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Abstract

Several ways of solving multi-agent decision problems, e.g., complete information
game theory and adversarial risk analysis, have been proposed in the literature.
Most approaches, however, cannot accommodate constraints spanning the entire
problem or situations in which earlier decisions cannot be recalled when making later
ones. Decision Programming is a methodology that helps address these limitations;
however, it has thus far only been used to solve single-agent decision problems. This
thesis aims to expand Decision Programming to accommodate multi-agent decision
problems.

Our approach first transforms the multi-agent problem into several single-agent
problems, one for each actor, that are represented with an influence diagram. We
solve these problems with the level-k approach, updating the initial distribution
for the decisions of each actor iteratively. For each problem at each level, we use
Decision Programming to solve the single-agent problems. This process is repeated
until we arrive at a convergent solution.

We apply our methodology to two examples, one in critical infrastructure pro-
tection and the other in border security. In the first example, our methodology
produced results very similar to a traditional adversarial risk analysis method that
used node removals. Furthermore, we solved an extension of the first example and
one example concerning border security, which both included overarching constraints,
non-perfect strategists, and multiple decision alternatives. Overall, our solutions
created beneficial results for protecting critical infrastructure and constructing border
security portfolios.
Keywords influence diagram, decision programming, adversarial risk analysis,
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Tiivistelmä

Kirjallisuudessa on esitetty useita tapoja ratkaista usean päätöksentekijän päätöson-
gelmia, kuten complete information -peliteoria ja vastakkainasettelullinen riskiana-
lyysi. Näillä metodeilla ei voi kuitenkaan ratkaista ongelmia, joissa on koko ongelman
kattavia rajoitusehtoja tai tilanteita, joissa aikaisempia päätöksiä ei tiedetä tehtäessä
myöhempiä päätöksiä. Decision Programming -metodologia kehitettiin ratkaisemaan
päätösongelmia, joissa esiintyy näitä haasteita. Tätä metodologiaa on kuitenkin käy-
tetty vain yhden päätöksentekijän päätösongelmien ratkaisuun. Tässä diplomityössä
Decision Programming -metodologiaa kehitetään siten, että sillä voidaan ratkaista
usean päätöksentekijän päätösongelmia.

Työssä esitetty menetelmä luo ensin usean päätöksentekijän päätösongelmasta
yhden päätösongelman jokaiselle päätöksentekijälle. Nämä ongelmat ratkaistaan
level-k -viitekehyksellä päivittäen jokaisen päätöksentekijän päätöksille luotua alku-
jakaumaa iteratiivisesti. Jokaisen tason jokainen päätösongelma ratkaistaan Deci-
sion Programming -metodologialla. Menetelmää toistetaan kunnes tasojen tulokset
konvergoituvat.

Kehitettyä menetelmää sovelletaan kahteen esimerkkiin, joista ensimmäinen liit-
tyy kriittisen infrastruktuurin suojaamiseen ja toinen rajaturvallisuuteen. Menetelmä
antaa näistä ensimmäiseen samankaltaisia tuloksia kuin perinteisempi vastakkaina-
settelullinen riskianalyysi. Lisäksi työ esittelee ratkaisut jatkokehitetylle versiolle
infrastruktuuri-esimerkistä ja rajaturvallisuutta kuvaavasta esimerkistä. Näistä mo-
lemmat sisälsivät ongelman kattavia rajoitusehtoja, rajoittunutta rationaalisuutta
sekä useita päätösvaihtoehtoja. Saadut tulokset ovat hyödyllisiä infrastruktuurien
suojelemiseen sekä rajaturvallisuusportfolioiden kehittämiseen.
Avainsanat vaikutuskaavio, decision programming, vastakkainasettelullinen

riskianalyysi, optimointi
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1 Introduction

Influence diagrams are a method for compactly representing the essential aspects of
decision problems (Olmsted, 1984; Howard and Matheson, 2005). Influence diagrams
consist of chance, decision, and utility nodes, with directed arcs between the nodes
showing the information relationships of random events, decisions, and outcomes,
respectively. Influence diagrams are commonly solved by iteratively eliminating
chance and decision nodes from the diagram, possibly using arc reversals (Shachter,
1986, 1988).

Influence diagrams, however, have traditionally been used to solve decision
problems in which there is only a single decision-maker. Nevertheless, many problem
contexts require an approach concerning multiple decision-makers who are either
collaborating or competing. The approach that has received the most recognition
in this area is complete information game theory, proposed by Von Neumann and
Morgenstern (1947), which was adapted to problems representable by influence
diagrams by Koller and Milch (2003). However, the main weakness in this approach
is the assumption that decision-makers are perfect strategists, which is unreasonably
restrictive (Kahneman and Tversky, 1979). Moreover, assuming complete information
decreases accuracy in most real-life problems, as the adversaries in the decision
problem can only estimate the utility functions of the other decision-makers.

Rios Insua et al. (2009), among others, presented Adversarial Risk Analysis
(ARA) to address these issues. In ARA, uncertainties about the utility functions
and probability distributions of other decision-makers are modeled via Bayesian
conditional probabilities. The approaches using ARA to solve multi-agent influence
diagrams have relied mainly on the aforementioned standard solution methods
of influence diagrams (Shachter, 1986). However, the weakness of these solution
methods is that they cannot accommodate problems in which earlier decisions cannot
be recalled when making later ones, nor problems in which some constraints span
the entire problem in that they include states from several nodes of the influence
diagram.

For influence diagrams with one decision-maker, Salo et al. (2022) developed
Decision Programming, which solves the decision problem by transforming it into a
Mixed Integer Linear Programming (MILP) formulation. This approach is able to
solve a wide variety of influence diagrams with different types of restrictions, such as
overarching constraints and problems where earlier decisions cannot be recalled while
making later ones and solving them to optimality. To date, however, this approach
has only been used in decision problems with a single decision-maker.
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This thesis aims to develop a generalized solution method for solving multi-agent
decision problems. Conceptually, we approach the subject similarly to Adversarial
Risk Analysis, modeling our knowledge of the opponents’ probabilities, utilities, and
strategic intelligence as uncertain. Specifically, we use the level-k thinking approach
(Stahl and Wilson, 1994). In this approach, all actors at level 0 first solve their view
of the multi-agent decision problem without considering what the other actors will
do. Subsequently, at each level k, each actor solves their problem assuming the other
actors make decisions as if they were level k −1 decision-makers. In this approach, we
solve the problems of each actor on each level with Decision Programming, allowing
us to solve general multi-agent decision problems to optimality with limited memory,
problem-spanning constraints, and non-regularity.

The benefits of our approach are four-fold. First, each actor may model their
uncertainty about the other actors, not needing to make unrealistic assumptions
about common knowledge or perfect strategy. Second, this approach accommodates
a wide range of problem and constraint types, which gives flexibility in supporting
decision-making. Third, our approach is intuitive: each actor thinks about the likely
decisions of other decision-makers and uses this knowledge to optimize their own
strategy. Finally, our approach is flexible in that we can solve several versions of
the original problem, using various assumptions about, e.g., the likely actions of
the opponents and the overall problem structure. Ultimately, we can combine these
answers to make as robust a decision recommendation as possible.

This thesis is structured as follows. Section 2 reviews earlier approaches and
summarizes the key properties of the Adversarial Risk Analysis and Decision Pro-
gramming methodologies. Section 3 develops the mathematical basis for solving
general multi-agent decision problems with Decision Programming. Section 4 shows
illustrative computational examples demonstrating the strengths of our approach.
Finally, section 5 concludes the thesis and proposes topics for further research.
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2 Background

2.1 Multi-Agent Decision Problems

The mainstream approach for problems involving multiple decision makers is game
theory with complete information (Von Neumann and Morgenstern, 1947). It has
also been adapted to problems directly representable by influence diagrams by Koller
and Milch (2003). Complete information game theory usually aims to find Nash
equilibrium solutions, defined as strategies where no decision-maker can improve
their own utility without provoking changes to the strategies of other decision-makers.
This approach assumes that all decision-makers are perfect strategists, which is,
however, to some degree unrealistic: humans are only boundedly rational and prone
to many cognitive biases that affect decision-making (Kahneman and Tversky, 1979;
Kahneman, 2003). Furthermore, it is common for game-theoretic treatments to
assume common knowledge, which is an unreasonably restrictive assumption. For
instance, in counterterrorism and cybersecurity topics, the defender rarely knows
their adversaries’ knowledge and motivations (Rios Insua et al., 2021). Moreover,
significant empirical evidence suggests that common game-theoretic approaches are
poor at predicting the behavior of real decision-makers (Camerer, 2010; Gintis, 2014).

Adversarial Risk Analysis has been developed to address the issues mentioned
above (Rios Insua et al., 2009). ARA uses Bayesian probability distributions for the
utility functions and probabilities of the other actors, thus rectifying the restrictive
approach of common knowledge used in some game theoretic approaches. It also
allows changing the actors’ utility functions to accommodate non-traditional utility
functions, for example, those suggested by prospect theory (Kahneman and Tversky,
1979; Kahneman, 2003).

ARA distinguishes three types of uncertainty: aleatory, epistemic, and concept
(Banks et al., 2015). Aleatory uncertainty refers to the uncertainties of outcomes
conditioned by the different possible choices. Epistemic uncertainty concerns the
uncertainty of one actor about their opponents’ utility functions and other parameters.
Finally, concept uncertainty refers to the uncertainty concerning the strategic thinking
type of the opponent. Aleatory uncertainty can be included in the problem via
chance nodes, posing no difficulties. On the other hand, epistemic uncertainty can
be included, e.g., by considering types (Harsanyi, 1967). Thus, actors can view
other actors as represented by one of several possible types characterized by different
probability and utility distributions. This convention rectifies the common knowledge
assumption discussed above.
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To address concept uncertainty, ARA proposes four different strategic think-
ing types, i.e., problem-solving approaches: non-strategic, level-k thinking, game
theoretic, and mirroring (Banks et al., 2015). Non-strategic thinking means that
the opponents optimize only their own utility functions without considering the
opponents’ actions. Level-k thinking refers to a layered approach to thinking: "I
think that you think that I think that...". Here, k is the highest level of thinking the
algorithm accounts for. A level-0 thinker is the same as a non-strategic opponent, as
referred to above. A game-theoretic approach is finding Nash equilibrium solutions,
assuming the actors are perfect strategists with common knowledge. Finally, the
mirroring approach addresses the potentially infinite regress of level-k thinking by
assuming that all adversaries model their opponents in the same way, which makes it
possible to determine the solution via a mirroring argument. This approach assumes
that each opponent’s problem structures and solution methods are identical.

These strategic thinking types are proposed to address concept uncertainty and
give options to the standard game-theoretic solution methods. For example, it has
been shown that the level-k thinking approach (Stahl and Wilson, 1994) produces
more accurate predictions for decision-makers’ behavior in real-life circumstances
(Nagel, 1995). In addition, ARA has been successfully used to solve decision problems
in application areas such as Borel games (Banks et al., 2011), piracy (Sevillano et al.,
2012), counterterrorism (Rios and Rios Insua, 2012), and cybersecurity (Rios Insua
et al., 2021).

ARA approaches commonly use the node elimination approach, for example, in
(Rios and Rios Insua, 2012), as developed by Shachter (1986), to solve the multi-agent
influence diagrams. However, this approach runs into the same issues as the single
decision-maker alternative: it cannot accommodate problems with limited memory,
problem-spanning constraints, or multiple value nodes.

2.2 Single-Agent Decision Problems

Since the ’80s, influence diagrams have been widely used to visualize and structure
decision problems (Olmsted, 1984). As a result, several ways of solving problems
representable by influence diagrams have been proposed. Most prominently, Shachter
(1986) showed how nodes of the influence diagram can be deleted iteratively, possibly
after arc reversals, to arrive at an optimum solution. Additionally, Tatman and
Shachter (1990) represent the influence diagram as a corresponding decision tree,
which can be solved with dynamic programming. Figure 1 shows an example of a
single-agent influence diagram.
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a1
1

a2
1

s1

u1

Figure 1: An example of a single-agent influence diagram.

Specically, an influence diagram G = (N, A) is an acyclic, directed graph, com-
prising of nodes N = C ∪ D ∪ V and arcs A = {(i, j) | i, j ∈ N}. There are three
types of nodes: chance nodes C, representing uncertain outcomes for chance events;
decision nodes D, corresponding to decision alternatives for the decision-maker; and
value nodes V , which express the consequences resulting from the outcomes of the
other nodes over some utility function. Furthermore, to fully represent the decision
problem, the specification of an influence diagram includes the states of nodes,
conditional probability distributions for the chance nodes, and utility functions. In
Figure 1, C = {a2

1, s1}, D = {a1
1}, and V = {u1}. The arcs A = {(i, j) | i, j ∈ N}

represent dependencies between these nodes. For j ∈ C, D, V , the arcs show how
earlier realizations of nodes affect the probability distributions and states of chance
events, the decisions to be made, and the utility to be gained, respectively. For
example, the arc between nodes s1 and u1 shows that the realization of node s1

affects the utility gained in node u1.
Despite extensive adoption, these approaches by Shachter (1986) and Tatman

and Shachter (1990) cannot solve all kinds of decision problems. For example,
Limited Memory Influence Diagrams (LIMIDs), in which earlier decisions are not
known when making later ones cannot be solved with the aforementioned methods.
Furthermore, issues arise with constraints that span the entire problem base, such
as conditional value at risk (CVaR). In stochastic programming, Zhou et al. (2013)
and Lauritzen and Nilsson (2001) have proposed some approaches to handle LIMIDs,
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which, however, assume a singular value node. Yuan et al. (2010) propose a branch-
and-bound algorithm for solving LIMIDs, which assumes the influence diagram to
be regular (having a single path traversing all decision nodes).

Decision Programming (Salo et al., 2022) is a general method of solving influence
diagrams, which may include several of the issues mentioned above. Decision Pro-
gramming restructures the influence diagram into a mixed integer linear programming
formulation, which is solvable by commercial optimization problem solvers. Decision
Programming can represent and subsequently solve problems with multiple value
nodes, problem-spanning constraints, limited memory, and non-regularity. It only
assumes the decision alternatives must be discrete and finite in number. Here, we
summarize the Decision Programming framework, following the notation used by
Salo et al. (2022) with some computational enhancements.

We define the information set of a node j as the nodes from which there is an arc
to j, i.e., I(j) = {i ∈ N | (i, j) ∈ A}. In Figure 1, I(s1) = {a1

1, a2
1}. Here, we assume

a singular value node; this framework can be extended to multiple value nodes.
Furthermore, we can index the nodes of the influence diagram as C ∪D = {1, 2, ..., n}
and V = {n + 1}. Each node j has a finite number of discrete states sj ∈ Sj,
which represent the possible realizations of that node. A path s = (s1, s2, ..., sn) is
a sequence of states sj ∈ Sj of all j ∈ C ∪ D. Similarly, we denote a subpath sJ ,
where J ⊆ C ∪ D, as a path of states sj, where j ∈ J . Let us denote a decision
strategy, which maps each information state of a decision node into a decision, by
Z = (Z1, ..., Zn) ∈ Z, where Zj : sI(j) ↦→ sj and Z is the set of all decision strategies.
We call a decision strategy Z compatible with a path s if Zj(sI(j)) = sj ∀j ∈ D;
in other words, if the decision strategy maps each information state of node j to a
corresponding state sj ∈ s in the path. We denote this compatibility by a binary
variable z(sj | sI(j)) ∈ {0, 1}. More specifically, Zj(sI(j)) = sj ⇐⇒ z(sj | sI(j)) = 1.

Furthermore, let U(s) be the utility associated with the consequences implied
by the path s; U is constructed to map to the unit interval. Finally, let us define
C, D, V , which are unions of sets C, D, and V and their information sets:

C = C ∪ {k ∈ C ∪ D | ∃ j ∈ C : k ∈ I(j)}

D = D ∪ {k ∈ C ∪ D | ∃ j ∈ D : k ∈ I(j)}

V = V ∪ {k ∈ C ∪ D | ∃ j ∈ V : k ∈ I(j)}.

We denote sC ∈ SC as a subpath that includes all the nodes from C, but no others.
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Subpath sD is defined analogously. Let x(sD) ∈ {0, 1} = ∏︁
j z(sj | sI(j)), denoting

whether the decision strategy is compatible with the whole path. Furthermore, let
us denote the probability of subpath sC as

p(sC) =
∏︂
i∈C

P(Xi = si | XI(i) = sI(i)),

where Xj is a random variable representing the uncertain state of node j. Thus, we
arrive at the formulation

max
Z∈Z

∑︂
s∈S

x(sD)p(sC)U(sV ) (1)

subject to
∑︂

sj∈Sj

z(sj | sI(j)) = 1 ∀j ∈ D, sI(j) ∈ SI(j) (2)

x(sD) ≤ 1
|D|

∑︂
j∈D

z(sj |sI(j)), ∀sD ∈ SD (3)

z(sj | sI(j)) ∈ {0, 1}, ∀j ∈ D, sj ∈ Sj , sI(j) ∈ SI(j) (4)

x(sD) ∈ {0, 1}, ∀sD ∈ SD. (5)

Here, (1) is the expected utility, constraints (2) and (3) enforce decision strategy
compatibility, and (4) and (5) give the range for variables x and z.
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3 Methodological Development

We begin by analyzing the strengths and weaknesses of ARA’s four strategic thinking
types presented in Section 2.1: complete information game theory, mirroring, non-
strategic thinking, and level-k thinking. Although complete information game theory
is widely used in multi-agent decision theory and capable of quickly calculating
equilibrium solutions, it does not accurately reflect decision-making, mainly because
of its perfect rationality assumption (Kahneman and Tversky, 1979; Kahneman, 2003).
On the other hand, mirroring partly shares the strengths of complete information
game theory, but it, in turn, assumes that the actors share the same problem
structure. Level-k thinking is computationally more demanding, but it has been
shown to produce accurate decision-making predictions (Stahl and Wilson, 1994). It
is also versatile, as it can accommodate different levels of intelligence and strategic
skill. Furthermore, non-strategic thinking directly corresponds to level-0 thinking in
the level-k thinking framework.

Based on the above, most real-life problems can be modeled via the level-k thinking
approach. The advantage of this approach is that if all the actors are modeled as
level-k thinkers, the resulting methodology is applicable to any general multi-agent
decision problem with several actors, non-common knowledge, problem-spanning
constraints, and simultaneous and sequential decisions.

Let us have m actors, which we denote by al, l = 1, ..., m. We shall be supporting
the decision-making of actor a1. Let kl denote the strategic level of thinking of actor
al. To optimize the strategy of actor a1 with respect to the other actors, let

k1 = max
l ̸=1

{kl} + 1; (6)

thus, we assume actor a1 thinks at least one level deeper than the other actors. Figure
2 offers an example of a multi-agent influence diagram. Here, the actors are a1 and
a2. Nodes representing decisions and utilities, which are actor-specific, are colored
in blue for a1 and red for a2. Furthermore, chance nodes, which are common for
both actors, are colored in a blue-red gradient. Both actors have a single decision;
actor a1 decides a1

1, and actor a2 decides a2
1. Furthermore, s1 is a chance node, and

u1 and u2 are utility nodes. If we assume the level of thinking of actor a2 to be
k2 = 3, Equation (6) gives k1 = 4. The levels of thinking kl of the actors can depend
on various factors, including cognitive ability, personality traits, and situational
factors. In reality, the level of thinking rarely exceeds four (Gill and Prowse, 2016).
Uncertainty about the levels of the other actors can be accommodated by weighing
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a1
1

a2
1

s1

u1

u2

Figure 2: An example of a multi-agent influence diagram.

the solutions of different levels to arrive at a recommendation, as our methodology
nevertheless computes these solutions. In addition to Equation 6, the maximum
level of thinking can also be chosen as one that achieves convergence in the actors’
optimal decisions. In this thesis, we use kl = 4 ∀l = 1, ..., m, as we aim to study the
convergence of our examples thoroughly.

Additionally, we need to estimate the parameters ul and pl(·|aj); thus, the utility
functions and probabilities all actors l, j = 1, ..., m assign to their chance nodes,
conditioned on the actions of the other actors (or, more specifically, what actor a1

thinks the other actors assign to themselves and actor 1). These would include, for
example, how actor a1 perceives the probability distribution p(s1|a1

1, a2
1),, i.e., how

the random outcome s1 depends on her decision a1
1 and actor a2’s decision a2

1.

Next, we construct the influence diagrams of the actors’ problems by transforming
the other actors’ decision nodes into chance nodes, removing their utility and barren
nodes (nodes without successors), and finally considering the possible asymmetry
in the problem structure (e.g., private information). These influence diagrams and
their corresponding single-agent decision problems are denoted by Gl, l = 1, ...m.
Additionally, although not shown in the influence diagrams, the problems Gl may
include the probabilistic characterization of the type of actors (Harsanyi, 1967). This
is included to accommodate uncertainty, as actors do not know the other actors’
precise utility functions and probabilities. For example, the previously shown Figure
1 in Section 2.2 shows the influence diagram G1 for the decision problem represented
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by Figure 2. The type of actor a2, as described above, denoted by a2
0, would be a

chance node with arcs from it to actor 2’s other decisions, namely a2
1.

Let index k denote the different levels of thinking to be solved, ranging from 0 to
k1. Then, for each actor al, let us denote their decision strategy by Z lk at level k,
as defined in Section 2.2. Furthermore, let C l

j denote the set of chance nodes of the
influence diagram Gl, which correspond to the decisions of actor aj, j ̸= l.

We begin from the 0th level of thinking. Here, we construct an initial distribution
for the decision strategies of all the actors, Z li. Then, each actor solves their decision
problem assuming the strategy of actor l for each l = 1, ..., m is Z li. As the 0th level
does not depend on the actions of the other actors, this initial distribution can be
constructed in several ways. These include maximum entropy, which assigns an equal
probability to all actions; maximin, which maximizes the minimum utility the actor
can hope to achieve; and minimax regret, which minimizes the maximum difference
in utility between the actor’s choice and the optimal choice. In this thesis, we use
the maximum entropy initial distribution, as it is usually computationally the least
demanding. Furthermore, the iterative nature of the level-k approach decreases the
impact of the initial distribution’s accuracy.

At the end of the kth level, for each actor l, we substitute the solved decision
strategy Z lk into C l

j for each j = 1, ..., m, j ̸= l; thus, the decisions actor al makes
become degenerate chance nodes (only one realization for each information set with
probability one) in the influence diagrams of all the other actors. In the (k + 1)th

level, we solve the updated problems Gl for each actor, optimizing the next decision
strategy, Z l(k+1). If, however, the level k + 1 exceeds the maximum level of thinking
kl of a given actor l, the decision strategy for that actor stays unchanged from that
point on.

Finally, after iterating through the k1 levels, the decision strategy Z1k1 is the
newest strategy for supporting actor a1. This is an equilibrium solution if, for each
l = 1, ..., m, Z lk1 = Z l(k1−1), i.e., the decision strategy stays unchanged for the last
two iterations. The steps of the algorithm are summarized below. The computational
complexity of this algorithm is proportional to t · k · m, where t is the time to solve a
corresponding single decision-maker decision problem, k is the number of levels of
thinking, and m is the number of actors.
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1. Calculate k1 = maxl ̸=1{kl}+1, or decide kl based on convergence considerations.

2. For all actors l = 1, ..., m: construct Gl, ul, pl(·|aj), Z li for all l = 1, ..., m

actors. Initialize k = 0.

3. For all actors l = 1, ..., m: If k < kl, solve Gl and substitute the solved Z lk into
Cj

l for each j = 1, ..., m. Else, Z lk = Z lk−1.

4. Move to next level k = k + 1.

5. Repeat steps three and four until k = k1.

6. Return, for each actor, Z lk1 and whether Z lk1 = Z l(k1−1).
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4 Examples

4.1 Critical Infrastructure Protection

4.1.1 Problem Description

Our first example is on Critical Infrastructure Protection (CIP), described by
González-Ortega et al. (2019). We first solve the original problem using our method-
ology, as laid out in Section 3, and then extend the example by adding resource
constraints and more granular choices.

d1

a1

c1

d2

a2

c2

ud

ua

Figure 3: CIP influence diagram.
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Interpretation State space
Node a1 Infiltration 0, 1 (No, Yes)

d1 Reinforcement 0, 1 (No, Yes)
a2 Attack 0, 1 (No, Yes)
c1 Service shortage 0, 0.5, 1 (in days)
d2 Recovery measures 0, 1 (No, Yes)
c2 Shortage reduction 0, 0.25, 0.5, 0.75, 1 (in days)
ua Apollo’s utility
ud Daphne’s utility

Table 1: Nodes, their interpretations, and their state spaces in the original CIP
problem.

The CIP problem has two actors: Daphne and Apollo. Daphne represents a
governmental entity aiming to protect a critical infrastructure via reinforcement
and recovery measures. Apollo represents a terrorist organization aiming to disrupt
Daphne’s operations by attacking the infrastructure using intelligence gained by
infiltration. The influence diagram for this problem is in Figure 3. Here, Daphne’s
decisions are denoted by di, colored in blue, and Apollo’s by ai, colored in red. The
nodes of the influence diagram, their interpretations, and state spaces are summarized
in Table 1.

First, Apollo and Daphne make decisions a1 and d1 without information about
each other’s actions. Decision a1 is whether or not to infiltrate the infrastructure
to gain intelligence (yes/no), and d1 is the decision to reinforce the infrastructure’s
security (yes/no). Apollo’s second decision a2 is whether or not to attack the
infrastructure (yes/no). The consequences of this attack, measured by days of service
shortage (0/0.5/1), are represented by chance node c1. These consequences depend
on decisions a1, d1, and a2.

After observing the service shortage c1, Daphne decides d2 (yes/no) whether or
not to implement recovery measures to decrease the shortage observed in c1. The
consequences of these recovery measures are represented by chance node c2, whose
states indicate the decrease in shortage (0/0.25/0.5/0.75/1) in days. Finally, utility
nodes ua and ud represent the utilities of Apollo and Daphne, respectively. Because
we are analyzing the problem from Daphne’s perspective, we start with her influence
diagram, as seen in Figure 4.

Apollo’s attack a2 results in the infrastructure shortage, chance node c1, the
probabilities of which are as follows. P (c1 = 0|a2 = 0) = 1; the infrastructure
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Figure 4: Daphne’s influence diagram.

has no service shortage if Apollo does not attack. Furthermore, Table 2 shows
the probability distribution p(c1|a2 = 1), while Figure 5 shows c1’s cumulative
distribution function, based on the values of Table 2. Furthermore, Table 3 shows
the probability distribution for chance node c2. As there is no reduction in shortage
(c2 = 0) when no recovery measures are implemented (d2 = 0), and no reduction
is needed when Apollo does not attack (a2 = 0), the table only shows cases where
a2 = d2 = 1. The corresponding cumulative distribution is in Figure 6.

(Reinforce, Inflitrate) = (d1, a1)
(0,0) (0,1) (1,0) (1,1)

Shortage - c1 0 0.3 0.15 0.40 0.25
1
2 0.45 0.55 0.40 0.50
1 0.25 0.30 0.20 0.25

Table 2: Daphne’s probability distribution p(c1|a2 = 1) (González-Ortega et al.,
2019).
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Figure 5: Plot of service shortage c1’s cumulative distribution function F (c1) for
different decision combinations of reinforcement measures d1 and infiltration a1.

Shortage - c1

0 1
2 1

Shortage reduction - c2 0 1.00 0.20 0.10
1
4 0.00 0.50 0.15
1
2 0.00 0.30 0.30
3
4 0.00 0.00 0.25
1 0.00 0.00 0.20

Table 3: Daphne’s probability distribution p(c2|a2 = 1, d2 = 1) (González-Ortega
et al., 2019).
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Figure 6: Plot of shortage reduction c2’s cumulative distribution function F (c2) for
different realizations of service shortage c1.

Finally, we assess Daphne’s utility function. Security reinforcement costs md,1 =
5M€; relief budget is md,2 = 10M€; and each shortage day costs md,3 = 40M€.
These three costs constitute Daphne’s value function

vd(d1, d2, c1, c2) = −md,1d1 − md,2d2 − md,3(c1 − c2).

We assume that Daphne is constant risk averse in that her utility function is

ud(d1, d2, c1, c2) = 1 − exp [−λd(vd + cd)],

where λd = 0.06 is Daphne’s risk aversion coefficient and cd = 55 is an adjusting
constant to normalize the utility function to the unit interval, i.e., 0 ≤ ud ≤ 1. Here,
all the parameters concerning probabilities and utility functions are the same as in
the original example description by González-Ortega et al. (2019).

We next focus on Apollo’s problem, or more specifically, Daphne’s perspective of
Apollo’s problem. Figure 7 shows Apollo’s influence diagram. Daphne is uncertain
about Apollo’s precise probabilities and utilities; however, she assumes they have the
same problem structure, i.e., Apollo’s influence diagram is that of Figure 7. Daphne
believes Apollo’s probabilities to be similar to hers, with a small uncertainty around
them. González-Ortega et al. (2019) use the Dirichlet distributions to account for this
uncertainty. We, however, define different types (Harsanyi, 1967) that Apollo may
have, incorporating a similar uncertainty structure as that of Dirichlet distributions.
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We aim to see whether our solution converges to a similar one as in (González-Ortega
et al., 2019), even with a different approach to modeling Daphne’s uncertainty.

d1

a1

c1

d2

a2

c2

ua

Figure 7: Apollo’s influence diagram.

We give three possible types to Apollo: a0 = 1, 2, and 3. Type a0 = 1 has the
same probabilities as Daphne, and his utility function is the average utility function
in (González-Ortega et al., 2019), specified explicitly later. Type a0 = 2 has more
expensive decisions and is more risk-prone. Additionally, he has probabilities more
in favor of outcomes most favorable for Apollo. Type a0 = 3 has less expensive
decisions, is less risk-prone, and has probabilities more in favor of favorable outcomes
for Daphne. These types can be considered a chance node a0, with P (a0 = 1) =
P (a0 = 2) = P (a0 = 3) = 1/3, affecting Apollo’s decisions on infiltrating (a1) and
attacking (a2) the infrastructure. The reasons for not using types for Daphne are
two-fold. First, the effect of introducing types for Daphne is not that large, as it can
be argued that it is easier for an outsider to infer the utilities of governments than
those of terrorists. Second, the original example (González-Ortega et al., 2019) does
not incorporate uncertainties for Daphne’s distributions or utilities.

The probabilities of Apollo’s types are calculated according to equations (7)-(10).
Here, αi

1 is the Dirichlet parameter for outcome ci = 1, αi
sum is the sum of the Dirichlet
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parameters for all outcomes of ci, P i
old are the probabilities of Apollo’s type a0 = 1,

and P i
new are the probabilities for Apollo’s types a0 = 2 and a0 = 3. These Dirichlet

parameters are enumerated in (González-Ortega et al., 2019). The probabilities of
all other outcomes are scaled down such that their ratio stays constant. Table 4
shows an example of the probability distribution of service shortage c1 for Apollo’s
type a0 = 2, and all of the probabilities, as calculated with Equations (7)-(10), are
tabulated in Appendix A.1 in Tables A1, A2 and A3.

P 1
new(c1 = 1) = P 1

old(c1 = 1) +

⌜⃓⃓⎷(α1
1/α1

sum)(1 − α1
1/α1

sum)
α1

sum + 1 , when a0 = 2 (7)

P 1
new(c1 = 1) = P 1

old(c1 = 1) −

⌜⃓⃓⎷(α1
1/α1

sum)(1 − α1
1/α1

sum)
α1

sum + 1 , when a0 = 3 (8)

P 2
new(c2 = 1) = P 2

old(c2 = 1) +

⌜⃓⃓⎷(α2
1/α2

sum)(1 − α2
1/α2

sum)
α2

sum + 1 , when a0 = 2 (9)

P 2
new(c2 = 1) = P 2

old(c2 = 1) −

⌜⃓⃓⎷(α2
1/α2

sum)(1 − α2
1/α2

sum)
α2

sum + 1 , when a0 = 3 (10)

(Reinforce, Inflitrate) = (d1, a1)
(0,0) (0,1) (1,0) (1,1)

Shortage - c1 0 0.29 0.15 0.38 0.24
1
2 0.43 0.53 0.38 0.48
1 0.28 0.32 0.23 0.27

Table 4: Type 2 Apollo’s probability distribution p(c1|a2 = 1).

Finally, we assess Apollo’s utility function. Daphne estimates the infiltration
to cost type 1 Apollo ma,1 = 1M€, attacking to cost ma,2 = 5M€, and each day
of service shortage to profit him ma,3 = 35M€. These parameters give the value
function

va = −ma,1a1 − ma,2a2 + ma,3(c1 − c2).

Assuming Apollo to be constant risk-prone, we get the corresponding utility function

exp [λa(va + ca)],

where ca = − max va adjusts the utility function to the unit interval. The parameters
for the utility functions for Apollo’s three types are in Table 5. Correspondingly,
Apollo’s utility functions are in Figure 8.
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Type (a0)
1 2 3

Parameters ma,1 1 2 0.5
ma,2 5 7 4
ma,3 35 35 35
λa 0.06 0.07 0.05

Table 5: Parameters for the utility functions of Apollo’s types.

Figure 8: Apollo’s utility functions with a1 = a2 = 1.

4.1.2 Solution

Based on the above problem description, we solve the CIP problem using the solution
methodology presented in Section 3. Thus, we start from the 0th level of thinking,
using the maximum entropy initial distribution: p(ki) = 1/n(k), where ki is a
particular state of node k, and n(k) is the number of states of node k. In other
words, we assign an equal probability to all possible states of all nodes to construct
an initial distribution for both Daphne’s and Apollo’s decisions. We solve until the
4th level of thinking to arrive at an overall decision recommendation for Daphne, as
this is a common upper bound for the level of thinking in real-life examples (Gill and
Prowse, 2016), and probably a suitably high level for our methodology to achieve
convergence. We used Julia as our programming platform and HiGHS as our solver
(Huangfu and Hall, 2018).

Apollo’s optimal strategy at level 4 for decisions to infiltrate (a1) and attack (a2)
are in Tables 6 and 7. Thus, Apollo’s optimal strategy is to infiltrate (a1 = 1) the
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infrastructure with types 1 and 3 and not infiltrate (a1 = 0) with type 2, regardless
of whether Daphne reinforces or not. Then, decision a2 = 1 is always optimal; Apollo
always attacks the infrastructure. For the sake of completeness, the tables also show
strategies that are not included in the optimal solution. These have been reasoned
by using the strategies utilized by Apollo in lower levels of thinking. However, the
cells relating to the equilibrium strategy are colored in blue.

Type = a0
1 2 3

Reinforce = d1 0 1 0 1
1 1 0 1

Table 6: Apollo’s optimal strategy for the infiltration decision a1.

Type = a0
1 2 3

(Reinforce, Infiltrate) = (d1, a1) (0,0) 0 1 0
(0,1) 1 0 1
(1,0) 0 1 0
(1,1) 1 0 1

Table 7: Apollo’s optimal strategy for the decision to attack a2.

Daphne’s optimal strategy is not to reinforce the infrastructure (d1 = 0); as this
decision is first in the influence diagram, its strategy is binary. Furthermore, the
strategy for the recovery measures d2 is in Table 8; Daphne mitigates the shortage
(d1 = 1) if and only if Apollo attacks and achieves full shortage to the infrastructure.

(Reinforce, Attack) = (d1, a2)
(0,0) (0,1)

Shortage = c1 0 0 0
1/2 0 0
1 0 1

Table 8: Daphne’s optimal strategy for the recovery measures d2.

Tables 9 and 10 show how Daphne’s and Apollo’s expected decisions and utility
vary as functions of the level of thinking k. Comparing our solution to that of
González-Ortega et al. (2019), our optimal strategy for the reinforcement decision
d1 is different (d1 = 0 compared to d1 = 1), but the same for the recovery measures
d2. Furthermore, González-Ortega et al. (2019) achieved an optimal utility of 0.900
for Daphne, while ours is 0.860. Both of these differences can be explained by our
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differing approach to modeling Daphne’s uncertainty about Apollo’s probabilities.
First, the expected utilities for Daphne with the infiltration decisions d1 = 1 and
d1 = 0 differ only by 0.4%, which explains how a slight change in parametrization
can change this decision. Second, our approach underestimates the magnitude of
Daphne’s uncertainty about Apollo; we have P (a2 = 1) = 1, while González-Ortega
et al. (2019) has P (a2 = 1) ∈ [0.41, 0.66] depending on decisions a1 and d1. This
results in Apollo always attacking in our approach, decreasing Daphne’s expected
utility. We see that convergence is achieved on the first level of thinking, indicating
an equilibrium solution. We perform a rudimentary sensitivity analysis to analyze
further how the optimal decision strategies vary as we change initial distributions
and utility functions.

E[P (d1 = 0)] E[P (d2 = 0)] E(ud)
Level k 0 1.000 0.863 0.913

1 1.000 0.717 0.860
2 1.000 0.717 0.860
3 1.000 0.717 0.860
4 1.000 0.717 0.860

Table 9: Expected values for Daphne’s decisions and utility for different levels of
thinking.

E[P (a1 = 0)] E[P (a2 = 0)] E(ua)
Level k 0 0.333 0.000 0.175

1 1.000 0.000 0.160
2 1.000 0.000 0.160
3 1.000 0.000 0.160
4 1.000 0.000 0.160

Table 10: Expected values for Apollo’s decisions and utility for different levels of
thinking.

We first solved the problem with two different initial distributions of minimum
entropy: (a1, a2) = (0, 0) and (1, 1) for Daphne’s problem, and correspondingly
(d1, d2) = (0, 0) and (1, 1) for Apollo’s problem. The optimum solutions stayed
unchanged for both initial distributions, suggesting the equilibrium described above
might be the only one. Furthermore, we tested how much parameters md,3 and ma,3

had to be changed to alter the optimum solutions of Daphne and Apollo, respectively.
We varied these parameters only, as the parameters of the problems are meaningful
only in relation to each other; the absolute cost of shortage does not affect the optimal
strategy, only its cost relative to the cost of reinforcing and mitigating. Starting
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with Daphne, the stable region for parameter md,3 was md,3 ∈ [19.3, 42.4]; thus, this
parameter, keeping all other things equal, needed to be lowered below 19.3 or raised
above 42.4 to change the optimum solution. The corresponding stable region for
Apollo was ma,3 ∈ [18.2, 47.3]. Comparing these to the original values of md,3 = 40
and ma,3 = 35, the stable region as percentage changes of the original values are

∆md,3 ∈ [−51.2%, +6.0%]

∆ma,3 ∈ [−48.0%, +35.1%].

Thus, the problem’s parameters are relatively stable for Apollo but not for Daphne,
in the direction of valuing lower shortages more than saving resources on mitigation.
However, a 6 percent increase only makes Daphne mitigate a half-day shortage
instead of not mitigating it, so the difference is not significant. All in all, the problem
parameters and solution equilibrium seem to be stable.

4.1.3 Extended Problem Description

Next, we extend the original Critical Infrastructure Protection problem statement
in two ways. First, we further granularize Daphne’s and Apollo’s possible choices,
allowing for a wider variety of strategies. Specifically, we add a third alternative to
each of the four decisions of infiltration, reinforcement, attack, and recovery measures
(a1, d1, a2, and d2), changing the state space of each of these nodes to {0, 1/2, 1} =
{No, Some, Yes}. The costs of these decisions are in Table 11. For this extended
version, we denote the functions corresponding to the previous section’s parameters
mi,j as Mi,j ; for example, from Table 11, Md,2(1/2) = 7. Furthermore, the nodes and
state spaces of the extended CIP problem are summarized in Table 12.

Decision alternatives
0 1/2 1

Decision d1 0 3 5
d2 0 7 10

Type 1 a1 0 0.8 1
Type 2 a1 0 1.6 2
Type 3 a1 0 0.4 0.5
Type 1 a2 0 2 5
Type 2 a2 0 3 7
Type 3 a2 0 1.5 4

Table 11: Costs (M€) of each decision.
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Interpretation State space
Node a1 Infiltration 0, 1/2, 1 (No, Some, Yes)

d1 Reinforcement 0, 1/2, 1 (No, Some, Yes)
a2 Attack 0, 1/2, 1 (No, Some, Yes)
c1 Service shortage 0, 0.5, 1 (in days)
d2 Recovery measures 0, 1/2, 1 (No, Some, Yes)
c2 Shortage reduction 0, 0.25, 0.5, 0.75, 1 (in days)
ua Apollo’s utility
ud Daphne’s utility

Table 12: Nodes, their interpretations, and their state spaces in the extended CIP
problem.

These costs have been chosen on the assumption that the cost growth of invest-
ments is usually concave (marginal cost of investment decreases with each added
investment), as each decision investment generally consists of both a fixed cost and a
variable cost. The convex growth (marginal cost of investment increases with each
added investment) of the decision to attack a2 is based on the assumption of Apollo’s
limited resources and the need for further investments on his part to accommodate a
full-scale attack.

Second, we add overarching budget constraints to both Daphne and Apollo. These
constraints are ma,max = 5, 7, 4M€ for types a0 = 1, a0 = 2 and a0 = 3, respectively.
Similarly, md,max = 13M€. In other words, ma = Ma,1(a1) + Ma,2(a2) ≤ ma,max for
Apollo, and md = Md,1(d1) + Md,2(d2) ≤ md,max. These costs have been chosen to
provide a meaningful constraint for the possible decisions of both actors. After these
extensions, the new parametrizations and utility functions of Apollo and Daphne are
set out below.

Daphne has similar probabilities as in the original version of the CIP problem,
accommodating the changes brought by adding more states to decisions to reinforce
and mitigate d1 and d2. The probabilities of states 1/2 are calculated as the averages
of corresponding probabilities of states 0 and 1. Thus, for example,

P (c1 = 1|d1 = 1/2, a1 = 1, a2 = 1)

= 1
2 (P (c1 = 1|d1 = 0, a1 = 1, a2 = 1) + P (c1 = 1|d1 = 1, a1 = 1, a2 = 1)) .

This linearity assumption is justified because the inherent non-linearity in this
problem is transferred into the decision costs. Thus, the states 1/2 are defined such
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that the probabilities can be calculated using averages, showing the non-linearity
only in the costs, which are laid out in Table 11. Table 13 is an example of the
probability distribution p(c1|a1 = 1, a2 = 1); the rest of the probabilities can be
found in Appendix A.1, in Tables A1, A2 and A3. Figure 9 shows the corresponding
cumulative distribution function of node c1.

Reinforce = d1
0 1/2 1

Shortage - c1 0 0.15 0.20 0.25
1
2 0.55 0.53 0.50
1 0.3 0.28 0.25

Table 13: Daphne’s probability distribution p(c1|a1 = 1, a2 = 1).

Figure 9: Plot of service shortage c1’s cumulative distribution function F (c1).

Daphne’s value function is

vd(d1, d2, c1, c2) = −Md,1(d1) − Md,2(d2) − md,3(c1 − c2),

where Md,1(d1) and Md,2(d2) are given by Table 11, and md,3 is defined similarly as
in Section 4.1.1. This value function gives Daphne the utility function

ud(d1, d2, c1, c2) = 1 − exp [−λd(vd + cd)],

where λd = 0.06 is the risk aversion coefficient, and cd is a normalizing constant to
restrict ud to the unit interval.
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We continue using similar types for Apollo as in Section 4.1.1. The tabulated
probabilities for all different states of the service shortage c1 and decrease in shortage
c2 for Apollo’s three types are in Appendix A.1, in Tables A1, A2 and A3. Apollo’s
value and utility functions are

va(a1, a2, c1, c2) = −Ma,1(a1) − Ma,2(a2) + ma,3(c1 − c2)

ua(a1, a2, c1, c2) = exp [λa(va + ca)],

where ca are normalizing constants.

4.1.4 Extended Solution

We solve the extended problem statement similarly as in Section 4.1.2. We also use the
maximum entropy principle in constructing the initial probability distribution. Tables
14, 15, and 16, show Daphne’s and Apollo’s optimal decisions. In the equilibrium, the
optimal reinforcement decision d1 for Daphne is no reinforcement (d1 = 0). Apollo
then infiltrates fully for Types 1 and 3 (a1 = 1) and does not infiltrate for Type
2 (a1 = 0). Then, Apollo’s optimal strategy is always to perform a half-attack
(a2 = 1/2), and Daphne never mitigates the shortage (d2 = 0). Furthermore, Tables
17 and 18 show Daphne’s and Apollo’s expected decisions and utilities for the levels
of thinking k = 0, ..., 4.

Shortage = c1
0 1/2 1

(Reinforce, Attack) = (d1, a2) (0,0) 0 - -
(0,1/2) 0 0 0
(0,1) 0 0 1

Table 14: Daphne’s optimal strategy for decision to mitigate d2.

Type = a0
1 2 3

Reinforce = d1 0 1 0 1
1/2 1/2 0 1/2
1 1/2 0 1/2

Table 15: Apollo’s optimal strategy for decision to infiltrate a1.

Several observations can be made from these tables. First, Apollo’s most likely
decisions are a1 = 1 and a2 = 1/2, differing from their optimums in Section 4.1.2.
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Type = a0
1 2 3

(Reinforce, Infiltrate) = (d1, a1) (0,0) 0 1/2 0
(0,1/2) 1 1 1
(0,1) 1/2 1/2 1/2

(1/2,0) 0 1 1
(1/2,1/2) 1 1 1
(1/2,1) - - -
(1,0) 1/2 1 1/2

(1,1/2) 1 1 1
(1,1) - - -

Table 16: Apollo’s optimal strategy for decision to attack a2.

The difference in the decision to attack a2 can be partly explained by the fact that
the cost of a partial attack is relatively low compared to a full attack. The infiltration
decision a1 probably differs as a result, as infiltration lends better support for a
partly made attack. Second, Daphne’s optimal decisions are neither to reinforce nor
to mitigate (d1 = d2 = 0); the decision not to mitigate results from the decreased
expected utility of mitigating a partly made attack. Finally, the decisions converge
on the third iteration, which makes this an equilibrium solution.

E[P (d1)] E[P (d2)] E[ud]
0 1/2 1 0 1/2 1 -

Level k 0 1.000 0.000 0.000 0.908 0.000 0.092 0.906
1 1.000 0.000 0.000 0.733 0.000 0.267 0.866
2 1.000 0.000 0.000 1.000 0.000 0.000 0.889
3 1.000 0.000 0.000 1.000 0.000 0.000 0.889
4 1.000 0.000 0.000 1.000 0.000 0.000 0.889

Table 17: Expected values for Daphne’s decisions and utility for different levels of
thinking.

E[P (a1)] E[P (a2)] E[ua]
0 1/2 1 0 1/2 0 -

Level k 0 0.333 0.667 0.000 0.000 0.000 1.000 0.170
1 0.333 0.000 0.667 0.000 1.000 0.000 0.185
2 0.333 0.000 0.667 0.000 1.000 0.000 0.185
3 0.333 0.000 0.667 0.000 1.000 0.000 0.185
4 0.333 0.000 0.667 0.000 1.000 0.000 0.185

Table 18: Expected values for Apollo’s decisions and utility for different levels of
thinking.
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A similar sensitivity analysis as in the original problem, changing the initial
distributions to (a1, a2) = (d1, d2) = (1, 0, 0) or (0, 0, 1) did not change the optimum
solutions for either actor. Likewise, removing the budget constraints did not change
the optimum solutions, as these constrained neither optimum. The stable regions
for variables md,3 and ma,3 are md,3 ∈ [−, 161.0] and ma,3 ∈ [18.5, 72.9], presented
as percentage changes below. Here, md,3 has no lower bound, as Daphne already
decides to neither reinforce nor mitigate. As was in the original problem statement,
the solutions of the extended problem statement are relatively stable.

∆md,3 ∈ [−, +302.5%]

∆ma,3 ∈ [−47.1%, +108.3%].
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4.2 Border Security

4.2.1 Problem Description

Our second example is in border security. We study an adversarial situation between
two countries. Although there is no armed conflict between these parties, one country,
which we call the "attacking" one, may try to influence and disrupt the operations of
the other country. One possible way to achieve this is to systematically send illegal
immigrants across the border of the "defending" country. The attacking country aims
to achieve disruption in two ways. First, sending immigrants strains the defending
country’s border security resources. Second, if they successfully cross the border,
these immigrants can be used for various criminal activities within the defending
country, such as an illicit workforce contributing to a gray economy, causing long-term
economic drawbacks.

The motivation for this example is, in part, the strained security situation in
Europe. There have been reports of Belarus illegally sending immigrants to Poland
(Foreign Policy, 2023), and the Finnish government is debating the construction of
a border fence to counteract a similar possibility from the Russian border (Finnish
Border Guard, 2023). We aim to construct our example to be general enough to
accommodate possibilities for analyzing such situations.

The mathematical representation of the problem has two actors: Daphne, repre-
senting the border control of a defending country, and Apollo, an operator inside
an attacking country. Apollo aims to send immigrants across the border unnoticed,
while Daphne aims to create an efficient border security portfolio to counteract this.
The influence diagram for this bi-agent decision problem is in Figure 10. We support
the decision-making of Daphne. In this example, Daphne’s decisions are denoted by
di, while Apollo’s by ai. A summary of the nodes and state spaces of the problem is
in Table 19.

First, Daphne decides on the resources to be used on the border security portfolio
(d1): what types of equipment to use and how much to invest in them. Furthermore,
she decides (d2) on the strategy for controlling the border, i.e., how to place passive
equipment and move active equipment and personnel. Moreover, Apollo decides
(a1) how much resources to spend on the reconnaissance of Daphne’s border. More
specifically, Apollo aims to investigate the types and locations of passive border
control equipment and the movement of active equipment and border patrol personnel.
Daphne’s decisions for resources of portfolio d1 and placement and strategies of
equipment d2 are made without knowledge of Apollo’s decision to reconnaissance a1,
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Figure 10: Border Security Influence Diagram.

and vice versa. Decisions a1 and d2 result in a random outcome c1, representing the
information Apollo can gather.

Based on this information, Apollo decides (a2) on how many immigrants to
send across the border and their border crossing strategy. The leftover resources
from reconnaissance a1 also constrain decision a2. The border security portfolio d1,
Daphne’s strategy d2, and Apollo’s strategy a2 result in c2, the outcome of the attack.

Finally, Daphne’s utility ud is based on the resources used for the border security
portfolio and the outcome of Apollo’s border crossing. Apollo’s utility ua depends
on the resources used for reconnaissance and attacking and the attack’s outcome.

As we aim to solve this example through several levels of the level-k thinking
framework, we use the concept of types for the uncertainty both actors have about
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Node Interpretation State space

d1 d1,f Resources used on fence 0, 1/2, 1
(Low, Medium, High)

d1,c Resources used on cameras 0, 1/2, 1
(Low, Medium, High)

d1,u Resources used on drones 0, 1/2, 1
(Low, Medium, High)

d1,p Resources used on border patrol 0, 1/2, 1
(Low, Medium, High)

d2 d2,f Placement of fence
0, 1/3, 2/3 (Fraction of the
distance from the border to
the main road)

d2,c Placement of cameras
0, 1/3, 2/3 (Fraction of the
distance from the border to
the main road)

d2,u Strategies of drones 0, 1 (0: Active patrolling, 1:
Passive patrolling)

d2,p Strategies of border patrols 0, 1 (0: Active patrolling, 1:
Passive patrolling)

a1 Resources used on reconnaissance 0, 1/3, 2/3, 1 (Low, Medium-
Low, Medium-High, High)

c1 Outcome of reconnaissance 0, 1, 2, 3, 4 (Levels of knowl-
edge gained)

a2 a2,n
Number of immigrant groups sent
across the border

1, 2, 4, 8 (Low, Medium-
Low, Medium-High, High)

a2,s Strategy of the immigrant groups 0, 1, 2, 3, 4

c2 c2,o
Number of immigrant groups ob-
served [0, 8]

c2,i
Number of immigrant groups in-
tercepted [0, 8]

ua Apollo’s utility
ud Daphne’s utility

Table 19: Nodes, their interpretations, and their state spaces for the border security
problem.

the other’s probability and utility functions (Harsanyi, 1967). We assume that both
actors have three possible types; d0 =1, 2, or 3 and a0 =1, 2, or 3. We assume
the types to have the same problem structures and possible decision strategies but
different costs and probability and utility function parameters. Appendix A.2 shows
how these costs and parameters vary as a function of types d0 and a0. In the rest of
this section, we present the example without referring to these types.

We now describe more precisely the geographical problem environment and the
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state spaces of the nodes. The geographical environment of the problem is an area
near the border, limited on one side by the border and on the other by a main road,
shown as a sketch in Figure 11. Here, x is the width of the area examined, and y is
the average distance from the border to the main road. Immigrants are sent from
the border to cross the border area into the main road; if they arrive on the main
road, they are considered to have successfully escaped, as Apollo is assumed to have
prepared a transport for the escaped immigrants to safety.

Figure 11: Border Environment. Adopted from (Saranpää et al., 2023).

As we consider several possible border environments, which are neither similar
nor homogenous, we examine several scenarios. First, we distinguish three border
environments: natural forest, near a border crossing point, and inhabited areas.
Furthermore, we differentiate between winter and summer, as the circumstances
in Europe can differ significantly due to weather. The combinations of border
environments and seasons then define six different scenarios. First, we solve these
scenarios individually to gain insight into the possible optimal portfolios for each
scenario. Second, we analyze the optimal portfolios for each scenario qualitatively to
develop rules of thumb for constructing border security portfolios in general cases.

Daphne’s influence diagram is in Figure 12, and Apollo’s is in Figure 13. The
first decision of Daphne denoted d1 represents the resources used on the border
security portfolio. Daphne can use three types of equipment: a fence with integrated
surveillance systems, cameras, and drones. These pieces of equipment are chosen based
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Figure 12: Daphne’s Influence Diagram.

on being realistic options to be used in border security but offering reasonable variety
to produce meaningful results. In addition, Daphne decides how much personnel
resources are devoted to border security. Decision d1 is, in theory, continuous: Daphne
decides how much resources (i.e., money) to devote to each of the four possibilities as
mentioned above: d1 = (d1,f d1,c d1,u d1,p) for the resources used on the fence d1,f ,
cameras d1,c, drones (UAV’s) d1,u, and personnel d1,p. We, however, limit the number
of possibilities: d1,i ∈ {Low, Medium, High} = {0, 1/2, 1}, for i ∈ {f, c, u, p}. These
choices are further limited by a total maximum resource constraint of bd,max, i.e.,
bd,1 · (d1,f + d1,c + d1,u + d1,p) ≤ bd,max, where bd,1 is a constant representing the true
cost of the normalized decision alternatives in relation to the budget constraint. In
the larger context, these investments are best thought of as additional investments to
an existing border security portfolio - for example, it is unrealistic to think Daphne
has no border security without the added investments in this problem.

Second, Daphne makes decision d2 = (d2,f d2,c d2,u d2,p) on how to place fences
and cameras and what strategies to use for drones and personnel. As the number of
possible placements is combinatorially huge, we employ several simplifying heuristics
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Figure 13: Apollo’s Influence Diagram.

to increase the problem’s solubility. First, all fence is placed, without gaps, along
the border starting from the left side of the border environment (without loss of
generality). This heuristic is chosen to optimize the use of the fence in hindering the
movement of immigrants. Thus, we only present three possible choices for the location
of the fence away from the border: d2,f = 0; the fence is next to the border; d2,f = 1/3,
the fence is a third of the distance from the border to the road; and d2,f = 2/3, the
fence is two-thirds of the distance from the border to the road. Furthermore, as our
problem is simplified in that it does not consider the strategies Apollo’s immigrants
might employ to evade cameras, and we are looking for equilibrium solutions, we
place all cameras in equidistant intervals in a row along the border. We present the
same options for the placement of the cameras away from the border as for the fence:
d2,c ∈ {0, 1/3, 2/3}. We offer two different strategies for deploying drones: d2,u = 0
is when drones follow the immigrant groups first noticed by cameras, providing the
border security personnel with updated information of their location, and d2,u = 1,
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when drones patrol the border area, aiming to detect as many border crossings as
possible. Finally, the border security personnel can catch the immigrant groups, one
by one, while traveling towards the road (d2,p = 0), or patrol the main road in hopes
of catching immigrants arriving on the road (d2,p = 1).

Apollos choice a1 ∈ {Low, Medium-Low, Medium-High, High} = {0, 1/3, 2/3, 1}
concerns gathering intelligence from Daphne. This choice represents the amount
of resources used for reconnaissance. Next, node c1 ∈ {0, 1, 2, 3, 4} represents the
outcome of Apollo’s reconnaissance. The outcome is divided into five levels, each
representing the intelligence that Apollo can gather. Each level k + 1 includes the
information in level k and the additional information gained in that level. The first
level, c1 = 0, means Apollo only knows the total resources used for border security;
as this is public data, it is easily available. c1 = 1 adds the information on the
location of fences, c1 = 2 the placement of cameras, c1 = 3 strategies of border
security personnel, and c1 = 4 the strategies of drones.

The decreasing marginal utility of border security equipment is represented by
the logistic function f(r, x), defined in Equation (11), where r = (r1, ..., rn) and
x = (x1, ..., xn). See Figure 14 for the function graph of Equation (11) for the real
numbers x = x1 = t ∈ [−5, 5] and r = r1 = 1. We use the logistic function to represent
the probability of gaining a piece of intelligence, observing an immigrant group, or
catching one, for chance nodes c1, c2,o and c2,i, respectively. Here, x represents the
states of decision and chance nodes that affect the probability distributions, while
r represents the relative effect of each state. For example, increasing the resources
used for reconnaissance a1 increases the probability of gathering more intelligence c1.
However, the effect of added resources is smaller in relation to previous investments,
as is often the case in real-life investments (decreasing marginal utility).

f(r, x) = 1
1 + e−

∑︁
i

rixi
. (11)

The probability distribution of chance node c1 is represented by the probability
function

p(c1|a1, d2) =
(︄

4
c1

)︄
qc1

1 (1 − q1)(4−c1),

where q1 = f(r1, x1),

r1 = (r1,a,1 r1,d,2,c r1,d,2,u r1,d,2,p),

and x1 = (a1 1 − d2,c d2,u d2,p).
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Figure 14: Logistic function with r = r1 = 1 and x = x1 = t

The function p(c1|a1, d2) is a binomial function portraying the quality and amount
of intelligence Apollo can gather. The binomial function is natural in this context;
for example, decision a1 (resources used on intelligence) can be thought of as how
many scouts Apollo can send to the border. Moreover, each scout sent has a certain
probability of gathering a piece of intelligence, e.g., the location of one camera.
Aggregating the individual probabilities of gathering intelligence leads to a binomial
function. Here, 4 is the maximum value of chance node c1. Furthermore, r1,a,1

represents how much the resources used for reconnaissance a1 affect the gathered
intelligence, i.e., how much r · x is increased for each value of a1. Parameters r1,d,2,u,
r1,d,2,p, and r1,d,2,c are defined similarly - Apollo can gather intelligence more easily if
the value of d2,u and d2,p is one, i.e., border patrols and drones have a set patrolling
route, and when cameras are closer to the border. Figure 15 shows an example graph
of the probability function with d2 = (0, 0, 0, 0) and varying a1. This graph shows
how increasing the resources used on reconnaissance a1 increases the probability of
gathering better intelligence.

Next, Apollo decides a2 on sending immigrants across the border. Here, a2 =
(a2,n, a2,s), where a2,n ∈ {Low, Medium-Low, Medium-High, High} = {1, 2, 4, 8}
is the total number of immigrant groups Apollo sends across the border, and
a2,s ∈ {0, 1, 2, 3, 4} is their border crossing strategy. In our example, a2,s = c1;
the information of the outcome of reconnaissance c1 is passed unchanged onto node
a2,s. This function approximates the real-life interaction, where Apollo would change
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Figure 15: Plot of p(c1|a1, d2) with d2 = (0, 0, 0, 0) with different a1

the immigrants’ border crossing routes based on information gathered from recon-
naissance. The costs for each a1 and a2,n above are modeled by the constants ba,1

and ba,2, respectively. Apollo has a total maximum resource constraint of ba,max, i.e.,
ba,1 · a1 + ba,2 · a2,n ≤ ba,max. Node c2 = (c2,o, c2,i) represents the attack’s outcome.
Outcomes of c2,o and c2,i represent the number of immigrant groups the border
security has observed and intercepted, respectively. The probability distribution of
the result of attack c2, assuming a2,n ≥ c2,o ≥ c2,i (maximum number observed is the
amount sent, and maximum number intercepted is the number observed), is

p(c2,o|d1, d2, a2) =
(︄

a2,n

c2,o

)︄
q

c2,o

2,o (1 − q2,o)(a2,n−c2,o),

where q2,o = f(r2,o, x2,o),

r2,o = (ro,a,2,s ro,a,2 ro,d,1,f ro,d,1,c ro,d,1,u ro,d,1,p),

and x2,o = (a2,s a2,n d1,f d1,c d1,u · d2,u d1,p · d2,p)

p(c2,i|d1, d2, a2, c2,o) =
(︄

c2,o

c2,i

)︄
q

c2,i

2,i (1 − q2,i)(c2,o−c2,i),

where q2,i = f(r2,i, x2,i),

r2,i = (ri,a,2,n ri,d,1,f ri,d,2,f ri,d,2,c ri,d,1,u ri,d,1,p),

and x2,i = (a2,n d1,f 1 − d2,f 1 − d2,c d1,u · (1 − d2,u) d1,p · (1 − d2,p)).

Table 20 shows Daphne’s parameters for the probability functions p(c1|a1, d2),
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p(c2,o|d1, d2, a2), and p(c2,i|d1, d2, a2, c2,o) for the Summer, Forest scenario. The rest
of the probabilities are in Appendix A.2 in Table A6.

Probability distribution
p(c1|a1, d2) p(c2,o|d1, d2, a2) p(c2,i|d1, d2, a2, c2,o)

Summer, r1,a,1 +3.0 ro,a,2,s −0.8 ri,a,2,n −1.0 · 10−3

Forest r1,d,2,c +1.0 · 10−2 ro,a,2,n −5.0 · 10−6 ri,d,1,f +4.0 · 10−1

r1,d,2,u +1.0 · 10−1 ro,d,1,f +1.2 · 10−2 ri,d,2,f +1.0 · 10−4

r1,d,2,p +1.0 · 10−1 ro,d,1,c +5 ri,d,2,c +1.0 · 10−2

ro,d,1,u +4.8 · 10−2 ri,d,1,u +2.4
ro,d,1,p +4.8 · 10−2 ri,d,1,p +2.4

Table 20: Daphne’s parameters for probability distributions p(c1|a1, d2),
p(c2,o|d1, d2, a2), and p(c2,i|d1, d2, a2, c2,o) for the Summer, Forest scenario.

As the purpose of this example is to explore the solution process, the input
parameters are not analyzed in depth. More specifically, we aim to illustrate how a
border security problem can be solved using our methodology rather than proposing
absolute results for varying border security situations. Rather, the parameters here
are examples and should vary for each different situation to which this example is
adapted. There is, however, previous simulation work done on the border situation
between Finland and Russia (Saranpää et al., 2023). The parameters used here in
the scenario Summer, Forest are mainly based on the results of this work. The rest
of the parameters are determined by a combination of an estimated effectiveness
measure for each type of equipment or strategy and their cost. For example, fences
with integrated surveillance systems and cameras are equally effective in observing
immigrants. However, cameras are significantly cheaper, explaining the difference
between parameters ro,d,1,f and ro,d,1,c. Figures 16 and 17 show the probability
functions of p(c2,o|d1, d2, a2) and p(c2,i|d1, d2, a2, c2,o) for certain states of the decision
and chance variables.

Finally, Daphne’s utility depends on the states of nodes d1 and c2. Daphne’s
value function is

vd = −Bd − kd,1 · (a2,n − c2,o) − kd,2 · (a2,n − c2,i),

where Bd = bd,1 · (d1,f + d1,c + d1,u + d1,p) represents the total resources used, and kd,1

and kd,2 represent the lost utility of not observing or catching a single immigrant
group crossing the border, respectively. As Daphne is constant risk averse, her utility
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Figure 16: Plot of p(c2,o|d1, d2, a2) with d1 = (0, 1, 0, 0), d2 = (0, 0, 0, 0), a2,n = 8, and
varying a2,s.

Figure 17: Plot of p(c2,i|d1, d2, a2, c2,o) with d1 = (0, 0, 1, 1), d2 = (1, 1, 0, 0), a2,n =
c2,o = 8, and varying d1,p.

function is of the form

ud = 1 − exp [−λd(vd + cd,1)/cd,2],

where λd is Daphne’s risk aversion coefficient, and cd,1 and cd,2 are normalizing
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constants. Our approach is somewhat different than that of Section 4.1.1. Here,
constant cd,1 = max |vd| restricts the value function to be positive, while cd,2 =
max(vd + cd,1) restricts it to the unit interval. Then, we can determine Daphne’s
normalized risk aversion coefficient λd. Studies show varying results for the risk
aversion coefficients for real-life decision-makers; Friend and Blume (1975) propose
the risk aversion coefficient to be larger than one, and possibly larger than two, while
Hansen and Singleton (1983) suggests it is at least two and maybe over three. Based on
these two varying results, we use three different risk aversion coefficients, λd ∈ {1, 2, 3},
which are enumerated along with the rest of the type-specific parameters in Appendix
A.2 in Table A4 for Daphne and A5 for Apollo.

Apollo’s value function, on the other hand, is

va = −Ba + ka,1 · (a2,n − c2,o) + ka,2 · (a2,n − c2,i),

where Ba = ba,1 · a1 + ba,2 · a2,n are the total resources used by Apollo, and ka,1 and
ka,2 portray the gained utility of successfully sending an immigrant unobserved or
uncaught across the border, respectively. This value function results in the utility
function

ua = exp [λa(va + ca,1)/ca,2],

where ca,1 and ca,2 are normalizing constants defined similarly as in Daphne’s utility
function.

4.2.2 Solution

To solve the border security problem, we use the maximum entropy principle for
constructing the initial distribution. We assume the maximum level of thinking for
both Daphne and Apollo to be k = 4. Furthermore, as this example was large, we
used the approximation algorithm for Decision Programming to prune zero probability
paths out of the problem (Aunula, 2021). Table 21 shows Daphne’s expected value
of optimal decisions (d1 and d2) for the six different scenarios defined in 4.2.1. The
full results for each type are in A.2, in Tables A7 and A8 for Daphne and Apollo,
respectively.

The optimum strategy for Apollo is relatively simple; depending on the scenario
and type, it is optimal to decide either a1 = 2/3 or a1 = 1, i.e., letting the resources
used on reconnaissance be either Medium-High or High. After this, regardless of the
outcome of gained intelligence c1, it is optimal to send as many immigrant groups
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Scenario E[d1] E[d2]
d1,f d1,c d1,u d1,p d2,f d2,c d2,u d2,p

Summer,
Forest 0.00 1.00 0.00 0.67 0.00 0.00 0.00 0.00

Winter,
Forest 0.00 1.00 0.00 0.83 0.00 0.00 0.00 0.00

Summer,
Near crossing 0.00 1.00 0.00 0.50 0.00 0.00 0.00 0.00

Winter,
Near crossing 0.00 1.00 0.00 0.50 0.00 0.00 0.00 0.00

Summer,
Inhabited area 0.00 0.50 0.00 0.67 0.00 0.00 0.00 0.00

Winter,
Inhabited area 0.00 1.00 0.17 0.67 0.00 0.00 0.00 0.00

Table 21: Daphne’s expected value of optimal decisions for the six scenarios.

(a2,n) as possible while still satisfying the budget constraint. Furthermore, several
observations can be made from Table 21 and Daphne’s strategies to counteract
Apollo’s aggressive attacks. First, Daphne’s optimal placements d2 for all equipment
are similar for all scenarios; cameras and fences should be placed close to the border,
and drones and border patrol personnel should move actively. Second, regarding
the resources used on the border security portfolio d1, Daphne’s primary sources of
investment should be cameras and border patrol personnel. Drones and fences should
not be invested in. These results make sense, as cameras are more cost-efficient than
fences with integrated surveillance systems in observing immigrants (Saranpää et al.,
2023). Furthermore, border patrol personnel are a better source of investment than
drones, as border patrols can both observe and catch immigrants, while drones can
only observe.

Tables 22 and 23 show the expected decisions and utilities as a function of the level
of thinking k for Daphne and Apollo, respectively, for the Summer, Forest scenario.
These tables show that the decisions converge on the third level of thinking for
Daphne and the second level for Apollo. Although the utilities still change somewhat
on the fourth and final level of thinking, these will also converge as the decisions
of neither Daphne nor Apollo will change. This change in utility for Apollo results
from the fact that his solution on the third level employs Daphne’s solution on the
second level, which is different from her third-level solution.

To further examine the stability of our solution, we performed three types of
sensitivity analyses, the full results of which are in Appendix A.2, in Tables A9
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E[d1] E[d2] E[ud]
d1,f d1,c d1,u d1,p d2,f d2,c d2,u d2,p -

Level k 0 0.000 0.667 0.500 0.000 0.000 0.000 0.000 0.000 0.192
1 0.000 1.000 0.833 0.000 0.000 0.000 0.000 0.000 0.236
2 0.000 1.000 0.833 0.000 0.000 0.000 0.000 0.000 0.235
3 0.000 1.000 0.667 0.000 0.000 0.000 0.000 0.000 0.239
4 0.000 1.000 0.667 0.000 0.000 0.000 0.000 0.000 0.239

Table 22: Expected values for Daphne’s decisions and utility for different levels of
thinking for the Summer, Forest scenario.

E[P (a1)] E[P (a2,n)] E[ua]
0 1/3 2/3 1 1 2 4 8 -

Level k 0 0.333 0.000 0.667 0.000 0.000 0.333 0.000 0.667 0.711
1 0.667 0.000 0.333 0.000 0.000 0.000 0.333 0.667 0.548
2 0.000 0.000 0.333 0.667 0.000 0.333 0.333 0.333 0.161
3 0.000 0.000 0.333 0.667 0.000 0.333 0.333 0.333 0.161
4 0.000 0.000 0.333 0.667 0.000 0.333 0.333 0.333 0.191

Table 23: Expected values for Apollo’s decisions and utility for different levels of
thinking for the Summer, Forest scenario.

and A10. First, we solved the problem with minimum entropy initial distributions,
P [d1 = d2 = (1, 0, 0, 0)] = 1 and P [d1 = d2 = (0, 0, 0, 1)] = 1 for Apollo, and
P [a1 = 0, a2,n = 1] = 1 and P [a1 = 1, a2,n = 8] = 1 for Daphne. Second, we changed
the parameters of the problem; (ka,1, ka,2) → 1.2 · (ka,1, ka,2) and (ka,1, ka,2) → 0.8 ·
(ka,1, ka,2) for Apollo, and (kd,1, kd,2) → 1.2·(kd,1, kd,2) and (kd,1, kd,2) → 0.8·(kd,1, kd,2)
for Daphne. Finally, we removed the budget constraints Ba,max and Bd,max for Apollo
and Daphne, respectively.

For both actors, the solution did not change when the initial distributions had
minimum entropy, which suggests our equilibrium solution is the global optimum
for the problem. Furthermore, increasing and decreasing the problem parameters
changed the optimum for a few scenarios, but these differences were minor. For
Daphne, removing the budget constraints did not affect decisions, while for Apollo,
removing the constraint led to maximum investment in both reconnaissance a1 and
attacking a2. Overall, our optimum solution seems stable to small changes in the
problem’s parameters.

Even in the case of Apollo’s budget constraints being removed, Daphne’s optimal
strategy stayed relatively the same; cameras and border patrol personnel are the
best sources of investment, in addition to drones, in some rare cases. Moreover, if
border patrol investments were more expensive than indicated by our parameters,
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drone investments could be efficient in maximizing the number of immigrant groups
a single border patrol group can catch, as indicated by the results of Saranpää et al.
(2023). All in all, this example can be used flexibly with different assumptions about
scenarios and parameters to create valuable results for border security investments
for varying scenarios.
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5 Conclusions and Discussion

Widely employed solution methods for solving multi-agent decision problems, among
them complete information game theory and adversarial risk analysis, are not suit-
able for solving decision problems with limited memory or overarching constraints
(Kahneman and Tversky, 1979; Kahneman, 2003; Salo et al., 2022). This thesis
aimed to combine Decision Programming (Salo et al., 2022), a solution method
that accommodates these challenges for single-agent decision problems, with the
methods mentioned above for solving multi-agent decision problems. We used the
level-k approach, in which the multi-agent decision problem is transformed into
corresponding single-agent decision problems, separately for each actor, and solved
iteratively to arrive at a convergent solution. We use the Decision Programming
framework at each phase to solve each single-agent problem. Our methodology thus
solves decision problems with several actors, simultaneous and sequential decisions,
imperfect strategists and information, and overarching constraints.

We used our methodology to solve two multi-agent decision problems: the first
in critical infrastructure protection and the other in border security. In the critical
infrastructure protection example, our methodology generated similar results as
the original method examining this problem (González-Ortega et al., 2019). The
methodology we developed converged in less than three iterations to a stable solution
and, in almost all cases, was not sensitive to variations in the model parameters.
We also extended the critical infrastructure protection example by introducing
more granular choices and budget constraints, which our methodology solved to
optimality. We furthermore solved an example in border security. Here, despite a
more complicated problem structure, we were able to solve this example to optimality,
creating useful results regarding border security. The method also performed well in
this problem, both in convergence and sensitivity analyses, similarly to the critical
infrastructure protection example.

The methodological basis of our framework allows it to solve several other types
of problems as those presented in the examples. First, the number of decision-makers
is not limited to two; our method can solve problems with several decision-makers.
Furthermore, these decision-makers can be collaborating, competing, or anything in
between as long as they have quantifiable utility functions. Finally, the problems
may include limited information about earlier decisions, multiple value nodes, and
arbitrary problem-spanning constraints.

Although the results our methodology generated are promising, it has limitations
that can be addressed in further research. First, in this thesis, it was assumed that
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the decision problem can be accurately modeled via the level-k thinking method.
However, this may not always hold for the strategies of the decision-makers. The
issue could be addressed by examining the basis of level-k thinking more closely and
seeing if other types of strategic thinkers can be modeled via this method. Second,
we do not research problems in which the problem structure is uncertain to the
actors or in which utility functions include only a qualitative preference relation.
Further research could adapt our method to these kinds of uncertain circumstances.
Third, our methodology requires that the decision-makers’ strategy cannot be mixed,
i.e., include a randomized choice among decision alternatives. This results from the
structure of the Decision Programming framework. Further research could advance
Decision Programming to incorporate mixed strategies. Fourth, we only used the
maximum entropy assumption as our initial distribution. More research could be
done on the influence of this initial distribution on convergence. Finally, further
research could test our methodology for a wider variety of problems to uncover
more information on how the methodology works in different contexts and problem
structures.
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A Appendix

A.1 Critical Infrastructure Protection

The tabulated probability distributions for chance nodes c1 (infrastructure downtime)
and c2 (reduction in downtime) of the problem in Section 4.1.3 are presented below
in Tables A1-A3. However, the probabilities of the instances also found in the
original problem description, in Section 4.1.1, are unchanged. Thus, these original
probabilities can be read from the tables below; the corresponding rows are colored
blue. Furthermore, as is described in the problem statements, Type 1 Apollo’s
probabilities correspond precisely to those of Daphne and can be read from Daphne’s
columns.
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Shortage = c1
Daphne Type 2 Apollo Type 3 Apollo

d1 a1 a2 0 1/2 1 0 1/2 1 0 1/2 1
0 0 0 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
0 1/2 0 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
0 1 0 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

1/2 0 0 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
1/2 1/2 0 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
1/2 1 0 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
1 0 0 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
1 1/2 0 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
1 1 0 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
0 0 1/2 0.65 0.23 0.13 0.64 0.22 0.14 0.66 0.23 0.11
0 1/2 1/2 0.61 0.25 0.14 0.61 0.24 0.15 0.62 0.26 0.13
0 1 1/2 0.58 0.28 0.15 0.57 0.27 0.16 0.58 0.28 0.14

1/2 0 1/2 0.68 0.21 0.11 0.67 0.20 0.13 0.68 0.22 0.10
1/2 1/2 1/2 0.64 0.24 0.13 0.63 0.23 0.14 0.64 0.25 0.11
1/2 1 1/2 0.60 0.26 0.14 0.60 0.25 0.15 0.60 0.27 0.13
1 0 1/2 0.70 0.20 0.10 0.69 0.19 0.12 0.71 0.21 0.08
1 1/2 1/2 0.66 0.23 0.11 0.66 0.22 0.13 0.67 0.23 0.10
1 1 1/2 0.63 0.25 0.13 0.62 0.24 0.14 0.63 0.26 0.11
0 0 1 0.30 0.45 0.25 0.29 0.43 0.28 0.31 0.47 0.22
0 1/2 1 0.23 0.50 0.28 0.22 0.48 0.30 0.23 0.52 0.25
0 1 1 0.15 0.55 0.30 0.15 0.53 0.32 0.15 0.57 0.28

1/2 0 1 0.35 0.43 0.23 0.34 0.41 0.26 0.36 0.44 0.19
1/2 1/2 1 0.28 0.48 0.25 0.27 0.46 0.28 0.28 0.49 0.22
1/2 1 1 0.20 0.53 0.28 0.19 0.51 0.30 0.21 0.54 0.25
1 0 1 0.40 0.40 0.20 0.38 0.38 0.23 0.42 0.42 0.17
1 1/2 1 0.33 0.45 0.23 0.31 0.43 0.25 0.34 0.47 0.20
1 1 1 0.25 0.50 0.25 0.24 0.48 0.27 0.26 0.52 0.23

Table A1: Probability distributions p(c1|d1, a1, a2). Probabilities relating to the
original problem statement are colored in blue.
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Shortage reduction = c2
Daphne

a2 c1 d2 0 1/4 1/2 3/4 1
0 0 0 1.00 0.00 0.00 0.00 0.00
0 1/2 0 1.00 0.00 0.00 0.00 0.00
0 1 0 1.00 0.00 0.00 0.00 0.00

1/2 0 0 1.00 0.00 0.00 0.00 0.00
1/2 1/2 0 1.00 0.00 0.00 0.00 0.00
1/2 1 0 1.00 0.00 0.00 0.00 0.00
1 0 0 1.00 0.00 0.00 0.00 0.00
1 1/2 0 1.00 0.00 0.00 0.00 0.00
1 1 0 1.00 0.00 0.00 0.00 0.00
0 0 1/2 1.00 0.00 0.00 0.00 0.00
0 1/2 1/2 1.00 0.00 0.00 0.00 0.00
0 1 1/2 1.00 0.00 0.00 0.00 0.00

1/2 0 1/2 1.00 0.00 0.00 0.00 0.00
1/2 1/2 1/2 0.89 0.02 0.04 0.03 0.03
1/2 1 1/2 0.78 0.04 0.08 0.06 0.05
1 0 1/2 1.00 0.00 0.00 0.00 0.00
1 1/2 1/2 0.78 0.04 0.08 0.06 0.05
1 1 1/2 0.55 0.08 0.15 0.13 0.10
0 0 1 1.00 0.00 0.00 0.00 0.00
0 1/2 1 1.00 0.00 0.00 0.00 0.00
0 1 1 1.00 0.00 0.00 0.00 0.00

1/2 0 1 1.00 0.00 0.00 0.00 0.00
1/2 1/2 1 0.60 0.25 0.15 0.00 0.00
1/2 1 1 0.55 0.08 0.15 0.13 0.1
1 0 1 1.00 0.00 0.00 0.00 0.00
1 1/2 1 0.20 0.50 0.30 0.00 0.00
1 1 1 0.10 0.15 0.30 0.25 0.20

Table A2: Probability distributions p(c2|a2, c1, d2) for Daphne and Type 1 Apollo.
Probabilities relating to the original problem statement are colored in blue.
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Shortage reduction = c2
Type 2 Apollo Type 3 Apollo

a2 c1 d2 0 1/4 1/2 3/4 1 0 1/4 1/2 3/4 1
0 0 0 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0 1/2 0 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0 1 0 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

1/2 0 0 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1/2 1/2 0 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1/2 1 0 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1 0 0 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1 1/2 0 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1 1 0 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0 0 1/2 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0 1/2 1/2 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0 1 1/2 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

1/2 0 1/2 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1/2 1/2 1/2 0.89 0.02 0.04 0.03 0.02 0.89 0.02 0.04 0.03 0.03
1/2 1 1/2 0.78 0.04 0.07 0.06 0.05 0.77 0.04 0.08 0.06 0.05
1 0 1/2 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1 1/2 1/2 0.78 0.04 0.07 0.06 0.05 0.77 0.04 0.08 0.06 0.05
1 1 1/2 0.56 0.07 0.15 0.12 0.10 0.54 0.08 0.15 0.13 0.10
0 0 1 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0 1/2 1 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0 1 1 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

1/2 0 1 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1/2 1/2 1 0.61 0.24 0.15 0.00 0.00 0.59 0.26 0.15 0.00 0.00
1/2 1 1 0.56 0.07 0.15 0.12 0.10 0.54 0.08 0.15 0.13 0.10
1 0 1 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
1 1/2 1 0.22 0.49 0.29 0.00 0.00 0.18 0.51 0.31 0.00 0.00
1 1 1 0.11 0.15 0.30 0.25 0.20 0.09 0.15 0.30 0.25 0.20

Table A3: Probability distributions p(c2|a2, c1, d2) for Type 2 and Type 3 Apollo.
Probabilities relating to the original problem statement are colored in blue.
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A.2 Border Security

Tables A4 and A5 contain the type-specific general parameters, and Table A6 shows
the parameters for the probability distributions of all six scenarios for Daphne’s
type 1. The probabilities for Daphne’s types 2 and 3 are the tabulated probabilities
multiplied by 0.60 and 1.40, respectively, while the multipliers in relation to Daphne’s
Type 1 for Apollo’s types 1, 2, and 3 are 1.00, 0.80, and 1.20, respectively. In addition,
Tables A7 and A8 show the optimal decisions for Daphne and Apollo, while Tables
A9 and A10 show the results of sensitivity analyses, more specifically laid out in
Section 4.2.1.

Parameters
bd,max (k€) bd,1 (k€) kd,1 (k€) kd,2 (k€) λd

Daphne’s type 1 250 100 20 100 2.0
2 200 100 10 60 1.0
3 300 100 40 150 3.0

Table A4: Parameters for Daphne’s types.

Parameters
ba,max (k€) ba,1 (k€) ba,2 (k€) ka,1 (k€) ka,2 (k€) λa

Apollo’s type 1 80 30 10 4 20 2.0
2 160 30 10 6 40 4.0
3 40 30 10 2 12 1.0

Table A5: Parameters for Apollo’s types.
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Probability distribution
p(c1|a1, d2) p(c2,o|d1, d2, a2) p(c2,i|c2,o, d1, d2, a2)

Summer, r1,a,1 +3.0 ro,a,2,s −0.8 ri,a,2,n −1.0 · 10−3

Forest r1,d,2,c +1.0 · 10−2 ro,a,2,n −5.0 · 10−6 ri,d,1,f +4.0 · 10−1

r1,d,2,u +1.0 · 10−1 ro,d,1,f +1.2 · 10−2 ri,d,2,f +1.0 · 10−4

r1,d,2,p +1.0 · 10−1 ro,d,1,c +5 ri,d,2,c +1.0 · 10−2

ro,d,1,u +4.8 · 10−2 ri,d,1,u +2.4
ro,d,1,p +4.8 · 10−2 ri,d,1,p +2.4

Winter, r1,a,1 +2.4 ro,a,2,s −0.8 ri,a,2,n −1.0 · 10−3

Forest r1,d,2,c +1.0 · 10−2 ro,a,2,n −4.0 · 10−6 ri,d,1,f +4.0 · 10−1

r1,d,2,u +1.0 · 10−1 ro,d,1,f +1.2 · 10−2 ri,d,2,f +1.0 · 10−4

r1,d,2,p +1.0 · 10−1 ro,d,1,c +5 ri,d,2,c +1.0 · 10−2

ro,d,1,u +4.8 · 10−2 ri,d,1,u +2.9
ro,d,1,p +5.8 · 10−2 ri,d,1,p +3.6

Summer, r1,a,1 +4.5 ro,a,2,s −0.8 ri,a,2,n −1.0 · 10−3

Near crossing r1,d,2,c +1.0 · 10−2 ro,a,2,n −5.0 · 10−6 ri,d,1,f +4.0 · 10−1

r1,d,2,u +1.0 · 10−1 ro,d,1,f +1.2 · 10−2 ri,d,2,f +1.0 · 10−4

r1,d,2,p +1.0 · 10−1 ro,d,1,c +5 ri,d,2,c +1.0 · 10−2

ro,d,1,u +4.8 · 10−2 ri,d,1,u +2.4
ro,d,1,p +9.6 · 10−2 ri,d,1,p +4.8

Winter, r1,a,1 +3.6 ro,a,2,s −0.8 ri,a,2,n −1.0 · 10−3

Near crossing r1,d,2,c +1.0 · 10−2 ro,a,2,n −4.0 · 10−6 ri,d,1,f +4.0 · 10−1

r1,d,2,u +1.0 · 10−1 ro,d,1,f +1.2 · 10−2 ri,d,2,f +1.0 · 10−4

r1,d,2,p +1.0 · 10−1 ro,d,1,c +5 ri,d,2,c +1.0 · 10−2

ro,d,1,u +4.8 · 10−2 ri,d,1,u +2.9
ro,d,1,p +1.2 · 10−1 ri,d,1,p +7.2

Summer, r1,a,1 +6.0 ro,a,2,s −6.4 · 10−1 ri,a,2,n −1.0 · 10−3

Inhabited area r1,d,2,c +1.0 · 10−2 ro,a,2,n −5.0 · 10−6 ri,d,1,f +8.0 · 10−1

r1,d,2,u +1.0 · 10−1 ro,d,1,f +3.6 · 10−2 ri,d,2,f +1.0 · 10−4

r1,d,2,p +1.0 · 10−1 ro,d,1,c +10 ri,d,2,c +1.0 · 10−2

ro,d,1,u +4.8 · 10−2 ri,d,1,u +1.7
ro,d,1,p +4.8 · 10−2 ri,d,1,p +1.7

Winter, r1,a,1 +6.0 ro,a,2,s −6.4 · 10−1 ri,a,2,n −1.0 · 10−3

Inhabited area r1,d,2,c +1.0 · 10−2 ro,a,2,n −5.0 · 10−6 ri,d,1,f +8.0 · 10−1

r1,d,2,u +1.0 · 10−1 ro,d,1,f +3.0 · 10−2 ri,d,2,f +1.0 · 10−4

r1,d,2,p +1.0 · 10−1 ro,d,1,c +10 ri,d,2,c +1.0 · 10−2

ro,d,1,u +4.8 · 10−2 ri,d,1,u +1.7
ro,d,1,p +4.8 · 10−2 ri,d,1,p +1.7

Table A6: Type 1 Daphne’s parameters for probability distributions p(c1|a1, d2),
p(c2,o|d1, d2, a2), and p(c2,i|c2,o, d1, d2, a2) for all the scenarios.
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Type and scenario d1 d2
d1,f d1,c d1,u d1,p d2,f d2,c d2,u d2,p

Type 1 - Summer,
Forest 0 1 0 1 0 0 0 0

Type 1 - Winter,
Forest 0 1 0 1 0 0 0 0

Type 1 - Summer,
Near crossing 0 1 0 1/2 0 0 0 0

Type 1 - Winter,
Near crossing 0 1 0 1/2 0 0 0 0

Type 1 - Summer,
Inhabited area 0 1/2 0 1 0 0 0 0

Type 1 - Winter,
Inhabited area 0 1 0 1 0 0 0 0

Type 2 - Summer,
Forest 0 1 0 0 0 0 0 0

Type 2 - Winter,
Forest 0 1 0 1/2 0 0 0 0

Type 2 - Summer,
Near crossing 0 1 0 1/2 0 0 0 0

Type 2 - Winter,
Near crossing 0 1 0 1/2 0 0 0 0

Type 2 - Summer,
Inhabited area 0 1/2 0 0 0 0 0 0

Type 2 - Winter,
Inhabited area 0 1 0 0 0 0 0 0

Type 3 - Summer,
Forest 0 1 0 1 0 0 0 0

Type 3 - Winter,
Forest 0 1 0 1 0 0 0 0

Type 3 - Summer,
Near crossing 0 1 0 1/2 0 0 0 0

Type 3 - Winter,
Near crossing 0 1 0 1/2 0 0 0 0

Type 3 - Summer,
Inhabited area 0 1/2 0 1 0 0 0 0

Type 3 - Winter,
Inhabited area 0 1 1/2 1 0 0 0 0

Table A7: Daphne’s optimal decisions for the six scenarios.
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Scenario a1 a2
c1 = 0 c1 = 1 c1 = 2 c1 = 3 c1 = 4

Type 1 - Summer,
Forest 1 4 4 4 4 4

Type 1 - Winter,
Forest 1 4 4 4 4 4

Type 1 - Summer,
Near crossing 2/3 4 4 4 4 4

Type 1 - Winter,
Near crossing 1 4 4 4 4 4

Type 1 - Summer,
Inhabited area 2/3 4 4 4 4 4

Type 1 - Winter,
Inhabited area 2/3 4 4 4 4 4

Type 2 - Summer,
Forest 1 8 8 8 8 8

Type 2 - Winter,
Forest 1 8 8 8 8 8

Type 2 - Summer,
Near crossing 1 8 8 8 8 8

Type 2 - Winter,
Near crossing 1 8 8 8 8 8

Type 2 - Summer,
Inhabited area 2/3 8 8 8 8 8

Type 2 - Winter,
Inhabited area 2/3 8 8 8 8 8

Type 3 - Summer,
Forest 2/3 2 2 2 2 2

Type 3 - Winter,
Forest 2/3 2 2 2 2 2

Type 3 - Summer,
Near crossing 2/3 2 2 2 2 2

Type 3 - Winter,
Near crossing 2/3 2 2 2 2 2

Type 3 - Summer,
Inhabited area 2/3 2 2 2 2 2

Type 3 - Winter,
Inhabited area 2/3 2 2 2 2 2

Table A8: Apollo’s optimal decisions for the six scenarios.
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SF WF SC WC SI WI
P [a1 = 0, a2,n = 1] = 1
P [a1 = 1, a2,n = 8] = 1

(kd,1, kd,2) → 0.8 · (kd,1, kd,2) x x
(kd,1, kd,2) → 1.2 · (kd,1, kd,2) x x

Remove Bd,max

Table A9: Sensitivity analyses for Daphne. A cell is red and marked with an x if the
result of the decision problem changed as a result of the parameter change and green
if it did not. Legend: SF = Summer, Forest; WF = Winter, Forest; SC = Summer,
Near crossing; WC = Winter, Near crossing; SI = Summer, Inhabited area; WC =
Winter, Inhabited area.

SF WF SC WC SI WI
P [d1 = d2 = (1, 0, 0, 0)] = 1
P [d1 = d2 = (0, 0, 0, 1)] = 1
(ka,1, ka,2) → 0.8 · (ka,1, ka,2) x
(ka,1, ka,2) → 1.2 · (ka,1, ka,2)

Remove Ba,max x x x x x x

Table A10: Sensitivity analyses for Apollo. A cell is red and marked with an x if the
result of the decision problem changed as a result of the parameter change and green
if it did not. Legend: SF = Summer, Forest; WF = Winter, Forest; SC = Summer,
Near crossing; WC = Winter, Near crossing; SI = Summer, Inhabited area; WC =
Winter, Inhabited area.
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