc problems,
we increase the number of Fourier layers further, as these problems demand
higher expressivity. Increasing only the projection and decoder dimensions was
insufficient to ensure accurate learning for these cases.

Table 3 summarizes the hyperparameters of the LNO used for each benchmark
problem.

Table 3: LNO1d hyperparameters used for each benchmark problem, where BN
refers to batch-normalization.

Problem Modes Width (Proj.) Depth Decoder Dim BN
Linear 8 4 1 64 No
Oscillatory 8 4 1 64 No
Poly. Tracking 8 4 1 64 No
Nonlinear 8 4 2 32 Yes
Singular Arc 32 16 1 128 Yes

Each LNO model uses at least one block composed of a pole-residue (PR) operator
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and pointwise convolution, followed by optional batch normalization and a SiLU
activation (used throughout). For the nonlinear and singular arc problems,
we increase expressivity via depth or width, and apply batch normalization to
stabilize training. The decoder consists of a two- or three-layer MLP depending
on model depth.

Our experiments suggest that (see Section 5) the expressivity of LNO was not
enough to learn nonlinear and singular arc problems, so multiple architectural
settings were tested, along with the extension of LNO to have more Laplace
layers and a deeper decoder network.

All architectures are trained to minimize physics residual and initial condition
violation. We do not include boundary violation during training of the neural
operator, since this would complicate dataset generation (we would need to select
only those inputs that lead to satisfied boundary conditions, while satisfying the
differential equation with initial condition).

We adopted the DeepONet architecture from the original work introducing
neural operators for control settings [13], as it was demonstrated to be sufficiently
expressive for a wide range of problems. For LNO, we initially followed the
configuration suggested by the original authors, which used a hidden layer of
size 128 and a projection width of 4, with the number of modes adapted to the
complexity of the target trajectories.

However, LNO failed to learn the dynamics of the nonlinear and singular arc
problems (see Section 5). To address this, we performed a manual hyperparameter
search to increase model expressivity, experimenting with deeper decoders, wider
projection layers, and more Laplace (PR+Conv) blocks. During this process, we
observed that increasing the width and number of modes often led to training
instabilities, which we mitigated by incorporating batch normalization.

For FNO, we also conducted manual tuning of hyperparameters. The goal
was to achieve convergence of the physics loss to a sufficiently low value while
maintaining a compact model architecture.

Optimizer and hyperparameters. All models are trained using the Adam
optimizer [14].

• Learning rate: η0 = 10−3 for LNO and FNO. η0 = 10−4 for DeepONet.

• Scheduler: We use a step scheduler for all problems. For DeepOnet, we
halve the learning rate every 200 epochs. For FNO and LNO every 25-50,
we decrease the learning rate with γ = 0.9

• Batch size: 128 samples per batch.
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• Epochs: Up to 1000 for LNO and FNO, with early stopping based on
physics loss that is calculated on the training set. Up to 2,000 for Deep-
ONet.1

4.5.2 PDE Benchmark Problems

Previous work has demonstrated that DeepONet can successfully learn the
diffusion-reaction equation and be applied in control settings [13]. However, its
training time is prohibitively long (exceeding one week). We also attempted to
apply LNO to these PDE problems, but - as with the nonlinear ODE case - it
failed to learn the system dynamics under noisy inputs. As a result, we chose
to restrict our final benchmarking to the FNO architecture, which, as will be
shown, proved to be the most robust, reliable, efficient, and generalizable neural
operator in our setting.

All models were trained on a spatiotemporal grid consisting of 64 spatial points
and 100 time steps. All FNO models were configured with modes=32, width=64,
and hidden_layer=128. The heat equation model used four Fourier layers,
while both the diffusion-reaction and Burgers’ equation models used five.

4.6 Baseline Comparison with Traditional Solver
To provide a direct baseline for model performance, we solve each benchmark
optimal control problem using a traditional direct transcription method im-
plemented with CasADi [45] and the IPOPT [16] nonlinear programming solver.
Each problem is discretized using the same time grid (N = 200) as in the
neural operator experiments. The resulting nonlinear program is solved to global
optimality, yielding reference state and control trajectories.

For each problem, we compute the relative L2 errors in the optimal state x and
control u by comparing the solver output to the analytical solution:

Rel. Errorx = ∥xopt − x∗∥2

∥x∗∥2
, Rel. Erroru = ∥uopt − u∗∥2

∥u∗∥2
. (38)

We also report the value of the cost functional and the total solve time for each
run. All baseline solutions and statistics are saved in the baseline_solutions
directory, and the complete implementation scripts are available in the accom-
panying GitHub repository [44].

This baseline enables a quantitative comparison of neural operator-based solu-
tions to those obtained with a state-of-the-art traditional solver, both in terms
of accuracy and computational efficiency.

1We did not use validation loss for early stopping since it was not always correlated with
physics loss convergence

39



4.7 Experiments with Control Problem
Given an input control u, the resulting state trajectory x incurs several types
of losses: the physics loss (residual of the governing dynamics), the initial loss
(deviation at t = 0), the boundary loss (if terminal constraints are present), and
the objective loss (cost functional to minimize). As described in Section 3, these
constraints are imposed softly by penalizing their violations during optimization.

To promote well-behaved control profiles, we additionally include a smoothness
penalty on the control u, defined as:

Lsmooth = 1
N − 1

N−1∑︂
i=1

(ui − ui−1)2 (39)

This penalizes significant variations between adjacent time steps, encouraging
temporally smooth control trajectories. We experimented with different weight
settings to balance these losses in the total objective. Table 4 summarizes the
tested weight ranges.

Table 4: Weight ranges tested for different loss components in control problem
experiments.

Loss Component Weight Range Tested
Physics loss wphys {1, 10, 100, 500}
Initial condition loss winit {1, 10}
Boundary condition loss wbdy {1, 10, 100, 500}
Objective (cost) loss wobj {0.1, 1, 10}
Smoothness penalty wsmooth {0.0001, 0.001, 0.1, 1}

For all our experiments, we used a fixed learning rate η = 0.001, treating the
control input u as the sole trainable parameter. No learning rate scheduler
was applied. For the nonlinear and singular arc problems, we enforced control
bounds at each optimization step by projecting u onto the target range using
simple clamping, i.e., replacing out-of-bound values with the nearest bound.

We also experimented with a soft constraint approach by passing u through a
tanh activation function, which maps the values to the interval [0, 1], and then
linearly rescaling to the desired bounds. However, this method yielded results
comparable to clamping, so we adopted the more straightforward clamping
strategy throughout.

4.8 Sensitivity Analysis: Robustness to Control Objec-
tive Weight

To evaluate the robustness of trained neural operator models, we conduct a
sensitivity analysis by varying the control objective weight ρ in the cost functional
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for each benchmark problem. The goal is to determine whether the quality of
the resulting control solutions is sensitive to changes in ρ when using a model
trained solely on the system dynamics. For each combination of benchmark
problem and neural operator architecture, we perform the following steps:

1. Model Loading. Load the previously trained model checkpoint for each
problem-architecture pair; the model weights are held fixed throughout.

2. Control Objective Weight Sweep. For each ρ ∈ {0.1, 1.0, 10.0}, re-
define the cost functional to apply a stronger or weaker penalty to the
control input u(t), with the state penalty left unchanged.

3. Control Optimization. Solve the optimal control problem by optimizing
u(t) via gradient descent, using the trained neural operator as a surrogate
for the system dynamics. For each setting, three independent runs are per-
formed with different random seeds to average out optimizer stochasticity.

4. Metrics Collected. For each run, we record the relative L2 errors on the
control and trajectory, the final value of the objective, and the optimization
time.

This analysis covers all five benchmark problems (“linear“, “oscillatory“, “poly-
nomial tracking“, “nonlinear“, “singular arc“) and all three architectures (Deep-
ONet, FNO, LNO). In total, 5× 3× 3× 3 = 135 combinations are tested.

The time grid and bounds matched those used in training and evaluation (N =
200 points). The initial guess for the control input was sampled from a uniform
distribution for each run in all problems. Control optimization is run for up
to 50,000 iterations with early stopping (patience of 1,000 epochs) and fixed
learning rate (η = 10−3). We note that the physics residual weight (wphys) used
during training is not varied in this analysis, as retraining neural operators for
every possible configuration is computationally prohibitive. The focus here is on
evaluating the generalization of already trained models to new control objective
weights.

All experiments were designed for full reproducibility. We fixed the random
seed used to generate both the training and validation datasets, re-using the
same seed across every benchmark problem. The training pipeline logs key
diagnostics - physics loss, initial-condition loss, and supervised trajectory error -
at every epoch (see Section 5). All source code - including model definitions,
training routines, evaluation scripts, and the complete sensitivity-analysis table
- is released under the MIT License [46] and is available in the accompanying
GitHub repository [44], ensuring that results can be replicated and extended.
Finally, in terms of hardware, all experiments were run on a workstation equipped
with an Intel Core i5-12600K CPU, an NVIDIA RTX A2000 GPU (12 GB), and
32 GB of RAM.
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5 Results
This chapter presents both plots and numerical results from applying the trained
neural operators to benchmark optimal control problems.

5.1 Problem: Linear
The architectures DeepONet, FNO, and LNO described in Section 4.5 successfully
learned the governing dynamics of the system and satisfied the initial condition
for the Linear ODE benchmark (see Figure 7).

In terms of convergence speed and physics loss, FNO performed best overall. LNO
achieved the lowest physics loss but required more training epochs than FNO.
DeepONet converged the slowest but achieved the most accurate satisfaction of
the initial condition. Summary statistics are provided in Table 5.

Table 5: Training time, total epochs, and final loss values for each neural
operator architecture.

Architecture Training Time (min) Epochs Physics Loss Initial Loss
DeepONet 1267 1800 9.51 · 10−4 1.70 · 10−8

FNO 118 180 3.70 · 10−4 2.53 · 10−6

LNO 209 670 3.25 · 10−4 1.23 · 10−6

At each training epoch, we computed train and validation losses based on the
relative error between predicted and ground-truth trajectories (see Figure 8).
Note that although the models were trained using only the physics residual and
initial condition, they generalize reasonably well to unseen trajectories.

The training loss converges smoothly in all models (except for LNO, which
exhibited a temporary spike in the initial loss around epoch 180, possibly
because of too large a learning rate). The validation loss exhibits oscillations -
particularly for FNO and LNO - but we observe no signs of overfitting.

Table 6: Comparison of training and validation relative trajectory errors across
three architectures.

Architecture Relative Train Error of x̂ Relative Test Error of x̂

DeepONet 7.62 · 10−4 6.14 · 10−4

FNO 2.00 · 10−3 2.67 · 10−3

LNO 1.27 · 10−3 1.09 · 10−3
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Figure 7: Convergence of physics and initial condition losses for the Linear
ODE benchmark across three architectures: a) DeepONet, b) FNO, c) LNO
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Figure 8: Relative trajectory errors (train and validation) for the Linear ODE
benchmark across three architectures: a) DeepONet, b) FNO, c) LNO

In terms of trajectory prediction error, DeepONet performed best (see Table
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6), likely due to its very low initial loss. This hypothesis is supported by LNO
ranking second and FNO third in trajectory accuracy. The worst predictions on
the test set are not worse than 1% relative error for all models.

After training the neural operators, we solved the associated control problem by
tuning the weights for the physics residual, initial loss, control smoothness, and
cost objective. The best-performing weight configurations for each model are
shown in Table 7. As an initial guess, we choose a random vector sampled from
a uniform distribution, since it has the richest gradient to start with. These
weights are defined as in (16).

Table 7: Best-performing loss weights used in the control optimization phase.
Architecture µphys µinit µsmooth µobj µbound

DeepONet 100 1 1 1 0
FNO 10 1 1 0 0
LNO 10 1 1 0 0

With these weights, we obtained the following candidate control functions,
visualized in Figure 9. Among the candidate controls, LNO produced the closest
match to the optimal input, followed by FNO, while DeepONet has more noise.
The quantitative evaluation is summarized in Table 8.

Table 8: Performance of the optimized control ũ: cost value, optimization
epochs, and control accuracy.

Architecture Cost J(ũ) Epochs Relative Error of ũ Relative Error of x̃

DeepONet 0.193 12000 0.0191 0.0005
FNO 0.193 5000 0.0348 0.0010
LNO 0.193 5000 0.0142 0.0014

With DeepONet, we needed twice the number of epochs as with FNO and
LNO. All models were able to approximate the analytical solution with high
accuracy. FNO and LNO are less accurate at the boundaries due to numerical
approximation of the gradients. Solutions of DeepONet are slightly oscillatory
along the whole time range. LNO produced the smoothest and accurate solution
overall.
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Figure 9: Predicted vs analytical control trajectories for the Linear ODE: a)
DeepONet, b) FNO, c) LNO
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5.2 Problem: Oscillatory Forcing
The neural operator architectures DeepONet, FNO, and LNO (see Section 4.5)
were trained to model the dynamics of the oscillatory forcing problem. All models
successfully minimized the physics and initial condition losses to a satisfactory
level (see Figure 10). FNO and DeepONet demonstrated steady convergence for
both losses. In contrast, LNO plateaued early on the physics loss and primarily
focused on minimizing the initial loss. As expected, FNO performed the best on
this oscillatory task due to its ability to efficiently learn periodic structures.

Table 9 summarizes the training performance. FNO achieved the best physics
and initial loss in the shortest period of time.

Table 9: Training statistics for the oscillatory forcing benchmark.
Architecture Training Time (min) Epochs Physics Loss Initial Loss
DeepONet 1236 1580 3.49 · 10−4 2.99 · 10−6

FNO 60 770 1.18 · 10−4 4.72 · 10−7

LNO 67 1000 4.23 · 10−4 8.66 · 10−7

Figure 11 shows the relative training and validation trajectory errors. All models
exhibited overfitting to the training dataset. DeepONet had not yet converged
in terms of relative error, as its initial loss was still improving (as seen in Figure
10). LNO’s validation loss oscillated significantly, likely due to fluctuations in
the initial loss (since the physics loss had converged early). A possible reason for
overfitting is insufficient diversity in the function families used during training.

FNO achieved the best overall performance in terms of both training and
validation errors (see Table 10). While LNO had a slightly lower test error, its
performance was unstable due to oscillations and lacked consistent convergence
like FNO.

In edge cases, the worst LNO predictions still had relative errors below 2%,
while FNO and DeepONet occasionally produced poor predictions for highly
noisy input functions. See Figure 12 for the worst prediction of DeepONet.

Table 10: Relative trajectory errors for the Oscillatory problem.
Architecture Train Error L2(x̂) Test Error L2(x̂)
DeepONet 2.78 · 10−3 6.49 · 10−3

FNO 1.09 · 10−3 2.78 · 10−3

LNO 1.44 · 10−3 1.75 ·10−3
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Figure 10: Physics and initial condition loss convergence for the oscillatory
forcing benchmark: a) DeepONet, b) FNO, c) LNO
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Figure 11: Relative trajectory errors (train/test) for the oscillatory forcing
benchmark vs epochs: a) DeepONet, b) FNO, c) LNO
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Figure 12: Worst predictions on the validation set of DeepONet for Oscillatory
Benchmark

Table 11: Control optimization weights for the oscillatory forcing problem.
Architecture µphys µobj µinit µsmooth µbound
DeepONet 100 1 1 0 100
FNO 10 1 1 0 0.1
LNO 10 1 1 0 0.1

Figure 13 shows the predicted control trajectories for each architecture. Among
them, LNO produced the most accurate approximation of the analytical control.
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Figure 13: Predicted vs analytical control trajectories for the Oscillatory bench-
mark: a) DeepONet, b) FNO, c) LNO. DeepONet prediction of trajectory for
the found control u is incorrect (this was confirmed by solving an instance of
the equation with SciPy solver)
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From the plots, we observe that the optimal control input has an oscillatory form.
Both FNO and LNO successfully captured this structure, including the correct
phase. However, the accuracy of the predicted control suffered due to the small
amplitude of the actual control signal. The numerical gradient approximations
used in FNO and LNO introduced errors that significantly affected the result.
The found input control is also less accurate near the borders again due to the
approximation of the gradient.

The input control found by DeepONet is incorrect in phase and amplitude.
Predicted trajectory for this control û deviates significantly from the SciPy-
computed reference, whereas FNO and LNO are more accurate. Only the initial
condition and period of the predicted trajectory are nearly identical.

Figure 14: Poor performance of DeepONet on oscillatory forcing benchmark
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During the optimization step, though DeepONet was trained to have a low
physics and initial losses, the total loss was decreasing while the relative error of
û was diverging each epoch (see Figure 14). Tuning of the weights in the loss
function had no effect.

Random noise found by DeepONet on the 50th epoch had less relative error (see
Figure 14), since at least it had a closer amplitude of the signal. Recall that
DeepONet had highly inaccurate predictions on some noisy input functions (see
Figure 12). This led to a highly inaccurate solution since intermediate solutions
found in Algorithm 1 are all noisy.

We could potentially improve results by generating a dataset with smaller-
amplitude signals. However, since the training was unsupervised and no as-
sumptions about the actual control were made, DeepONet yielded the weakest
performance in this setting. In contrast, LNO and FNO achieved near-optimal
solutions.

Final performance metrics of the optimized control are reported in Table 12.

Table 12: Optimized control quality metrics for the oscillatory forcing problem.
Model Cost J(ũ) Epochs Relative Error L2 of ũ Relative Error L2 of x̃
DeepONet 2.02981 12000 454.27 1.4484
FNO 0.00156 200 1.2763 0.0516
LNO 0.00156 200 1.3008 0.0535

Both FNO and LNO found relatively the same solution, with FNO being slightly
more accurate.

5.3 Problem: Polynomial Tracking
The neural operator architectures DeepONet, FNO, and LNO (see Section 4.5)
were trained to model the dynamics of the polynomial tracking problem. All
models successfully minimized both the physics and initial condition losses to a
satisfactory level (see Figure 15). The convergence behavior is similar to that of
the oscillatory forcing problem, which is expected, as the differential equation
remains the same but without the forcing term.

The convergence curve of FNO is steady, except for a slight fluctuation around the
50th epoch. In contrast, both DeepONet and LNO exhibit oscillatory behavior
in their loss curves.
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Figure 15: Convergence of physics and initial condition losses for the polynomial
tracking benchmark: a) DeepONet, b) FNO, c) LNO
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Figure 16: Relative trajectory errors (train/test) for the polynomial tracking
benchmark across epochs: a) DeepONet, b) FNO, c) LNO

Table 13 summarizes the training performance. FNO achieved the best per-
formance in terms of both losses and runtime, followed by LNO. DeepONet
performed the worst among the three.
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Table 13: Training statistics for the polynomial tracking benchmark.
Architecture Training Time (min) Epochs Physics Loss Initial Loss
DeepONet 1251 1340 3.65 · 10−4 3.24 · 10−6

FNO 72 780 1.11 · 10−4 4.40 · 10−7

LNO 79 1000 2.27 · 10−4 1.01 · 10−6

Figure 16 shows the relative training and validation trajectory errors. There are
signs of overfitting, potentially due to a limited number of function families or a
relatively small validation set.

As with the oscillatory forcing benchmark, the LNO exhibited highly oscillatory
behavior in the initial loss curve. However, this time it converged to a local
minimum.

Overall, FNO achieved the best performance in terms of the relative error of
predicted trajectories. Both DeepONet and LNO showed significantly higher
errors on the validation set.

Table 14: Relative trajectory errors for the polynomial tracking benchmark.
Architecture Train Error L2(x̂) Test Error L2(x̂)
DeepONet 3.27 · 10−3 2.06 · 10−2

FNO 1.22 · 10−3 4.96 · 10−3

LNO 1.80 · 10−3 1.27 · 10−2

DeepONet struggled particularly with noisy input functions, similar to its perfor-
mance on the oscillatory forcing problem. FNO had difficulty with constant and
noisy inputs, while LNO struggled most with constant functions and with sine
inputs (see Figure 17). Both FNO and LNO performed badly on the constant
function, possibly due to their inaccuracies in numerical gradient estimation.

The trained neural operators were then used to solve the associated control
problem. The best-performing control optimization weights are listed in Table
15. The initial guess for the algorithm was a random vector. Initially, the output
of all models was noisy, which required us to add some weight to the smoothness
parameter.

Table 15: Control optimization weights for the polynomial tracking benchmark.
Architecture µphys µobj µinit µsmooth µbound
DeepONet 200 1 1 2 0
FNO 100 1 1 1 0
LNO 100 1 1 1 0
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Figure 17: Worst predictions on the validation set for LNO for polynomial
tracking benchmark.

Figure 18 presents the predicted control trajectories for each model. FNO and
LNO produced overall accurate control trajectories, except near the domain
boundaries. DeepONet produced the noisiest solution, and the predicted trajec-
tory slightly deviated from the one obtained using SciPy optimization on the
recovered signal.

Final performance metrics for the optimized control problem are shown in Table
16. Both FNO and LNO yielded solutions close to optimal.
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Table 16: Optimized control performance metrics for the polynomial tracking
benchmark.

Architecture Cost J(ũ) Epochs Relative Error of ũ Relative Error of x̃
DeepONet 0.148 10000 0.0506 0.0099
FNO 0.149 1000 0.0222 0.0020
LNO 0.149 700 0.0327 0.0071

Figure 18: Predicted vs analytical control trajectories for the Polynomial
Tracking benchmark: a) DeepONet, b) FNO, c) LNO
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5.4 Problem: Nonlinear ODE
The neural operator architectures DeepONet, FNO, and LNO (see Section 4.5)
were trained to model the dynamics of the nonlinear problem. DeepONet and
FNO successfully learned the system dynamics to a sufficient degree, while LNO
did not (see Figure 19).

Table 17 summarizes the training performance. FNO achieved the lowest physics
loss, likely due to the use of five Fourier layers instead of four. When preliminarily
experimenting with its architecture, with four Fourier layers, the performance
was similar to that of LNO.

Table 17: Training statistics for the nonlinear ODE benchmark.
Architecture Training Time (min) Epochs Physics Loss Initial Loss
DeepONet 1308 1520 7.78 · 10−3 1.93 · 10−5

FNO 74 620 9.79 · 10−5 4.57 · 10−7

LNO 63 370 2.31 · 10−2 2.10 · 10−3

Figure 20 shows the relative trajectory errors on the training and validation sets.
No signs of overfitting were observed. The validation error for LNO oscillates
heavily, indicating instability. DeepONet had not fully converged by the end of
training, and further training was infeasible due to prohibitive runtime.

Recall that LNO uses a Laplace layer, which was presented as an equivalent to
four Fourier layers. We attempted to train a four-layer FNO, but its physics
loss plateaued around 0.01–0.02, which was insufficient for solving the control
problem. Increasing the number of Fourier layers to five significantly improved
its performance. LNO similarly plateaued at this level, even after increasing
expressivity and experimenting with two Laplace layers (which were not evaluated
in the original paper [11]). In the end, we used two Laplace layers with eight
trainable poles and residues, which yielded the best performance.
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Figure 19: Physics and initial condition loss convergence for the nonlinear ODE
benchmark: a) DeepONet, b) FNO, c) LNO
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Figure 20: Relative trajectory errors (train/test) for the nonlinear ODE bench-
mark: a) DeepONet, b) FNO, c) LNO

Interestingly, the worst predictions by LNO on the test set are not completely
inaccurate - they are generally only slightly off (see Figure 21).
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Figure 21: Worst-case validation predictions for LNO on the nonlinear ODE
benchmark.

Table 18 summarizes the relative trajectory errors. FNO demonstrated the best
generalization, followed by DeepONet. LNO performed significantly worse, with
a substantial performance gap.

Table 18: Relative trajectory errors for the nonlinear ODE benchmark.
Architecture Train Error L2(x̂) Test Error L2(x̂)
DeepONet 9.67 · 10−3 9.28 · 10−3

FNO 9.56 · 10−4 9.96 · 10−4

LNO 1.28 · 10−1 5.77 · 10−2
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We tried to fine-tune the trained LNO with available true trajectories, but this
did not help to learn physics better and just enabled the model to memorize
the trajectories and overfit the training set. For this particular framework (we
have only 20% of data with labeled trajectories), we would not recommend a
semi-supervised setting according to our experimental results.

The best-performing control optimization weights are listed in Table 19. LNO
with any weight on physics loss could not converge to an optimal solution.

Table 19: Control optimization weights for the nonlinear ODE benchmark.
Architecture µphys µobj µinit µsmooth µbound
DeepONet 150 1 1 1 0
FNO 5 1 1 0.1 0
LNO 100 1 1 1 0

Figure 22 shows the predicted control trajectories for DeepONet and FNO.
FNO’s control closely matches the analytical solution. DeepONet’s trajectory is
noisier but qualitatively accurate.

The candidate control predicted by LNO differs significantly from the analytical
solution (Figure 22), which was expected since LNO failed to learn dynamics on
noisy input families like GRF.

We hypothesize that LNO with one Laplace layer lacks sufficient capacity to
model noisy, highly nonlinear input functions while simultaneously minimizing a
nonlinear physics residual. Moreover, the exponential term in the Laplace layer,
combined with numerical differentiation, may amplify prediction errors.

Final performance metrics for the optimized control solutions are shown in Table
20. LNO failed to converge to a feasible control trajectory.

Table 20: Optimized control quality metrics for the nonlinear ODE benchmark.
Architecture Cost J(ũ) Epochs Relative Error of ũ Relative Error of x̃
DeepONet -0.1070 20000 0.1362 0.0031
FNO -0.1011 5000 0.1745 0.0057
LNO -0.0282 10000 1.7671 0.2688

The most accurate solution was by DeepONet. But the quality of all found
solutions degraded in comparison with solutions to other benchmark problems.
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Figure 22: Control trajectory predictions for the nonlinear ODE benchmark: a)
DeepONet, b) FNO, c) LNO 64



5.5 Problem: Singular Arc
This problem is interesting because, depending on the input control, the resulting
trajectory can either grow exponentially, making it impossible for the numerical
solver to find a solution, or have a slow downward trend.

We want our trajectory to satisfy both the initial and boundary conditions:
x(0) = 1 and x(1) = 0. Ideally, a neural operator should approximate solutions
to the differential equation within at least a specified range. We chose the input
range [−3,−0.5] for u. At the data generation step, whenever we were increasing
the upper bound, the solver was failing for some of the inputs.

Just as the solver struggles with input controls that lead to exponentially growing
trajectories, neural operators with selected architectures (see Section 4.5) also
struggled to learn them. DeepONet and LNO failed to sufficiently learn the
physics, while FNO managed to do so - but only after increasing its depth to 6
and significantly increasing both modes and width (see Figure 23).

Table 21 summarizes the training performance. Only FNO managed to learn the
system’s physics, while both DeepONet and LNO learned the physics somewhat
poorly.

Table 21: Training statistics for the singular arc benchmark.
Model Training Time (min) Epochs Physics Loss Initial Loss
DeepONet 1249 1580 1.98 · 10−2 1.57 · 10−5

FNO 34 230 6.83 · 10−4 1.41 · 10−6

LNO 131 1000 1.12 · 10−2 8.82 · 10−5

Figure 24 shows the relative training and validation trajectory errors. No signs
of overfitting were observed. Based on these errors, DeepONet had not yet
converged. LNO also had potential for improvement.

Table 22 summarizes the training and validation relative errors of the predicted
trajectories. In terms of relative error, DeepONet achieved the best performance.
Interestingly, though FNO has the smallest physics loss, DeepONet predicted
trajectories more accurately.

Table 22: Relative trajectory errors for the singular arc problem.
Model Train Error L2(x̂) Test Error L2(x̂)
DeepONet 8.99 · 10−3 5.63 · 10−3

FNO 1.33 · 10−2 9.07 · 10−3

LNO 8.02 · 10−2 1.48 · 10−2
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Figure 23: Physics and initial condition loss convergence for the singular arc
benchmark: a) DeepONet, b) FNO, c) LNO
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Figure 24: Relative trajectory errors (train/test) for the Singular Arc benchmark:
a) DeepONet, b) FNO, c) LNO

There is a clear explanation for this. During training, models struggled most
with trajectories like the one shown in Figure 25.
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FNO also initially failed to predict these trajectories well, but eventually learned
them at the cost of generating very noisy trajectories with noisy input controls.
Thus, FNO learned the physics of the system but produced outputs that, while
noisy, still followed the solution trend (see Figure 25). Thus, a small average
physics loss in some cases does not lead to a low relative error of prediction on
the validation set.

To give the LNO architecture a fair chance, we generated separate datasets
specifically for it: one containing only polynomial functions, and another with a
mixture of sine and polynomial functions. We used the sine activation function
and kept the rest of the architecture unchanged. This configuration was chosen
because authors in [11] trained the model exclusively on sine functions using
this activation function. While the model was able to minimize the physics loss
to 5.67 · 10−5, it was impossible to use it in the optimization. Since initial and
intermediate controls are noisy, LNO - which was trained only on smooth signals
- can not generalize on them, and with every update, it diverges. The same
problem happened with DeepONet when we were trying to solve the oscillatory
forcing problem.

We then used the trained neural operators to solve the singular arc control
problem (we used LNO trained on the original dataset). The best-performing
control optimization weights are listed in Table 23.

Table 23: Control optimization weights for the Singular Arc problem.
Model µphys µobj µinit µsmooth µbound
DeepONet 10 1 1 1 10
FNO 10 1 1 0 10
LNO 50 1 1 0 10

Figure 26 shows the predicted control trajectories. Among the models, FNO
produced the closest match to the analytical control but failed to satisfy the
boundary condition.

Interestingly, the control predicted by LNO closely resembles that of DeepONet
but is less noisy. Even their predicted trajectories are similar, both violating the
boundary condition in the same way. Recall that the physics loss of LNO and
DeepONet were also comparable.

Final performance metrics for the optimized controls are shown in Table 24.

Table 24: Optimized control quality metrics for the Singular Arc problem.
Model Cost J(ũ) Epochs Relative Error of ũ Relative Error of x̃
DeepONet 2.173 10000 0.2873 0.1978
FNO 2.078 6000 0.2517 0.1241
LNO 2.183 5000 0.2550 0.1863
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Figure 26: Predicted vs analytical control trajectories for the Singular Arc
benchmark: a) DeepONet, b) FNO, c) LNO
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5.6 Neural-operator performance and a classical IPOPT
baseline

Table 25 reports all key metrics across models and problems. For each architec-
ture–problem pair, we show: (i) total training time in GPU-minutes2, (ii) final
physics-residual loss, (iii) validation error on the predicted state trajectory, and
(iv) relative L2-error of the optimized control. The best value per metric within
each benchmark row is highlighted in bold.

Table 25: Unified performance comparison across problems and architectures.
Bold indicates best performance per metric within each problem.

Problem Model Train Time (min) Physics Loss Val. Error Rel. Err. (ũ)

Linear ODE
DeepONet 1267 9.51 · 10−4 6.14 · 10−4 1.91 · 10−2

FNO 118 3.70 · 10−4 2.67 · 10−3 3.48 · 10−2

LNO 209 3.25 · 10−4 1.09 · 10−3 1.42 · 10−2

Oscillatory
DeepONet 1236 3.49 · 10−4 6.49 · 10−3 4.54 · 100

FNO 60 1.18 · 10−4 2.78 · 10−3 1.28 · 100

LNO 67 4.23 · 10−4 1.75 · 10−3 1.30 · 100

Polynomial
DeepONet 1251 3.65 · 10−4 2.06 · 10−2 5.06 · 10−2

FNO 72 1.11 · 10−4 4.96 · 10−3 2.22 · 10−2

LNO 79 2.27 · 10−4 1.27 · 10−2 3.27 · 10−2

Nonlinear
DeepONet 1308 7.78 · 10−3 9.28 · 10−3 1.36 · 10−1

FNO 74 9.79 · 10−5 9.96 · 10−4 1.75 · 10−1

LNO 63 2.31 · 10−2 5.77 · 10−2 1.81 · 100

Singular Arc
DeepONet 1249 1.98 · 10−2 5.63 · 10−3 2.87 · 10−1

FNO 34 6.83 · 10−4 9.07 · 10−3 2.52 · 10−1

LNO 131 1.12 · 10−2 1.48 · 10−2 2.55 · 10−1

Across all models, FNO was the most successful in minimizing physics loss with
the minimum time of training. For LNO, the most challenging problem was the
nonlinear ODE, and for DeepONet, the oscillatory forcing. Though physics loss
of trained DeepONet and LNO was large, they managed to predict almost the
same solution as FNO.

Table 26 summarises the performance of a classical IPOPT direct-collocation
solver on the same N = 200 grid used throughout this work. For each benchmark
we list (i) the relative end-point errors in state and control, (ii) the final objective
value J∗, and (iii) the CPU wall-clock time. These figures provide a concrete
reference for the best accuracy and runtime attainable without a neural surrogate;
the subsequent sections compare every PINO result against this baseline.

2Epoch time excludes validation and plotting.
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Table 26: Classical IPOPT baseline (N=200). Relative errors are ∥x−x∗∥/∥x∗∥
and ∥u− u∗∥/∥u∗∥ (lower is better).

Benchmark Rel. Err. x Rel. Err. u Cost J∗ Time [s]
Linear ODE 1.21 · 10−3 3.51 · 10−3 0.193679 0.234
Oscillatory forcing 5.18 · 10−2 1.76 · 10−1 0.001553 0.018
Polynomial tracking 2.88 · 10−3 2.16× 10−3 0.150206 0.016
Nonlinear ODE 5.17 · 10−4 1.54 · 10−2 −0.106544 0.038
Singular Arc 1.98 · 10−1 2.08 · 10−1 1.863697 0.026

Compared to IPOPT, all neural operator models exhibit higher control and
trajectory errors, with relative L2-errors often one to two orders of magnitude
above the baseline. Runtime is also substantially greater - training takes minutes
to hours, while IPOPT solves each instance in milliseconds. However, this cost is
amortized: once trained, a neural operator can generalize across inputs without
re-solving the OCP. In problems like the nonlinear and polynomial benchmarks,
FNO achieved control accuracy within a factor of two from IPOPT, suggesting
that physics-informed training can yield competitive surrogates when dynamics
are smooth and well-resolved. As neural operator architectures continue to
improve, and as better techniques for dataset generation and regularization
emerge, their performance on more complex tasks is likely to close the gap.
Importantly, a single trained model can be reused for fast inference on unseen
inputs, making this approach promising for settings where repeated solves are
required.

5.7 Sensitivity analysis
We conducted a sensitivity analysis with respect to the control cost weight
ρ ∈ {0.1, 1, 10}, averaging results over three independent random seeds. Table
27 summarizes the relative error of the found control û (mean ± standard
deviation) across all benchmark problems and architectures. Our goal was to see
how the ratio of the physics loss weight and control objective affects the quality
of the produced solutions.

The sensitivity analysis reveals clear trends in robustness across architectures.
FNO is the most stable and generalizes well across all ρ. Its performance on the
oscillatory forcing, nonlinear, and polynomial tracking problems is consistently
strong. DeepONet performs well at moderate weights (ρ = 1), particularly in
the linear, polynomial, and singular arc cases, but suffers at extreme values,
suggesting that it needs the weight of physics loss to be much higher than that of
the control objective to produce a feasible solution. LNO improves with higher
ρ on certain problems (e.g., polynomial and singular arc), but fails to generalize
in the nonlinear setting, regardless of weight (recall that it has not managed to
learn the physics of the system properly). Overall, FNO emerges as the most
robust choice, while DeepONet and LNO display problem-specific sensitivity.
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5.8 Benchmarking PDE Problems
We additionally evaluated FNO on more challenging control problems governed
by partial differential equations (PDEs) to demonstrate that neural operators
can be applied to real-world nonlinear systems, not only to “toy“ examples. In
this section, we present the resulting input-control solutions together with basic
statistics on training time and performance. A more thorough study of FNO
robustness and alternative models is left for future work.

Recall that the goal is to determine an input signal that drives the system from
the initial state y(x, 0) = 0 to the desired target state while simultaneously
minimizing control effort. The weights used for the individual loss terms during
control optimization are given in Table 28.

Table 28: Loss weights used for each control problem.
Problem µobj µphys µbound µinit
Heat 10 1 0.01 0.01
Diffusion–Reaction 1 1 0.01 0.01
Burgers 10 5 0.01 0.01

Figure 27: Heat (1D): candidate input control u(x), final state y(x, T ), and
target profile.
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The solution produced by FNO for the heat equation is somewhat noisy near
the boundaries (Figure 27), possibly due to inaccurate gradient approximations,
yet it still drives the system close to the target state. For the diffusion–reaction
problem, FNO achieved a highly accurate solution (Figure 28). The only
shortcoming is that the peaks of the final state slightly deviate, which may
reflect a lack of sufficiently high-amplitude input signals in the training set.

Figure 28: Diffusion–reaction (1D): candidate input control u(x), final state
y(x, T ), and target profile.

The solution for the 1-D Burgers equation is acceptable but somewhat noisy
(Figure 29). This is likely because the model was trained solely on physics
residuals. Nevertheless, FNO learned this demanding task without labeled tra-
jectories, highlighting the promise of neural-operator architectures for real-world
applications.
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Figure 29: Burgers (1D): candidate input control u(x), final state y(x, T ), and
target profile.

Table 29 summarizes FNO training times and physics-loss values for each problem
(validation loss is unavailable for Burgers because that model was trained
unsupervised).

Table 29: Training performance of FNO on the PDE benchmarks.
Problem Training Time (s) Train Lphys Test Lphys
Heat 145.46 5.98× 10−3 ± 1.20× 10−3 6.63× 10−3 ± 1.05× 10−3

Diffusion–Reaction 132.60 1.50× 10−3 ± 2.34× 10−4 1.64× 10−3 ± 2.58× 10−4

Burgers 505.89 7.90× 10−4 ± 7.73× 10−5 —

Burgers required the longest training time because the dataset contained ten
times more functions. However, training was still fast because no data-loss
gradients had to be computed. We observed no signs of overfitting, and FNO
reached a suitably small physics loss surprisingly quickly, suggesting that learning
physically meaningful dynamics is easier than learning the toy-problem dynamics.

Table 30: Comparison of FNO-based optimization with a reference solver.
Problem FNO Time (s) Lphys FNO J(u) Solver J∗(u) Solver Time (s)
Heat 44.46 9.92× 10−5 4.84× 10−5 1.09× 10−2 0.15
Diffusion–Reaction 36.89 1.08× 10−4 9.30× 10−4 6.40× 10−2 0.14
Burgers 57.05 2.44× 10−5 6.54× 10−5 2.80× 10−4 0.53
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We used a traditional solver to find reference solutions to these benchmark
problems in the same way as we did with toy problems 5.6. We formulated the
problem in CasADi and solved it accordingly (the source code is available in our
GitHub [44]). FNO outperformed the reference solver (Table 30), achieving a
significantly lower objective value while preserving physical validity. Moreover,
an FNO model trained on this problem can be reused with a different objec-
tive function, although careful tuning of the loss-component weights remains
necessary.
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6 Discussion
This section summarizes key findings and limitations of applying physics-informed
neural operators to optimal control. We discuss (i) how different architectures
adapt to boundary and initial conditions, (ii) the role of operator design in
convergence and solution accuracy, (iii) limitations of neural operators as control
surrogates, and (iv) the feasibility of training with only physics residuals. First,
we compare architectures on the benchmark problems, and then we discuss FNO
performance on PDEs.

In our framework, we enforce only initial conditions during training of the
neural operator. This is done by including a soft penalty on the predicted
state at t = 0, which is feasible for any input function. Enforcing boundary or
terminal conditions during training would require us to pre-select only those
input functions u(t) that lead to trajectories ending at the correct terminal
state. This would involve solving the differential equation for every input in the
dataset, which is nearly equivalent to solving all possible equations and selecting
the best. Hence, boundary conditions are deferred to the control-optimization
stage, where they are added as a penalty in the optimization loss.

However, this design introduces limitations. In the singular-arc problem, many
input signals led to trajectories that violated the terminal constraint, often
growing exponentially. Once optimization enters such regions, it becomes hard
to recover, and the loss fails to converge. While the physics-informed loss can
still be minimized, the resulting controls may not produce feasible trajectories
under the required terminal constraint. These particular signals were also hard
for the neural operators to learn during training.

Architectural choices significantly affect convergence, physics loss, and the quality
of the control solution. FNO had the highest capacity to fit the residual loss,
achieving extremely low values (e.g. 9.79× 10−5) in some problems. However,
this did not always translate into better control performance. In the singular-arc
case, the FNO solution was as inaccurate as those from DeepONet and LNO,
showing that minimizing residuals is not sufficient on its own.

DeepONet consistently enforced initial conditions better, thanks to its pointwise
architecture and compatibility with automatic differentiation. However, its
predictions were often noisy, and it failed to capture complex periodic dynamics,
as seen in the oscillatory forcing problem. Its random initialization was more
accurate at first, but with each iteration, it became worse due to its inability to
generalize to such low-amplitude periodic signals. Though FNO and LNO were
trained on the same dataset, they managed to find a nearly optimal solution.

LNO produced the smoothest trajectories across all problems and followed trends
reliably even in difficult cases. However, it lacked the capacity to handle noisy
inputs and nonlinear dynamics simultaneously. It worked well on smooth or
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linear problems, but it failed when both the inputs and the dynamics were
complex. One potential explanation is the exponentiation step in LNO, which,
combined with noisy gradient approximations (from finite differences), may
amplify errors and prevent convergence.

Based on our experiments, we outline when each model is most appropriate:

• DeepONet is suitable when the goal is interpretability and generalization
across uniform grids. It performs best when enforcing initial and terminal
conditions is critical, and it serves as a reliable baseline.

• FNO is well-suited for fast training, periodic signals, and complex physics.
Its flexibility in terms of modes and depth enables expressive modeling,
though its predictions remain oscillatory.

• LNO is best when smooth trajectories are required. Its performance
degrades under high input noise combined with nonlinear dynamics, making
it less suitable for complex control problems.

We compared neural-operator-based control solutions to a traditional direct
optimization method using IPOPT. IPOPT consistently achieved the lowest
possible control cost and produced the most accurate trajectories across all toy
benchmark problems. Neural operators frequently underperformed compared to
IPOPT even when the residual loss was low. In particular, DeepONet and FNO
occasionally produced highly oscillatory or noisy control signals, which would be
unacceptable in precision-critical settings. Only LNO approached IPOPT-level
smoothness in its output.

FNO demonstrated the most consistent behavior across all tested values of
ρ ∈ {0.1, 1, 10}, maintaining a low relative error of the input signal u (based
on the physics loss) while successfully minimizing the control objective. This
suggests that the dynamics learned by FNO were more stable and generalizable
across control trade-offs. DeepONet was most effective at moderate cost weights
(ρ = 1) but showed significant degradation when ρ was either too small or
too large. LNO’s behaviour was problem-dependent: it improved on some
problems at high ρ but consistently failed to generalize on nonlinear dynamics,
regardless of ρ. This highlights that physics-informed control performance is not
only architecture-dependent but also highly sensitive to even single-parameter
changes.

We observed that Algorithm 1 is highly sensitive to the initial guess of the
control input. During each iteration, the control is updated and may take on a
noisy shape that lies outside the distribution of functions learned by the neural
operator. Since neural operators generalize by interpolating between functions
seen during training, they may struggle to produce accurate predictions for such
unseen or irregular inputs. Therefore, the training dataset must include both
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smooth and noisy control functions. If the neural operator fails to learn across
this spectrum, the control-optimization process may diverge or converge to a
suboptimal solution, as the model cannot reliably predict the system response
for off-distribution controls.

The use of neural operators for control introduces several critical limitations.
Control applications require precise gradient information. Models that rely on
approximate gradients (such as FNO and LNO) risk learning consistent errors
that compound during optimization. This can lead to poor or unsafe control
trajectories, even if the residual loss appears low.

The approach is highly sensitive to the input-function family and dataset size.
When training on noisy signals with limited data, the model may overfit edge
cases and generalize poorly. We observed that models with larger residual losses
could still outperform others on the actual control task. For example, LNO had a
higher residual loss but produced better solutions than FNO on the singular-arc
problem.

Results are extremely sensitive to the weights of the loss components. Small
changes in the physics-loss or boundary-loss weights, or the random seed, caused
large variability in results. This makes the method fragile and dependent on
manual tuning. Often, the only way to select appropriate weights was to visualize
the output trajectories and check their plausibility.

Finally, while neural operators offer fast inference and potential reusability,
they must be validated rigorously before use in safety-critical systems. The
learned dynamics are not guaranteed to be accurate, and optimization over poor
dynamics may yield misleading results.

A central question in this work is whether neural operators can be trained using
only physics residuals, without any trajectory supervision. Our experiments
show that this is possible, but success depends heavily on the problem, the
dataset, and the architecture. Residual-only training works better when the
dynamics are relatively smooth, the dataset is sufficiently diverse, and the model
has appropriate capacity.

It was surprising how much easier it was for FNO to solve systems constrained
by PDEs than a comparatively simple ODE. This led us to think that neural
operators perform better on physically meaningful systems. Solutions produced
by FNO outperformed the traditional solver at the cost of short training times
(about 10 minutes to train Burgers) and at most about 1 minute to converge
to a solution (recall that we use early stopping with patience of 500 epochs).
From our perspective, it has significant potential in more difficult scenarios.
The following steps include developing a systematic method to generate mean-
ingful time-variant input signals and extending it at least to 2-D versions of
neural-operator architectures. We tried only FNO-1D and disregarded LNO-1D
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because it failed to learn these dynamics; we suspect there may be an issue in
the official code implementation (the time grid is initialized internally) or errors
in the example scripts [44]. In [11], they used the 2-D Burgers equation as a
benchmark, but with LNO-2D, which is a very different variant and was trained
in a supervised manner only on sine signals.

Several open directions remain:

• Conduct a systematic sensitivity analysis across hyperparameters, datasets,
and control-problem performance.

• Evaluate newer neural-operator architectures that may combine expres-
sivity with better smoothness or generalization (e.g., transformer-based
variants).

• Explore cases in which models with larger residuals still produce acceptable
or even superior control solutions, as seen in the singular arc.

• Develop principled methods to assess whether the training dataset is rich
enough to learn a faithful physics surrogate without overfitting.

• Extend experiments to higher-dimensional systems. In all benchmark
problems, our input signal u was one-dimensional; the PDEs were also
limited to simpler versions.

• Learn PDEs with varying parameters (e.g., diffusion coefficients), since we
used only fixed values during training.

In summary, neural operators offer a promising direction for optimal control,
especially when system dynamics are complex and simulation costs are high.
However, their current use as control surrogates is limited by gradient reliability,
dataset quality, architecture sensitivity, and lack of robustness. Further research
is needed to make PINO-based control approaches reliable, interpretable, and
safe in practice.
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7 Conclusion
This thesis explored the application of physics-informed neural operators (PINO)
to solving optimal control problems. Motivated by the limitations of traditional
solvers in handling repeated or high-dimensional control tasks, we introduced
a unified framework for PINO-based control that trains operator models using
only physics residuals and initial condition penalties.

We implemented and compared three architectures - DeepONet, FNO, and LNO
- on a selection of benchmark problems with known analytical solutions. Each
model was trained using residual-only loss functions and evaluated through
its use in the control optimization problem. Our experiments showed that
residual-only training is feasible in practice, but fragile in the presence of noisy
signals or insufficient data. FNO demonstrated the best trade-off between
speed, expressivity, and robustness across varying control penalties. DeepONet
was the most reliable at enforcing initial and boundary constraints due to its
pointwise structure and compatibility with auto-differentiation. LNO produced
the smoothest trajectories but failed to generalize to noisy inputs in nonlinear
problems.

Compared to a baseline traditional solver (IPOPT) - with easy ODE constrained
problems - PINO models struggled to match optimal cost and accuracy, especially
in precision-sensitive problems. However, neural operators offer a compelling
benefit: once trained, they can generalize across input functions and enable
rapid control optimization at inference time since they accept changes in the
control objective function. Sensitivity analysis further revealed that performance
is highly dependent on loss weights. Changes in the ratio between the weight of
physics loss and objective function loss led to high variations.

Benchmarking of FNO on PDEs in a control setting revealed that the performance
of neural operators can be much better if the system that they are trying to
learn is physically meaningful. We tried it only on FNO, but its solutions were
consistently better than those of the traditional solver.

This work highlights both the promise and current limitations of using neural op-
erators in optimal control. Future research should focus on improving robustness
through hybrid training, architecture advancements, and systematic sensitivity
analysis. Extending the framework to higher-dimensional or constrained systems
and evaluating newer operator families may also expand the scope of PINO-based
control in real-world applications.
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A Neural Operator architectures
A.1 DeepONet
The DeepONet architecture is inspired by the Universal Approximation Theorem
for operators [9], which ensures that a sufficiently wide single-hidden-layer
network can approximate any continuous non-polynomial operator mapping
functions to functions. We restate this theorem below for reference.

Theorem 1 (Universal Approximation Theorem for Operator). Suppose
that σ is a continuous non-polynomial function, X is a Banach Space, K1 ⊂ X,
K2 ⊂ Rd are two compact sets in X and Rd, respectively, V is a compact set in
C(K1), G is a nonlinear continuous operator, which maps V into C(K2). Then
for any ϵ > 0, there are positive integers n, p, m, constants ck

i , ξk
ij, θk

i , ζk ∈ R,
wk ∈ Rd, xj ∈ K1, i = 1, . . . , n, k = 1, . . . , p, j = 1, . . . , m, such that

⃓⃓⃓⃓
⃓⃓G(u)(y)−

p∑︂
k=1

ck
i

n∑︂
i=1

σ

⎛⎝ m∑︂
j=1

ξk
iju(xj) + θk

i

⎞⎠σ(wk · y + ζk)

⃓⃓⃓⃓
⃓⃓ < ϵ (1)

holds for all u ∈ V and y ∈ K2.

Figure A1: Illustration of the DeepONet operator learning paradigm (adapted
from [9]).

Figure A1 illustrates Theorem 1 formulation, where a single network directly
processes sampled function values and a query location to produce the scalar
output.

In the original formulation, we can notice two networks. The branch network
computes

m∑︂
j=1

ξk
ij u(xj) + θk

i

to encode the sampled values of u, for each neuron i in each branch k. The trunk
network applies

σ(wk · y + ζk)
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To encode the evaluation location y.

DeepONet replaces each shallow module with a deeper feed-forward network.
Denote

b = BranchNet(u; θb) ∈ Rp, t = TrunkNet(y; θt) ∈ Rp.

Then the operator is approximated by their inner product plus a bias:

G(u)(y) ≈
p∑︂

k=1
bk tk + b0.

There are two versions of the original DeepONet:

• Unstacked: A single branch network outputs the full vector b at once.
This reduces memory usage and simplifies backpropagation.

• Stacked: p separate branch networks, each producing one scalar bk. This
can increase representational flexibility but at a high computational cost.

Figure A2 compares the two implementation variants.

Figure A2: Two implementations of DeepONet’s branch network (adapted from
[9]). Left (unstacked): a single BranchNet outputs the full feature vector b ∈ Rp.
Right (stacked): p independent branch networks each produce one component bk

A.2 Fourier Neural Operator
The neural operator framework, proposed by [21], approximates mappings be-
tween infinite-dimensional function spaces using iterative architectures. The
core idea is to construct a sequence of features.

v0 → v1 → · · · → vT ,

where each vt, for t = 0, . . . , T takes values in Rdv .

Initially, the input function a(x) is lifted to a higher-dimensional representation
via a pointwise transformation P , yielding:

v0(x) = P
(︂
a(x)

)︂
∈ Rdv ,
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Where P is a pointwise linear (or affine) map. We then apply T refinement
steps:

vt+1(x) = σ
(︃

W vt(x) + (K(ϕ) vt)(x)
)︃

, t = 0, . . . , T − 1,

with σ a nonlinear activation, W ∈ Rdv×dv a learnable matrix, and the integral
operator

(K(ϕ) vt)(x) =
∫︂

D
kϕ

(︂
x, y, a(x), a(y)

)︂
vt(y) dy,

where kϕ : R2(d+da) → Rdv×dv is a kernel network. Finally, a decoder Q : Rdv →
Rdu produces

u(x) = Q
(︂
vT (x)

)︂
.

This framework was successful at generalizing neural networks to infinite-
dimensional spaces. Though the integral operator is linear, such an architecture
can still learn highly non-linear operators.

The Fourier Neural Operator (FNO) [10] makes two key simplifications to
architecture described above:

1. Kernel no longer depends on input function a(x): kϕ(x, y, a(x), a(y)) ≈
kϕ(x, y).

2. Translation invariance: kϕ(x, y) = kϕ(x− y),

This allows the integral operator K to be implemented as a convolution, which
can be computed efficiently in the Fourier domain. Specifically, the convolution
becomes:

K(ϕ) vt = F−1
(︂
Rϕ · F(vt)

)︂
,

where F and F−1 are the FFT and its inverse, and Rϕ is a learnable complex
multiplier on the lowest K Fourier modes (higher modes are truncated). This
reduces per-layer cost from O(n2) to O(n log n) on a uniform grid of n points.

The whole architecture can be seen in the Figure 5.

A.3 Laplace Neural Operator
While the Fourier Neural Operator (FNO) [10] leverages FFT to accelerate
convolutional integral operators in the frequency domain, it suffers from three
key limitations. First, the classical Fourier transform requires input functions
to be integrable, and thus cannot represent signals such as |x(t)| or model
unstable dynamics. Second, Fourier-based layers capture only steady-state,
periodic responses and omit any dependence on initial conditions. Third, non-
periodic domains must be artificially periodized, often degrading accuracy near
boundaries.
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The Laplace transform addresses these issues by introducing an exponential
decay factor. For a causal signal x(t), its Laplace transform

L{x}(s) =
∫︂ ∞

0
x(t) e−st dt, s = σ + iω,

converges under milder conditions than the Fourier transform and naturally
encodes initial values via the differentiation properties:

L{ẋ(t)} = sL{x(t)} − x(0), L{ẍ(t)} = s2 L{x(t)} − s x(0)− ẋ(0).

As a result, the Laplace domain simultaneously represents transient behavior
(through σ) and oscillatory modes (through ω) while embedding initial-condition
information. Motivated by these advantages, the authors proposed replacing the
Fourier layer with a Laplace layer (see Figure 6).

First, the input function a(x) is lifted to a higher-dimensional feature field via a
pointwise map P , yielding v(x) ∈ Rdx , and then processed by

u(x) = σ
(︂
(k(a; ϕ) ∗ v)(x)

)︂
+ W v(x),

where σ is a nonlinear activation, W a learnable linear transformation, and k
an integral kernel. The intermediate representation u is finally decoded by Q to
produce the output x(t). This overall pipeline mirrors that of FNO, but with a
key modification in how the convolution is implemented.

In LNO, the convolution is carried out in the Laplace domain:

U(s) = L
(︂
(k(a; ϕ) ∗ v)(t)

)︂
= Kϕ(s) V (s),

where Kϕ(s) = L{kϕ(t)} and V (s) = L{v(t)}. Crucially, Kϕ(s) is parameterized
in a pole–residue form:

Kϕ(s) =
N∑︂

n=1

βn

s− µn

,

with trainable poles {µn} and residues {βn}.

One may also expand v(t) in a Fourier series over [0, T ]:

v(t) =
∞∑︂

l=−∞
αl eiωlt, 0 ≤ t < T,

where ωl = l ω1 and αl are the complex coefficients, giving

V (s) = L{v(t)} =
∞∑︂

l=−∞

αl

s− iωl

.

Combining these expansions and expressing them in pole residue form (discussion
is omitted since it is out of scope of the thesis), one obtains

U(s) =
N∑︂

n=1

γn

s− µn

+
∞∑︂

l=−∞

λl

s− iωl

.
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After determining {γn} and {λl}, the inverse Laplace transform yields

u1(t) = L−1(U(s)) =
N∑︂

n=1
γn eµnt +

∞∑︂
l=−∞

λl eiωlt,

which is then passed through Q to recover the solution x(t).
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B Analytical Solutions for Benchmark Prob-
lems

B.1 Oscillatory Forcing (Problem 2) Derivation
Consider the problem

min
u

1
2

∫︂ 1

0
[x(t)2 + u(t)2] dt, ẋ = cos(4πt) + u, x(0) = 0, x(1) = 0

Step 1: Pontryagin’s Maximum Principle.

Hamiltonian:
H = 1

2(x2 + u2) + λ(cos(4πt) + u)

Optimality condition:

∂H

∂u
= u + λ = 0 =⇒ u∗(t) = −λ(t)

Costate dynamics:
λ̇(t) = −∂H

∂x
= −x(t)

State dynamics:

ẋ(t) = cos(4πt) + u∗(t) = cos(4πt)− λ(t)

Step 2: Reduce to a Second-Order ODE.

Differentiate the state equation:

ẍ(t) = −4π sin(4πt)− λ̇(t)

But λ̇(t) = −x(t), so:
ẍ(t) = −4π sin(4πt) + x(t)

=⇒ ẍ(t)− x(t) = −4π sin(4πt)

Step 3: General Solution.

The homogeneous solution is A cosh t + B sinh t. A particular solution (by
undetermined coefficients) is:

xp(t) = C sin(4πt)

Compute:

ẍp − xp = −16π2C sin(4πt)− C sin(4πt) = −(16π2 + 1)C sin(4πt)
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Set equal to −4π sin(4πt) to solve for C:

−(16π2 + 1)C = −4π =⇒ C = 4π

16π2 + 1

Full solution:

x∗(t) = A cosh t + B sinh t + 4π

16π2 + 1 sin(4πt)

Step 4: Apply Boundary Conditions.

• x(0) = 0: A · 1 + B · 0 + 0 = 0 =⇒ A = 0

• x(1) = 0: B sinh 1 + 4π
16π2+1 sin(4π) = 0

But sin(4π) = 0, so:
B sinh 1 = 0 =⇒ B = 0

Thus, the unique solution is

x∗(t) = 4π

16π2 + 1 sin(4πt)

Step 5: Compute the Optimal Control.

Recall:
u∗(t) = ẋ∗(t)− cos(4πt)

Compute the derivative:

ẋ∗(t) = 4π

16π2 + 1 · 4π cos(4πt) = 16π2

16π2 + 1 cos(4πt)

Thus,

u∗(t) = 16π2

16π2 + 1 cos(4πt)− cos(4πt) = − 1
16π2 + 1 cos(4πt)

Step 6: Final Analytical Solution.

x∗(t) = 4π

16π2 + 1 sin(4πt), u∗(t) = − 1
16π2 + 1 cos(4πt)

This solution satisfies all optimality and boundary conditions for the fixed-
endpoint problem.
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B.2 Polynomial Target Tracking (Problem 3) Derivation
Consider

min
u

∫︂ 1

0

(︂
(x(t)− t2)2 + u(t)2

)︂
dt, ẋ = u, x(0) = 0

Step 1: Pontryagin’s Principle.

Hamiltonian:
H = (x− t2)2 + u2 + λu

Optimality:
∂H

∂u
= 2u + λ = 0 =⇒ u∗ = −1

2λ

Costate:
λ̇ = −∂H

∂x
= −2(x− t2)

State:
ẋ = u

Step 2: Reduce to Second-Order ODE.

Plug in u∗:
ẋ = −1

2λ, λ̇ = −2(x− t2)

Differentiate the state equation:

ẍ = −1
2 λ̇ = (x− t2) =⇒ ẍ− x = −t2

Step 3: General Solution.

The homogeneous solution is Aet + Be−t, but for t ∈ [0, 1] and this system, a
polynomial suffices:

x∗(t) = αt3 + βt2 + γt

Plug into ẍ− x = −t2 and solve for coefficients:

6αt + 2β − (αt3 + βt2 + γt) = −t2

Match powers and solve (or directly check the known solution).

Given the candidate
x∗(t) = 2

3t3 − t2 + t

compute
ẋ∗(t) = 2t2 − 2t + 1 = u∗(t)
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Step 4: Initial and Terminal Costate.

With x(0) = 0, and terminal state unconstrained, the costate satisfies λ(1) = 0.
The solution above satisfies all necessary conditions.

B.3 Singular Arc (“Cliff”) Problem (Problem 5) Deriva-
tion

Consider

min
u

∫︂ 1

0
u(t)2 dt, ẋ(t) = x(t)2 + u(t), x(0) = 1, x(1) = 0

Step 1: Pontryagin’s Principle.

Hamiltonian:
H = u2 + λ(x2 + u)

Optimality:
∂H

∂u
= 2u + λ = 0 =⇒ u∗ = −1

2λ

Costate:
λ̇ = −∂H

∂x
= −2λx

State:
ẋ = x2 + u

Step 2: Guess Solution by Substitution.

The known analytical solution is (see Bryson & Ho, Rao [2, 47]):

x∗(t) = 1− t

1 + t

Compute
ẋ∗(t) = −2

(1 + t)2

Compute x∗(t)2 =
(︂

1−t
1+t

)︂2

So,

u∗(t) = ẋ∗(t)− x∗(t)2 = − 2
(1 + t)2 −

(︃1− t

1 + t

)︃2

Step 3: Check Boundary Conditions.

x∗(0) = 1, x∗(1) = 0

This matches the stated initial and final states.
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