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1. Introduction

1.1 Interpretation of probability

Humankind has always been surrounded by uncertainties. Yet, quantify-
ing that uncertainty with probabilities is a relatively recent innovation
(Bernstein, 1996). Still, people have long thought about uncertainty, for al-
ready ancient Roman and Jewish laws of evidence include degrees of proof
and presumptions to deal with uncertainty in the court of law (Franklin,
2001). Yet, the first written record of probability calculus comes from the
1560s, when Gerolamo Cardano wrote about the sum totals when rolling
three dice and how the odds of those totals arose from the combinations of
dice rolls that could produce them (Bellhouse, 2005).

All the earliest examples of probability calculus focus on games of chance,
including writings of Cardano, Pierre de Fermat, Blaise Pascal, Christiaan
Hyugens, and even Galileo (Hacking, 2006). Because fair dice or decks of
cards provide a discrete set of possible outcomes which can all be assumed
equally likely, the underlying probabilities are easily understood. More
challenging mathematical problems arise when the number of cards or
dice increase, but this does not require substantial changes in problem
framing. However, as events with equally likely outcomes rarely appear
outside games of chance these early advances in probability theory found
little practical use (Bernstein, 1996).

Probabilities cannot be observed or measured directly, which may in part
explain why it took so long for probability theory to rise to prominence.
Advances in the field of statistics eventually led to new applications for
probability theory, finding uses in insurance pricing and policy decisions
(Bernstein, 1996). Statistics and probability seemed like such a perfect
match, that for a time, probability was widely interpreted as the frequency
of a specific outcome when a trial was repeated infinitely many times.
Whilst this frequentist interpretation explains well the probabilities of
dice rolls and variations found in statistics, it is not particularly helpful
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for determining the probabilities of future events (French, 1986). Modern
simulation models have made it possible to conduct statistical analysis
about the future in well-understood physical systems by varying the initial
conditions or simulation parameters (Hammersley, 2013)—an approach
that is used in meteorological forecasting (Wilks and Wilby, 1999) and
estimating the effects of weapon systems (Brandstein and Horne, 1998),
for example. Yet, not all systems are easy to simulate, least of all human
behavior.

Because of the difficulty or sheer impossibility of estimating the fre-
quency or propensity of future events (or human activity) in many contexts,
probabilities can instead be treated as degrees of beliefs in an event (Cor-
field and Williamson, 2001; Howard and Abbas, 2016; French, 1986; Raiffa,
1968). This interpretation is called Bayesian probability in honor of 18th-
century mathematician Thomas Bayes, who first presented a method for
updating beliefs about probabilities that is now called Bayesian inference
(Bernstein, 1996). The subjective probability interpretation itself, however,
should perhaps be more accurately attributed to Pierre-Simon Laplace
(2012). Nowadays, subjective Bayesian probabilities have become the norm
in fields like game theory and decision analysis, which deal with human
decision-making in particular (Corfield and Williamson, 2001).

It is a matter of philosophical debate, whether the true nature of prob-
ability is statistical, subjective, or simply some hidden physical property
(Kyburg and Smokler, 1980). Still, all these interpretations agree that
probabilities can be treated in a rigorous mathematical manner following
the rules of probability theory, a branch of mathematics with a well-defined
set of axioms governing probabilities (Kallenberg, 1997). Thus, the ex-
act probability interpretation rarely affects the validity of mathematical
methods but can have implications on how the probabilities should be
assessed and interpreted (Kyburg Jr, 2012). The author of this dissertation
subscribes to the subjective Bayesian school of thinking.

1.2 Decision theory

The primary reason that probability theory is so widely applicable is that
humans live in a world full of uncertainties. This is not an artifact of
the modern world but has existed throughout history (Bernstein, 1996).
Humans even seem to have evolved to have some innate understanding
of probabilities (Fontanari et al., 2014). While the specific problems faced
by humans have changed with the transition from hunter-gatherers to
modern societies, uncertainty has not disappeared.

The formal answer guiding choices between uncertain alternatives has
been known "ever since mathematicians first began to study the measure-
ment of risk" (Bernoulli, 2011). Laplace (2012) called it mathematical hope.
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Nowadays it is known, among other names, as mathematical expectation
or expected value. In its simplest form, it is the sum of possible outcomes
xi weighted by their probabilities pi

E[X ]= x1 p1 + x2 p2 + ...+ xn pn, (1.1)

but extensions also exist for countably and uncountably infinite sets of
possible outcomes (Kallenberg, 1997).

Maximizing expected profits is at the core of most of risk analysis, insur-
ance mathematics, and business optimization. However, for the maximiza-
tion of mathematical hope to become a truly universal answer to decision
problems under uncertainty, one more innovation was needed. In their book
Theory of Games and Economic Behavior (von Neumann and Morgenstern,
1947), John von Neumann and Oskar Morgenstern laid the foundation for
the field of decision theory (as well as game theory). Introducing what is
today known as von Neumann–Morgenstern (VNM) utility theorem they
postulated a set of axioms describing a rational decision-maker. When
faced with risky outcomes this rational decision-maker should choose an
alternative that maximizes the expected utility, defined as

E[U]= u(x1) p1 +u(x2) p2 + ...+u(xn) pn, (1.2)

where the utility function u provides a measure for the decision-maker’s
preferences over the possible outcomes xi.

The VNM utility theory has been the target of criticism since its inception,
sometimes even quite unjustly (Fishburn, 1989). Still, the theory has been
very influential at the heart of the field of decision theory (Peterson, 2017),
and even some of the critics are advocating for improving or evolving the
theory instead of abolishing it (Kahneman and Tversky, 1979; Schoemaker,
1982; Fishburn, 2013). There is a wide range of literature on the study of
utility functions and their role in human decision-making, but will not be
discussed further here, because this dissertation’s primary focus is on the
other part of equation (1.2), that is, the probability distribution.

1.3 Objectives of the dissertation

This dissertation develops mathematical methods for characterizing proba-
bility information about uncertainties in order to support decision-making.
Publications I and II focus primarily on the analysis of uncertainties
arising from the competing activity of other decision-makers, whereas
publications III and IV focus on quantifying the uncertainties based on
expert judgments.

Publication I explores how adversarial risk analysis (ARA) could be used
to model strategic and tactical decision-making in military combat mod-
eling, where uncertainty arising from the decision processes of different
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actors has traditionally not been incorporated in the analysis. Typically,
these decisions are modeled based on either very simplified game theo-
retical equilibriums or just expert opinion, leaving little to no room for
uncertainty.

Publication II presents new computational methods for performing ARA
without assigning probability distributions for all the involved uncertain-
ties. This is useful especially in security contexts because it avoids assign-
ing probability distributions to adversaries’ actions and utilities. Because
it is difficult to estimate the utility function of even a cooperative decision-
maker, it can be almost impossible to accurately estimate the utilities of
an adversarial decision-maker.

Publication III develops a new approach to cross-impact analysis by map-
ping expert judgments into corresponding probability bounds to different
system outcomes. These probabilities are then used to establish upper and
lower bounds for the system risk and other performance indicators. This
approach makes it possible to form conservative estimates about system
safety even if precise information about associated probabilities is not
readily available.

Publication IV presents a computational approach to using CIA expert
judgments, which may be imprecise and contradictory, to establish a prob-
ability distribution for possible system outcomes. This can facilitate proba-
bilistic analysis based on future events and other difficult-to-model systems,
like the ones often found in ARA.

14



2. Methodological foundations

The language used to describe decision problems is continuously evolving
and quite diverse (Keith and Ahner, 2021), so it is necessary to first
explain some of the terminology used throughout this chapter. Probability
is taken as representing a degree of belief in an event, and an event can
be any statement about the state of reality, for example, "Tomorrow it will
rain." or "Galileo died in December.". A random variable1 is a division of
reality into multiple possibilities. These possibilities, called (the random
variable’s) outcomes, are mutually exclusive and jointly exhaustive events,
so exactly one of them is guaranteed to always happen. A random variable
could be for example "Tomorrow’s highest temperature" with outcomes
{"< 0◦C", "≥ 0◦C and ≤ 20◦C", "> 20◦C"}. The random variables included in
the analysis should always be chosen to be useful for characterizing the
decision problem (Howard and Abbas, 2016).

2.1 Probability theory

The definitions here broadly follow (French, 1986) and (Kallenberg, 1997),
although some of the terms and notation used are different. To start out, let
(Ω,F ,P) be a probability space. For the sake of simplicity, we assume that
the sample space Ω is countable i.e. finite or countably infinite. Because Ω

is countable, all of its subsets can be included in the event set, and thus
the event set F = 2Ω. The set of outcomes X for random variable X is
defined as a countable partition of Ω=⋃︁

x∈X x. This means that X ⊆F , and
that the outcomes x ∈X are mutually exclusive and collectively exhaustive.
Because X ⊆ F , P(x) is defined for all x ∈ X , and also for unions and

1Various names exist for the same concept in the literature, for example, random
variable (Kallenberg, 1997), random event (Harsanyi, 1967), key factor (Bunn and
Salo, 1993), lottery (Raiffa, 1968; Myerson, 1997), distinction (Howard and Abbas,
2016), and uncertainty factor (Seeve and Vilkkumaa, 2022). Ultimately, the term
random variable is used here to keep the terminology as familiar to most readers
as possible. Notably, Publications III and IV primarily use the term uncertainty
factor instead.
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intersections of outcomes.
Because the outcome sets are countable, the random variables are

discrete and defined as a function X : Ω → X such that the preimages
X −1(x)= x, for all x ∈X . Therefore, random variables describe the possible
states of the world by dividing them into specific outcomes. Usually, the
focus of the analysis is on the induced distribution P ◦ X−1, and the choice
of Ω plays little to no role. (Kallenberg, 1997).

It is convenient to also define the sets of possible decision outcomes D

as countable partitions of Ω=⋃︁
d∈D d. Informally, this means that making

decision d implies that we then live in a world we event d happens. This
ensures that for example conditional probabilities such as

pD(ω|d)= pD(ω∩d)
pD(d)

. (2.1)

are defined when x is an outcome of a random variable and d is a decision
alternative. We use PD to denote the beliefs specific to decision-maker D
when the distinction is necessary.

From the perspective of decision-maker D, there is normally no uncer-
tainty about the outcome, so PD(d)= 1 if they choose the decision alterna-
tive d. However, PA(d) may not be certain from the perspective of another
decision-maker A, if they are unable to directly observe the decision. Defin-
ing the decision alternatives as events in the probability space means that
all decision-makers use the same Ω and F and only different P. It also
provides an easy way to define mixed decision strategies if necessary.

2.2 Decision theory

The basic decision problem examined in this dissertation is the expected
utility maximization for a rational decision-maker D

max
d∈D

∑︂
ω∈Ω

pD(ω|d) uD(ω), (2.2)

where decision set D contains all of D’s decision alternatives. D’s proba-
bility estimate of ω given decision d is denoted with pD(ω|d). D’s utility is
represented with a VNM utility function uD :Ω→R.

Real-life problems, however, are not always modeled with just a single
conditional probability distribution, but often involve multiple decisions
and other random variables (Raiffa, 1968). The utility function can also
be expressed as a function of random variable outcomes instead of sample
space Ω to better tie it to the problem structure (French, 1986), resulting
in a utility function of form

u(ω)= f
(︁

X1(ω), X2(ω), ..., XN (ω)
)︁
. (2.3)

In fact, this is often preferable in practice because it is prohibitively difficult
to establish a utility function over a very large Ω otherwise.
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2.3 Games

Decision problems with multiple decision-makers whose interests do not
align are often modeled as games. In this context, a game is a collection of
rules that describes the decision-makers’ decision alternatives, available
information, and random variables (Myerson, 1997). Incorporating another
decision-maker changes the decision-maker D’s expected utility to

E[UD]=
∑︂
a∈A

∑︂
ω∈Ω

pD(ω|a,d) pD(a|d) uD(ω), (2.4)

where a ∈ A represents the decision made by the other decision-maker,
henceforth referred to as Adversary or A.

Finding the best decision alternative d now requires determining how
D believes A will react to the changing environment as represented by
pD(a|d). Without detailing the game, very little can be said about pD(a|d),
because it depends on the information the decision-makers act on. In adver-
sarial risk analysis, the problem is solved by assigning probabilities to the
possible Adversary types represented by pair TA = (uA, pA), corresponding
to A’s utility function and beliefs about probabilities respectively (Banks
et al., 2015).

Whilst it would be technically possible to include the Adversary’s type
in the same probability space as the decision problem, for the sake of
simplicity its probability space will be denoted here with (TA,FT ,PT

D),
where the sample space TA is the set of possible Adversary types TA.
The probabilities are denoted with PT

D to emphasize that these are D’s
subjective beliefs about the Adversary type.

Assuming that the Adversary is also a rational decision-maker, their
decision can now be determined for each possible Adversary type

a(TA)= argmax
a∈A

∑︂
ω∈Ω

pA(ω|a) uA(ω). (2.5)

Here, it is assumed that the Adversary’s decision a(TA) has a unique
solution, but that is not always true. Analyzing the Adversary’s decision
problem may produce one or multiple optimal decisions a, or there may
not be an optimum at all if set A is not finite.

The original decision problem can now be solved as

max
d∈D

∑︂
TA∈TA

pT
D(TA)

∑︂
ω∈Ω

pD(ω|a(TA),d) uD(ω), (2.6)

assuming that mixed (randomized) decision strategies are disallowed.
Incorporating mixed strategies would change the decision alternatives
of all decision-makers into probability distributions over specific actions d
and a, but otherwise, the problem would remain similar.

In practice however, it is difficult to assign well-founded probability
distributions for pT

D(TA), pD(ω|a(TA),d) and especially pA(ω|a), because a
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rational Adversary should be expected to perform an analysis of their own,
effectively mirroring what is done in (2.5) and (2.6). This translates the
problem into a Bayesian game (Harsanyi, 1967), which cannot be solved
without exploring the information upon which the decisions are based on.
Thus, complex games are often not studied purely algebraically, but also
incorporate graphical models that show what information is available at
each stage of the decision process (Myerson, 1997).

2.4 Graphical models

Visual models are an integral part of analyzing complex decision prob-
lems. They provide an easy-to-read representation of the information and
interdependence structure of the decision problem and are easier to con-
struct and interpret than purely algebraic representations. Some of the
simplest and most widely used visual representations are decision trees
(see, for example French, 1986; Raiffa, 1968), and in the case of multiple
decision-maker systems, game trees (Myerson, 1997), but they grow in size
exponentially as the problem complexity increases. Here we opt to use
graph-based models instead that provide largely the same information as
decision trees but do not grow impractically large as quickly.

These networks use directed acyclic graphs to represent dependencies
between random variables. The random variables are often chosen corre-
sponding to some physical systems or easily observable system outputs. In
more abstract problems, like those that concern warfare, counter-terrorism,
or foresight, the random variables will be less concrete, but they are still
chosen in a way that supports analyzing the decision problem at hand
(Howard and Abbas, 2016).

2.4.1 Bayesian networks

A Bayesian network (Pearl, 1985) consists of a graph G = (V ,E) that is a
pair consisting of nodes (vertices) V that correspond to random variables
and edges E that describe the conditional dependencies between the vari-
ables. With a slight abuse of notation, we will use X i to denote both the
random variables and the associated nodes of the network, so we write
V = {X1, X2, ..., XN }. The set of edges E consists of ordered pairs of distinct
nodes E ⊆ {(X ,Y )|(X ,Y ) ∈ V 2 and X ̸=Y }. Because we only discuss directed
(simple) graphs, any mentions of edges refer to directed edges, and the
existence of (X ,Y ) ∈ E implies (Y , X ) ∉ E.

Figure 2.1 shows a simple Bayesian network. The circles represent
nodes and the connecting arrows represent edges. The edges indicate
probabilistic dependencies between the random variables, i.e. an edge
from node X1 to node X2 implies that the conditional probability P(X2|X1)
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X1 X2

X3 X4

Figure 2.1. A Bayesian network.

differs in some way from probability P(X2) for some events in X1 and X2.
Conversely, the lack of a connecting edge implies conditional independence,
i.e. the conditional probability distributions of the two random variables
conditioned on each of their respective incoming edges are independent.
The conditional independence relation is context-specific and depends
on which random variables are included in the network and also on the
direction of the edges.

The probability information associated with a Bayesian network is ex-
pressed as conditional probabilities. The probability of every outcome is
conditioned on other random variables connected by an incoming edge. For
example, in the Bayesian network from Figure 2.1 random variable X2

would have its probability distribution encoded as P(X2|X1). The outcomes
of X3 are not included, because it does not share an edge with X2, and
neither are the outcomes of X4, because the edge between the two nodes is
directed from X2 to X4.

Following from the law of total probability and the definition of condi-
tional independence, these conditional probabilities are sufficient to specify
the probability of any combination of outcomes (x1, x2, ..., xN ). Using the
example from Figure 2.1 again, we get

P(x1, x2, x3, x4)= P(x1)P(x2|x1)P(x3|x1, x2)P(x4|x1, x2, x3) (2.7)

= P(x1)P(x2|x1)P(x3|x1)P(x4|x1, x2). (2.8)

From the computational perspective, these conditional probabilities are
also convenient because they require storing far less information than
probabilities of outcome combinations separately, assuming the network is
sparse enough.

2.4.2 Influence diagrams

Influence diagrams (Howard and Matheson, 2005) can be treated as
an extension of Bayesian networks despite predating them conceptually
(Howard and Matheson, 1984; Verma and Pearl, 1988; Pearl, 2005). Like a
Bayesian network, an influence diagram also consists of a graph G = (V ,E),
but unlike in a Bayesian network some nodes of the graph represent deci-
sions VD ⊂ V and decision-maker utility VU ⊂ V . In other words, an influence
diagram with neither decision nor utility nodes is just a Bayesian network
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(Kjaerulff and Madsen, 2008).

X1 X2

X3 D1 U1

Figure 2.2. An influence diagram.

Figure 2.2 depicts an example influence diagram. The circles represent
random variables as they do in Bayesian networks, the squares represent
decisions, and the hexagons represent utility to the decision-maker. The
incoming edges to decisions indicate that the outcomes of these connected
nodes are known at the time of the decision, whilst incoming edges to
utility nodes indicate which decision and random variable outcomes are
used to calculate the utility of the decision-maker.

The graphical representation is accompanied by a description detailing
if the incoming edges affect the decisions beyond providing information,
for example, if they limit the available decision alternatives in some way.
Typically, with influence diagrams, it is assumed that all the information
the decision-maker had access to during earlier decisions, as well as the
decision outcomes, are known when making later decisions (Shachter,
1986; Tatman and Shachter, 1990), but this assumption can be expressly
omitted in some cases (Mauá et al., 2012; Kjaerulff and Madsen, 2008).

Unlike random variables and decisions, utility nodes do not involve
any uncertainty. They are defined as VNM-utility functions over random
variables and decisions that are connected to the utility node. Typically,
an influence diagram will have exactly one utility node, but sometimes
multiple are used to represent separable components of the utility function
(Tatman and Shachter, 1990).

2.4.3 Multi-agent influence diagrams

Multi-agent influence diagrams (MAIDs) are influence diagrams that can
be used to represent games by including decisions, uncertainties, and
utilities of multiple decision-makers in a single graph (Koller and Milch,
2003). This provides a more compact visual representation of a game than
a game tree would, whilst still making it possible to denote the order of
decisions and uncertain events as well as the flow of information.

In the MAID in Figure 2.3 colors are used to differentiate between agents.
Here, decision-maker D’s decisions as well as utilities and uncertainties
only relevant to them are colored white, whereas vertices associated with
Adversary A are colored gray. Random variable X2 affects the utility of
both D and A, so it is colored with white and gray stripes. Random variable
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X1

D1

A1

X2

UD

UA

Figure 2.3. A multi-agent influence diagram.

X1 on the other hand is entirely irrelevant to A’s decision-making, so it is
colored white.

Sometimes when using MAIDs, coloring the random variables is omitted
because the same relevant information can be deduced from the network
structure and the accompanying descriptions of uncertainties, decisions,
and utilities. However, coloring all nodes helps separate the decision
problems of different actors. Figure 2.4 shows the decision problems of
the two agents separately. Producing these influence diagrams is very
straightforward when the original MAID is colored (Ortega et al., 2019).
The other agent’s decisions are replaced with random variables, and the
random variables and the utilities associated only with other agents are
removed.

X1

D1

A1

X2

UD

a)

D1

A1

X2

UA

b)

Figure 2.4. The decision-maker’s problem a) and the adversary’s problem b) as separate
influence diagrams.

2.5 Cross-impact analysis

Cross-impact analysis (CIA) encompasses several methods built on the
ideas presented in the seminal work of Theodore Gordon and Olaf Helmer
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in the 1960s (Gordon, 1994). CIA methods are crafted for the purpose
of examining and characterizing interdependencies that exist between
random variables, also referred to as uncertainty factors. By having experts
rate these dependencies’ magnitudes and directions on a numerical scale,
it is then possible to draw conclusions about their joint probabilities.

Whilst there are almost as many ways of measuring cross-impacts as
there are cross-impact methods (see e.g. Alter, 1979; Amer et al., 2013;
Bishop et al., 2007), this dissertation exclusively uses the definition first
presented in Publication III, referred to as the cross-impact multiplier
definition. Cross-impact multiplier for outcomes x1 and x2 of random
variables X1 and X2 respectively is defined as

Cx1x2 =
P(x1 ∩ x2)
P(x1)P(x2)

. (2.9)

It is called the cross-impact multiplier, because it describes the relative
change in probability of outcome x1 when x2 is known to happen compared
to when nothing is known about x2. This is because

Cx1x2 =
P(x1 ∩ x2)
P(x1)P(x2)

= P(x1|x2)
P(x1)

. (2.10)

Compared to other cross-impact approaches, the cross-impact multipliers
have some distinct advantages.

i They facilitate estimating numerical probabilities and are thus com-
patible with risk and decision analysis methods as well as graphical
probability models.

ii They are symmetric by design, i.e. Cx1x2 = Cx2x1 as seen from (2.9), which
means that dependencies do not need to be evaluated twice for every
outcome pair.

iii They avoid interacting directly with conditional probabilities, which can
be difficult for non-experts to estimate (Pollatsek et al., 1987).
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3. Research Contributions

This dissertation presents new methods for supporting decision-making
under uncertainty, especially in problems relating to safety and secu-
rity. Publications I-II focus on using adversarial risk analysis (ARA) to
model the decision processes of adversarial actors. Publications III-IV
develop probabilistic cross-impact methods to support risk evaluation and
probability estimation based on expert judgments. The contributions are
summarized in Table 3.1.

3.1 Publication I

ARA combines methods of statistical risk analysis and game theory to
help evaluate risks and choose countermeasures against threats posed by
intelligent and potentially malignant actors. Many of the earliest ARA
applications have focused on counterterrorism. However, despite the long
history of game theory and computational models in the military, ARA has
not been widely applied in combat modeling (at least publicly). Publication
I identifies ways to combine ARA methods with existing combat modeling
tools to broaden the scope of analyses that can be performed. Specifically,
Publication I discusses how ARA could serve to combine results from low-
level simulations to form a picture of how the success of individual units
could affect the wider conflict. The publication also offers a simple example
of how ARA can be used to evaluate the value of information and the
importance of operational secrecy.

3.2 Publication II

Evaluating the rationale of other decision-makers poses a persistent chal-
lenge in applying ARA and other methods based on game theory to real-
world problems. Evaluating the utility function of a cooperative party is
challenging, but finding reliable information about the beliefs and pref-
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Table 3.1. Summary of publications.

Publication Objectives Methodology Results
I To explore and

demonstrate the
potential of ARA
in military appli-
cations.

Adversarial Risk
Analysis,
Combat
Modeling,
Simulation

ARA can be combined with exist-
ing combat models to analyze ques-
tions that would be outside the
original model’s scope, including
decision problems, impacts on the
conflict on a larger scale, and the
value of hidden information.

II To develop new
ARA methods
to analyze prob-
lems in which
probabilities
about the ad-
versary or some
other aspect of
the system are
not known.

Adversarial Risk
Analysis,
Stochastic
Dominance,
Combat
Modeling,
Simulation

The developed method enables
solving all ARA problems repre-
sented by regular influence dia-
grams using stochastic dominance
and decision rules when exact util-
ity functions or probability dis-
tributions are not available. A
case study demonstrates the use
of the developed method for mili-
tary planning.

III To provide a
cross-impact
interpretation
founded on prob-
ability theory
for use with risk
analysis.

Cross-impact
Analysis, Risk
Analysis,
Quadratic
Programming

A new definition for probabilistic
cross-impacts founded on probabil-
ity theory is presented. Applicabil-
ity to risk analysis is demonstrated
with an optimization method and
a case study.

IV To develop a
method for com-
puting scenario
probability dis-
tribution based
on cross-impact
information.

Cross-impact
analysis,
Scenario
Analysis, Least
Squares
Approximation

A new optimization method, which
utilizes cross-impact information
to compute joint probability distri-
butions for random variables. A
Bayesian network can also be con-
structed based on the computed
probabilities. Applicability to real-
world problems is demonstrated
with a case study.
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erences of adversaries can be near impossible. To avoid having to make
unrealistically precise predictions about adversaries’ thought processes,
Publication II develops methods for characterizing their likely actions
based on more general assumptions. Publication II shows how the con-
cepts of partial information, stochastic dominance, and decision rules can
be used instead of some or all of the probability distributions and utility
functions to analyze adversarial risks. The contributions are demonstrated
with a realistic case study about choosing and deploying countermeasures
to unmanned aerial vehicles.

3.3 Publication III

Risk analysis of complex systems calls for the identification, characteriza-
tion, and analysis of numerous possible future events and developments
that may negatively impact the system. The task is further complicated
by the fact that these uncertainties can also depend on one another. How-
ever, looking individually at every possible scenario that can be formed
as a combination of these outcomes quickly becomes infeasible when the
number of random variables increases. Cross-impact analysis offers a tool
for estimating how the perceived probabilities of random variables change
based on the outcomes of others. Publication III offers a cross-impacts
definition that is founded on probability theory and admits several kinds
of probabilistic statements about dependencies between the uncertainty
factors. The publication also describes how the statements can be trans-
formed into optimization constraints and used to calculate upper and lower
bounds for the overall risk level of the system. The approach is illustrated
with an example case about the risk analysis of nuclear waste repositories.

3.4 Publication IV

Estimating the probability distributions of the different random variables
is one of the main challenges in producing probabilistic forecasts. Simu-
lation models, such as the ones used in weather forecasting and military
combat modeling, can be used to quantify future uncertainties governed
by chance. However, modeling uncertainty stemming for example from
human activity with simulations is often not feasible, and creating detailed
simulation models is challenging and time-consuming. Thus, eliciting
experts for their estimations about future uncertainties is often the only
feasible approach. Still, eliciting information about systems with multiple
interdependent random variables poses a challenge, because when the
number of variables increases the number of possible interactions with
them grows exponentially. Cross-impact methods manage this complexity
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by focusing only on the pairwise impacts between two random variables.
Publication IV presents a new optimization approach that can synthe-
size these pairwise cross-impact statements to produce a joint probability
distribution for the random variables. When combined with conditional
independence information, the calculated probabilities can also be used to
construct a Bayesian network to aid what-if analyses. The Publication also
includes a case study focusing on the future of 3D-printing in military use.
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4. Discussion

This dissertation develops new methods to account for uncertainties in
support of decision-making in adversarial risk analysis (ARA) and proba-
bilistic scenario analysis. Publications I and II focus on ARA methodology
to quantify uncertainties caused by adversarial decision-makers with com-
peting interests. Publications III and IV, on the other hand, present novel
approaches for using cross-impact analysis (CIA) to quantify uncertainties
associated with future events.

Despite having been developed relatively recently, ARA has already found
numerous applications in counter-terrorism and cyber security. Still, much
of the military combat modeling research does not use ARA or any other
game-theoretic models for adversarial activity (Washburn et al., 2009),
despite the great impact that adversaries’ actions have on the effectiveness
of tactics and weapon systems. As discussed in Publication I, ARA methods
can be used to expand the range of analyses that can be performed using
pre-existing combat modeling tools, incorporating small-scale encounters
as a part of the bigger picture and evaluating the value of secrecy and
information.

The shared common knowledge assumptions required by many game-
theoretical models have been problematic in attempts to adapt game theory
to combat modeling. Bayesian Nash equilibrium developed by Harsanyi
(1967) provides the necessary tools for finding robust solutions for facing
different types of adversaries, but coming up with a probability distribution
over adversary types (representing their utility functions and available
information) can be onerous. In Publication II, we show that even simple
assumptions about adversaries (such as wanting to minimize casualties)
can serve as a foundation for a game-theoretic analysis when interpreted
as partial preference order relations over outcomes. Whilst this type
of analysis cannot be used to predict the adversaries’ actions precisely,
some of their decision alternatives can be excluded as irrational. Thus,
it is possible to find risk mitigation strategies that work against rational
adversaries, even if the adversary’s precise type or type’s probability is not
known.
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Compared to ARA, CIA approaches quantifying uncertainty very dif-
ferently. Cross-impact information elicited from experts describes how
the likelihood of specific outcomes changes when an outcome of another
random variable is known. There exist cross-impact methodologies that
differ in almost everything except that basic idea (Alter, 1979; Amer et al.,
2013; Bishop et al., 2007). Most of the earliest methods worked similarly
to Monte Carlo simulation, drawing random events from the possible list
of outcomes and then adjusting the probabilities of remaining outcomes
based on the associated cross-impacts (e.g. Gordon, 1994; Dalkey, 1971;
Helmer, 1981). More recently, several CIA methods have been developed
that eschew probabilities entirely, and only measure the likelihood of out-
comes appearing together in terms of how consistent their cross-impacts
are (e.g. Weimer-Jehle, 2006; Seeve and Vilkkumaa, 2022). Whilst both
of these approaches have their uses in exploring the future, developing
scenarios, and fostering managerial thinking, they are not very compatible
with either risk or decision analysis.

To facilitate risk analysis based on cross-impacts, Publication III presents
a new cross-impact interpretation founded on probability theory. Called
cross-impact multipliers, this new cross-impact interpretation, together
with information about marginal probabilities of the associated random
variables, can be used to determine upper and lower bounds for system
risk. Thus it is useful, for example, in demonstrating compliance with
regulatory risk bounds as well as in comparing different risk mitigation
alternatives.

Whilst the primary focus in Publication III is on risk analysis, Publica-
tion IV takes the same cross-impact definition and presents methods for
calculating a joint probability distribution for different scenarios formed
as combinations of outcomes of random variables. It is also demonstrated,
how the computed probabilities together with conditional independence
information can be used to construct Bayesian networks, offering a useful
tool for what-if type analyses.

This dissertation opens up new research directions as well. First, the
presented methods could be tested with more empirical case studies. It
would be interesting to try how compatible ARA and CIA are together.
ARA is often the preferred method for modeling uncertainty from human
activity, and CIA is good for estimating long-term technological and other
developments. The two together could be used to analyze safety and
security problems with long time horizons, such as investments into new
weapon systems or the design of long-term nuclear waste repositories.

There is room for new methodological extensions as well. Expanding
further on the methods presented in Publication II, it would be interesting
to explore how the partial information approach could be expanded to also
include non-sequential games, i.e. games with decisions whose outcomes
are not observable before the next decision of the adversary. Although it is
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possible that the increased uncertainty would make it impossible to draw
any useful conclusions about these games (Fishburn, 1978). Another poten-
tial research topic would be examining how different types of ambiguous
preference models, such as the ones used by Danielson et al. (2014) or Salo
and Punkka (2005), could be applied in ARA.

Expanding on the CIA methods presented in this dissertation, some
work has already been done in using the computed probabilities or risks
to choose scenarios for more detailed examination (Elfving, 2023). This
way probabilistic and narrative scenario methods could be used together to
combine some of the best aspects of both traditions. The analytical models
help contextualize the scenarios and the narrative approaches provide
depth and approachability. Selecting the right scenarios to focus on is
also important in many modeling or simulation studies and offers another
potential avenue for future research.
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ADVERSARIAL RISK ANALYSIS FOR ENHANCING 
COMBAT SIMULATION MODELS 

Abstract 

Adversarial Risk Analysis (ARA) builds on statistical risk analysis and game theory 
to analyze decision situations involving two or more intelligent opponents who 
make decisions under uncertainty. During the past few years, the ARA approach–
which is based on the explicit modelling of the decision making processes of a 
rational opponent–has been applied extensively in areas such as counterterrorism 
and corporate competition. In the context of military combat modelling, however, 
ARA has not been used systematically, even if there have been attempts to predict 
the opponent’s decisions based on wargaming, application of game theoretic 
equilibria, and the use of expert judgements. Against this backdrop, we argue that 
combining ARA with military combat modelling holds promise for enhancing the 
capabilities of combat modelling tools. We identify ways of combining ARA with 
combat modelling and give an illustrative example of how ARA can provide 
insights into a problem where the defender needs to estimate the utility gained from 
hiding its troop movements from the attacker. Even if the ARA approach can be 
challenging to apply, it can be instructive in that relevant assumptions about the 
resources, expectations and goals that guide the adversary’s decisions must be 
explicated.  

Key words 

Adversarial Risk Analysis (ARA), Combat Modeling, Simulation 

Introduction 

Adversarial risk analysis (ARA) combines statistical risk analysis and game theory 
to provide appropriate methods for analyzing decision making situations which 
involve two or more intelligent actors who make decisions with uncertain 
outcomes. Such situations are encountered, for example, in counter-terrorism and 
corporate competition (Rios Insua et al., 2009). 
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Traditional statistical risk analysis was developed to assess and mitigate risks in 
contexts where the loss is governed by chance (or Nature), for instance in the 
management of complex technological systems like nuclear power plants and the 
design of insurance policies against natural disasters. Apart from risks caused by 
such chance events, ARA seeks to capture risks caused by the self-interested and 
possibly malicious actions of intelligent actors: thus, modelling the decision-
making behavior of these actors is central to ARA. These kinds of decision models 
can be based, for example, on classical game theory (Myerson, 1991) or 
psychological considerations (Camerer, 2003).  

Yet game theory is not an ideal tool for describing and predicting human behavior. 
Minmax solutions–in which each actor seeks to minimize his expected losses 
across all the actions that are available to his opponents–can lead to unrealistic 
solutions, because real opponents do not usually follow the minmax rationality 
principle. Minmax solutions are also often difficult to compute in real situations, 
and they necessitate strong assumptions about what common knowledge the actors 
share (Kadane & Larkey, 1982 and Meng et al., 2014). Moreover, the solutions can 
be overly pessimistic, because the mitigation of the worst possible scenario (which 
may have an extremely low probability) will induce the actors to make choices that 
a human opponent would not realistically make.  

ARA has many obvious uses in military organizations. Much of the recent ARA 
literature has focused on counterterrorism, and many of the proposed ARA 
approaches can be applied to support military decision making. Zhuang and Bier 
(2007), for example, apply game theory to devise strategies for allocating resources 
between the protection from an intentional attack, on one hand, and from natural 
disasters, on the other hand. ARA methods can also be used to guide the allocation 
of resources between strategically important targets as well as the investment 
planning of military equipment and projects. Uses of ARA in finance and 
procurement are relevant, too, because military organizations acquire products and 
services from external contractors. 

In this paper, we do not survey the broad ARA literature in view of military 
applications. Rather, we discuss how ARA can be applied to enhance combat 
modeling or to complement it. Specifically, we examine how ARA can be used to 
model the effects of military deceit, and how it can be used to aggregate results 
from different simulations to model a longer chain of events.  
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The possibility of calculating the effects of military deception and its usefulness is 
one of the most promising ARA applications in combat modeling. Game theory has 
been applied to calculate the benefits of deceit before (Reese, 1980), but such 
applications are still rare. This is partly because the solutions of classical game 
theory presume that both sides have common knowledge about each other’s goals 
and resources, which is not realistic when modeling deceit. ARA does not have this 
limitation. It can even be applied to calculate the usefulness of decoys and dummy 
systems, which makes it possible to estimate if these are worth the cost. Such 
estimation is very difficult if not impossible in most combat simulation models.  

Using ARA to facilitate the simulation of longer chains of events holds promise, 
because simulation models are built to model combat on specific scale. For 
instance, simulation models which seek to accurately describe the combat between 
two tanks are ill-suited for modeling an entire battalion, and models for simulating 
fighting at the platoon level do not lend themselves well to the modeling an entire 
theater of operations. Still, with ARA it is possible combine results from several 
such simulation runs or even different simulation models to create a more 
encompassing optimization model. This can be very useful in stretching the limits 
of what can be done with existing simulation tools. 

Modeling adversarial risks 

In this section, we briefly describe how a situation in which there are adversaries 
whose actions affect each other’s risks can be modeled. Our presentation builds 
largely on Rios Insua et al. (2009) who give a comprehensive presentation of ARA. 
For a good overview on how the ARA approach compares to classical game theory, 
we refer to Banks et al. (2011). 

Risk analysis 

The simplest form of a non-adversarial risk management problem is a situation in 
which the decision maker chooses one of the available decision alternatives whose 
costs are uncertain. This problem can be presented as an influence diagram as seen 
in Figure 1. 
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Figure 1: A simple influence diagram 

An influence diagram is a directed acyclic graph with three kinds of nodes: 
rectangle shaped decision nodes, oval shaped uncertainty nodes, and hexagonal 
value nodes. Arrows pointing to value or uncertainty nodes indicate functional or 
probabilistic dependence, respectively. This means that the utility function at the 
value node depends on its immediately preceding nodes, and the probabilities 
associated with an uncertainty node depend are conditioned on the values of the 
immediately preceding nodes. Arrows which point to decision nodes indicate that 
the values of these preceding nodes are known at the time of the decision. (cf. 
Howard & Matheson, 2005) 

Figure 1 shows a situation where the decision maker has to make a decision a from 
a set A of possible choices, represented by the rectangle. The cost c associated with 
this decision is uncertain and is modeled through the probability density function 

, represented by the oval node. The result is modeled by Von Neumann-
Morgenstern utility function u(c). The decision maker seeks to maximize the 
expected utility 

.                                         (1) 

In practice, the costs of a particular action can be complex in that they can include 
both fixed and random terms. As a result, organizations seek to perform a risk 
assessment to better identify disruptive events, and to estimate their probabilities 
and associated costs. 

Adversarial risks 

We now consider a situation in which there are two adversaries (Attacker and 
Defender) whose decisions affect the risks that each faces. Figure 2 extends the 
influence diagram to include the adversary in a symmetrical situation in which the 
decisions of both parties affect the risks and costs that the other faces, and both 

Action Cost Result 



5 
 

seek to maximize their own expected utility. In this example, the roles are 
symmetric; but it is possible to model asymmetric scenarios as well by building 
asymmetric influence diagrams. 

We denote the sets of possible actions of Attacker and Defender with A and D 
respectively. Their utility functions are  and  The sets containing their 
beliefs about different probabilities are  and . As can be seen in the influence 
diagram in Figure 2, one of the nodes, Hazard, is common to both sides. It can 
represent uncertainties which affect parties, such as weather for example. The other 
cost nodes–which are not common–represent random costs for both parties which 
can be very different for the parties. 

The expected utilities for both the Attacker and the Defender depend upon the 
actions of both. Specifically, by extending on (1), we obtain the Attacker’s 
expected utility for choosing action  when the Defender chooses action  

,                                    (2) 

where  represents the Attacker’s beliefs about his costs for the 
decision pair . It is noteworthy that these beliefs do not necessarily have to 
match reality, because we are only modeling the Attacker’s decision. The expected 
utility for the Defender is analogous. 

This representation of ARA matches normal form games in which both players 
take simultaneous decisions. One could also build an influence diagram that 
represents sequential games, such as Stackelberg games, in which the players make 
their moves alternately. The ARA methodology can be applied to solve such 
games, too (cf. Banks et al., 2011 and Rios & Rios Insua, 2012).  

Bayesian framework for ARA 

A problem like the one presented in Figure 2 can be solved using classical game 
theory if the costs and utility functions of both players are common knowledge. 
However, if the players do not have correct and accurate information about the 
costs, resources, and goals of the adversary (which is often the case in reality), the 
Nash equilibrium solution does not exist. 
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Figure 2: Influence diagram with an adversary 

ARA solves this problem by using a Bayesian strategy to express uncertainty about 
the adversary’s decision. From the Attacker’s point of view, this means that the 
Defender’s decision is a random variable as presented in Figure 3. To solve this 
problem, the Attacker needs more than just  and . Specifically, 
he also needs , which is the probability that the Defender chooses defense d 
as estimated by the Attacker. To find that, the Attacker is assumed to use mirroring 
to form an estimate of the Defender’s utility function  and the Defender’s 
costs . In other words, the Attacker assumes that the Defender acts 
rationally and that the Defender uses a similar approach to predict the actions of the 
Attacker. 

Action Cost Result 

Extra 
cost 

Total 
cost 

Action Cost Total 
cost Result 

Extra 
cost 

Hazard 
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If the Attacker tried to estimate the Defender’s utility function and cost function by 
assuming that the Defender is doing exactly the same thing as what he is doing, the 
Attacker would need to think what the Defender thinks he thinks. To avoid infinite 
regress, the chain is usually cut here and the Attacker just forms an educated guess 
about the Defender’s beliefs about the Attacker’s estimated utilities and costs. In 
principle, this analysis could be taken even further, but usually this is not realistic.   

 

Figure 3: Influence diagram from the Attacker's point of view. 

 

Alternative approaches for modeling adversary’s decision making 

The ARA methodology has analogues with Bayesian level-k thinking: specifically, 
our approach to modeling of the opponent’s beliefs resembles level-2 thinking. 
Rothschild et al. (2012) have taken the approach further and applied level-k 
thinking to the ARA approach. Their methodology has drawbacks, though, because 
the level-k approach requires additional assumptions and the problems become 
quickly intractable due to their growing complexity. The greatest advantage of 
level-k thinking is that it shows how the level of adversary’s thinking affects the 
optimal decision. 

Caswell et al. (2011) present a model in which the decision process is evaluated 
using a Bayesian network with an embedded semi-Markov decision process. 
Compared to the ARA approach, their model can be used to present the adversary’s 

Action Cost Result 

Extra 
cost 

Total 
cost 

Hazard Defender 
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decision process with greater accuracy. However, as in any decision analysis 
model, the results are only as good as inputs, and a detailed description of the 
adversary’s thought process would require detailed information about the 
adversary’s resources, values and goals. 

Zuckerman et al. (2012) represent adversarial activity with a Beliefs-Desires-
Intentions (BDI) based model; such models are commonly used to describe 
teamwork and cooperation. In this approach, the adversary can be modelled as a 
more nuanced rational agent instead of an omniscient utility maximizer. Yet, the 
model is not very elaborate, and it can be applied only in zero-sum games in which 
the goals are easily decomposable.   

Applying ARA to military combat modeling 

A significant proportion of ARA literature is focused on preventing terrorist threats 
and, more specifically, on how limited resources should be allocated to combat 
such threats (cf. Pat-Cornell & Guikema 2002, Kardes & Hall 2005, Zhuang & Bier 
2007, Golany et al. 2009, and Kroshl et al. 2015). Nevertheless, in this section we 
focus more on how ARA can be applied to to military combat modeling and 
modeling processes, because resource allocation is well covered in earlier research.  

We have chosen to examine what possibilities ARA offers for simulating longer 
chains of events and military deceit, because these are some of the more difficult 
problems to be handled with existing simulation and analysis tools. To some 
extent, these topics are interconnected, because deception and misinformation can 
have major impacts on what happens in the battlefield. Many of the  following 
ideas are still untested, and they are presented as suggestions for worthy topics for 
future research.  

Simulating larger chains of events 

The ARA methodology can also be applied to model military operations that are 
too large to simulate as a single scenario. The scale can become an issue if the 
number of units involved is too large, or the operation takes place over such a long 
timeframe that the number of possible paths based on the events becomes 
excessive. Kangas and Lappi (2006) present how methods of probabilistic risk 
analysis can be used in conjunction with stochastic combat modeling to analyze 
longer chains of events. The ARA approach can be used to build on such results to 
take the analysis one step further. In addition to predicting the success chances of 
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larger operations, it would be possible to predict which ones out of adversary’s 
alternative actions can affect the chain of events most.  

Furthermore, ARA can be used to expand a small scale simulation model to a 
larger scale optimization model. In practice this could mean, for example, using a 
platform level simulator that can model an aerial battle between fighter aircraft in 
conjunction with ARA to forecast which decisions would most likely lead to air 
superiority in the conflict. This approach is not even restricted to using a single 
simulation model. It would not be significantly more difficult to combine the 
simulation results from several different models. 

Practically any combat model can be used with ARA methodology on condition 
that the probabilities for each side winning the battle as well as the expected losses 
on both sides can be calculated. This includes essentially all stochastic combat 
models and even some deterministic ones. The selection of the combat model must 
fit the problem at hand. Sometimes the best choice is a platform level Monte Carlo 
simulation, and sometimes it can be a high level attrition model like the FATHM 
(Fast Theater Model) (Brown & Washburn, 2000). 

In some cases, it is possible to use ARA to model longer chains of events without 
having to rely on an actual stochastic combat modeling software like Sandis (cf. 
Kangas and Lappi, 2006). There are also alternative, lighter stochastic 
computational models that can be used to predict the outcome of a duel between 
two platoon sized forces (Lappi et al., 2012; Åkesson, 2012; Roponen, 2013). 
These models can be used to significantly cut down the time for calculating all the 
success probabilities and the expected losses in different stages of the chain. There 
are also additional time savings from not having to create a complete model 
scenario, which, as noted earlier, is a time consuming process. The use of the 
lighter duel simulation methods could be automatized to a certain degree, because 
they require far fewer input parameters. 

To offer a rough outline for how ARA can be applied to a longer chain of events, 
we present an example case in which modeling the events as a single combat 
simulation would likely be very time consuming and would not offer any real 
benefits over the ARA approach. That is, we examine a situation in which there are 
two bridges that can be used to cross a river. One party wants to cross the river and 
the other wants to prevent that from happening by using military force. The 
Defender has three platoons of soldiers available for defending the bridges. The 
Attacker has six platoons which try to get across. 
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In order to examine a problem such as this, one first needs to a narrative of what 
chains of events are possible as a result of the decisions that the actors can take. To 
keep the problem tractable, the number of possible decision options as well as the 
end results of random events needs to be kept to a minimum, because the number 
of calculations required grows exponentially with each step. The problem has been 
presented as an influence diagram in Figure 4. 

 

 

Figure 4: Influence diagram depicting a longer chain of events. The darker nodes 
are associated with the Attacker, as perceived by the Defender, as uncertainty 
nodes and vice versa. The striped nodes are uncertain events common to both sides. 

The Defender’s first decision is how he should deploy his troops initially. This 
includes deciding how he should divide his troops between the two bridges and 
reserves, but depending on the level of sophistication of the combat model used for 
the calculations other variables like the use of terrain, fortifications and mines 
could be included as well. The Attacker also needs to decide how he is going to use 
his troops for the initial attack. This includes the number of troops used and the 
target (or many targets) of the attack. Depending on the modeled situation the 
Attacker might be operating with very limited information. The initial attack might 
be used to just scout the Defender’s strength. 

The influence diagram in Figure 4 shows the two decisions as independent, but it 
does not really need to be so. Depending on which situation we wish to model, 
either the Attacker or the Defender could act after finding out what the other is 
planning to do. It is even possible to account for asymmetric information on both 
sides, arising for instance from greater familiarity with the terrain, military 
deception or some other reason. For the sake modelling parsimony, the number of 
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possible choices should be kept as low as possible. This means, for example, that 
the troops should be deployed as whole platoons instead of single soldiers. 

Once the possible initial decisions have been determined, the probabilities of all the 
possible results of the first battle for all the possible initial conditions need to be 
computed. The number of possible battle results can become computationally 
overwhelming, because all possible combinations of casualties on both sides are 
technically different outcomes. It is not feasible to calculate the next step if the 
number of possibilities is in the hundreds. The amount can be reduced to a more 
manageable number by assuming that the losses suffered by each side are 
conditional only on the result of the battle and not on each other. In this way, the 
possible results can be limited to wins and losses or some other smaller set. One 
way to choose the set of possible results is to take a look at the next step and 
identify which results would lead to different decisions and use those. Depending 
on the modeled chain of events, this can be easy, nearly impossible, or anything in 
between these extremes. 

When the possible results of the first battle have been determined, we proceed to 
the decisions that follow it, then to the next battle, and so forth. In some these 
outcomes, either the Attacker or the Defender will not be able to continue 
effectively, which shortens the chain of events. For the sake of tractability, one also 
has to decide where these chains of events will have terminated so that there is no 
more fighting. It is possible that in more complex cases, the influence diagram is 
not ideal for visualizing the problem. Alternatively, the problem can be shown as a 
decision tree, because the ARA methodology is not tied to influence diagrams. 

After all the possible chains of events have been elaborated and the corresponding 
possible end results have been determined, we proceed by calculating backwards 
from the end to estimate the probabilities of these results. Towards this end, we 
first solve the ARA problem formed by the last decisions in the chain and the 
ensuing battle. To find out the probability that the initial conditions for those ARA 
problems are met, we then solve the ARA problems formed by the battle and 
decisions preceding them and so forth until the first decisions have been analyzed. 
The utility function for each problem in the chain is formed from the maximized 
expected utility gained from each outcome as given by solving the ARA problems 
following it. 
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Modeling the effectiveness of military deceit 

“All warfare is based on deception.” (Sun Tzu) Using deceit to gain an upper hand 
against an adversary is an absolutely integral part of military tactics and strategy. 
Still, the effects of deceit are very difficult to predict and simulate with existing 
operational analysis and combat modeling software. Because the effects cannot be 
readily reduced to mathematical formulas, modeling the effects of deceit relies 
usually on expert judgements. In the context of combat modeling, this usually 
means that the required expert opinions are provided by the operator of the 
simulation tool.  

A common alternative is to use wargames to model the uncertainties in human 
decision making; but even this approach also has problems as wargames ignore 
many aspects of reality.  Questions of solvability do not arise in wargames, because 
the aim is not to determine optimal tactics. Rather, realizing that wars are fought by 
humans, wargames study the decision process of humans. One problem in this 
approach is that in a game, the player can make decisions that he would not really 
make as long as these decisions produce good results in the simulation. For 
example, in a simulated environment casualties may not have the weight that they 
would have in actual combat. The second problem is that wargames often capture 
typical decision making behavior (rather than optimal decisions) because the 
players play a small number of games only. Thus, for instance, the resulting lack of 
repetition may overstate the effectiveness of new weapon systems, because the 
opponent does not have time to learn and adapt his tactics to counter these systems. 
To some extent, the lack of repetition may be deliberate due to the fear that the 
players would learn to use the artificialities of the wargame to their advantage 
instead of developing better military strategies. Another reason for the lack of 
repetitions is that wargaming is time consuming and expensive. (Washburn & 
Kress, 2009, 111-130)  

The ARA approach could be used to assess the effects of deceit tactics on the 
decision making of the adversary. Specifically, the ability to model the effects of 
the adversary’s altered perceptions would be a useful complement to the elicitation 
of expert judgements. Mathematical equations are, after all, immune to effects of 
optimistic thinking. 

ARA can be used relatively easily to model situations in which the adversary is 
deliberately misinformed about the strength or capabilities of the opponent, for 
instance as a result of hiding troop movements and employing dummy units or 
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decoys. Then, ARA helps estimate the effect the misinformation on the adversary’s 
decision making and whether this effect is beneficial so that the benefits outweigh 
the costs.  In the next section, we give an example of such an estimation process.  

The ARA approach is not limited to deceit that happens on the battlefield; indeed, 
military deceit is pervasive in military planning and decision making. In theory, 
ARA can be used to study the effects of almost any misinformation, but usually 
these effects can not be modeled with combat simulation models (except in the case 
of misinformation that relates to the number or capabilities of weapon systems, 
sensor systems or military units). While the ARA methodology does not give tools 
for predicting the probability with which deception will succeeds, it helps assess 
the possible effects of successful deception may be, which helps decide what 
information is worth hiding or altering. 

Example of applying ARA to a military deceit problem 

To demonstrate how ARA can be applied, we use it here to analyze a relatively 
simple tactical problem which illustrates some of the key aspects of the approach.  

The problem 

Consider the following situation in which there are two adversaries: the Defender 
and the Attacker. The Defender has two valuable targets he needs to protect, Target 
1 and Target 2. The Defender has a total of 60 troops, 40 of whom are situated at 
Target 1 and 20 at Target 2. The Defender can try to secretly move troops from one 
target to another, but there is a possibility that the Attacker will notice the troop 
movement. After the Defender has moved the troops he wants to move, the 
Attacker will decide which target he will attack. If the Defender succeeds in 
moving the troops without the Attacker noticing, the Attacker will have to decide 
his target using incomplete information. We solve this problem from the point of 
view of the Defender. Figure 5 shows the influence diagram from the Defender’s 
point of view.  
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Figure 5: Influence diagram of the example case from the point of view of the 
Defender. 

We denote the set of options the Defender as  which represents number of 
squads of five soldiers moved from Target one to Target 2, and the options of the 
Attacker  which represents the choice between the two targets. The 
uncertainties in this case are whether the troop movement is revealed to the attacker 

 (  if it is and  if not) and the outcome of the battle  (  if the 
Defender wins and  if the Defender loses). The utility functions over the costs 
are  and , with costs dependent on the actions of the Defender 
and the Attacker. 

The Defender wants to solve 

 (3) 

In order to solve this problem, it is necessary to assess the probabilities over the 
costs, conditional on ; and about S, conditional on . In this case, the 
Attacker and the Defender have different assessments: for example, for success, 
these are  and , respectively. It is likely that the 
Attacker’s assessment of the success of the assault differs from that of the 
Defender, because the Attacker may not know the Defender’s decisions (see Figure 
6). The expected utility for the Attacker, resulting from  is 

 
(4) 

The Defender’s expected utility is similar.  
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Figure 6: Influence diagram of the example case from the point of view of the 
Attacker.  

We now solve the game from the Defender’s point of view. The Defender has 40 
men defending Target 1 and 20 men defending Target 2. The Defender considers 
value of Target 1 to be 50 and value of Target 2 to be 30. He considers the value of 
a single combat ready soldier to be 1. He has the option moving troops between the 
targets without the Attacker’s knowledge. There is, however, a probability  that 
the attacker finds out about the troop movement. The Defender also estimates that 
the Attacker has at least 20 men but no more than 35, and he thinks that the most 
likely number is 30, so he fits a triangular distribution.  

Using the strength estimates of both forces, the Defender can use, for example, a 
stochastic combat model to calculate  and . Specifically, the Defender 
assesses that the utility in this situation follows the function 

 

 

 
(5) 

where  corresponds to the situation where the Defender manages to hold the 
target area,  corresponds to the situation where the Attacker decides to attack 
Target 1 and  corresponds to the Attacker deciding on Target 2, and  and 

 are the Attacker’s and the Defender’s losses respectively. 

Solving the problem for the Defender is not sufficient for determining ,  and 
. To calculate the expected utility from decision d, he first needs to estimate 

. Towards this end, the Defender needs to solve the problem from the 
viewpoint of the Attacker. He assumes that the Attacker, too, is an expected utility 
maximizer. The problem is presented from the Attacker’s point of view in Figure 6. 

Strength of 
defending troops Result Battle 

Choosing 
the target 

Perceived 
strength  
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The Defender estimates that the Attacker thinks the Defender has 36 to 44 men at 
Target 1 and 18 to 22 men at Target 2 (with all values equally probable), and the 
Attacker has probability  of finding out about the Defender’s 
troop movement. If the Attacker detects the Defender moving troops, he will be 
able to accurately count the number of troops moved. Using those strengths for his 
estimates he can use the same stochastic combat model used to solve  and  to 
calculate  and . 

The Defender estimates that the Attacker’s utility function is similar to his own. 
However, the Defender does not know for sure how valuable each target is to the 
Attacker. He models this uncertainty by adjusting the weights of successful capture 
of each target . Thus, he estimates that the Attacker’s utility function is 

 

 

 
(6) 

where the distributions  and  are uniformly distributed over the interval 
. 

 

Figure 7: The Attacker’s win probability with strength of 30 as a function of the 
Defender’s strength. The minor perturbations in the curve are caused by the 
assumption that the battle is lost when the unit has lost half of its troops, which 
means that even strengths are slightly less advantageous for the Defender. 

We solve the problem step by step. First, the Defender will:  
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1. Calculate the success probabilities and expected losses for both sides for all 
the possible combinations of strengths of both sides (Figure 7). 

2. Calculate the Attacker’s expected utilities  for attacking each target for 
all possible strengths of the Attacker’s force taking into account the 
uncertainties with  the fact that the Attacker has knowledge of the 
Defender’s troop movement on probability . 

3. Compare the expected utilities to get an estimate for the probability of an 
attack on each target for each possible strength of the Attacker. 

4. Consider the probability of an attack with a specific strength of the attacker 
and the probability for each of those strengths to calculate . 

5. Calculate . 
6. Use  and  to determine the decision d which maximizes 

his expected utility. 

We used the approximative method in Roponen (2013) to simulate a duel between 
two forces in order to calculate the probabilities in ( , ,  and ) in step 1, 
because the details for this method are publicly available and it produces the results 
of battles between two infantry units very efficiently. This program code was used 
to examine the win probabilities for all possible strengths of both sides. Situations 
in which a tie was predicted were counted as the Defender’s victory, because the 
Attacker would be unable to capture the target. Moreover, a unit was assumed to 
lose the battle if it lost half of its fighting strength, which is the cause behind the 
roughness of curves depicted in Figures 7 and 8, because the unit strengths are non-
negative integers and odd numbers are not divisible by two. 

We then wrote a program code to search the remaining steps exhaustively, to 
calculate the expected utilities, and to determine the attack probabilities . 
Because the Attacker perceived that target 2 was significantly weaker, he always 
chose to attack this target unless he found out about the troop movement, in which 
case he chose the target with actually higher expected utility. The attack probability 
on target 1 thus varied between 0 and 0.1. Then the expected utilities of the 
Defender were calculated from  and  as seen in Figure 8. 
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Figure 8: The expected utility gained by the Defender as a function of troops 
transferred from target 1 to target 2. 

The highest expected utility gained by the Defender, , was achieved by 
transferring three squads or 15 soldiers from target 1 to target 2. This gave the 
Defender 0.933 probability of winning the battle if the Attacker chose to attack 
target 2 (which would happen if he does not notice the troop movement) and 0.281 
probability of winning if the Attacker chose to attack target 1. 

Future research 

Adversarial risk analysis (ARA) is a relatively new research area which is 
becoming more prominent in the context of counter-terrorism and corporate 
competition. In this paper, we have discussed and illustrated the application of 
ARA to the modelling of longer chains of events and the effects of military deceit. 
There are also many other possible ways of applying the ARA methodology to 
combat modeling. 

Arguably the most important reason for military combat modeling is that it 
provides support for strategic, tactical or technical decision making (Tolk, 2012, 
55-78). However, it is not straightforward to translate the results of combat models 
into decision recommendations (Davis & Blumenthal, 1991). One accessible way 
of using ARA in the context of simulation is to perform an exhaustive portfolio 
analysis of all relevant strategies. Such methods have been used to assess the cost-
efficiency of different combinations of weapons systems, for example 
(Kangaspunta et al., 2012).  
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In the same vein, ARA could be used to predict the most likely responses of the 
adversary and to calculate the expected utilities of each strategy under different 
conditions. The applicability of this approach depends how well the process can be 
streamlined and automated so that informative results about strategies can be 
provided more quickly than through manual analyses of combat simulations.  

To enrich the possibilities of using combat simulation models, ARA could also be 
used to reduce the need for user interaction within existing combat modeling tools. 
Simple adversarial intent models have been used in professional wargaming to 
simulate intelligent forces (Santos & Zhao 2006). This notwithstanding, most 
combat models do not yet include algorithms that would represent the human 
thought processes involved in tactical or strategic decisions (Washburn & Kress, 
2009, 111-130). Depending on the model, practically all higher level decisions 
concerning the position and strength of forces are made by the operator. As a result, 
the time required to create a scenario is usually significantly longer than the time 
required to calculate the results (Lappi, 2012).  

The development of simulation models in which the units are able to make simple 
tactically sensible decisions would widen the range of problems that can be 
analyzed by using approaches such as data farming. The ARA methodology could 
then be used as a basis for these kinds of algorithm. Here, ARA has advantages 
over using game theory, because it accounts for uncertainties and even 
misinformation.  

However, ARA cannot be readily applied to very low level or continuous decision 
making, because the required calculations would become just too overwhelming. 
ARA can be used most effectively in situations where the attention can be 
restricted to choices among relatively few possible strategies. If need be, it may be 
possible to simplify the problem by restricting attention to some plausible chains of 
events instead of calculating all possible chains of events. Analogues approaches 
towards simplification have been employed in constructing artificial intelligence 
systems for games such as Go and Chess, and they have been applied even in video 
game AI development (Churchill et al. 2012). 

Conclusions 

The ARA methodology has already found many uses in analyzing counter 
terrorism and corporate competition (Rios Insua et al., 2009). In this paper, we 
have discussed the relevance of this methodology to military combat modeling and 
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presented concrete examples of how it can be applied. Specifically, we have 
outlined possible uses for the ARA approach in the context of modeling deceit and 
using ARA to stretch the limits of existing combat models to model longer chains 
of events. Many of these ideas are tentative and call for more research before they 
can be implemented into existing simulation. Another challenge is that real battles 
are extremely complex, they involve thousands of decisions, and the goals and 
resources are highly uncertain. Still, by focusing on the most important decision 
situations and decision alternatives can provide valuable insights.  

We also presented an illustrative example in which ARA was combined with 
stochastic combat modeling to calculate the effects of military deceit. In this 
example, most calculations for solving the ARA part of the model were relatively 
straightforward and could be implemented into software code (there are numerous 
tools for calculating the results of battles; see, Kangas, 2005). We therefore believe 
that it possible to develop software tools for considerably more complex problems 
in which the dependencies between the adversaries’ utilities and their decision 
behaviour are explicitly modelled. More generally, there is much potential in using 
the ARA approach to tackle realistic problems through stochastic combat 
modelling. This would serve to push the boundaries of ARA modelling in an 
important application area. 

Fundamentally, ARA has much to offer for military combat modeling, because it is 
able to combine the conventional statistical approach of risk analysis–which is 
already widely employed in combat modeling–with fresh game-theoretical 
perspectives that help predict what one’s opponents are likely to do. ARA can also 
be used to build optimization models on top of existing simulation models, which 
gives possibilities for new uses for these simulation models as well as new ways of 
visualizing the results of such models. 
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a b s t r a c t 

Adversarial risk analysis provides one-sided decision support to decision makers faced with risks due to 

the actions of other parties who act in their own interest. It is therefore relevant for the management of 

security risks, because the likely actions of the adversary can, to some extent, be forecast by formulat- 

ing and solving decision models which explicitly capture the adversary’s objectives, actions, and beliefs. 

Yet, while the development of these decision models sets adversarial risk analysis apart from other ap- 

proaches, the exact specification of the adversary’s decision model can pose challenges. In response to 

this recognition, and with the aim of facilitating the use of adversarial risk analysis when the parameters 

of the decision model are not completely known, we develop methods for characterizing the adversary’s 

likely actions based on concepts of partial information, stochastic dominance and decision rules. Further- 

more, we consider situations in which information about the beliefs and preferences of all parties may 

be incomplete. We illustrate our contributions with a realistic case study of military planning in which 

the Defender seeks to protect a supply company from the Attacker who uses unmanned aerial vehicles 

for surveillance and the acquisition of artillery targets. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

As a growing field of research, Adversarial risk analysis (ARA) 

( Banks, Aliaga, & Ríos Insua, 2015 ) provides one-sided decision 

support to a decision maker who is faced with risks that depend 

on the decisions of other self-interested parties. This makes ARA 

relevant for the analysis and management of security risks, in- 

cluding those of terrorism, military operations and cyber threats. 

There are numerous reported ARA applications in areas such as 

anti-piracy ( Sevillano, Ríos Insua, & Rios, 2012 ), counter terrorism 

( Ríos & Insua, 2012 ), combat modeling ( Roponen & Salo, 2015 ), and 

anti-IED war ( Wang & Banks, 2011 ), for instance. 

Specifically, ARA helps characterize the likely actions of all 

parties by building and analyzing multi-agent representations of 

� This research has been financially supported by MATINE - The Scientific Advi- 

sory Board for Defence of the Finnish Ministry of Defence. David Rios Insua ac- 

knowledges the Spanish Ministry of Economy and Innovation program MTM2014- 

5694 9-C3-1-R, MTM 2017-86 875-C3-1-R, the AXA-ICMAT Chair on Adversarial Risk 

Analysis, the European Union’s H2020 Program for Research, Technological Devel- 

opment and Demonstration, under grant agreement no. 740920 (CYBECO), and the 

Visiting Researcher programme of the Aalto Science Institute. 
∗ Corresponding author. 

E-mail addresses: juho.roponen@aalto.fi (J. Roponen), david.rios@icmat.es (D. 

Ríos Insua), ahti.salo@aalto.fi (A. Salo). 

the decision problem, taking into account their values, objectives, 

goals, capabilities and beliefs of the parties involved. Particular at- 

tention is paid to modeling the information on the basis of which 

the parties, referred to as adversaries , make their decisions. The 

aim is to build realistic models which, unlike most game theoret- 

ical analyses ( Antos & Pfeffer, 2010; Ozdaglar & Menache, 2011 ), 

do not necessitate far-reaching and partly unrealistic assumptions 

about common knowledge which shared by all parties. 

While the modeling of the adversaries’ decision processes 

makes ARA a powerful approach, there are notable challenges, too. 

In particular, it can be difficult to produce accurate estimates about 

how the adversary’s preferences and beliefs evolve over time. This 

could be the case, for instance, in situations where two adversaries, 

the Defender (‘she’) and the Attacker (‘he’), of which the Defender 

first chooses what countermeasures she will adopt in her defence, 

whereafter the Attacker, knowing the Defender’s choice, updates 

his beliefs and proceeds by deciding how to attack ( Xu & Zhuang, 

2016 ). These difficulties notwithstanding, attempts to building real- 

istic representations of the intertwined decision problem should be 

made, because such representations can yield valuable insights and 

because the reliance on overly simplistic models of the adversary’s 

preferences will lead to sub-optimal countermeasures ( Nikoofal & 

Zhuang, 2015 ). 

https://doi.org/10.1016/j.ejor.2020.04.037 

0377-2217/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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In this paper, we develop conceptual, mathematical and compu- 

tational methods based on the concepts of partial information and 

stochastic dominance to identify which of the adversaries’ deci- 

sions are non-dominated and therefore plausible ( Levy, 1992 ). The 

practical relevant of these methods stems from the fact that the 

set of these non-dominated decisions tends to be much smaller 

than the set of all possible decisions. Thus, they provide useful 

decision support even in situations where complete information 

about the adversaries’ utilities and/or beliefs cannot be obtained. 

Specifically, we allow for the possibility that there is only partial 

information about the preferences and beliefs of the Attacker (or 

even about the the Defender), operationalized through subsets of 

probability distributions and multi-attribute utility functions. As it 

turns out, this approach is quite flexible and suitable for providing 

informative decision support. We note that what we call partial 

information differs from what is understood by Rothschild, McLay, 

and Guikema (2012) who examine situations where the Attacker 

can only partially observe the Defender’s defence decision. 

We illustrate our methods in the light of a sequential defend- 

attack game, as such games are particularly important in the se- 

curity domain ( Brown, Carlyle, Salmerón, & Wood, 2006; Zhuang 

& Bier, 2007 ). Previously, stochastic dominance has been applied 

to examine both simultaneous or continuous games, see Fishburn 

(1978) and Rass, König, and Schauer (2017) . However, as noted by 

Fishburn (1978) , simultaneous games do not always have realistic 

properties and consequently simple game theoretic solutions may 

not provide meaningful decision support. For example, in the con- 

tinuous game considered by Rass et al. (2017) , the Attacker’s de- 

cision problem is modeledso that the Attacker only seeks to cause 

maximal harm to the Defender, which effectively reduces the prob- 

lem to a two-player zero sum game. 

For completeness, we first review the Bayesian Nash equilib- 

rium solution which is used in (i) methods which rely on common 

prior probability distributions over players’ types and (ii) the stan- 

dard ARA solution which uses probability distributions to model 

uncertainties about the adversary’s preferences and beliefs. Then, 

we present our key methodological contributions in two variants, 

starting from the situation in which there is incomplete informa- 

tion only about the preferences and beliefs of the adversary (in 

our case the Attacker), modeled though sets of utility functions 

and probabilities. We then consider the situation in which the in- 

formation about the Defender’s (own) preferences and beliefs, too, 

may be incomplete, using stochastic dominance to produce mean- 

ingful analyses ( Shaked & Shanthikumar, 2007 ). Finally, we show 

how the partial information approach can be extended to analyze 

sequential games in so-called regular influence diagrams. 

We also present a realistic case study to illustrate how our 

methods can be applied to different kinds of sequential problems. 

In our case study, the Defender seeks to determine an efficient 

portfolio of countermeasures to protect a supply company against 

the Attacker’s unmanned aerial vehicle (UAV) reconnaissance and 

the subsequent specification of artillery targets. The Attacker, in 

turn, seeks to choose UAV and artillery systems which are cost- 

efficient in responding to the Defender’s countermeasures. We also 

discuss other security and military problems which are amenable 

to our methods. 

2. Bayesian models 

Adversarial problems are often modeled as two-player games 

( Cox, Jr, & Anthony, 2009; Washburn, Kress et al., 2009 ). Real world 

multi-agent decision problems can often be modeled as games of 

incomplete information , meaning that there are some players who 

do not know all the rules of the game, such as the capabilities, 

utilities and decision processes of the other players. In stochastic 

games there are uncertain chance events, such as weather or the 

Fig. 1. A bi-agent influence diagram depicting the sequential defend-attack game. 

outcome of a military combat. Furthermore, in games of imperfect 

information , there are players who cannot observe the previous ac- 

tions of the other players and/or the outcomes of random events 

before it is their turn to act. 

By far the most common approach to solving games of incom- 

plete information is based on the Bayesian Nash equilibrium. Mod- 

eling the game as what is commonly known as a Bayesian game 

transforms the game of incomplete information into a stochastic 

game of imperfect information. In a Bayesian game, the type of 

each player is defined by his/her utilities, beliefs, decision alterna- 

tives, available resources, etc. Every player can observe his/her own 

type but not the types of other players. ( Harsanyi, 1967 ) 

In order to solve the stochastic game, it is necessary the make 

assumptions about the players’ types as well as their beliefs con- 

cerning each others’ types, formalized through prior probability 

distributions. In the traditional game theoretical approach, the 

players are assumed to have common knowledge about these prior 

distributions ( Bier, Oliveros, & Samuelson, 2007 ). It is even possi- 

ble to derive the prior distributions based on a level- k approach 

( Rothschild et al., 2012 ). While choosing the right probability dis- 

tributions is important and has both practical and philosophical 

implications, the question of where these distributions come from 

does not affect how the game is solved. 

In ARA applications, in contrast, the prior distributions are 

based on the subjective estimates of the player whose decisions 

are being supported and who seeks to choose the best decision 

alternative(s) under adversarial uncertainty ( Ríos Insua, Rios, & 

Banks, 2009 ). 

2.1. Influence diagrams 

We visualize ARA problems using bi-agent (or even multi- 

agent) influence diagrams ( Banks et al., 2015 ). In an influence di- 

agram, rectangular nodes indicate decisions, circular nodes depict 

uncertain chance events, and hexagonal nodes correspond to utili- 

ties. Directed arcs are employed to connect the nodes so that con- 

tinuous arcs represent probabilistic dependencies and dashed arcs 

represent the information that is available at decision nodes. Based 

on information about (i) the adversaries, (ii) the order in which 

they make decisions; (iii) the available decision alternatives at each 

decision node; (iv) the information available to the adversary at 

each decision node; and (v) the utilities for the adversaries result- 

ing from any sequence of events, it is possible to produce plausible 

predictions concerning the adversaries’ likely actions, ensuing out- 

comes, and consequences for each adversary. 

Our methodological development refers extensively to the ba- 

sic sequential defend-attack game, visualized as a bi-agent influ- 

ence diagram in Fig. 1 . This is a stochastic game of incomplete 

information in which all the actions and random events are ob- 

servable after-the-fact, so it also features perfect information. The 

Defender’s nodes are shown in blue and those of the Attacker in 

red. The node � represents an uncertain outcome which is com- 

mon to both adversaries and colored in both colors. The dashed 

arc between the Defender’s and Attacker’s decisions describes an 

information structure, indicating that the Attacker knows the De- 
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fender’s decision when the Attacker ( A , referred to as ‘he’) makes 

his decision. 

Specifically, the Defender ( D , referred to as ‘she’) first imple- 

ments her defensive decision d ∈ D . Next, the Attacker observes 

this defense and makes his decision a ∈ A . Finally, the combination 

of these decisions affects the probabilities of possible outcomes at 

the chance node �. The realized outcome θ = �(a, d) is typically 

uncertain and thus there is uncertainty about the consequences 

c ( d , a , θ ). Often, these consequences involve multiple attributes, 

such as casualties, material losses and monetary costs for both ad- 

versaries. 

The Defender evaluates the consequences with her utility func- 

tion u D ( c ( d , a , θ )) and the Attacker with his utility function u A ( c ( d , 

a , θ )). For brevity, these utilities are denoted by u D ( d , a , θ ) and 
u A ( d , a , θ ), respectively. In the adversarial setting, the goals and, 
thus also the utility functions, of the players are different and of- 

ten opposite. 

2.2. Bayesian Nash equilibrium solution 

As an example, we first determine the Bayesian–Nash equilib- 

rium for the sequential defend-attack game in Fig. 1 . From the De- 

fender’s perspective, the uncertainties the Defender faces about the 

Attacker are modeled through a probability distribution over the 

set of Attacker’s possible types T A , defined as combinations of U A , 
is the set of Attacker’s possible utility functions, and P A , the set of 

his possible probability estimates for the outcomes θ as a results 

of decisions a and d . Thus, realizations of the Attacker’s type are 

pairs of utility functions and probabilities T A = (u A , p A ) . The solu- 

tion for the game is obtained as follows: 

1. At the outcome node �, compute the Attackers’ expected utili- 

ties 

ψ 

u A ,p A 
A 

(d, a ) = 

∫ 
θ∈ �

u A (d, a, θ ) p A (θ | d , a ) d θ, 

for every (u A , p A ) ∈ U A × P A and decisions a ∈ A and d ∈ D. 

2. At the Attacker’s decision node A , compute the optimal attacks 

for the observed defense d using the Attacker’s beliefs and util- 

ities 

A ∗u A ,p A (d) = arg max 
a ∈A 

ψ 

u A ,p A 
A 

(d, a ) , 

and forecast the attack a through 

p D (a | d) = P (A ∗(d) = a ) , 

while taking into account the probability P (T A = (u A , p A )) . 

3. At the Defender node D , compute the optimal defense 

d ∗ = arg max 
d∈D 

∫ 
A 
ψ D (d, a ) p D (a | d ) d a, 

where the Defender’s expected utility is 

ψ D (d, a ) = 

∫ 
�
u D (d, a, θ ) p D (θ | d , a ) d θ . 

Solving the Attacker’s decision problem is more straightforward, 

because the Attacker can observe the defense d before choosing his 

mode of attack a . 

3. Games of partial information 

Bayesian Nash equilibrium is the most widely used solution 

concept for games of incomplete information. Its application as- 

sumes that every player solves the game using Bayesian approach, 

i.e., all players assign subjective probability distributions to the 

parameters they do not know ( Harsanyi, 1967 ). In practice, this as- 

sumption can be problematic, because defining subjective probabil- 

ity distributions over the other player’s probability estimates and 

utilities, or equivalently their type, can pose challenges. It also pre- 

sumes that all players are willing and able to specify these proba- 

bility distributions. 

In order to support adversarial risk analysis when well-defined 

probability distributions over players’ types cannot be elicited, 

we explore how a game between rational players can be ana- 

lyzed without such distributions. By rational, we mean that the 

players seek to maximize their own expected utilities. We also 

assume that the players have some knowledge about their adver- 

sary. Specifically, they are assumed to know that the other player’s 

type, characterized by a combination of utilities and beliefs ( u , p ), 

belongs to a subset of possible types T ⊆ U × P . In what follows, 

this characterization based on set inclusion is referred to as partial 

information . 

Using these assumptions, we revisit the Defend-Attack game in 

Fig. 1 . The Defender knows that the Attacker’s type (u A , p A ) ∈ T A . 
For a given defense d , the attack a is said to dominate attack a ′ , 
denoted by a �A 

p,u | d a ′ , if and only if ∫ 
�
u A (d, a, θ ) p A (θ | d , a ) d θ

> 

∫ 
�
u A (d, a ′ , θ ) p A (θ | d , a ′ ) d θ, ∀ (u A , p A ) ∈ T A . (1) 

In particular, this dominance relation helps identify the attacks a ′ ∈ 

A that the Attacker will not choose in response to the defense d ∈ 

D, because the Attacker, being a rational player, will not choose 

the attack a ′ if its expected utility for him is lower than that of 

a ∈ A . Thus, partial information T A about the Attacker type defines 
a strict partial order (an irreflexive and transitive binary relation) 

over the set of possible attacks. 

3.1. Partial preference information and stochastic dominance 

Using partial information to derive the dominance relation 

(1) is quite general and subsumes several cases of stochastic dom- 

inance for deriving a partial preference order over random vari- 

ables ( Levy, 1992 ). Specifically, assuming that p A = p so that the 

Attacker’s probability estimates are known by the Defender, have 

consequences c(d, a, θ ) ∈ R and have the Attacker’s utility func- 

tion u A belong to the set of all increasing utility functions U + , 
Eq. (1) becomes ∫ 
�
u A (d, a, θ ) p(θ | d , a ) d θ > 

∫ 
�
u A (d , a 

′ , θ ) p(θ | d , a ′ ) d θ, ∀ u A ∈ U 
+ . 

In other words, every expected utility maximizing Attacker with 

an increasing utility function prefers attack a over a ′ . When attack 

alternatives are viewed as choices between random variables, this 

is equivalent to stating that a dominates a ′ in the sense of first 
degree stochastic dominance, denoted by a �FSD a 

′ . 
Similarly, if the Attacker is risk averse, then his utility function 

belongs to the set of all increasing concave utility functions and 

consequently and his decisions can be analyzed with second or- 

der stochastic dominance. Conversely, if the Attacker is risk prone, 

then U A can be taken to be the set of all increasing convex utility 
functions. Different degrees of stochastic dominance can be used to 

describe how decision makers with different risk attitudes would 

rank decision alternatives resulting in uncertain outcomes. 

If the consequences c involve multiple attributes c i , it may not 

be known how important the different attributes are relative to 

each other from the Attacker’s perspective. When U A is the set of 
additive utility functions with increasing utilities for each attribute, 

aggregated with some non-negative (standardized) weights, the 

following Pareto-type first-order stochastic dominance holds 

a �PFSD a 
′ ⇐⇒ p A (c i (d, a, θ ) ≤ e ) ≤ p A (c i (d, a ′ , θ ) ≤ e ) , ∀ i, ∀ e, 

(2) 
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where the inequality is strict for some combination of conse- 

quences e and attributes i . While the assumption of additive mul- 

tivariate utility functions does not always hold, the inaccuracies 

caused by its minor violations are often acceptable in practice 

( Keeney & von Winterfeldt, 2011 ) and can be rectified by restruc- 

turing the attributes. Note that Pareto dominance can be defined 

similarly for higher orders of stochastic dominance for real-valued 

attributes. It is also possible to construct more conclusive domi- 

nance relations, provided that partial information about the rela- 

tive importance of the attributes can be obtained (See also: Liesiö, 

Mild, & Salo, 2008; Liesiö & Salo, 2012 ). 

The construction of a stochastic dominance relation from a set 

of utility functions has been studied extensively; see, for exam- 

ple, Hadar and Russell (1969) , Bawa (1975) , Fishburn (1980) , Kim 

(1998) and Shaked and Shanthikumar (2007) . Thus, instead of fo- 

cusing on the construction of dominance relations, we consider 

how they can be used in ARA. 

3.2. Defense-Attack game with partial information about the Attacker 

Using the basic sequential defend-attack game in Fig. 1 as an 

example, we analyse it as a game with partial information. 

1. At the outcome node �, given decisions a and d , analyze the 

expected utility for the Attacker for each (u A , p A ) ∈ T A 

ψ 

u A ,p A 
A 

(d, a ) = 

∫ 
�
u A (d, a, θ ) p A (θ | d , a ) d θ . 

2. As the Attacker can observe the defense d chosen by the De- 

fender, the set of non-dominated attacks A 
∗(d) at the node A 

can be computed based on the dominance relation �A 
p,u | d from 

(1) as 

A 
∗(d) = { a : � ∃ a ′ : a ′ �A 

p,u | d a } . (3) 

3. At node D , based on the Defender’s expected utility 

ψ D (d, a ) = 

∫ 
�
u D (d, a, θ ) p D (θ | d , a ) d θ, 

compute the set D 
∗ of non-dominated actions in D, using the 

dominance relation 

d �D d ′ ⇐⇒ ψ D (d, a ) ≥ ψ D (d 
′ , a ′ ) , ∀ a ∈ A 

∗(d) , ∀ a ′ ∈ A 
∗(d ′ ) 

where the inequality is strict for at least one pair of attacks a , 

a ′ . 

The key difference with the Bayesian analysis in Section 2.2 is 

that, rather than determining how likely the different actions of the 

Attacker are, the emphasis is on identifying what actions are plau- 

sible. The emphasis on this latter question is motivated by the fact 

that the Defender is ultimately interested not so much in what the 

Attacker will do as in maximizing her own expected utility. 

If the Defender does not know the probability of the Attacker’s 

responses p D ( a | d ), she cannot calculate her expected utility ψ D ( d ) 

exactly. However, the Defender can determine which of the At- 

tacker’s responses A 
∗(d) are possible so that they have a positive 

probability. The Defender can use this information to calculate an 

upper and a lower bound for her expected utility for each defense 

d , i.e., 

ψ 
max 
D (d) = max 

a ∈A ∗(d) 
ψ D (d , a ) and ψ 

min 
D (d ) = min 

a ∈A ∗(d) 
ψ D (d, a ) . 

(4) 

These upper and lower bounds can be used to check dominance 

relations between alternative defenses, because 

d �D d ′ ⇐⇒ ψ D (d, a ) ≥ ψ D (d 
′ , a ′ ) , ∀ a ∈ A 

∗(d) , ∀ a ′ ∈ A 
∗(d ′ ) 

⇐⇒ ψ 
min 
D (d) ≥ ψ 

max 
D (d ′ ) . 

This improves computational efficiency, because there is no 

need to compare the consequences for all possible responses 

a ∈ A 
∗(d) when determining D 

∗. In some cases, these bounds 

can be determined analytically to further improve computa- 

tional performance. If, for example, one of the non-dominated 

attacks a causes most harm to the Defender no matter what 

the Defender does (i.e., ∀ d ∈ D : ∃ a ∈ A 
∗(d) such that ψ D (d, a ) < 

ψ D (d, a ′ ) , ∀ a ′ ∈ A 
∗(d) ), one need not compare all non-dominated 

attacks to establish the lower bound for ψ D . 

3.3. Partial information about both players 

Sometimes, it may be impractical or impossible to specify the 

Defender’s beliefs and preferences completely. This situation be- 

longs to the realm of robust Bayesian analysis ( Ríos Insua & Rug- 

geri, 2012 ). It can be analyzed by extending the results of the pre- 

ceding section by assuming that 

u D (d, a, θ ) ∈ U D , p D (θ | d, a ) ∈ P D , 

for the specified sets U D , P D of possible utility functions and proba- 

bility distributions that represent partial information about the De- 

fender’s preferences and beliefs, respectively. These sets define the 

set T D ⊆ U D × P D representing the Defender’s possible types. 

For comparing the Defender’s defence alternatives, we define 

the dominance relation �D 
p,u 

(d, a ) w �D 
p,u (d 

′ , a ′ ) ⇐⇒ ∫ 
�
u D (d, a, θ ) p D (θ | d , a ) d θ

≥
∫ 
�
u D (d 

′ , a ′ , θ ) p D (θ | d ′ , a ′ ) dθ, ∀ (u D , p D ) ∈ T D , (5) 

where the inequality is strict for at least one combination 

(u D , p D ) ∈ T D . For the Defender, this covers the cases of stochastic 
dominance in Section 3.2 . 

We now proceed as follows: 

1. At the outcome node �, compute the Attacker’s expected utility 

for 

ψ 

u A ,p A 
A 

(d, a ) = 

∫ 
�
u A (d, a, θ ) p A (θ | d , a ) d θ, 

for each (u A , p A ) ∈ T A and (a, d) ∈ A × D. and similarly for the 

Defender, for each feasible pair (u D , p D ) ∈ T D . 
2. At the Attacker’s decision node A , compute the set of non- 

dominated attacks A 
∗(d) for the observed defense d . 

3. At node D , compute the set D 
∗ of non-dominated defenses in 

D based on the dominance relation 

d �D ′ d ′ ⇐⇒ (d, a ) �D 
p,u (d 

′ , a ′ ) , ∀ a ∈ A 
∗(d) , a ′ ∈ A 

∗(d ′ ) (6) 

where at least one of the inequalities in (5) for the binary rela- 

tion (d, a ) �D 
p,u (d 

′ , a ′ ) is strict. 

The approach in Section 3.2 cannot be applied here, because the 

upper and lower bounds for the Defender’s expected utility cannot 

be calculated if the Defender’s utility function is not known. 

This notwithstanding, for some sets of utility functions an anal- 

ogous approach may be taken. For example, if the consequences 

c ( d , a , θ ) are assessed with a single attribute and the Defender’s 

preferences for these consequences are monotonic, then these 

preferences can be modeled with first-order stochastic dominance. 

It is also possible to establish the upper and lower bounds for the 

cumulative distribution functions 

F max 
c (c(θ ′ | d)) = max 

a ∈A ∗(d) 

∫ θ ′ 

−∞ 

p D (c(d, a, θ )) dθ (7) 

F min 
c (c(θ ′ | d)) = min 

a ∈A ∗(d) 

∫ θ ′ 

−∞ 

p D (c(d, a, θ )) dθ . 



310 J. Roponen, D. Ríos Insua and A. Salo / European Journal of Operational Research 287 (2020) 306–316 

and to use first-order stochastic dominance based on the compar- 

ison of bounds to determine the non-dominated decision alterna- 

tives 

d �D ′ d ′ ⇐⇒ (d, a ) �D 
p,u (d 

′ , a ′ ) , ∀ a ∈ A 
∗(d) , ∀ a ′ ∈ A 

∗(d ′ ) 

⇐⇒ F min 
c (c(θ ′ | d)) ≤ F max 

c (c(θ ′ | d)) , ∀ θ ′ , 
with strict inequality for some θ ′ . 

Similar methods can also be applied to examine preferences for 

higher orders of stochastic dominance or Pareto dominance. In the 

first case, one can compute the upper and lower bounds for the 

integral that is used for the comparison, whereas in the additive 

multi-dimensional Pareto case it is necessary to establish bounds 

for the marginal cumulative distribution functions of each of the 

attributes. 

3.4. Decision rules 

The approaches in Sections 3.2 and 3.3 seek to provide as con- 

clusive results as possible based on the available information. How- 

ever, if the specification of the adversaries preferences and beliefs 

is very incomplete, the resulting sets of non-dominated defense 

and attack decisions may be too large to provide actionable de- 

cision support. This is a worthwhile result in and of itself, be- 

cause it shows that the available information is insufficient for 

recommending a well-founded decision. If additional information 

about the players’ types cannot be readily obtained, the set of rec- 

ommended decisions can be narrowed down by introducing ad- 

ditional constraints. One can also apply decision criteria such as 

maximax, maximin or minimax regret from Bayesian robustness 

analysis ( Ríos Insua & Ruggeri, 2012 ). See also the approach pre- 

sented by McLay, Rothschild, and Guikema (2012) , who consider 

consider robust optimization ideas in ARA contexts based on worst 

case scenarios. 

For the Defender, the maximin decision rule for the set of non- 

dominated decisions is 

D 
∗
maximin = max 

d∈D ∗
min 

a ∈A ∗(d) 
ψ D (d, a ) . 

If the Defender’s utility function is known, D 
∗
maximin 

contains a sin- 

gle alternative (or multiple equally preferred alternatives) which 

can be determined using the upper and lower bounds on the ex- 

pected utility from Eq. (4) 

D 
∗
maximin = max 

d∈D ∗
ψ 

min 
D (d) . 

Optimal decision sets for maximax and minimax regret can be con- 

structed similarly. 

As in Section 3.3 , the set D 
∗
maximin 

can be computed more ef- 

ficiently if the Defender’s preferences over the uncertain conse- 

quences fulfil first-order stochastic dominance. Then, the upper 

and lower bounds of the cumulative distribution functions from 

(7) can be employed to determine the non-dominated decision al- 

ternatives 

D 
∗
maximin ={ d ∈ D 

∗ : � d ′ ∈ D 
∗ : F max 

c (c(θ | d))>F max 
c (c(θ | d ′ )) , ∀ θ} . 

From the Defender’s perspective, the upper bounds correspond to 

the worst possible combinations of the Attacker’s and the De- 

fender’s preferences over consequences. The same approach can be 

applied to study other stochastic dominance relations. 

In contrast to the use of decision rules in decision analysis, the 

Defender’s choice between maximin, maximax and minimax re- 

gret decision rules may not reflect the Defender’s risk attitude in 

the traditional sense as much as it reflects the Defender’s aver- 

sion to the ambiguity associated with the Attacker’s subsequent 

response. For example, the choice of the maximin decision rule 

Fig. 2. Chance node removal. 

limits the harm resulting from the Attacker’s response to a min- 

imum, whereas the minimax regret limits the downside variabil- 

ity in the Defender’s expected utility. In some ARA problems, there 

could even be an ally instead of an Attacker, in which the Defender 

could choose the maximax decision rule to give the ally the oppor- 

tunity to help her as much as possible. 

3.5. Complex influence diagrams 

Analyses based on partial information can be extended to more 

complex influence diagrams. In fact, the approach can be used to 

solve any regular multi-agent influence diagram in which the as- 

sumption of no forgetting holds. Regularity means that the influ- 

ence diagram contains a directed path which traverses all decision 

nodes (regardless of which player they belong to) and thus defines 

a total order on them. The “no forgetting” assumption means that 

a player knows all the decisions and chance events that precede 

his/her current decision. Thus, such an influence diagram repre- 

sents a sequential game of perfect information . 

As shown by Shachter (1986) and Tatman and Shachter (1990) , 

any regular influence diagram with no forgetting can be evalu- 

ated with a node elimination algorithm. Ortega, Rios, and Cano 

(2019) have extended this to bi-agent influence diagrams. A reg- 

ular influence diagram can be solved with five graphical transfor- 

mations: 

1. Barren node elimination 

2. Arc reversal between chance nodes 

3. Chance node removal 

4. Decision node removal 

5. Value node removal 

Barren node elimination removes non-utility nodes without 

children. The arc reversal transformation between chance nodes 

presented by Shachter (1986) is based on Bayes’ rule and does not 

require any special considerations when dealing with partial infor- 

mation. The transformations for node removal, however, are more 

involved. 

Fig. 2 shows the chance node removal operation. The cloud 

shaped nodes represent other parts of the influence diagram and 

can contain multiple decision and chance nodes as well as any 

number of arcs within themselves and between each other as long 

as the diagram remains regular. If a chance node has only children 

which are utility nodes belonging to different players, it can be 

removed by conditional expectation and the utility nodes inherit 

all the chance node’s parents. In a multi-agent influence diagram, 

every utility node is associated with some player i with possible 

types T i ⊆ U i × P i . As in (1) , to remove the chance node X we com- 

pute a new partial preference order ranking the states of the new 

parent nodes A , B and C . That is, (a, b, c) �i 
ABC 

(a ′ , b ′ , c ′ ) if and only 
if ∫ 
X 
u i (b, c, x ) p i (x | a, b) dx ≥

∫ 
X 
u i (b 

′ , c ′ , x ) p i (x | a ′ , b ′ ) dx, ∀ (u i , p i ) ∈ T i , 

where the inequality is strict for at least one feasible pair of util- 

ity functions and probability distributions (u i , p i ) ∈ T i . The partial 
preference order �i 

ABC 
is then used to form the new T ′ i ⊆ U ′ i × P 

′ 
i 

for the new game represented by the modified influence diagram. 
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Fig. 3. Decision node removal. 

A B C

U1 U2

A B C

U

Fig. 4. Utility node removal. 

This process is repeated for all the players whose utility nodes had 

X as a parent. 

Fig. 3 illustrates the decision node removal operation. If all the 

children nodes for the decision node D for player i are utility nodes 

so that none of them have parents which are also shared by D , 

such decision node can be removed by maximization, in which 

case the utility node belonging player j inherits all the chance 

node’s parents. (It is also possible that i = j.) As before, the play- 

ers’ possible types are represented by T i ⊆ U i × P i and T j ⊆ U j × P j . 

We first determine non-dominated decision alternatives of player i 

at node D similarly as in Eq. (3) 

D 
∗
i (a, b, c) = { d : � ∃ d ′ : d ′ �i 

D d} , 
where �i 

D 
is derived from the utilities of player i . It is worth noting 

that if this player has no utility node as a child of D , then nothing 

is known about his decision and D 
∗
i 

= D. Utility node U is then 

updated based on D 
∗
i 
(a, b, c) similar to (6) in that 

(a, b, c) � j 
ABC 

(a ′ , b ′ , c ′ ) ⇐⇒ 

(d, c) � j 
DC 

(d ′ , c ′ ) , ∀ d ∈ D 
∗
i (a, b, c) , ∀ d ′ ∈ D 

∗
i (a, b, c) , 

where � j 
DC 

represents the partial preference order of player j over 

states of C and D . It is reduced to an expected utility comparison 

if the type t j for player j is known. The partial preference order 

� j 
ABC 

is then used to form the new T ′ j ⊆ U ′ j × P 
′ 
j for the new 

game represented by the modified influence diagram. This process 

is repeated for all the players whose utility nodes have D as a 

parent. 

Sometimes it may be convenient to represent player’s utilities 

with several utility nodes. If the utility nodes share a parent node, 

it eventually becomes necessary to combine them to completely 

solve the influence diagram. Fig. 4 depicts how two utility nodes 

are combined into one and the new node inherits the parents 

of both. The partial preference relation describing the new utility 

node just has to be consistent with the removed ones 

(a, b, c) �i 
ABC (a 

′ , b ′ , c ′ ) ⇐⇒ (
(a, b) �i 

AB (a 
′ , b ′ ) 

)
∧ 

(
(b, c) �i 

BC (b 
′ , c ′ ) 

)
. 

Utility nodes belonging to different players cannot be normally 

combined in this way. Still, this does not prevent solving the influ- 

ence diagram, because decision and chance nodes can be removed 

even if they have multiple different players’ utility nodes as chil- 

dren. 

With the last three graphical transformations now compatible 

with partial information, we can solve all sequential games of per- 

fect information. The transformations can also help solve com- 

plex non-sequential games, but they cannot be used to eliminate 

decision nodes when an utility node has multiple decision node 

D1 D2

U

Fig. 5. Non-sequential decisions. 

parents, as is the case in Fig. 5 . All decisions that do not lie on 

the same directed path need to be solved simultaneously, and de- 

pending on the partial preference order at the utility node U and 

the number of decision nodes, this may be fairly straightforward 

or nearly impossible. For some preference orders it is possible to 

eliminate dominated pure strategies iteratively in order to reach 

an equilibrium solution ( Börgers, 1994 ) For others, it is necessary 

to also consider mixed strategies ( Perea, Peters, Schulteis, & Ver- 

meulen, 2006 ). To our knowledge, non-sequential partial informa- 

tion games more complex than the one in Fig. 5 have not been 

studied. 

4. Planning of countermeasures for unmanned aerial vehicles 

We illustrate our methods for solving complex influence dia- 

grams with a realistic case study from military planning. We exam- 

ine a scenario in which the Defender seeks to protect her supply 

company from the Attacker’s reconnaissance activities. Specifically, 

the Attacker seeks to map the position of the company with UAVs. 

If the Attacker succeeds in this mapping activity, he can use ei- 

ther artillery or heavy rocket launchers against the Defender’s sup- 

ply company. The following ARA is produced for the Defender who 

seeks to assess the cost-efficiency of UAV-countermeasures for in- 

vestment planning. 

4.1. Scenario description 

The scenario is shown as a bi-agent influence diagram in Fig. 6 . 

The Defender has deployed a supply company around the village 

of Tarttila, Fig. 7 . The Defender seeks to protect the company from 

artillery fire and hence also from UAV reconnaissance as cost- 

efficiently as possible. Towards this end, she considers two differ- 

ent anti-UAV weapon systems, two different radar systems, and the 

option of improving camouflage. She also has to choose how many 

weapon systems to buy and where to place them. 

The Attacker seeks to destroy or cripple the supply company 

by inflicting losses through artillery fire. The Attacker knows only 

the general area where the company is located. The Attacker can 

employ three types of UAVs for reconnoitering artillery targets. All 

types of UAVs can be equipped with one of two different sensor 

systems. Because the UAVs cannot send information back in real 

time, they must survive long enough to return to their base. The 

UAVs cannot change their flight paths based on what they observe. 

The Attacker has several artillery and rocket launcher systems 

with unguided ammunition. After examining the information pro- 

vided by the UAVs, the Attacker decides how to employ these 

systems. 

The Defender does not know how many UAVs or artillery sys- 

tems the Attacker has, or how much it would cost for the Attacker 

to use or lose them. Nor is the Attacker’s decision to use artillery 

or UAVs guided by these costs in the combat scenario. Overall, the 

Defender does not have complete information about the Attacker’s 

utilities. 
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Fig. 6. Bi-agent influence diagram of the anti-UAV problem.

Fig. 7. The company in Tarttila. Blue circles indicate locations of platoons and

squads. (Background map from of Finland, 2007 ).

4.2. Partial preference information 

To keep this case study as realistic as possible, we use only 

as limited information about Attacker’s preferences as one could 

expect to have in an actual military conflict. The Attacker wants 

to maximize the damage to Defender’s equipment and personnel. 

At the same time he does not want to use ammunition unneces- 

sarily for a given effect and prefers not losing UAVs. Because the 

Defender does not know what kind of UAV losses or ammunition 

costs the Attacker is willing to incur in order to cause to dam- 

age to the Defender, the Attacker’s preferences over outcomes are 

formulated through Pareto-type first-order stochastic dominance 

( Eq. (2) ). Specifically, the Attacker is assumed to (i) minimize am- 

munition consumption and UAV losses, and (ii) maximize the dam- 

age to the Defender’s supply company. In addition, using Pareto 

dominance includes the assumption that the utilities for each of 

these attributes are additive and independent. 

Because there can be a considerable delay between the De- 

fender’s investment into countermeasures and the actual deploy- 

ment of these countermeasures, it can be challenging to formu- 

late a utility function which accurately reflects trade-offs between 

immediate costs and uncertain future casualties. Thus, in the ini- 

tial analysis, Pareto dominance is also employed to characterize the 

Defender’s preferences for defense alternatives. Specifically, the De- 

fender seeks to (i) minimize the losses to her supply company and 

(ii) maximize the amount of ammunition that the Attacker would

have to use to cause such losses. The Defender also seeks to mini- 

mize the cost of her UAV countermeasures. 

4.3. Artillery fire 

Following the process described in Section 3.5 , the first node 

to be eliminated from the influence diagram in Fig. 6 is Supply 

company losses from artillery fire. To eliminate the node, we cal- 

culated the conditional probabilities for equipment and personnel 

losses as a function of how the Attacker would aim his Artillery 

and how many shells or rockets he would fire. These probabilities 

were computed with the operation analysis software Sandis ( Lappi, 

2008 ). 

We first chose 10 locations for the Defender’s units that the At- 

tacker might be able to identify using his reconnaissance. These 

same locations were used as targets for the artillery. It was deter- 

mined the Attacker would be unlikely to accurately identify what 

equipment and personnel the Defender has at each of these loca- 

tions, so all locations were deemed equally attractive to the At- 

tacker. As can be seen from Fig. 8 , the effects of the artillery fire 

increase when the Attacker uses more ammunition or divides fire 

between more targets. Unsurprisingly, damage to equipment and 

personnel were practically perfectly correlated. With this informa- 

tion, we can eliminate the chance node and update preferences 

for both sides. The preferences about supply company casualties 

now become irrelevant, because no other node affects them, so 

they are removed. The Attacker’s preferences are updated and he 

wants to use as much ammunition as possible and spread it be- 

tween as many locations as possible. The Defender, on the other 

hand, would prefer just the opposite. 

The next node to be eliminated is the Attacker’s decision node 

about how to use artillery . This decision depends on how many tar- 

gets have been discovered by the UAV reconnaissance. The Attacker 

wants to use as much ammunition as possible to inflict maximum 

casualties, but, at the same time, he wants to conserve ammuni- 

tion. These objectives are so obviously in conflict that no decision 

alternative is going to be dominated based on them. Because the 

Attacker prefers to spread artillery fire between as many targets as 

possible, he will always prefer to have as many as possible targets 

to aim at. Thus, when the Attacker’s decision node is removed, he 

will no longer have preferences over aiming locations or ammu- 

nition consumption, but higher number of targets identified with 

UAV reconnaissance is now preferable. The Attacker also still wants 

to minimize UAV losses. The Defender wants to minimize the num- 

ber of targets identified by the UAVs, maximize UAV losses, and 

minimize investment costs. 

4.4. UAV reconnaissance 

After eliminating the uncertain effects of the artillery fire and 

Attacker’s decisions concerning it, the influence diagram has been 

reduced to a Defend-Attack game of UAV-reconnaissance, Fig. 9 . 

The decision alternatives that remain for the Defender and Attacker 

at the remaining decision nodes are given in Tables 1 and 2 , re- 

spectively. Because the Attacker can observe the Defender’s deci- 

sion, the Attacker’s non-dominated responses to the Defender’s de- 

cision are determined first. 
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Fig. 8. Artillery fire inflicts higher total casualties when divided evenly between multiple targets.

Fig. 9. Influence diagram after eliminating the artillery fire nodes.

Table 1

Defender’s possible UAV countermeasures (see Appendix for technical

details).

Decision Description Cost

Weapon system type Projectile / Laser 110/160

Number of weapons Up to 5 Per unit

Weapon locations center, NW, NE, SW and SE

Radar system type Old radar / New radar 60/100

Number of radars Up to 5 per unit

Radar locations Center, NW, NE, SW and SE

Added camouflage Halves detection distance 130

Table 2

Attacker’s UAV reconnaissance alternatives (see

Appendix for technical details).

Decision Description

UAV type 3 alternatives

Number of UAVs Unlimited

Sensor type 2 alternatives

Flight altitude Depends on UAV system

We built a MATLAB simulation tool to estimate the effectiveness 

of UAV reconnaissance. The tool incorporates a radar model that 

computes the detection probability based on physical and technical 

properties of the UAVs and radars and a simple weapon model that 

automatically destroys any UAVs that are within effective weapon 

range and have been detected. The conditional probability distri- 

butions for the detecting different numbers of target points were 

estimated through Monte Carlo simulation of random UAV flight 

paths. 

The simulations were carried out for all combinations of De- 

fender’s and Attacker’s decisions, making it possible to compute 

the Attacker’s non-dominated response(s) to the Defender’s deci- 

sions and weather conditions. The Attacker’s decisions were evalu- 

ated based on the use of Pareto dominance for the two main ob- 

jectives, i.e., the Attacker prefers to lose as few UAVs as possible 

and find as many target points as possible. No assumptions were 

made about how important these two objective would be to the 

Attacker. 

The final step is to examine what decisions can be optimal in 

maximizing the Defender’s expected utility. We did not elicit an 

exact utility function from the Defender, but we have a partial 

stochastic ordering based on the Defender’s attribute specific pref- 

erences, similar to Section 3.3 . Solving the problem using Pareto 

dominance over costs and the number of detected targets lead 

to 1271 non-dominated defense portfolios for the Defender. This 

is fewer than the 7689 at the outset, but still too many to rec- 

ommend a decision. One reason why there are so many non- 

dominated portfolios is that the Attacker’s response to the De- 

fender’s countermeasures is uncertain. This leads to wide bounds 

for the probabilities of finding different numbers of targets, see 
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Fig. 10. Upper and lower bounds for two cumulative distribution functions (red and blue) for the number of target points that remain hidden for Defender’s non-dominated

alternatives. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3

Defender’s non-dominated maximin decision alternatives.

Purchase cost Weapon Radar Camouflage

Model Amount Model Amount

0 – 0 – 0 No

170 Projectile 1 Old 1 No

210 Projectile 1 Old 1 Yes

230 Projectile 2 Old 1 No

290 Projectile 3 Old 1 No

300 Projectile 1 Old 2 No

320 Projectile 2 New 1 No

340 Projectile 1 New 1 Yes

420 Projectile 2 New 2 No

430 Projectile 3 New 1 No

450 Projectile 2 New 2 Yes

Fig. 10 . Even though both the upper and lower bounds of the blue 

alternative shown in Fig. 10 are significantly lower than those cor- 

responding to the red alternative, one cannot conclude which of 

these alternatives is better, because the Defender’s decisions may 

affect those of the Attacker, and the upper bound for the blue al- 

ternative is above the lower bound for the red one. 

To narrow down the set of plausible decisions, additional pref- 

erence information from the Defender is needed. In this example, 

the Defender decides she wants to be prepared for worst-case sit- 

uations, because the supply company needs to stay protected not 

only against a single attack, but also against repeated ones over a 

longer period. Thus, the maximin decision rule is applied to nar- 

row down the non-dominated alternatives. 

Because the Defender’s utility function is not fully specified, the 

maximin decision rule does not yield a single decision. However, 

this rule reduces the number of non-dominated decision port- 

folios to 30 of which most differ only in the placement of the 

weapon systems. There are only 11 different equipment combina- 

tions, shown in Table 3 . Many of the less costly alternatives, like 

the one which ignores UAVs entirely, do not protect the supply 

company well, but are non-dominated due to their low cost. 

The results show that, for instance, the more expensive laser 

weapon system should not be chosen and the more expensive new 

radar is worthwhile only if the Defender is willing to spend at least 

320 units. Because there are only a few alternatives, it would be 

possible to present the Defender with a detailed analysis of the 

probabilities with which the targets are discovered and what the 

likely effects of artillery fire are; or to present a well-founded over- 

all assessment of what the most cost-efficient countermeasures are 

( Kangaspunta, Liesiö, & Salo, 2012 ). 

Computing the non-dominated decision alternatives for the De- 

fender took around 10 minutes using a fairly typical laptop and 

custom MATLAB code that was not optimized for speed. This is 

orders of magnitude less time than it took to compute the con- 

ditional probability tables for the chance nodes, which took days 

for the artillery fire and hours for the UAV reconnaissance us- 

ing the same computer. Calculating the conditional probabilities 

for the effects of artillery fire turned out unnecessary in the end, 

because they only affected the decision dominance in very pre- 

dictable ways. Using Bayesian Nash equilibrium to solve the same 

problem would have actually required those conditional probabili- 

ties. 

For more complex problems, the computation time for this 

kind of dominance-based analysis increases much in the same 

way as in Bayesian Nash equilibrium analysis, i.e., it grows ex- 

ponentially with the number of parents and children at decision 

nodes. However, the number of conditional probabilities in the 

chance nodes grows just as fast. This means that in many prac- 

tical applications, the burden involved in eliciting them is likely 

to overshadow computational difficulties in solving the actual 

game. 

5. Conclusions

ARA is a promising approach to the management of risks in ap- 

plication areas such as security and defense, because in contrast to 

standard game theoretic approaches, it does not necessitate strong 

assumptions about common knowledge. Still, modeling the adver- 

saries’ interlinked decision process can be challenging, given that 

in practice it may be exceedingly difficult or practically impossible 

to elicit complete information about the adversaries’ preferences 

and beliefs. 

Motivated by this, we have proposed dominance concepts and 

associated computational methods for characterizing and synthe- 

sizing partial information in ARA. Specifically, we have considered 

several variants of partial information which reflect different types 

of partial information in the context of the sequential Defend- 

Att ack model. However, our approach can be readily extended to 

even to more extensive ARA models which involve sequential de- 

cision making, by following the principles discussed in the context 

of more complex influence diagrams. The methods presented are 
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general enough that they can be used with either single or multi- 

attribute utilities. 

We have also presented an illustrative case study on military 

planning in which the Defender seeks to protect its supply com- 

pany from UAV surveillance. The salient elements of this case study 

are representative of the problems encountered in other ARA ap- 

plications, for instance in the realm of cyber security. In particular, 

the proposed solution concepts for the analysis of partial informa- 

tion are likely to be useful when there are challenges in assessing 

the adversaries’ multi-attribute utility functions and probability es- 

timates. For instance, it would be difficult to predict how a cyber 

criminal would weigh the risks of getting caught against potential 

gains. 

ARA models with partial preference information can also be 

used to address problems which involve multiple decision makers 

with different objectives. For instance, in environmental decision 

making there are often multiple stakeholders whose utility func- 

tions can be difficult to elicit completely ( Hämäläinen, 2015 ). In 

such settings, a partial order for the decision alternatives could be 

built by eliciting and synthesizing partial information from these 

stakeholders. 

The partial information approach may help simplify complex 

ARA problems even if the adversaries’ preferences can be spec- 

ified through utility functions. That is, because stochastic domi- 

nance does not require that the expected utilities are calculated 

exactly, there is no need to elicit complete probability information 

for the influence diagram either. As the case with artillery fire in 

the UAV case study shows, it may suffice to know the direction of 

change in the adversaries’ utilities in response to changes in the 

probability parameters. 

Analyses based on partial information can also be applied 

to problems involving sequential decisions by multiple actors. 

Because any inaccuracies in estimated utilities will propagate and 

accumulate in ‘deep’ influence diagrams containing long paths 

between decision and chance nodes, it may be advisable to err on 

the side of caution and produce initial analyses based on partial 

information. Then, if the partial information approach does not 

narrow down decisions sufficiently, one can revert back to the 

more traditional approach, elicit the utility functions and repeat 

the analysis using sets of non-dominated decisions. This will still 

require fewer probability estimates than the specification of full 

parameters for the original problem. 
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Appendix A. Technical parameters in UAV simulations 

Table 4

UAV parameters.

Parameter Small UAV Cheap UAV Fast UAV

Cost Unknown Unknown Unknown

Radar cross-section 0.01 square meter 0.1 square meter 0.1 square meter

Speed 20 meter/second 30 meter/second 200 meter/second

Min altitude 20 meter 50 meter 50 meter

Max altitude 160 meter 500 meter 500 meter

Expensive sensor

range

1000 meter 1000 meter 1000 meter

Cheap sensor range 500 meter 500 meter 500 meter

Table 5

Radar parameters.

Parameter Old radar New radar

Cost 60 100

Frequency 9.5 gigahertz 3.5 gigahertz

Peak power 80 Watts 60 Watts

Pulse duration 1 meter second 1 meter second

Net gain 15 decibels 15 decibels

Pulses integrated 1 10

Probability of false alarm 1E-6 1E-6

Elevation angle 30 ◦ 70 ◦

Table 6

Weapon parameters.

Parameter Projectile weapon Laser weapon

Cost 110 160

Range 1000 meter 2000 meter

Limited by visibility No Yes
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Abstract

Cross‐impact analysis is widely employed to inform management and policy decisions

based on the formulation of scenarios, defined as combinations of outcomes of relevant

uncertainty factors. In this paper, we argue that the use of nonprobabilistic variants of

cross‐impact analysis is problematic in the context of risk assessment where the usual

aim is to produce conservative risk estimates which may exceed but are not smaller than

the actual risk level. Then, building on the characterization of probabilistic dependencies,

we develop an approach to probabilistic cross‐impact analysis which (i) admits several

kinds of probabilistic statements about the outcomes of relevant uncertainty factors and

their dependencies; (ii) maps such statements into constraints on the joint probability

distribution over all possible scenarios; (iii) provides support for preserving the con-

sistency of elicited statements; and (iv) uses mathematical optimization to compute

lower and upper bounds on the overall risk level. This approach—which is illustrated

with an example from the context of nuclear waste repositories—is useful in that it

retains the informativeness of cross‐impact statements while ensuring that these

statements are interpreted within the coherent framework of probability theory.

K E YWORD S

cross‐impact analysis, probabilistic risk assessment, scenario analysis

1 | INTRODUCTION

In its many variants, scenario analysis is widely employed to support

strategic decisions whose impacts depend on key uncertainties (Bunn &

Salo, 1993; Lord et al., 2016). In such situations, the systematic iden-

tification of relevant uncertainty factors; the characterization of out-

comes which depict possible realizations of these factors; and the

formulation of scenarios as different combinations of such outcomes

provides support for organizational learning, fosters managerial insights

and provides an improved basis for strategic decisions through a sys-

tematic analysis of uncertainties (Schoemaker, 1993; A. Wright, 2005).

Yet, a practical challenge in scenario analysis is that the number of

possible scenarios grows very rapidly with the number of uncertainty

factors and their outcomes. This is because for every combination of

outcomes of these uncertainty factors, there exists a distinct scenario that

could be generated (Carlsen et al., 2016; Tietje, 2005). Thus, if there are

10 factors with five possible outcomes for each, for example, the total

number of possible scenarios which can be defined by such outcome

combinations is 5 9.710 million. Understandably, the number of sce-

narios which are usually elaborated is typically much smaller, given that

resources for developing scenarios by engaging experts or by consulting

other sources of information are limited. Moreover, the elaboration of

scenarios and the assimilation of their implications is constrained by the

amount of time and attention that decision and policy makers can devote

to the scenario process. Thus, in many public policy and corporate sce-

nario analyses which are developed primarily by consulting experts and

other respondents, the number of scenarios is in the range between four

and eight (see, e.g., Lord et al., 2016; Wiebe et al., 2018).
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In this setting, methods of cross‐impact analysis provide a struc-

tured approach to choosing those outcome combinations for which

scenarios are built, based on statements concerning the logical re-

lationships between the factors and their outcomes. Such statements

are typically elicited by asking the respondent to characterize which

pairs of outcomes are consistent in the sense that these outcomes are

likely to occur jointly. Typically, these cross‐impact statements are

expressed verbally and then mapped to corresponding numerical

parameters. For instance, Scholz and Tietje (2001) present a 7‐point

numerical scale from −3 to 3 such that, for example, −3 indicates that

the two outcomes are strongly inconsistent in the sense that they are

very unlikely to occur together; 0 represents independence; and 3 in-

dicates that the outcomes are strongly consistent so that the occur-

rence of an outcome induces the other. Finally, the elicited statements

are synthesized algorithmically to provide suggestions for which

combinations of outcomes scenarios should be built (see, e.g., Salo &

Bunn, 1995; Seeve & Vilkkumaa, 2021; Tietje, 2005).

As one of the important application areas of scenario analysis, risk

assessment covers both risk analysis (which helps identify, character-

ize, and analyze future events and developments that can negatively

impact individuals, assets or the environment) and risk evaluation

(which supports judgments about the extent to which these risks can

be tolerated) (Rausand, 2013). In risk assessment, the demands on the

rigor, quality and transparency of methodological support are parti-

cularly stringent. In part, this is because risk management decisions can

have far‐reaching consequences, especially in the context of safety‐

critical systems whose failures can cause human casualties, irreversible

environmental damages, and major financial losses. Thus, for example,

in the assessment of the safety of nuclear waste repositories, it is

necessary to account for the full range of relevant uncertainty factors

(called features, events, and processes [FEPs]; see Tosoni et al., 2018)

and their implications for regulatory decisions. Methodological rigor is

also needed in assessing risks due to the impacts of climate change,

healthcare interventions, and environmental regulations (see, e.g.,

Hirabayashi et al., 2013). In all these areas, the possibility of rare but

extremely serious events is of much concern. These events have

usually very low probabilities which can be notoriously difficult to

estimate because of scarce empirical evidence and paucity of relevant

data based (see, e.g., Goodwin & Wright, 2010).

Within the field of risk assessment, probabilistic risk analysis

(PRA) constitutes a theoretically coherent framework which is com-

patible with well‐established statistical techniques for data analysis; it

also provides support for synthesizing expert judgments (Bedford &

Cooke, 2001). In the analysis of safety‐critical systems, it is often

required that the PRA estimates—which reflect both the probability

and the severity of negative impacts—should be conservative so that

the actual risk level is not underestimated (see, e.g., Aven & Zio,

2011). This requirement is justified by the recognition that in safety‐

critical systems, errors due to “false negatives”—the failure to take

appropriate risk management decisions in response to risks which

were deemed tolerable but were actually too high—can be far greater

than errors arising from “false positives”—the cost of unnecessarily

implementing risk management actions in response to assessed risks

which, in reality, were not big enough to warrant such actions. Even

more generally, such conservatism is widely called for in situations

where there are significant uncertainties. For example, the “precau-

tionary principle” (Science for Environment Policy, 2017) has been

invoked to guide the public response to risks in contexts such as

climate change mitigation (Stern, 2007). Also the “minimax regret”

decision rule, which has been proposed as an approach for ensuring

the resource adequacy of electricity systems (National Grid, 2020), is

motivated by the desire to limit the amount of harm that could be

experienced ex post. If the impacts can be characterized in terms of

real‐valued consequences (for instance through monetization), in-

formation about the tail risk represented by the least preferred

consequences can be provided through risk measures such as Value‐

at‐Risk and conditional Value‐at‐Risk, defined at appropriate con-

fidence levels (see Liesiö & Salo, 2012).

The above remarks motivate our central observation on the use of

cross‐impact analysis in risk assessment and the ensuing decision

making. That is, to the extent that cross‐impact analysis focuses on a

small subset of all possible scenarios, there is a real possibility that the

resulting estimates about the overall risk level will not be conservative,

because the risks associated with all the other “non‐constructed”

scenarios may be underestimated or even neglected. This may not be

of major concern in contexts where the stakes are not very high or

where “softer” process objectives such as organizational learning are

dominant. However, if the analysis serves as an essential input to

safety‐critical risk management decisions, it is possible that the suffi-

cient conservatism required by regulatory decision making is not being

upheld. Indeed, while all model‐based analyses are simplifications and

there is always some “model risk,” in safety‐critical applications, due‐

diligence requires that this should be minimized.

Against this backdrop, we examine cross‐impact analysis from the

PRA perspective, with the aim of clarifying how cross‐impact analysis

can be employed to support risk management decisions. This per-

spective is motivated by the recognition that (i) risk assessment is, by

definition, focused on the identification, characterization, and analysis

of relevant uncertainties and their impacts, and that (ii) PRA is often

endorsed and in many cases even required as the only appropriate

coherent framework for addressing these uncertainties (see, e.g.,

Helton & Sallaberry, 2009; USEPA, 2014; USNRC, 2016). As a moti-

vating prelude to our methodological development, we point out lim-

itations in nonprobabilistic cross‐impact approaches by examining the

cross‐impact balances (CIB) method (Weimer‐Jehle, 2006, 2008). We

have chosen this method due its visibility in the literature and the

attention that it has recently received in the context of climate change

mitigation (Kemp‐Benedict et al., 2010; Panula‐Ontto et al., 2018;

Schweizer, 2020; Weimer‐Jehle et al., 2020).

Furthermore, by building on formulations for capturing prob-

abilistic dependencies, we develop a probabilistic method of cross‐

impact analysis which combines methodological coherence with the

expressiveness of cross‐impact statements for characterizing de-

pendencies between pairs of outcomes for uncertainty factors. These

statements are translated into constraints on the joint probability

distribution over the set of all possible scenarios (which, by design,
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are assumed to be mutually exclusive and collectively exhaustive;

see, e.g., the early work of Duperrin & Godet, 1975 and citations to

it). In addition to cross‐impact statements, our method accom-

modates many other kinds of probabilistic statements, such as lower

or upper bounds on the marginal and conditional probabilities of the

joint probability distribution. Throughout the elicitation process, the

method can offer support for preserving the consistency of the eli-

cited statements so that the corresponding constraints are satisfied

by at least some scenario probabilities.

In the context of risk assessment, our method can also be em-

ployed together with measures of risk importance to identify the

scenarios which matter most from the risk management perspective

(see, e.g., Salo et al., 2021; Tosoni, 2021). A precondition for this is

that estimates about the expected consequences in every possible

scenario can be assessed. While the generation of such estimates can

be supported by computational models in some contexts (cf. the case

study in Section 4), this assessment task may be challenging if the

number of possible scenarios is large and the required estimates have

to be elicited from experts (see, e.g., Dias et al., 2018). This task may

be less onerous if the consequences depend primarily on few un-

certainty factors, because it may suffice to assess consequences by

conditioning these on, say, pairs or triplets of outcomes for two or

three uncertainty factors. It may also be possible to estimate

scenario‐specific consequences by using mathematical models in

which the consequences are expressed as functions of the outcomes

that define the scenarios. One possibility is to apply the rank nodes

method (Fenton et al., 2016; Laitila & Virtanen, 2016) which has been

successfully employed to support the development of conditional

probability tables for Bayesian networks. This method appears par-

ticularly relevant thanks to its flexibility which is achieved by asso-

ciating weighting parameters with each uncertainty factor.

More generally, even if scenario‐specific consequences are not

formally assessed, the proposed approach to the elicitation of cross‐

impact statements and their conversion into constraints on the un-

derlying joint probability distribution provides a structured and sys-

tematic way for characterizing this distribution. In this regard, it

serves similar purposes as approaches for modeling dependencies

between continuous random variables with real‐valued outcomes

(see, e.g., Van Dorp, 2005).

While our emphasis is on probabilistic approaches, we note that

nonprobabilistic approaches such as CIB do not automatically lead to

excessively permissive conclusions about system safety, provided

that deliberate attempts are made to select those scenarios which

pose significant risks while also accounting for the impacts of those

scenarios which are not elaborated. This notwithstanding, a major

shortcoming of these nonprobabilistic approaches is that they are not

founded on a coherent theoretical framework within which the

adequacy, appropriateness, and sufficiency of these kinds of adjust-

ments could be formally assessed. This makes it hard if not impossible

to ascertain if such adjustments warrant valid conclusions about

system safety. Thus, there is a striking contrast with PRA which, due

to its probabilistic foundations, builds on a coherent framework

within which such an assessment can be made.

The rest of this paper is structured as follows. Section 2 discusses

methods of cross‐impact analysis and remarks on nonprobabilistic

approches in light of the CIB method. Section 3 shows how cross‐

impact statements can be converted into constraints on the joint

probability distribution over all possible scenarios. It also formulates

maximization problems which can be solved to infer conservative risk

estimates, based on all the elicited information. Section 4 presents a

numerical example. Section 5 concludes.

2 | METHODS OF SCENARIO AND
CROSS‐ IMPACT ANALYSIS

Of the variety of methods in scenario analysis, most are associated

with one of the three main schools which are commonly referred to

as the intuitive logics school; the probabilistic/modified trends

school; and La Prospective (Bradfield et al., 2005; Bunn & Salo, 1993).

The first, intuitive logics, is least quantitative in that it adopts a top‐

down inductive approach in seeking to formulate descriptive sce-

narios which represent possible futures and thus help generate ac-

tionable insights (Bowman, 2016; G. Wright et al., 2013). The second

school consists of methods such as Trend‐Impact Analysis and Cross‐

Impact Analysis which employ techniques for quantifying expert

judgments, for example by characterizing possible deviations from

historical averages or prior expectations (Bradfield et al., 2005). The

third school, La Prospective, can be viewed as a “blend of tools and

systems analysis” (Godet, 2000) or even as a mixture of methods

from intuitive logics and probabilistic analysis (Bradfield et al., 2005).

Regardless of the school, it is useful to consider the determinants

of the scenario quality (Bunn & Salo, 1993). In particular, scenarios

should be comprehensive, meaning that they represent the full range

of possible futures that are relevant to decision making or the

broader objectives of the scenario process; consistent, meaning that

the outcome combinations are plausible in light of available knowl-

edge about the reality which they seek to depict; and coherent,

meaning that the development of scenarios is founded on sound

theories for reasoning about uncertainties. In practice, the pursuit of

these qualities involves inevitable trade‐offs. For example, increasing

the number of scenarios to ensure comprehensiveness would, at

some stage, result in the generation of scenarios which are less

plausible and therefore less consistent, too.

In our methodological development, we focus on probabilistic

approaches in which uncertainty factors are modeled as random

variables X i n, = 1, …,i such that the ith uncertainty factor has ni
possible realizations (called outcomes) x k n, = 1, …,k

i
i represented by

the set { }S x x= , …,i i
n
i

1 i . A scenario s x x= ( , …, )n1 is defined as a com-

bination of outcomes x Si i for all uncertainty factors i n= 1, …, .

Thus, mathematically, the set of all scenarios is the Cartesian product

S = Si
n i
=1 which has S n= i

n
i=1 elements. For example, if there are

5 factors with three outcomes for each, there are 3 = 2435 distinct

scenarios that can be generated.

Much of the early methodological development of cross‐impact

analysis took place in the 1970s and 1980s. One of the major aims
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was to support inferences about which scenarios could be deemed

more plausible than others, based on cross‐impact statements about

the consistency of outcomes for pairs of uncertainty factors. The

proposed methods were largely developed within the framework of

probability theory by interpreting the elicited cross‐impact judgments

in terms of statements about conditional probabilities and by trans-

lating these statements into corresponding constraints on the joint

probability distribution over the set of all possible scenarios (for an

early review, see tab. 1 in Salo & Bunn, 1995).

In the elicitation of cross‐impact statements, one notable chal-

lenge is that when several cross‐impact statements are elicited

without explicit guidance, the resulting set of elicited statements may

be inconsistent so that the corresponding constraints will not be

satisfied by any probability distribution over the set of scenarios

(G. Wright et al., 1988). In this case, it would be necessary to revise

earlier statements, either by removing some of them or, alternatively,

by relaxing the bounds of those statements which have been en-

coded as intervals. Both cases are problematic in that it can be

challenging to identify which one(s) of the many earlier statements

are more “wrong” than others.

In recent years, the literature on cross‐impact analysis has con-

tinued to diversify. There are now approaches in which the assessed

cross‐impact evaluations are no longer linked to probabilities. One of

these approaches is the CIB method (Weimer‐Jehle, 2006, 2008)

which is a structured technique for identifying consistent scenarios

based on cross‐impact assessments about causal dependencies be-

tween uncertainty factors. In CIB, specifically, the respondent is in-

vited to use a scale ranging from −3 to 3 to assess what impact the

outcome x Sk
i i of the ith factor will have on the outcome x Sl

j j of

the jth factor. These statements are assessed for all pairs of out-

comes x x x S x S( , ), ,k
i

l
j

k
i i

l
j j and pairs of uncertainty factors i j,

resulting in responses C i j k n l n, , = 1, …, , = 1, …,kl
ij

i j. These re-

sponses form the elements of the cross‐impact matrix C .
In the selection of scenarios, CIB focuses exclusively on con-

sistent scenarios which are defined as combinations of outcomes

( )x x, …,k k
n

*
1

*n1
such that (see eq. 1 in Weimer‐Jehle, 2008)

C C j n l n, = 1, …, , = 1, …, .
i j

n

k k
ij

i j

n

k l
ij

j* * *
i i j i i=1 =1 (1)

In other words, the scenario ( )x x x S, …, ,k k
n

k
i i

*
1

* *n i1
is consistent in the

sense that the sum of corresponding cross‐impact terms in each

column x j n, = 1, …,k
j

j*j
of the aggregate matrix is not less than what

would be obtained by adding the terms in the column for some other

outcome x xl
j

k
j
*j
instead.

Even if this requirement seems plausible, it is highly restrictive in

that the number of scenarios which satisfies the condition (1) can be

very small, which undermines the objective of generating a compre-

hensive set of scenarios. For instance, in the example in tab. 3 of

Weimer‐Jehle (2006) with five factors (four with three possible

outcomes and one with four), only three out of the 3 × 4 = 3244

scenarios are consistent, because none of the 321 other scenarios

fulfill the consistency requirement (1).

Alarmingly, it is also possible to construct cross‐impact matrices

such that the consistency requirement in (1) is not satisfied by any

scenario. For example, consider the cross‐impact matrix in Figure 1

which is based on two uncertainty factors such that the possible

outcomes of the first factor are a b c{ , , } and those of the second

factors are x y z{ , , }. Then, condition (1) means that for example, the

scenario k k( *, *)1 2 would be consistent if and only if C C l k, *k k k l* *
21

*
21

12 1 2

for j = 1 in (1), and C C l k, *k k k l* *
12

*
12

21 2 1
for j = 2 in (1).

Yet the following nine inequalities show that for any scenario

there exists some other column such that at least one of these

conditions is violated:

C C C C C C

C C C C C C

C C C C C C

= 0 < 1 = , = 3 < 3 = , = 1 < 1 =

= 3 < 3 = , = 0 < 3 = , = 0 < 1 =

= 1 < 1 = , = 0 < 1 = , = 2 < 1 = .

ax ay ya yc az ay

bx bz by bz zb za

xc xb cy cx cz cx

12 12 21 21 12 12

12 12 12 12 21 21

21 21 12 12 12 12

Even if the numerical values in the cross‐impact matrix in Figure 1 are

hypothetical, this example shows that there can be data sets of cross‐

impacts statements such that no scenarios satisfy the condition (1).

Admittedly, the absence of consistent scenarios can be attributed to

the lack of consistency in the statements. However, to the extent

that the elicitation process offers no structured guidance for the

specification of statements, there is a risk that the set of scenarios

which are screened for further elaboration becomes too small, thus

undermining the attainment of the comprehensiveness as a quality

attribute. In other words, the strong emphasis on the consistency

criterion based on a dichotomous “yes‐no” assessment may, de-

pending on the elicited cross‐impact statements, be so stringent that

the number of consistent scenarios is too small to ensure the com-

prehensiveness of the generated scenarios, all the more so because

the extent to which the scenarios are comprehensive is not formally

defined. From this perspective, we find that among nonprobabilistic

F IGURE 1 An example of inconsistencies
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cross‐impact methods there are significant advantages to adopting

approaches which (i) employ quantitative measures for concepts such

as consistency and comprehensiveness and (ii) provide suggestions

for the selection of scenarios by solving corresponding optimization

problems. One such approach for generating scenarios which are

both plausible and diverse is presented in (Seeve & Vilkkumaa, 2021).

In Figure 1, the cross‐impact terms are not monotonic in the sense

that transitions to a higher index (e.g., moving first from a to b and then

proceeding to c) would be associated with systematic increases or de-

creases in the assessed cross‐impacts. In effect, the monotonicity of such

changes makes sense only on condition that there exists a corresponding

metric or ordinal scale such that there is a sense of direction ranging from

outcomes on the lower levels to those on the higher levels (as opposed to

a nominal scale which merely indicates selections from the set of out-

comes without such directionality, for example, choices among political

parties; see Carlsen et al., 2016).

Uncertainty factors which are assessed using metric scales (e.g.,

temperature) can be discretized to formulate corresponding ordinal

scales. Then, assuming that there are such ordinal scales for all un-

certainty factors, the outcomes for each factor can be ordered with a

transitive, antisymmetric, and total binary relation i n, = 1, …,i . In

this case, the monotonicity property can be stated as

( )
x x x C C C C C

C C C C C C C .

k
i

i k
i

i k
i

kl
ij

k x l
ij

k l
ij

kl
ij

k x l
ij

k l
ij

lk
ji

lk
ji

lk
ji

lk
ji

lk
ji

lk
ji

&# 00027; &# 00027;

(2)

In risk assessment, one should be wary of assuming that the lowest

and highest risks would be attained at the endpoints of any such

ordinal scale. For example, if departures from the normal conditions

in a production facility are measured on a natural ordinal scale (or

even an interval scale, as in the case of, e.g., temperature), deviations

into either direction can contribute to increased risks.

Still, even with monotonic cross‐impacts, it is possible that there are

no CIB‐consistent scenarios. One such example is in Figure 2 where there

are three uncertainty factors whose outcomes belong to the sets

a b c i j k{ , , }, { , , }, and x y z{ , , }, respectively. The shaded rows indicate the

selection of the scenario a i x( , , ) which is also indicated by the upward

pointing arrows and the digits “1” in the second row at the bottom of the

figure. The numbers in the first row under the downward arrows show

the sums for those columns which have the highest column sum for the

selection of outcomes for each uncertainty factor. For factor 3, this sum is

the highest 2 = 0 + 2 (obtained from matrix entriesC = 0az
13 andC = 2iz

23 )

while the corresponding sum associated with the scenario a i x( , , ) is

4 = 3 + ( 1), based on C = 3ax
13 and C = 1ix

23 . Thus, scenario a i x( , , )
is not consistent, because condition (1) would be violated by replacing the

outcome x by z. It straightforward to check that none of the 27 scenarios

are consistent.

In view of these examples, the procedures of the CIB method

seem excessively restrictive in that there are examples of numerical

inputs such that the consistency requirements hold either for very

few or, at the limit, no scenarios at all. As a result, it appears that in

the case of nonprobabilistic cross‐impact analysis, approaches which

are based on the formulation of optimization problems towards the

identification of a set of consistent and diverse scenarios should be

preferred. For example Seeve and Vilkkumaa (2021) present a

structured approach which was applied to generate scenarios for the

National Emergency Supply Agency in Finland. In what follows,

however, we explore how the probabilistic interpretation of cross‐

impact statements can be employed to establish a coherent metho-

dological foundation for using cross‐impact analysis in the context of

risk assessment, in particular.

2.1 | Probabilistic dependencies

There is an extensive literature on the characterization of probabil-

istic dependencies between events. Such dependencies will arise if

there are causal relationships between the events; but they may very

well exist even in the absence of such relationships. Specifically, re-

search on the topic of probabilistic causation has sought to char-

acterize what causation means in probabilistic terms (see, e.g.,

Williamson, 2009 for an overview as well as contributions by Pearl,

2013; Suppes, 1970). In general, there is wide agreement that a

F IGURE 2 An example of inconsistencies with monotonic cross‐impacts
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statement such as “the event A may have been caused by the event

B” can be interpreted as meaning that the occurrence of A is more

likely if the event B has occurred, that is,

A B A( ) > ( ). (3)

Here, the qualification “may have been” is warranted, because

the inequality (3) lacks any contextual knowledge. For instance, it

does not consider when the events occur, even if the attribution of

causality would be possible only on condition that the event B occurs

before A. Moreover, even if this were to be the case, it could be that

the event A can be more meaningfully attributed to intermediate

events which occur after B but before A. There are even parallels to

empirical econometrics where the notion of “Granger causality”

(Granger, 1969) is defined so thatB is said to cause A if the regression

A t a bB t( ) = + ( 1) (where t refers to points in time) has a significant

regression coefficient b but B t a bA t( ) = + ( 1) does not.

In view of (3), we interpret the ratio A B A( ) ( ) as an indication

of the degree of probabilistic dependency between the occurrence of

events B and A, noting that this ratio need not be reflect causal

relationships between the events. In keeping with this interpretation,

we suggest that the cross‐impacts are linked to ratios between

conditional and marginal probabilities, as defined by

C
p
p

p
p p

= ,kl
ij k l

i j

k
i

kl
ij

k
i

l
j (4)

where p X x p X x p X x X x= ( = ), = ( = ), = ( = = )k
i i

k
i

l
j j

l
j

k l
i j i

k
i j

l
j , and

p X x X x= ( = = )kl
ij i

k
i j

l
i . In particular,Ckl

ij thus provides an answer to the

question “How many times more likely does the outcome xki of the ith
uncertainty factor become if it is known that the outcome of the jth
uncertainty factor is xl

j?” This question invites intuitively meaningful and

theoretically well‐defined answers on a ratio scale. Such answers can be

encoded with the help of verbal descriptors that can be calibrated

through experiments (see Pöyhönen et al., 1997). Note that if the out-

comes xji are xl
j are independent, then p p=k l

i j
k
i and C = 1kl

ij .

Based on the interpretation (3), the cross‐impact terms are sym-

metric, because (4) implies C C=kl
ij

lk
ji . This property is desirable in that

symmetry is aligned with the nondirectional relational structure of (in)

consistencies. That is, stating that the events A and B are “inconsistent”

does not involve causal judgments about why the joint occurrence is very

unlikely or, in particular, whether or not it is the occurrence of one which

is preventing the other from occurring. Furthermore, this property also

makes it easier to elicit the cross‐impacts terms, because evaluations are

needed only for unordered pairs of outcomes (i.e., n n( × ) 2i j i j
n

i j, =1, ) in-

stead for all ordered pairs (i.e., n n×i j i j
n

i j, =1, ).

The following result shows that the relation (3) implies

A B A B( ) > ( ¬ ) and vice versa.

Theorem 1. Assume that events A B, are such that B0 < ( ) < 1. Then

A B A A B A B( ) > ( ) ( ) > ( ¬ ). (5)

Proof. “ ”: If (3) holds, then

A A B B A B B A B
A B B A B A B B

( ) = ( ) ( ) + ( ¬ ) (¬ ) > ( ) ( )
+ ( ¬ ) (¬ ) ( )(1 ( )) > ( ¬ ) (¬ ),

where the first inequality follows from (3) and the last inequality can

be divided by B B(¬ ) = 1 ( ) > 0 to obtain P A P A B( ) > ( ¬ ), which

together with (3) implies A B A B( ) > ( ¬ ). “ ”: Because

A B A B( ¬ ) < ( ), this follows from

A A B B A B B A B B B
A B

( ) = ( ) ( ) + ( ¬ ) (¬ ) < ( )[ ( ) + (¬ )]
= ( ).

However, if the ratio A B A B( ) ( ¬ ) were to be taken as a point

of departure for evaluating cross‐impacts, the resulting ratios would

be asymmetric and consequently the number of parameters in the

model would become much higher. Moreover, it could be cognitively

more challenging for the respondent to specify statements involving

comparisons in which the event A is conditioned on the non-

occurrence of B.
The interpretation of cross‐impacts in (4) implies that

C
C

p
p p

p p

p
p
p

= × = .kl
ij

kl
ij

kl
ij

k
i

l
j

k
i

l
j

kl
ij

k l
i j

k l
i j (6)

Thus, the ratio between two different cross‐impact terms provides

information about “How many times more probable is the occurrence

of xki when xl
j occurs, as opposed to when xl

j occurs?” (cf. the dis-

cussion of Bayes factors; Kass & Raftery, 1995).

More generally, an important benefit of this probabilistic inter-

pretation of cross‐impact assessments is that the accuracy of such

statements can be tested empirically, for instance by carrying out

experiments with controlled subjects or by revisiting earlier cross‐

impact studies and examining how frequently the observed outcomes

match those implied by the stated cross‐impact ratios. These kinds of

empirical studies help assess to what extent the statements may need

to be calibrated to ensure a better fit with empirically observed

marginal and conditional probabilities (see, e.g., Hora, 2007; O'Hagan

et al., 2006).

2.2 | Relationship between cross‐impact
statements and scenario probabilities

The elicitation of statements about the ratio (4) for several pairs of

uncertainty factors and their outcomes constitutes an approach to

the elicitation of a dependency structure Werner et al. (2017). In

this process, it is possible to employ discrete scales which trans-

late numerical or verbal statements about how strongly the out-

comes being assessed enforce each other into corresponding

ranges of probability ratios (see Theil, 2002). To ensure the va-

lidity of assessments, these translations need to be properly jus-

tified and clearly communicated so that they can be understood

by respondents.
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The cross‐impact ratio between the outcomes indexed by k l,
of factors i and j is related to the joint probability distribution

p S( ): [0, 1] through

( )
C

p
p p

p s

p s p s
= =

( )

( ))( ( )
,kl

ij kl
ij

k
i

l
j

s S

s S s S l

kl
ij

k
i

k
j

(7)

where p s s s S( ) ( ), denote scenarios probabilities, the set Skl
ij

contains those scenarios in which the outcomes of factors i and j are
xki and xl

j, respectively, and the set Ski consists of those scenarios in

which the outcome of the ith uncertainty factor is xki (and similarly for

the scenario set Sl
j).

We assume that all outcomes of uncertainty factors occur with

a probability that is strictly positive, that is, p i n> 0, = 1, …, ,k
i

k n= 1, …, i. This assumption is plausible, because otherwise the

“impossible” outcome xki such that p = 0k
i could be removed from the

analysis. Technically, this assumption can be introduced through the

constraint pki where > 0 is a very small number.

Because the expression (7) is nonlinear in p s s S( ), with quad-

ratic terms in the denominator, it is not possible to convert upper and

lower bounds on this ratio into linear constraints on scenario prob-

abilities. This is in contrast to bounds on marginal or conditional

probabilities which both can be modeled through linear constraints

on scenario probabilities (see Salo & Bunn, 1995).

The expression (7) can be written in matrix notation as follows.

Let the set of all n scenarios be S s s s= { , , …, }S1 2 and let S denote the

cardinality of S, that is the total number of scenarios. Furthermore, let

the vector p S contain all the scenario probabilities so that

probability of the ith scenario is p s= ( )i i .

To link scenarios to the specific outcomes of uncertainty factors,

we employ m × 1 dimensional binary vectors {0, 1}k
i S so that the

mth element of this vector is 1 if the realization of the ith uncertainty

factor in scenario sm is xki and zero otherwise. Then, the probability of

the outcome xki can be derived from the joint probability distribution

over scenarios through

( ) ( ) ( )p X x p p= = = = ,k
i i

k
i

j

S

j k
i

j k
i

=1
(8)

where denotes the transpose of a matrix. The conditional prob-

ability pk l
i j in (4), in turn, can be written as

( )
( )

p
p
p

p

p
= = ,k l

i j kl
ij

l
j

k
i

l
j

l
j (9)

where the Hadamard product is defined as ( ) = ( ) ( ) ,k
i

l
j
m k

i
m l

j
m

m S= 1, …, . Thus, the entry for themth scenario in the vector k
i

l
j

is equal to 1 if and only if the outcomes of the ith and jth are equal to

xki and xl
j. Placing lower and upper bounds p p p,k

i
k
i

k
i on the

expression (8) leads to linear constraints on scenario probabilities.

The linear fractional expression in (9) is the ratio between sums of

those scenario probabilities which are picked by the vectors k
i

l
j

and l
j , respectively. Thus, bounding this ratio through bounds

p p p= ,k l
i j

k l
i j

k l
i j can be transformed into linear constraints by multi-

plying these bounds by the denominator p( )l
j . For instance, the

constraint p pk l
i j

k l
i j is equivalent to p p p( ) ¯ [( ) ]k

i
l
j

k l
i j

l
j .

The cross‐impact ratio (7) can be written as

( )
( ) ( )

C
p
p p

p

p p
= = ,kl

ij kl
ij

k
i

l
j

k
i

l
j

k
i

l
j (10)

which is the same as the equality C p p p[( ) ][( ) ] = ( )kl
ij

k
i

l
j

k
i

l
j ,

which, in turn, is equivalent to the quadratic constraint

( )C p p pQ
1
2

= 0,kl
ij

kl
ij

k
i

l
j

(11)

where Q = ( ( ) + ( ) )kl
ij

k
i

l
j

l
j

k
i is a symmetric matrix.

Thus, the modeling of cross‐impact statements about the (4)

leads to quadratic constraints on the scenario probabilities. As in the

case of marginals and conditionals, these constraints can be in-

troduced by eliciting lower and upper bounds on the cross‐impact

terms (i.e., C C C C C, ,kl
ij

kl
ij

kl
ij

kl
ij

kl
ij
) which impose inequality con-

straints on the underlying scenario probabilities. Yet, because the

matrix Qkl
ij can be indefinite, this set of scenario probabilities may be

nonconvex, making it computationally more challenging to explore

the implications of cross‐impact statements for probabilistic in-

ference. There are, however, specialized algorithms for optimization

problems with quadratic terms in the objective function or in the

constraints (see, e.g., Audet et al., 2000). These algorithms have been

incorporated in commercial optimization solvers which are capable of

handling problems such as the example in Section 4.

2.3 | Consistency implications of probabilistic
statements

Because cross‐impact statements refer to the same set of underlying

scenario probabilities based on the ratio (4), these statements are

interdependent in the sense that a given statement about any cross‐

impact term imposes constraints on the values of the cross‐impact

term for other pairs of uncertainty factors and their outcomes. One

such example is the ratio (6) which connects pairs of cross‐impact

terms.

Specifically, if the implications of the earlier statements are not

observed when introducing new ones, the constraints implied by the

new statements may conflict with the constraints derived from the

earlier ones. In this case, there are no feasible scenario probabilities

which satisfy the full set of constraints that are associated with all the

earlier and the newer statements.

To prevent this possibility, we strongly recommend that the

consistency of the model should be maintained throughout the
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elicitation process so that new statements are introduced only on the

condition that the resulting augmented set of constraints continues

to be satisfied by at least some feasible scenario probabilities. One

reason for this is that resolving a complex set of mutually inconsistent

constraints can pose conceptual and computational difficulties. That

is, it would call for the identification of those statements that are

more “wrong” than others, leading to either the removal or relaxation

of constraints that are associated with earlier statements.

In practice, the consistency of the statements can be supported

so that the expression for the new statement to be added (i.e.,

marginal probability (8), conditional probability (9), or cross‐impact

statement (10)) is employed as the objective function which is then

minimized and maximized subject to the constraints implied by the

earlier statements. That is, the interval defined by these lower and

upper consistency bounds indicates for which values the new

statement is consistent with the earlier ones. The new statement will

eliminate some previously feasible scenario probabilities from further

consideration if and only if it excludes some values from the interval

defined by the consistency bounds.

For example, consider the situation in which the cross‐impact term

Ckl
ij is about to be specified in terms of its lower and upper bounds

C C,kl
ij

kl
ij
. Then, if the minimum of the difference on the left side in (11) is

strictly positive for the cross‐impact term C kl
ij , the new constraint will be

excessively restrictive in that none of the feasible probabilities will satisfy

the constraint based on C kl
ij . Conversely, if the maximum of this differ-

ence is strictly negative for the constraint based onC kl
ij
, this upper bound

is too restrictive. In this way, optimization problems can be solved to

ensure the consistency of statements.

There are also further consistency checks that can be readily

carried out by checking inequality expressions. First, note that the

equality p p p=l
n

k l
i j

l
j

k
i

=1
j

can be divided by pki to obtain

p
p

p C p= = 1,
l

n
k l
i j

k
i l

j

l

n

kl
ij

l
j

=1 =1

j j

which shows that the probability‐weighted average of cross‐impact

terms on any row of the cross‐impact matrix for uncertainty fac-

torsiand jmust equal one. Thus, if C C,kl
ij

kl
ij

are the lower and upper

bounds on the next cross‐impact ratio Ckl
ij which is being elicited,

there must exist some feasible vector p of scenario probabilities such

that the corresponding marginal probabilities pl
j satisfy the inequal-

ities C p C p1l
n

kl
ij

l
j

l
n

kl
ij

l
j

=1 =1
j j

. Similarly, examining the marginals pl
j

leads to the equality C p = 1k
n

kl
ij

k
i

=1
i so that the probability‐weighted

average of cross‐impact terms in any column must be equal to one.

Thus C p C p1k
n

kl
ij

k
i

k
n

kl
ij

k
i

=1 =1
i i for any l n= 1, …, j.

Even further relationships between the marginal and conditional

probabilities and the cross‐impact ratios can be established. For

example, because p pmax{ , } 1k
i

l
j , it follows that C C =kl

ij
kl
ij

p p p p p p( ) min{ , }kl
ij

k
i

l
j

kl
ij

k
i

l
j and hence p C p pmin{ , }kl

ij
kl
ij

k
i

l
j . Thus, if the

upper bound on the cross‐impact term is small, then the probability

pkl
ij of the joint event will be low relative to the marginal probabilities.

In the same vein, using the inequality p p pmin{ , }kl
ij

k
i

l
j gives

C C p p p p p p p p p= ( ) min{ , } ( ) = 1 max{ , }kl
ij

kl
ij

kl
ij

k
i

l
j

k
i

l
j

k
i

l
j

k
i

l
j so that

p p Cmax{ , } 1k
i

l
j

kl
ij . In other words, having a very large lower bound

on the cross‐impact term will place an upper bound on the marginal

probabilities.

If consistency bounds are not systematically employed in the

elicitation process, there are strategies which can be applied to

preserve the consistency of the model. That is, if it is only the most

recently elicited statement that is found to be inconsistent with the

earlier statements, then it is possible to backtrack by omitting this

statement from consideration. More constructively, the respondent

can also be asked to revise the lower and upper bounds of this

statement so that consistency is preserved. In principle, one could

also seek to identify those subsets of statements that are mutually

consistent and contain as many statements as possible (for a dis-

cussion of analogous approaches in the case of constraints on mar-

ginal and conditional probability statements, see Salo & Bunn, 1995).

However, in the case of cross‐impact statements, this strategy would

call for a considerable amount of computational effort and, in addi-

tion, require that the respondent is prepared to indicate which one(s)

of the earlier statements should be omitted.

We also note that the assessment of inconsistencies in non-

probabilistic cross‐impact analysis differs from our approach. In the CIB

method, for example, all cross‐impact statements are elicited at the

outset, whereafter an algorithm is applied to identify the scenarios that

satisfy the consistency criterion. By construction, the application of this

criterion in the CIB method presumes that all the statements have been

elicited (i.e., it is not possible to exclude inconsistent scenarios based on a

subset of cross‐impact statements). Also, because this criteria lacks a

formal theoretical foundation, it appears that nonprobabilistic approaches

in which the consistency of scenarios is not treated as a dichotomous

“yes‐no” criterion but, rather, quantified by providing a more systemic

measure of consistency, are more defensible. One such approach is de-

veloped by Seeve and Vilkkumaa (2021) who generate sets of plausible

scenarios which are diverse, too, as measured by how different the

scenarios are from each other.

In this context, it is worth noting that “comprehensiveness” has

different connotations in nonprobabilistic and probabilistic ap-

proaches. In nonprobabilistic approaches, comprehensiveness refers

to the extent to which the set of generated scenarios represents the

entire range of possible futures (which, as a criterion, does not re-

quire that all the possible futures would have to be generated). In

probabilistic approaches, and especially in the context of safety‐

critical systems, comprehensiveness commonly refers to the extent

to which the residual uncertainties concerning the attainment of the

safety requirements permit conclusive statements about the safety of

the system (for a review and discussion, see Tosoni et al., 2018).

Furthermore, we remark that “consistency” has a somewhat different

meaning in the CIB method than in our approach. In the former, con-

sistencies are associated with individual entries of the cross‐impact matrix

(with 3 indicating strong consistency and −3 representing strong incon-

sistency) as well as with those scenarios that fulfill the criterion in Equation

(1). In our approach, consistencies refer to sets of statements such that the

corresponding constraints are fulfilled by some joint probability distribu-

tion over the set of all possible scenarios. That is, the scenarios are not
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treated as inconsistent as such but, rather, they are more or less probable,

depending on the logical implications of the elicited probability state-

ments. Also from this perspective of offering insights into what these

statements signify, there are advantages to maintaining the consistency

of the probability model, because this permits many kinds of probabilistic

inferences, such as deriving bounds on those marginal and conditional

probabilities that have not yet been elicited.

3 | CONDITIONING CONSEQUENCES ON
SCENARIOS

In risk assessment, the aim is to characterize the magnitude of risks,

as measured by the severity and probability of harmful con-

sequences. These consequences can differ considerably in terms of

what kinds of impacts they pertain to (e.g., human casualties, en-

vironmental damages, financial losses).

We first consider the situation where these consequences are re-

presented by a real‐valued random variable Z (e.g., amount of released

radioactivity from a nuclear facility) whose realization depends on which

one of the S scenarios occurs. Because the scenarios are mutually ex-

clusive and collectively exhaustive, the probability for the event that the

consequences exceed a given threshold level (e.g., a regulatory

limit) is obtained by conditioning Z on these scenarios s S so that

Z Z s s( > ) = ( > ) ( ).
s S (12)

In risk assessment, one relevant rationale for the development of

scenarios is that the approach of assessing the conditional prob-

abilities Z s( > ) for the different scenarios separately can lead to a

more structured and defensible elicitation process than seeking to

obtain a single holistic estimate Z( > ) (for an overview of struc-

tured elicitation methods, see Dias et al., 2018).

The expression (12) can be also employed to shed light on the

question about which one(s) out of further candidates for additional

uncertainty factors X X, , …n n+1 +2 should be introduced to comple-

ment the n uncertainty factors X X, …, n1 , on the basis of which sce-

narios have already been formulated. Toward this end, the scenario‐

based conditioning of Z s( > ) can be extended to include the ad-

ditional uncertainty factor Xn+1 so that

( ){ }( )Z s Z s X x s X x( > ) = > , = = .
x S

n
k
n n

k
n+1 +1 +1 +1

k
n n+1 +1

In particular, this expression suggests that the inclusion of the ad-

ditional uncertainty factor Xn+1 is unlikely to be very useful if (i) the

conditional probabilities Z s X x( > , = )n
k
n+1 +1 are the same for differ-

ent outcomes x Sk
n n+1 +1 (i.e., the first term in the sum is the same for all

outcomes of the uncertainty factor Xn+1) or if (ii) the factor Xn+1 is per-

fectly correlated with any one of the n factors that are included in the

scenarios s S (i.e., there exists some other factor X i n, = 1, …,i such

that the outcomes of Xn+1 are implied by the states of Xi). These

conditions, together with an assessment of how much extra effort is

required to elicit the additional parameters Z s X x( > , = )n
k
n+1 +1 and

s X x( { = })n
k
n+1 +1 , help evaluate which additional uncertainty factors

should be included in the analysis.

Furthermore, the expression (12) implies that if some scenarios are

omitted from the sum on the right side, the assessed probability for the

event Z > will be lower than the actual probability, unless this omission

is compensated through an upward adjustment in the other terms in the

sum. Furthermore, if the aim is to establish a conservative upper bound

for Z( > ), then the estimates employed for the terms Z s( > )
should be upper bounds on these scenario‐specific probabilities.

The expression (12) can also be generalized to situations where Z
is not necessarily real‐valued but takes on values in the set of pos-

sible consequences . An appropriate disutility function U :
can then be defined so that the value of this function is highest for

the least preferred consequences and lowest for most preferred

consequences. Such a disutility function can be also defined to

characterize the probability with which these consequences will be

unacceptable. That is, let the set fail consist of all unacceptable

consequences and define the disutility function so that

U Z
Z
Z

( ) =
1,
0, .

fail

fail

For this disutility function, the expression U Z s p s[ ( ) ] ( )s S gives

the probability with which the consequences will be unacceptable. More

generally, we assume that the risk assessment process is required to

provide conservative estimates for the expressions

Z Z s p s[ ] = [ ] ( ),
s S (13)

U Z U Z s p s[ ( )] = [ ( ) ] ( ),
s S (14)

where in (13) the term Z representing consequence is assumed to be

real‐valued and the disutility function in (14) makes it possible to

handle other types of consequences as well.

Using the notations u s U Z s( ) = [ ( ) ], the above formulations can

be combined with the results of the preceding section to state the

following optimization problem

u s p s

p s

p

max/min ( ) ( )

subject to ( ) = 1,

0,

p s
s S

s S

( )

(15)

plus all the constraints that correspond to the elicited statements

about the marginal probabilities, conditional probabilities, and cross‐

impact terms. Thus, lower and upper bounds for the risk level can be

estimated by solving the optimization problem as a minimization and

a maximization, respectively, of the objective function.

Building on the above, the main phases of probabilistic

cross‐impact analysis for assessing risks can now be outlined as

follows:
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1. Define the scenarios s S by specifying the uncertainty factors

and their possible outcomes.

2. Assess bounds for the expected scenario‐specific consequences

Z s[ ] or their expected disutilities U Z s[ ( ) ].
3. Obtain information about the joint probability distribution over sce-

narios by eliciting cross‐impact statements about the ratio (4) and/or

statements about the marginal and conditional probability distribu-

tions (see Salo & Bunn, 1995). These statements can be elicited by

employing interval valued statements defined by lower and upper

bounds.

4. Compute lower and upper bounds for the aggregate risk level (as

expressed in (12), (13), or (14)) based on information about cor-

responding scenario‐specific expectations and the joint prob-

ability distribution over scenarios.

5. Once the maximum tolerable risk level has been determined, as-

sess the risk management implications of the available information

by considering the following possibilities (Tosoni et al., 2019):

• If the upper bound of the aggregate risk level, obtained by

maximizing (15), is below the maximum tolerable risk level, the

system can be deemed safe.

• If the lower bound of the aggregate risk level, obtained by

minimizing (15), is higher than the maximum tolerable risk

level, the system can be deemed unsafe.

• Otherwise, return to steps 2 and 3 to obtain additional

information with the aim of deriving tighter bounds on the

aggregate risk level.

From the viewpoint of data analysis and generation, solving the

problem (15) presumes that the expected scenario‐specific disutilities

u s s S( ), are available for all scenarios. There are, however, problem

contexts in which estimates about these disutilities can be generated

with the help of computational models, as illustrated by the example

in the next section. The maximization problem (15) can also be solved

based on conservative upper bound estimates about these disutilities.

One can also explore just how large these disutilities would have to

be so that the maximum tolerable risk level would be reached.

Because the cross‐impact statements are interpreted as constraints

on the joint probabilities, it is conceptually and computationally straight-

forward to integrate the use of such statement in Monte Carlo simula-

tions in which vectors representing joint probabilities are generated. That

is, computational results reflecting cross‐impact statements can be pro-

duced by retaining only those probability vectors that satisfy the con-

straints implied the cross‐impact statements. In particular, this makes it

possible to benefit from cross‐impact statements when using other ap-

proaches for the exploration dependencies in safety risk models (see, e.g.,

Harrison & Cheng, 2011).

4 | CASE STUDY

The risk assessment of nuclear waste management facilities is an im-

portant application context of scenario analysis (Tosoni et al., 2018). In

this context, the uncertainty factors consist of so‐called FEPs which

include, for instance, physical and chemical variables that affect the life-

time of the facility and its surrounding environment. The FEP outcomes

can be represented through discretized states such as low, medium,

and high.

In this section, we revisit the case study (Tosoni et al., 2019) on the

nuclear waste repository at Dessel (Belgium) in which the Bayesian net-

work in Figure 3 was developed to represent dependencies between nine

FEPs. As shown inTable 1, there are two possible outcomes for the first

five FEPs while the two last ones have three possible outcomes.

In this setting, scenarios are defined as combinations of out-

comes for each FEP. Thus, for example, there is a scenario which

represents the following combination of FEP states: a beyond‐design‐

basis Earthquake (BDBE), low Water flux, micro crack Aperture, low

Diffusion coefficient, low Distribution coefficient, slow Chemical de-

gradation, fast Concrete degradation, slow Monolith degradation, and

low Hydraulic conductivity. Given the nine FEPs and their two or

three outcomes, the total number of scenarios is 2 × 3 = 11527 2 .

The scenarios differ from each other in terms of how probable it is

that radioactive particles will be released into the environment, causing

human exposure to radiation. For each scenario, this impact is quantified

by the conditional probability that the subsequent dose rate to humans

exceeds a predefined safety threshold level. Aggregating these condi-

tional probabilities over all scenarios based on (12) thus gives an estimate

about the radiological risk, which is measured by the total probability with

which this threshold is violated.

For each scenario s, the corresponding conditional probability

Z s( > ) in (12) of violating the threshold was computed as the

average of three numbers, that is, (i) the prior value inTosoni et al. (2020)

and (ii) the lower and upper bounds inTosoni et al. (2019). This approach

was adopted, because it serves to illustrate how results concerning the

total violation probability Z( > ) in (12) changes as a result of providing

additional information about the probabilities. These conditional violation

probabilities are not reported here due to the large number of scenarios,

but they are available from the authors upon request. For instance, the

conditional violation probability for the scenario described in the second

paragraph of this section was 0.678.

In the following illustrative analysis, we build on the model and

data in papers Tosoni et al. (2019, 2020) which represent the nuclear

waste repository as a Bayesian network (Pearl & Russel, 2003). In this

network, the nodes represent the FEPs, whereas directed arcs in-

dicate cause dependencies between the FEPs. The uncertainties as-

sociated with the FEP outcomes are modeled as the feasible sets of

marginal and conditional probabilities (Tosoni et al., 2019).

Specifically, we consider three steps in which increasingly de-

tailed information about scenario probabilities are provided. The first

step uses only marginal probabilities of FEP outcomes. In the second

step, the dependencies between those FEPs which are linked by arcs

in the Bayesian network are approximated with cross‐impact state-

ments. In the third step, it is stated that the six FEPs in Figure 3 (i.e.,

Water flux, Earthquake, Crack aperture, Diffusion coefficient, Dis-

tribution coefficient, Chemical degradation) from which there are

only outgoing arcs are almost independent. This statement is in-

troduced by allowing the cross‐impact ratio (4) to assume value in the
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interval [0.9950–1.0050]. Note that this assumption is weaker than

the full independence assumption which is embedded in the structure

of the Bayesian network and corresponds to the requirement that all

cross‐impacts between the outcomes of these six FEPs are equal

to 1. Thus, the introduction of the relatively narrow interval

[0.9950–1.0050] helps explore how the results would change if it

were to be the case that the Bayesian network in Figure 3 is not a

valid model of the dependencies between the FEPs. Furthermore,

because the statements in second step do not yet limit these de-

pendencies, the introduction of these intervals in the third step

provides a significant amount of additional information. This leads to

much tighter constraints on the scenario probabilities so that a re-

duction in the violation probability Z( > ) can be expected.

For the first step, the lower and upper bounds for the marginal

probabilities of FEP outcomes inTable 1 were computed by sampling

the feasible sets of marginal and conditional probabilities in the

Bayesian network, leading to corresponding sample distributions over

FEP outcomes. The marginals in Table 1 were taken from these dis-

tributions by employing their 5% and 95% quantiles.

For the second step, the characterization of dependencies between

selected pairs of FEP outcomes was also based on the model in Tosoni

et al. (2019) as above, except that the sample distributions were es-

tablished for the cross‐impact ratio in (7) (rather than for the marginal

probability distributions). Moreover, the bounds for cross‐impact terms

were established by using the more conservative 0.5% and 99.5%

quantiles (as opposed to 5% and 95% quantiles) to allow for more im-

precision in the characterization of cross‐impacts. The resulting bounds

on the cross‐impact ratios are reported in Tables 2 and 3.

Looking at the ratios inTable 2, it is instructive to see that if a major

outcome of the FEP Earthquake does occur, the probability of fast Barrier

degradation becomes much higher (i.e., [1.5755–6.9785] times) in com-

parison with the situation where there is no information about the

probability of an Earthquake. On the other hand, if the outcome for the

Earthquake is BDBE (i.e., of a lower magnitude than a major earthquake,

but still beyond what the repository barriers are designed to withstand),

the probability of slow Barrier degradation will grow, albeit marginally.

This is in keeping with the recognition that a major Earthquake can have

an impact on the speed of Barrier degradation; but its absence does not

have a comparable impact.

F IGURE 3 The Bayesian network for the case study (Tosoni et al., 2019)

TABLE 1 FEPs and their outcomes in Tosoni et al. (2019) and
corresponding on bounds marginal probabilities

FEP Outcome Probability bounds

Earthquake BDBE [0.9912–0.9950]

Major [0.0050–0.0088]

Water flux Low [0.6525–0.8428]

High [0.1572–0.3475]

Crack aperture Micro [0.8148–0.8874]

Macro [0.1126–0.1852]

Diffusion coefficient Low [0.5209–0.7275]

High [0.2725–0.4791]

Distribution coefficient Low [0.5215–0.7268]

High [0.2732–0.4785]

Chemical degradation Fast [0.5361–0.6694]

Slow [0.3306–0.4639]

Barrier degradation Fast [0.0787–0.2337]

Slow [0.7663–0.9213]

Monolith degradation Very fast [0.0293–0.2678]

Fast [0.0594–0.2695]

Slow [0.4627–0.9114]

Hydraulic conductivity Low [0.5993–0.7066]

Medium [0.2016–0.2715]

High [0.0872–0.1342]

Abbreviation: BDBE, beyond‐design‐basis earthquake; FEPs, features,
events, and processes.
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The bounds in Tables 2 and 3 specify no restrictions on de-

pendencies between the six FEPs which are independent in

Figure 3 as they have only outgoing arcs in this Bayesian network.

Thus, the independence between these six FEPs is introduced in

the third step. As noted above, however, this independence as-

sumption is quite strong, so that we relax it by allowing for minor

deviations from independence by bounding the cross‐impact ra-

tios to the interval [0.995–1.005]. Moreover, in Tables 2 and 3

there are two columns (i.e., very fast Monolith degradation in

Table 2, high Hydraulic conductivity in Table 3) in which the in-

dependence assumption contained in the Bayesian data has been

relaxed similarly.

Based on the probability information for the three steps

above, the following conservative upper bounds for the level of

radiological risk can now be computed by solving the maximization

problem (15) subject to the corresponding constraints on scenario

probabilities.

1. Marginals only: When there is information about the marginals

only, the upper bound on the maximum level of risk is 0.576.

2. Cross‐impacts bounds for arcs between FEPs in Tables 2 and 3:

When the constraints based on these bounds are added to the

information in the first step, the upper bound is reduced to 0.571.

3. Cross‐impact bounds for independent FEPs: When the narrow intervals

[0.995–1.005] are introduced for pairs of outcomes for independent

FEPs in the Bayesian network, the upper bound becomes 0.427.

The results are summarized in Table 4. The greatest reduction

in the upper bound is attained as a result of introducing the as-

sumption of near‐independence when moving from the second

step to the third. This can be explained by noting that the number

of such constraints is high (i.e., lower and upper bound con-

straints for every combination of outcomes for all pairs of the six

FEPs) and because these intervals are relatively tight. This can be

contrasted with the shift from the first step to the second step

which leads to a much smaller reduction in the total violation

probability.

More generally, this example shows how probabilistic cross‐

impact analysis can be interfaced with other models. Specifically,

scenario‐specific estimates concerning radiological risk were in-

ferred from Tosoni et al. (2019, 2020). Parameters of the Baye-

sian network (Tosoni et al., 2019) were employed to generate

information about the marginal probabilities. Analogously, in-

formation about conditional dependencies was provided through

cross‐impact ratios stated in terms of lower and upper bounds.

We emphasize that all this information about probabilities and

dependencies could have been introduced directly without ex-

plicit reference to the Bayesian network (which has been em-

ployed as a useful tool for generating such information). This

notwithstanding, we stress that the numerical results are illus-

trative and do not provide any indications as to the safety of the

nuclear waste repository at Dessel.

TABLE 2 Bounds on the cross‐impact ratios for pairs of outcomes for the FEPs Earthquake, Barrier degradation, and Monolith degradation

Barrier degradation Monolith degradation
Fast Slow Very fast Fast Slow

Earthquake BDBE [0.9544–0.09963] [1.0011–1.0036] [0.9950–1.0050] [0.9329–0.9982] [0.9975–1.0052]

Major [1.5755–6.9785] [0.5660–0.8174] [0.9950–1.0050] [1.2769–10.1853] [0.3406–1.3606]

Abbreviations: BDBE, beyond‐design‐basis earthquake; FEPs, features, events, and processes.

TABLE 3 Bounds to the cross‐impact ratios for pairs outcomes of the FEPs Crack aperture and Hydraulic conductivity

Hydraulic conductivity
Low Medium High

Crack Micro [1.0896–1.1880] [0.4941–0.7490] [0.9950–1.0050]

Aperture Macro [0.1628–0.3017] [2.5666–3.9985] [0.9950–1.0050]

Abbreviation: FEPs, features, events, and processes.

TABLE 4 Upper bounds on the risk level for different settings of
probabilistic information

Setting 1 2 3

Constraints 1. Marginals

2. CI ratios for designated FEP
dependencies (Tables 2, 3)

3. CI ratios for
independent FEPs

Upper bound on risk level 0.576 0.571 0.427

Abbreviation: FEPs, features, events, and processes.
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5 | DISCUSSION AND CONCLUSIONS

In this paper, we have considered the limitations of nonprobabilistic

cross‐impact analyses in risk management and, specifically, in the risk

assessment of safety critical systems for which the aim is produce

conservative estimates that provide an upper bound on the overall

risk level. Importantly, we have shown that instead of limiting at-

tention to the most consistent scenarios only, it is pertinent to ac-

count for all the scenarios that can make a nonnegligible contribution

to the overall risk level, even if some of these scenarios are quite

improbable. That is, neglecting these scenarios may lead to risk es-

timates which are too small, as the actual risk will be higher than what

is suggested by the analysis. This, in turn, may lead to the selection of

inadequate and insufficient risk mitigation actions.

We have also advocated the probabilistic interpretation of cross‐

impacts, because this helps establish precise and empirically testable

mappings between the qualitative verbal expressions employed in the

elicitation process and their numerical counterparts. This inter-

pretation also makes it possible to integrate the scenario process with

other approaches for analyzing probabilistic inputs, for instance by

carrying out statistical analyses or by synthesizing them with judg-

mental forecasts (see, e.g., G. Wright et al., 2009). Furthermore,

probabilistic models are appealing not least because they can be

adapted to assess the attractiveness and effectiveness of insurance

as one of the quantitative risk management options.

We have also developed a probabilistic cross‐impact method

which is capable of accommodating and synthesizing many kinds of

probability elicitation statements (including both marginal and con-

ditional probabilities as well as cross‐impacts statements). All these

statements are converted into corresponding linear or quadratic

constraints in the optimization models which can be solved to (i)

guide the elicitation of further statements which are consistent with

the statements that have been elicited earlier and (ii) compute lower

and upper bounds on the overall risk level at any stage of the elici-

tation process. Results such as these are useful for reaching con-

clusions about the safety of the system, which provides support for

risk management decisions. There are also promising avenues for

future work, for example by employing cross‐impact statements to-

gether with other methods for assessing dependencies and their

impacts (see, e.g., Harrison & Cheng, 2011). One could also assess

how the cross‐impact statements and therefore scenario prob-

abilities, too, would be impacted by alternative risk management

actions. This would make it possible to accommodate endogenously

dependent scenario probabilities (for a case study with decision‐

dependent scenario probabilities, see Vilkkumaa et al., 2018).
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As one of the approaches to scenario analysis, cross-impact methods

provide a structured approach to building scenarios as combinations of

outcomes for selected uncertainty factors. Although they vary in their

details, cross-impact methods are similar in that synthesize expert judg-

ments about probabilistic or causal dependencies between pairs of un-

certainty factors and seek to focus attention on scenarios that can be

deemed consistent. Still, most cross-impact methods do not associate

probabilities with scenarios, which limits the possibilities of harnessing

them in risk and decision analysis. Motivated by this recognition, we de-

velop a cross-impact method that derives a joint probability distribution

over all possible scenarios from probabilistically interpreted cross-impact

statements. More specifically, our method (i) admits a broad range of

probabilistic statements about the realizations of uncertainty factors, (ii)

supports the process of eliciting such statements, (iii) synthesizes these

judgments by solving a series of optimization models from which the

corresponding scenario probabilities are derived. The resulting scenario

probabilities can be used to construct Bayesian networks, which expands

the range of analyses that can be carried out. We illustrate our method

with a real case study on the impacts of 3D-printing on the Finnish De-

fense Forces. The scenarios, their probabilities and the associatedBayesian

network resulting from this case study helped explore alternative futures

and gave insights into how the Defence Forces could benefit from 3D-

printing.
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1 | INTRODUCTION

Over the past decades, scenario analysis has established itself as one of the most widely employed approaches to sup-
port long-term planning and strategic management (Scholz and Tietje, 2002; Chermack, 2022). The need to prepare
for alternative futures has long been recognized in planning contexts that involve major investments that call for long-
term commitments and give rise to far-reaching consequences. The energy sector, car manufacturing, and national
defense, among others, are examples of such contexts (Bunn and Salo, 1993; Ritchey, 2009). In recent years, grow-
ing concerns over climate change have continued to motivate global efforts on the development of climate scenarios
(Duinker and Greig, 2007; O’Neill et al., 2020). Recently, the need for informative scenarios has been accentuated by
the severe health and geopolitical crises that have affected companies, public organizations, and entire countries.

The broad range of scenario methods reflects differences in the many contexts in which scenarios are built. In
particular, the characteristics of scenario methods span the range from purely qualitative (Bowman, 2016; Schwartz,
2012) to purely quantitative (Pereira et al., 2010; Siljander and Ekholm, 2018), with a rich array of methods that
combine aspects of both (Godet, 1986; Kemp-Benedict, 2004; Kosow and Gaßner, 2008). In general, this diversity
reflects differences in the requirements of different application contexts. In effect, the properties of the appropriate
method depending on questions such as 1) What is the context of strategic analysis, and what are the issues at
stake? 2) For what purposes are the scenarios created and to whom are they presented? 3) What are the time
horizons involved? 4) What data (qualitative or quantitative) can be obtained to support the formulation of scenarios?
Considering questions such as these reveals that the requirements on scenarios that are designed to cultivate sound
managerial thinking (Lehr et al., 2017) differ markedly from those that are needed to support risk analyses of safety-
critical systems such as nuclear waste repositories (Tosoni et al., 2018).

A persistent challenge faced by scenario modelers is the inherent trade-off between specificity and comprehen-
siveness, or as Kemp-Benedict (2004) calls them “complexity" and “complicatedness". That is, the more details are
included in the narrative or the description of uncertainty factors, the more detailed (and possibly also more captivat-
ing) the scenario is likely to become; but at the same time, the number of scenarios that would be needed to span the
full range of uncertainties would grow dramatically (Carlsen et al., 2016). In the face of this inherent trade-off, most
methods of qualitative scenario analysis advocate the formulation of relatively few scenarios that are diverse enough
in terms of the outcomes of their uncertainty factors so that they can facilitate, for instance, the formulation of robust
decision strategies that perform satisfactorily across all scenarios regardless of what future may bring (Bradfield et al.,
2005; Wright and Cairns, 2011). In this case, quantitative methods can be useful, for instance, in choosing those
combinations of outcomes that are sufficiently consistent and comprehensive and, as result, lead to the qualitative
elaboration of scenarios that are purposely designed to portray the broad span of alternative futures (Ritchey, 2009;
Seeve and Vilkkumaa, 2022).

Still, focusing on a small subset of possible scenarios has its limitations. For example, in safety-critical systems,
there can be a large number of low-probability high-impact scenarios. These should not be excluded from the anal-
ysis, given that none of the scenarios which constitute an unacceptably high risk can be ignored when assessing
whether or not the risks are acceptable (Aven and Zio, 2011). Another limitation of focusing only on a small number
of qualitatively framed scenarios is that such scenarios cannot be readily integrated with quantitative approaches for
providing decision support (e.g. risk or decision analysis). This kind of methodological integration can be achieved
only by framing the scenarios within a theoretically rigorous and methodologically coherent framework (Bunn and
Salo, 1993). From the viewpoint of defensible decision support, the underpinning uncertainties should be interpreted
probabilistically, and sound approaches, as exemplified by the von Neumann-Morgenstern utility theory, should be
employed in the assessment of scenario consequences (Rabin, 2013).
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By design, methods of cross-impact analysis (CIA) have been crafted for the purpose of examining and character-
izing the presence, direction and magnitude of the interdependencies that may exist between the uncertainty factors
and their possible outcomes from which scenarios are built. Towards this end, many CIA methods employ ordinal
assessment scales for systematically encoding statements about these interdependencies (see, e.g., Scholz and Tietje,
2002;Weimer-Jehle, 2006). In particular, when these judgments are interpreted in terms of probabilities, it is possible
to make conclusions about what such interdependencies imply in conjunction with other forms of expert statements
(Alter, 1979). For example, the entire set of elicited statements can be synthesized to infer information about the
probabilities of specific event outcomes (Gordon and Hayward, 1968; Dalkey, 1971) to identify the most important
scenarios (Weimer-Jehle, 2006; Seeve and Vilkkumaa, 2022), or to derive lower and upper bounds the scenario prob-
abilities (Bañuls and Turoff, 2011; Salo et al., 2021).

In this paper, we build on the literature which embraces probability theory as a theoretically coherent framework
within which cross-impact statements are interpreted. While the seminal contributions (see, e.g., Gordon and Hay-
ward, 1968; Dalkey, 1971) employ uncertainties with binary outcomes (which either occur or do not), we follow Salo
et al. (2021) and view uncertainty factors as random variables which take on one out of several possible outcomes.
Specifically, each scenario corresponds to a selection of one outcome for every uncertainty factor. Analyzing prob-
abilities using the methods presented in Salo et al. (2021), however, is computationally onerous, given that the full
implications or all elicited judgments are derived by solving a non-linear mathematical optimization model. While this
helps preserve the consistency of the elicited judgments, the optimization can be quite time-consuming and incon-
sistencies in the judgments can be difficult to resolve. As a result, the approach may be impractical if the elicitation
process needs to be carried out quickly or when there are no particular requirements to adopt conservatism as a
guiding principle in inferring conclusions from the analysis (as is the case in safety-critical systems).

Against this backdrop, our main contribution in this paper is the development of a probabilistic cross-impact
methodwhich (i) adopts awell-founded interpretation of cross-impact statements and (ii) derives probability estimates
for all possible scenarios (i.e., all combinations of realizations for all uncertainty factors) in a computationally efficient
manner during the elicitation process, thereby enabling a host of subsequent analysis. We also demonstrate how the
scenario probabilities can be used to construct Bayesian networks, facilitating further analyses.

Furthermore, we describe a case study in which the method was employed to assess the significance of advances
in 3D-printing technology for the Finnish Defence Forces. Additive manufacturing, colloquially referred to as 3D-
printing, refers to a wide variety of processes that can be used to construct a three-dimensional object based on a
digital file (Kietzmann et al., 2015). The methods by which this is achieved include successively depositing, joining,
or solidifying relatively thin material layers. In all these methods there is plenty of ongoing research and product
development, which accelerates industry growth (Jiménez et al., 2019). In effect, 3D-printing technology shows a lot
of promise for military use with applications ranging from entirely novel production methods to spare part logistics
(Booth et al., 2018; Heinen and Hoberg, 2019).

The rest of this paper is structured as follows. Section 2 discusses earlier methods of cross-impact analysis.
Section 3 formulates our method and its computations. Section 4 outlines the case study. Section 5 concludes.

2 | METHODS OF CROSS-IMPACT ANALYSIS

The origins of cross-impact methods can be traced to the 1960s when Theodore Gordon and Olaf Helmer developed
a game called Future for the Kaiser Aluminum and Chemical Company (Gordon, 1994). In this game, uncertain events
with a given prior probability were written on cards. A die was then rolled to simulate whether or not that event
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happened. If it did, then the card was flipped over revealing how the probabilities of other events would change as a
result. These were the first cross-impacts.

Subsequently, notable contributions to the development and application of cross-impact methods have been
made by Gordon (Gordon and Hayward, 1968; Gordon, 1994), Helmer (Helmer, 1977, 1981) and others (Godet, 1976,
1994; Panula-Ontto, 2019). In many of the early methods and their later variants, the probabilities are estimated by
considering causal relations between events, even if the temporal occurrence of these events is not necessarily exactly
specified. There is the underpinning assumption that the elicitation of conditional probabilities can be instructive in
its own right and also potentially cognitively less demanding because in the elicitation of marginal probabilities the
respondent would need to take an implicit expectation with regard to all the uncertainty factors whose outcomes
are not specified for the event whose probability is being elicited. Computationally, many of these methods can be
viewed as computerized implementations of the original card game, in the sense that the event probabilities define
Monte Carlo chains in which the cross-impacts cause changes in event probabilities when a different event is realized.

In principle, the sequences of events in these early Monte Carlo simulation methods could be viewed as scenarios.
However, these methods are not well suited for estimating the probabilities of all scenarios, because a very large
number of simulation runs would be required to obtain accurate results. This would especially be the case for the
scenarios with low probabilities which, by definition, would not appear but a small fraction of the total number of
simulation runs, but could still give rise to high consequences.

Partly in response to this recognition, dedicated scenario probability estimation methods have been developed.
One of the first is presented by Dalkey (1971) who computes a feasible set of scenario probabilities for a consistent
cross-impact matrix (i.e a matrix whose elements do not violate the laws of probability theory). Another example is
the BASICS tool of Batelle Memorial Institute which computes scenario probabilities using abstracted cross-impact
statements instead of strictly probabilistic ones. However, in these methods and in general, the specification of cross-
impact estimates that are fully consistent with the tenets of probability theory is not easy for any expert (Huss and
Honton, 1987).

The third category of cross-impact methods, which we refer to as structural analysis methods, eschew proba-
bilities altogether. These methods seek to identify key scenarios or uncertainty factors based on the strengths of
relationships between the factors as quantified on an ordinal scale. As in BASICS, these scales usually do not have
a strictly probabilistic interpretation and they can be fully qualitative. Methods in this category include MICMAC
(Godet, 1994), Cross-Impact Balances (Weimer-Jehle, 2006), and the consistency analysis method proposed by Seeve
and Vilkkumaa (2022), among others. Because these methods do not involve probabilities they tend to be easy to use
and computationally straightforward, making them well-suited for exploratory analyses. However, from a theoretical
point of view, without probabilities, they cannot be integrated with probabilistic risk analysis methods or the tenets
of expected utility theory.

The method proposed in the present paper is focused on the estimation of scenario probabilities in a setting
where some of the cross-impact estimates may be inconsistent. This method is predictable in the sense that the same
set of cross-impact estimates always produces the same scenario probabilities, which is in contrast to the presence of
some randomness of results obtained by simulation approaches. It also scales up rather well to problems with many
uncertainty factors and outcomes, as exemplified by our case study on 3D printing.
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3 | METHODOLOGICAL DEVELOPMENT

As in Salo et al. (2021), a scenario is here defined as a combination of outcomes of uncertainty factors. The uncertainty
factors are modelled as discrete random variables X i , i = 1, ...,N which have outcomes Si = {1, ..., ni }. Thus, a
scenario is a vector s = (s1, ..., sN ) where si ∈ Si is the outcome for uncertainty factor i . The set of all possible
scenarios is the Cartesian product S := S1:N =

�N
i=1 Si . Thus, the number of all possible scenarios is |S | = ∏N

i=1 ni .

For a subset of uncertainty factors F ⊆ {1, ...,N }, a partial scenario is defined as a combination of outcomes for
the uncertainty factors which are contained in F . Consequently, the set of partial scenarios for F is SF =

�
i ∈F Si .

An example of a partial scenario is s1:i = (s1, . . . , si ) which consists of outcomes for the i first uncertainty factors
and thus belonging to the set of partial scenarios S1:i =

�i
j=1 Sj . When all uncertainty factors belong to F , then,

by construction, the set of corresponding partial scenarios coincides with the set of all scenarios. If only the first i
uncertainty factors are considered so that i < N , then partial scenarios do not cover outcomes for the uncertainty
factors j > i .

For the purposes of probabilistic analysis, however, any partial scenario s1:i = (s1, . . . , si ) ∈ S1:i is compatible
with all those (full) scenarios in which the outcomes of the first i uncertainty factors are the same as in the partial
scenario s1:i . Thus, any partial scenario s1:i can be viewed as the collection of those scenarios which can be obtained
by extending this partial scenario with outcomes for the uncertainty factors j = i + 1, . . . ,N so that E (s1:i ) = {s ′ ∈
S | s ′

j
= sj , �j = 1, . . . , i }. Furthermore, the probability of the partial scenario s1:i ∈ S1:i , i ≤ N can be defined as the

sum of the probabilities of those scenarios which can be obtained by extending it to full scenarios so that

p (s1:i ) =
∑

s1:N ∈E (s1:i )
p (s1:N ) . (1)

Much in the same way, the marginal probability of the outcome l ∈ Sj for the j -th uncertainty factor is the sum
of probabilities for all those scenarios in which this uncertainty factor takes on this outcome, i.e.,

P (X j = l ) =
∑

s∈S1:i |sj =l
p (s) . (2)

In referring to partial or full scenarios (which correspond to the cases i < N and i = N , respectively), we may drop the
subscript referring to the number of uncertainty factors. In this case, if s ∈ S1:i and j ∈ {1, . . . , i }, then sj refers to
the outcome of the j -th uncertainty factor in s.

The above definitions are general in that the uncertainty factors can represent events with binary outcomes
(something happens/does not happen) as well as multi-state outcomes (the realization of the i -th uncertainty factor
is one of ni possible outcomes). The setup is broad enough to accommodate real-valued random variables, given that
the measurement scale for recording possible outcomes can be typically discretized into a set of disjoint and mutually
exhaustive intervals. For example, the rise in global temperatures during the 100-year period from 2000 to 2100 can
be categorized as low (< 3◦C), medium (3◦C−5◦C), or high (> 5◦C). Because time is a real-valued variable of this kind,
it is also possible to include uncertainty factors whose realization indicates when a given event will occur.

In what follows, we develop our method for estimating scenario probabilities in four parts. Section 3.1 presents
the basic definitions used for cross-impact multipliers. Section 3.2 describes the basic method for computing the
scenario probabilities. Section 3.3 explains how conditional independence information can be harnessed to improve
the speed and accuracy of the estimation process. Section 3.4 shows how to build Bayesian networks using conditional
independence information and computed probabilities. Finally, Section 3.5 discusses the limitations of the method
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and its computational properties.

3.1 | Cross-impact multipliers

One rationale for the cross-impact analysis is that the number of scenarios is often so large that it is practically im-
possible to elicit scenario probabilities directly. For example, from 11 uncertainty factors with 3 possible outcomes
each, it is possible to define a total of 311 = 177 147 distinct scenarios. In this setup, instead of characterizing the
scenario probabilities directly, methods of probabilistic cross-impact analysis characterize probabilistic dependencies
between uncertainty factors through cross-impacts and use such characterizations to infer information about the
scenario probabilities.

In this paper, we employ the cross-impact interpretation in (Salo et al., 2021), which we call the cross-impact
multiplier approach in which the cross-impact between events a and b is defined as

Cab :=
P (a |b )
P (a ) , (3)

meaning that

P (a |b ) = CabP (a ) . (4)

Thus, the cross-impact multiplier specifies how many times more likely the occurrence of the event a becomes when
the event b is known to occur. Here, it is worth pointing out that the expressions in (4) do not refer to the temporal
sequence in which the events would occur. For instance, it could be the case that the event b will occur after the
event a within the time horizon of interest. Still, within such a time horizon, the probability of the event a may be
higher when it is known that the event b , too, will come about.

There is some empirical evidence that suggests that humans are more adept at estimating relative magnitudes
than providing numerical values (Gallistel and Gelman, 1992). Thus, one motivation for employing the above relative
change in probability is that statements about the above ratio (3) may be easier for the experts to estimate than
conditional probability values as such.

An appealing property of the cross-impact multiplier is that it is symmetric

Cab =
P (a |b )
P (a ) =

P (a ∧ b )
P (a )P (b ) =

P (b |a )
P (b ) = Cba . (5)

This reduces the number of cross-impacts to be estimated in half because these multipliers are the same in either
direction. Unlike some earlier cross-impact methods, such as the seminal work by Helmer (1981) and Gordon (1994),
this interpretation of cross-impacts is not limited to causal relations but reflects also other types of probabilistic
dependencies. Specifically, while the presence of a causal relationship does give rise to probabilistic dependence, all
probabilistic dependencies between pairs of uncertainty factors cannot be attributed to direct causality between the
two uncertainty factors. This would be the case, for instance, when there is a shared underlying cause for two distinct
events which are not causally related to each other. To illustrate, consider a situation where two different kinds of
alarm systems have been installed for fire detection, one for heat detection and the other for smoke detection. Then
neither one of the alarms would cause the other to go off, yet the two alarms would be related to each other in the
sense that there would be a positive correlation between them. Analogously, improvements in the affordability and
performance of new technologies may exhibit positive correlations even if the underpinning causal determinants of



7

such improvements are not necessarily captured in the model.

In terms of notation, we employ the notation p ( ·) to refer to the underlying probability distribution P ( ·) over
scenarios. Estimates about scenario probabilities are indicated through p̂ ( ·) where the argument specifies which
scenarios are being considered. Thus, for example, for a given outcome si ∈ Si , the p̂ (si ) is the elicited estimate
about the marginal probability p (si ) . The probabilities which are derived from the estimates through computations
are indicated by q ( ·) . These distinctions are useful in that it is possible, for example, the explore conditions under
which the computed probabilities are guaranteed to converge to the true underlying probabilities.

For any k ∈ Si and l ∈ Sj , we introduce the abbreviated notations pi
k
:= P (X i = k ) and p

j
l
:= P (X j = l ) for the

marginal probabilities and p
i |j
k |l = P (X i = k |X j = l ) for the conditional probability. From (4), we get

p
i |j
k |l = C

i j
k l
pik ⇔ p

i j
k l

= C
i j
k l
pik p

j
l

(6)

where p
i j
k l

= P (X i = k ,X j = l ) and C
i j
k l

is the cross-impact multiplier for the outcome pair in which the outcome for
the uncertainty factor i is k and that for the uncertainty factor j is l .

3.2 | Conditional probability updating

The probabilistic approach proposed by Salo et al. (2021) invites the respondent to specify lower and upper bounds
for the cross-impact multiplier (4) and then converts these bounds on the scenario probabilities p (s1:N ), �s1:N ∈ S1:N .
Together with estimates of the expected consequences in each of the scenarios, lower and upper bounds for the
expected disutility are then derived to provide an aggregate measure of risk. In particular, it is consequently possible
to verify whether or not the risk level of the systems is acceptable.

A limitation of this approach is that it presumes that the cross-impact statements elicited from the respondents
remain fully consistent (i.e., for any given set of statements that have been elicited from the respondent, there exists at
least one assignment of probabilities to all scenarios such that the constraints which correspond to these statements
are satisfied). To guide the respondent in providing such statements, however, it is necessary to solve an optimization
problem with quadratic constraints which will give rise to computational challenges when the number of uncertainty
factors is large. More generally, this approach is not suitable for synthesizing a set of possibly inconsistent cross-impact
statements in order to determine a single probability distribution.

Against this backdrop, one of the main contributions of this paper lies in developing a computationally efficient
method that (i) admits cross-impacts statements, including inconsistent ones, as well as many other forms of state-
ments that correspond to constraints on scenario probabilities and (ii) synthesizes such statements into a single proba-
bility distribution over scenarios in such a way that the resulting distribution represents the best fit to the statements.
The estimates from which the scenario probabilities are derived consist of marginal probabilities p̂ i

k
, p̂

j
l
for all uncer-

tainty factors and their outcomes and cross-impact multipliers Ĉ i j
k l

for selected pairs of uncertainty factors and their
outcomes. Specifically, the probability distribution over scenarios can be derived even in the absence of information
about some pairs of cross-impact multipliers.

To motivate the approach, assume that estimates about the marginal probabilities p̂ i
k
, p̂

j
l
as well as the cross-

impactmultiplier Ĉ i j
k l
have been elicited. If these estimates are correct in the sense that p̂ i

k
= pi

k
, p̂

j
l
= p

j
l
and Ĉ i j

k l
= C

i j
k l
,

the probability p
i j
k l

= P (X i = k ,X j = l ) is equal to Ĉ
i j
k l
p̂ i
k
p̂
j
l
. Equivalently, however, this same probability can be

expressed as the sum of probabilities for all those scenarios such that X i = k and X j = l . Thus, we have the following
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constraint on scenario probabilities

∑
s∈S1:N

si =k ,sj =l

p (s) = Ĉ
i j
k l
p̂ ik p̂

j
l
, (7)

where the summation on the left side is taken over those scenarios whose outcomes for the i -th and j -th uncertainty
factors match those on the right side of the equality.

To consider the situation where several (but not necessarily all) cross-impact multipliers have been specified,
assume that there exists a binary relation Ri j : Si × Sj such that (si , sj ) ∈ Ri j if and only if the estimate Ĉ

i j
k l

for the
cross-impact multiplier (4) is available. In this case, the above term would appear for all pairs of outcomes such that
Ri j (si , sj ) , suggesting that the probability distribution that best matches these estimates can be obtained by solving
the minimization problem

min
p (s )

N∑
i=2

i−1∑
j=1

∑
(k ,l ) ∈Ri j

[( ∑
s∈S1:N

si =k ,sj =l

p (s)
)
− Ĉ

i j
k l
p̂ ik p̂

j
l

]2
(8)

Computationally, however, a concern with the problem (8) is that the optimization would need to be carried out
over all scenarios. Thiswill be challenging if the number of scenarios is large, either because there aremany uncertainty
factors or if these factors have several possible outcomes (recall that the total number of scenarios is

∏N
i=1 ni where

ni is the number of possible outcomes for the i -th uncertainty factor).

However, the probability of any scenario s ∈ S1:N can be written as by conditioning the realization of the i -th
uncertainty factor on the partial scenario defined by i − 1 preceding uncertainty factors, i.e.,

p (s) = p (si |s1:N \i )p (s1:N \i ) (9)

where s1:N \i is the partial scenario that contains the outcomes for all uncertainty factors except the i -th one. In
particular, if the terms p (s1:N \i ) representing probabilities for the partial scenarios excluding the i -th uncertainty
factor are known, then the estimation of the scenario probabilities becomes a significantly smaller problem in that
it is necessary to only consider cross-impact multipliers Ĉ

i j
k l

that relate to the uncertainty factor i to estimate the
conditional probabilities p (si |s1:N \i ) .

Hence, for a given ordering of the uncertainty factors, the relationship (9) can be exploited to build

p (s ) = p (sN |s1:N −1 )p (s1:N −1 ) = p (sN |s1:N −1 )p (sN −1 |s1:N −2 )p (s1:N −2 ) = . . .
= p (sN |s1:N −1 )p (sN −1 |s1:N −2 ) . . . p (s2 |s1 )p (s1 ),

(10)

This relationship leads to the recognition that the scenario probabilities can be derived iteratively by (i) starting from
the marginal probabilities for the first uncertainty factor p (s1 ) , (ii) computing the conditional probabilities p (s2 |s1 )
which represent the best fit to the cross-impact multipliers for the outcomes of the two first uncertainty factors,
and (iii) using these conditional probabilities to estimate the probabilities for partial scenarios which comprise these
two uncertainty factors. After this step, the iteration can proceed to the third uncertainty factor and so on until all
uncertainty factors have been reached.

Thus, the procedure can be described as follows:
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1. Use previously computed probabilities for partial scenarios and estimates about marginal probabilities and cross-
impact multipliers to compute the conditional probabilities for the next uncertainty factor whose outcomes are
conditioned on the previously analyzed partial scenarios.

2. Generate the updated set of partial scenarios which includes this new uncertainty factor. The number of these
partial scenarios is equal to the product of (i) the number of partial scenarios in the previous iteration and (ii) the
number of outcomes for the new uncertainty factor.

3. Use the computed conditional probability distributions to compute the joint probability distribution for the up-
dated set of partial scenarios.

More formally, the iteration can be carried out by computing probabilities for all partial scenarios s1:i , i = 1, . . . ,N

and with the help of conditional probabilities q (si |si :i−1 ) such that the iteration is initialized by setting q (k ) ← p̂1
k
for

any k ∈ S1 = {1, . . . , n1}. At each step of the ensuing iteration, the conditional probabilities can be computed from

min
q (k |s1:i−1 )

i−1∑
j=1

∑
(k ,l ) ∈Ri j

[( ∑
{s∈S1:i−1 |sj =l }

q (k |s)q (s)
)
− Ĉ

i j
k l
p̂ ik p̂

j
l

]2
(11)

∑
s∈S1:i−1

q (k |s)q (s) = p̂ ik , � k ∈ {1, 2, ..., ni } (12)

ni∑
k=1

q (k |s1:i−1 ) = 1, � s1:i−1 ∈ S1:i−1 (13)

q (k |s1:i−1 ) ≥ 0. � k ∈ {1, 2, ..., ni }, s1:i−1 ∈ S1:i−1 (14)

In the third summation of the objective function, the sum is taken over those partial scenarios in which the state of
the j -the uncertainty factor is equal to the outcome specified by the term in the relation Ri j . The last two constraints
ensure that the conditional probability distribution is well-defined. The computed probabilities for the next partial
scenarios (which are constructed by appending the states of the i -th uncertainty factor k ∈ Si to the previous partial
scenarios s1:i−1) can be defined by q ( (s1:i−1, k ) ) ← q (s1:i−1 )q (k |s1:i−1 ) . Thus, the constraint (12) ensures that the
marginal probability is the same as the estimated marginal probability p̂ i

k
of the outcome si = k , ensuring that the

computed probabilities match the estimated marginal probabilities exactly.

The number of conditional probabilities q (k |s1:i−1 ) is often significantly higher than the number of cross-impact
multipliers which appear in the objective function. This is the case especially when only a fraction of all cross-impact
multipliers have been elicited. If estimates about all cross-impact multipliers have been elicited, there are ni

∑i−1
j=1 nj

terms in the objective function (11). Equation (12) gives rise to ni constraints and equation (13) has
∏i−1

j=1 nj constraints.
The number of parameters is

∏i
j=1 nj , the same as the number of partial scenarios of length i , and thus the algebraic

equation system (12)-(14) is underdetermined so that multiple optimal solutions may exist.

On the other hand, if the objective function (11) is strictly positive, the derived probabilities are not fully consistent
with the cross-impact terms. An attractive property of the above optimization formulation is that it is capable of
handling situations where the cross-impact statements are not consistent. In this case, at least some of the estimates
Ĉ

i j
k l
, p̂ i

k
, p̂

j
l
differ from the cross-impact multipliers and marginal probabilities implied by the computed probabilities

q (s), s ∈ S1:N . The implied cross-impacts �C
i j
k l

can be obtained from the computed probabilities as

�C
i j
k l

=
1

p̂ i
k
p̂
j
l

∑
{s∈S |si =k ,sj =l }

q (s) . (15)
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This recognition is useful in that it can be harnessed to support the identification and possible revision of those
cross-impact estimates which differ most from the implied cross-impacts, either in absolute terms or in terms of the
probabilities for the joint event X i = k ,X j = l that appears in the objective function (11). Because the marginal
probabilities are matched exactly, the cross-impact terms for which the following term is maximized

argmax
i ,j ∈{1,...N }
(k ,l ) ∈Ri j

			 Ĉ i j
k l

− �C
i j
k l

			 (16)

is the one that deviates most from the implied cross-impact multiplier based on the derived scenario probabilities
q (s ) . On the other hand, the solution

argmax
i ,j ∈{1,...N }
(k ,l ) ∈Ri j

			 (Ĉ i j
k l

− �C
i j
k l

)
p̂ ik p̂

j
l

			 (17)

helps identify the cross-impact multiplier for which there is the greatest discrepancy between the estimated probabil-
ity of the event X i = k ,X j = l and that of the computed probabilities. This analysis can thus be employed to identify
and, if need be, revise inconsistent cross-impact multipliers.

Furthermore, the implied cross-impacts can be used to explore which probability distributions other than q (s)
wouldmatch the given Ĉ i j

k l
, p̂ i

k
, p̂

j
l
equally well. If the cross-impact terms �C

i j
k l
that are implied by the computed scenario

probabilities are assigned back to (8) instead of Ĉ i j
k l
, the solution p (s) = q (s) will make all the sum terms equal to 0,

but often q (s) is not unique in this regard. To explore other equally feasible distributions, an optimization problem
can be formulated

min
�q (s)

f ( �q ) (18)
∑

s∈S1:N
si =k ,sj =l

�q (s) = �C
i j
k l
p̂ ik p̂

j
l
, � i ∈ {2, ...,N }, j ∈ {1, ..., i − 1}, (k , l ) ∈ Ri j (19)

∑
s∈S1:N
si =k

�q (s) = p̂ ik , � i ∈ {1, ...,N }, k ∈ {1, ..., ni } (20)

�q (s1:N ) ≥ 0, � s1:N ∈ S1:N (21)

where f : �|S | → � is chosen to find a scenario probability distribution �q with specific properties. To give a few
examples, f ( �q ) = − �q (s∗ ) will maximize the probability of a specific scenario s∗ and f ( �q ) =

∑
s∈S

( 1
|S | − �q (s) )2 will

find the distribution closest to the uniform distribution when |S | is the total number of possible scenarios. Finding
expected utility maximizing or minimizing scenario probability distributions is also possible if the utilities of all the
scenarios are known. Because all the constraints are linear, the optimization problem can be solved with commonly
used optimization tools as long as f ( �q ) is convex.

3.3 | Conditional independence

When there are many uncertainty factors, there are inherent limitations in using cross-impact multipliers to estimate
all possible scenario probability distributions. To illustrate this, assume that the N uncertainty factors have equally
many outcomes n (i.e., ni = n, i = 1, . . . ,N ). Then the number of different cross-impact multipliers that can be elicited
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is
∑N

i=1

∑N
j=i+1 ni nj = N (N − 1)n2/2. This is proportional to the square of the number of uncertainty factors and their

outcomes. Still, the number of scenarios
∏N

i=1 ni = nN grows exponentially with the number of uncertainty factors.
This implies that estimates about marginal probabilities and cross-impact multipliers will not suffice to fully character-
ize all possible scenario probabilities, because the number of constraints implied by the cross-impact multipliers will
be much lower than the number of scenarios.

Against this backdrop, two observations on the optimization problem in (11)-(14) are in order. First, the number
of estimates about cross-impact multipliers increases in every step of the iterative algorithm because the ni outcomes
of the new uncertainty factor are compared with the previously considered uncertainty factors. That is, if all these
estimates have been provided, there are ni

∑i−1
j=1 nj /2 terms in the objective function (11) while the conditional prob-

abilities q (k |s1:i−1 ) have already been fixed. As a result, the optimization problems grow in size at every step of the
process.

Second, the outcomes of those uncertainty factors which appear earlier on in the sequence of uncertainty factors
appear in a larger number of optimization problems. As a result, they likely exert more influence on the final scenario
probabilities. More specifically, the probabilities for the partial scenarios defined by the uncertainty factors in the early
part of the sequence will not be impacted by the cross-impact terms in the latter part of the sequence. In qualitative
terms, this implies that the sequence should be developed so that the uncertainty factors in the early part of the
sequence should not be impacted by the later uncertainty factors.

A way to solve this problem of increased complexity is to limit the number of uncertainty factors in every iterative
step by focusing only on the relevant dependencies. Specifically, when estimating the conditional probability of the
outcome k for the i -th uncertainty factor p (k |s1:i−1 ) , any uncertainty factor whose outcome does not affect this
conditional probability is irrelevant. That is, an uncertainty factor a is irrelevant for uncertainty factor i in partial
scenario set S1:i if and only if p (k |s1:i−1 ) = p (k |s1:i−1\a ) , �k = 1, ..., ni , �s1:i−1 ∈ S1:i−1, when s1:i−1\a is the same
partial scenario as s1:i−1 but with uncertainty factor a removed. Equivalently, uncertainty factor a is irrelevant for i
in partial scenario set S1:i , if and only if, random variables Xa and Xi are conditionally independent in every partial
scenario s1:i−1\a ∈ S1:i−1\a .

To visualize the conditional dependencies between uncertainty factors, a directed acyclic graph such as the one
in Figure 1 can be a useful tool. The uncertainty factors are represented by nodes drawn as circles. The edges
connecting the nodes, drawn as arrows, indicate that uncertainty factors are relevant to each other, whereas the lack
of a connecting edge implies irrelevance. This is how conditional independence between variables is represented in
graphical models such as Bayesian networks (Pearl and Paz, 2022).

A B C

F IGURE 1 Irrelevance between uncertainty factors depicted as a graph.

Incorporating conditional independence in the expert judgment elicitation process can be done in two ways. The
first is to start by constructing a directed acyclic graph that depicts the dependence structure of the uncertainty factors
and then collecting cross-impact information on the directly connected uncertainty factors. The second way is to give
the experts the option to state that A does not provide any information about uncertainty factor C that uncertainty
factor B does not already provide (as opposed to inviting them to estimate the cross-impacts for outcomes of A and
C).

The connection between the graph and the cross-impact matrix containing expert judgments is illustrated in Table
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A B C

A X

B X

C

TABLE 1 When uncertainty factors A and C are conditionally independent, the submatrix describing the
cross-impacts between their states can be left empty. Only the submatrices marked with X are filled with
cross-impacts.

1. All the submatrices describing the dependencies between outcomes of two uncertainty factors whose outcomes
are all either independent or conditionally independent are left empty, whilst the rest are marked with an X. (The cells
below the diagonal are not considered, because cross-impacts are symmetric.) The formed matrix can be interpreted
as an adjacency matrix for the graph representation, where X in row A column B means that uncertainty factor A has
an edge connection to B in the graph. This way, it is possible to either form the graph first and then ask the experts for
the cross-impacts only in submatrices marked with X, or the experts can fill out the entire cross-impact matrix freely
and leave those submatrices empty that they deem independent or conditionally independent.

Incorporating conditional independence into the computational model is straightforward because multiple irrele-
vant uncertainty factors are also jointly irrelevant (i.e. if the two or more uncertainty factors are irrelevant any partial
scenario formed as a combination of their states is also irrelevant. See A for proof). Let us denote the set of relevant
(not irrelevant) uncertainty factors for i with Di and the associated partial scenario set with SDi

=
�

j ∈Di
{s j1, ..., s

j
nj
}.

The probability distribution over partial scenarios in SDi
is calculated from the probability vector p of S1:i−1 by taking

a sum over all the partial scenarios in S1:i−1 that can be obtained by extending the partial scenario sDi

p (sDi
) =

∑
s∈E (sDi )

p (s) (22)

=
∑

s1:i−1∈S1:i−1
E (s1:i−1 ) ⊆E (sDi )

p (s1:i−1 ) . (23)

Thus, the probability distribution p for partial scenario set SDi
is the marginal distribution for uncertainty factors in

Di . The constraint E (s1:i−1 ) ⊆ E (sDi
) means that every scenario in the extension of s1:i−1 can also be found in the

extension of sDi
, i.e. partial scenarios s1:i−1 and sDi

have the same outcomes for all uncertainty factors in Di .

Now, because the uncertainty factors that are not included in Di are irrelevant for estimating the conditional
probabilities for the i -th uncertainty factor based on the partial scenarios s1:i−1, we have

p (sik |s1:i−1 ) = p (sik |sDi
), if E (s1:i−1 ) ⊆ E (sDi

) . � s1:i−1 ∈ S1:i−1, sDi
∈ SDi

(24)

Furthermore, when cross-impact statements are available for pairs of uncertainty factors i , j such that j < i and j � Di ,
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the optimization problem (11-14) can be solved in SDi
instead of S1:i−1 so that

min
q (k |sDi )

∑
j ∈Di

∑
(k ,l ) ∈Ri j

[( ∑
{s∈SDi |sj =l }

q (k |s)q (s)
)
− Ĉ

i j
k l
p̂ ik p̂

j
l

]2
(25)

∑
s∈SDi

q (k |s)q (s) = p̂ ik , � k ∈ {1, 2, ..., ni } (26)

ni∑
k=1

q (k |sDi
) = 1, � sDi

∈ SDi
(27)

q (k |sDi
) ≥ 0, � k ∈ {1, 2, ..., ni }, � sDi

∈ SDi
(28)

and then (24) can be used to get probabilities for all partial scenarios in S1:i−1. This makes it easier to solve the problem
because the number of scenarios in the optimization will now depend only on the relevant uncertainty factors Di

instead of all factors {1, ..., i − 1}. The inclusion of conditional independence also leads to more tightly constrained
scenarios without adding any additional optimization constraints.

A

C

B

F IGURE 2 Two independent uncertainty factors A and B which share a dependent uncertainty factor C.

Implementing conditional independence, however, adds some additional limitations on the order in which the
uncertainty factors are included in the iterative process, because the uncertainty factors upon which the conditional
independence relies are already contained in the partial scenario set S1:i−1. Similarly, uncertainty factors that are
marginally independent, such as A and B in Figure 2, but have other uncertainty factors dependent on them, should
be included before the dependencies. This is because while introducing additional irrelevant uncertainty factors in
expanding the set of partial scenarios cannot turn irrelevant uncertainty factors into relevant ones, the same does not
hold for adding relevant uncertainty factors, which can under specific circumstances change other uncertainty factors
from irrelevant into relevant.

3.4 | Bayesian networks

Conditional probability information and the conditional independence structure can also be combined to form a
Bayesian network (Pearl and Paz, 2022). In the network, the conditional independence information is represented
by a directed acyclic graph, like the one in Figure 3. The nodes (circles) represent uncertainty factors and the edges
(arrows) between nodes represent conditional dependencies. Because the graph is directed and acyclic, there exists
at least one total ordering of nodes such that node u precedes node v if there is an edge from node u to node v in
the graph. This is called a topological ordering of the graph. In Figure 3 alphabetical order is one possible topological
ordering. If two nodes do not share an edge they are conditionally independent given a subset of other nodes that
precede either of the two. Conversely, if two nodes share an edge, they are not conditionally independent.
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B

A

C

D

E

F IGURE 3 A simple conditional independence network.

Probability information is incorporated in the Bayesian network in the form of conditional probability tables
like the one seen in Figure 4. Assuming the indexing of uncertainty factors follows a topological ordering of the
Bayesian network, the probability table of uncertainty factor i contains the conditional probabilities p (k |sDi

) � k ∈
{1, ..., ni }, sDi

∈ SDi
. When combined, the conditional probability distributions p (k |sDi

) of all the uncertainty factors
can be used to calculate the probability of any scenario p (s) in S . This is because of the chain rule of probability (10)
and conditional independence (24)

p (s ) = p (sN |s1:N −1 )p (s1:N −1 ) = p (sN |sDN
)p (s1:N −1 )

= p (sN |sDN
)p (sN −1 |s1:N −2 )p (s1:N −2 ) = p (sN |sDN

)p (sN −1 |sDN −1 )p (s1:N −2 ) . . .
= p (sN |sDN

)p (sN −1 |sDN −1 ) . . . p (s2 |sD2 )p (s1 ),
(29)

which makes these conditional probability distributions a very memory-efficient way of storing the probability distri-
bution.

Constructing the Bayesian network based on cross-impacts and conditional independence information is quite
straightforward because the computational estimates for p (k |sDi

) can be obtained by solving the optimization prob-
lem (25-28). Indexing the uncertainty factors following a topological ordering of the conditional dependence graph
is not a problem, because the cross-impact multipliers only measure probabilistic dependence and not causality, and
thus they do not limit the order in any way.

3.5 | Computational considerations

The results of the iterative method may differ slightly from those obtained by solving a single optimization problem
to determine all scenario probabilities which would represent the best fit to all the elicited expert judgments about
marginal probabilities and cross-impacts. Specifically, in the notation of Section 3.2, the problem of fitting scenario
probabilities directly can be stated as the linear least squares problem

min
q (s)

N∑
i=2

i−1∑
j=1

∑
(k ,l ) ∈Ri j

[( ∑
s∈S1:N

si =k ,sj =l

q (s)
)
− Ĉ

i j
k l
p̂ ik p̂

j
l

]2
(30)

∑
s∈S1:N
si =k

q (s) = p̂ ik , � i ∈ {1, ...,N }, k ∈ {1, ..., ni } (31)

0 ≤ q (s) ≤ 1, � s ∈ S1:N . (32)
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State1 30%
State2 50%
State3 20%

1. Global industry gr...

State140%
State250%
State310%

2. Printing speed co...

State1 50%
State2 40%
State3 10%

3. Printing cost com...

Global industry growth

s11 s12 s13

Printing speed

s21 s22 s23 s21 s22 s23 s21 s22 s23

sD3
(s11, s21 ) (s11, s22 ) (s11, s23 ) (s12, s21 ) (s12, s22 ) (s12, s23 ) (s13, s21 ) (s13, s22 ) (s13, s23 )

Pr
in
tin

g
co
st

p (s31 |sD3 ) 0.88 0.81 0.65 0.55 0.31 0.33 0.31 0.09 0.40

p (s32 |sD3
) 0.12 0.19 0.35 0.40 0.68 0.33 0.34 0.09 0.34

p (s33 |sD3 ) 0 0 0 0.05 0.01 0.33 0.35 0.82 0.26

F IGURE 4 One conditional probability table from the Bayesian network in the case study. The rows of the table
show the outcome probabilities of the third uncertainty factor, Printing Cost, conditioned on the relevant preceding
uncertainty factor’s outcomes.

where the next to last constraint ensures that the scenario probabilities are matched to the marginal probabilities. The
difference between the iterative process and this direct fitting stems from the fact that the iterative method does not
weigh all cross-impact statements simultaneously. However, our computational experiments suggest that when the
statements about marginal probabilities and cross-impacts are consistent (i.e., the sum (30) is zero for some scenario
probabilities q (s )), both approaches produce similar distributions, which also fit all the marginals and cross-impacts
perfectly by construction.

However, while the formulation (30) is conceptually simpler than the iterative approach in Section 3.2, it has a
major caveat in that it leads to much bigger optimization problems. Specifically, the size of the optimization problem in
(30) grows exponentially and in our computational tests workstations with 16-32GM RAM ran out of memory when
the number of scenarios reached tens of thousands. In particular, the case study in Section 4 with its 311 = 177 147

scenarios proved too large for this approach. In contrast, the iterative approach which exploits judgments about
conditional independence was able to construct the scenario probability distribution for the case study in 3.9 seconds
using a laptop with 2.40GHz I5 processor and 16GB RAM.

In short, the iterative method performs better when analyzing large systems with more uncertainty factors. The
reason for this is that the size of the optimization problems does not depend on the total number of scenarios but,
rather, only on the size of the partial scenario set which contains the relevant uncertainty factors. To illustrate this
point, if the new uncertainty factors can be added without increasing the average number of relevant factors per
each new factor, the computational complexity of the iterative process increases linearly with the number of total
uncertainty factors. This can be contrasted with the direct fitting approach in which the size of the optimization
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problems grows exponentially so that these problems become quickly unsolvable. In otherwords, while direct scenario
probability fitting can still be used in smaller problems, the iterative methodwill prove indispensable in many problems
of realistic size.

4 | CASE STUDY

We next present a case study on analyzing the developing 3D-printing technologies and their future impact on the
Finnish Defence Forces (FDF). The aim of this case study was to (i) identify uncertainty factors that have a large impact
on, how 3D printing would be applied in the Finnish military in view of possible developments over the next 15 years,
(ii) specify ranges of possible realizations for these uncertainty factors, (iii) characterize dependencies between the
uncertainty factors, and (iv) build structured scenario framework which would capture these multiple inputs, by doing
so, and (v) serve as a tool for offering insights into questions which are of focal concern to the FDF in the context of
3D printing.

4.1 | Uncertainty factors

The identification of uncertainty factors was preceded by a systematic literature review and preliminary interviews
with experts, resulting in an initial set of ten key uncertainty factors with three outcomes for each. These uncertainty
factors were discussed at length in a 4-hour remote workshop which was organized by using video conferencing tools
and attended by a panel consisting of half eight 3D-printing experts from the Finnish military and research community.
The specific fields of expertise represented by the panelists covered military logistics, 3D-printing business, and 3D-
printing technology.

In theworkshop, the experts reached a consensus that the factor Progress in 3Dmanufacturing should be separated
into two factors, representing Printing speed and Printing costs. This lead to the final list of uncertainty factors in Table
2.

In the workshop, the outcomes of every uncertainty factor were discussed together with the experts. A verbal
description was developed for each, including numerical bounds where appropriate. For each outcome of every un-
certainty factor, the corresponding marginal probability was assigned. This represented the baseline probability of
this outcome in the absence of information about the outcomes of other uncertainty factors.

Next, the experts were asked to characterize cross-impacts using a seven-point scale from -3 to 3. This scale was
employed to record statements about how the probability of a given outcome for an uncertainty factor would change
from its baseline probability as a result of knowing that another uncertainty factor will have a specific outcome. For
example, howmuch more likely it is that the global 3D industry maintains the growth speed of 2019-2020 if the costs
associated with printing fall by 50-90%? A small part of the cross-impact matrix is in Table 3.

The statements recorded on this ordinal scale were converted into estimates about cross-impact multipliers
through the transformation

C
i j
k l

=
√
2
V
i j
k l , (33)

where Ci j
k l
is the cross-impact multiplier derived from the statementV i j

k l
. Thus, responses from the range -3 to 3 were

mapped to numerical values cross-impact multipliers 1
3 ,

1
2 ,

2
3 , 1, 1

1
2 , 2, and 3, and this information was available to

the experts during the evaluations. The experts only estimated the cross-impacts of those uncertainty factor pairs
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Uncertainty Factor Outcome Probability

1. Global industry growth
Decrases 0.3
Remains same 0.5
Increases 0.2

2. Printing speed compared to present
Up to 2 times faster 0.4

2 to 10 times faster 0.5
Over 10 times faster 0.1

3. Printing cost compared to present
Up to 50% cheaper 0.5

50% to 90% cheaper 0.4

Over 90% cheaper 0.1

4. Finnish industry growth
Decreases 0.3
Remains same 0.5
Increases 0.2

5. Graduates with 3D-printing expertise
Up to 100 (current) 0.2

100 to 300 0.6
Over 300 0.2

6. Legal regulation of 3D-printing in Finland
Limits strongly 0.05

Similar to other manufacturing 0.9

No regulation 0.05

7. Standardization of processes and models
No standardization 0.35
Includes technical requirements 0.45

Full automation possible 0.2

8. Use of 3D-printed objects in FDF
Just individual items 0.1
Common and has purchase procedures 0.5

Access to 3D-printing capacity on demand 0.4

9. FDF access to 3D-printing model files
Just individual items 0.2
Relevant models included in system purchases 0.7

Models available for most new and old systems 0.1

10. FDF 3D-printing spare parts in peacetime
Low importance 0.7

Significant and well planned 0.29

Crucial and strictly controlled 0.01

11. FDF 3D-printing spare parts in crisis times
Low importance 0.45

Significant and well planned 0.45

Crucial and strictly controlled 0.1

TABLE 2 Uncertainty factors, their outcomes, and corresponding marginal probabilities estimated for the year
2035.
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they deemed to provide significant information about each other. The remaining pairs were deemed conditionally
independent given the preceding uncertainty factors, as is shown in Table 4.

Printing cost
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100-200% 0.4 1 -1 -1

200-1000% 0.5 -1 1 0

Over 1000% 0.1 -1 0 1

TABLE 3 Part of the cross-impact estimate matrix on probabilistic dependencies between pairs of outcomes for
uncertainty factors.

1 2 3 4 5 6 7 8 9 10 11

1. Global industry growth 11 X X X X X X

2. Printing speed compared to present 11 X X X

3. Printing cost compared to present 11 X X X X

4. Finnish industry growth 11 X X X X X X X

5. Number of graduates with 3D-printing expertise 11 X

6. Legal regulation of 3D-printing in Finland 11 X X X

7. Standardization of processes and models 11 X X

8. Use of 3D-printed objects in FDF 11 X X X

9. FDF access to 3D-printing model files 11 X X

10. FDF 3D-printing spare parts in peacetime 11 X

11. FDF 3D-printing spare parts in crisis times 11

TABLE 4 The X:s denote the uncertainty factors whose cross-impacts were evaluated. The empty white cells are
conditionally independent uncertainty factor pairs.

The usual scale from -3 to 3 was chosen (instead of asking about the cross-impact multipliers directly) to expedite
the elicitation process while recognizing that the resulting estimates would not necessarily be consistent answers.
Indeed, there were some inconsistencies in the resulting estimates. In Table 3, the highlighted cross-impact between
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stable industry growth and 10-50% printing cost leads to a situation where the conditional probabilities associated
with the row for global industry growth would not sum up to one. This inconsistency is easy to spot, because all
terms on this row are non-negative, meaning that stable industry growth would invariably preserve or increase the
probabilities of all outcomes of printing costs; but this is impossible because these outcomes are (meant to be)mutually
exhaustive (Salo et al., 2021). Similar, and also less apparent inconsistencies appear all over the cross-impact matrix.
Indeed, the fact that such inconsistencies in expert judgments are likely to surface in the cross-impact analysis is
one of the reasons which motivated us to develop a method that could derive scenario probabilities even when the
estimates are not perfectly consistent. This can make the elicitation process both faster and less arduous.

4.2 | Results

We used the presented iterative method to compute the scenario probability distribution for all the scenarios that can
be formed from the uncertainty factors in Table 2. The entire distribution could not be included here, because it has
311 = 177 147 probabilities. Thus, we are offering some (hopefully) interesting observations instead.

The cross-impact judgments provided by the experts indicated that the role of 3D-printing in the future of spare
parts logistics is quite uncertain. There is a 41% probability that it will not have a great role in either the peace or
crisis time logistics. From the scenario probability distribution, we calculated that the probability of any scenariowhere
spare parts production in either peace or crisis time is significant or crucial is practically zero, if the use of 3D printed
objects in FDF is limited to just individual items or access to 3D-printing models is extremely limited. Collecting a
library of 3D-printing model files and building processes to order and use 3D-printed items takes a significant amount
of time and effort, so it would be advisable to start as soon as possible if the 3D printing of spare parts is seen as
worth pursuing.

Using the conditional probability distributions and conditional independence information (Table 4), we also con-
structed a Bayesian network using the GeNIeModeler software (BayesFusion, 2021), seen in Figure 5. The uncertainty
factors were introduced starting with exogenous factors that would not be affected by choices the FDF makes, fol-
lowed by exogenous factors that could be affected in limited ways in cooperation with Finnish government entities
and industry, and the last factors included were endogenous to the Finnish military. Thus, factors 1-3 describe the
state of the 3D-printing industry globally, 4-7 describe the situation in Finland, and 8-11 describe the situation inside
the FDF. The constructed network can be used to illuminate various what-if (partial) scenarios (Fenton and Neil, 2001).

To give a concrete example, looking at the partial scenarios consisting of uncertainty factors 1-7, i.e. the exoge-
nous factors, the most probable is the one in which every factor gets the second outcome. Its probability is 8.62%,
which is quite high considering these uncertainty factors can produce 37 = 2 187 different partial scenarios. The prob-
abilities of the FDF endogenous uncertainty factors in this partial scenario can be seen in Figure 6. 3D-printed parts
are very likely to have at least significant importance in crisis time operations. At the same time, they are quite unlikely
to be that important during peacetime. Because crisis capabilities are developed during peacetime, this means that
special attention should be focused on both training and developing processes to support this 3D-printing spare parts
in a crisis, because it seems unlikely to develop on its own.

Another relatively high probability (2.28%) exogenous partial scenario in which uncertainty factors 1-5 and 7 all
obtain the first outcome while uncertainty factor 6 obtains its second outcome 2 is in Figure 7. This is a more pes-
simistic partial scenario for the 3D-printing industry as a whole and represents growth and technological development
slowing down significantly. Here 3D-printing is unlikely to play any role at all in the spare parts logistics, and this helps
showcase why there is such a high probability of them remaining unremarkable despite their seeming importance in
the most probable scenario in Figure 6. The developments in the industry as a whole are going to have an impact on
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State1 30%
State2 50%
State3 20%

1. Global industry gr...

State140%
State250%
State310%

2. Printing speed co...

State1 50%
State2 40%
State3 10%

3. Printing cost com...

State130%
State250%
State320%

4. Finnish industry g...

State120%
State260%
State320%

5. Number of gradu...

State1 5%
State290%
State3 5%

6. Legal regulation o...

State135%
State245%
State320%

7. Standardization o...

State1 10%
State2 50%
State3 40%

8. Use of 3D-printed...

State120%
State270%
State310%

9. FDF access to 3...
State170%
State229%
State3 1%

10. FDF 3D-printing ...

State145%
State245%
State310%

11. FDF 3D-printing ...

F IGURE 5 The constructed Bayesian network in GeNIe Modeler software (BayesFusion, 2021).

State2 100%
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State1 0%
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State3 44%

8. Use of 3D-printed...

State1 1%
State282%
State317%

9. FDF access to 3...
State170%
State229%
State3 2%

10. FDF 3D-printing ...

State112%
State267%
State321%

11. FDF 3D-printing ...

F IGURE 6 The probability distributions of uncertainty factors describing 3D-printing in Finnish Defence Forces
in the most likely exogenous partial scenario.
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State3 0%n o...
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State1 28%
State2 46%
State3 26%

8. Use of 3D-printed...

State166%
State228%
State3 6%

9. FDF access to 3...
State1 100%
State2 0%
State3 0%

10. FDF 3D-printing ...

State191%
State2 9%
State3 0%

11. FDF 3D-printing ...

F IGURE 7 The probability distributions of uncertainty factors describing 3D-printing in Finnish Defence Forces
in a pessimistic high probability exogenous partial scenario.

the usefulness of the technology for the FDF and should be monitored carefully.

5 | CONCLUSIONS AND DISCUSSION

Scenario analysis provides a structured framework for identifying and exploring key uncertainties which shape the fu-
ture. Because the range of qualitative and quantitative scenario methods is so wide, there are different perspectives
on the rationales and the suitable ways of carrying out scenario analysis (Millett, 2009), but qualitative and quan-
titative scenario methods are not fundamentally at odds. Rather, they are complementary: for instance, evocative
narratives can be made even more compelling by accompanying them with numerical data while detailed quantitative
analyses can be enriched with storylines to communicate the implications behind the numbers. In short, the choice
of methodologies should be guided by how the scenarios are going to be used.

Against this backdrop, we have formulated a method to elicit expert judgments about cross-impact terms which
are processed to infer the accompanying joint probability distribution over all possible scenarios. A notable benefit of
this approach is that it facilitates the integrationwith otherwell-founded quantitative approaches – including expected
utility theory, probabilistic risk assessment, and statistical inference – and thus expands the extant range of available
techniques for foresight and strategic planning.

Scenario probabilities and Bayesian networks depicting dependencies between the uncertainty factors havemany
practical uses in the military context. Scenario probability distributions facilitate a number of different analyses to as-
sess the impacts of new technologies. Numerous simulation (Lappi, 2008; Rao et al., 1993), game theoretic (Poropudas
and Virtanen, 2010; Roponen et al., 2020) and dynamic (Gue, 2003) tools can be used to analyze the scenario-specific
system performance, but their ability to support strategic analysis is limited without the underlying scenario probabil-
ities.

The same also applies to technology forecasting beyond themilitary context to some extent. For example, climate
models help generate well-founded scientific predictions concerning the rate of change in the global temperature and
sea level, rise, but they are less apt at predicting what kinds of mitigation actions governments will take or how people
will respond to changing environmental conditions; yet such behavioral would also need to be accounted for in order
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to address risks comprehensively. As a result, there is a need for scenario models such as ours which harnesses cross-
impact statements in order to link technological changes to the key behavioral responses that are pivotal in shaping
the future.

Among cross-impact methods, ours is purposely grounded on the estimation of all possible scenario probabilities.
Most probabilistic cross-impact methods tend to rely on Monte Carlo simulation, which, however, tends to require
an impractically large number of iterations to reach good accuracy when the number of scenarios is large. Computa-
tionally, our method scales well into problems with even dozens of uncertainty factors, especially if the number of
probabilistic dependencies between the uncertainty factors is not too large. The problems caused by large depen-
dency sets can be mitigated to some extent by choosing the included uncertainty factors and iteration order in the
right way, but eventually, a limit is reached on howmuch can be expressed with just pairwise dependency statements.
This is a limitation shared by all cross-impact techniques because the number of possible scenarios grows faster than
the number of cross-impacts.

We have employed unconditional cross-impact multipliers (4) in which the relative change in the probability of
a given outcome level does not explicate assumptions about the realizations of uncertainty factors beyond the two
that are considered in the comparison. Mathematically, however, one could elicit conditional cross-impact multipliers
which would explicate such assumptions with no reason why the cross-impact multipliers could not be even extended
into triplets or a larger number of uncertainty factors. We have chosen not to explore it beyond conditional indepen-
dence in this paper, because the number of triplets and beyond grow so much faster than the number of pairs, that
collecting such information for all uncertainty factors would be practically infeasible in most cases. However, intro-
ducing individual optimization constraints based on higher-level dependencies would be straightforward if desired.

Although our case study has focused on 3D-printing, the proposed method is generic and can be readily applied
across numerous contexts in which it is of interest to build a comprehensive model that retains all possible scenarios.
Thus, its advantages lie in countering the risk that the focus is, perhaps prematurely, placed on a small subset of sce-
narios, as opposed to capturing the full breadth of possible scenarios that can be built as combinations of outcomes of
several uncertainty factors. In such contexts, cross-impact analysis offers a pragmatic, relatively straightforward, and
cognitively manageable approach to assessing dependencies between uncertainty factors. Furthermore, the models
proposed in this paper are computationally efficient and make it possible to provide informative insights based on
the interactive exploration of the implications of all model inputs, including judgments about the marginal outcome
probabilities and cross-impact statements.
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A | PROOFS

Definition An uncertainty factor a is irrelevant for uncertainty factor i in scenario set S1:i if and only if p (si
k
|s1:i−1 ) =

p (si
k
|s1:i−1\a ) , �k = 1, ..., ni , �s1:i−1 ∈ S1:i−1, when s1:i−1\a is the same scenario as s1:i−1 but without the outcome of

uncertainty factor a .

Remark Definition A comes with the built-in assumption that probabilities p (s1:i−1 ) are strictly positive because
otherwise, the conditional probabilities would be undefined. They can be arbitrarily small, however.

Theorem 1 (Intersection) If uncertainty factors a and b are irrelevant for uncertainty factor i in scenario set S1:i , then
p (si

k
|s1:i−1 ) = p (si

k
|s1:i−1\a,b ), �k = 1, ..., ni , �s1:i−1 ∈ S1:i−1.

Proof We assume that a , b and i are uncertainty factors in {1,...,i} and a � b, b � i , i � a . Assuming uncertainty factors
a and b are separately irrelevant for uncertainty factor i in scenario set S1:i , we show that p (si

k
|s1:i−1 ) = p (si

k
|s1:i−1\a,b ) ,

�k = 1, ..., ni , �s1:i−1 ∈ S1:i−1, when s1:i−1\a,b is the same scenario as s1:i−1 but without the outcome of uncertainty
factors a and b , i.e. any partial scenario formed from outcomes of a and b is also irrelevant.

From the assumptions we get,

p (sik |s1:i−1 ) = p (sik |s1:i−1\a ), �k = 1, ..., ni , �s1:i−1 ∈ S1:i−1 (34)

p (sik |s1:i−1 ) = p (sik |s1:i−1\b ), �k = 1, ..., ni , �s1:i−1 ∈ S1:i−1 (35)

and thus

p (sik |s1:i−1\a ) = p (sik |s1:i−1\b ), �k = 1, ..., ni , �s1:i−1 ∈ S1:i−1 . (36)

Now, let k ∈ {1, ..., ni } and s1:i−1 ∈ S1:i−1. Using the law of total probability, we get

p (sik |s1:i−1\a,b ) =
na∑
l=1

p (sik |s1:i−1\a,b , sal )p (sal |s1:i−1\a,b ) (37)

Because (s1:i−1\a,b ∧ sa
l
) is a scenario in S1:i−1\b , we can use the equality from (36), and get

p (sik |s1:i−1\a,b ) =
na∑
l=1

p (sik |s1:i−1\a )p (sal |s1:i−1\a,b ) (38)

= p (sik |s1:i−1\a )
na∑
l=1

p (sal |s1:i−1\a,b ) (39)

= p (sik |s1:i−1\a ) . (40)

Thus, because p (si
k
|s1:i−1\a,b ) = p (si

k
|s1:i−1\a ) and p (si

k
|s1:i−1 ) = p (si

k
|s1:i−1\a ) , it follows that

p (sik |s1:i−1 ) = p (sik |s1:i−1\a,b ), �k = 1, ..., ni , �s1:i−1 ∈ S1:i−1 . (41)

It would also be straightforward to extend this proof to any number of irrelevant uncertainty factors.
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