,, Aalto University
School of Electrical

Engineering

Master’s Programme in Mathematics and Operations Research

The comblned second-echelon vehicle
routing problem — A bi-objective approach

Patience Anipa

Master’s Thesis
2025



© 2025

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 Interna- @ @ @ @

tional” license.



https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

,, Aalto University
School of Electrical

Engineering

Author Patience Anipa

Title The combined second-echelon vehicle routing problem — A bi-objective
approach

Degree programme Mathematics and Operations Research

Major Systems and Operations Research

Supervisor Philine Schiewe, Assistant Professor

Advisor Philine Schiewe, Assistant Professor

Date 31 July 2025 Number of pages 38 Language English

Abstract

Multi-objective optimization plays a crucial role in addressing complex decision-
making problems where multiple, often conflicting objectives must be balanced
simultaneously. In the realm of urban logistics, last-mile delivery represents a
particularly challenging domain due to the need to optimize operational efficiency
while minimizing environmental impact and congestion. Vehicle routing problems
(VRPs) have long served as fundamental models to design effective delivery strategies,
with recent advances incorporating multimodal and multi-echelon approaches to better
reflect real-world logistics networks.

This thesis tackles the challenges of last-mile logistics in urban environments
through the lens of multi-objective optimization, focusing on the Combined Second-
Echelon Vehicle Routing Problem (CSERP)—a novel logistics framework that leverages
existing public transportation infrastructure to reduce congestion and environmental
footprint. In this setting, public transport vehicles (first-echelon), such as buses or
trams, carry parcels to intermediate transfer points, where small, possibly autonomous
second-echelon vehicles (e.g., drones, robots, or cargo bikes) complete the final leg of
delivery.

To model the problem, a bi-objective optimization framework is developed to
simultaneously minimize (1) the delay of the first-echelon vehicle and (2) the tour cost
of the second-echelon vehicle. We consider a constrained setting in which a single
second-echelon vehicle with unit capacity performs deliveries. Two scalarization
techniques—weighted sum and e-constraint methods—are applied to generate Pareto-
optimal solutions, and we provide a theoretical discussion on the computational
complexity and solvability of the resulting subproblems. The computational study used
real-world data from the bus network in Gottingen, Germany, focusing on bus line 115
as a case study. The results obtained from the e-constraint method supported the multi-
objective optimization approach implementation for the combined second-echelon
vehicle routing problem (CSERP). However, it was observed that the objectives are
highly correlated. Therefore restricting the delay of the first-echelon vehicle further
does not effect the cost of the second-echelon vehicle significantly, leading to only few
and very similar points on the Pareto front.

Keywords Last-mile logistics, vehicle routing problem, two-echelon, scalarization,
pareto, multicriteria optimization, bi-objective optimization
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1 Introduction

The rapid growth of e-commerce has intensified competition among shippers to meet
the increasingly personalized needs of customers. This surge in demand has also
intensified the need for more sustainable and efficient solutions in city logistics, with
last-mile delivery emerging as a critical area of focus (Kiba-Janiak et al. (2021)).
Despite its importance, last-mile delivery is one of the least efficient segments of the
supply chain, accounting for approximately 28% of total transportation costs (Ranieri
et al. (2018)). The high costs and inefficiencies associated with this final stage of
delivery have prompted companies and researchers to explore innovative strategies
aimed at improving operational efficiency, optimizing delivery routes, and reducing
environmental impact.

In an unpublished paper by Schiewe and Stinzendorfer (2024a), titled The Combined
Second-Echelon Routing Problem, an innovative approach is presented to enhance
last-mile logistics by utilizing spare capacity in public transport vehicles. Rather
than relying solely on traditional delivery methods that deploy additional trucks and
consequently increase traffic congestion in urban areas, their method integrates small,
potentially autonomous vehicles—such as drones, robots, or cargo bikes—referred to
as second-echelon vehicles, into existing public transport systems like trams, referred
to as first-echelon vehicles. These first-echelon public transport vehicles transport
packages to designated stops, where second-echelon vehicles take over the task of
delivering the packages to their final destinations. The authors formulated the problem
as a single-objective optimization problem, focusing on minimizing both the waiting
times and the pure travel times of the second-echelon vehicles’ delivery routes. Figure
1 illustrates the system with two second-echelon vehicles. The solid grey edges
represent a line-bound vehicle route, while the dashed red and dotted blue edges depict
the second-echelon routes serving eight customer locations with unit demand. Each
second-echelon vehicle, with a capacity of two, serves two customers before returning
to a handover station (represented by dark round nodes) for restocking.

The motivation for this thesis is drawn from the concepts presented in The
Combined Second-Echelon Routing Problem. Their optimization framework aims
to minimize the tour cost of the second-echelon vehicle, which implicitly minimizes
the delay of the first-echelon vehicle. Thus, the optimization of the delay for the
first-echelon vehicle is an unintended by-product. While effective in certain scenarios,
this method lacks flexibility in managing the cost trade-off between the two vehicle
types.

In many industrial settings, optimization problems are rarely defined by a single
cost metric. Instead, multiple objectives must be considered. Even when cost is the
primary focus, there are often different types of costs to evaluate, such as financial
costs and time-related costs. Moreover, in vehicle routing problems, objectives usually
extend beyond cost considerations to include factors such as fairness, punctuality,
and customer satisfaction. This growing complexity has driven increased interest in
multi-objective vehicle routing problems, where trade-offs between competing goals
are systematically analyzed (Jozefowiez et al. (2008a)).



Figure 1: Tours of two second-echelon vehicles (dashed red edges and dotted blue
edges, respectively) for a given public transport line (solid grey edges). Possible
restocking stations are marked by dark circles while customer locations are marked by
rectangles.

A key example of this complexity arises in the distribution of perishable goods
and vaccines, where balancing cost and timely delivery is critical. In such cases,
even if cost minimization is a priority, delays in the first-echelon vehicle can have
a significantly greater negative impact on customer satisfaction and service quality.
Therefore, a more holistic approach is needed—one that explicitly accounts for both
cost and first-echelon vehicle delays, along with other operational factors, to accurately
model and address real-world logistics challenges in these sensitive supply chains.

In this thesis, we extend the scope of the combined second-echelon routing problem
by developing a bi-objective optimization model that minimizes the delay of the first-
echelon vehicle and the tour costs of the second-echelon vehicle. The first-echelon
vehicle typically operates on a fixed route and schedule, where delays can significantly
impact overall system efficiency. The second-echelon vehicle cannot be transported,
and its capacity is not limited to 1. By directly optimizing both objectives, this model
allows for a more flexible and balanced trade-off between the performance of the
two vehicles. The resulting solutions are expected to provide a set of Pareto optimal
trade-offs, where neither objective can be improved without sacrificing the other,
giving decision-makers the ability to select the most suitable solution based on specific
operational priorities. To achieve this, we employ two scalarization techniques, the
weighted sum scalarization method from the original model as a baseline and the



e-constraint scalarization method. The complexity of the scalarization approaches will
be analyzed for a simple case involving one second-echelon vehicle with a capacity of
one. The results aim to advance the understanding of sustainable last-mile delivery
solutions while contributing to the ongoing efforts to integrate public transport systems
with modern logistics innovations.

1.1 Objectives

The main contributions of this thesis can be summarized as follows:

* We develop a bi-objective model of the combined second-echelon vehicle routing
problem to explicitly address two key objectives: (1) minimize the delay of
the first-echelon vehicle and (2) minimize the tour cost of the second-echelon
vehicle,

» Considering the case of one second-echelon vehicle with a capacity of one,
we implement the weighted sum and e-constraint scalarization methods and
conduct a detailed analysis on the theoretical properties i.e. whether they are
polynomially solvable

 Utilizing real-world data, the Pareto front is computed by employing the e-
constraint scalarization method.

The remainder of the thesis is organized as follows: Chapter 2 presents the
theoretical foundations of key concepts, including vehicle routing problems, multi-
echelon vehicle routing problems with focus on the two-echelon variant and multi-
objective optimization. Chapter 3 reviews the relevant literature, providing the
foundational context for this research. Chapter 4 formally introduces the problem and its
bi-objective formulations with one second-echelon vehicle. Chapter 5 explores various
scalarization techniques for solving the bi-objective problem. Chapter 6 presents
the experimental evaluation and analysis of the complexities of the scalarization
techniques. Finally, Chapter 7 concludes the thesis by summarizing the findings and
discussing potential directions for future research.



2 Theoretical Foundation

2.1 Vehicle routing problems

The origins of the Vehicle Routing Problem (VRP) trace back to the 1950s, though
it stems from an even earlier problem—the Traveling Salesman Problem. The aim
1s to minimise costs, whether in terms of distance travelled, time or fuel consumed
by designing optimal routes for a fleet of vehicles to serve a set of customers while
adhering to specific constraints. It plays a crucial role in supply chain management
by optimizing the physical delivery of goods and services. Various VRP variants
exist, formulated based on factors such as the nature of the transported goods, service
quality requirements, and the characteristics of both customers and vehicles. The VRP
is classified as an NP-hard combinatorial optimization problem, meaning that solving
it exactly for large real-world datasets within reasonable computational time is highly
challenging. As a result, solution methods range from exact algorithms to heuristic
and metaheuristic approaches, which provide near-optimal solutions more efficiently.
Several VRP variations have been developed to incorporate real-world complexities,
with the main ones being the Capacitated VRP (CVRP) which is the focus of this
study, VRP with Time Windows (VRPTW), Pick-up and Delivery Vehicle Routing
Problem (PDVRP) and the Multi-Depot Vehicle Routing Problem (MDVRP).

Also known as the classical VRP, the CVRP seeks to minimize cost by determining
optimal delivery routes for vehicles with uniform characteristics under the constraints
that each vehicle follows a single route which begins and ends at the depot, serves
customers with known demands from a single central depot, visits each customer
exactly once, and adheres to capacity constraints. The CVRP can be represented as a
graph-theoretic problem, where a complete, undirected graph G = (V, E) consists of
a vertex set V = {0, ..., n}, with customer locations represented by V. = {1,...,n}
and the depot as vertex 0. Consider two connected nodes i and j; node i is connected
to node j by an arc ij. If ¢;; # cj;, the problem is asymmetric (ACVRP); if ¢;; = cj;,
it is symmetric (SCVRP). The cost ¢;; is often assumed to be the Euclidean distance
between customer locations, making the distance matrix symmetric and satisfying the
triangle inequality:

cik+tckj <cij, Vi,j,keV

The CVRP is known to be NP-hard. Exact algorithms used to solve the CVRP include
branch-and-bound, branch-and-cut, and branch-and-price methods.

2.2 Multi-echelon vehicle routing problems

In practice, the distribution of the freight cannot be managed by direct shipping from
the depot to the customers due to physical or legal restrictions, such as limited parking
or vehicle weight limitations near customer locations. To ensure compliance with these
constraints while preserving economies of scale, the distribution network is structured
into multiple echelons, with goods transferred between various vehicle types or depots
at different stages. In Multi-Echelon Vehicle Routing Problems (MEVRPs), freight
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delivery is optimized by rerouting and consolidating shipments between vehicles
employed on either echelon through intermediate (satellite) locations (Guastaroba
et al. (2016)). These problems typically involve capacity constraints on both vehicles
and depots. The transportation network is structured into £ > 2 levels:

* the first echelon, which connects the depots to the first-echelon intermediate
locations

* k — 2 intermediate echelons interconnecting the intermediate locations

* the last echelon, where the freight is delivered from the intermediate locations
to the customers.

When freight is consolidated from the depot to a satellite and then delivered
from the satellite to the customer, it implicitly defines a two-echelon transportation
system: the first level connects the depot to the satellites, while the second level
connects the satellites to the customers. This variant of MEVRPs is known as the
Two-Echelon Vehicle Routing Problem (2E-VRP). There are several variants of the
2E-VRP, which can be categorized into three main groups based on the nature of time
dependence. These groups include basic variants with no time dependence, variants
with time-dependent factors, and others that introduce further complexity, such as
specific vehicle capacity constraints or multi-depot considerations. In the context
of this study, we focus on the Two-Echelon Capacitated Vehicle Routing Problem
(2E-CVRP), which operates as follows:

* Freight arrives at an external zone, the depot, where it is consolidated into the
first-echelon vehicles, unless it is already carried in a fully-loaded first-echelon
truck;

e Each first-echelon vehicle travels to a subset of satellites and then returns to the
depot;

* At a satellite, freight is transferred from first-echelon vehicles to second-echelon
vehicles;

* Each second-echelon vehicle performs a route to serve the designated customers
and then travels to a satellite for its next cycle of operations. The second-echelon
vehicles return to their departure satellite.

The problem is easily seen to be NP-Hard via a reduction to VRP, which is a
special case of 2E-CVRP arising when just one satellite is considered.
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3 Literature review

This chapter presents a comprehensive review of the relevant literature, building on
the key topics and concepts introduced in Chapter 2. The review begins by examining
foundational studies that establish the business case for this research, emphasizing
the importance of vehicle routing problems (VRPs) and the role of multi-objective
optimization (MOOQ) in addressing their complexities. Following this, the application
of MOO in multi-echelon vehicle routing problems (ME-VRPs), particularly two-
echelon vehicle routing problems is explored. Lastly, the chapter presents studies that
apply MOO to problem settings closely aligned with the one investigated in this thesis.

3.1 Vehicle routing problems

Academic interest in the Vehicle Routing Problem (VRP), one of the most widely
studied topics in Operations Research, along with its various adaptations, has steadily
increased over the past several decades (Braekers et al. (2015)). The Truck Dis-
patching Problem, introduced by Dantzig and Ramser (1959), laid the foundation for
algorithmic approaches to routing problems by formulating a mathematical model to
optimize gasoline deliveries to service stations. A few years later, Clarke and Wright
(1964) introduced a more efficient greedy heuristic that refined the original approach,
transforming it into a widely applicable linear optimization model for logistics and
transportation. These pioneering studies spurred extensive research, leading to the
development of hundreds of models and algorithms aimed at finding both optimal and
approximate solutions for various VRP variations.

However, modern VRP models have evolved significantly and now differ greatly
from those introduced by Dantzig and Ramser (1959), and Clarke and Wright (1964).
They incorporate real-world complexities such as time-dependent travel times influ-
enced by traffic congestion, time windows for deliveries and pickups, and dynamically
changing input data, such as fluctuating demand—all of which add substantial com-
plexity to the problem.

3.2 Multi-objective optimization in vehicle routing problems

Multi-objective optimization in vehicle routing is not a recent development; research
in this field dates back to the 1980s. One of the earliest studies by Park and Koelling
(1986) addressed a standard vehicle routing problem (VRP) using a goal program-
ming approach to minimize total distance, maximize fulfillment, and reduce goods
deterioration. Over the following two decades, numerous studies tackled similar
challenges, culminating in an extensive literature review by Jozefowiez et al. (2008b)
that summarizes the key advancements in multi-objective vehicle routing problems.
Jozefowiez et al. highlight that traditional vehicle routing problems (VRPs) are
typically formulated as single-objective optimization problems, primarily aiming
to minimize costs or travel distance. However, real-world logistics often involve
multiple conflicting objectives, such as balancing cost efficiency with service quality,
fairness, and environmental impact. Their work situates these challenges within the
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framework of multi-objective optimization (MOO), where additional objectives can
be incorporated to account for factors beyond cost minimization while preserving the
core problem structure. This underscores the growing significance of MOO in VRPs
due to the increasing complexity of practical applications.

A survey by Sandhya and Goel (2018) explores the role of multi-objective vehicle
routing problems (MOVRPs) in three main ways. First, they extend classical VRPs by
incorporating additional objectives while preserving the original problem structure,
allowing researchers to explore new optimization goals without altering fundamental
constraints. Second, MOVRPs generalize VRPs by transforming constraints into
objective functions, shifting the focus from constraint satisfaction to multi-objective
optimization. Lastly, they serve as models for real-world logistics challenges where
decision-makers explicitly define multiple objectives to improve operational efficiency.

The new objectives introduced in the literature can be classified into tour-related,
node/arc-related, and resource-related categories. Tour-related objectives typically
focus on minimizing costs, reducing make-span, and balancing workloads. Node/arc-
related objectives often involve optimizing time windows, improving customer satis-
faction, and strengthening driver-customer relationships. Resource-related objectives
primarily aim to minimize vehicle usage, providing both economic and environmental
benefits, while also reducing goods damage. Solution approaches are generally divided
into scalar methods such as weighted aggregation and goal programming, Pareto-based
methods that leverage Pareto dominance, and non-scalar or non-Pareto methods,
including lexicographic strategies and heuristics.

3.3 Optimization in multi-echelon vehicle routing problems

The multi-echelon vehicle routing problem represents a key extension of last-mile
delivery challenges (Grangeon et al. (2008); Perboli et al. (2011)), aiming to optimize
the movement of goods from depots to customers through multiple distribution stages.
One of the most widely explored variants within this framework is the two-echelon
vehicle routing problem (2E-VRP), which involves coordinating deliveries across two
interconnected routing levels (Caggiani et al. (2015a)).

The 2E-VRP generally involves a two-stage distribution process: goods are first
transported from a central depot to intermediate facilities, forming the first echelon. In
the second echelon, deliveries are made from these intermediate facilities to the final
customers. Although numerous studies have explored multi-objective approaches in
the classic vehicle routing problems, research on the implementation of multi-objective
optimization in the two-echelon vehicle routing problem (2E-VRP) remains relatively
limited. Caggiani et al. (2015b) conducted a comprehensive review of the variants of
the two-echelon vehicle routing problem (2E-VRP), while Cattaruzza et al. (2017)
provided an overview of multi-level distribution systems in urban logistics. However,
neither incorporates multi-objective optimization.

A growing area of interest within the two-echelon vehicle routing problem (2E-
VRP) is the integration of electric vehicles, first introduced by Breunig et al. (2017) and
further explored in subsequent studies (Breunig et al. (2019); Jie et al. (2019)). The first
comprehensive review of two-echelon electric vehicle routing problems was conducted
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by Moradi et al. (2024a), providing an overview of the evolution of this research
area. Although research output declined in subsequent years, this research area has
continued to attract significant attention due to its potential for optimizing sustainable
logistics, with vehicle-drone collaboration emerging as a notable variant. Nevertheless,
despite these advancements, the application of multi-objective optimization in this
domain remains largely unexplored.

Minimizing costs is the most widely used objective function in the literature and
has been extensively studied in various works, including the previously mentioned
research by Breunig et al. (2017), Breunig et al. (2019), and Jie et al. (2019), as
well as Agdrdi et al. (2019), Wang et al. (2019), Affi (2020), Wang and Zhou (2021),
Zijlstra et al. (2021), and Wu and Zhang (2023). These authors mostly addressed
objective functions such as minimizing traveled distances, fixed vehicle usage costs,
fixed satellite utilization costs and energy/battery consumption costs, including battery
swapping. While cost minimization is often optimized alongside other objectives, no
study has explicitly addressed delivery tardiness or late deliveries within their models.
Instead, these studies have incorporated time window-related constraints. Delivery
tardiness, which can lead to penalties or reduced customer satisfaction, remains a
critical yet underexplored challenge in two-echelon systems (Moradi et al. (2024b)).

A generalized variant of the 2E-VRP, similar to the model in this study, is presented
by Schiewe and Stinzendorfer (2024b). A hybrid truck-cargo bike model is used,
where the truck both delivers packages and serves as a mobile mini-depot. When the
bike runs out of packages, both vehicles meet at a customer location to reload and
continue simultaneous deliveries. While the model by Schiewe and Stinzendorfer
(2024b) optimizes routes for both vehicles, the model in this study represents a special
case where the truck’s route and handover locations are predefined, and only the bike’s
tour is optimized.

Based on the literature, the two-echelon vehicle routing problem (2E-VRP) has
been extensively studied; however, to the best of our knowledge, no multi-objective
2E-VRP model has been proposed that integrates public transportation in the first
echelon and small, potentially self-driving vehicles in the second echelon, focuses
on optimizing the second-echelon, while simultaneously optimizing the delay of
the first-echelon vehicle and the tour cost of the second-echelon vehicle as distinct
objectives. Furthermore, the application, comparison and complexities of various
scalarization techniques of this specific bi-objective model has not been explored.
Therefore, the primary contribution of this research is the development of a novel
bi-objective optimization model aimed at minimizing both the delay in the first echelon
and the tour cost in the second echelon. The secondary contribution is the application
and comparison of different scalarization methods to solve the model, providing
insights into the trade-offs between the objectives through the use of Pareto-optimal
solutions.
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4 Problem description and model formulation

The problem is a variant of the Capacitated Vehicle Routing Problem (CVRP), where
for each tour, all customers have to be visited, the demands are known, all vehicles are
identical and they all belong to the same depot. The objective is to minimize the total
travel cost, which is the sum of each route’s cost. Each route is a vehicle tour such that:

1. each tour starts and ends at the depot;
ii. each customer is visited once;

iii. the sum of the demands of the customers visited in a tour does not exceed the
vehicle capacity.

As stated in the introduction, the combined second-echelon vehicle routing
problem includes two echelons of transportation. The first-echelon vehicle is a public
transportation vehicle known as a line-bound vehicle, which has fixed stations and
follows a fixed schedule to make all deliveries. The nodes of the line-bound vehicle are
denoted by the set {71, ..., 7.} := L and the corresponding scheduled departure times
are 1(1y) < --- < t(7¢). In defining the set of nodes of the first-echelon vehicle tour,
we add a node for the depot, DEP ¢ = 19 = 1¢41. The first-echelon vehicle tour is then
givenby F' = L U{DEPy}. The hand-over locations of the first echelon vehicle’s tour
(i.e. the locations where the second-echelon vehicle meets the first-echelon vehicle to
pick up the packages), can be represented by the set {1, ..., ks} C L. These nodes
are also known as the combined nodes. F = (DEP; =1, 71,...,7¢, T¢+1 = DEPy)
denotes the first-echelon vehicle tour.

Given that every pair of distinct vertices is connected by a pair of unique edges (one
in each direction), we present the tour of the second-echelon vehicle as a complete
digraph G = (V,E) with V = L U S U {DEP}, where S := {vy, ..., vy} denotes
the set of customer locations and DEP = 5o = s¢41 represents the depot. The edge
costs c(e), e € E and capacity C € N, of the second-echelon vehicle are given,
together with the demand of all customers v € S. It is assumed that the cost function ¢
satisfies the triangle inequality in G, where the shortest path cost between two nodes
is stored as the corresponding edge weight. Moreover, we assume the demand of each
customer v € S is equal to one, the second-echelon vehicle cannot be transported,
and its capacity is limited to 1. The second-echelon vehicle tour is denoted by
S = (DEP = s, s1,. .., ¢, S¢+1 = DEP). The second-echelon vehicle has to meet up
with the line-bound vehicle at the hand-over locations regularly in order to be reloaded
with the required deliveries. Since it starts without any load, the first visited node after
the depot has to be a hand-over location, therefore we assume s = 7. For tour § to be
feasible, the tour has to cover the demand of all nodes, i.e., each node has to be served
by the second-echelon vehicle. We assume that the both tours F" and S are non-empty.

Problem 2. The combined second-echelon routing problem (CSERP) using the bi-
objective approach, is to find a feasible tour S = (DEP = sg, 51, ..., ¢, S¢+1 = DEP)
of the second-echelon vehicle such that the delay of the first-echelon vehicle and the
generalized costs of the second-echelon vehicle tour are minimized.

15



4.1 Cost structure

In transport economics, generalized cost refers to the total cost of a journey, encom-
passing both monetary expenses (like fares, fuel, and tolls) and non-monetary costs
(such as travel time or distance). The most important distinction we make is between
independent costs and synchronized costs, similar to Schiewe and Stinzendorfer
(2024b), which are used to represent different parts of the objectives.

Definition 3. (Independent costs [Schiewe and Stinzendorfer (2024b)]). The in-
dependent costs are the pure driving time or distance (i.e., a weighted sum of the
distance covered) covered by the first- and second-echelon vehicles, respectively.
For some objectives, these costs can be calculated individually and allocated to the
relevant edges as c(e). The route of the first-echelon vehicle has fixed stations and
schedules, which means that the specific sequence of stops and edges in the first
echelon’s tour are predetermined and do not vary during optimization. When the
first-echelon route is fixed, the objective function no longer needs to account for the
optimization of these routes. The fixed independent costs for the first-echelon vehicle
tour F' = (1q,...,7, 741 = DEPy) can be formulated as:

!
cr(F) = cp(n i)
i=1
As previously mentioned, a hand-over location must be the second-echelon vehicle’s
first visited node following the depot. The associated edge (DEP, s;) is not included
in the optimization problem and is fixed. Therefore, we define the costs of the
second-echelon vehicle tour S = (s, ..., s, s;+1 = DEP) as follows, excluding the
associated weight

[

cs(S) = Z cs(Si, Siv1)

i=1

Definition 4. (Synchronized costs [Schiewe and Stinzendorfer (2024b)]). The comple-
tion time of the second-echelon vehicle and the delay of the first-echelon vehicle, or
the time both vehicles meet at the last combined node «,, which is at least #(k,), must
be modeled using synchronized costs. This is due to the fact that we need to account
for their waiting times at the hand-over locations. For the first-echelon vehicle, we
extend the notation and define the synchronized costs for a path from node 7; to node

7; (where i < j) regarding the first-echelon vehicle’s tour F' = (71, ..., 7,) is given by:
j-1
¢y (Tt F) i= ) e (T Tus),
h=i

Similarly the second echelon-vehicle costs of a path from node s; to node s; (where
i < j)regarding tour S = (s, ..., s, s;+1 = DEP) by:
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j-1
cs(si,8;,8) = Z cs(Shy Sh+1),

h=i
It is necessary to explicitly simulate the coordination of both tours rather than treating
the optimization of one or both of their durations as an independent objective. The
synchronization of both tours must be ensured at each combined stop; that is, the
vehicles must wait for each another because the duration to the last combined node
must be long enough for both vehicles to visit all intermediate stops. The duration
between two successive combined nodes k; and «;4; on the corresponding tour, is the
cost of the slower vehicle (the vehicle with the higher summed costs) between the two
nodes. To determine the costs of the tour, we need to sum up these durations between
all successive combined nodes, as well as the summed costs (of the corresponding
vehicle) between the last combined node «; and the depot.
We assume that both vehicles arrive to the first combined node «; simultaneously
and do not include the expenses of the depot’s fixed outgoing edge, as we did in the
independent case of the second-echelon vehicle. For the first- and second-echelon
vehicle tours, respectively, this leads to the following definitions:

-1

cr(F) = Z max {c /(k;, kis1, F), ¢s(Kis ki1, S) } + ¢ (ki, DEPg, F) (D
P

-1
CTS(S) = Z max {Cf(Ki7 Ki+1, F)7 CS(KI" Ki+1, S)} + CS(K17 DEP’ S) (2)
i=1
The first edge of the second-echelon vehicle tour is not part of the optimization
problem.

4.2 MIP Formulation

In this section, the MIP formulation is presented with one first-echelon vehicle and one
second-echelon vehicle based on independent and synchronized (time-based) costs.
The objectives are given as follows:

min  fj(x) = Delay of first-echelon vehicle

min  f>(x) = Tour costs of second-echelon vehicle

where x represents the decision variables, including the vehicle routes.

We define binary variables x(, ), which indicate whether the corresponding edge
(v,w) € E is used by a second-echelon vehicle. The variables d, represent the costs
of the second-echelon tour starting at 7y or so up to node v € V, taking into account
that both vehicles have to wait for each other at the combined nodes. More intuitively,
d, represents the time when the second-echelon vehicle reaches node v. Lastly, we
define the variables ¢, for v € V, which represent the number of goods delivered by
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the second-echelon vehicle to node v and all preceding nodes, starting after the last
reloading at a combined node. This accounts for the limited capacity C. The resulting
MIP is shown in (3).

The first objective aims to minimize delays in the first-echelon vehicle’s tour, ensuring
precise synchronization with the second-echelon vehicle. The completion time of the
second-echelon vehicle and the delay of the first-echelon vehicle, i.e., the time both ve-
hicles meet at the last combined node «;, is atleast («;). The variable d,, represents the
time when the second-echelon vehicle reaches the last hand-over location k.. Therefore
the delay of the first-echelon vehicle is formulated as the difference between the time
when the second-echelon vehicle reaches the last hand-over location and the expected
arrival time as shown in (3a). In the second objective, (3b), the goal is to determine a
feasible tour for the second-echelon vehicle, S = (DEP = sy, 51, ..., s, s;+1 = DEP),
that minimizes the generalized costs of the tour. This is formulated as the weighted sum
of the time-dependent costs of the second-echelon vehicle (i.e., dpgp) represented in
the first part of the objective function and the costs that are independent of waiting times
(e.g., pure travel times), represented by the total costs of all used edges in the second part.

min  dy, —t(k¢) (3a)
min w; dpgp + W7 Z Xe - c(e) (3b)
ecE
e#(DEP,k})
S.t.

X(DEPx;) = 1 (3¢)
D X =D X 1, WeL (3d)

weVv wevV

WwW#v W#vy
Z X(yw) = Z X(wy) = 1, Vves (36)

wevV weV

W#V WFV
¢, <C, YvesS (31)
b+ 1 =6, < (1=x@w) - (C+1), Y(v,w)€e E,weS (3g)
dy, + t(kiv1) < dy,,, +1(ki), Vie[t-1] (3h)
dy+c(v,w) <dy+ (1 =x4,m) M, V(v,w) € E,v # DEP (3i)
x. € {0, 1}, Ve € E (3))
d,,t, >0, Yv eV (3k)

Constraints (3c) denotes the first fixed outgoing edge of the depot of the second-
echelon vehicle, while (3d)-(3e) are flow conservation constraints which ensure that
each first-echelon vehicle node v € L and each second-echelon vehicle node, v € S,
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has exactly one incoming and outgoing edge on the tour respectively. Constraints
(3f)—(3g) ensure that the second-echelon vehicle visits a line-bound vehicle node
for reloading (if necessary) without exceeding the capacity, while (3h)—(3i) ensure
that both vehicles meet at the same time at a combined node and take the resulting
waiting times into account. Here, (3h) and (31) consider the traveling time of the
line-bound and second-echelon vehicle, respectively. Moreover, the latter serve as
subtour elimination constraints for the tour. The constant M has to be chosen large
enough; in particular, it has to satisfy

dy—d,+ max {c(v,w)} < max{d,}+ max {c(v,w)},
v,w)EE vev (v,w)eE

s

if the corresponding x(, ) is equal to zero.
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5 Methodology

This section presents the methodology for solving the bi-objective combined second-
echelon routing problem (CSERP). To tackle the problem’s bi-objective nature, we
apply scalarization—a multi-objective optimization (MOO) technique that transforms
the bi-objective problem into a single-objective one. Specifically, we apply two
scalarization techniques: the weighted-sum method and the e-constraint method. We
consider the case of one second-echelon vehicle when the vehicle capacity is one and
show that the resulting second-echelon scheduling problem is solvable in polynomial
time. A comparative analysis of the scalarization approaches and solution methods is
also provided.

5.1 Weighted Sum Scalarization

From the assumptions established in Section 4, we draw the following implications
for the problem structure. Each customer node is visited exactly once, and the
second-echelon vehicle is assumed to serve at least one customer in each segment
between two combined nodes, as well as between the final combined node and the
depot. This presupposes that the number of available customer nodes is sufficient to
construct such segments; otherwise, any excess or unassigned nodes can be disregarded.
Additionally, we assume that the sets of first- and second-echelon vehicle nodes are
of equal size, i.e., |F| = |S| = n. If this condition is not initially satisfied, auxiliary
second-echelon customer nodes with zero-cost assignments may be added to achieve
balance. The order of the combined nodes in the second-echelon route S becomes
fixed and known if the system does not allow intermediate deposition or storage of
deliveries between successive combined nodes. In such a case, the second-echelon
vehicle must visit the combined nodes in the exact order that matches the sequence of
customer deliveries without any flexibility to reorder or delay hand-over operations.
Lastly, the second-echelon vehicle is required to begin its tour at a combined node «.

We now apply the scalarization technique known as the weighted sum method to
reformulate the biobjective problem into a single-objective optimization problem
[Marler and Arora (2004)]. In this approach, each objective function is assigned a
non-negative scalar weight that encodes its relative importance in the trade-off. Given

objective functions fj(x), f2(x), ..., fx(x), the scalarized objective is defined as
k
min Z‘ Ai fi(x),
where 4; € R, forall i € {1,...,k}, and the weights are normalized such that
k
oA =1,
=1

This normalization ensures that the scalarized function remains within the same
objective space and facilitates the interpretation of each A; as the relative contribution
of the i-th objective to the overall performance. Geometrically, the set of all possible
weight vectors lies on the (k — 1)-dimensional unit simplex in R¥, which ensures
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convex combinations of objectives. Varying the weight vector A = (4, . .., Ax) allows
us to trace different parts of the Pareto front. In practical applications, a finite set
of normalized weight vectors is typically sampled to approximate the full trade-off
surface, particularly when exact preference information is unavailable or when the
Pareto front needs to be estimated.

We define the weights A; > 0,7 € {1, ..., k} and the weights are normalized such
that Zle A; = 1. The weighted-sum objective of (3a) and (3b) is given by:

min Ay (de, —t(kg)) + A2+ |wi - dpep+ w2 Z X - c(e) 4)

ecE
e#(DEP,«;)

where 1, = (1 — 1)

For simplicity, we re-parameterize the weights as follows: 6; = A1, 6, = ALy,
63 = Arw, and Zle 0; = 1. This gives the equivalent form:

min 01 - (d,([ - Z‘(K[)) + 6y-dpgp + O3 Z Xe * c(e) (5)

ecE
e#(DEP,«1)

Theorem 5. If C = 1 holds, we can solve CSEVRP by computing a minimum-weight
perfect matching, which can be done in polynomial time [Cook and Rohe (1999)].

Proof. The fixed ordering of combined nodes in the second-echelon tour S imposes a
structured relationship between hand-over locations and customer visits. In particular,
for each segment of the tour indexed by i € [£], a customer node v, must be associated
with a preceding combined node «;. This sequence of associations can be abstracted
as a pairing problem between two disjoint sets: the set of combined nodes and the set
of customer nodes.

To formalize this, we construct a complete bipartite graph Gp = (Vp, Ep), where
the vertex set is given by Vg = {k1,...,ke} U {vy,, ..., v, }. A feasible routing plan
then corresponds to a perfect matching M in G g, such that its cardinality is equal to
{k1, ..., ke}| = {vg,, ..., Vs, | (i.e. there are exactly the same number of combined
nodes as customer nodes).

The cost associated with each edge («;, u) € Ep reflects the travel cost incurred
when the second-echelon vehicle departs from combined node «;, visits customer node
u, and proceeds toward the next combined node «;41 (or returns to the depot if i = £).
These edge weights capture the second-echelon routing costs defined by the objective
and are used to determine a minimum-cost matching that aligns with the fixed node
sequence in S. For the tour S = (51 = k1,52 = Vg, ..., 820 = Vs,, 52041 = DEP), the
weighted costs are:
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2
01 - (dx, —t(k¢)) + 62 - dpgp + 03 - Z c(si, Si+1)
i=1
-1
= (01 +62) Z max {7(ki1) — 1(k;), c(ki,Vgi) +c(Vgi, kiv1)} =011 (k¢)

i=1

=dy¢

+65 (c(k¢, Vse) + c(vge, DEP))

=dpep—dy¢

¢
+03 Z (c(kis vgi) + c(Vgis Kiz1))
i=1

To minimize (5), we define the edge weights w(«;, u) as:

(01+62) max{t (k1) — t(k;), (ki u) +c(u, kiw1) }+03 (c(kiyu) + c(u, k1)), i € [6-1]

fixed fixed (6)
(62 + 63) (c(ke,u) + c(u, DEP)) — 01t(kp), i=¢ (7

Then calculate a minimum-weight perfect matching in G 5 whose weight represents
the total weighted costs of the second-echelon vehicle (3b).

Remark. Since the term 6, (d,([ - t(Kg)) in the weighted-sum formulation in (5)
accounts for deviations from the scheduled timeline, the resulting negative term,
—01t(k¢), in the edge weight in (7) functions as a penalization mechanism, allowing
the trade off between the delay of the first echelon vehicle and the generalized costs of
the second echelon vehicle in the CSERP.

We consider a basic example to demonstrate the use of this approach. We use
two combined nodes k| and k, and two customer nodes v; and v; to ensure a perfect
matching. The second-echelon vehicle cost of traveling between the nodes, c¢(k;, vy;)
in time unit of minutes, and scheduled departure times of the line-bound vehicle from
the combined nodes, ¢(«;), are given as follows:

* c(ky,vy) =10
* c(ky,vp) =15
* c(kp,vy) =12

* c(k2,v2) =8

22



* ¢(vi,DEP)=3
* ¢(vy, DEP) =18
* t(k1) =2,t(kp) =8

The problem is visualized in the bipartite graph in Figure 2.

@ — 10 %1

. s o ~

@ 77777 8 }j

Figure 2: A bipartite graph showing tours of the second-echelon vehicle in dashed
red edges with respective distance costs. Possible restocking stations are marked by
dark circles while customer locations are marked by squares.

We set the weights for the scalarized objective (5) as:
01=07, 6,=0.2, 63=0.1

The edge weights from each combined node to a customer node, w (k;, 1), are computed
as follows using the formulas derived in (6) and (7):

For i,
w(ki,vi) = (01+62) max {t(k2) — t(k1), c(k1,vi) +c(vi, k2) }+03 (c(k1,v1) +c(vi, k2))

= (0.7 +0.2) x max {6, 22} + (0.1 x 22)
= (0.9%x22)+ (0.1 x22)
=22

w(k1,v2) = (01+62) max {t(k2) — t(k1), c(k1,v2) +c(va, k2) }+03 (c(k1,v2) + c(v2, k2))

= (0.7 +0.2) x max {6, 23} + (0.1 x 23)
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= (0.9 x 23) + (0.1 x 23)
=23

For «3,
w(k2,v1) = (62 + 63) (c(k2,v1) + c(vi, DEP)) — 01t(k2)

= (0.2+0.1) x (15) = (0.7 x 8)
=-1.1

w(k2,v2) = (62 + 63) (c(k2,v2) + ¢(v2, DEP)) — 0;1(k2)
=((0.2+0.1) x26) — (0.7 x 8)
=22

The edge weights are shown in the following matching graph in Figure 3.

Figure 3: The bipartite graph is updated to reflect the computed edge weights w(k;, u).

The objective is to identify a perfect matching that minimizes the total cost, i.e., the
sum of edge weights. Consider the following feasible matchings and their associated

total weights:

Matching 1: (kq,v1), (k2,v2) =  Totalcost=22+2.2=24.2
Matching 2: (k1,v2), (k2,vy) = Total cost=23 -1.1=21.9

Since Matching 2 yields the minimum total edge weight, it is selected as the optimal
solution. This matching represents a feasible assignment for the second-echelon
vehicle that jointly minimizes its routing cost while satisfying the delay constraints

imposed on the first-echelon vehicle.
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5.2 e-Constraint Scalarization

We consider an alternative scalarization approach known as the e-constraint method,
which minimizes one objective while treating the remaining objectives as inequality
constraints [Haimes et al. (1971)]. Specifically, we minimize the cost associated
with the second-echelon vehicle while imposing an upper bound & € R on the delay
incurred by the first-echelon vehicle at each combined node «;. The delay constraint
(8b) restricts feasible solutions to those where the delay at every handover location
does not exceed the specified threshold €. By systematically varying &, we generate
the Pareto frontier of trade-offs between cost and delay. In time-critical logistics
systems, some delay may be unavoidable but must be tightly controlled to ensure
effective subsequent operations. This reflects a common practical distinction: we are
willing to pay more to stay within service constraints, but not to reduce delay beyond
what is operationally necessary. This rationale also aligns with the structure of the
g-constraint method, which is particularly effective when one objective naturally acts
as an operational limit [Mavrotas (2009)]. The resulting e-constraint scalarization
formulation of the CSEVRP is as follows:

min  wj - dpgp + W> Z Xe - c(e) (8a)
ecE
e#(DEP,k})

s.t. dy, —t(ke) < € (8b)
X(DEP,) = 1 (8¢)
Z X(vw) = Z Xwy) <1, VYvelL (8d)

wevV wevV

wW#v wW#vy
Z X(y,w) = Z X(wy) = I, VYves (86)

weVv wev

W#v W#v
{6, <C, VYvesS (81)
b+1 =6, < (1=x4w) (C+1), V(v,w)€eE,weS (8g2)
dy, + t(kis1) < dy,,, +t(k;), Vie[t-1] (8h)
dy+c(v,w) <d,+(1-x4w) M, VY(v,w)e€E,v+DEP (8i)
x. €{0,1}, Vee€eE (8))
d,,t, >0, VYveV (8k)

We use the problem definition from Theorem 5 and derive the edge weights for the
objective function (8a) for the minimum weight perfect matching algorithm.

Consider the tours F = (DEP; = 19, 71,...,7¢, T¢41 = DEPy) and S = (51 = k1, 52 =
Vs .. .5 820 = Vg, S2041 = DEP). The objective (8a), representing the cost associated
with the second-echelon vehicle, can be expressed as:

20
widpep + w2 ) (S, Siv1)
P
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-1
= w1 () max {t(kis1) = 1(K), c(Ki, Vi) + (Vi Ki1) }
i=1

+(c(ke, vs,) + c(vs,, DEP)))

{
+(U2 Z (C(Ki’ VS,') + C(VSp Ki+1))
i=1

To minimize the objective (8a), we define the edge weights between combined nodes
k; and intermediate customer nodes u as:

wimax { 1(ki1) = 1(k;), (ki) +c(u, ki) }+ w2 (c(kiyu) +c(u, ki1)), i€ {£~1}

W(Ki’ M) = fixed fixed

(w1 + wy) (c(ke,u) + c(u, DEP)), i=¢
)

A minimum-weight perfect matching is then computed on the auxiliary bipartite graph

G p with edge weights defined in (9). The weight of this matching directly corresponds

to the total weighted cost described in (8a).

5.2.1 Delay bounds ¢ = and € =0

We now analyze how the minimum-weight perfect matching problem incorporates the
epsilon constraint (8b). Since the feasible region is determined by the choice of the
vector &, which bounds the allowable trade-off between the two objectives, we focus
on the two extreme bounds (anchor points) on the Pareto front:

Casel: ¢ =0

When ¢ is set to an arbitrarily large value, the delay constraint becomes non-binding.
Specifically, since the constraint d,, — ¢(k;) < € is always satisfied for any feasible
matching when & = oo, it imposes no restriction on the solution space. Consequently,
the delay term is effectively ignored, and the optimization problem reduces to
minimizing the second-echelon vehicle cost :
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min w1 dDEp + w7 Z Xe * c(e) (1021)

ecF
e#(DEP,k})

S.t. X(DEP,k;) = 1 (IOb)
D X =D X 1, Vel (10¢c)
weV wevV
W#V wW#V
D X =D X =1, Wes (10d)
weV wev
W#V W#Y
6, <C, VYves (10e)
bi+1=6, < (1-=xuw) (C+1), V(v,w)eEweS (10f)
dey +1(kix1) < di,, +1(k7), Vi€ [ 1] (10g)
dy+c(v,w) <dy+ (1 -x4) M, VY(v,w)e€E,v+DEP (10h)
x. €{0,1}, VeeE (10i)
dy,t, >0, VYveV (109)

This corresponds to the classical minimum-weight perfect matching problem, in which
the second-echelon vehicle’s cost is minimized with no consideration of the delay of
the first-echelon vehicle.

Case2: =0

To enforce no delay for the first-echelon vehicle at all combined nodes «;, the vector
€ may be set to zero, i.e., € = 0 € R. In this case, only edges satisfying zero delay
can be included in the matching. The edges (k;, #) in G p for which the time taken by
the first-echelon vehicle to travel from a combined node to the next combined node
exceeds the total cost of a second-echelon vehicle tour from the same combined node
to the other are removed from the tour. The restricted edge set is defined as:

Eo = {(ki,u) : t(kis1) — t(k;) = c(ki,u) + c(u, kiv1) }

and the corresponding subgraph Gy = (V, Eg). The problem becomes:
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min wi dDEp + wy Z Xe * c(e) (1121)

eckEy
¢#(DEP,k))

st. dy, —t(ke) =0 (11b)
X(DEPk;) = 1 (11c)
D X =) X <1 WeL (11d)
weV weV
W#V W#V
ZX(V,W) = ZX(WJ,) =1, VYves (11e)
wevV wev
W#V W#v
t, <C, VYves (11f)
O+1-0, < (1 =x0w) - (C+1), V(v,w)eE,weS (11g)
dy, + t(kiv1) < dy,,, +t(k;), Vie[t-1] (11h)
dy+c(v,w) <dy,+(1-x4w) M, VY(v,w)€E,v+DEP (11i)
x.€{0,1}, Ve€ekE (11j)
dy,t, >0, VYvevV (11k)

The zero delay matchings (if they exist) form a limited subset of all possible matchings,
as the feasible region shrinks, often consequently leading to an empty feasible set.
If no perfect matching exists in G, then the problem becomes infeasible under the
bound & = 0. This infeasibility indicates that the first-echelon vehicle cannot achieve
zero delay even under an ideal matching, thereby establishing a fundamental lower
bound on the achievable delay. The solution corresponding to € = 0 represents the
best-case delay scenario for the first-echelon vehicle, but is likely suboptimal for the
second-echelon vehicle due to the constrained search space.

5.2.2 MIP formulation of the matching problem

We use the computed edge weights w(k;, u) in (9) and define the binary variable
v(k;, u) which indicate whether a customer node u is visited between «; and ;.. We
also define the variable d(k;, u) which represents the delay of the first echelon vehicle
when a customer node u is visited between «; and «;.1.

max{(c(ki,u) + ¢ (u, ki1)) = (t(kir1) = 1(k:)),0} i € {€ 1}
d(ki,u) = (12)
0, i€{l}

The MIP formulation of the matching problem is given as follows:
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min > w(ki,u) - y(ki, u) (13a)
(ki,u)EE

s.t. Z d(ki,u) - y(ki,u) < e (13b)
(ki,u)EE

Z y(ki,u)=1, VYueV (13c)

Kk;€J:
(ki,u)EE

Z y(ki,u) =1, Vi €J (13d)

ueV:
(K,‘,M)EE

v(ki,u) € {0,1}, V(k;,u) € E (13e)

In the case where & = 0, the matching is optimized over the restricted edge set Ey.

5.3 Algorithm

Based on the theoretical results in sections 5.1 and 5.2, we suggest the following
algorithm for finding non-dominated solutions to the bi-objective problem combined
second-echelon routing problem (CSERP) for one second echelon vehicle with capacity
one C = 1. The problem is solved using one of the presented scalarization methods, the
e-constraint scalarization method, which guarantees that all non-dominated solutions
can be found, thus this will be investigated. For the given line-bound vehicle tour

F, combined nodes (ki, ..., k¢) and set of customers {vi,..., vy}, we define the
complete bipartite graph G = (Vp,Ep) with Vg = {k; :i=1,...,} U{vg : i =
1,...,¢}. As stated in the proof of Theorem 5, any feasible solution is an assignment

of a customer v; to the preceding combined node «; for all i € [¢]. Consequently, the
edge weights w(k;,u) inGgfork; € {k;:i=1,...,}andu e {vy :i=1,...,¢}
correspond to the weighted second-echelon vehicle costs (driving from node «; via u
to k;;+1) with respect to the objective function. Those weights are defined as described
in (9). Algorithm 1 shows the complete procedure.

Algorithm 1 e-constraint scalarization

1: Define Gp = (Vp, Ep), weights w(k;,u) fork; e {k;:i=1,..,¢},u e {vy i =
1,...t},e={e1,....em}
2: Initialize P « 0
3: for g; € e do
Compute e-constraint scalarization on G g (using MIP in section 5.2.2) with
optimal solution A,

5: Compute y., < fi(4%) and y., <« f2(1%)
6: P« PU{(ysl’ysz)}

7: end for

8: return
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6 Experimental evaluation

This section presents the implementation of the algorithm from Section 5.3 on real-
world data, with the aim of evaluating the resulting Pareto front and demonstrating
the practical effectiveness of the proposed e-constraint model. For the computational
study, we restrict ourselves to the objective function with weights w; = 0.2 and
wy = 0.8 as this minimizes the makespan of the second-echelon vehicle (dpgp).

The algorithm has been implemented in Python, and tests were performed on a
64-bit system with an Intel® Core™ i5-6300U CPU at 2.40 GHz and 8 GB of memory.

6.1 Data Description

This computational analysis utilizes the goevb dataset from the LinTim scientific
software toolbox [Schiewe et al. (2024)], which models the public bus network in
Gottingen, Germany. Given the lack of existing benchmarks tailored to our model, this
dataset offers the most appropriate foundation. Bus line 115 was chosen for its strong
resemblance to the operational scenario under consideration. As illustrated in Figure
4, the route originates in the northwestern outskirts of the city, proceeds through the
central district, loops around in the eastern neighborhoods, and then retraces its path
back. The violet marker in the upper left of the map indicates the departure point
(depot) of the line-based vehicle. Meanwhile, the depot for the second-echelon fleet
is strategically positioned in the first suburban area, adjacent to a supermarket with
enough space for vehicle dispatch.

A total of 32 station locations are marked with small blue dots, while customer
nodes—selected randomly—are shown in red. Since the bus route involves a turnaround
at its final stop, the full path includes 61 service points, representing the complete set
of nodes along the outbound and return segments.
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Figure 4: Visualization of the Géttingen area showing the path of bus line 115,
including its 32 stations (indicated by small blue markers), the origin of the line-bound
vehicle (highlighted with a large violet marker in the upper left), the second-echelon
depot location (shown as a large green marker positioned in the early section of the
route), and 32 randomly selected subset of customer locations represented by small
red dots.

In contrast to much of the existing literature, which typically relies on Euclidean
distances—particularly in drone-based routing—we employ the actual path network
to compute distances. This approach enables the inclusion of various second-echelon
vehicle types beyond drones. Although delivery drones can reach speeds of up to 128
km/h, our model incorporates additional factors such as takeoff, arrival, and package
drop-off times. As a result, we assume an average effective drone speed of 60 km/h.

6.2 Results

In this section the results obtained from implementing the &-constraint method is
presented. In order to analyze the trade-off between the two objectives; minimizing the
delay of the first-echelon vehicle and the generalized tour cost of the second-echelon
vehicle, we compute the Pareto front. The formulated a Mixed-Integer Programming
(MIP) model in section 5.2.2 is implemented to generate the set of Pareto points. The
model includes 65 constraints, 1,024 binary decision variables, and 2,961 non-zero
elements, reflecting the complexity of the distribution network and the granularity of
the decision space.

The optimization model was implemented using Python 3.8.12 and its optimization
library Python MIP. Optimizations were solved successfully solved using the CBC
solver. Despite the model’s size, the solver handled it efficiently. Conflict graph and
symmetry detection techniques were applied to simplify the model structure, but
no significant reductions were obtained, indicating the formulation did not contain
redundant or easily reducible symmetries. Importantly, the feasibility pump heuristic
of the solver succeeded in finding a feasible solution with an objective value of 72.8
within just 0.02 seconds. This performance, notably achieved without requiring
branch-and-bound iterations, shows both the tractability of the model and that the
heuristic was effective for this instance.

As mentioned in the previous section, in this approach, the the tour cost of the
second-echelon vehicle is minimized, while the delay of the first-echelon vehicle is
bounded by an & threshold. The ¢ values were systematically varied over a range to
explore the trade-off surface between these two objectives. We used a fixed stepwise
increment for & values, ranging from 32 to 76 minutes. The tour cost was minimized
under each of these delay constraints, and the resulting objective pairs were plotted
to form the Pareto front. Despite the broad sweep of allowable delay bounds, the
model returned only a few distinct non-dominated solutions. These are depicted in
the Pareto front graph in figure 5, where the horizontal axis represents the delay
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of the first-echelon vehicle fi(x) and the vertical axis represents the cost of the
second-echelon tour f;(x).

Pareto Front (e-constraint Scalarization)

73.6 1

73.5 7

73.4 1

73.3 7

73.2 7

73.1 7

73.0 4

f(x): Tour cost of second-echelon vehicle

72.9 1

72.8 7

T T
32.0 32.2 32.4 326 32.8 33.0
fi(x): Delay of first-echelon vehicle

Figure 5: Each point represents a non-dominated solution: improving one objective
necessitates degrading the other. For example, minimizing the delay to its lowest value
(around 32 minutes) results in a cost of around 73.6, while increasing the delay to
about 33 minutes reduces the cost to approximately 72.8. These changes, although
numerically small, are significant in operational terms, highlighting the potential
impact of even minute planning decisions.

As shown in the figure above, the resulting Pareto front is composed of only two
closely clustered points. This suggests that most delay constraints (i.e., £ values)
yielded identical or nearly identical tour costs, with variation occurring only in a
narrow subregion around & ~ 32-33 minutes.

This implies a high degree of correlation between the two objectives. That is,
minimizing tour cost tends to simultaneously yield minimal delay, and vice versa.
Consequently, imposing tighter delay constraints did not force the optimizer to com-
promise heavily on the cost objective. This results in a Pareto front with very few
distinct points, regardless of the & value.

This objective alignment can often occur in systems where operational efficiency
in one echelon inherently supports efficiency in the other (e.g., well-coordinated
first-echelon deliveries reducing delays and aiding second-echelon routing). However,
this also limits the Pareto front’s diversity—important trade-offs may remain hidden.
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To justify this claim, we conduct a comparative analysis with randomly generated
weights to allow for a broader and less biased exploration of the solution space. More
specifically, instead of using the epsilon weights (9), we use randomly generated
weights for the objective function of the MIP formulation in (13a) and the allowable
delay bounds were relaxed to fall between 10 and 40 minutes. The results are plotted
in figure 6 below:

Pareto Front (e-constraint Scalarization)

f {2} (x): Cost of second-echelon vehicle
H
o
1

32 33 34 35 36 37 38 39 40
f {1} (x): Delay of first-echelon vehicle

Figure 6: Pareto front generated using e-constraint scalarization with randomized
weights of the objective function in the MIP formulation (13a). The plot shows
the trade-off between the delay of the first-echelon vehicle and the tour cost of the
second-echelon vehicle, revealing a more granular front despite the shorter range of
allowable delay bounds.

Here, a far more continuous and well-distributed Pareto front emerges. Each point
still represents a non-dominated solution under the e-constraint framework, but the
coverage of the trade-off space is much richer. This demonstrates that modifying
the weighting logic for generating & weights (9) of the objective function could
significantly improve the diversity and interpretability of the Pareto front.
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7 Conclusions and Discussion

In this thesis, we address the critical challenge of optimizing last-mile logistics, with
a particular focus on handling multiple, often conflicting objectives. In real-world
industrial applications, optimization problems are rarely driven by a single cost
criterion. This is especially evident in the distribution of perishable and health-related
goods, where both cost efficiency and timely delivery are essential. As a result, there
is growing interest in understanding and managing trade-offs between competing
objectives in such logistics systems.

To tackle this challenge, we introduce a bi-objective optimization framework for
the Combined Second-Echelon Routing Problem (CSERP)—a novel extension of the
classical Capacitated Vehicle Routing Problem (CVRP). This model captures the
complexity of multimodal, two-echelon last-mile delivery systems. In our formulation,
the first echelon is represented by a line-bound public transport vehicle operating on
a fixed route and schedule, while the second echelon consists of a single-capacity
delivery vehicle responsible for serving customers from designated hand-over points.

The model explicitly addresses two conflicting objectives: minimizing the delay
experienced by the first-echelon vehicle, and minimizing the generalized tour cost
incurred by the second-echelon delivery vehicle. To capture this trade-off effectively,
we developed a cost structure that distinguishes between independent and synchronized
cost components. Independent costs reflect the individual travel costs of each vehicle,
while synchronized costs capture the time-sensitive coordination required at transfer
points.

A mixed-integer programming (MIP) formulation is proposed to solve the CSERP,
incorporating constraints related to vehicle capacities, time windows, and routing
decisions. The model simulates the interactions between both echelons, ensuring
synchronized operations and feasible hand-overs. The delay of the first-echelon vehicle
is quantified as the deviation between its scheduled and actual arrival time at the final
combined node, while the second objective aggregates both the time-sensitive and
travel-related costs associated with the second-echelon tour.

To address the bi-objective nature of the problem, we employ scalarization
techniques, specifically the weighted-sum and e-constraint methods, to reduce the
problem to a tractable single-objective format. This transformation allows us to
systematically explore trade-offs between minimizing delivery delays and reducing
routing costs.

Under realistic constraints—such as the assumption of a single, unit-capacity
second-echelon vehicle—we show that the problem structure admits a polynomial-
time solution using a minimum-weight perfect matching algorithm. This key insight
not only enhances computational tractability but also provides a clear interpretation of
how hand-over timing and route planning interact. Additionally, the weighted-sum
formulation enables flexible sensitivity analysis by reparameterizing objective weights,
offering decision-makers a structured way to prioritize specific operational goals.

A detailed numerical example illustrates the proposed methodology and validates
the approach. By computing edge weights based on the scalarized objective, we
demonstrate how optimal matchings can be efficiently identified using bipartite graph
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representations.

The e-constraint method proves especially valuable in this context, allowing for
direct control over the delay incurred by the first-echelon vehicle while still minimizing
overall routing costs. This is particularly useful in time-sensitive logistics scenarios,
where some delay is tolerable but must remain within strict operational limits. By
fixing upper bounds on delay, the e-constraint method generates a structured Pareto
frontier that not only highlights feasible trade-offs but also reveals how sensitive the
solution space is to tightening or relaxing delay thresholds.

We examine two extreme cases, unbounded delay (¢ = co) and zero delay (¢ = 0),
to showcase the model’s flexibility. The former case prioritizes cost minimization
with minimal regard for timing, while the latter enforces strict hand-over schedules at
the expense of routing flexibility and higher costs. These boundary scenarios help
illuminate the operational extremes and offer practical guidance for setting service-level
expectations.

We also demonstrated how the CSERP can be reformulated as a mixed-integer
matching problem, enabling the use of established optimization software and enhancing
solution efficiency.

Between the two scalarization strategies, we found that the e-constraint method
was more effective for our intended application. Unlike the weighted-sum method,
which can fail to identify non-dominated solutions in certain regions of the Pareto
front, the e-constraint method consistently yields such solutions. Moreover, it allows
decision-makers to directly influence trade-offs between delay and cost by adjusting €
thresholds, making it a more practical and versatile tool. Consequently, the e-constraint
method emerged as the preferred approach for solving the CSERP.

Our computational experiments confirmed the practical utility of the proposed
model and solution strategies. Using the e-constraint method, we generated a Pareto
front that clearly illustrates the trade-off between minimizing delays and reducing tour
costs. Despite the model’s complexity—including thousands of binary variables and
numerous constraints—the solver, aided by heuristics such as the feasibility pump,
was able to identify feasible solutions efficiently.

Interestingly, initial experiments with stepwise € values produced only a limited
number of non-dominated solutions, indicating a strong correlation between the two
objectives: reductions in delay often coincided with reductions in tour cost. This
suggests that in well-coordinated logistics systems, improving performance in one
echelon can naturally benefit the other. However, this tight alignment also limits the
diversity of available trade-offs.

To better explore the solution space, we conducted additional experiments using
randomized objective weights, which resulted in a denser and more continuous Pareto
front, even within narrow delay bounds. This comparative analysis underscores the
importance of using multiple scalarization strategies to fully uncover the range of
viable logistics solutions.

In conclusion, this thesis presents a comprehensive framework for tackling bi-
objective optimization in two-echelon last-mile logistics. The proposed CSERP model,
combined with effective scalarization methods, provides both theoretical insights and
practical tools for decision-makers. The results demonstrate not only the model’s
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tractability but also the value of carefully designing objective functions and constraints
to expose meaningful trade-offs. Future work could extend this framework to multi-
vehicle scenarios, dynamic demand environments, or systems with stochastic travel
times, further bridging the gap between academic models and real-world logistics
challenges.
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