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Abstract
Healthcare worldwide is grappling with the challenge of overcrowding, that is caused
by the demand for services exceeding the available supply. Various strategies have
been implemented to address this issue, with a central objective being the optimization
of patient pathways within healthcare systems. This involves ensuring timely and
appropriately scaled interventions, thereby enhancing the efficiency of resource
utilization. However, this remains challenging due to the dynamic and complex
nature of healthcare processes. Alongside widely adopted methods such as Lean
and Evidence-Based Management, Process Mining has emerged as a valuable tool to
gain novel insights into healthcare processes, providing a better understanding of the
efficiency of patient pathways.

This thesis demonstrates how process mining can be utilized with large scale patient
data. Prior to this study, process mining had primarily been used with small,
well-defined cohorts of patients. In this study, process mining is utilized to analyze
patient pathways in the pediatric and adolescent emergency department at HUS
Helsinki University Hospital, providing insight into resource allocation, variations in
care pathways, and failure demand within the ESI triage system. The process mining
analysis is conducted based on ESI triage categories to examine the variations between
them. In addition, the thesis explores how complex large-scale healthcare data is
feasible to preprocess, which mining techniques are suitable for such data, and how
the results can be analyzed from a healthcare management perspective.

The thesis demonstrates that process mining is a valuable technique even with large
scale healthcare data. The results show that most pediatric and adolescent patients at
the HUS emergency department require minimal resources beyond human resources
and follow similar care pathways. An exception to this are the most acute patients in
the ESI 1 category, who require substantial resources and follow individualized care
pathways. However, the similarities observed across ESI categories suggest that the
ESI classification system may not be functioning as intended.
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Tiivistelmä
Maailmanlaajuisesti terveydenhuoltojärjestelmien yksi suurimmista haasteista on
ylikuormitus, joka johtuu terveydenhuollon palveluiden tarpeiden kasvusta. Ongelman
ratkaisemiseksi on kehitetty erilaisia strategioita. Näistä yksi keskeisimmistä on
potilaspolkujen tehostaminen. Tällä tarkoitetaan oikea-aikaisia ja järkevästi mitoitettuja
hoitointerventioita, joiden avulla pyritään resurssien tehokkaampaan kohdentamiseen.
Haasteena on kuitenkin terveydenhuollon prosessien dynaaminen luonne. Laajasti
käytettyjen menetelmien, kuten Leanin ja näyttöön perustuvan johtamisen ohella,
prosessilouhinnasta on muodostunut kiinnostava työkalu terveydenhuollon prosessien
mallintamiseen ja analysointiin. Se tarjoaa paremman käsityksen potilaspolkujen
tehokkuudesta.

Tässä diplomityössä selvitetään kuinka prosessilouhintaa voidaan hyödyntää suurten
potilasdatajoukkojen analysointiin. Työssä käytetään prosessilouhintaa HUS:n lasten ja
nuorten päivystyksen potilaspolkujen mallintamiseen tuomalla esiin tietoa resurssien
jakautumisesta, hoitopolkujen vaihteluista ja ESI triage -järjestelmän tehokkuudesta.
Potilasdata on luokiteltu ESI triage -kiireellisyysarvojen mukaan, mikä mahdollistaa
ryhmien välisten erojen arvioinnin. Lisäksi tässä työssä tutkitaan, millaista esikäsittelyä
pirstaloitunut terveydenhuollon tuottama data vaatii, mitkä prosessilouhintatekniikat
soveltuvat suurten potilasdatajoukkojen mallintamiseen ja kuinka saatuja tuloksia
voidaan analysoida terveydenhuollon johtamisen näkökulmasta.

Prosessilouhinta osoittautui arvokkaaksi työkaluksi suurten potilasdatajoukkojen
mallintamiseen. Tulokset osoittavat,että lasten ja nuorten päivystyspotilaiden hoitopolut
ovat usein samankaltaisia, ja hoitoon tarvitaan henkilöresurssien lisäksi vain vähän
diagnostisia ja hoidollisia resursseja. Poikkeuksena ovat akuutit ESI 1 -luokan
potilaat, jotka tarvitsevat huomattavia resursseja ja seuraavat yksilöllisiä hoitopolkuja.
Kokonaiskuvassa ESI 2, 3, 4 ja 5 -luokkien välillä havaittu samankaltaisuus viittaa
siihen, että ESI triage -järjestelmä ei toimi tarkoituksenmukaisella tavalla.

Avainsanat Prosessilouhinta, Lasten päivystys, Terveydenhuollon johtaminen
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1 Introduction

Personalized patient care processes that aim to diagnose, treat, and prevent diseases to
improve the general health of patients form the core of healthcare [1]. These actions are
carried out by resources, including healthcare professionals, diagnostic and treatment
devices, infrastructure, and supporting systems. Together, these elements make up the
complex network known as the healthcare system.

One of the biggest challenges facing healthcare systems globally in the 21st century
has been overcrowding, where demand exceeds supply [2]. This issue has forced a
rethinking of how to create more effective and efficient healthcare delivery. Methods
like Lean, Business Process Redesign (BPR), and Evidence-Based Management
(EBM) have been utilized in efforts to streamline frontline processes of healthcare
[3, 4, 5]. However, it is widely recognized that this task is challenging due to the
dynamic, complex, and ad-hoc nature of healthcare processes [6]. Recently, a relatively
new approach, Process Mining, has emerged as a potential solution to address these
challenges.

1.1 Background and Motivation

During the past decades, healthcare services at HUS Helsinki University Hospital
(HUS) have generated substantial amounts of data, which hold significant economic and
practical value for EBM. Effectively leveraging this data through advanced analytical
methods has the potential to reduce cost pressures and enhance operational efficiency.
However, traditional business intelligence (BI) techniques are often inadequate for
fully exploiting data to improve long-term healthcare processes. Key aspects such as
cost efficiency, resource allocation, and medical effectiveness, which are central to
Value-Based Healthcare (VBHC), remain challenging to optimize using conventional
approaches [7].

The heterogeneity of the population within a single disease or across different stages
of a disease introduces substantial variation in care processes. Notably, the variability
of processes in healthcare far exceeds that of manufacturing or other service industries
[6]. This highlights the critical need for robust process analysis methodologies to
visualize, analyze, and manage the intricate dynamics of healthcare processes, such
as patient pathways. To enhance care efficiency and control costs, it is necessary to
understand how variability driven by diverse patient characteristics and needs affects
these pathways. Equally essential is identifying and understanding how inefficiencies
within service processes, such as resource shortages and high workloads, affect
pathways and contribute to failure demand. Additionally, natural factors, such as time
of day, day of the week, and holiday seasons, must be acknowledge, as they contribute
to seasonality, cycles, and trends.
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Process mining offers a robust, data-driven approach for addressing these distinguishing
characteristics and challenges in healthcare. While traditional BI techniques may
struggle to fully capture the complexity and dynamics of healthcare operations,
process mining enables a more detailed visualization and analysis of these processes,
uncovering insights that might otherwise remain hidden. In doing so, it shifts decision
making from relying on planned processes to being guided by actual process data,
thereby enhancing opportunities for evidence-based operations management.

1.2 Research Questions and Objectives

This master’s thesis project focuses on exploring how process mining can be applied
to map patient pathways in the pediatric and adolescent emergency departments (ED)
at HUS. By doing so, the aim is to gain a better understanding of how these emergency
departments operate. The study has three main objectives. The first objective is to
establish the capability and expertise for HUS pediatrics to leverage process mining.
As process mining has never been used at HUS pediatrics, a platform for its application
needs to be developed from scratch. The goal is not only to create an environment for
this project but also to ensure that the platform and acquired knowledge expand for
widespread use at HUS in the future.

The second objective is to investigate how current process mining tools can be utilized
with large healthcare datasets in the ED setting. The study uses three full years of
data from 2021 to 2023 from pediatric and adolescent ED. To date, no studies have
been conducted on pediatric or general emergency departments at this scale of patient
volume, making it essential to investigate whether meaningful insights can be derived
from such large datasets. In parallel, this study provides foundational groundwork and
serves as a pioneering example for future research in this area.

The third objective is to produce process models from which conclusions can be
drawn about the operations of the pediatric and adolescent ED. The study focuses
specifically on resource allocation, pathway variability, and failure demand in relation
to mistriage. Triage is a system used in the ED to prioritize patients according to
the urgency of their condition, ensuring that they receive timely and appropriate care
[8]. By examining resource allocation, pathway variability, and failure demand, the
objective is to better understand ED operations and identify possible areas that are not
functioning as intended or could be made more efficient.

10



Based on these objectives, this thesis aims to address three research questions:

• To what extent are existing process mining tools capable of effectively handling
large scale healthcare datasets?

• Can these tools be utilized to create meaningful patient pathway process models
from pediatric and adolescent emergency department data?

• What patterns of resource allocation and pathway variability can be observed in
pediatric and adolescent ED, and is there a failure demand?

1.3 Structure of the Thesis

The structure of this thesis is as follows. Chapter 2 introduces the foundations of
process mining, providing the theoretical basis for the study. Chapter 3 explores
the application of process mining within the healthcare context. Chapter 4 offers an
overview of HUS, focusing on its pediatric and adolescent emergency departments and
the ESI triage system employed. Chapter 5 reviews key literature on the use of process
mining in pediatric and adolescent emergency departments, as well as in broader
emergency department settings. Chapter 6 describes the data utilized in this study
and outlines the methodology, including data preprocessing and process discovery
techniques. Chapter 7 presents the findings, while Chapter 8 interprets these results,
discusses the study’s limitations, and evaluates the applicability of process mining in
this context. Finally, Chapter 9 summarizes the study and its contributions.
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2 Foundations of Process Mining

Many industries have experienced a significant increase in data availability in the
21st century. This is a consequence of major shift towards digitalization in societies
and industries [9]. Rapidly evolving information and communication technologies
(ICT), such as online tools, social networks, and smart sensors generate vast amount of
heterogeneous data every day [10]. The term "Big Data" is frequently used to describe
this situation [11]. In the last decade, industries have become more aware of the
opportunities of data collection [12]. This awareness has prompted many businesses
to implement comprehensive data collection strategies and establish data warehouses
[13]. However, the primary objective for most businesses is not the accumulation
of data, but the transformation of data into actual value using proper analysis. This
concept is known as Business Intelligence (BI) [14]. While classical data mining has
been a core component of BI, the growing curiosity and demand for innovative data
analysis methods have integrated additional techniques into BI practice. One of these
methods is process mining.

Process mining is a process management technique which is used to discover, monitor,
and enhance real processes. It combines a family of retrospective analysis methods by
utilizing event log data extracted from ICTs. By utilizing this data-centric approach,
process mining serves as a connecting link between conventional model-based process
analysis methods, such as process simulation, and data-driven approaches like data
mining and machine learning [15]. Additionally, it can also be considered a overlap of
data science and process science. Originating as a new sub-field of data mining in
the early 21st century, process mining has undergo major evolution to become more
routinely used separate analysis method. As a result, it has reduced the reliance on
intuition and increased data-driven decision making in operations management.

Process models, which were introduced for process simulation over 50 years ago,
remain at the heart of process mining. These models illustrates the dependencies
between actions within a process. While process models have been extensively used
across various industries to enhance efficiency, improve quality, and ensure compliance,
classical process simulation struggles with a significant challenge: the complexity of
real-world processes. Manually constructed process models often present an overly
simplistic and optimistic view of actual processes [16]. A common error is to simulate
what is intended to occur rather than reflecting what is happening. This can lead
to decisions based on false assumptions. In contrast, process mining is designed to
eliminate assumption-based errors and provide an accurate, data-driven representation
of actual processes. This aims to offer a more objective view of processes and to
unlock new possibilities for utilizing process models.
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Figure 1: Discovery, Conformance, and Enhancement. The three basic types of
process mining (based on [15]).

Figure 1 illustrates the three main types of process mining techniques, discovery,
conformance, and enhancement, positioned within the process mining cycle. This
cycle comprises three primary phases: data extraction (event log registration), process
mining, and analysis. This chapter offers a holistic overview of these phases and the
fundamental principles of process mining. It begins with a detailed examination of
event logs, followed by an exploration of process mining techniques and perspectives.
Subsequently, the practical value and challenges associated with process mining are
addressed. The chapter concludes with a discussion on miners, process mining tools,
and the distinctions between process mining and data mining. The objective is to
explain the fundamental structure of process mining and demonstrate how it can be
leveraged to extract meaningful insights and real value from Big Data.

2.1 Event Log Data

Process mining utilizes event log data for analysis. Modern ICT systems register data
in many forms including event logs. Event logs have a structure tailored to enable the
representation of key aspects of events occurring across various iterations of a specific
process [17]. In simplified terms, an event log is a file created by an information
system that contains data on the execution of a process. In principle, event logs are
formulated in the way each case is described by one or more events and each event has
one or more attributes. More precisely, following relationships must hold [15]:
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• Each event in the event log relates precisely to single case.

• Each case in the event log relates precisely to single process.

• Additional information may exists whereupon it is attached to cases or events as
attribute.

To get better intuition about event logs, simplified hospital ICT system can be used
as an example. During hospitalization of a patient, every task performed on them is
registered to ICT either automatically or manually. This include for instance doctor’s
notes, procedures, laboratory tests and prescribed medications. Each registration
creates an individual event in an event log. This leads to the event log being filled
with events that characterize patient cases, also called patient pathways or traces. In
process mining, these cases combined can be viewed and researched as a single patient
flow process.

Table 1 illustrates an example of event log described above. It shows the main
information categories that need to be recorded in an event log used for process mining.
Three main categories are included which are case id, event id, and attributes [15].
Case id and event id are on theory level self-explanatory. Case id is a unique identifier
for all events that relate to the same case. Event id on the other hand is a unique
identifier for every event. However, in practice, event log may include many case
categories which divide events differently. In this situation, it is important to choose
case id in that way it is in line with research question.

To enable proper process mining analysis, besides case id and event id, event logs must
include timestamp and activity attribute categories [18]. Timestamps allow correct
sequencing of events and are also vital for measuring process performance. Activities
illustrate steps or operations that make up a larger process and are fundamental part
of analysis. Above mentioned event log categories are enough to perform process
mining analysis. However, to get more insight, additional event attribute categories are
usually introduced to analysis. These can be for instance used resources (e.g. people,
machines), locations, and costs.

In addition to the data itself, data editing is an important factor for successful process
mining. Real life processes rarely generate data that is suitable for process mining
as it is[17]. Hence heterogeneous data from many sources must be standardized and
cleaned from incorrect logs. The de facto standard event log format for process mining
is eXtensible Event Stream (XES) [15, 19]. XES design allows custom attribute setting
to support different needs of users. As eXtensible Markup Language (XML) based
format, there are along with process mining tools also various sets of other software
tools to work with.

14



Table 1: Example of event log. The table does not contain real patient data but
demonstrates simplified hospital emergency department event log data.

Event id Case id Attributes
Activity Timestamp Department ...

491083 1 Triage 2023-02-03T13:25:36 ED ...
491084 1 Blood profile 2023-02-03T13:32:21 Laboratory ...
491085 1 Lung x-ray 2023-02-03T13:47:02 Radiology ...
491086 1 Medication 2023-02-03T14:02:19 ED ...

922037 2 Triage 2023-02-03T13:33:16 ED ...
922038 2 Suturation 2023-02-03T14:04:59 ED ...

259634 3 Triage 2023-02-03T14:11:45 ED ...
259635 3 Blood profile 2023-02-03T14:18:04 Laboratory ...
259636 3 Medication 2023-02-03T14:56:21 ED ...

305952 4 Triage 2023-02-03T14:40:19 ED ...
305953 4 Lower leg x-ray 2023-02-03T15:02:02 Radiology ...
305954 4 Plaster casting 2023-02-03T15:48:56 ED ...

329513 5 Triage 2023-02-03T15:03:41 ED ...
... ... ... ... ... ...

2.2 Three types

Process mining is typically separated into three distinguished types which are discovery,
conformance, and enhancement. Although all of these are used to analyze, monitor,
and improve processes, each type has its own focus and objectives.

Process discovery is regarded as one of the most challenging aspects in the field of
process mining [15]. It involves extracting a process model from event log data without
advance knowledge of the process. [20]. Typically approached from a control-flow
perspective, process discovery aims to uncover and visualize the sequences and
dependencies of activities within a process. A notable advantage of this method is its
capacity to develop data-driven process models that are both objective and accurate,
while remaining simple and easy for users to understand. This capability to discover
processes that were previously difficult to model has raised great interest in many
business sectors [21]. Consequently, it has become the most widely utilized type of
process mining. Figure 2 presents an example of BPMN process flow chart which
illustrates these sequences and dependencies of activities in hospital ED. However,
in real life processes are rarely this simple which creates difficulties and limitations
for process discovery. In addition for BPMN, Petri nets, EPC, Causal nets, DFG, and
Process trees are commonly used for visualization in process discovery [15, 22, 23, 24].
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Figure 2: Simplified hospital emergency department BPMN process model.

Conformance checking is used to detect inconsistencies between a process models
and reality [25]. An opted model, either hand constructed or discovered, is assessed
on whether it conforms to registered behavior in event logs. If inconsistencies are
observed, these are identified and analyzed in more depth. This type of analysis is
increasingly important in modern process management [26]. Frequently changing
dynamic processes, such as those found in healthcare, are challenging to model
with traditional Business Process Management (BPM) tools. Reliable models being
important for process management, conformance checking can be applied to evaluate
the performance of these models.

Process enhancement is used to improve and extend existing process models utilizing
information from event logs [27]. In a situation where an inaccurate process model is
found, it can be adjusted using the diagnostic information derived from the alignment
of the model and the log. Moreover, an accurate process model can be reinforced with
additional attribute information received from event log. This information can be for
instance frequencies, resources, costs, bottlenecks, and execution times [15].

2.3 Perspectives

Event logs typically contain an extensive repository of information in attributes.
This data is feasible for expanding the modeling perspective beyond the control flow
perspective. Commonly used additional perspectives are organizational perspective,
time and probability perspective, and case perspective. The organizational perspective
is utilized to study process resource allocation, time and probability perspectives to
analyze process performance, and the case perspective to examine process dependency
rules [15]. While the process flow perspective remains the most widely used, alternative
mining perspectives provide valuable insights that deepen the understanding of
processes. These perspectives can be directly applied in process discovery or leveraged
to enhance existing process models.
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Organizational perspective focuses on utilizing resource attributes present in most
event logs. Typically, this requires human resources but other means such as machinery
may be included as well. Organizational perspective is divided further into three sub
perspectives which are social network, organizational structure, and resource behavior
perspectives [15]. Social network perspective concentrates on mine relationships
between resources. It is employed to create visualization of social networks of
resources. Relationships are weighed to reflect their importance in the process. The
concept of importance can be defined in multiple ways to suit specific analysis.
The organizational structure perspective mines relationships between resources and
activities, showing how regularly certain activities are carried out by specific resources.
It helps identify similar resources within a process. Resource behavior perspective
analyzes resource performance by examining the frequencies and duration of activities
performed by individual resources. The outcome provides insight into the workload
of individual resources.

Time and probability perspective introduces timing and frequency considerations into
process mining. It utilizes timestamps associated with activities in event log. Time and
probability perspective is an essential component of process performance mining. It
allows examination of performance from multiple sub perspectives including waiting
and service time, flow time, bottleneck, and frequencies and utilization perspectives
[15]. The perspective of waiting and service time focuses on analyzing the transition
times between sequential activities and the duration of each activity. This perspective
is valuable on its own but also for bottleneck analysis, as it helps identify areas where
delays occur and where resources may be underutilized. The bottleneck perspective
specifically aims to detect and analyze bottlenecks within a process. Bottlenecks
are activities within a process that disrupt the flow and lead to underutilization of
downstream resources [28]. Flow time perspective analyzes the time taken for cases to
move through a process. It can be used to calculate the flow time for specific end-to-end
process routes or between any two arbitrary points within the process. This perspective
is valuable for comparing different process routes and identifying variations in flow
times. Additionally, it can be used to determine how often specific parts of the process
meet their target times. The frequencies and utilization perspective is used to calculate
routing probabilities, which represent the conditional probability of the next event
given previous observations. This approach assesses the likelihood that, if a case
reaches activity 𝑋 in the process, it will subsequently proceed to activity 𝑌 . For
instance, in the process flow chart shown in Figure 2, this could refer to the probability
that case will move on to radiology imaging after the triage classification. Probabilities
are derived from route frequencies observed in cases and can be calculated between
two contiguous activities or across extended sequences of activities.
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Figure 3: Fully integrated process model including organizational, time, and case
perspectives (based partly on [15]).

The case perspective, also referred to as decision mining, aims to identify rules that
explain the paths taken by individual cases [29, 30]. The core principle is to identify
process decision points and the factors that affect decision-making. Process decision
points are junctures in a process where multiple possible directions can be taken.
For instance, in the BPMN process flow chart shown in Figure 2, decision points are
represented by yellow diamond shapes. At these points, decisions – whether trivial or
complex – are made to direct individual cases along specific paths. For instance, a
trivial decision might involve a binary factor, while a complex decision could involve
multiple factors. The case perspective utilizes case attributes to identify these factors
and uncover insights into decision-making throughout the process.

The best understanding of the analyzed process is achieved by combining multiple
process mining perspectives. Figure 3 outlines an example of a process model where
organizational perspective, time and probability perspective, and case perspectives
have been merged with process with standard control flow perspective. Although
combining all these perspectives allows to perform an extensive analysis of the process,
it is important to note that the list of perspectives presented in this section is not
complete. As process mining continues to evolve, new methods and perspectives for
its application are constantly being developed.
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2.4 Practical Value

Process mining has evolved considerably in the last two decades. It was initially
developed as an academic research method but was quickly adapted into operations
management. Within the context of BI, the significance of process mining lies in
its capacity to transform academically proven methods into practical value. Process
mining is already applied in various forms and from different perspectives within BI.
Its implementation can vary widely, with the desired outcomes differing significantly
across studies and analyses. Nevertheless, the practical value delivered by process
mining can be broadly classified into six key areas [31]. These areas are listed in Table
2.

Insight provision forms the basis of process mining. It relies heavily on process
discovery techniques. This aspect of process mining uncovers hidden patterns and
details within processes, providing a clear and comprehensive understanding of how
processes are performed. Frequently, the variability within processes is much greater
than initially expected or planned [32]. Identifying this variability between expected
or planned processes and actual processes holds significant value for organizations, as
it highlights sources of waste and mismanagement.

Variability identification is essential for a holistic understanding of processes. As
mentioned, variability within processes can be substantial. While insight provision
delivers information about variability between expected or planned processes and
actual processes, variability identification extends this analysis to variability between
processes over time. Process discovery, process performance, and process conformance
techniques can be utilized to analyze how different instances of a process vary in
terms of duration, sequence, and outcome. By identifying these variations and causes,
organisations can implement measures to standardize processes.

Performance improvement is attained through the analysis of process performance
attributes. This involves employing various performance perspectives to identify areas
where enhancements can be made. For example, by examining bottlenecks, flow
times, and resource utilization, organisations can implement targeted interventions to
streamline operations, reduce cycle times, and optimize overall performance. Also,
other performance factors such as cost, or customer satisfaction can be utilized.

Conformance assurance is achievedwith conformance checking. This helps organisations
to ensure that processes consistently operate within the limits defined by managers
and regulatory authorities over time. Any deviations over the defined limits detected
through process mining could reveal issues such as fraud, malpractice, risks, or
inefficiencies [31]. Moreover, addressing these deviations can significantly enhance
overall process compliance and operational effectiveness.
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PV1 Insight Provision
PV2 Performance Improvement
PV3 Conformance Assurance
PV4 Variability Detection
PV5 Reliability Enhancement
PV6 Prediction

Table 2: Practical values of process mining.

Reliability enhancement is achieved by detecting the root causes of encountered
failures within systems or processes. To accomplish this, process discovery, process
performance, and conformance checking techniques are employed, utilizing historical
data related to system or process failures. This fault diagnostic enables organisations
to address the underlying causes of failures, ultimately improving process reliability
and leading to more dependable and resilient operations.

Prediction holds perhaps the most significant potential for the future of process mining.
The primary goal is to predict how specific cases within the process will behave in the
future. This enables organizations to make predictive process adjustments enhancing
the ability to meet both qualitative and quantitative requirements for upcoming
cases [33]. Currently, with process discovery techniques and with decision mining
perspective, it is possible to retrospectively analyze processes and the factors that
have influenced decision making within them. These methods also enable statistical
predictions, forecasting how specific cases with certain attributes are likely to progress
through the process.

2.5 Challenges

Although process mining has evolved to be a widely used analysis method, there
remain fundamental challenges that must be addressed. The Process Mining Manifesto
identifies eleven critical challenges [21], which are listed in Table 3. Of these,
challenges C1, C2, C4, C5, C6, C10, and C11 are discussed in more detail below.

Challenge 1, finding, merging, and cleaning event data, and Challenge 2, dealing with
complex event logs with diverse characteristics, are both related to data extraction
and preprocessing. These tasks are typically the initial and most critical steps in
process mining. This is especially significant when dealing with big data. Although
the increasing trend of data collection has facilitated the extensive application of
process mining it also means that collected data is from a wide variety of sources.
This causes problems when collected data has varying identifiers, different levels
of granularity, and insufficiencies. For instance, one system might use a name and
system generated code to identify an individual, while another system might rely on
the social security number of people. Similarly, one system might record timestamps
with precision to the second, while another system may log them hourly or not record
them at all. Overall, the attributes recorded by different systems can vary significantly.
Consequently, merging data can sometimes be highly challenging.
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C1 Finding, Merging, and Cleaning Event Data
C2 Dealing with Complex Event Logs with Diverse Characteristics
C3 Creating Representative Benchmarks
C4 Dealing with Concept Drift
C5 Improving the Representational Bias Used for Process Discovery
C6 Balancing between Quality Criteria
C7 Cross-Organizational Mining
C8 Providing Operational Support
C9 Combining Process Mining with other Types of Analysis
C10 Improving Usability for Non-experts
C11 Improving Understandability for Non-experts

Table 3: Key challenges in process mining.

After data merging, there are also significant variability in event log characteristics,
which can affect suitability for process mining. Very large event logs present challenges
in mining, while smaller event logs frequently lack sufficient data, making it difficult to
derive reliable conclusions. However, the absolute number of cases and events alone
does not determine the difficulty of analyzing an event log. Factors such as the mean
number of events per case, the analogy between cases, the count of unique events, and
the diversity of paths significantly impact the complexity of the analysis. As outlined in
the Process Mining Manifesto, an event log with 1000 cases, each averaging 10 events
and exhibiting minimal path variation, is generally easier to analyze than an event log
with 100 cases, each averaging 100 events and following unique paths, despite both
logs having approximately the same total size [21]. Currently, a significant challenge
is the lack of a straightforward and reliable method for identifying which event logs
are suitable for process mining, aside from using time consuming a trial-and-error
approach.

Challenge 4, dealing with concept drift, involves addressing the dynamic evolution
of a process. For instance, this can manifest through periodic or seasonal variations
within the process. In such cases, a single process model is insufficient to accurately
represent the true process over time. Concept drift can be identified by dividing
the event log into smaller sections and analyzing the distinct patterns within each
segment. However, this requires a substantial amount of event log data collected over
an extended period. This is because event log collected over a short period may not yet
reflect periodic or seasonal changes clearly enough to distinguish them from normal
process variability. In simple terms, single analysis conducted over a long period may
overlook concept drift, while an analysis conducted over a short period may fail to
detect it. Although variability detection analyses are available, it currently needs to be
conducted separately. This means that the analyst must have a clear understanding of
what concept drift is. In the future, techniques must be developed that account for
this automatically and more efficiently, as identifying and analyzing concept drift is
essential in process management.
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Challenge 5, improving the representational bias used for process discovery, and
Challenge 6, balancing between quality criteria, addressing the discrepancy between
mined process models and reality. In an ideal situation, the process model would
perfectly represent the process under analysis, but this is unfeasible. There are two
significant reasons for this: the limitations of process modeling languages and the
incompleteness and noise in event logs. Visualizations for process models are created
using modeling languages such as DFG, Petri nets, and BPMN. It is necessary to
recognize that these graphical representations differ from the computational models
generated through various process mining techniques. Each of these languages
encompasses several implicit assumptions and may not be suitable for visualizing all
types of processes. Therefore, in process mining, analysis should not be restricted
by a preferred model language but rather by selecting the best language based on the
specific needs of the process.

The incompleteness of event logs imply that they rarely represent the actual process
in full, but rather only a part of it. Process models, by design, allow for exponential
growth in the number of possible paths as the number of activities increases. However,
the likelihood of each path varies, with some having a extremely low probability of
occurring. As a result, the probability that the event log contains all possible paths
in the process is practically zero. This can be clarified with an example given in the
Process Mining Manifesto [21]. Let us consider a process consisting of 10 activities
that can be executed in parallel, alongside a corresponding event log containing data on
10 000 cases. In this model with 10 concurrent activities, the total number of possible
interleavings is 10! = 3 628 800. Therefore, it is not feasible for every interleaving to
be represented in the event log, as the number of cases is far fewer than the possible
paths. Even if the case count were increased to millions, capturing all paths would
remain highly unlikely. This introduces challenge known as noise.

Noise refers to less frequent paths that deviate from the main flow of the process. It
can be caused by low frequency correct process behavior, errors in the process, or
data transcription mistakes. The challenge is that distinguishing between these causes
is highly complex [34]. Furthermore, due to the incompleteness of event logs, it is
impossible to definitively ascertain whether these low frequency paths are indeed more
probable than certain paths that are missing from the event log. Consequently, creating
a model that accurately reflects the investigated process is generally infeasible. To
assess process models, four quality criteria have been established: fitness, simplicity,
precision, and generalization [15].

Fitness quantifies how accurately the model reflects the event log used. A model
with perfect fitness contains every path present in the event log from start to finish.
Simplicity characterizes how well the model can explain the event log while preserving
a simple design. Although these two criteria are often viewed as opposites, relying
solely on them is inadequate for comprehensive model evaluation. This is because it
is possible to create a model that achieves perfect fitness while also being extremely
simple. However, such a model also represents many other potential event logs
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associated with the given activities. Consequently, this leads to a lack of specificity
regarding the analyzed event log, a phenomenon commonly referred to as overfitting.
Precision evaluates how specific the model is to the analyzed event log. Yet, because
event logs are incomplete, striving for perfect precision often results in underfitting,
in which the model fails to adequately represent the actual process. To avoid this,
generalization, which can be considered as the opposite of precision, assesses how
well the model accounts for possible process behaviors that are missing from the event
log. By balancing these four quality criteria, the impact of event log incompleteness
and noise on process mining can be reduced. Nevertheless, achieving this balance is
extremely challenging. Future developments should focus on creating more efficient
techniques to balance these four criteria.

Challenge 10, improving usability for non-experts, and Challenge 11, improving
understandability for non-experts, are related to the usability of process mining. For
process mining to integrate seamlessly into everyday operational support, its usability
must be enhanced to be more an intuitive and user friendly. Currently, leveraging
process mining effectively demands a high level of expertise in data science. While
some commercial process mining software provides more user-friendly interfaces
such as Disco and Celonis, this often comes at the expense of advanced algorithmic
capabilities. A future challenge is to integrate sophisticated algorithms within intuitive
and half automated interface, ensuring effective process mining with a lower entry
barrier. Similarly, attention must be given to process mining results. Even if the
outcomes appear clear, there is a risk of drawing incorrect conclusions from them.
A significant risk related to this is making overly broad conclusions from event logs
collected over a short period time or from overly simplified models derived from
complex event logs. Current process mining algorithms do not generally alert users of
models derived from such event logs, that may suffer from low fitness or overfitting.
Thus, attention must be given to clear methods for presenting process mining results
and ensuring trustworthiness.

2.6 Miners

Process mining relies on algorithms specifically designed to extract insights from event
log data. These algorithms are grounded in mathematical principles, including graph
theory, statistics, and optimization, and are translated into computational processes
through various programming languages [15]. A diverse array of process mining
algorithms has been developed to support various types and perspectives of analysis.
Selecting the appropriate algorithm is essential for achieving the desired outcomes.
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The first developed classical algorithms, that are commonly referred to as miners,
support process discovery. By analyzing the sequences of events in the log, the aim is
to generate accurate but readable visualization of the process. For process discovery
there are for example Directly Follow Model Miner, Alpha Miner, Heuristic Miner
and Fuzzy Miner [35, 36, 37, 38]. Second group of algorithms are developed support
conformance checking. These aim to check and detect inconsistencies between a
process model and reality. For conformance checking there are for example Footprints
and Alignments algorithms [15, 39]. Process enhancement includes many perspectives
of process mining. Some utilize specific algorithms, while others are analyzed through
a combination of existing algorithms and extensions. For example organizational
perspective includes Social Network algorithm and Organizational Structure algorithm
[40, 41]. On the other hand, the time perspective can be implemented using existing
algorithms like the Inductive Miner and Fuzzy Miner. A good example of an algorithm
that integrates multiple existing techniques is the interactive Data-aware Heuristics
Miner (iDHM). iDHM combines elements from the Alpha, Heuristic, and Fuzzy
Miners, and is capable of handling process discovery, conformance checking, as well
as the time perspective [42, 43].

Process discovery miners are crucial for the purposes of this research. Alpha Miner is
recognized as the first foundational process mining algorithm. It utilizes Petri nets
as a visualization tool and employs a straightforward pattern recognition method to
generate process models. Essentially, the Alpha Miner assumes a causal dependency
from two arbitrary actions, X and Y, if the event log contains cases where X is followed
by Y, with no instances of Y preceding X [36]. In this scenario, a direct connection is
established from event X to event Y. While the algorithm is theoretically simple and
efficient, in practice it is unable to handle noise, concurrency, and the incompleteness
of event logs. As a result, it is rarely used with real life event logs.

Heuristic Miner was developed to address the limitations of Alpha Miner. A significant
improvement in Heuristic Miner is its ability to account for path frequencies. Noisy
event logs often include instances where two arbitrary actions, X and Y, are recorded
such that X follows Y, as well as instances where Y follows X. While Alpha Miner is
unable to effectively process these situations, Heuristic Miner utilizes a dependency
graph to address this issue [37]. The dependency relation 𝑋 =⇒ 𝑌 between two
arbitrary actions X and Y in an event log is calculated

𝑋 =⇒ 𝑌 =
|𝑋 > 𝑌 | − |𝑌 > 𝑋 |

|𝑋 > 𝑌 | + |𝑌 > 𝑋 | + 1
(1)

where |𝑋 > 𝑌 | is count of instances where X precedes Y and |𝑌 > 𝑋 | is count
of instances where Y precedes X. The dependency relation is therefore always
between −1 and 1. Heuristic Miner calculates the dependency relation between all
actions present in the event log. This approach helps reduce the impact of noise in
the event log by establishing threshold for the dependency between actions that are
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included in the process model. Heuristic Miner is also capable of calculating long
distance dependencies, enabling better concurrency and loop modeling [44, 37]. For
visualization, Heuristic Miner provides several options, including dependency graphs,
Petri Nets, and Causal Nets. A drawback of the Heuristic Miner is that it requires
careful parameter setting to ensure optimal results. Finding the right parameters can
be highly challenging, and even with fine adjusting, there is a risk of overfitting or
producing overly complex models.

The Fuzzy Miner was developed to address the challenges of complex event logs.
While Heuristic Miner can manage noise, it tends to overfit or create excessively
complex process models from event logs with a substantial number of path variations.
To address these shortcomings, Fuzzy Miner leverages four core principles [38]:

• Aggregation: clustering less significant information to reduce complexity of
model.

• Abstraction: omitting insignificant information to reduce complexity of model.

• Emphasis: highlighting significant information to clarify model.

• Customization: allowing adjustments to the level of detail to meet the specific
needs of the model.

Transforming these principles into an actual algorithm requires the definition of two
fundamental metrics: significance and correlation. Significance measures the relative
importance of behavior within a process [38]. It can be assessed for both individual
events and the paths that connect them. Relativity in this case suggests that the criteria
for significance can be flexibly defined and adapted according to the specific goals
of the process model. As a straightforward approach, frequency is a commonly used
measure of significance. In this context, events and paths recorded in the event log
that occur more frequently are considered more significant than those recorded less
often. Correlation measures the degree of relationship between two events that occur
sequentially [38]. Unlike significance, it can only be measured for events. There are
various methods to measure correlation. However, the fundamental principle is that
for a correlation to exist, events must share a significant number of process instances
from the event log.

With these two metrics, the functionality of the Fuzzy Miner algorithm can be
simplified as follows [38]:

• High-significance behavior is preserved in the model.

• Less significant yet highly correlated behavior is clustered within the model.

• Less significant and weakly correlated behavior is removed from the model.
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Table 4: Summary of the strengths and weaknesses of four process mining algorithms.

Miner Strengths Weaknesses
Alpha
Miner

Simple, easy to understand,
foundational algorithm

Requires a complete log,
Struggles with: noise,
concurrency, loops

Heuristic
Miner

Handles noise, uses
frequency, detects
concurrency

Requires careful tuning,
can overfit, may become
complex with large logs

Fuzzy
Miner

Handles noisy and
complex processes,
visually simplifies

Less precise, less formal,
hard to interpret finer details

DFM
Miner

Simplicity, vagueness,
scalability

Oversimplifies, struggles
with: concurrency, noise,
incompleteness of event log

This enables comprehensible representation of complex processes. Additionally, it
allows for extensive customization through the selection of significance measures, as
well as the adjustment of thresholds for both significance and correlation. A drawback
of Fuzzy Miner is that the visualization method it employs, the Fuzzy net, is not as
formal as, for example, a Petri net. Additionally, the algorithm is not well suited for
precise modeling, as its one primary objective is to simplify complex processes.

Directly Follows Model Miner (DFM) is the simplest process discovery algorithms
in process mining. It builds a process model by mapping out activities in the exact
order they follow each other in the event log, without considering more complex
relationships like concurrency or loops [35]. DFM visualizes processes using Directly
Follows Graphs (DFG), which are simpler than higher-level visualization languages,
showing only the flow direction and frequency between activities.

The simplicity of the DFM algorithm provides distinct strengths as well as weaknesses.
Its key advantages include model clarity, vagueness, and scalability, while it may suffer
from oversimplification [45, 46]. Model clarity refers to its capacity to generate easily
interpretable models from complex event logs, even when higher-level visualization
languages are considered un-interpretable. Vagueness means that DFM can express
relationships that other miners cannot interpret with precise clarity. Furthermore,
DFM can efficiently process event logs containing millions of events, a scale at which
other miners often struggle to perform.

On the downside, DFM struggles to manage noise, incompleteness, andother exceptions
within the event log. It either includes all transitions from the event log or relies on
frequency-based filtering, both of which present challenges when applied to real-world
processes [46]. Additionally, since DFM does not account for concurrency, the
generated process model can only reflect immediate transitions and poorly handles
long distance dependencies. Table 4 provides a concise summary of the strengths and
weaknesses of the miners discussed in the preceding paragraph.
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2.7 Tools

In the last two decades, many process mining software have become available to
conduct process mining analysis. These include open source free to use software such
as ProM and Apromore and commercial software such as DISCO and CELONIS.
All these share core principles of process mining. However, the purpose of use and
extent of the analysis methods differ. In addition to the aforementioned, a process
mining library for Python (PM4PY) was introduced in year 2019 [47]. It is a novel
programming language base process mining tool which has gain much popularity
within a few years.

ProM has now been the de facto process mining tool for 20 years. It revolutionized
process mining field after launching 2004 [15]. Before that, all few available process
mining software were supporting single technique and perspective of process mining.
The main idea of the ProM was to create software that brought together various
types of process mining techniques, perspectives, and algorithms [48]. As a result,
ProM expanded vastly the field of possibilities in process mining. Even today, many
commercial process mining software are developed based on ProM.

ProM is plug-in based open-source process mining software. The plug-ins are
applications of algorithms used in process mining. Based on their purpose, plug-ins
are divided into five groups: mining, export, import, analysis, and conversions [48].
By executing plug-ins from different groups sequentially, desired process mining
analysis are accomplished. For example, basic process mining analysis could use
first import plug-in to import XES file, mining plug-in to achieve Petri net model,
conversion plug-in to covert Petri net to EPC, analysis plug-in to attain performance
graph, and export plug-in to save obtained models. ProM includes plug-ins for all
three type of process mining and main perspectives. In year 2016 over 1500 plug-ins
had been added to library of proM [15].

When comparing range of possibilities and adaptation, ProM has advantage over
other process mining software tools. Unlike commercial process mining tools, which
are not easily customizable, ProM was established to support analysis modifying.
Open-source plug-in library of ProM allows assembling suitable process mining
analysis for different kinds of projects. It has also created the possibility to freely
develop new plug-ins to meet needs of new kind of analysis. This has led ProM to be
particularly popular among researchers. On the downside, ProM with its customizable
nature, is more complicated to use properly than the most commercial tools. This is
one reason why in the business sector commercial tools are popular with business
process mining.
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PM4PY has added a new approach to process mining. Contrary to prior major process
mining tools, PM4PY is not a software, but open-source library implemented in
Python programming language [47]. It was developed for needs of a truly customizable
process mining tool to work on more complex process mining scenarios [49]. Despite
being a relative newcomer, PM4PY has already been downloaded over 1 000 000
times and includes all three process mining types and main perspectives [49].

PM4PY can be used similarly to other Python libraries across various platforms,
including the command line or terminal, Integrated Development Environments (IDEs),
and online platforms. Process mining algorithms in PM4Py are implemented through
Python code. The library offers a comprehensive set of tools and functions that enable
users to import event log data, execute a range of process mining algorithms, and
visualize the results effectively. To fully leverage the capabilities of PM4PY, it requires
additional Python libraries such as NumPy, Pandas, Deprecation, and NetworkX [50].

The key advantages of PM4PY relate to seamless integration with Python. As other
main process mining tools are primarily design for process mining, Python environment
includes a large number of libraries from other disciplines of data analysis such as
NumPy, Pandas, and Keras [51, 52, 53]. This allows easy shift from conventional
process mining to more complex interdisciplinary analysis including for instance
operation recherche and machine learning. Libraries like Pandas also provide superior
data editing capabilities compared to software base process mining tools allowing for
the entire process mining project to be carried out efficiently on a single platform. For
users with prior experience in Python, transitioning to PM4PY for process mining
is relatively seamless. In contrast, for individuals without programming experience,
PM4PY may present a steeper learning curve compared to other process mining tools.

Commercial process mining tools are designed to provide efficient, user-friendly
solutions for process mining. Examples include CELONIS, Microsoft Power Automate,
and DISCO, which allow business users to engage in process mining without
the need for advanced data science expertise. These tools support rapid analysis
and decision-making by automating parts of the data transformation and modeling
processes. For instance, DISCO, widely used also in research and academic settings,
operates based on the Fuzzy Miner algorithm, producing Fuzzy nets [54]. Its simplicity
is enhanced by a single mining model and automated functionality. However, its
limited customization capabilities restrict its adaptability for more advanced users
seeking tailored approaches. More broadly, commercial process mining tools may
show differences in adaptability depending on the type of analysis performed [55].
Consequently, the tools may exhibit varying levels of performance across different
analytical tasks.
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Thorough and extensive studies comparing the performance differences between
various process mining tools are limited. Available research suggests that ProM
stands out in terms of methodological depth, making it a robust tool for process
mining applications [56, 57]. However, usability of ProM presents a steeper learning
curve compared to commercial tools, requiring a higher level of expertise to operate
effectively. Latest studies involving PM4PY, indicate that it is at least as efficient as
ProM [58, 59]. Furthermore, PM4PY has been rapidly catching up with ProM in
terms of feature scope, suggesting it has become a competitive alternative.

2.8 Distinctions Between Process Mining and Data Mining

Process mining and data mining are both integral parts of data science (process
mining being also part of process science). Although these disciplines share many
commonalities, and process mining is even regarded as having emerged from data
mining, each has its own distinct characteristics. The disciplines emerged with a
ten-year gap between them, as data mining gained prominence in 1994, and process
mining followed in 2004. Despite the modest age difference, data mining has received
significantly more attention over the years [60]. While most of the academic world is
now somewhat familiar with data mining, the distinctions between process mining
and data mining are not commonly known.

Data mining refers to the process of discovering implicit, novel, and potentially
beneficial information from vast datasets. [61]. Unlike process mining, which
primarily utilizes log data, data mining can be applied to a wide variety of data types.
This versatility makes it suitable for a broad range of analyses. Common analyses
in data mining seek to uncover association rules, constraints, clusters, and patterns
within data that are too complex for humans to detect.

While process mining and data mining share commonalities, such as a data-centric
approach, the use of mathematical algorithms, and the goal of providing beneficial yet
objective information from data, the perspectives differ. Process mining focuses on
fitting and analyzing data within the context of end-to-end process. For this reason,
data used in process mining must be well defined and include details about how, where,
and when each data point was recorded. In contrast, data mining is less concerned
with origin and structure of data and more focused on identifying the broad spectrum
of natural patterns it contains. In simplified terms, process mining focuses on both the
process and the data it generates, whereas data mining concentrates solely on the data
itself. This distinction leads to a difference in perspective between the two disciplines
and affects the types of questions that can be addressed using each approach.
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Typically process mining aims to address the question of why, while data mining
focuses more on the question of what. However, this distinction is not entirely
straightforward. Process mining commonly begins with process discovery, which
seeks to answer the question, ’How is this process being performed?’ This initial focus
is more aligned with the what type of question rather than the why. As the analysis
progresses and incorporates additional types and perspectives of process mining, the
focus shifts to seeks to answer the question, ’Why is the process being performed in
this manner?’ This transition from what to why is not characteristic of data mining.
Data mining employs robust methods for uncovering patterns across a wide range of
data types. However, its capability to link these patterns to the underlying processes
that generated the data is limited, making it less effective at answering why questions.

Process mining and data mining offer distinct perspectives and methodologies. Despite
the examples presented earlier, neither discipline is inherently superior. Both offer
advanced tools for data analysis and are widely utilized in practice. It is important to
recognize the differences between these approaches and select the appropriate tool for
the task at hand. In many cases, achieving the best results involves integrating these
disciplines and other data analysis techniques.
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3 Process Mining in Healthcare

When process mining became more widely used in the early 21st century, healthcare
was considered one of its most promising application areas [15]. Although the use
of process mining has significantly increased in healthcare research in recent years,
its application has not yet become common practice in the field [62]. Much of the
research has focused on the development of process mining algorithms and the study
of small patient cohorts in specialized healthcare settings [62]. Notably, most of these
applications have centered on process discovery or resource assessment [63]. Effective
methods for analyzing large scale healthcare data have not yet been widely published.
This is partly due to the unique characteristics of healthcare processes, which present
distinct challenges that have not yet been fully addressed.

3.1 Distinguishing Characteristics and Challenges

Ten distinguishing characteristics and challenges related to process mining in healthcare
have been identified [6]. However, due to partial overlaps with Section 2.5, only the
most significant ones relevant to this thesis are discussed in this section.

One primary distinguishing characteristic and challenge in healthcare is the complexity
of diverse patient pathways. Unlike many traditional service industries, healthcare
does not rely on predefined process pathways. Instead, patients receive personalized
care plans based on their specific needs, with healthcare professionals designing these
plans while following general guidelines. In the era of personalized medicine, the shift
from a generic model to more personalized prediction, prevention, and treatment, has
further amplified both the volume and variability of data [64].

This leads to another important challenge: the significance of infrequent behavior. In
many industries, infrequent behavior is often ignored as noise. However, in healthcare,
due to the complexity of patient pathways and the small margins of error, even
infrequent behavior must be considered important. Including infrequent pathways in
the analysis can help identify more efficient pathways, as well as incorrect, inefficient,
harmful, or even life-threatening ones. While process mining in healthcare generally
focuses on larger patient groups, recognizing these infrequent pathways remains
essential.

Identifying true infrequent behavior is further complicated by the often poor quality
of healthcare data [65]. This is partly due to manual event input, which increases
subjectivity and errors. Additionally, a common practice in healthcare, called a
workaround, involves recording events later in batches rather than immediately,
introducing further timestamp errors [66]. Furthermore, the use of text-based records
for some events and the varying recording methods across different devices also
contribute to data quality issues.
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An important aspect, particularly in the healthcare sector, is that healthcare professionals
possess expertise in their field but often lack in-depth knowledge of data science.
For process mining results to be effectively applied at the ground level, they must
be presented in a manner that is easily understandable without requiring specialized
expertise for interpretation. This becomes even more critical when transitioning
process mining tools from research to operational use. At the same time, healthcare
professionals remain ultimately responsible for patient care. Therefore, the analysis
process must be transparent and easily reproducible. This raises questions about
newer process mining methods, such as those involving machine learning, which are
considered promising in the healthcare field but where the causal relationships behind
the results are not always fully understandable.

These and other distinguishing characteristics and challenges presented in [6] must be
considered when applying process mining in healthcare settings. Addressing these
issues may require the use of custom algorithms or the development of entirely new
tools specifically designed for healthcare applications.
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4 HUS Helsinki University Hospital

HUS Helsinki University Hospital (HUS) is the biggest health care provider in Finland
spanning across multiple facilities in Uusimaa region. It is a major contributor of
specialized healthcare in the comprehensive public healthcare system of Finland. HUS
holds the responsibility for organizing specialized healthcare and emergency care in the
Uusimaa region as well as providing university hospital-level specialized healthcare
in Uusimaa, South Karelia, Kymenlaakso, and Päĳät-Häme regions. Furthermore,
HUS plays a significant role in the nationwide treatment of numerous rare and severe
diseases. Approximately 31% of population of Finland (5 603 851 as of 12/2023)
resides in the Uusimaa region [67]. This makes HUS responsible for nearly one-third
of Finland’s specialized healthcare based on population.

4.1 Pediatric and Adolescent Emergency Departments

In Finland, tertiary-level emergency care, pediatric in-hospital care, and pediatric
intensive care are exclusively provided in public hospitals. HUS has centralized its
pediatric and adolescent emergency departments to two locations in the Uusimaa
region: New Children’s Hospital (NCH) in Helsinki and Jorvi Hospital in Espoo.
These emergency departments serve 315 250 residents (as of 12/2023) aged 0-16
years in the Uusimaa region and provide comprehensively specialized healthcare [67].
In both emergency departments, pediatric, psychiatric, surgical, and neurological
specialties are served. In addition, NCH has the most extensive pediatric sub-specialty
readiness in Finland. Most challenging and acute cases from Uusimaa and, in some
cases, from all over Finland are directed here for emergency care.

New Children’s Hospital and Jorvi Hospital serve around-the-clock specialized
emergency care every day of the year. This is intended for acute life-threatening
situations and serious urgent health-threatening conditions. In addition, both units
also provide pediatric and adolescent primary healthcare emergency services outside
of office hours from 4 pm to 10 pm during weekdays. During office hours from 8 am
to 4 pm, pediatric and adolescent primary healthcare emergency services are provided
alongside the emergency services at local health centers. On weekends and holidays,
primary care emergency services are centralized to larger hospital units in Uusimaa
region. During these days, pediatric primary care emergency services are provided at
both the NCH and Jorvi Hospital from 8 am to 10 pm. These primary care emergency
services are intended for acute conditions requiring rapid treatment that do not however
require specialized emergency care.
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Pediatric and adolescent emergency departments at NCH and Jorvi Hospital operate
with varying staffing levels and bed capacities depending on the time of day. At NCH, an
average of 18 inpatient beds are typically available, along with five dedicated overnight
observation beds. During office hours, the ED is staffed by two senior physicians
and five resident physicians. During on-call hours, staffing levels vary. However, the
standard includes two primary care physicians and six specialists from different fields.
As a university hospital, multiple backup physicians from multiple specialty fields are
also available. NCH also hosts the only pediatric and adolescent intensive care unit in
the HUS region, receiving all critically ill patients requiring intensive care. At Jorvi,
the facility includes seven inpatient beds and three designated overnight observation
beds. The ED is consistently staffed by a team of three physicians, comprising one
senior physician and two residents, one of whom is assigned to primary care during
on-call hours.

4.2 Triage

In emergency department context, triage refers to a systematic process aimed at
promptly evaluating the severity of illness or injury of a patient, assigning priorities,
and directing each patient to the appropriate treatment area [8]. Historically triage
system rose from military medicine as a method to rapidly identify and allocate
wounded soldiers to groups of beyond saving, needs urgent care, and can wait [68].
From there, the triage system was adapted to emergency departments to match limited
care resources to a growing number of patients, of whom only a portion require
immediate care.

In real life settings, every patient cannot get immediate treatment in emergency
departments due to limited care resources. Furthermore, prioritizing patients based
solely on their order of arrival is not sensible given the varying severity of illnesses
and injuries. For this purpose, triage systems were implemented for continuous
process to establish a structured order in which patients should be treated in emergency
departments. Although there are differences in various triage systems, the basic
principle is that when a patient arrives in the emergency department, the triage nurse
defines the triage level for the patient. This level determines treatment urgency and at
what stage, compared to other patients, the patient should be treated. The aim is to
ensure that the most critically ill and injured patients receive urgent treatment, even if
care resources are in full use.
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4.2.1 ESI – Emergency Severity Index

NCH and Jorvi hospital use Emergency Severity Index (ESI) triage system to manage
patient flow at pediatric and adolescent emergency departments. ESI, developed
in the United States in the late 1990s, is among several 5-level triage systems that
classify patients based on urgency and anticipated resource requirements [69, 70].
The ESI scale ranges from 1 to 5, with level 1 indicating the most urgent cases and
level 5 the least. ESI levels 1 and 2 are determined solely based on the urgency and
clinical condition of the patient, while ESI levels 3, 4, and 5 are assigned according to
predicted resource requirements [69].

ESI level 1 is designated to patients presenting to the ED in critical condition who
require immediate, life-saving interventions. Such interventions include airway
management, respiratory support, emergency medications, and hemodynamic support,
such as fluid resuscitation or blood transfusions [69]. Clinical scenarios that necessitate
lifesaving interventions encompass cases where patients are intubated, unresponsive,
pulseless, apneic, in severe respiratory distress, or experiencing profound hypotension
or hypoglycemia [69]. ESI level 2 is designated to patients who are not in immediate
life-threatening condition but are at high risk of quickly progressing towards it. These
patients include those who have experienced a high-risk situation, or are confused,
lethargic, or disoriented, or are experiencing severe pain or distress [69]. Age adjusted
abnormal values for heart rate, blood pressure, oxygen saturation, and pediatric fever
also meet the criteria for ESI Level 2.

ESI 3, 4, and 5 levels are assigned based on resource requirement estimation [69].
These patients are generally stable enough to wait for treatment with low risks for a
rapid deterioration in condition. In the assessment process, the triage nurse evaluates
and estimates the number of resources the patient is likely to require. ESI level 3
patients are estimated to need two or more resources, while ESI level 4 patients are
estimated to require one resource, and ESI level 5 patients are estimated to need no
resources. The categorization of emergency department resources considered in ESI
scoring, as well as those that are not, is detailed in Table 5.

Resources are assessed based on the type of resource needed rather than individual
tests [69]. For example, all tests performed on blood and urine are considered a
single laboratory test resource, regardless of the number of tests conducted. Similarly,
different types of imaging conducted using the same imaging modality are counted as
a single resource. However, imaging procedures performed using different modalities
each constitute a separate resource.
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Table 5: ESI resources. An example of ESI resource categorization (Based on [69])

Resources Not resources
Laboratory tests (blood, urine) History check and physical examination
ECG, X-ray, CT, MRI, Ultrasound Point-of-care testing
IV fluids (hydration) Saline or Heplock
IV, IM or nebulized medications PO medications, Prescription refills
Speciality consultation Phone call to primary care physician
Simple procedure (= 1 resources) Simple wound care
Complex procedure (= 2 resources) Crutches, Splints

AlthoughESI levels 3, 4, and5 are determinedbasedon predicted resource requirements,
the ESI system is not a measure of workload. Instead, the predicted resource
requirements are used in ESI as indicators of patient acuity. Clinical studies on this
topic have shown a correlation between resource utilization and patient acuity [8].
Additionally, the ESI system is not intended for monitoring patient condition but
serves solely as an initial assessment of patient status in the ED [69]. Therefore, the
ESI score should not be changed once treatment has begun. Table 6 includes example
pediatric trauma cases for all five ESI levels.
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Table 6: Trauma ESI examples. Example pediatric ED trauma cases for all ESI levels
(Based partly on [69]).

Patient Resources ESI Reasoning
EMS arrives with an 8-year-old child
who was hit by car while biking. Patient
is unconscious, pale, and has labored
respiration.

Lifesaving
intervention,
ESI
assessment
without
considering
resources.

ESI 1 Life
threatening
trauma.

EMS arrives with a 15-year-old
adolescent who hit his head hard on
the edge of the rink during a hockey
match. The patient is awake, has stable
basic vital signs, and demonstrates
motion in all limbs. Currently patient
is immobilized.

High risk
injury, ESI
assessment
without
considering
resources.

ESI 2 Injury
mechanism
suggest a
high-risk
injury.

EMS arrives with a 12-year-old child
who tumbled on the trampoline and fell
on left hand. The left hand shows an
obvious deformity between the elbow
and wrist. Radial and ulnar pulses are
normal and fingers are warm on the left
hand. Basic vital signs are normal and
pain is 5/10.

Need more
than one
resources,
low risks
for a rapid
deterioration
in condition.

ESI 3 Fracture
will require
reduction.
Also X-ray,
Lab test, IV
antibiotics,
and pain
medication
are needed.

10-year-old child arrives ED brought
by his father. The patient fell during
play and sustained a 2 cm superficial
laceration to his knee. Basic vital signs
are normal.

Need one
resources.

ESI 4 Laceration
will need
suturing.

Scared mother brings 3-year-old child
ED who fell from the sofa. No signs of
injury. Basic vital signs are normal and
the child seems playful.

No need for
resources

ESI 5 Physical
examination
and
reassurance
of the mother
are required.
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5 Literature Review

In recent years, process mining has been applied across a range of healthcare
applications, which multiple systematic literature reviews have explored extensively
[71, 72, 62, 73, 74]. However, applying process mining in emergency department
settings remains particularly challenging due to the high variability of patient cases.
This complexity, even relative to other healthcare domains, has resulted in limited
research on its application in ED settings. Thus, research on process mining in
pediatric and adolescent ED is even more limited. In this chapter, previous research on
process mining in pediatric and adolescent ED is reviewed, along with studies focused
on ED settings more broadly.

5.1 Key Research of Process Mining in Pediatric ED

Study conducted by A. B. Durojaiye et al. [75] investigates the use of process
mining to analyze the in-hospital flow of pediatric trauma patients across multiple
care locations. Utilizing a cohort of n = 1 941 pediatric trauma patients from a Level
I trauma center with the two highest activation levels, Alpha and Bravo, this study
maps patient pathways and transitions across care settings. The Flexible Heuristics
Miner algorithm was used to generate process models, uncovering 28 distinct patient
pathways and 20 primary care transitions, highlighting potential areas for optimizing
patient flow.

Another study conducted by A. B. Durojaiye et al. [76] investigates collaborative
practices in pediatric trauma care. The study method combines process mining from
an organizational perspective with network analysis. It uses the igraph package in R
for analysis. The findings suggest that closer collaboration among healthcare providers
in the pediatric ED reduces ED length of stay (LOS).

Study conducted by R. C. Basole et al. [77] investigates how different treatment
approaches affect outcomes for pediatric asthma patients. The researchers created an
interactive algorithm for visual analytics focused on process exploration and discovery.
Algorithm was utilized with Gephi tool to examine clinical data from n = 5 784 pediatric
asthma patients treated in the pediatric ED. The study emphasizes the complexity of
pediatric asthma care processes. More broadly, it highlights the potential of visual
analytics to enhance understanding and drive quality improvement efforts within ED
settings.
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5.2 Key Research of Process Mining in ED

Study conducted by D. Duma et al. [78] proposes a new framework for process
mining tailored to map and analyze ED workflows using customized process discovery
tools. The framework aims to produce a simple yet accurate model that reflects the
diverse patient paths in the ED. This approach is tested with n = 88 272 ED patient
data, providing both a retrospective analysis and comparisons with standard process
mining methods. The study emphasizes the benefits of customized process mining for
improving ED efficiency and optimizing resource allocation.

Study conducted by F. Rismanchian et al. [79] combines process mining with
optimization to improve ED layout by reducing unnecessary patient travel distances.
Using process mining software DISCO to analyze clinical data, it identifies inefficient
spatial assignments and then applies a genetic programming (GP) approach to
reconfigure unit placements. Study shows that optimizing ED layout can significantly
reduce patient travel distances, offering potential to enhance efficiency in both existing
and newly designed EDs.

Study conducted by R. Andrews et al. [80] focuses on improving ED patient flow,
addressing challenges like overcrowding, prolonged LOS, and access block, which
negatively impact patient outcomes. Using process mining software DISCO with
the BPM Lifecycle framework, the authors analyzed n = 1 473 chest pain cases to
identify factors affecting patient flow. The study identified only minor differences
between short LOS and prolonged LOS patients through process mining, with waiting
times for hospital admission from ED playing a significant role in increasing LOS.
Essential methodological observations emphasize the need for better data quality and
the importance of collecting start and end times for accurate performance analysis.

Study conducted by C. Alvarez et al. [81] utilizes DISCO process mining software to
examine role interactions among ED professionals from an organizational perspective.
The methodology was applied to a dataset of n = 7,160 ED cases sourced from hospital
information system (HIS). The study indicates that ED professionals increase their
level of collaboration as patient severity rises. Although the study results are somewhat
predictable, the advantage of the proposed methodology is its ease of replication for
other study questions.

Study conducted by M. Cho et al. [82] proposes a framework for assessing ED
processes using process mining, incorporating 16 performance indicators (EDPPIs)
based on the four key perspectives of the devil’s quadrangle: time, cost, quality, and
flexibility. The methodology was validated using a dataset of approximately 30 000 ED
patients, leveraging process mining tools such as DISCO, ProDiscovery, and ProM.
The study underscores the practical value of using process mining tools to enhance
the efficiency of ED operations.
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Study conducted by T. G. Erdogan et al. [83] applies multi-perspective process mining
techniques to evaluate emergency processes in a university hospital, based on a dataset
of n = 894 ED cases. The study employs the Goal-Question-Feature-Indicator (GQFI)
method with process mining tools DISCO and R-bupaR to assess time sequences
within ED processes. Through this analysis, the study identified deviations such as
skipped triage and consultation request steps, as well as two key bottlenecks in the
emergency process. The study demonstrates that multi-perspective process mining
can be an effective approach for identifying inefficiencies in ED processes.

Study conducted by E. Rojas et al. [84] utilizes process mining to analyze ED case
performance, focusing on identifying factors that contribute to LOS. Study was
conducted using DISCO and used data of n = 7 160 ED cases. The study indicated
that a key driver of increased LOS is when patients enter a recurring loop, alternating
between examination and treatment steps.

Study conducted by F. Davari [85] compares process mining and simulation to identify
bottlenecks and optimize patient flow in the ED. A dataset of n = 1 275 ED cases,
selected from a population of 39 264 using systematic random sampling, was analyzed
using ARENA simulation software and the DISCO software. The results highlighted
key inefficiencies, including delays in processing orders from doctors, waiting for test
results, and discharge congestion. The findings from this study underscore the utility of
simulation techniques and process mining for supporting data-driven, resource-aligned
decision-making in ED optimization.

Study conducted by G. Ibanez-Sanchez et al. [86] investigates the use of process mining
to support value-based healthcare by analyzing emergency processes, specifically in
stroke cases. The study utilized a dataset of n = 9 046 emergency cases from 2 145
stroke patients applying Process Mining with PMApp tool and a Question Driven
methodology to understand treatment flow. The results demonstrate that process
mining effectively highlights differences in stroke patient flow compared to other
emergency cases, identifying critical timing factors. More broadly, the study highlights
the benefits of process mining in identifying variations within ED patient processes.

5.3 Novelty of the Study and Tabular Overview of Reviewed
Articles

Research on pediatric and adolescent emergency departments using process mining is
highly limited, highlighting the inherent value of this study. More broadly, no prior
research has applied process mining to an emergency department with a comparable
patient volume. Existing studies predominantly focus on specific patient cohorts
rather than comprehensive datasets. Among the only two studies conducted with
larger patient volumes, the focus was either on algorithm development or on the use
of external efficiency metrics beyond process mining [78, 82]. This study, however,
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investigates how current process mining methods and tools can be effectively applied
to large scale data. It provides novel insights into pediatric and adolescent emergency
department operations, process mining with large patient volumes, and the strengths
and limitations of current methodologies.

To provide a clearer overview, a tabular summary is presented to encapsulate the
research discussed in this chapter. The summary, shown in Table 7, includes the
medical field of the study, the focus of the research, and the miners and tools utilized.

Table 7: Summary of literature review.

Study Medical Field Study Focus Miner and Tool
[75] Pediatric ED, Pediatric

Trauma Cohort
Patient Pathway Flexible Heuristics

Miner (FHM), ProM
[76] Pediatric ED, Pediatric

trauma Cohort
LOS, ED Professional
Collaboration

igraph, R

[77] Pediatric ED, Pediatric
Asthma Cohort

Visual Analytics Custom Algorithm,
Gephi

[78] ED Process Flow,
Prediction

Heuristic Miner (HM),
Inductive Miner –
infrequent (IMi), ProM

[79] ED Layout optimization Fuzzy Miner, DISCO
[80] ED, Chest Pain Cohort Process Flow, LOS Fuzzy Miner, DISCO
[81] ED ED Professional

Collaboration
Fuzzy Miner, DISCO

[82] ED Process Performance
Indicators

Fuzzy Miner, DISCO,
ProDiscovery, ProM

[83] ED Process Improvement Fuzzy Miner, DISCO,
R-bupaR

[84] ED LOS Fuzzy Miner, DISCO
[85] ED Process flow Fuzzy Miner, DISCO
[86] ED, Stroke Cohort Value-Based Healthcare Custom Algorithm,

PMApp
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6 Methodology

This study consists of four methodological components: data filtering, event log
structuring, process mining, and analysis. The primary objective is to investigate how
process mining can be applied to generate patient pathway models using existing miners
for process discovery in large datasets from pediatric and adolescent ED. Additionally,
the study aims to investigate resource allocation and systematically identify failure
demand within the ESI triage classification. The ED resources considered in this
study include procedures, imaging, and laboratory tests. Medical checks performed
by physicians or nurses, for which no procedure is recorded, are excluded due to
insufficiently clear data for generating accurate models. To achieve these objectives,
customized Python algorithms will be developed for data preprocessing. Four widely
used miners will be tested using ProM for process discovery. The most effective miner
will then be selected to conduct process discovery on pediatric and adolescent ED
data, categorized by ESI triage levels. The results will be analyzed to provide insights
into ED operations.

6.1 Data

HUS patient data collected from the Hospital Information Systems (HIS) has been
utilized in this study. The dataset includes visits and medical records for individuals
aged 0 to 16 years at HUS units, spanning from January 1, 2021, to December 31, 2023.
The data was extracted from the HUS Azure Data Lake, containing electronic health
records from Apotti and laboratory test data from Multilab. The extracted data includes
multiple datasets, with the most essential for this study being demographics, visits, ESI
triage scores, procedures, imaging, and laboratory tests. Of these, visits, ESI triage
scores, procedures, imaging, and laboratory tests include timestamps marking the
moments of execution, which are vital for event log formatting. The procedure dataset
is the most heterogeneous, encompassing a wide range of data, from minor procedures
and diagnostic actions, such as catheter insertion and ECG tests, to major surgeries
and other high complexity interventions involving multiple personnel. Additionally,
all datasets contain numerous other attributes that are utilized for statistical analysis.

To apply discovery mining techniques, pediatric and adolescent ED data must first be
isolated from the dataset and structured as an event log. Given the inherent noise and
incompleteness of healthcare data, achieving perfectly accurate filtering and event log
formatting at this dataset scale is not feasible [6, 87]. For this study, the pre-processing
phase proved to be the most challenging and time consuming task. The best results
were achieved through trial and error and close collaboration with physicians working
in the ED.
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Due to the highly sensitive nature of healthcare data, careful consideration must also be
given to information security measures [88]. The data utilized in this study is governed
by the Finnish Secondary Use Act. Therefore, obtaining HUS study permission was a
necessary task and a non-disclosure and information security agreement needed to
be signed. Research permission was granted in June 2023. The data needed to be
pseudonymized and managed on a secure platform. The whole data processing was
conducted on secure HUS Acamedic virtual machine platform. HUS Acamedic is a
secure virtual operating environment that complies with the Finnish Secondary Use
Act. Only upon completion of the study were results that complied with FINDATA
(The Finnish Social and Healthcare Data Permit Authority) regulations exported from
the platform.

6.1.1 Filtering

The initial filtering of data was carried out in four parts, as shown in Figure 4. After
filtering, n = 205 083 pediatric and adolescent ED patient cases were obtained for
analysis. The filtering was performed using Python 3.8.10 and the Pandas library
(version 2.0.3). The following section aims to clarify the purpose of certain filtering
criteria and the possible trade-offs that could arise from implementing them.

The requirement for an ESI triage classification (or that the patient visit type be
designated as Referred) is driven by the aim of selecting only emergency patients
for this study. The Pediatric and Adolescent ED at the New Children’s Hospital and
Jorvi Hospital also treats a limited number of non-emergency patients, such as certain
follow-up or additional visits, which this analysis aims to exclude. ESI classification is
not assigned to these patients in the emergency department. However, the filter also
removes any potential emergency visits where the ESI classification was not recorded
due to either human or technical reasons.

To ensure that only those tests, imaging and procedures related to the ED visits are
included in the study, they have to be marked as performed before the ED visit is
marked as finished. Tests or procedures ordered from ED as part of follow up care for
patients transferred to inpatient care are not to be included in the study. However, in
a fast rapidly evolving environment like ED, significant delays may occur between
documentation and the actual performance of certain actions. As a result, this filtering
process could potentially lead to the omission of some ED related laboratory tests,
imaging, and procedures.

The requirements that laboratory tests, imaging, and procedures are recorded as ordered
specifically by the Pediatric and Adolescent ED at either NCH or Jorvi Hospital,
ensures that actions taken prior to ED admission but sharing the same hospitalization
episode code are excluded from the dataset. These situations may arise when patients
are transferred from another unit or, in some cases, from within the same hospital to
the ED. Since the focus of this study is solely on ED processes, actions occurring prior
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Figure 4: Filters used to preprocess datasets. Number of events removed by the filter
are shown in parentheses (n).

to the ED admission are intentionally omitted from the data. An alternative, more
intuitive approach could be to require that laboratory tests, imaging, and procedures
are recorded as performed only after the ED visit is marked as started. However,
especially in acute situations, it might occur that actions are performed and documented
in real time for the patient before the official start of the ED visit is recorded. To
avoid distorting process data for acute patients, the requirement based on the orderer
was applied for filtering. The trade-off in this approach is that any actions ordered
from other hospital units such as after a consultation and performed in the ED will be
excluded from the dataset.

The requirement for ESI triage, ensuring there are no duplicates with the same
hospitalization episode code and ESI triage score, is intended to remove unnecessary
ESI recordings that are irrelevant for this study. In certain situations, in the HUS
pediatric and adolescent ED, a new ESI triage entry is logged for a patient, even though
the ESI triage score remains unchanged. Such situations occur, for instance, when a
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patient transitions between specialties in the ED, such as from pediatrics to surgery.
Another example is when the ED shifts from regular office hours to on-call hours,
which can also trigger a new triage entry without changing the ESI triage score. Since
these entries are more related to the operational methods of the HIS and fall outside
the scope of this study, in such situations only the first ESI triage entry is included in
the dataset.

In situations where ESI triage score of a patient changes during the ED visit (n =
5270), all corresponding entries are included in the dataset. This results in cases
within the ESI triage dataset where multiple data points share the same hospitalization
episode code but have different ESI triage scores. In event log, and consequently
in process mining, this situation is represented as a change in the ESI triage score.
However, in statistical analysis and clustering, each ED visit must not have more than
one ESI triage score to prevent duplication in the statistics and clusters. As stated in
section 4.2.1, ESI triage score should not be changed after treatment process has been
initiated. Therefore, for statistical analysis and clustering, ESI triage filtering is applied
to patients who experience a change in their ESI score during the ED visit as follows:
If the score change occurs within 15 minutes of the initial ESI entry, the later score is
retained. However, if the score change occurs after 15 minutes, the first ESI score is
retained. This approach enables the quantification of how frequently different initial
ESI triage scores are assigned during ED visits and how often score changes occur
across the various ESI categories. Since a late change in the ESI score indicates either
a significant error in assessing resource demands, significant misjudged immediate
care needs, or a clear change in the condition of patient during the ED visit, this group
of visits holds significant relevance in future study.

6.1.2 Event Log Structuring

The event log structuring was conducted as illustrated in Figure 5, resulting in event
log containing n = 467 621 events. This process utilized Python 3.8.10 alongside the
Pandas library (version 2.0.3). The following section outlines the steps taken during
structuring and the rationale behind each step.

The event log structuring steps for the datasets of procedures, imaging, and laboratory
tests are designed to account for the fact that a single action in the ED can result in
multiple entries in the HIS. For example, a single blood test led to several entries when
multiple analyses are conducted for sample. This is captured in the dataset as multiple
blood tests recorded with identical or closely matching timestamps. Timestamp delays
are often longer when different types of tests, such as point-of-care (POC) tests, blood
tests, or urine tests, are performed simultaneously. To accurately represent the care
pathway, the focus should be on capturing the actual care processes rather than strictly
adhering to the sequence of recorded events. Therefore, each care action must be
consolidated into a single, unified entry in the event log.
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Figure 5: Structuring of event log for process mining analysis. Number of events
removed by the condition are shown in parentheses (n).

In this study, a threshold of 15 minutes has been set, within which multiple procedures,
multiple imaging actions using the same imaging modality, and multiple laboratory
tests are recorded as a single event. The aim is to eliminate the above-mentioned
discrepancy between the data points and the actual care actions. The threshold is
based on data exploration, trial and error, and collaboration with clinicians. Although
this threshold is critical for effectively and meaningfully applying discovery mining
techniques, it may introduce trade-offs.

ESI triage, laboratory tests, procedures, and imaging represent the main events recorded
during pediatric and adolescent ED visits. However, approximately half of these visits
include no entries beyond the initial ESI triage and the ED visit record itself. To
address this, three additional artificial event types were introduced from visit data:
Treated without procedures, imaging, and laboratory tests, Left without treatment,
and Referred. These event types serve to distinguish this patient group and facilitate a
clearer interpretation of the process mining models.
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The final step is to combine all datasets into one unified event log. In this combined
dataset, an activity attribute is created for each event, named according to the event
class as follows: ESI Triage, Laboratory Test, Procedure, and Imaging. Additionally,
three previously defined artificially created event activity groups are included. The
case ID is based on the hospitalization episode code, and the timestamp is the moment
each event was recorded to HIS. For the artificially created actions, the timestamp is
set to the end time of the visit.

6.1.3 Statistics

In this section, basic statistics are presented from the filtered datasets to provide insight
into the data and support the analysis of the process model results. Table 8 summarizes
some key data metrics. In the table, ICU refers to the Intensive Care Unit, HDU to the
High Dependency Unit, and OR to the Operating Room. Figure 6 illustrates four time
series of pediatric and adolescent emergency department visits. These time series
display visits by hour on weekdays, by hour on weekends, by day of the week, and by
month. The time series differentiate between various ESI score levels to show how
patient volumes are distributed across different ESI levels.

Table 8: Basic statistics of filtered datasets.

Sex n %
Male 112 455 54.8

Female 92 605 45.2
Not available 23 ≈ 0
Age (Years) n %

0 – 3 93 213 45.5
4 – 7 43 357 21.1
8 – 11 32 988 16.1
12 – 16 35 525 17.3

Native language n %
Finnish or Swedish 148 848 72.6

Other language 55 944 27.3
Not available 291 0.01

Place of residence n %
Metropolitan area 179 421 87.5

Other HUS regions 17 874 8.7
Rest of Finland 4 905 2.4

Abroad 2 883 1.4

ESI triage n %
ESI 5 69 505 33.9
ESI 4 71 903 35.1
ESI 3 40 506 19.8
ESI 2 13 867 6.8
ESI 1 1 001 0.5

ESI not assigned 8 301 4.0
Top visit causes n %

Fever 35 064 17.1
Hand symptoms 10 658 5.2

Wound 9 388 4.6
Abdominal pain 9 332 4.6
ED disposition n %

Discharge 191 006 93.1
Ward 12 901 6.3
ICU 280 0.4
HDU 124 0.1
OR 772 0.1
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(a) Weekday visits by hour. (b) Weekend visits by hour.

(c) Visits by day of the week. (d) Visits by month.

Figure 6: The time series of pediatric and adolescent ED visits, with the ESI triage
categories separated.

6.2 Process discovery

Process discovery in this study was conducted using ProM 6.12. It was chosen for its
versatile methodological capabilities and adaptability to various types of analyses. A
comparative analysis with PM4PY was not performed due to data protection restrictions
that prevented the installation of required libraries on the HUS academic platform.
Various process discovery algorithms were tested on the event log to identify the
miner most suitable for this study. The tested algorithm plug-ins included Mine for
Heuristic Net using the Heuristic Miner (Heuristic Miner), Interactive Data-Aware
Heuristic Miner (iDHM), Mine for Fuzzy Model (Fuzzy Miner), and Convert Log to
Directly-Follows Graph (DFM Miner). Before applying each miner, the Add Artificial
Event plug-in was used to insert artificial start and end events for each case in the
event log to enhance the clarity of the mined models.

Each miner was first applied to the event log using the default settings. Heuristic Miner,
iDHM, and Fuzzy Miner were further tested with various customization configurations.
In contrast, DFM was used without any filtering options, reflecting the process exactly
as sequenced in the event log. The resulting process models with the default settings
for all tested miners are shown in Figure 7. As expected, Heuristic Miner, iDHM, and
Fuzzy Miner face challenges in generating process models that are both sufficiently
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precise and clear from the event log. These models do not capture short- or long-term
dependencies between actions in a clearly interpretable manner. In contrast, DFM
clearly visualizes short-term dependencies between actions. However, identifying long
term dependencies between actions remains profoundly challenging in the resulting
model.

A major reason traditional miners struggle with the event log in this study is the lack of
a clear directional flow between actions. The event log shows a considerable frequency
of trace occurrences in both directions between actions, making it difficult to identify
significant correlations and causal relationships. As a result, even after careful tuning,
Heuristic Miner, iDHM, and Fuzzy Miner, do not produce meaningful results. DFM
Miner stands out as the only one capable of managing the complex immediate relations
between actions, despite utilizing the simplest algorithm. For this reason, the DFM
Miner was chosen for the final study. However, due to its limitations in capturing long
term dependencies and representing complete processes, the Filter Book plug-in in
ProM is utilized with it. This plug in sequences all cases in the event log and displays
the absolute frequency of all case sequences.
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(a) Heuristic Miner.

(b) iDH Miner. (c) Fuzzy Miner.

(d) DFM Miner.

Figure 7: Process models generated by four process discovery miners with default
settings.
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7 Results

The DFM Miner was used to generate process models for the entire event log as well
as for each ESI score cluster. These models are presented in Figures 8, 10, 12, 14,
16, and 18. Following FINDATA regulations, all connections showing fewer than 5
occurrences have been removed from the models. In total, this led to the removal of 37
traces across all process models. Upon initial examination, the process models display
a complex trace structure. However, a systematic analysis of the different components
of the models yields valuable insights.

When initially examining patient pathways that do not include recorded procedures,
imaging, or laboratory tests, a significant difference is observed across the ESI clusters.
The least urgent ESI categories, ESI 5 and ESI 4, are to a great extent characterized
by traces without recorded procedures, imaging, or laboratory tests, representing 72
% of all ESI 5 visits and 46 % of ESI 4 visits. In contrast, for ESI 3 and ESI 2, this
proportion decreases to 29 %. For ESI 1, it is as low as 9 %. Since pediatric and
adolescent ED visits are more concentrated in the higher (less urgent) ESI triage score
categories, it follows that 48 % of all visits are managed without recorded procedures,
imaging, or laboratory tests.

Next, during the examination of patient pathways involving procedures, imaging, and
laboratory tests, it becomes evident that some transitions occur more frequently than
others. This is illustrated by Figures 9, 11, 13, 15, 17, and 19, which show the four
most common pathways for the entire event log as well as for each ESI score clusters.
In these figures, ESI refers to the triage assignment, TWPIL represents treatment
without procedures, imaging, or laboratory tests, LAB stands for laboratory tests, and
IMG stands for imaging. These figures show that the four most common pathways
remain consistent across the ESI 5, 4, 3, and 2 clusters, with only variations in order
and frequency. Contrary to the initial impression of a complex trace structure that the
process models convey, these pathways account for a significant portion of all visits:
93 % in the ESI 5 cluster, 84 % in ESI 4, 66 % in ESI 3, and 62 % in ESI 2. Together,
these four pathways account for 78 % of all visits.

The ESI 1 cluster, however, represents a notable exception to this trend. The four most
frequent patient pathways, shown in Figures 19, differ in part from other ESI clusters
and constitute only 32 % of the ESI 1 visits. The differences in patient pathways for
ESI 1, compared to other ESI clusters, are even more pronounced when examining the
variety of patient pathway variants within each cluster. With 298 distinct variants, the
ESI 1 cluster displays a ratio of 0.30 variants relative to the total number of visits.
This means there are 30 distinct patient pathways per 100 patients. In comparison, the
ratios are 0.0034 for ESI 5, 0.0078 for ESI 4, 0.017 for ESI 3, and 0.033 for ESI 2.
Although the ratios are not directly comparable due to the significant difference in
visit numbers between the ESI clusters, this highlights the more individualized nature
of patient pathways for ESI 1 patients. Across all visits, the ratio of patient pathway
variants to the total number of visits is 0.0063.
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Another significant metric that can be derived from process models is the proportion
of procedure, imaging, and laboratory test events relative to the number of visits.
This metric does not indicate absolute resource consumption but rather reflects the
utilization of care and diagnostic resources during ED visits. For instance, two patients
who both undergo identical blood test analyses consume the same absolute amount of
laboratory resources. However, if the tests for one patient are conducted in a single
session and for the other in two separate sessions, the utilization of care resources
differs. This proportion of procedure, imaging, and laboratory test events relative to
the number of visits demonstrates an inverse relationship with the decreasing ESI
score scale. However, the progression across ESI clusters does not follow a linear
trend. In the ESI 5 cluster, the proportion of procedure, imaging, and laboratory test
events per visit is 0.34, increasing to 0.77 for ESI 4, 1.3 for ESI 3, 1.5 for ESI 2, and
reaching 3.1 for ESI 1. A clear increase is observed between the ESI clusters from ESI
5 to ESI 4, from ESI 4 to ESI 3, and from ESI 2 to ESI 1. However, the ratio changes
only slightly between the ESI 3 and ESI 2 clusters. The proportion of procedure,
imaging, and laboratory test events per visit for all visits is 0.77.

To facilitate further assessment of differences between ESI clusters, the length of stay
(LOS) has also been calculated for all visits and each ESI cluster. The most significant
increase in LOS is observed between ESI 4 and ESI 3, with a difference of nearly one
and a half hours (86 minutes). The differences between ESI 5 and ESI 4, as well as
between ESI 3 and ESI 2, are less than one hour (52 and 43 minutes, respectively).
The difference between ESI 2 and ESI 1 is only 6 minutes. LOS for all visits is 138
minutes. In this study, the LOS is measured from the point when the ED is recorded
as having started (often during triage) to the point when the ED is recorded as having
ended, thereby reflecting the patient’s treatment time in the ED. It is important to note
that the time a patient spends in the ED may be considerably longer, particularly for
non-urgent cases, due to potential delays between the arrival and the triage assessment.
Tables 9, 10, 11, 12, 13, and 14 present the summary statistics provided in this section
for all visits and each ESI cluster.
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Figure 8: Process model for all visits.

Figure 9: Top 4 pathways for all visits.

Visits 205 083
LOS (min) 139

Pro, Img, Lab events per visit 0.77
Trace variants 1 301

Visits of top 4 traces 160 518
Visits of top 4 traces (%) 78.3

Table 9: Key Metrics for all visits.

Figure 10: Process model for ESI 5 cluster.

Figure 11: Top 4 pathways for ESI 5.

Visits 69 505
LOS (min) 83

Pro, Img, Lab events per visit 0.34
Trace variants 236

Visits of top 4 traces 64 396
Visits of top 4 traces (%) 92.6

Table 10: Key Metrics for ESI 5.
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Figure 12: Process model for ESI 4 cluster.

Figure 13: Top 4 pathways for ESI 4.

Visits 71 903
LOS (min) 135

Pro, Img, Lab events per visit 0.77
Trace variants 561

Visits of top 4 traces 60 292
Visits of top 4 traces (%) 83.9

Table 11: Key Metrics for ESI 4.

Figure 14: Process model for ESI 3 cluster.

Figure 15: Top 4 pathways for ESI 3

Visits 40 506
LOS (min) 221

Pro, Img, Lab events per visit 1.3
Trace variants 669

Visits of top 4 traces 26 906
Visits of top 4 traces (%) 66.4

Table 12: Key Metrics for ESI 3.
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Figure 16: Process model for ESI 2 cluster.

Figure 17: Top 4 pathways for ESI 2

Visits 13 867
LOS (min) 264

Pro, Img, Lab events per visit 1.5
Trace variants 456

Visits of top 4 traces 8 634
Visits of top 4 traces (%) 62.3

Table 13: Key Metrics for ESI 2.

Figure 18: Process model for ESI 1 cluster.

Figure 19: Top 4 pathways for ESI 1.

Visits 1 001
LOS (min) 270

Pro, Img, Lab events per visit 3.1
Trace variants 298

Visits of top 4 traces 321
Visits of top 4 traces (%) 32.1

Table 14: Key Metrics for ESI 1.

55



8 Discussion

8.1 Interpretation of Results

The general results obtained in this study align with consensus regarding pediatric
and adolescent emergency departments. The patient cohort predominantly consists of
non-urgent ED visits, where treatment typically does not involve procedures, imaging,
or laboratory tests. As the focus shifts to more urgent ESI categories, the inclusion
of procedures, imaging, and laboratory tests increases, leading to a greater demand
for care and diagnostic resources. Nevertheless, the results obtained from the study
should not be overlooked, as they provide valuable insights into the actual processes
occurring in the emergency department. Furthermore, the results reveal a potential
problem in the ESI triage assessment process and also in the ESI system itself.

A key finding from this study is that the four most common patient pathways account for
78 % of all emergency department visits at the pediatric and adolescent ED, suggesting
that patients generally follow well-defined care pathways. However, since the four
most frequent pathways require minimal resources in terms of procedures, imaging,
and laboratory tests, this finding primarily reflects the fact that most patients either do
not require these resources or need them only as a single instance. Consequently, no
conclusions can be drawn about care processes that involve greater resource utilization.

The notion of well-defined patient pathways is contradicted by the process models
in Figures 8, 10, 12, 14, 16, and 18, which reveal turbulent flow when the four most
common traces are excluded. This is evident from the high-frequency bidirectional
dependencies between the event classes for procedures, imaging, and laboratory tests,
as well as the loops within themselves. Furthermore, the ratio of pathway variants
relative to the total number of visits when excluding the four most frequent pathways
points to the same conclusion. For ESI 5, this figure is 0.045, for ESI 4 it is 0.048, for
ESI 3 it is 0.049, for ESI 2 it is 0.086, and for ESI 1 it is 0.43. In such a simplified
model, where the primary drivers of variant formation are changes in the number
and sequence of the three event classes (procedures, imaging, laboratory tests), these
figure are relatively high.

This variation in patient pathways must be taken into consideration. While most
patients are not affected by it, those who are tend to be more acute cases. It is essential
to distinguish between variation arising from patient-related factors, such as acuity,
differing medical needs, and background characteristics, and system-related factors,
such as bottlenecks within the ED and differences in clinical decision-making among
physicians and nursing staff. Identifying and understanding these sources of variability
in future studies is crucial for improving efficiency and resource allocation in ED
operations.
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Before making conclusive judgments regarding the effectiveness of the ESI triage
assessment process and the ESI system, it is important to acknowledge that the
resource categorization employed in this study does not directly correspond to the
resource categories defined by the ESI system. Simple and complex resources are not
differentiated, consultations are not included in procedures as they are not structurally
recorded in the HIS, and medication administration is not included. Additionally,
POC laboratory tests, repeated laboratory tests, and imaging conducted with the same
modality may have led to the creation of multiple resource events. Taking the potential
error into account, the results still strongly indicate that the ESI triage assignment
in the pediatric and adolescent EDs at NCH and Jorvi do not function as defined by
the ESI system [69]. This is most evident in the ESI categories 5, 4, and 3, where
the classification is based on resource utilization. A significant proportion of ESI
4 and ESI 3 patients are treated without procedures, imaging, or laboratory tests –
approximately half and just under a third, respectively. Simultaneously, the resource
events per visit are 0.77 and 1.3, respectively. Given that the ESI 4 definition specifies
the need for one resource and the ESI 3 definition specifies the need for two or more,
these figures demonstrate a clear misalignment

There are likely multiple factors contributing to this phenomenon. A significant
contributor is the subjective and challenging nature of resource assessment. This is
evident in the case of ESI 5 patients, where approximately 30 % ultimately undergo
procedures, imaging, and laboratory tests, despite being initially assessed as not
requiring them. In addition, physicians, particularly in low-acuity pediatric care,
exhibit significant variability in their test ordering practices [89]. This variability
cannot realistically or appropriately be accounted for during the ESI assignment phase
due to the necessity of rapid and standardized triage decisions. Consequently, this may
contribute to the observed misalignment between the estimated and actual resource
requirements. Overall, it is not feasible to continuously assess resource needs in a
manner that perfectly aligns with actual resource usage in the ED. Acceptance of some
level of error is necessary.

Overcrowding, which is one of the major challenges in healthcare, is also likely one of
the contributing factors to the ESI triage misalignment [2]. Overcrowding is defined
as functional limitation caused by a patient influx that surpasses the available space
and staffing capacity [90]. It is a significant issue across the healthcare system, but it is
particularly evident in pediatric care, where it manifests as patients coming to the ED
to address non-urgent issues [91]. In addition to contributing to ED overcrowding, this
may also impact the alignment of the ESI triage system. If the emergency department
is filled with non-urgent issues, ideally not requiring emergency care but categorized
as ESI 5, the threshold for assigning ESI 4 might be lowered. This to ensure that a
patient requiring treatment within a hours, who would normally be classified as ESI 5,
receives care before truly non-urgent cases. On the other hand, this creates additional
pressure to assign ESI 4 level patients to the ESI 3 category. In a sense, this means
that the ESI scale is adjusted downward to accommodate non-urgent issues within the
triage system.
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It is also important to acknowledge that the ESI triage system is not without its
limitations. The relationship between the required ESI resources and the clinical
urgency of a condition is not always consistent. A notable example is psychiatric
emergencies, which may demand rapid or immediate intervention without requiring
any ESI resources [92]. Likewise, conditions such as asthma exacerbations and
hypoglycemia, while necessitating urgent care similar to ESI 3 level urgency, might
require no more than one ESI resource [93]. This is further supported by the comparable
numbers of patient pathways in the ESI 3 and ESI 2 categories that do not involve
procedures, imaging, and laboratory tests. Since the ESI 2 level is based on the acuity
of patient, and the ratio of patient pathways for ESI 3 that do not involve procedures,
imaging, and laboratory tests is the same as for ESI 2, it is unlikely that all such ESI 2
cases are acute, while all ESI 3 cases are incorrectly triaged. On the other hand, based
on this study, it cannot be definitively concluded how many of these ESI 2 cases have
been correctly triaged.

This study does not allow for determining the extent to which different factors contribute
to the misalignment between the ESI triage system and the actual pathways observed
in each ESI triage category, making it challenging to assess the consequences at an
individual level. However, regardless of the contributing factors to the misalignment,
this remains a significant issue at the systemic level. For operational management, the
functionality of triage is critically important. While triage was primarily developed to
assess the urgency of patient care needs, its other key role is to ensure that departmental
resources are utilized most efficiently [94, 68]. When triage functions differently than
intended, achieving this latter goal becomes particularly challenging.

There are two main reasons for this: immediate resource allocation and future resource
planning. In either case, whether the observed misalignment is due to patients being
treated in too low ESI categories (more urgent) relative to their condition, or patients
being treated with the correct urgency but misclassified according to the ESI triage
system due to its limitations, problems arise in both scenarios. In the first scenario,
there are likely direct effects on the overuse of resources relative to the condition.
These can include, for example, treatment in specialized care rather than primary care,
occupation of inpatient beds, and closer monitoring. The immediate effects of the
second scenario are much harder to assess, as the lack of a standardized system means
there is no benchmark for comparison.

In a broader context, both scenarios present significant challenges for overall operational
management due to issues with data and performance measurement. This is because
evidence-based management heavily relies on data. If there are indications that the data
reflects an inefficient process, but the extent of the inefficiency or the causes behind it
cannot be determined, the value of the data as a performance metric diminishes. In
this case, improving the process efficiently becomes more of a trial-and-error approach
rather than being evidence-based. Therefore, it is crucial, for patient safety but also for
process efficiency, that triage functions according to established standards. This is an
area that must be investigated further to determine the true level of triage misalignment
and the underlying causes.
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Lastly, the process models show that nearly half of the procedures are recorded as
being performed before the ESI triage assessment. This is most clearly seen in the
overall emergency department process presented in Figure 8. This raises the question
of whether these recorded procedures were actually performed before or at the same
time as the ESI triage assessment, or if they are a result of time stamping errors
in the HIS system or a systematic issue with the staff. For studies like this and the
development of evidence-based medicine, it is crucial that all HIS timestamps are
accurate, and this requires further investigation.

8.2 Limitations of Study

This study has several limitations. Firstly, due to its retrospective nature, there is a
potential for errors in data sourcing or documentation. The trade-offs involved in data
filtering and event log structuring, as discussed in sections 6.1.1 and 6.1.2, may also
have a potential impact on the results. This is typical of retrospective statistical studies.
Secondly, because ESI clusters differ significantly in visit numbers, particularly for
ESI 1, smaller clusters may show relatively higher trace variability compared to larger
clusters. On the other hand, comparing the relative proportion of the four most common
patient pathways across all pathways and comparing these across ESI categories helps
reduce bias compared to directly comparing trace variant ratios. Thirdly, as stated in
section 8.1, the resources for procedures, imaging, and laboratory tests in this study
are not directly comparable to ESI resources. The purpose of this study was not to
develop ESI resource models but rather to process mine the pathways of pediatric
and adolescent ED patients. The process models created can provide insights into the
functioning of the ESI triage system.

In the broader context, this study does not comprehensively capture the entire
patient pathway within the emergency department. For instance, it omits events
like assessments and examinations conducted by doctors and nurses. Additionally,
medication annotations are excluded from the study, potentially leading to gaps in the
overall documentation of the patient pathways. Additionally, the study reflects the
typical limitations associated with DFM Miner, such as the process models generated
being constrained in that they only capture immediate dependencies between actions.
However, despite its limitations, this study represents a pioneering effort in the
application of process mining at this scale, both within the context of pediatric and
adolescent emergency care as well as general emergency departments. While there are
constraints, its significance lies in laying the groundwork for future study in this area.
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8.3 Applicability of Process Mining in Study

This study has shown that process mining can be effectively applied to complex
healthcare settings with large datasets. The DFG miner demonstrates its utility in
identifying pathway variability, resource allocation, and potential failure demand. The
data driven process model clearly shows the pathways patients follow in the emergency
department and is more intuitive to comprehend than just using process metrics. Its
straightforward algorithm succeeds in creating a clear and comprehensible process
model from complex and extensive healthcare data, where other miners fail. However,
several significant limitations remain with the DFG Miner. These include its restricted
ability to capture only immediate dependencies between actions, as already mentioned
in Section 8.2, and the broader limitations described in Section 7. These limitations
mean that while patient pathway variability, resource allocation, and potential failure
demand can be identified, the underlying causes can only be speculated.

Since identifying the consequences alone does not provide practical benefits, it
is crucial to move to the next stage by identifying the underlying causes through
process mining. There are three approaches to leveraging process mining for this
purpose. The first approach is to break the data down into smaller clusters, such as
by outcome or specialty, and use DFG or potentially other existing miners to identify
the specific characteristics of these clusters. This approach can help identify specific
characteristics between clusters and uncover the underlying causes for the observed
pathway variability, resource allocation, and potential failure demand. This has already
been initiated as part of the continuation of this project. However, the method is
labor-intensive, and while it provides valuable insights into different patient groups, it
remains uncertain how effectively this information contributes to the overall view.

The second approach is to develop current miners with custom algorithms. There is a
significant demand for an effective and scalable process miner that works efficiently
with healthcare data. Assessing the feasibility of implementing this is challenging.
The third approach is to combine process mining with machine learning and other data
science disciplines to create an entirely new method for process mining. This approach
has the potential to revolutionize healthcare process mining with its unparalleled ability
to link variables together and distinguish cause-and-effect relationships. However, to
date, there is no widely adopted tool that effectively combines these techniques.
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9 Conclusions

Process mining is a powerful method for enhancing data-driven understanding of
real-world processes. Its rapid development in the 21st century has greatly expanded
its applications. It is now widely used in the academic world and is increasingly being
applied in the business sector. However, several limitations still hinder its broader
adoption in operational contexts, particularly within healthcare.

This study presents novel research on the application of current process mining tools to
large scale healthcare datasets. The findings demonstrate that the DFM miner is effective
in analyzing these datasets and generating valuable insights. Despite the simplicity
of the DFM miner, it should not be underestimated as an effective tool for creating
accurate models from complex event logs. The results further indicate that, in pediatric
emergency departments, the majority of patients require minimal resource utilization.
Additionally, the effectiveness of the ESI triage system remains inconclusive. At the
same time, the study emphasizes the need for continued advancements in process
mining methodologies to fully exploit their potential in healthcare settings. While
current methods can reveal what occurs within the emergency department, they offer
limited insight into the underlying causes of these processes.

This study has already generated significant interest within HUS and is expected to
serve as a benchmark for future research. Based on the findings, follow-up studies
and algorithm development are already underway. It is crucial to develop methods
to assess the true impact of various factors on emergency department operations and
evaluate the effectiveness of existing practices, such as the ESI triage system. This
requires expanding the scope to include factors such as human resources, emergency
department occupancy rates, patient vitals, and natural variables like time of day. To
address such a complex challenge, the scope of process mining should extend beyond
its current boundaries to incorporate other data science disciplines.

These efforts aim to enhance the impact and efficiency of healthcare. This study
represents the first step toward the broader adoption of process mining at HUS.
The ultimate goal is to establish a solid foundation for the role of process mining
in evidence-based medicine and management, contributing to improved healthcare
outcomes and greater operational efficiency.
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