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   ABSTRACT 
 

 
Author Tuomas Rintamäki 
Name of the doctoral thesis Optimization and time-series models for large-scale integration of 
variable renewable energy sources  
Article-based thesis 
Number of pages 111 
Keywords optimization, time-series models, game theory, renewable energy, power systems 
 
Traditionally, power systems have consisted of highly predictable loads and controllable 
generation sources. Global goals to reduce emissions have motivated the large-scale introduction 
of variable renewable energy sources (VRES) in these systems. VRES such as wind and solar 
power are less predictable, controllable, and have zero marginal costs. Consequently, the large-
scale deployment of VRES affects power system adequacy and flexibility requirements as well as 
the pricing of electricity in day-ahead and intraday markets.  

This Dissertation develops optimization and time-series models to answer research questions 
related to the large-scale integration of VRES in power markets. We build on real power system 
data to implement autoregressive time-series models with exogenous variables to estimate the 
impact of wind and solar power on power prices in the Nordic and Northwestern European regions. 
Moreover, we develop three mathematical optimization models: (i) a bi-level model to optimize 
capacity payments to flexible conventional generation to reduce expected balancing costs due to 
the variability of VRES; (ii) a bi-level model to take the perspective of a flexible generator jointly 
optimizing day-ahead and intraday offerings in the presence of VRES; (iii) a tri-level stochastic 
adaptive robust optimization model for long-term generation and transmission expansion to meet 
emission-reduction targets while considering uncertain demand and VRES. For each optimization 
model (i)-(iii), we develop improved solution methods that make case studies involving detailed 
power system data computationally feasible.  

The main contributions of this Dissertation are as follows. First, the time-series and optimization 
models expand on the state-of-the-art by accounting for new features, such as intraday market 
dispatch, additional time scales, or operational details. Second, we develop linearization, 
reformulation, and decomposition methods to solve the optimization problems efficiently and 
accurately. Third, applying our time-series and optimization models to real power data from the 
Nordic and Northwestern European countries, we address research questions on the impact of 
large-scale integration of VRES on power system adequacy, flexibility requirements, and power 
market prices. Our insights include e.g. a long-term transmission and generation expansion plan to 
meet emission-reduction goals as well as estimates about the impact of wind and solar power on 
day-ahead prices. Such insights can support the design of more effective policies for VRES 
integration and serve to inform producers and consumers alike on the impact of VRES. The results 
of the Dissertation have been exploited by other researchers in estimating the impact of VRES in 
other regions, for example.  
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TIIVISTELMÄ 
 

 
Tekijä Tuomas Rintamäki  
Väitöskirjan nimi Optimointi- ja aikasarjamalleja vaihtelevien uusiutuvien energialähteiden laaja-
alaiseen integroimiseen  
Artikkeliväitöskirja 
Sivumäärä 111 
Avainsanat optimointi, aikasarjamalli, peliteoria, uusiutuva energia, sähköjärjestelmä  
 
Aiemmin sähköjärjestelmät ovat koostuneet hyvin ennakoitavasta kulutuksesta sekä säädettävästä 
tuotannosta. Globaalit päästövähennystavoitteet ovat johtaneet vaihtelevien uusiutuvien 
energiamuotojen laaja-alaiseen käyttöönottoon näissä järjestelmissä. Vaihtelevat uusiutuvat 
energiamuodot kuten tuuli- ja aurinkovoima ovat heikommin ennakoitavia ja säädettäviä eikä niillä 
ole marginaalituotantokustannuksia. Tästä johtuen näiden laaja-alainen käyttöönotto vaikuttaa 
sähköjärjestelmien riittävyys- ja joustavuusvaatimuksiin sekä sähkön hinnoitteluun seuraavan 
päivän ja päivänsisäisissä markkinoissa.  

Väitöskirjassa kehitetään uusia optimointi- ja aikasarjamalleja vastaamaan tutkimuskysymyksiin, 
jotka liittyvät vaihtelevan uusiutuvan energiamuotojen laaja-alaiseen integroimiseen 
sähköjärjestelmiin. Siksi työssä estimoidaan tuuli- ja aurinkovoiman vaikutuksen sähkönhintoihin 
pohjoismaalaisissa ja länsieurooppalaisissa sähköjärjestelmissä kehittämällä autoregressiivisen 
aikasarjamallin ulkopuolisilla muuttujilla. Lisäksi työssä kehitetään seuraavat kolme 
optimointimallia: (i) kaksitasoinen optimointimalli, joka määrittää kapasiteettimaksut joustaville 
tuotantomuodoille, jotta sähköjärjestelmän joustavuus ja odotetut kustannukset ovat optimaaliset, 
(ii) kaksitasoinen optimointimalli, joka optimoi joustavan tuottajan tarjoukset seuraavan päivän ja 
päivänsisäiselle markkinalle huomoiden uusiutuvan energian vaihtelevuuden, (iii) kolmitasoinen 
stokastinen ja robusti optimointimalli, joka optimoi pitkänajan tuotanto- ja siirtolinjainvestoinnit 
päästötavoitteiden saavuttamiseksi huomioiden uusiutuvan energian ja kulutuksen epävarmuuden. 
Kullekin optimointimallille (i)-(iii) kehitetään tehokkaita ratkaisumenetelmiä numeerisia 
tapaustutkimuksia varten, joissa käytetään yksityiskohtaista sähköjärjestelmädataa.  

Väitöskirjassa on kolme pääkontribuutiota. Ensinnäkin aikasarja- ja optimointimallit yleistävät 
aiempia malleja ottamalla huomioon uusia ominaisuuksia, kuten päivänsisäisen markkinan, 
aikaulottuvuuden tai uusia tuotannollisia yksityiskohtia. Toiseksi siinä esitetään uusia linearisointi-, 
reformulointi- ja hajotelmatekniikoita, joiden avulla optimointimallit saadaan ratkaistua nopeasti ja 
tarkasti. Kolmanneksi se vastaa tutkimuskysymyksiin laajamittaisen uusiutuvan energian 
integroimiseen sekä sen vaikutuksiin sähkönhintoihin hyödyntämällä pohjoismaalaista ja 
länsieurooppalaista markkinadataa. Väitöskirjassa tuotetaan tutkimustietoa esimerkiksi päästöjä 
vähentävästä pitkän aikavälin siirto- ja tuotantokapasiteetin laajentumisesta ja tuuli- ja 
aurinkovoiman vaikutuksista sähkönhintoihin. Tämä tieto on hyödyttää sekä tuottajia että kuluttajia 
ja se auttaa suunnittelemaan mekanismeja, joilla uusiutuvan energian lähteitä voidaan integroida 
helpommin. Väitöskirjan menetelmiä on hyödynnetty muissa tutkimuksissa esimerkiksi 
arvioitaessa vaihtelevan uusiutuvan energia vaikutuksia muissa maissa.  
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1. Introduction

1.1 Background

Power systems are characterized by the unique constraint that electricity
supply must always meet demand to maintain a stable frequency in the
electricity transmission grid. Electricity demand can be forecasted multiple
days ahead with high accuracy thanks to factors such as known industrial
processes, predictable patterns in residential consumption, and high corre-
lation with temperature and other weather conditions [1]. Traditionally,
electricity is generated using predictable and controllable sources such as
coal- and gas-fired plants, hydropower, and nuclear. Power exchanges such
as Nord Pool Spot in the Nordic countries provide a day-ahead market for
producers and consumers to sell and buy electricity for each hour in the
following day. Market participants can make changes to the day-ahead
sales and purchases in intraday and balancing markets [2].
In recent years, global treaties such as the Paris agreement [3] have

been introduced to reduce the risks of climate change by seeking to limit
the increase in the global average temperature by reducing greenhouse
gas (GHG) emissions [4]. Electricity and heat generation is among the
top sources of emissions globally [5]. This has led to national policies
for subsidizing investments in low-emission renewable electricity sources
(RES) as well as technological advancements decreasing the levelized cost
of electricity for these sources. Consequently, large amounts of RES are
introduced in Europe, the US, Japan, and other regions [6, 7, 8]. In Europe,
for example, the share of energy from renewable sources has grown from
16.66% in 2013 to 23.04% in 2022 [9].
Much of the new capacity is variable RES (VRES) such as wind and solar

power that has zero marginal costs, is not controllable, and whose output
can be predicted less accurately than that of fossil-fuel or hydro plants,
for example. Integrating substantial, zero marginal cost VRES capacities
into existing power systems can make conventional controllable generation
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capacity unprofitable in the day-ahead market [10]. Meanwhile, large-scale
variability can cause challenges in managing the supply-demand balance
and increase costs in the intraday markets [11]. Consequently, policies such
as capacity mechanisms may be required to ensure controllable generation
capacity in the system to guarantee resource adequacy [12].
Besides policy changes, power system changes may be required to make

large-scale integration of VRES feasible. These changes can include addi-
tional investments in transmission and generation capacity, demand-side
response, and deployment of electricity storage [13, 14, 15, 16], for exam-
ple. Moreover, alternative market-clearing mechanisms may be better
equipped to handle the variability of RES [17].
Power systems lend themselves well to mathematical modeling. Many

power system organizations in the world have made detailed time-series
data on their operations, generation, and consumption publicly available,
thereby facilitating the use of empirical methods such as time-series model-
ing [18, 19]. Commonly used empirical methods include linear regression,
clustering, dimensionality reduction, autoregressive models, and neural
networks [20].
Also, in many power systems the market-clearing and dispatch problem

is solved using an algorithm to maximize some economic utility function
considering the constraints on the supply-demand equilibrium, transmis-
sion grid, and more. Such a setup can be formulated using an optimization
framework [21]. An extension of this is the so-called bi-level optimiza-
tion model, which makes it possible to capture the interaction of multiple
agents such as a generation company making strategic generation and
investment decisions as a leader and the rest of the power system as a
follower, i.e., a Stackelberg game [22]. Another extension is robust and
stochastic optimization where some variables or parameters of the opti-
mization model such as the VRES generation are not deterministic but
uncertain [23]. Indeed, electricity companies need optimization models
to support decisions related to long-term resource planning, short-term
dispatching, and real-time operations [24].
For large-scale power systems with high time frequency and plenty

of operational details, time-series and optimization models can become
computationally prohibitive. To this end, many references develop reformu-
lation, decomposition, approximation, and other customized algorithmic
techniques to render these models computationally feasible [22, 25, 26].

1.2 Dissertation objectives and contributions

In this dissertation, we develop novel time-series and optimization models
to answer research questions related to the large-scale integration of VRES
in power markets. We focus on the Nordic and Western European region

12
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in our case studies because data are readily available. Also, we seek
to develop reformulation, linearization, and decomposition techniques to
solve these problems computationally more efficiently. In particular, our
main research questions are

RQ1) How does large-scale VRES affect power pricing?

RQ2) How can large-scale VRES be integrated in power systems?

More specifically, Paper I implements an autoregressive time-series
model with exogenous variables to estimate the impact of large-scale
VRES generation on electricity prices and their volatility using data from
the Nordic region. Therefore, Paper I addresses the research question RQ1.
Paper II develops a bi-level optimization model with a novel constraint-
based reformulation of the dispatch problem to study optimal support
payments to incentivize flexible generation remain available to balance
VRES. Paper II addresses the research question RQ2 by exploring how
such payments can help improve power system adequacy in the presence
of large VRES variability. Paper III takes the perspective of a strategic
producer with flexible generation using a novel bi-level optimization model
capturing both day-ahead and intraday markets. Paper III studies how
such a producer can affect market prices given VRES variability (RQ1).
Paper III extends an existing linearization scheme to render the problem
computationally feasible. Finally, Paper IV develops a tri-level robust opti-
mization model for long-term generation and capacity expansion to meet
emission-reduction targets while facing short-term uncertain demand and
VRES (RQ2). Paper IV uses Benders decomposition and problem reformu-
lation to speed up solution times for large-scale problem instances. Table
1.1 summarizes the methods and research questions in the papers.

Time series Optimization RQ1 RQ2
Paper I X X
Paper II X X
Paper III X X
Paper IV X X

Table 1.1. Methods and research questions of the papers in this dissertation

The main contributions of this dissertation are:

1. The development of novel time-series and optimization models;

2. Computationally efficient solution methods for these optimization
models;

3. The application of these models to real power systems using data to
generate insights into the large-scale integration of VRES to provide
guidance to policymakers and practitioners.

13
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More specifically, Paper I focuses on the contributions 1 and 3 by develop-
ing a novel time-series model and estimating the impact of VRES on power
prices (RQ1). Meanwhile, Papers II-IV focus on the contributions 1-3 as
they develop a novel optimization model, an efficient solution method for
the model, and by building case studies using market data to address RQ1
or RQ2.

14



2. Methodological background

2.1 Time-series modeling

Power systems generate time-series data on operations and markets, in-
cluding generation, transmission flows, load, outages, prices, volumes, and
so on. These data contain patterns based on the time of the day and con-
sumer behavior, for example, and can be readily analyzed with time-series
models. Figure 2.1 shows that average day-ahead electricity prices in
Finland in 2015 were higher during weekdays than during the weekend
and that the prices are higher during working hours than during the night.
A common time-series model employed in the literature is the sea-

sonal autoregressive moving average model with exogenous variables
(SARMAX(p, q)(P,Q)[s]) [27]:

yt = ↵0+
pX

i=1

↵iyt�i+
qX

i=1

�i✏t�i+
PX

i=1

↵i·syt�i·s+
QX

i=1

�i·s✏t�i·s+✏t+�
>
xt, (2.1)

where the dependent variable yt 2 R at time point t is explained using
(i) p lagged values yt�i, (ii) q Gaussian white noise error terms ✏t�i 2 R,
(iii) P seasonal lagged values yt�i·s with periodicity of s, (iv) Q seasonal
Gaussian white noise error terms ✏t�i·s with periodicity of s, and (v) a vector
of exogenous variables xt 2 Rm with the coefficients ↵i, �i, ↵i·s, �i·s 2 R,
and � 2 Rm, respectively.
The SARMAX model assumes that the time series yt is stationary so that

the distribution of yt does not depend on t [27]. More specifically,

P (yt1  v1, . . . , ytk  vk) (2.2)

= P (yt1+h  v1, . . . , ytk+h  vk) 8t1, . . . , tk, 8h, 8v1, . . . , vk.

The lags p, q, P , Q, and s can be identified with the help of autocorrelation
function (ACF) and partial autocorrelation function (PACF) plots [27].
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Figure 2.1. Average day-ahead electricity prices in Finland in 2015 by week day. Data
source: Nord Pool

After choosing the lags p, q, P , Q, and s, the SARMAX model can be fitted
using least squares. Implementations are available in software such as
R [28]. The errors of the fitted time series ŷt for n observations can be
measured using the sum of squared errors (SSE):

SSE =
nX

t=1

(yt � ŷt)
2
. (2.3)

The goodness of fit for a specific choice of the lags considering the total
number of coefficients k can be computed using for example the Akaike
Information Criterion (AIC) [27]:

AIC = log
SSE
n

+
n+ 2k

n
. (2.4)

In power markets, the dependent variable yt can be the power price in
hour t, for example, and the exogenous variables xt can be the average
wind power output during hour t. The selected lags and estimated values
of the coefficients such as ↵ and � make it possible to interpret the driving
factors for the time series. Also, the model can be used to predict future
time steps t based on the realized or predicted values for the dependent
and exogenous variables.
Besides the SARMAX family, common approaches to time-series anal-

ysis include generalized autoregressive conditional heteroskedasticity
(GARCH) and deep neural networks (DNN) models [19, 29]. While the
SARMAX model assumes homoskedasticity, i.e., the model error terms
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✏t are sampled from a Gaussian distribution with a constant variance,
the GARCH model allows for heteroskedasticity. Thus, the variance can
depend on time, which can help model time-series volatility, for example.
Meanwhile, DNNs such as multi-layer perceptrons, convolutional neural
networks, long short-term memory (LSTM), and other architectures can
be used to fit arbitrarily complex differentiable non-linear functions to the
time-series data using stochastic gradient descent [30].

2.2 Mathematical programming

In mathematical programming models, an objective function is minimized
with respect to decision variables subject to a set of constraints. A general
form of such an optimization model is [31]

minimize
x

f(x) (2.5)

subject to

gi(x)  0, i = 1, . . . ,m, (2.6)

where x = (x1, . . . , xn) 2 Rn is a vector of decision variables, f(x) : Rn ! R
an objective function, and gi(x) : Rn ! R are the constraint functions. A
vector x⇤ is optimal and, thus, a solution to Eqs. (2.5)-(2.6) if it gives the
smallest value to the objective function while satisfying the constraints.
When the functions f and gi are affine, i.e. of the form c

T
x+ b, where c 2

Rn and b 2 R, then the problem in Eqs. (2.5)-(2.6) becomes a linear program
(LP), which can be solved to optimality using the simplex algorithm, for
example [31]. Another important case is when the functions f and g are
convex. That is, if for all x, y in the domain of function f (denoted by
x, y 2 domf ) and 0  ✓  1

f(✓x+ (1� ✓)y)  ✓f(x) + (1� ✓)f(y), (2.7)

then the problem is a convex optimization problem, which can be solved to
optimality using interior-point methods such as the barrier method [31]. If
the functions f and g are affine and one or more of the components of the
decision variable vector x are constrained to integers, then the problem
becomes a mixed-integer linear program (MILP), which can be solved
using the branch-and-bound algorithm, for example [32]. Typically, the
optimization problem is represented and solved using software such as
Gurobi [32]
Many interactions in power markets can be modeled using optimization

models. For example, Nord Pool Spot runs an algorithm that maximizes so-
cial welfare objective function with respect to supply and demand variables
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given constraints such as limited transmission capacity between areas [33].
In other words, the electricity market-clearing problem can be represented
using the above optimization problem.
A variant of the above optimization model is so-called bi-level optimiza-

tion, where one of the constraints involves another optimization problem
[34]. Bi-level problems are commonly used to model the impact of upper-
level decision variables such as generation and transmission investment in
a lower-level problem such as the market clearing [35]. In such cases, the
problem is often an instance of a Mathematical Program with Equilibrium
Constraints (MPEC). More specifically, as in [34], we have

minimize
x,y

F (x, y) (2.8)

subject to

Gk(x, y)  0, k = 1, . . . ,K (2.9)

y 2 argmin
y

{f(x, y) : gj(x, y)  0, j = 1, . . . , J}, (2.10)

where x 2 Rn and y 2 Rm are upper- and lower-level decision variables,
respectively, F (x, y) : Rn ⇥ Rm ! R and f(x, y) : Rn ⇥ Rm ! R are the
upper- and lower-level objective functions, and Gk(x, y) : Rn⇥Rm ! R, and
gj(x, y) : Rn ⇥ Rm ! R are the upper- and lower-level constraint functions,
respectively.
When the lower-level problem in Eq. (2.10) is convex (given a fixed x),

the bi-level problem can reduced to a single-level optimization problem
by replacing the lower-level problem with its Karush-Kuhn-Tucker (KKT)
conditions [34]. The so-called Lagrangian of Eq. (2.10) is

L(x, y, µ) = f(x, y) +
JX

j=1

µjgj(x, y), (2.11)

where µj are Lagrange multipliers. As in [34], the KKT conditions are

ryL(x, y, µ) = 0 (2.12)

gj(x, y)  0, j = 1, . . . , J (2.13)

µjgj(x, y) = 0, j = 1, . . . , J (2.14)

µj � 0, j = 1, . . . , J. (2.15)

Consequently, the bi-level problem in Eqs. (2.8) - (2.10) becomes [34]

minimize
x,y,µ

F (x, y) (2.16)

subject to
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Gk(x, y)  0, k = 1, . . . ,K (2.17)

Eqs. (2.12) - (2.15). (2.18)

Depending on the functions F and G and decision variables x, the problem
in Eqs. (2.16) - (2.18) can be reformulated as an MILP, for example, and,
therefore, be readily solvable. Often, the bilinear terms in Eq. (2.14) can
be linearized by using techniques such as disjunctive constraints [22] or
binary expansion [36]. Also, the KKT conditions in Eq. (2.18) can represent
multiple follower players and the solution to the KKT conditions is a Nash
equilibrium among those players [21].
In the generic optimization problem in Eqs. (2.5) - (2.6), the functions f

and g are deterministic and known exactly. Yet, in many applications such
as the electricity market, this is typically not the case as many parameters
like the VRES output are random variables. Stochastic programming (SP)
is a framework in which some parameters of the optimization problem are
uncertain [35]. For example, consider the two-stage linear SP problem
[37], where x 2 Rn are first-stage decision variables, c 2 Rn, A 2 Rn⇥n,
b 2 Rn, and W 2 Rn⇥m are known parameters, y 2 Rm are second-stage
decision variables, and ⇠ is the collection of random variables q(!) 2 Rm,
T (!) 2 Rn⇥n, and h(!) 2 Rn dependent on a random event !:

minimize
x,y

c
>
x+ E⇠[q(!)

>
y] (2.19)

subject to

Ax = b (2.20)

T (!)x+Wy = h(!). (2.21)

Here, the first-stage decisions x are made before the realization of the
random variables ⇠. In the second stage, the random variable ⇠ becomes
known and the second-stage decisions y are taken [37].
SP assumes that the probability distribution of random variables ⇠ is

known. However, for many probability distributions, the above problem can
be difficult to solve in a closed form. Therefore, it is often assumed that the
probability distribution can be approximated by taking a finite number (S)
of realizations ⇠1, . . . , ⇠S of the random variable ⇠ called scenarios with their
associated probabilities p1, . . . , pS . This gives the deterministic equivalent
[37]:

minimize
x,ys

c
>
x+

SX

s=1

psq
>
s ys (2.22)

subject to

Ax = b (2.23)
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Tsx+Wys = hs 8s = 1, . . . , S. (2.24)

The deterministic equivalent is an LP that can be solved. However, the
number of constraints (2.24) and variables ys grows linearly with the
number of scenarios S, which can cause solution times to soar when S is
large.
Another framework for modeling uncertainty is robust optimization

(RO), where instead of using a random variable ⇠, it is assumed that
the uncertain parameters can take any value in an uncertainty set U
[38]. Consequently, the decision variables of the problem are optimized
considering the worst-case realization of the uncertain parameters. This
can be an appropriate approach in application areas such as power system
reliability [39]. More specifically, following [38], given uncertain matrix
A 2 Rn⇥n 2 U with its row vectors a

>
i 2 Rn 2 Ui 8i = 1, . . . , n and known

vector c 2 Rn and scalars bi 8i = 1, . . . , n, a robust linear optimization
problem is given by

minimize
x

c
>
x (2.25)

subject to

a
>
i x  bi 8i = 1, . . . , n. (2.26)

The robust LP can be solved for certain uncertainty sets U . For example,
if the uncertainty set is polyhedral, i.e., Ui = {Diai  di} 8i = 1, . . . , n

for known Di 2 Rmi⇥n and di 2 Rmi , then following [38] we obtain the
following problem:

minimize
x

c
>
x (2.27)

subject to

max{Diaidi}a
>
i x  bi 8i = 1, . . . , n. (2.28)

The subproblem in Eq. (2.28) can be solved using duality [38]. Given
the Lagrange multipliers µi � 0, the Lagrangian of the subproblem is
L(ai, µi) = �a

>
i x + µ

>
i (Diai � di) = �µ

>
i di + (µ>

i Di � x
>)ai. The dual

problem is

minimize
µi

µ
>
i di (2.29)

subject to

D
>
i µi = x 8i = 1, . . . , n (2.30)

µi � 0 8i = 1, . . . , n. (2.31)

Consequently, for this choice of the uncertainty set, the robust LP can be
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written as an LP [38]:

minimize
x,µi

c
>
x (2.32)

subject to

µ
>
i di  bi 8i = 1, . . . , n (2.33)

D
>
i µi = x 8i = 1, . . . , n (2.34)

µi � 0 8i = 1, . . . , n. (2.35)

If the RO problem has two stages as SP, then it is called adaptive robust
optimization (ARO) [40]. We follow [40] by defining first- and second-stage
decision variables x 2 Rn and y 2 Rm, respectively, and known parameters
c 2 Rn, b 2 Rm, F,A 2 Rn⇥n, B 2 Rn⇥m, H 2 Rm⇥m, and f, g 2 Rn as well
as an uncertain variable a 2 U , and uncertain parameter h(a) 2 Rm, to
obtain an ARO problem:

minimize
x,y

✓
c
>
x+maximize

a2U
b
>
y(a)

◆
(2.36)

subject to

Fx  f (2.37)

Ax+By(a)  g (2.38)

Hy(a)  h(a). (2.39)

Here, similar to the two-stage SP, the first-stage decisions x are made
before the realization of the second-stage uncertain variables a is known.
In the second stage, the second-stage decisions y are made in a response to
the worst-case realization of a (as denoted by y(a)). Following [40], we set
⌦(x, a) = {y : Hy  h(a);Ax+By  g} so the problem can be reformulated
as

minimize
x

✓
c
>
x+maximize

a2U
minimize
y2⌦(x,a)

b
>
y

◆
(2.40)

subject to

Fx  f. (2.41)

The problem in Eqs. (2.40)-(2.41) is tri-level in the sense that (i) first,
the outer minimization selects x, then (ii) the inner maximization selects
worst-case a, and finally (iii) the innermost minimization selects y in
response to x and a. A typical procedure to solve this problem is to write
the dual of the third-level problem in Eq. (2.40) and then employ a two-
level algorithm that alternates between solving the outer minimization
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and inner maximization problem [40].
If one of the known parameters in the ARO problem in Eqs. (2.36)-(2.39)

is uncertain so that it depends on a random event !, e.g. A(!), then we
have a framework combining both SP and RO in two or more stages that
is called stochastic adaptive robust optimization (SARO) [23]. In this
framework, we can choose to use SP for certain parameters and RO for
some other parameters, depending on what is the most appropriate way to
model those parameters [23].

2.3 Clustering methods

It is desirable to use data from power markets to build representative case
studies to address research questions. At times, it is not viable to use raw
market data as an input to models if the high dimensionality or frequency
of the data leads to excessive computational times, for example. This can
be the case in SP, for example, if the number of scenarios S is too large. In
such cases, methods such as k-means clustering can be effective at reducing
the number of scenarios while modeling the probability distribution of the
uncertain parameters sufficiently accurately [41]. The k-means clustering
algorithm is given by Algorithm 1 [42].

Algorithm 1: k-means clustering. n vectors are reduced to k clusters.
Input: Input data xi 2 Rm 8i = 1, . . . , n, the desired number of

clusters k
Output: k clusters µ1 . . . µk 2 Rm

1 Randomly select a subset of k vectors µ1, . . . , µk from xi ;
2 while µk have not converged do
3 ci = argmin

j
kxi � µjk2, 8i = 1, . . . , n ;

4 µj =

nP
i=1

1ci=jxi

nP
i=1

1ci=j

, 8j = 1, . . . , k

Another approach to clustering is hierarchical clustering, which does
not require setting the number of clusters k in advance. Agglomerative
hierarchical clustering assigns each data point in a separate cluster and
iteratively combines clusters using a distance metric. By contrast, divisive
hierarchical clustering assigns all data points in the same cluster and
iteratively splits the data points into smaller clusters. In power markets,
hierarchical clustering can useful to find e.g. find representative days of a
long time series [43].
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3. Contributions of the papers

3.1 Paper I

Paper I studies the impact of VRES such as wind and solar power on
power prices and their volatility to address our research question RQ1. We
build a SARMAX(p, q)(P,Q)[s] model and estimate its coefficients using
power market data from Denmark and Germany. We compare multiple
configurations of the parameters p, q, P,Q,and s as guided by ACF and
PACF plots and select the configuration with the best fit as measured by
the AIC score.
The paper presents novel results on the price impact of VRES and corrob-

orates the findings of earlier papers [19, 44, 45]. In particular, we find that,
in Denmark, wind power decreases daily price volatility by flattening the
hourly price profile (RQ1). This is because wind power generation in Den-
mark is, on average, higher during peak hours, which reduces the need for
expensive peak generators. However, in Germany, wind power increases
daily price volatility. This is caused by an increasing difference in the peak
and off-peak prices as the German power system has limited flexibility
during off-peak hours when the wind power generation in Germany is, on
average, higher. By contrast, Denmark has access to flexible hydro power
generation through its transmission lines to Norway and Sweden.
Also, we find that solar power decreases daily price volatility in Germany.

This is because the generation of solar power is highest during peak hours,
which helps reduce the need for expensive peak generators. Moreover,
we find that VRES increases the volatility of weekly prices due to the
intermittency of solar and wind power over multiple days.
The paper helps policymakers, producers, and consumers to understand

how VRES affects short-term power prices and their volatility. Also, its es-
timates can be used to forecast power prices changes as VRES penetration
increases over time.
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3.2 Paper II

Paper II studies how intraday balancing volumes and costs are affected
by support payments to generators with high marginal costs but flexible
capacity in a renewable-rich power system. In particular, we seek to
study if such payments can improve power system adequacy in scenarios
with high VRES variability (RQ2). Earlier studies have estimated that
transmission congestion costs and power system flexibility requirements
increase with higher VRES penetration [46, 47]. To this end, we develop a
bi-level programming model to minimize the total cost of support payments
and generation in the day-ahead and intraday balancing markets. The
upper level of the model represents the selection of the support payments
and clearing of the day-ahead market while the lower level clears the
balancing market.
We reformulate the day-ahead market-clearing problem using a novel set

of constraints in order to avoid complicating nonlinear terms that would
otherwise arise if the day-ahead and balancing markets would both be
represented as lower-level problems with dependencies between each other.
This reformulation makes it possible to solve large-scale problem instances
with many time steps and scenarios.
We use a detailed representation of the German power system as a

case study and find that support payments to flexible generators can
reduce the total cost of the system. We run out-of-sample simulations
with high demand and VRES variability and show that support payments
can improve power system adequacy (RQ2). Our results corroborate the
empirical results of [48] that suggest that capacity payments to flexible
producers can help them bid lower in the day-ahead market and hence
remain available for dispatch. Therefore, the insights from the paper can
be used to design policies such as capacity mechanism to integrate growing
VRES while ensuring resource adequacy. However, policymakers need to
adjust support payments carefully because excessive support payments
can lead to higher costs for consumers.
Finally, with our reformulation approach, the modeler can choose an

objective function other than social welfare maximization while ensuring
the correct merit curve in day-ahead market clearing. Consequently, the
reformulation can be used to determine the optimal level of other variables
such as emission prices in order to induce target emission-reduction levels
that consider both day-ahead and intraday markets.

3.3 Paper III

Paper III develops a novel bi-level model to study strategies that flexible
producer has in submitting offers in day-ahead and intraday markets. The
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upper level of the model represents the profit-maximization problem of the
flexible producer, and the lower-level problems represent the day-ahead
and intraday market-clearing problems. The model and a stylized 3-node
network are analyzed to explore a range of offering strategies that allow
a flexible producer to increase its profits. For example, the producer can
offer a lower volume in the day-ahead market if it anticipates a deficit in
the intraday market. Such a deficit can be caused by lower-than-expected
VRES output, limited ramping capabilities of other producers or a conges-
tion in the transmission network, for example. Likewise, the producer can
offer excessive volumes in the day-ahead market if it anticipates a surplus
in the intraday market. A surplus can occur if the generation of wind or
solar power is higher than expected, for example. We use a Nordic power
system in a case study to show that such offering strategies can affect
market prices in real power exchanges (RQ1). Also, the offering strategies
can lead to higher total costs compared to perfect competition. Our results
corroborate those of [49].
We expand an existing linearization technique [36] to support negative

variable values to render the model computationally feasible. Also, we
show that an alternative market dispatch mechanism that considers VRES
variability [17] can reduce the costs of strategic offering.
The findings give policymakers insights into strategic offering in power

markets and how the variability of VRES may enable such strategies.
This can help policymakers to develop measures to mitigate the negative
impacts of strategic offering on market prices.

3.4 Paper IV

Paper IV proposes a SARO model for long-term (multi-year) power system
expansion with emission targets under short-term (hourly) operational
uncertainty. The SARO model is a tri-level model where the first level
invests in long-term generation and transmission capacity expansion while
considering the second and third levels, where the second level chooses
worst-case long-term demand levels and the third level represents the
short-term market clearing with stochastic demand, generation and trans-
mission capacity as well as a constraint on maximum emission levels. In
other words, the model seeks to find the least-cost generation and trans-
mission expansion plan while reaching emission targets and keeping the
power system operational in the presence of uncertain VRES and worst-
case demand (RQ2). This paper expands on earlier work such as [23] by
adding multiple time-scales and explicitly considering VRES investments
to meet emission goals.
To make the model computationally feasible, we apply a column-and-

constraint algorithm that alternates between solving a master problem
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and subproblem. Compared to earlier work [23, 50], we accelerate the
master problem by applying Benders decomposition and identifying the
subproblem as a mixed-integer quadratic problem (MIQP), which can be
solved faster than earlier approaches that linearize the subproblem and
solve it as an MILP.
We apply the model to a realistic case study for the Nordic and Baltic

region with a multi-year and multi-hour time windows and an objective
to reduce emissions. The optimal plan is found to include a significant
investment in wind power and transmission capacity. The model can be
used by policymakers to create long-term plans to meet emission goals.
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4. Discussion

Predicting short-term power prices is important for consumers and produc-
ers for optimizing their respective objectives. Paper I studies the impact of
VRES on short-term power prices. Several researchers, e.g. [51, 52], have
recently expanded on the analysis of Paper I in the same geographical
region while others have used similar methodologies to study the impact of
VRES in other geographies [53, 54]. Future research could use enhanced
methods such as separate training and validation datasets for model selec-
tion and higher capacity models such as GARCH and DNNs to arrive at
more accurate estimates of the impact of VRES [55].
With increasing wind and solar power penetration, the accuracy of

weather forecasts is becoming increasingly important. More accurate
wind and solar power forecasts can improve price forecasts and subsequent
planning decisions. For example, [56] improve wind power prediction accu-
racy for specific locations by post-processing predictions generated from
standard weather models. Also, [57] propose the organization of multiple
intraday auctions to give market participants access to more accurate
VRES output predictions.
The variability of VRES can lead to higher balancing costs and flexibility

requirements in the power system. The empirical results of [48] suggest
that capacity payments can help flexible producers to submit lower bids
in the day-ahead market and, thus, remain available for dispatch. This is
aligned with the results of Paper II, which finds that support payments to
flexible producers can reduce balancing costs and improve power system
adequacy. However, [58] find that market players can engage in strategies
such as virtual bidding and self-scheduling to reduce the balancing costs
caused by VRES, which in turn reduces the need for alternative market
designs. Indeed, new mechanisms such as capacity payments need to
be evaluated carefully as they can be gamed or have adverse impacts on
existing or future desirable investments.
Higher variability of short-term power prices can create new opportu-

nities for flexible producers and consumers. In our Paper III, we find
that a strategic flexible producer can benefit from VRES variability by
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coordinating its offering to day-ahead and balancing markets. However,
such behavior can increase costs for consumers. While price-taking storage
systems [59] and demand-side response [15] become particularly viable
due to arbitrage of short-term power price variability, they also have a
flattening impact on power prices.
In some geographies, it may be possible to balance VRES variability by

carefully planning the expansion of generation and transmission capacity.
For example, [60] reduce the variation in total VRES output by building
wind and solar power in locations that consider the spatio-temporal cor-
relation in their output. Likewise, in some locations, it can be possible to
build transmission lines to connect high demand and wind power output
locations [61]. Our Paper IV implicitly considers such effects in long-term
planning by using representative days to capture load and VRES output.
The optimization models in Papers II-IV are parameterized such that

they can be readily expanded. One avenue is to apply these models to
further regions to study whether similar insights can be gained outside
the Nordic countries and Western Europe. Another avenue is to add
decision variables and constraints to build more realistic models with
storage and demand-side response, additional sources of uncertainty such
as transmission and generation outages, and more detailed representations
of the transmission network and generation assets including their ramping
and start-up times and costs.
A more fundamental change to our models would be to model multiple

market participants in more detail. Specifically, the bi-level optimiza-
tion framework in Papers II and III considers two agents, a leader and a
follower. The tri-level model in Paper IV introduces the selection of the
worst-case demand as a third agent. A more generic approach is the so-
called Equilibrium Problems with Equilibrium Constraints (EPEC) model
that represents multiple agents [21]. Such models more accurately repre-
sent power markets in which there are multiple independent producers
and consumers who seek to maximize their respective objective functions,
thereby leading to more accurate insights. In particular, in Paper IV, we
consider a central planner creating an optimal plan for generation and
transmission expansion, which may differ from the expansion plans made
by multiple independent market participants. However, EPEC problems
are computationally challenging to solve and solution algorithms may fail
to find a Nash equilibrium among all the agents [21].
The models used in Papers I-IV are limited in the number of operational

details and the size of the problem instances partly because of limited com-
putational capacity. While we developed more efficient solution methods to
make the problem instances tractable, it is expected that increasing com-
putational capacity will make it possible to solve larger model instances.
Also, advances in solution techniques such as approximation methods [25]
will be useful to researchers and practitioners in this regard.
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The results of Papers I-IV are generally well-founded as we have used
out-of-sample simulations to show that our insights hold outside specific
scenarios. Therefore, these papers provide a good starting point for many of
the aforementioned modeling improvements and future research directions
that can be expected to provide even more informative results to support
the integration of VRES to power systems.
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A B S T R A C T

Although variable renewable energy (VRE) technologies with zero marginal costs decrease electricity prices,
the literature is inconclusive about how the resulting shift in the supply curves impacts price volatility.
Because the flexibility to respond to high peak and low off-peak prices is crucial for demand-response appli-
cations and may compensate for the losses of conventional generators caused by lower average prices, there
is a need to understand how the penetration of VRE affects volatility. In this paper, we build distributed lag
models with Danish and German data to estimate the impact of VRE generation on electricity price volatility.
We find that in Denmark wind power decreases the daily volatility of prices by flattening the hourly price
profile, but in Germany it increases the volatility because it has a stronger impact on off-peak prices. Our
analysis suggests that access to flexible generation capacity and wind power generation patterns contribute
to these differing impacts. Meanwhile, solar power decreases price volatility in Germany. By contrast, the
weekly volatility of prices increases in both areas due to the intermittency of VRE. Thus, policy measures for
facilitating the integration of VRE should be tailored to such region-specific patterns.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The adoption of variable renewable energy (VRE) technologies
is having profound consequences for the electric power indus-
try. For example, buttressed by subsidies and priority grid access,
solar and wind power generation in Germany comprised 25% of
national electricity output in 2013 and facilitated a 30% reduction
in CO2 emissions relative to 1990 levels (von Hirschhausen, 2014).
Likewise, neighbouring Denmark has adopted VRE-friendly policies
enabling it to meet nearly 40% of its electricity needs through wind
(Energinet.dk, 2015). However, similar shares of VRE generation
in different electricity markets have resulted in contrasting effects
on daily price volatility, which will affect the profitability of con-
ventional power plants. Indeed, via a supply-function equilibrium
model, Green and Vasilakos (2010) demonstrate that the incorpora-
tion of intermittent renewable resources can increase price volatility

* Corresponding author.
E-mail addresses: tuomas.rintamaki@aalto.fi (T. Rintamäki),

afzal.siddiqui@ucl.ac.uk (A.S. Siddiqui), ahti.salo@aalto.fi (A. Salo).

in the British electricity industry. Such a change in market will likely
lead to an optimal generation mix using more gas-fired plants in
the long run (Green and Vasilakos, 2011). Hence, understanding how
VRE generation affects price volatility and uncovering the drivers of
these effects is important for both power companies and regulators
dealing with a transition to a more sustainable energy system.

While fundamental models are often used to examine policy
implications, e.g., in terms of transmission expansion to accommo-
date increased VRE capacity (Egerer et al., 2013), such models need to
be sufficiently detailed to capture the subtle changes that we seek to
detect here. In particular, building and calibrating large-scale funda-
mental models with interconnected regions is often confounded by
the complexities of deregulated electricity industries and the associ-
ated data requirements at the plant level, for example. By contrast,
since the electricity industry is one of the few infrastructure indus-
tries with liquid markets and publicly available data on prices as well
as cross-border transmission flows, we exploit this feature in taking
an empirical approach to understand the effects of VRE generation
on price volatility in Danish and German electricity markets.

Our methodology is largely based on Mauritzen (2010) who
represents the volatility of prices via a seasonal autoregressive

http://dx.doi.org/10.1016/j.eneco.2016.12.019
0140-9883/© 2017 Elsevier B.V. All rights reserved.
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(a) DK1. (b) DK2. (c) DE.

Fig. 1. Average hourly electricity prices for DK1, DK2, and DE from 2010 to 2014.

moving average (SARMA) model in which wind power produc-
tion is an exogenous variable. This methodology yields results that
are straightforward to interpret and makes it possible to develop
forecasts for electricity price volatility based on the data from pre-
vious days and information on regular consumption patterns. His
conclusion is that Danish wind power decreases the daily volatility
of the area prices in Denmark. On the contrary, Ketterer (2014) uses
a generalised autoregressive conditional heteroscedasticity (GARCH)
model and finds that German wind power increases the daily volatil-
ity of German electricity prices. Explaining these results using data
from the two markets and distilling their implications for electricity
markets in general is the objective of this paper.

We proceed by first confirming the differing impacts of wind
power on price volatility in these two markets and then explain-
ing them by dividing the dataset into peak and off-peak hours with
separate regressions for each subset of hours. This allows us to anal-
yse changes in volatility by relating them to supply-curve elasticities
and to the patterns of wind and solar power production as well as
cross-border exchanges. Partitioning the dataset reveals that wind
power output decreases daily price volatility in Denmark because
wind speeds are roughly evenly distributed throughout the day.
Relative to its average electricity demand, Denmark has high trans-
mission capacity to the Nordic countries with large hydropower
reservoirs, which may also explain Denmark’s reduction in daily
price volatility as both peak and off-peak hour prices are estimated to
decrease nearly equally due to wind power generation. In Germany,
however, there is an increase in price volatility because of greater
wind power output during off-peak hours. Moreover, Germany’s
cross-border transmission lines are smaller relative to its average
electricity demand, and it has limited access to flexible hydro genera-
tion. As a consequence, prices diverge as the price-decreasing impact
of wind power is amplified during off-peak hours. Over a weekly time
horizon, the level and the standard deviation of total VRE generation

are found to increase the weekly volatility of electricity prices in both
countries.

For producers and consumers alike, our empirical analysis not
only corroborates earlier findings but also explains them by propos-
ing plausible drivers. The implication of our results is that the
allocation of generation and demand is becoming more important as
average power prices decrease, but the achievable profit on different
days varies significantly. To prevent intermittent renewable genera-
tion from threatening the stability of the power system, investments
in flexible generation, extensions to the transmission network, inte-
gration of adjacent markets, and demand response will be required in
the future. Moreover, additional trading opportunities by both pro-
ducers and large consumers in intraday and balancing markets may
be desirable (Mauritzen, 2015).

This paper is organised as follows. In Section 2, we review the
literature on the impacts of VRE on Danish and German electricity
markets, in particular. In Section 3, we present our model and analyse
the time-series data. Section 4 presents the results for the effects of
VRE generation on daily and weekly volatility. Finally, in Section 5,
we provide conclusions and discuss directions for future research.
Details on model selection and robustness checks are provided in the
Appendix.

2. Literature review

The adoption of wind and solar generation technologies world-
wide has necessitated a need to assess both the availability of
resources (Yip et al., 2016) and their impact on electricity markets
(González-Aparicio and Zucker, 2015). Many studies have inves-
tigated the effect of wind power production on price levels and

(a) DK1. (b) DK2. (c) DE.

Fig. 2. The natural logarithm of daily price volatility of DK1, DK2, and DE prices from 2010 to 2014.
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(a) DK1. (b) DK2. (c) DE.

Fig. 3. Average hourly wind power in DK1, DK2, and DE in selected months in 2014.

reached the common conclusion that wind power decreases prices.
For example, Jónsson et al. (2010) employ the same hourly Danish
wind power forecast data that are used by market players to place
their bids. They build a non-parametric regression model to study
price levels as well as the distribution of the prices at different wind
power levels. Their conclusion is that higher wind power penetra-
tion in the day-ahead market decreases Danish prices and volatility
substantially.

In Germany, price volatility has been studied by incorporating
various market-related measures as exogenous variables (Kalantzis
and Milonas, 2013; Frömmel et al., 2014). Only recently have there
been studies on the direct effects of growing capacity of wind and
solar power on electricity prices. Ketterer (2014) finds that higher
wind power production leads to higher daily volatility. Moreover, she
notes that regardless of the regulatory change in 2010, which forced
the German transmission system operators to publish day-ahead
forecasts for VRE generation in their area, the volatility-increasing
effect has prevailed. Because the price-decreasing impact of solar
power is stable during peak hours (Paraschiv et al., 2014), it is likely
that solar power decreases price volatility.

Besides patterns of solar and wind power production, transmis-
sion flows also affect the volatility of electricity prices as suggested
by the complementarity model by Morales et al. (2011), who use
wind power scenarios as inputs. By adopting the same time-series
framework as in Mauritzen (2010) and Mauritzen (2013) investigates
how wind power affects the cross-border transmission of electricity

Fig. 4. Average hourly solar power in DE in selected months in 2014.

between Denmark and Norway. His conclusion is that when more
(less) wind power is produced in Denmark, exports to (imports from)
Norway are higher while Norwegian hydropower plants produce less
(more). Zugno et al. (2013) find a similar pattern between Germany
and hydro-dominant Austria and Switzerland, but these transmis-
sion lines are closer to congestion. Moreover, the flow to the Nordic
countries from Germany is low, and the flow to its neighbouring
countries with inflexible generation such as France does not respond
much to changes in wind power.

Building on assumptions about extended cross-border transmis-
sion and VRE capacity in 2030, Jaehnert et al. (2013) find that
price spikes and dips become more frequent in the European power
market. Due to the large price difference between the Nordic and
German markets, also additional investments in transmission capac-
ity become optimal. In similar scenarios, Farahmand et al. (2012)
find that the integration of Nordic and German balancing markets
via simultaneous dispatching can reduce balancing costs consider-
ably because VRE generation forecast errors with opposite signs can
be netted.

In addition to explaining the results of Ketterer (2014) and Mau-
ritzen (2010), our approach of dividing the data into off-peak and
peak hours contributes to the literature on estimating the impact
of renewable generation on electricity price levels (see Würzburg
et al., 2013; Mulder and Scholtens, 2013; Paraschiv et al., 2014;
Gelabert et al., 2011, for example) by providing insights on how the
price-decreasing impact is distributed during the day. To this end,
Barthelmie et al. (1996) and Holttinen (2005) suggest that Danish
wind power peaks in the afternoon and the effect is more pro-
nounced in summers. On the other hand, He et al. (2012) and Huber
et al. (2014) show that German wind power tends to peak at night
and also in summer afternoons.

3. Methodology and data

3.1. Model

To estimate the effect of exogenous variables such as wind and
solar power on a dependent variable of interest such as electric-
ity price volatility, we use the seasonally adjusted autoregressive
moving average (SARMA(p,q)(P,Q)[s]) model (Shumway and Stoffer,
2011):

vt = a0 +
p∑

i=1

aivt−i +
q∑

i=1

bi4t−i +
P∑

i=1

ai • svt−i • s +
Q∑

i=1

bi • s4t−i • s + 4t +c"xt , (1)

where vt is the dependent variable during time period t and xt a vec-
tor of exogenous variables. There are p autoregressive (AR) terms
vt−i, q moving average (MA) terms 4t−i, P seasonal autoregressive
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Table 1
Exogenous variables in our models. We take the natural logarithm of all variables except eximop1

d , eximop2
d , eximp

d , and eximw .

Variable Explanation

vd Standard deviation of hourly prices on day d (€/MWh)
pop1

d Average off-peak 1 prices on day d (€/MWh)
pop2

d Average off-peak 2 prices on day d (€/MWh)
pp

d Average peak prices on day d (€/MWh)
windd Average wind power on day d (MW)
windop1

d Average off-peak 1 wind power on day d (MW)
windop2

d Average off-peak 2 wind power on day d (MW)
windp

d Average peak wind power on day d (MW)
wind_pend Average wind power penetration on day d
wind penop1

d Average off-peak 1 wind power penetration on day d
wind penop2

d Average off-peak 2 wind power penetration on day d
wind penp

d Average peak wind power penetration on day d
solard Average solar power on day d (MW)
solarp

d Average peak solar power on day d (MW)
solar_pend Average solar power penetration on day d
solar penp

d Average peak solar power penetration on day d
vred Average wind and solar power on day d (MW)
vrep

d Average peak wind and solar power on day d (MW)
vre_pend Average wind and solar power penetration on day d
vre penp

d Average peak wind and solar power penetration on day d
eximop1

d Average off-peak 1 export/import on day d (GW)
eximop2

d Average off-peak 2 export/import on day d (GW)
eximp

d Average peak export/import on day d (GW)
gasd Average spot gas price on day d (€/MWh)
vw Standard deviation of daily average prices during week w (€/MWh)
windw Average wind power during week w (MW)
windstd

w Standard deviation of average daily wind power outputs during week w (MW)
wind_penw Average wind power penetration during week w
solarw Average solar power during week w (MW)
solar_penw Average solar power penetration during week w
vrew Average wind and solar power during week w (MW)
vrestd

w Standard deviation of average daily wind and solar power outputs during week w (MW)
vre_penw Average wind and solar power penetration during week w
eximw Average export/import during week w (GW)
gasw Average gas price during week w (€/MWh)

(SAR) terms vt−i • s with periodicity of s, and Q seasonal moving aver-
age (SMA) terms 4t−i • s with periodicity of s with the coefficients ai,
bi, ai • s, and bi • s, respectively. In other words, the terms vt−i are
lagged values of vt and 4t−i Gaussian white noise error terms. The
impact of the exogenous variables on price volatility is estimated by
the parameter vector c using R (R Core Team, 2015).

3.2. Summary statistics

Our data for the two Danish areas (Western Denmark, DK1 and
Eastern Denmark, DK2) consist of hourly area prices (in €/MWh),
forecasted hourly wind power production (in MW), forecasted
hourly demand (in MW), and hourly cross-border flows between

(a) ACF  of  DK1 price volatility. (b) PACF of DK1 price  volatility. (c) ACF of DK2 price volatility.

(d) PACF of DK2 price  volatility. (e) ACF of DE price volatility. (f) PACF of DE price volatility.

Fig. 5. ACF and PACF plots of DK1, DK2, and DE daily price volatility.
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Table 2
The effect of different explanatory variables on DK1 daily price volatility. All coefficients are statistically significant at the 1% level unless otherwise noted.

Model

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

windd −0.0892 −0.0731 −0.0906 −0.0889
(0.0158) (0.0193) (0.0194) (0.0158)

wind_pend −0.0867 −0.0879
(0.0160) (0.0198)

eximop1
d 0.0641b 0.1004 0.1017

(0.0328) (0.0331) (0.0334)
eximp

d 0.0783a −0.0806 −0.0850
(0.0374) (0.0308) (0.0307)

eximop2
d −0.2241

(0.0305)
Dgasd 0.3324c

(0.4080)
a0 2.3918 1.7080 2.2531 2.3566 1.6605 2.3649
a1 1.2236 1.2210 1.2546 1.2450 1.2437 1.2210
a2 −0.2526 −0.2504 −0.2787 −0.2728 −0.2718 −0.2510
a7 1.0711 1.0706 1.0811 1.0751 1.0747 1.0699
a14 −0.0726 −0.0721 −0.08232 −0.0769 −0.0766 −0.0731
b1 −0.8635 −0.8632 −0.8698 −0.8669 −0.8666 −0.8625
b7 −0.9804 −0.9804 −0.9825 −0.9792 −0.9791 −0.9803
AIC 2878.82 2881.50 2820.47 2871.62 2873.72 2879.57
L-B 30 30 28 30 30 30

a Significant at 5% level.
b Significant at 10% level.
c Not significant.

zones DK1-NO2, DK1-SE3, and DK2-SE4 (in MW) in the day-ahead
spot market (data source: Nord Pool Spot, 2016). We ignore Dan-
ish solar power because of its negligible capacity (Energinet.dk,
2014). For Germany (DE), we use hourly German prices (in €/MWh,
Epex Spot, 2016), forecasted hourly wind and solar power produc-
tion (in MW, EEX Transparency, 2016), forecasted hourly demand
(in MW, ENTSO-E Transparency, 2016b), and hourly cross-border
flows between Germany and France (in MW, ENTSO-E Transparency,
2016a). We account for fuel prices by including the daily natural gas
spot price (in €/MWh, at the NetConnect Germany hub, Bloomberg,
2016). The dataset spans 1 January 2010 to 31 December 2014 and
1 January 2012 to 31 December 2014 for Denmark and Germany,

respectively. The dataset for Germany is restricted by public data on
cross-border flows.

Because prices are calculated by the exchanges, there are no
measurement uncertainties or gaps. We employ VRE and demand
forecasts for modelling instead of realised values because only fore-
casts are available for market participants when determining their
bids to the day-ahead market. Thus, prices and volatility are affected
by bidding decisions, which might have been different under perfect
knowledge of forecast errors. For Germany, there are a few missing
days in the ENTSO-E demand forecast time series; for these, we use
realised values. Following the convention of the exchanges, we also
divide the dataset into three blocks called off-peak 1 hours (from 12

Table 3
The effect of different explanatory variables on DK2 daily price volatility. All coefficients are statistically significant at the 1% level unless otherwise noted.

Model

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

windd −0.0696 −0.0517 −0.0604 −0.0686
(0.0147) (0.0164) (0.0165) (0.0146)

wind_pend −0.0654 −0.0544
(0.0149) (0.0167)

eximop1
d −0.0171a −0.0070a −0.0119a

(0.0418) (0.0430) (0.0433)
eximp

d 0.1462 −0.0474a −0.0516a

(0.0481) (0.0416) (0.0416)
eximop2

d −0.3060
(0.0395)

Dgasd −0.3214a

(0.4306)
a0 2.2065 1.7110 2.0966 2.1547 1.7289 2.2035
a1 1.2329 1.2302 1.2677 1.2313 1.2289 1.2305
a2 −0.2685 −0.2660 −0.2960 −0.2679 −0.2658 −0.2673
a7 1.1054 1.1066 1.1078 1.1045 1.1060 1.1046
a14 −0.1058 −0.1069 −0.1081 −0.1050 −0.1063 −0.1050
b1 −0.8378 −0.8371 −0.8504 −0.8332 −0.8329 −0.8368
b7 −0.9886 −0.9904 −0.9912 −0.9875 −0.9894 −0.9875
AIC 3159.90 3163.27 3106.16 3162.16 3164.78 3134.09
L-B 30 30 30 30 30 9

a Not significant.
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Table 4
The effect of different explanatory variables on DE price volatility. All coefficients are statistically significant at the 1% level unless otherwise noted.

Model

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

windd 0.0328a 0.0296a 0.0367a 0.0320a

(0.0146) (0.0147) (0.0147) (0.0148)
Dsolard −0.0379a −0.0350b −0.0205c −0.0339b

(0.0191) (0.0191) (0.0191) (0.0191)
vred 0.0187c

(0.0227)
wind_pend 0.0350a

(0.0147)
Dsolar_pend −0.0466a

(0.0187)
vre_pend 0.0203c

(0.0220)
eximop1

d 0.0853
(0.0117)

eximp
d −0.0781

(0.0137)
eximop2

d 0.0211c

(0.0134)
Dgasd −0.3840c

(0.3308)
a0 1.9167 2.2698 2.0009 2.0691 2.3221 2.2432 2.2764 1.9351 1.9710
a1 1.1513 1.1657 1.1613 1.1459 1.1525 1.1675 1.1532 1.1508 1.1615
a2 −0.1622 −0.1752 −0.1711 −0.1576 −0.1633 −0.1773 −0.1637 −0.1623 −0.1716
a7 1.1764 1.1724 1.1749 1.1717 1.1770 1.1722 1.1737 1.1686 1.1788
a14 −0.1766 −0.1725 −0.1752 −0.1719 −0.1772 −0.1724 −0.1739 −0.1688 −0.1789
b1 −0.9165 −0.9168 −0.9190 −0.9108 −0.9167 −0.9163 −0.9140 −0.9276 −0.9189
b7 −0.9896c −0.9911 −0.9870 −0.9885 −0.9890 −0.9910 −0.9898 −0.9888 −0.9914
AIC 487.73 488.60 486.92 492.33 487.13 486.39 491.88 434.13 486.92
L-B 30 30 30 30 30 30 30 30 30

a Significant at 5% level.
b Significant at 10% level.
c Not significant.

AM to 9 AM), peak hours (9 AM to 9 PM), and off-peak 2 hours (9 PM
to 12 AM).

Our measure of price volatility for day d in Eq. (1) is the logarithm
of the standard deviation calculated from hourly prices ph and the

average daily price pd = 1
24

24∑

h=1
ph, i.e.,

vd = ln





√√√√ 1
24

24∑

h=1

(ph − pd)2



 . (2)

As an example of longer time windows, we consider weekly
price volatility, which is computed from daily average prices pd and

weekly average prices pw = 1
7

7∑

d=1
pd.

vw = ln





√√√√ 1
7

7∑

d=1

(pd − pw)2



 (3)

We take the natural logarithm to make the time series stationary
and to improve the model fit. Also, all exogenous variables xt in Eq.
(1) except for cross-border flows are transformed into natural loga-
rithm form, and, thus, their coefficients c can be interpreted as elas-
ticities. This assumption of constant elasticity between the exoge-
nous variables and price volatility is more reasonable than assuming
that changes in demand, for example, lead to equal changes in price
volatility at different demand levels. Because cross-border flows take
positive and negative values depending on the direction of the flow,
we scale the figures by 1000 MW to obtain values close to those of
the logarithmic variables.

Fig. 1a, b, and c show the average hourly price profile for DK1,
DK2, and DE, respectively, resulting from demand patterns. During
morning and evening high-load hours, the price is usually driven by
thermal plants with higher marginal costs of production. In low-load
times, such as night time, prices are set by thermal plants lower in
the merit order. On the other hand, Fig. 2a, b, and c show how the
daily volatility of DK1, DK2, and DE prices has developed from 2010
to 2014, respectively. There is no clear increasing or decreasing trend
in the price volatility of the areas, but the average volatility of Danish
prices is lower than that of Germany.

Fig. 3a and b confirm that Danish wind power peaks in the after-
noon. In turn, Fig. 3c shows that the production of German wind
power is highest at night. The solar power profile in Germany is sim-
ilar in each month with production only from 6 AM to 8 PM (Fig. 4).
We define the wind and solar power penetration during period t as
the share of average wind or solar power generation (windt, solart) of
the average demand (loadt) during that period t.

wind pent =
windt

loadt
and solar pent =

solart

loadt
(4)

3.3. Stability checks

We confirm the stationarity of the time series by applying the
augmented Dickey–Fuller (ADF) test. Table 11 in the Appendix shows
that all daily time series pass the test at the 10% level until lag 15
except for German solar power, solar power penetration, and gas
price, which are differenced to make them stationary. For weekly
data, since the gas price, Danish exports, German wind and solar
power, and their penetration fail the test already at low lags, we dif-
ference these time series. Table 12 in the Appendix shows that all
time series pass the test after differencing except for weekly average
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(a) DK1. (b) DK2. (c) DE.

Fig. 6. ACF plot of the residuals of the daily price volatility model 1 for DK1, DK2 and DE.

solar power generation and penetration, which reduces the robust-
ness of the results on their impact. In the regressions, we will use the
differenced variables prefixed with D whenever necessary. For the
notation, please refer to Table 1.

Autocorrelation (ACF) and partial autocorrelation functions
(PACFs) of the dependent variable in Eq. (1) can be used to specify
the order (p,q)(P,Q)[s] of the model. The ACF and PACF of daily price
volatility time series from DK1 and DK2 in Fig. 5a, b, c, and d, respec-
tively, and from DE in Fig. 5e and f have high peaks at the first lag
and then near multiples of seven indicating a weekly pattern in price
volatility (Shumway and Stoffer, 2011). All autocorrelation functions
have a downward trend as older data are less relevant.

For both Denmark and Germany, we select the model (1)
by stepwise addition of independent variables starting from a
SARMA(1,0)(1,0)[7] model, as indicated by the ACF and PACF plots. In
the selection process, we omit all exogenous variables xt and require
all coefficients a and b to be statistically significant at the 5% level.
If a variable in a particular model (p,q)(P,Q) becomes statistically
insignificant, then we do not add new variables because they are
likely to be insignificant, too. Also, if the addition of a new variable
does not improve the Akaike Information Criterion (AIC) compared
to the previous model, then we stop. To compare the candidates
obtained in this process, we assess the AIC score, perform the Ljung-
Box (L-B) test for residual autocorrelation, and examine the Q-Q, ACF,
and PACF plots of the residuals of the models. Because of the large
number of observations, we can expect to obtain unbiased estima-
tors and residuals with little serial correlation. The model selection
results are reported in Tables 13–15 of the Appendix, where we have
omitted models that fail improve the AIC score or have insignificant
variables.

We note that the optimal fit would be obtained if model (1) were
to be specified separately for each subset of exogenous variables xt.
However, very different specifications could make it difficult to com-
pare the effect of the exogenous variables. Therefore, we present
results for alternative model specifications in Tables 16–18 of the
Appendix to see the sensitivity of the results obtained using the
above process.

4. Results

4.1. Daily volatility

We run separate regressions for both Danish areas, DK1 and DK2,
and Germany, DE, to estimate the impact of different explanatory
variables on the corresponding area price volatility. For all areas, we

obtain the following SARMA(2,1)(2,1)[7] model (see Table 13 in the
Appendix for model search iterations):

vd = a0+a1vd−1+a2vd−2+a7vd−7+a14vd−14+4d+b14d−1+b74d−7.

(5)

The AR(1) and AR(2) terms account for short-term price volatil-
ity development, and the SAR(1) and SAR(2) terms deal with the
weekly seasonality in the data. Adding MA(1) and SMA(1) terms pro-
vides stochastic parts to the development of the price volatility and
improves the fit of the model. Various exogenous variables with the
associated parameters, i.e., the term c"xt in Eq. (1), are added to
the right-hand side of this model. For example, model 1 for DK1 in
Table 2 is

vd = a0 + a1vd−1 + a2vd−2 + a7vd−7 + a14vd−14 + 4d

+ b14d−1 + b74d−7 + c windd. (6)

In Tables 2 and 3, the main finding is that the coefficient for wind
power, windd, in DK1 at −0.0892 and in DK2 at −0.0696 in model 1
is statistically significantly different from zero at the 1% level accord-
ing to a Z-test. For both areas, the interpretation is that increasing the
amount of daily wind power production by 1% decreases the daily
volatility of prices by 0.06–0.09%.1 The effect is slightly stronger in
DK1 than DK2, most likely due to the combination of higher wind
power capacity and lower demand in DK1. Moreover, model 2 in
Tables 2 and 3 indicates that the higher the wind power penetration,
wind_pend, is, the lower the price volatility.

Mauritzen (2010) runs similar regressions with a
SARMA(2,2)(1,2)[7] model. Our result for DK1 is in line with Mau-
ritzen, but his estimate for the coefficient for DK2 is not statistically
significant. The most probable explanation for the difference is
that his data span 2002 to 2007, whereas our more recent dataset
includes higher wind power capacity in DK2, and, thus, its market
impact is likely to be stronger.

In models 3 and 4, we control for exports to and imports from
hydro-dominant Sweden and Norway in morning off-peak, peak, and
evening off-peak hours (eximop1

d , eximp
d, and eximop2

d , respectively)

1 Consider a model ln y = a+b"z+c ln x. Fixing z, with two different values, x2 and
x1, we have ln y2−ln y1 = c (ln x2 − ln x1) ⇐⇒ ln y2

y1
= c ln x2

x1
⇐⇒ y2−y1

y1
=

(
x2
x1

)c
−1.

Numerically, the approximation y2−y1
y1

≈ c
(

x2−x1
x1

)
deviates from the true value of

y2−y1
y1

by less than 0.004 percentage points when x2−x1
x1

= 0.01 and |c| ≤ 0.5.
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Table 5
The effect of different explanatory variables on DK1 price level in each block. All coefficients are statistically significant at the 1% level.

Block

Variable Off-peak 1 Off-peak 1 Peak Peak Off-peak 2 Off-peak 2

windd −0.1090 −0.0726 −0.0647
(0.0092) (0.0052) (0.0051)

wind_pend −0.1153 −0.0791 −0.0667
(0.0092) (0.0052) (0.0051)

eximd −0.1454 −0.1373 −0.1073 −0.0996 −0.0865 −0.0854
(0.0183) (0.0182) (0.0091) (0.0091) (0.0088) (0.0087)

a0 4.1465 3.3179 4.1694 3.5878 4.0406 3.5412
a1 1.1511 1.1505 1.1730 1.1687 1.0622 1.0626
a2 −0.1922 −0.1904 −0.2240 −0.2195 −0.0933 −0.0922
a7 0.9475 0.9456 0.9535 0.9533 0.9704 0.9683
b1 −0.7910 −0.7951 −0.7615 −0.7632 −0.7222 −0.7254
b7 −0.8791 −0.8835 −0.7990 −0.8082 −0.9359 −0.9391
AIC 792.47 776.51 −1197.78 −1229.52 −1331.94 −1343.87
L-B 30 30 4 4 4 4

and find nearly unchanged coefficients for wind power in both areas.
The same is true for wind power penetration in model 5. Because
the spot market transmission flows are likely to be endogenous
with the price volatility, we cannot draw causal conclusions about
their impact (Mauritzen, 2013). However, model 4 for DK1 suggests
that exports during morning off-peak hours are positively correlated
with daily price volatility, but, during peak hours, the correlation
is negative. This is explained by the fact that greater difference
between the peak and off-peak hours implies high exports (imports)
in the off-peak (peak) hours. By contrast, for DK2, the impact of cross-
border exchange is inconclusive in model 4, which can be attributed
to the fact that DK2 is connected only to the SE4 bidding area with
practically no hydro reservoirs, whereas DK1 is connected to large
reservoirs in bidding areas NO2 and SE3 (Nord Pool Spot, 2014).
These results are in line with Green and Vasilakos (2012), who find
that Denmark exports excess wind power to Norway and Sweden in
off-peak hours, in particular, and that the volume of this exchange is
higher for DK1 than DK2.

With model 6, we test for the impact of the first difference of nat-
ural gas prices, Dgasd, and find no statistically significant effect on
DK1 and DK2 daily price volatility. We note that the daily changes in
natural gas spot prices are small, and, thus, they are unlikely to affect
short-term bidding behaviour significantly. Moreover, some produc-
ers may have longer-term gas contracts instead of relying on spot
gas.

Increasing the daily German wind power, windd, by 1% increases
the daily volatility of German prices by 0.03% as indicated by model
1 in Table 4. The result is in line with Ketterer (2014) whose esti-
mate from a rolling regression ranges from 0% to approximately

0.05%. However, when the first difference in daily solar power pro-
duction, Dsolard, increases by 1%, the daily volatility of German prices
decreases by 0.04% in model 2. This indicates that also a higher abso-
lute level of solar power leads to lower daily price volatility. Model
3 confirms the signs of the coefficients in the presence of both wind
and solar power. Yet, when we combine wind and solar power in
variable vred in model 4, the coefficient becomes statistically insignif-
icant, which is likely to be caused by the opposing effects of wind
and solar power. We arrive at the same conclusions by using the pen-
etration of wind, solar, or the combined generation, i.e., wind_pend,
solar_pend, and vre_pend, respectively, as an exogenous variable in
models 5–7.

Controlling for the cross-border flow between Germany and
France in model 8 keeps the coefficients for windd and Dsolard close
to the earlier estimates. Positive and negative coefficients for the
morning off-peak and peak hour transmission flow (eximop1

d and
eximp

d), respectively, suggest higher price volatility when exports
change to imports during the day. Finally, model 9 shows, in agree-
ment with the result for Denmark, that the first difference of gas
prices, Dgasd, does not have an impact on the daily volatility of
German prices.

For all areas, the AIC scores in Table 13 in the Appendix improve
after adding the exogenous variables to Eq. (5). In Tables 2–4, we
report the lag at which the Ljung-Box test fails at a 1% significance
level. The models for DK2 have some autocorrelation at lag 9, but the
models for DK1 and DE perform well with all lags. However, Fig. 6a–
c show that the ACF plot of the residuals of model 1 for DK1 and DK2
and model 4 for Germany stay within the 95% confidence interval
with very few exceptions. As a cross-check, we estimate alternative

Table 6
The effect of different explanatory variables on DK2 price level in each block. All coefficients are statistically significant at the 1% level.

Block

Variable Off-peak 1 Off-peak 1 Peak Peak Off-peak 2 Off-peak 2

windd −0.0796 −0.0570 −0.0543
(0.0068) (0.0042) (0.0045)

wind_pend −0.0813 −0.0596 −0.0557
(0.0068) (0.0042) (0.0045)

eximd −0.0910 −0.0890 −0.0658 −0.0615 −0.0471 −0.0451
(0.0205) (0.0205) (0.0122) (0.0122) (0.0122) (0.0122)

a0 3.8882 3.3140 4.0757 3.6436 3.9298 3.5348
a1 1.1808 1.1804 1.2429 1.2405 1.0707 1.0698
a2 −0.2303 −0.2301 −0.2909 −0.2889 −0.1073 −0.1070
a7 0.9019 0.8978 0.9608 0.9605 0.9627 0.9641
b1 −0.7384 −0.7401 −0.7500 −0.7506 −0.7208 −0.7217
b7 −0.7794 −0.7766 −0.7912 −0.7949 −0.9186 −0.9220
AIC 623.24 617.20 −1033.78 −1049.23 −842.63 −850.23
L-B 30 30 4 6 5 5
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Table 7
The effect of different explanatory variables on DE price level in each block. All coefficients are statistically significant at the 1% the level unless otherwise noted.

Block

Variable Off-peak 1 Off-peak 1 Peak Peak Peak Peak Peak Peak Off-peak 2 Off-peak 2

windd −0.3073 −0.1530 −0.1874
(0.0156) (0.0090) (0.0079)

wind_pend −0.3243 −0.1667 −0.1915
(0.0151) (0.0087) (0.0078)

Dsolard −0.0528
(0.0142)

Dsolar_pend −0.0807
(0.0138)

vred −0.3602
(0.0158)

vre_pend −0.3984
(0.0145)

eximd 0.0436 0.0440 0.0187 0.0193 0.0096c 0.0107c 0.0284 0.0286 0.0444 0.0422
(0.0107) (0.0101) (0.0072) (0.0070) (0.0082) (0.0081) (0.0066) (0.0061) (0.0059) (0.0058)

a0 5.8789 2.5388 4.9809 3.2649 3.7043 3.7006 7.0370 3.0252 5.1723 3.1432
a1 −0.5556 −0.5669 0.9730 0.9757 0.9555 0.9735 0.8819 0.8652 0.5906 0.6052
a2 0.2948 0.2815 −0.1192a −0.1206a −0.1394b −0.1497a −0.0801c −0.0717c 0.0991c 0.0924c

a7 0.9167 0.9184 0.9338 0.9327 0.9280 0.9283 0.9322 0.9272 0.9614 0.9586
b1 0.9225 0.9229 −0.6736 −0.6763 −0.6016 −0.6135 −0.6452 −0.6335 −0.3428a −0.3561a

b7 −0.7339 −0.7575 −0.5912 −0.6016 −0.6093 −0.6152 −0.5658 −0.5863 −0.8166 −0.8258
AIC 601.62 550.09 −223.51 −282.05 −2.58 −22.43 −379.56 −534.03 −829.03 −856.04
L-B 4 4 30 30 30 30 14 14 30 30

a Significant at 5% level.
b Significant at 10% level.
c Not significant.

models (see Table 16 in the Appendix) and find that the estimated
parameters for wind and solar power are robust with respect to the
specification.

4.2. Analysis of intraday effects

Next, we investigate further why wind power decreases the daily
volatility in Denmark but increases it in Germany. Given the hourly
price profiles in Fig. 1a, b, and c, the volatility-increasing impact of
wind power can be explained if prices in off-peak 1 and 2 decrease
more than during peak hours, leading to divergent prices. On the
other hand, the volatility will decrease if peak prices decrease more
than off-peak prices so that the hourly price profile becomes flatter.

To test these possibilities, we perform similar regressions as in
the previous section for each block, except that the logarithm of the
standard deviation of hourly prices, vd, is replaced by the logarithm
of the average price of each block (pop1

d , pp
d, and pop2

d ). Model itera-
tion steps in Table 14 in the Appendix show that the best models for
DK1, DK2 and DE are SARMA(2,1)(2,1)[7], SARMA(1,2)(1,2)[7], and
SARMA(1,1)(1,2)[7], respectively, using data for peak hours.

However, the addition of exogenous variables to these model
causes many variables become statistically insignificant (see Table
17 in the Appendix). Therefore, we step down to a simpler
SARMA(2,1)(1,1)[7] model, which for DK1, DK2, and DE differs only
by 2.13, 21.64, and 5.25 from the best models in terms of AIC score,
respectively. Moreover, the results for different areas can be more
readily compared by using a common model. Nevertheless, we con-
sider the best area models in Table 17 of the Appendix. The final
SARMA(2,1)(1,1)[7] model is as follows:

pb
d = a0 + a1pb

d−1 + a2pb
d−2 + a7pb

d−7 + 4d + b14d−1 + b74d−7, (7)

where b is the block ∈{op1, op2, p}. Similar to the model in Eq. (6),
the exogenous variables are added to the right-hand side of Eq. (7).
We note that the instances with a negative average price for a block
are removed from our dataset. For DK1, DK2, and DE, there are 13,
10, and 15 such off-peak blocks, respectively. Since the total number
of observations is 1813, 1816, and 1081, respectively, we expect that

the impact of removing these observations on the coefficients for off-
peak blocks is slightly positive at most.

Tables 5 and 6 have the results of the regressions for DK1 and
DK2, respectively. The coefficient for average wind power during
peak hours, windp

d, for example, is at the intersection of row windd
and the column “Peak”. Thus, the coefficients for peak-hour wind
power, windp

d, are −0.0726 and −0.0570, respectively, which dif-
fer by only 0.01–0.04 units from those for morning and evening
off-peak hours, windop1

d and windop2
d , respectively. Hence, increasing

wind power in the peak hours, for example, by 1% causes a 0.07% and
0.06% decline in the average peak price in DK1 and DK2, respectively.
Our approximate estimate of the average price-decreasing impact of
doubling wind power penetration, wind_pend, at 6% is comparable
to Jónsson et al. (2010) who estimate that increasing wind power
penetration from 20% up to 40% decreases DK1 prices approximately
10%.2

Fig. 3a shows that in Denmark there is a peak in wind output dur-
ing peak hours, which amplifies the total impact of wind power on
peak hours relative to off-peak hours. Combined with the small dif-
ference between peak and off-peak hour coefficients, this supports
the hypothesis that wind power contributes to the flattening of the
intraday price profile by decreasing peak prices more than off-peak
prices in absolute terms.

Moreover, exchange with the hydro-dominant Nordic countries
may contribute to similar flattening of the intraday price curve as
the coefficients for peak hour cross-border flows eximp

d are nega-
tive at −0.10 and they differ only slightly from those for morning
and evening off-peak hours, eximop1

d and eximop2
d , respectively. As the

capacities of the associated transmission lines exceed the average
DK1 and DK2 wind power forecast in our dataset substantially, the
impact of cross-border exchange on DK1 and DK2 electricity prices
is significant.

Because the estimated coefficients for the impact of wind power
and export in different blocks have higher absolute values for DK1
than DK2, daily DK1 prices are more likely to drop more than daily

2 Although our estimate is computed using the exact formula y2−y1
y1

=
(

x2
x1

)c
−1, the

estimate is approximate as the true coefficient, c, is likely to be different at different
wind power penetration levels.
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Table 8
The effect of different explanatory variables on DK1 weekly price volatility. All coefficients are statistically significant at the 1% level unless otherwise noted.

Model

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

windw 0.1820a 0.1636a

(0.0711) (0.0790)
wind_penw 0.2098 0.1969a

(0.0723) (0.0803)
Deximw 0.0410b 0.0288b

(0.0761) (0.0759)
windstd

w 0.3653
(0.0731)

Dgasw 0.4286b

(0.5424)
a0 0.4021b 1.8344 0.5223b 1.8186 −0.5931b 1.6036
a1 0.3073 0.3059 0.3043 0.3032 0.3030 0.3298
b4 0.1990 0.1989 0.2027 0.2018 0.1877 0.2100
AIC 427.39 425.81 428.26 426.55 409.97 434.39
L-B 30 30 30 30 30 30

a Significant at 5% level.
b Not significant.

DK2 prices for a comparable increase in wind power or exports. In
agreement with the results in Section 4.1, daily DK1 price volatility
is likely to drop more than daily DK2 price volatility due to lower
absolute level of prices.

For Germany, Table 7 shows that the coefficients for wind power
are −0.1530, −0.3073, and −0.1874 for peak (windp

d), morning
off-peak (windop1

d ), and evening off-peak hours (windop2
d ), respec-

tively. Similar coefficients are confirmed by wind power penetration,
wind_pend, too. The fact that the coefficients for morning and evening
off-peak hours in Germany are more negative than the coefficient
for peak hours indicates that the supply curves for off-peak hours
are more sensitive than the supply curves for peak hours. Indeed,
Paraschiv et al. (2014) find that the impact of wind power on German
prices has been up to 3.5 times higher in the morning off-peak than
in the peak hours, but the difference has decreased over time. Thus,
if there is an increase in wind power production during off-peak
hours, then prices will fall more than in peak hours for a comparative
increase in wind output. This is true especially in morning off-peak
hours where the impact is twofold.

In addition, the fact that German wind power peaks during
off-peak hours (Fig. 3c) suggests that German off-peak prices can
decrease more compared to peak prices in absolute terms, thereby
resulting in higher daily price volatility in keeping with the findings
of Section 4.1. In practice, this means that morning off-peak prices,
in particular, can crash due to the combination of wind power pro-
duction and low demand. By contrast, peak-hour prices with high
demand decrease only slightly.

Increasing the first difference of average German solar power pro-
duction, Dsolard, by 1% decreases peak prices by 0.05% as indicated
by Table 7. Furthermore, when we add peak-hour wind and solar
power, the parameter estimates for the average combined genera-
tion, vred, and its penetration, vre_pend, are approximately twice as
large as the coefficients for wind power, which suggests an equal
contribution from solar power. The inconclusive impact of combined
VRE generation on German daily price volatility in Section 4.1 can be
explained by the fact that the coefficient for wind power in morning
off-peak hours at −0.3073 and the coefficient for combined genera-
tion in peak hours at −0.3602 are rather close to each other, thereby
indicating that these blocks decrease by nearly the same amount.
However, because the coefficient for wind power in the evening off-
peak hours is less negative at −0.1874, the overall impact of VRE
generation on daily price volatility in Germany is likely to be slightly
positive on average because evening off-peak hours diverge, which
is also supported by the average hourly prices in Fig. 1c.

All the coefficients for cross-border flows between Germany and
France, eximd, are positive. Germany is a net exporter over these
transmission lines meaning that the higher the export from Germany
to France, the higher the German prices. Similar to wind power, the
higher coefficients for off-peak hours, eximop1

d and eximop2
d , than for

peak hours, eximp
d, imply a higher price sensitivity during the off-

peak hours. However, the magnitudes of the coefficients for eximd
are relatively small, which indicates that the cross-border exchange
with France has a limited correlation with the German price level.
Indeed, the possibilities to balance excess VRE generation are lim-
ited as the capacity of these transmission lines is only 30% of average
VRE forecast in our dataset and the flows to hydro-dominant Austria
and Switzerland approach congestion as the VRE penetration grows
(Zugno et al., 2013).

The AIC scores of the models for Denmark and Germany improve
significantly when external variables are added to the model in Eq.
(7). Ljung-Box tests for some models fail already at low lags, which
indicate that there is some serial correlation in our models. We esti-
mated models with additional AR and MA terms, which pass the
Ljung-Box test up to lag 30, and find that the estimated parameters
for DK1, DK2, and DE external variables in Tables 5–7 are robust.
Also, Table 17 in the Appendix shows that the results hold with the
best area models, too, although they improve the AIC scores only for
Germany.

4.3. Weekly volatility

We now extend the analysis to a weekly horizon by specifying
a model that includes the weekly price volatility in Eq. (3) and the
weekly average wind, solar, and combined production. The general
model is

vw = a0 +
p∑

i=1

aivw−i +
q∑

i=1

bi4w−i +
P∑

i=1

ai • svw−i • s

+
Q∑

i=1

bi • s4w−i • s + 4w + c"xw, (8)

Unlike the daily models, weekly volatility is affected by several
factors such as power plant and transmission line availability and
changes in bidding behaviour, which may not have any seasonal-
ity. Therefore, we start with the simplest models such as AR(1) and
MA(1) but try also a four-week, i.e., monthly, seasonality (Weron,
2014). Table 15 in the Appendix reports the model iterations. For
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Table 9
The effect of different explanatory variables on DK2 weekly price volatility. All coefficients are statistically significant at the 1% level unless otherwise noted.

Model

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

windw 0.0621b 0.0045b

(0.0720) (0.0746)
wind_penw 0.0465b −0.0100b

(0.0729) (0.0752)
Deximw 0.2457a 0.2533a

(0.1125) (0.1122)
windstd

w 0.1842a

(0.0749)
Dgasw 0.2222b

(0.6070)
a0 1.3173 1.7411 1.6084 1.6122 0.7595a 1.6318
a1 0.3445 0.3465 0.3246 0.3247 0.3459 0.3238
b4 0.1710a 0.1744a 0.1642a 0.1664a 0.1500a 0.1555a

AIC 498.58 498.92 479.82 479.81 493.48 485.21
L-B 30 30 30 30 30 30

a Significant at 5% level.
b Not significant.

the Danish areas, models with the monthly seasonality show the
best performance, but they are found to be statistically insignificant
for Germany. AR(1), which is the best model for Germany, fails the
Ljung-Box test with Danish data already at low lags. Therefore, we
run SARMA(1,0)(0,1)[4] for Danish and AR(1) for German data:

vw = a0 + a1vw−1 + b44w−4 + 4w (9)

vw = a0 + a1vw−1 + 4w. (10)

In Eqs. (9) and (10), the AR(1) term approximates the current
volatility with the previous one. In addition, an SMA(1) term in the
Danish model (9) deals with monthly seasonality.

We find that increasing the weekly average wind power, windw,
by 1% increases the weekly volatility of DK1 prices by 0.18% as indi-
cated by model 1 in Table 8. For DK2, the effect is inconclusive in

model 1 in Table 9, which may be attributed to lower wind power
capacity. These results apply for weekly wind power penetration,
wind_penw, in model 2. Furthermore, controlling for the first differ-
ence of weekly average exports, Deximw, in models 3 and 4 does
not change the conclusions for wind power and its penetration.
However, the standard deviation of daily average wind power out-
puts, i.e., the intermittency of daily wind power increases the weekly
price volatility by 0.37% and 0.18% both in DK1 and DK2 in model
5, respectively. Similar to the daily volatility results, model 6 shows
that the change in weekly average natural gas price, Dgasw, does
not have an impact on the weekly price volatility. Table 18 in the
Appendix confirms the conclusions using an alternative ARMA(1,1)
model.

In Germany, increasing the first difference of weekly average
wind power by 1% increases weekly price volatility by 0.11% as sug-
gested by the coefficient for Dwindw in Table 10. This is supported
by the comparative effect of the first difference of weekly aver-
age wind power penetration, Dwind_penw, in model 2. The positive

Table 10
The effect of different explanatory variables on German weekly price volatility. All coefficients are statistically significant at the 1% level unless otherwise noted.

Model

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Dwindw 0.1051b 0.1095b

(0.0591) (0.0597)
Dwind_penw 0.1407a

(0.0593)
Dsolarw −0.1707c −0.1793c

(0.1130) (0.1137)
Dsolar_penw −0.1432c

(0.1122)
vrew 0.1322c

(0.1174)
vre_penw 0.1513c

(0.1096)
Dvrestd

w 0.1083a

(0.0551)
eximw 0.0282c 0.0289c

(0.0368) (0.0383)
Dgasw −2.0427a

(0.8334)
a0 1.9668 1.9669 1.9676 1.9676 0.7636c 2.2393 1.9663 1.9406 1.9408 1.9669
a1 0.1676a 0.1610b 0.2058 0.2070 0.1726a 0.1759a 0.1699a 0.1559b 0.1963a 0.2019a

AIC 170.97 168.44 171.96 172.6 173.68 173.05 170.28 172.39 173.39 168.32
L-B 30 30 30 30 30 30 30 30 30 30

a Significant at 5% level.
b Significant at 10% level.
c Not significant.
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coefficients for the first differences indicate that higher weekly aver-
age wind power is associated with higher weekly price volatility in
Germany. However, models 3 and 4 are inconclusive regarding the
impact of the first difference in weekly average solar power, Dsolarw,
and its penetration, Dsolar_penw, because the coefficients are sta-
tistically insignificant. As in the daily volatility model, the effect is
likely negative because the coefficient estimates are negative. Con-
sequently, the impact of weekly average VRE generation, vrew, and
its penetration, vre_penw, is inconclusive in models 5 and 6, respec-
tively. Nevertheless, increasing the change in the standard deviation
of VRE generation, Dvrestd

w , by 1% increases weekly price volatility by
0.11% in model 7. In models 8 and 9, the inclusion of weekly aver-
age exports, eximw, does not change the earlier conclusions on the
impact of weekly wind and solar power. Counterintuitively, we find
a negative impact of the first difference of weekly average gas price,
Dgasw, on the weekly volatility of prices, but the very high coefficient,
−2.0427, makes the result unreliable.

The results for Danish and German VRE generation intermittency,
windstd

w and Dvrestd
w , respectively, can be explained by day-to-day hor-

izontal parallel shifts of the supply curve. When the installed VRE
capacity increases, the available supply increases and the parallel
shifts are larger, which contributes to the growing weekly volatility.
In both countries, the impact can be amplified by highly clustered
wind power farms (Elberg and Hagspiel, 2015). However, the aver-
age weekly solar power is not found to contribute to the weekly
price volatility, which can be explained by the peak-price-decreasing
impact of solar power in Germany.

5. Conclusions

Our analyses suggest that wind and solar power production have
statistically and economically significant effects on day-ahead price
volatility in Denmark and Germany. In the short run, Danish daily
price volatility is lower when there is more wind power produc-
tion. By contrast, wind power increases the daily price volatility in
Germany. However, our results are aligned with those of Jónsson et
al. (2010), Mauritzen (2010), and Ketterer (2014). In Denmark, the
price-decreasing impact of wind power is distributed evenly during
different times of day, and there is a peak in average wind power
production during peak hours. In Germany, off-peak hours are most
sensitive to downward pressure in prices, and wind power is, on
average, highest during these hours. Also, we find evidence that the
contrasting impact of wind power on price volatility is partly due to
the fact that Denmark has access to large hydropower reservoirs in
the Nordic countries, whereas Germany’s cross-border transmission
lines are small relative to the size of its power system and it has lim-
ited access to flexible generation capacity. On the other hand, solar
power is produced only during peak hours, which decreases daily
volatility by decreasing high peak hour prices in Germany. Because
wind and solar power have opposite effects on daily price volatility,
results on their combined impact are inconclusive.

Our weekly results suggest that the standard deviation of daily
average VRE generation increases the weekly volatility of Danish and
German prices. These impacts can be attributed to the high day-to-
day variability of wind and solar power production. Moreover, the
higher the average weekly wind power, the higher the weekly price
volatility.

In periods with high price volatility, producers and consumers
need to optimise their generation and demand allocation to max-
imise their profits and to minimise their costs, respectively. From
the power system point of view, the adoption of more VRE requires
mechanisms to cope with intermittent supply and to decrease bal-
ancing costs (Kunz, 2013). The results for Denmark suggest that
access to flexible capacity via adequate transmission capacity can
reduce short-term volatility. In addition, measures such as i) capacity

payments that incentivise flexible plants (Hach and Spinler, 2016), ii)
dispersing wind and solar power farms (Elberg and Hagspiel, 2015),
and iii) integration of adjacent markets (Farahmand et al., 2012)
can be utilised. On the consumer side, enhanced understanding of
the causes of volatility can be used to design tariffs that incentivise
demand response (Dupont et al., 2014), which is likely to mitigate
the costs of balancing caused by the intermittency of VRE.

The limitations of our distributed lag models need to be recog-
nised. First, they estimate a single coefficient to represent the impact
of VRE generation on price volatility even if the impact is more
dynamic and dependent on the market situation. We have studied
only the whole dataset, while the impacts may change over time.
Second, the high frequency of trading in electricity markets means
that time-series models may not capture processes driving price
formation very accurately, which causes errors in the estimated coef-
ficients for VRE. Nevertheless, our checks corroborate the robustness
of our findings based on standard time-series methods.

A subject for further research could be to use different modelling
techniques. Similar to Ketterer (2014), the impact of wind power on
Danish price volatility could be established using a GARCH model.
On the other hand, German price volatility could be explored as
a function of time and VRE penetration using the non-parametric
regression model of Jónsson et al. (2010). Also, the link between VRE
generation levels and supply curve elasticities can be established
more formally using real supply and demand curve data (see Dil-
lig et al., 2016) or agent-based or complementarity models. Another
avenue for future research is to estimate the impact of VRE gener-
ation on price volatility in other renewable-rich locations such as
Spain, Ireland, and California. Moreover, as the absolute value of
the VRE forecast errors is likely to increase when the VRE capacity
increases, trading volumes and prices on various intraday markets
are subject to change.
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Appendix A ADF Tests

Lag 5 10 15

Variable
Area

DK1 DK2 DE DK1 DK2 DE DK1 DK2 DE

vd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07
p

op1
d

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
p

op2
d

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
p

p

d
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

windd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
wind

op1
d

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
wind

op2
d

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
wind

p

d
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

wind pend 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
wind pen

op1
d

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
wind pen

op2
d

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
wind pen

p

d
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

solard 0.25 0.56 0.89
solar

p

d
0.18 0.66 0.92

solar pend 0.25 0.52 0.87
solar pen

p

d
0.18 0.63 0.91

vred 0.01 0.01 0.01
vre

p

d
0.01 0.01 0.01

vre pend 0.01 0.01 0.01
vre pen

p

d
0.01 0.01 0.01

exim
op1
d

0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.03 0.09
exim

op2
d

0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03
exim

p

d
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

gasd 0.19 0.19 0.15 0.40 0.40 0.37 0.35 0.35 0.36
vw 0.01 0.01 0.01 0.04 0.01 0.32 0.03 0.03 0.44
windw 0.02 0.04 0.63 0.03 0.09 0.41 0.01 0.08 0.09
wind

std

w
0.01 0.01 0.01 0.03 0.03 0.18

wind penw 0.01 0.02 0.49 0.03 0.16 0.43 0.02 0.26 0.19
solarw 0.36 0.04 0.06
solar penw 0.33 0.02 0.04
vrew 0.03 0.42 0.22
vre

std

w
0.17 0.58 0.11

vre penw 0.02 0.41 0.25
eximw 0.36 0.18 0.08 0.24 0.12 0.09 0.20 0.09 0.08
gasw 0.48 0.48 0.65 0.09 0.09 0.42 0.08 0.08 0.43

Table 11: Augmented Dickey-Fuller test p-values. All figures have been rounded to two decimal places.
Empty cells indicate that the variable is not used for all areas.



Lag 5 10 15

Variable
Area

DK1 DK2 DE DK1 DK2 DE DK1 DK2 DE

∆solard 0.01 0.01 0.01
∆solarp

d 0.01 0.01 0.01
∆solar pend 0.01 0.01 0.01
∆solar penp

d 0.01 0.01 0.01
∆gasd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
∆windw 0.01 0.04 0.67
∆wind penw 0.01 0.01 0.60
∆solarw 0.17 0.16 0.22
∆solar penw 0.13 0.23 0.19
∆vrestd

w 0.01 0.01 0.42
∆eximw 0.01 0.01 0.01 0.01 0.05 0.01
∆gasw 0.01 0.01 0.01 0.01 0.01 0.11 0.01 0.01 0.20

Table 12: Augmented Dickey-Fuller test p-values for differenced time series. All figures have been rounded
to two decimal places. Empty cells indicate that the variable is not used for all areas.



Appendix B Model Selection

DK1 DK2 DE

Model
Test

AIC L-B AIC L-B AIC L-B

SARMA(1,0)(1,0)[7] 3115.82 3 3403.95 3 684.30 3
SARMA(1,1)(1,0)[7] 3102.47 3 3388.85 3 676.24 6
SARMA(1,0)(1,1)[7] 3022.43 3 3293.06 3 549.72 3
SARMA(1,1)(1,1)[7] 2963.46 3 3245.79 3 513.45 3
SARMA(1,2)(1,1)[7] 2913.48 26 3196.09 7 503.46 30
SARMA(1,2)(2,1)[7] 3181.10 30 491.84 30
SARMA(1,2)(1,2)[7] 2908.93 30
SARMA(2,1)(2,1)[7] 2908.53 30 3180.41 30 490.67 30

Table 13: Statistically significant and AIC-improving iteration steps of the daily model for DK1, DK2, and
DE.

DK1 DK2 DE

Model
Test

AIC L-B AIC L-B AIC L-B

SARMA(1,0)(1,0)[7] -319.22 4 -467.38 3 142.30 7
SARMA(1,1)(1,0)[7] -332.18 3 -476.81 3 138.09 7
SARMA(1,0)(1,1)[7] -541.08 4 -660.86 3 37.90 2
SARMA(1,1)(1,1)[7] -556.92 3 -675.71 3 24.25 30
SARMA(1,2)(1,1)[7] -584.98 4 -738.37 6
SARMA(1,1)(2,1)[7] 20.65 30
SARMA(1,1)(1,2)[7] 19.30 30
SARMA(1,2)(2,1)[7] -586.73 4 -746.59 6
SARMA(2,1)(1,1)[7] -586.38 4
SARMA(1,2)(1,2)[7] -586.94 4 -747.18 6
SARMA(2,1)(2,1)[7] -588.51 4

Table 14: Statistically significant and AIC-improving iteration steps of the intraday model for DK1, DK2,
and DE. The reported figures are for peak hours.



DK1 DK2 DE

Model
Test

AIC L-B AIC L-B AIC L-B

AR(1) 441.11 4 502.10 6 172.94 30
MA(1) 447.06 2 504.61 4 173.91 30
SARMA(1,0)(1,0)[4] 432.23 30 498.08 30
SARMA(1,0)(0,1)[4] 431.86 30 497.32 30

Table 15: Statistically significant and AIC-improving iteration steps of the weekly model for DK1, DK2, and
DE.



Appendix C Alternative Specifications

Variable
Area

DK1 DK2 DE DE

windd -0.0897a -0.0687 0.0329a

(0.0158) (0.0146) (0.0145)
∆solard -0.0360b

(0.0191)
α0 2.4019 2.2073 1.9365 2.2393
α1 0.9494 0.9301 0.9861 0.9864
α7 0.9982 0.9994 0.9996 0.9998
β1 -0.5889 -0.5371 -0.7538 -0.7409
β2 -0.1881 -0.1732 -0.1389 -0.1470
β7 -0.9180 -0.8885 -0.8233 -0.8306
β14 -0.0599a -0.0964 -0.1614 -0.1592
AIC 2879.03 3161.19 489.95 491.03
L-B 30 30 30 30
a significant at 5% level
b significant at 10% level

Table 16: An alternative specification for the daily volatility model. All coefficients are statistically significant
at the 1% level unless otherwise noted.

Area DK1 DK2 DE DK1 DK2 DE DE DE DK1 DK2 DE

Variable
Block

Off-peak 1 Off-peak 1 Off-peak 1 Peak Peak Peak Peak Peak Off-peak 2 Off-peak 2 Off-peak 2

windd -0.1524 -0.0937 -0.2854 -0.1065 -0.0659 -0.1488 -0.0943 -0.0623 -0.1888
(0.0076) (0.0060) (0.0153) (0.0045) (0.0038) (0.0089) (0.0043) (0.0040) (0.0080)

∆solard -0.0508
(0.0139)

vred -0.1710
(0.0132)

α0 4.3733 3.9516 5.7170 4.4112 4.1188 4.9638 3.7154 3.7189 4.2444 3.9636 5.2483
α1 1.1257 0.9235 0.6688 1.1390 0.9137 0.7256 0.6432 0.6139 1.0447 0.9543 0.7929
α2 -0.1862 -0.2116 -0.0882
α7 0.9870 0.9296 0.9272 0.9968 0.9687 0.9380 0.9376 0.9350 0.9260 0.9616 0.9491
α14 -0.0289a -0.0310a 0.0360a

β1 -0.7736 -0.4865 -0.3413 -0.7504 -0.4264 -0.4346 -0.2939 -0.2061 -0.7118 -0.6085 -0.4830
β2 -0.1627 -0.1943 -0.0806
β7 -0.8863 -0.7768 -0.6929 -0.8144 -0.7371 -0.5425 -0.5462 -0.5111 -0.9122 -0.9226 -0.8095
β14 -0.0450a -0.0459a -0.0744 -0.0464a -0.0892 -0.0967 0.0112a 0.0210a

AIC 854.01 635.59 605.94 -1065.55 -1021.47 -217.34 -8.81 -145.37 -1239.92 -828.71 -775.89
L-B 30 30 4 4 6 30 30 30 4 5 8
a not significant

Table 17: Alternative specifications for the intraday model. All coefficients are statistically significant at the
1% level unless otherwise noted.



Variable
Area

DK1 DK2 DE DE DE

windw 0.2070 0.1010c

(0.0723) (0.0734)
∆windw 0.1370a

(0.0578)
∆solarw -0.1901c

(0.1163)
vrew 0.2013b

(0.1159)
α0 0.2357c 1.1097 1.9681 1.9698 0.1351c

α1 0.5996 0.6309 0.8790 0.8413 0.9035
β1 -0.3404c -0.3295c -0.7690 -0.7099a -0.8048
AIC 435.11 503.62 168.83 171.76 171.99
L-B 11 5 30 30 30
a significant at 5% level
b significant at 10% level
c not significant

Table 18: An alternative specification for the weekly volatility model. All coefficients are statistically signif-
icant at the 1% level unless otherwise noted.
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a b s t r a c t

The large-scale deployment of intermittent renewable energy sources may cause substantial power
imbalance. Together with the transmission grid congestion caused by the remoteness of these sources
from load centers, this creates a need for fast-adjusting conventional capacity such as gas-fired plants.
However, these plants have become unprofitable because of lower power prices due to the zero marginal
costs of renewables. Consequently, policymakers are proposing new measures for mitigating balancing
costs and securing supply. In this paper, we take the perspective of the regulator to assess the effec-
tiveness of support payments to flexible generators. Using data on the German power system, we
implement a bi-level programming model, which shows that such payments for gas-fired plants in
southern Germany reduce balancing costs and can be used as part of policy to integrate renewable
energy.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In deregulated electricity industries, the expansion of wind and
solar power has decreased power prices and, thus, eroded the
viability of coal, lignite, and gas-fired conventional electricity
generation units [38]. At the same time, the intermittency of re-
newables and insufficient transmission capacity has increased the
need for grid congestion management and flexible conventional
generation capacity [35]. Indeed, the lack of flexibility may risk grid
stability under scenarios with high load or sudden changes in
renewable energy generation.

As a potential solution to the threat to security of supply in the
long term, capacity markets to entice conventional power plants
have been proposed. In these schemes, an authority ensures a

sufficient level of capacity through payments or obligations [18]. On
the other hand, [15] envisages an energy-only “electricity market
2.0” scheme that permits high price peaks, develops intraday
markets, and promotes new technologies such as demand
response, for instance.

As a response to insufficient flexible generation capacity in
southern Germany, a regional transmission system operator
(TSO), TenneT, and the Federal Network Agency, Bundesnetza-
gentur, have agreed to compensate fixed costs of two flexible
plants via support payments [33]. Therefore, in this paper, we
develop a complementarity model to assess the increased
dispatch of fast-adjusting conventional capacity through support
payments, which, in effect, reduce the bid prices of these gen-
erators. Specifically, we cast the sequential model in Ref. [23] as a
bi-level problem in which the day-ahead decisions are taken at
the upper level and congestion management decisions at the
lower level. The latter are guided by the upper-level support
payment decisions that the regulator takes in order to minimize
the total generation costs. We develop a novel set of constraints
to enforce the merit order and cast the problem as a mixed-
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integer linear program (MILP) by using a linearization technique
[13]. Hence, we assess the performance of a recently imple-
mented regulation for a realistic test network via a rigorous
mathematical programming approach.

We calibrate the model to the German power system using
realistic data and identify the congested parts of the transmission
network to provide insights about the geographical distribution
of optimal support payments under different demand and
renewable energy scenarios. We also test the performance of the
optimal decisions by introducing spatially correlated imbalances
in the balancing market. Moreover, we contribute to the ongoing
debate by comparing the optimal support payments to the nodal
pricing mechanism [24] and demonstrate that they lead to
similar patterns of generation that reduce re-dispatching. In
particular, we find that re-dispatch volumes are halved when
support payments are introduced. We also extend the model to
multiple time periods to show how support payments mitigate
the intermittency of renewables by utilizing the fast-ramping
capabilities of the flexible units. Thus, alternative market de-
signs such as support payments and nodal pricing improve the
flexibility of the power system and reduce the costs of integrating
renewables.

The paper is organized as follows. In Section 2, we discuss
complementarity models of electricity markets, the challenges
posed by the higher penetration of renewables in the day-ahead
and balancing markets, and the relevant policy alternatives. Sec-
tion 3 presents the structure of our bi-level model, and Section 4
gives numerical results for a model calibrated to the German po-
wer system along with sensitivity analysis of the optimal de-
cisions. We provide conclusions on the likely impacts of support
payments in Germany and discuss directions for future research in
Section 5.

2. Literature review

Complementarity models are often used to analyze electricity
markets in which prices are formed endogenously and strategic
interactions occur among players. [30] give an overview of these
models, and a thorough treatise can be found in Ref. [12]. [25]
develop a large-scale perfect competition model of the Euro-
pean electricity market that covers transmission, variable de-
mand, wind power, and pumped storage, for example. In bi-level
models, a group of players in the lead role make optimal de-
cisions anticipating the reaction of a group of follower players,
e.g., see Ref. [1].

[23] presents a sequential model for Germany with a high level
of wind generation in which the production schedules determined
by a day-ahead market model ignoring the physical transmission
network are fed into a congestion management model, which
minimizes the re-dispatch costs, i.e., the costs of relieving
congestion. [23] uses data on realistic projections to 2020 of the
increase in demand and renewable energy generation in Germany
and finds that annual national congestion management costs in-
crease from V40 million to V147 million without transmission grid
extensions.

The need for fast-ramping units to balance generation from
intermittent renewables is supported by recent empirical data,
e.g. [29], show that the variability of wind and solar power in-
creases the volatility of German hourly and daily electricity pri-
ces. [19] conclude that there is a dramatic increase in flexibility
requirements when the share of renewables of annual electricity
consumption exceeds 30%. However, renewable generation has a

negative impact on power prices due to its zero marginal costs
and prevents the deployment of high-cost flexible plants [39].

Also, [34] show that gas-fired plants are required when short-
term variability of renewables is introduced into a long-term
German power system model with an 80% emission reduction
target. Indeed, gas-fired plants have lower CO2 emissions and
higher fuel efficiency than coal plants [16]. However, major utilities
in the UK, France, Germany, and Italy, among others, have recently
closed or mothballed gas-fired power plants in response to low
profitability [6].

Apart from flexible gas-fired plants, there are several other
mechanisms to integrate renewables into power systems. At
specific sites, the variability of wind power can be reduced by
coupling it with wave power [11]. [37] analyze the economic
viability of high-voltage direct current (HVDC) transmission lines
from windy northern Germany to load centers in the west and
south assuming extensivewind power deployment. They conclude
that the welfare gains resulting from full wind power utilization
and lower price levels would quickly cover the lines' investment
costs. In a similar vein, [20] postulate that the expansion of the
cross-border HDVC network allows the hydro-dominant power
systems in the Nordic countries to balance the variability of
renewable generation in continental Europe by adjusting hydro
production. On the demand side, more flexible pricing schemes
could also integrate renewables [8]. Likewise, storage and power-
to-gas technologies have been explored to increase flexibility
[21,31].

Price-based policies, which directly grant the generating ca-
pacity a payment, have been implemented in Spain and Italy, for
example [3]. In Italy, in particular, the policy aimed to keeping
existing capacity in operation and compensates generators when
prices are too low [4]. Conversely, quantity-based policies, e.g., as
implemented in the UK, determine the capacity payment in an
auction to cover a quantity considered to secure supply. Typically,
they enforce the availability of the procured capacity by setting a
strike price for the spot market price above which the generators
need to compensate the regulator [36]. [17] show that capacity
payments can reduce the impact of renewable energy generation
on the profitability of gas-fired plants and, thus, prevent their
mothballing.

By contrast, energy-only policies such as the “electricity market
2.0” concept have the virtue that they minimize interventions in
the electricity market. Even under these policies, some kind of
back-up reserves are maintained [2]. A BMWi white paper [5]
outlines a reserve capacity based mainly on old lignite plants,
which are started up when a market price cannot be formed.
Moreover, the white paper describes a reserve to relieve congestion
in southern Germany.

Conceptually, our model resembles [26] and [22] in using a bi-
level approach for integrating renewables by comparing alterna-
tive market-clearing schemes. However, we seek to find the
optimal trade-off between the least-cost day-ahead market
dispatch and the support payments, which have the potential to
reduce congestionmanagement and balancing costs by enticing the
dispatch of flexible but more expensive power plants.

3. Mathematical formulation

3.1. Notation
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3.2. Bi-level formulation

In the upper level of our bi-level model, the objective function of
a regulator (1) is to minimize the costs of day-ahead generation,
including the possible support payments and the anticipated costs
of re-dispatch and real-time balancing power, i.e., increasing

(deploying up-reserves) and decreasing (deploying down-reserves)
the generation of power plants. In the day-ahead market, supply
and demand match at every time period (2) and the generation of
plant (n,u) in time period t is the sum of full generation gfn;u;t and
residual generation grn;u;t (3). As per the rules of the Germanmarket,
physical transmission constraints are neglected at the time of day-

Sets and indices
F auxiliary decision variables
U DV lower-level dual variables
U UL upper-level primal decision variables
U LL lower-level primal decision variables
n,k2N nodes
n'2N reference node
u,o2U generation types
t2T time periods
i2I discrete support payment levels
[2L transmission lines
Parameters
consn,t consumption at node n during period t
sn;u;i support payments levels for unit u at node n
cmn;u bid price of generation of unit u at node n

cupn;u up-reserve bid price of unit u at node n

cdown
n;u

down-reserve bid price of unit u at node n

gmax
n;u;t maximum generation capacity of unit u at node n during period t

εda
up

n;u
day-ahead ramp-up rate of unit u at node n

εda
down

n;u
day-ahead ramp-down rate of unit u at node n

εreserve
up

n;u up-reserve deployment rate of unit u at node n

εreserve
down

n;u
down-reserve deployment rate of unit u at node n

capmax
[ thermal capacity of power line [

H[;k branch susceptance matrix [! k
Bn,k node susceptance matrix n!k
swn reference node switch variable equals 1 for n' and 0 otherwise
Scalars
eps a small positive constant
M1 a large positive constant
K1,…,K8 constants for disjunctive constraints
Kgda ;Kv constants for linearization
Variables
lcmn;t re-dispatch price at node n during period t

dn,t phase angle at node n during period t
gn,t dual for the swing bus constraint at node n during period t
Positive variables
sn,u support payment for unit u at node n

gfn;u;t
full generation of unit u at node n during period t in the day-ahead market

grn;u;t residual generation of unit u at node n during period t in the day-ahead market

gdan;u;t total day-ahead generation of unit u at node n during period t

gupn;u;t up-reserve deployment of unit u at node n during period t

gdown
n;u;t

down-reserve deployment of unit u at node n during period t

bdan;u;t
dual for maximum generation capacity of unit u at node n during period t in the day-ahead market

bupn;u;t dual for absolute maximum up-reserve deployment of unit u at node n during period t

bdown
n;u;t

dual for absolute maximum down-reserve deployment of unit u at node n during period t

qupn;u;t dual for relative maximum up-reserve deployment of unit u at node n during period t

qdown
n;u;t

dual for relative maximum down-reserve deployment of unit u at node n during period t

m[;t dual for positive line capacity constraint on line [ during t
m[;t dual for negative line capacity constraint on line [ during t

vn,u,i,t discretization of sn;u$gdan;u;t of unit u at node n during t
Binary variables
r1,…,r8 disjunctive variables

qg
da

n;u;t
indicator variables equal to 1 when gdan;u;t >0

qn,u,i indicator variables equal to 1 if ith support payment level is selected
qvn;u;i;t indicator variables equal to 1 when qg

da

n;u;t and qn;u;i are 1
fn;u;t indicator variables equal to 1 when unit u is fully dispatched
rn,u,t indicator variables equal to 1 when unit u is partially dispatched
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ahead dispatch and applied only in the re-dispatching phase. If the
decision variable fn,u,t equals to 1, then constraint (4) forces the
plant to produce at its maximum capacity. Otherwise, the plant is
not fully dispatched. However, if the decision variable rn,u,t in (5)
equals to 1, then the plant is operating at a level below its
maximum capacity that is set by the decision variable grn;u;t .
Constraint (6) ensures that the plant cannot be fully and partially
dispatched at the same time. Finally, the inequalities (7) and (8)
exclude unrealistic ramping of power plants and avoid disconti-
nuities between time periods.

Minimize
UUL

X

t

X

n

X

u

!!
cmn;u þ sn;u

"
gdan;u;t þ cupn;ug

up
n;u;t

# cdown
n;u gdown

n;u;t

"
(1)

s:t:

P
n
consn;t ¼

P
n

P
u
gdan;u;t ct (2)

gdan;u;t ¼ gfn;u;t þ grn;u;t cn;u; t (3)

gfn;u;t ¼ fn;u;tgmax
n;u;t cn;u; t (4)

grn;u;t % rn;u;t
!
gmax
n;u;t # eps

"
cn;u; t (5)

fn;u;t þ rn;u;t % 1 cn;u; t (6)

gdan;u;t #
!
gdan;u;t#1 þ gupn;u;t#1

"
% εda

up

n;u gmax
n;u;t cn;u; and ct & 2

(7)

!
gdan;u;t#1 # gdown

n;u;t#1

"
# gdan;u;t % εda

down

n;u gmax
n;u;t cn;u; and ct & 2

(8)

cmn;u# sn;u#M1

!
1# fn;u;t

"
% cmk;o# sk;oþM1fk;o;t ct;ðn;uÞsðk;oÞ

(9)

cmn;u# sn;u#M1
#
1# rn;u;t

$
% cmk;o# sk;oþM1fk;o;t ct; ðn;uÞsðk;oÞ

(10)

Fig. 1. Three-node network indicating conventional direction of flow.
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where UUL ¼

8
>><

>>:
sn;u; gdan;u;t ; g

f
n;u;t ; g

r
n;u;t ;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
&0

fn;u;t ; rn;u;t
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

2f0;1g

9
>>=

>>;
and ULL

¼

8
><

>:
gupn;u;t ; g

down
n;u;t ;

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
&0

dn;t

9
>=

>;
:

The support payments are determined by constraints (9) and
(10). If plant (n,u) is fully dispatched and plant (k,o) is not, then the
final bid price of plant (n,u), i.e., the original bid price of (n,u)
minus the possible support payment, is less than or equal to the
final bid price of plant (k,o); otherwise Eq. (9) is not binding.
Moreover, constraint (10) requires that the final bid price of (n,u) is
less than or equal to the final bid price of (k,o) if plant (n,u) is
partially dispatched and plant (k,o) is not fully dispatched;
otherwise, (10) is not binding. Consequently, Eqs. (3)e(10) make
sure that no expensive generator is dispatched before the cheaper
ones.

At the lower level, the TSO chooses the cost-minimizing (11)
deployment of up- (gupn;u;t) and down-reserves (gdown

n;u;t ) as well as
voltage angles (dn,t) to match supply to demand at every node (12).
These nodes represent subregions, which aggregate demand and
generation, and in which transmission constraints can be ignored.
Eqs. (13)e(16) define the feasible up- and down-reserve deploy-
ment intervals for each plant. Furthermore, Eqs. (17)e(19) imple-
ment the linearized DC load flow transmission in keeping with [13]
and [23].

The regulator can perfectly anticipate the outcomes of the lower
level. Also, generation cost parameters are not affected by support
payments, although producers who do not receive them may in-
crease their bid prices because they know that producers who
receive them are dispatched in any case. Consequently, the results
of our model on given support payments and the associated costs
need to be regarded as a lower bound. This interpretation is sup-
ported by the simplification that there is one cost-minimizing TSO
inside a price area (in Germany, there are four) and imperfect co-
ordination does not cause extra costs.

In general, bi-level problems of this form require re-formulation
as mathematical programs with equilibrium constraints (MPECs)
and subsequently as MILPs in order to be solved. However, in this
case, our problem has a special structure that reduces it to a single-
level problem in which there is no lower-level objective function.
This is because all of the terms from the lower-level objective
function are present in the upper level and there is no interaction
between lower-level dual variables and upper-level primal vari-
ables. Thus, the two objective functions are not in conflict, and the
upper-level objective function may simply be minimized subject to
upper- and lower-level constraints (see Ref. [14] and Proposition 1
of [40]). Nevertheless, we will proceed with the re-formulation

because a regulator may have other concerns besides simply
minimizing generating costs, e.g., minimizing costs of emissions
[32] or congestion, which may cause the upper- and lower-level
objective functions to be in conflict. Indeed, while we use previ-
ously developed resolution techniques, our methodological
contribution here is the development of a novel set of constraints in
Eqs. (3)e(10) that enforce the day-ahead merit order regardless of
the objective function. This technique may now be applied by re-
searchers exploring the impact of policy measures on both day-
ahead and balancing markets through customized upper-level
objective functions. Otherwise, only social welfare maximization
would be possible without violating the merit order. We provide
the detailed MPEC and MILP formulations in Appendices A and B,
respectively.

4. Numerical examples

4.1. A three-node example

To illustrate the effect of different policies, we run our model
with and without support payments as well as a nodal pricing
model similar to [23] (see Appendix E for the formulation) by
considering a three-node network in which there is one generation
unit at each node (see Fig. 1). The nodes represent locations in the
network with generation units and load, while transmission lines
connect the nodes. The network as well as demand and generation
parameters are in Tables 5 and 6 of Appendix C, respectively.

The detailed transmission and generation results of our model
are in Tables 7 and 8 of Appendix C, while Table 1 summarizes the
key outcomes of the policies. In the absence of support payments,
only power plants at nodes 1 and 2 are dispatched because they
have the lowest bid prices, thereby leading to the lowest day-ahead
cost of V 3000. However, because lines 2 and 3 to node 3 are

Table 1
Summary of the results of the three-node example.

measure policy

no support support nodal

day-ahead cost (V) 3000 3600 3300
re-dispatch cost (V) 700 0 0
total cost (V) 3700 3600 3300
re-dispatch volume (MW) 40 0 0
congested lines 2, 3 1, 3 e

Fig. 2. Germany as an 18-node network with 33 cross-node transmission lines.
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congested, the day-ahead solution does not allow demand to be
served at node 3. The situation is resolved by deploying down-
reserves of the plants at nodes 1 and 2 and up-reserves of the
plant at node 3, which causes a re-dispatch cost of V 700.

When support payments are introduced, it is optimal to give the
plant at node 3 a support payment of V10/MWh. This reduces the
bid price of the plant 3 so that it is dispatched in the day-ahead
market, thereby replacing part of the generation of the plant at
node 2. The support payments increase the cost of day-ahead
dispatch to V 3600, but now, transmission lines can be utilized to
serve demand at all nodes without re-dispatching. Consequently,
the total generation cost of V 3600 is slightly lower than that of the
case without support payments.

Finally, the nodal pricing model achieves an even lower cost of
V 3300 by considering the transmission constraints already in the
day-ahead dispatch. Consequently, the plant at node 3 is dis-
patched out of merit order in the day-ahead market without giving
any support payments.

4.2. German power system

Next, wemodel the German power system to assess the impacts
of the different policies on the welfare and power system. More
specifically, we use demand, generation and transmission network
data from Ref. [10] to divide Germany into 18 DENA nodes [7],
which correspond to large cities and their surroundings. The nodes
and the transmission lines between them are shown in Fig. 2. De-
mand, generation capacity, generation cost, and transmission
network parameters are provided in Tables 9e12 of Appendix D, in
which we specify the calibration process.

In the following cases, we limit the set of discrete support
payment levels only to zero and the differences in bid prices of
different power plant types. Other support payment levels would
be sub-optimal because the regulator at the upper level can, in view
of lower-level outcomes, select which plants to dispatch from a set
of plants with equal final bid prices. These restrictions decrease the
size of the problem and speed up the computation without having
an impact on the results. The model is implemented with GAMS
24.2 and solved with CPLEX 12.6 on an Intel i5 2.40 GHz processor
and 4 GB RAM. The results for the following single- and multi-
period cases are computed in less than 5 s. Constraints with
continuous variables (such as ramping constraints) are not ex-
pected to affect the computational efficiency significantly, whereas
new binary variables for constraints (such as startups of power
plants) are likely to increase the computation time appreciably.

4.3. Single-period case

In the single-period case, we neglect the time index t in the
formulation of Section 3. Consequently, constraints (7) and (8) can
be disregarded. We examine two scenarios to study the need for
support payments. First, in our base scenario, the demand is at the

baseline level (Table 9), while wind, solar, and hydro power pro-
duction are at 40%, 20%, and 20% levels of their maximum gener-
ation capacities (Table 10 in Appendix D), respectively. By
comparison, since the average wind power generation was 17%,
solar 11%, and hydro 13% in 2012 [9], we have taken a day with
relatively high renewable generation as our base. In this scenario,
support payments do not improve the welfare (see Table 2).
Table 13 in Appendix D shows that coal plants are the last plants to
be dispatched, and, thus, the day-ahead price is at the level of their
bid price ofV 40/MWh. Only small re-dispatch volumes are needed
for (i) some deployment of gas-fired up-reserves in southern and
western Germany and (ii) deployment of down-reserves of coal
plants in eastern Germany (Table 14 in Appendix D). Table 15 in
Appendix D shows that lines l14 and l18 are congested, which in-
dicates strong flow to western and southern Germany.

Second,we runanextreme scenario inwhichwe increasedemand
by 15% in southern and western German nodes (specifically, nodes
4e14). Furthermore, we increase wind power production to a very
high 80% level of maximum capacity and decrease solar power pro-
duction to 10%, while keeping hydro power production at the 20%
level. Such hours occurred, for example, from 3 January 2012 to 5
January 2012, when hourly prices declined to V-75.04/MWh at
minimum and increased to V 57.42/MWh at maximum. Now, gas
plants at nodes 5 (Nuremberg area) and 6 (Munich area) are given an
optimal support payment of V 15/MWh, which decreases their final
bid price to the level of coal plants. Consequently, gas plants are
dispatched at those nodes, while production from coal plants in
northern Germany decreases (Table 16 in Appendix D). Table 17 in
Appendix D shows that re-dispatch volumes increase from the base
scenario, and up-reserves of gas-fired plants are now deployed in
southern and western Germany, whereas the down-reserves of
lignite andcoalplants aredeployed ineasternandnorthernGermany.

Table 2 shows that support payments increase day-ahead gener-
ation costs but decrease re-dispatch costs resulting in equal or lower
total costs in both scenarios. In particular, when we disable support
payments in the extreme scenario, both re-dispatch volumes and
costs triple. The resulting re-dispatch volume of 9.6 GW can be
compared with the maximum re-dispatch of 10.8 GW in 2014 [27].
However, we note that the change in total welfare is mainly affected
by the costs of support payments relative to those of deploying up-
reserves, and it is dependent on the parameters cmn;u and cupn;u in the
model. Nevertheless, nodal pricing achieves even lower costs in both

Table 2
Summary of the results of the German single-period case.

Scenario Base Extreme

Measure Policy

No support Support Nodal No support Support Nodal

Day-ahead cost (MV) 1.379 1.379 1.388 1.289 1.400 1.381
Re-dispatch cost (MV) 0.018 0.018 0 0.175 0.061 0
Total cost (MV) 1.397 1.397 1.388 1.464 1.461 1.381
Re-dispatch volume (GW) 1.2 1.2 0 9.6 3.0 0
Congested lines 14, 18 14, 18 e 14, 18 14, 18 9, 14, 18

Table 3
Summary of the results of the German multi-period case.

Measure Policy

No support Support Nodal

Day-ahead cost (MV) 2.668 2.732 2.774
Re-dispatch cost (MV) 0.193 0.125 0
Total cost (MV) 2.861 2.857 2.774
Re-dispatch volume (GW) 10.8 7.2 0
Congested lines 14, 18 14, 18 9, 14, 18
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scenarios. Table 20 in Appendix D shows that nodal pricing finds it
optimal to dispatch gas plants in the extreme scenario and that their
dispatch at nodes 5 and 6 is close to that of the model with support
payments in Table 16 in Appendix D. Consequently, support pay-
ments enablepolicymakers to increase theflexibilityand the stability
of the power system because they decrease the need for re-dispatch
and increase the dispatch of flexible gas-fired plants already in the
day-ahead market. Furthermore, the need for north-to-south grid
expansion considered by Ref. [23] is alleviated as nodal pricing and
the model with support payments cause the flow to drop in this di-
rection compared to the model without support payments (see
Tables 18, 19, and 21 in Appendix D).

4.4. Multi-period case

Next, we combine our scenarios in a multi-period model in
which the system moves from the base scenario to the extreme
scenario. Thus, the main drivers are the increase of wind power
from the 40% level to the 80% level, the 15% increase of demand at
nodes 4e14, and the decrease of solar power from 20% to 10% level.
We note that such a large change is hypothetical, but, given the
trend toward increasing penetration of intermittent renewables,
greater absolute hourly fluctuations (in MW) are likely to be
observed in the future.

As in the extreme case, we see that a support payment of V 15/
MWh to gas-fired plants at nodes 5 and 6 displaces coal-fired
production in north-eastern Germany (Tables 22 and 23 in
Appendix D). Unlike in the single-period base scenario, in which
support payments are not optimal, there is now gas-fired produc-
tion at node 5 at time t1, which decreases the need for re-dispatch
by 42% (Table 24 in Appendix D). Consequently, support payments
can reduce the costs of re-dispatch under normal, non-extreme
wind conditions, too. Similar to the single-period extreme sce-
nario, down-reserves of lignite plants are deployed in eastern
Germany in period 2, but, additionally, some slow-ramping coal
plants dispatched in period 1 need to deploy their down-reserves in
north-eastern Germany.

If we disable support payments in the multi-period case, then
there is only a 0.1% increase in total costs (see Table 3), while the re-
dispatch volumes increase by 50%. More specifically, the deploy-
ment of gas-fired up-reserves and down-reserves of coal as well as
lignite plants increases, whereas with support payments, the gas-
fired plants offset the significant change in demand and renewable
generation already in the day-aheadmarket. Thus, policymakers can
utilize support payments to mitigate short-term variability, which
allows for higher penetration of renewables. As a comparison, Table 3
shows that nodal pricing saves 3% on total costs vis-"a-vis support
payments by eliminating the need for re-dispatching.

4.5. Sensitivity analysis with respect to uncertainty in demand and
renewable generation

To test the robustness of the support payment decisions, we run a

stochastic version of the lower-level problem in Eqs. (11)e(19) with
fixed upper-level decisions from the single-period extreme scenario
in Section 4. Specifically,we introduce imbalances such as demand as
well aswindand solar power forecast errors byadding the term imbn,t
to the left-hand-side of the nodal power balance equation (12) and
evaluate the expected balancing volume and cost by averaging the
total balancing volume and cost of all imbalance scenarios, respec-
tively. These scenarios are generated by sampling N unique four-
dimensional vectors from quarter-hourly imbalances for the four
German TSOs in 2012 [28] using the MATLAB 2015a function data-
sample. Each TSO-wise imbalance is distributed to its nodes in
accordance to their shares of demand and generation capacity. The
samples have weak positive correlation, and the marginal distribu-
tions are characterized by a spike close to zero and relatively fat tails.

With N¼10000 and expected imbalances of 1.2 GW, the expected
total generation costs with and without support payments are equal
at V1:461 million (see Table 4 in which expected congestion is
defined as congestion in more than 50% of the scenarios). As the ex-
pected balancing volumes are 3.4 GWand 9.7 GW, respectively, both
modelsneedtodosubstantial re-dispatching inorder toeliminate the
imbalances.Bycontrast, thenodalpricingmodel isable tonetpositive
and negative imbalances as the expected re-dispatch volume at
0.8 GW is lower than the expected imbalance. Nevertheless, support
payments to gas-fired plants in southern Germany can reduce re-
dispatch volumes caused by imbalances substantially, and, thus,
respondbetter to forecast errors of variable renewable generation, for
example. Performing the sensitivityanalysiswithN¼10000 scenarios
takes approximately 7 min.

In addition, we test the multi-period model by increasing con-
sumption in the second time step. Only a 3% increase in consumption
causes the model without support payments to become infeasible
due to inadequate flexibility to deploy down-reserves in northern
and eastern Germany and to deploy up-reserves in southern and
western Germany. However, themodelwith support payments finds
a solution even when consumption is 9% higher by dispatching gas-
fired plants, thereby indicating that policymakers can proactively
increase the reliability of the power systemwith support payments.

5. Conclusions

In this paper, we have developed a complementarity model to
study the impacts of support payments on total generation costs
and balancing market volumes in Germany and, thus, their impli-
cations for power system flexibility. In our base scenario - which
corresponds to normal conditions with modest renewable energy
generation - support payments are not needed, but with high wind
power production in northern Germany and high demand in
southern and western Germany, support payments to gas-fired
power plants in southern Germany become optimal. However,
the savings in total generation costs are small because the costs of
support payments and re-dispatch largely offset each other, but re-
dispatch volumes decrease significantly by a factor of 1e2. More-
over, in the multi-period scenario, we find that support payments
allow gas-fired plants to be dispatched day-ahead and reduce re-
dispatch volumes by offsetting the variability of renewable en-
ergy generation by utilizing their fast-ramping capabilities. Even in
non-extremewind conditions, re-dispatch costs are reduced so that
the uneven distribution of wind power is mitigated.

Sensitivity analysis of the optimal support payments indicates
that they can reduce expected balancing volumes and costs. Also,
the power system with support payments is able to withstand
quicker changes in consumption and renewable generation. On the
other hand, our results show that nodal pricing would be the most
effective method to decrease balancing and re-dispatch volumes.
However, the regulator has outlined that uniform pricing will be

Table 4
Summary of the results of the sensitivity analysis.

Measure Policy

No support Support Nodal

Day-ahead cost (MV) 1.289 1.400 1.381
Expected re-dispatch cost (MV) 0.172 0.061 0.002
Expected total cost (MV) 1.461 1.461 1.383
Expected re-dispatch volume (GW) 9.7 3.4 0.8
Expected congested lines 14, 18 14, 18 9, 14, 18
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maintained [5]. Therefore, support payments would be an effective
medium-term measure to integrate renewables. One drawback is
that the regulator cannot predict the market outcomes perfectly,
and, thus, excess support payments may be needed, thereby
resulting in welfare losses. Also, some capacity mechanisms have
failed to enforce timely availability [2].

From the modeling perspective, the lack of cross-border flows
and the simplicity of the day-ahead bidding model, in particular,
can give overly strong indications about the need for support
payments. Extending the model to a stochastic bi-level problem
would give more insight into optimal support payments under
spatio-temporally correlated imbalances. More extensive vulnera-
bility assessment of short-term supply adequacy could be con-
ducted with a so-called interdiction model, where the upper- and
lower-level conflict. On the one hand, future research could seek
to developmore detailed short-termmodels, but on the other hand,
long-term security of supply or possible market power issues were
not addressed. However, as we maintain the merit order using
constraints, we can specify customized objective functions that do
not minimize generation costs only, which allows for new types of
power market simulations. For example, one such possibility is to
replace support payments with CO2 prices in order to study their
impacts on power systems.
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Appendix A. MPEC formulation

We cast the bi-level program (1)e(19) as a single-level MPEC,
which is then used to formulate the linearized model. In the MPEC,
the upper-level Eqs. (1)e(10) remain unchanged, and the decision
variables consist of upper- and lower-level decision variables as
well as the dual variables of the lower-level problem [12]. Since the
lower-level problem is convex, it can be replaced by its Karush-
Kuhn-Tucker (KKT) conditions (A-2)e(A-12).

Minimize
UUL∪ULL∪UDV

X

t

X

n

X

u

!!
cmn;u þ sn;u

"
gdan;u;t þ cupn;ug

up
n;u;t

# cdown
n;u gdown

n;u;t

"
(A-1)

s:t:

Eqs. (2)#(10)
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(A-3)

gn;t ðfreeÞ; swndn;t ¼ 0 cn; t (A-4)

gupn;u;t & 0⊥cupn;u # lcmn;t þ bupn;u;t þ qupn;u;t & 0 cn;u; t (A-5)

gdown
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Appendix B. MILP formulation

Our MPEC is non-linear due to the bi-linear terms sn,ugn,u,t in Eq.
(A-1) and complementarity conditions (A-5)e(A-12). We apply the
linearization procedure of [13]. First, the complementarity condi-
tions in (A-5)e(A-12) are associated with disjunctive variables
r1,…,r8 and two corresponding disjunctive constraints in the set of
Eqs. (A-20)e(A-35). Second, we introduce valid discrete support
payment levels sn;u;i and binary indicator variables qn;u;i that equal 1
only when the ith discrete support payment level is selected.
Moreover, the binary indicator variables qg

da

n;u;t equal to 1 when
gdan;u;t >0 and 0 otherwise. Thus, the bi-linear terms in the objective
function can be replaced with the following variable

vn;u;i;t ¼

(
sn;u;ig

da
n;u;t if qn;u;i ¼ qg

da

n;u;t ¼ 1
0 otherwise

(A-13)

The logic is modeled with constraints (A-15)e(A-19) as follows.
If plant (n,u) is running at time period t, then qg

da

n;u;t is equal to one
(Eq. (A-15)). Constraint (A-16) ensures that the variable qn,u,i is
equal to 1 when the ith discrete support payment level sn;u;i is
selected and zero otherwise. Constraint (A-17) ensures that only
one payment level is selected for each (n,u). Next, constraint (A-18)
allows the binary variable qvn;u;i;t to be one only if both qg

da

n;u;t and qn,u,i
are one. Consequently, if qvn;u;i;t is zero, then constraint (A-19) drives
the bi-linear term vn,u,i,t to zero. When qvn;u;i;t becomes one, the
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lower bound of vn,u,i,t becomes sn;u;igdan;u;t , which is the optimal value
for vn,u,i,t to minimize the objective function.

Minimize
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Appendix C. Calibration and detailed results of the three-
node example

Appendix D. Calibration and detailed results of the German
power system model

We use data for the 18 DENA nodes from Ref. [10]. The baseline
demand for each zone in Table 9 is computed by averaging the off-
peak and on-peak demand share of each zone. Furthermore, we
scale these figures up by 10% to remove the impact of weekends

Table 5
Network parameters of the three-node example

Parameter l1 l2 l3

capmax
[ (MW) 10 10 10

Table 6
Demand and generation parameters of the three-node example

Parameter Node 1 Node 2 Node 3

consn (MW) 40 40 40
cmn;u (V/MWh) 20 30 40

cupn;u (V/MWh) 60 60 60

cdown
n;u (V/MWh) 20 30 40

gmax
n;u (MW) 60 60 60

Table 7
Network flow results of the three-node example

Support payments Disabled Enabled

l1 l2 l3 l1 l2 l3

Flow (MW) 0 10 10 10 0 10

Table 8
Generation results of the three-node example

Support payments Disabled Enabled

Variable node 1 node 2 node 3 node 1 node 2 node 3

sn,u (V/MWh) 0 0 0 0 0 10
gdan;u (MW) 60 60 0 60 30 30

gupn;u (MW) 0 0 20 0 0 0

gdown
n;u (MW) 10 10 0 0 0 0
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and holidays.
In compiling themaximum generation capacities in Table 10, we

neglect power plants that use biomass, waste, or oil because they
have relatively small generation capacities. For simplicity, we
combine different types of power plants using the same fuel under
one category. Furthermore, the capacities of nuclear, lignite, and
coal plants have been reduced by 15% to account for maintenance
outages. Table 11 shows the different costs and ramping efficiencies
of the power plants based on our rough estimations. We note that
wind, solar, and nuclear production cannot be up- or down-
reserved and that lignite and coal plants ramp-up relatively
slowly, whereas gas-fired plants are characterized by flexibility
[16].

The transmission network parameters in Table 12 have been
compiled by adding the thermal capacities, resistances, and re-
actances of all 220 kV and 380 kV circuits for each pair of nodes. In
calculating the thermal capacity, we assume that one 220 kV circuit
corresponds to thermal capacity of 490 MW and one 380 kV to
1700MW [10].We assume bi-directional current flowon every line,
and if technical characteristics of the line depend on the flow di-
rection, thenwe take the maximum of every parameter. To account
for network security constraints, we limit the thermal capacity of
each line to 80% of the maximum capacity.

Table 9
Baseline demand for each node in GW

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 n17 n18

consn,t 1.1 3.0 4.4 3.2 3.1 5.2 3.6 5.4 1.2 9.9 3.7 6.5 5.6 1.5 4.8 1.9 2.4 3.4

Table 10
Maximum generation capacity (gmax

n;u;t) for each node in GW

Node Type

Wind Solar Nuclear Hydro Lignite Coal Gas

n1 3.6 1.1 1.2 0 0 0.4 0
n2 4.4 1.5 0 0 0 1.4 0.7
n3 2.9 1 1.2 0.3 0.3 2 0.6
n4 1 1.4 0 0.7 0 0.9 0.5
n5 0.7 3.3 1.1 0.5 0 0 1.3
n6 0.1 4 1.2 1.4 0 0.7 2.4
n7 0.2 1.3 2.3 0.1 0 1.5 0.6
n8 0.4 3.1 0 2.5 0 0.8 0.4
n9 1.1 1 1.1 0 0 0.7 1.8
n10 0.5 1.4 0 0.2 2.2 6.2 2.6
n11 1.3 1.3 0 0.2 0 1.8 2
n12 1.3 1.1 0 0.2 6.6 0 1.5
n13 1.6 1.8 0 0.2 0 3.1 1.9
n14 0.1 2.1 2.2 0.4 0 0 0.1
n15 7.2 2.7 0 0 0.2 1.1 2.2
n16 0.4 0.2 0 0.1 0 0.4 0.1
n17 2.4 1.7 0 1.6 0.9 0 0.8
n18 2.9 2.5 0 1.2 7.6 0 0.7

Table 11
Power plant cost and efficiency parameters

type cmn;u (V/MWh) cupn;u (V/MWh) cdown
n;u (V/MWh) εda

up

n;u εda
down

n;u εreserve
up

n;u εreserve
down

n;u

u1 (wind) 0 999 #999 1 1 0 0
u2 (solar) 0 999 #999 1 1 0 0
u3 (nuclear) 1 100 #100 0 0 0 0
u4 (hydro) 5 30 5 0.5 0.7 0.5 0.7
u5 (lignite) 30 40 25 0.3 0.7 0.2 0.6
u6 (coal) 40 50 35 0.3 0.7 0.2 0.6
u7 (gas) 55 65 55 0.9 1 0.8 0.9

Table 12
Transmission network parameters

line capacity (GW) resistance (U) reactance (U)

l1 2.7 1.7 14.9
l2 4.3 11.4 67.5
l3 2.2 5.2 38.3
l4 2.7 3.2 27.4
l5 2.7 1.4 7.7
l6 3.5 3.5 27.3
l7 1.4 2.4 20.6
l8 3.5 5 31.7
l9 2.7 1.5 12.7
l10 2.7 0.9 7.4
l11 2.7 4.4 38
l12 4.1 2.6 22.8
l13 1.4 1.6 14.2
l14 2.7 1.3 11.5
l15 2.7 5.7 49
l16 5.3 17.9 115.4
l17 2.7 5.8 50.4
l18 2.7 1.7 14.6
l19 2.7 1.5 13
l20 9.4 15 122.9
l21 2.6 15.4 98.2
l22 2.7 13.3 72
l23 6.6 8.9 56.5
l24 3.1 9.1 66.4
l25 3.1 8.1 61.8
l26 4.3 11.8 66.2
l27 13.4 15.6 102.5
l28 0.8 3.1 16.6
l29 7.6 20.7 147.3
l30 2.7 2.6 22.7
l31 2.7 3.6 31
l32 5.8 20.5 165.4
l33 5.3 33.1 212.7
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Table 13
Day-ahead generation of each power plant type in GW in the base scenario (empty cells are zero)

Node Type

Wind Solar Nuclear Hydro Lignite Coal Gas

n1 1.44 0.22 1.19 0.43
n2 1.76 0.30 1.36
n3 1.16 0.20 1.19 0.06 0.34 2.04
n4 0.40 0.28 0.14 0.94
n5 0.28 0.66 1.11 0.10
n6 0.04 0.80 1.19 0.28 0.68
n7 0.08 0.26 2.30 0.02 1.53
n8 0.16 0.62 0.50 0.77
n9 0.44 0.20 1.11 0.68
n10 0.20 0.28 0.04 2.21 6.21
n11 0.52 0.26 0.04 1.79
n12 0.52 0.22 0.04 6.63
n13 0.64 0.36 0.04 3.06
n14 0.04 0.42 2.21 0.08
n15 2.88 0.54 0.17 0.76
n16 0.16 0.04 0.02 0.43
n17 0.96 0.34 0.32 0.85
n18 1.16 0.50 0.24 7.57

Table 14
Deployment of up- and down-reserves in the base scenario (empty rows and col-
umns have been removed to save space)

Node Type

Coal Gas

n7 0.43
n13 0.17
n15 #0.59

Table 15
Transmission flows in the base scenario (congested lines are indicated by *)

l1 1.67 l2 0.51 l3 0.42 l4 0.45 l5 1.24 l6 #1.93 l7 #0.18 l8 1.25 l9 #1.12 l10 #0.87 l11 #0.07
l12 #0.56 l13 #0.72 l14* 2.70 l15 #0.86 l16 1.33 l17 0.36 l18* #2.70 l19 #0.85 l20 1.19 l21 0.15 l22 #1.79
l23 #0.36 l24 0.78 l25 0.71 l26 #0.12 l27 #0.06 l28 0.14 l29 0.28 l30 0.34 l31 0.81 l32 #3.35 l33 #2.70

Table 16
Day-ahead generation of each power plant type in GW in the extreme scenario with and without support payments (empty cells are zero)

Support payments enabled Support payments disabled

Node Type

Wind Solar Nuclear Hydro Lignite Coal Gas Wind Solar Nuclear Hydro Lignite Coal

n1 2.88 0.11 1.19 2.88 0.11 1.19 0.26
n2 3.52 0.15 3.52 0.15 0.48
n3 2.32 0.10 1.19 0.06 0.34 2.32 0.10 1.19 0.06 0.34 2.03
n4 0.80 0.14 0.14 0.94 0.80 0.14 0.14 0.94
n5 0.56 0.33 1.11 0.10 1.05 0.56 0.33 1.11 0.10
n6 0.08 0.40 1.19 0.28 0.68 2.39 0.08 0.40 1.19 0.28 0.68
n7 0.16 0.13 2.30 0.02 1.53 0.16 0.13 2.30 0.02 1.53
n8 0.32 0.31 0.50 0.77 0.32 0.31 0.50 0.77
n9 0.88 0.10 1.11 0.88 0.10 1.11 0.68
n10 0.40 0.14 0.04 2.21 6.21 0.40 0.14 0.04 2.21 6.21
n11 1.04 0.13 0.04 1.79 1.04 0.13 0.04 1.79
n12 1.04 0.11 0.04 6.63 1.04 0.11 0.04 6.63
n13 1.28 0.18 0.04 3.06 1.28 0.18 0.04 3.06
n14 0.08 0.21 2.21 0.08 0.08 0.21 2.21 0.08
n15 5.76 0.27 0.17 5.76 0.27 0.17
n16 0.32 0.02 0.02 0.32 0.02 0.02
n17 1.92 0.17 0.32 0.85 1.92 0.17 0.32 0.85
n18 2.32 0.25 0.24 7.57 2.32 0.25 0.24 7.57

Table 17
Deployment of up- and down-reserves in the extreme scenario with and without
support payments (empty rows and columns have been removed to save space)

Support payments
enabled

Support payments disabled

Node Type

Lignite Gas Lignite Coal Gas

n1 #0.26
n2 #0.48
n3 #0.97
n5 0.22 1.04
n6 1.92
n7 0.48 0.48
n8 0.32 0.32
n13 0.69 0.97
n14 0.08
n17 #0.51 #0.51
n18 #1.20 #2.60
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Table 18
Transmission flows in the extreme scenario with support payments (congested lines are denoted with *)

l1 2.40 l2 0.68 l3 0.58 l4 1.09 l5 1.42 l6 2.22 l7 0.36 l8 1.72 l9 #2.57 l10 #1.53 l11 #0.58
l12 #0.25 l13 #0.05 l14* 2.70 l15 #1.25 l16 1.10 l17 0.84 l18* #2.70 l19 0.18 l20 1.17 l21 0.11 l22 #1.82
l23 #0.98 l24 1.37 l25 0.77 l26 #0.65 l27 #0.37 l28 0.29 l29 0.21 l30 0.94 l31 1.03 l32 #3.17 l33 #2.59

Table 19
Transmission flows in the extreme scenario without support payments (congested lines are denoted with *)

l1 2.38 l2 0.70 l3 0.59 l4 0.90 l5 1.60 l6 2.49 l7 0.10 l8 1.82 l9 #1.80 l10 #1.35 l11 #0.25
l12 #0.42 l13 #0.20 l14* 2.70 l15 #1.00 l16 1.26 l17 0.78 l18* #2.70 l19 #0.13 l20 1.21 l21 0.01 l22 #2.02
l23 #0.76 l24 1.46 l25 0.91 l26 #0.61 l27 #0.33 l28 0.40 l29 0.23 l30 0.56 l31 1.36 l32 #2.36 l33 #2.01

Table 20
Day-ahead generation of each power plant type in GW in the extreme scenario with nodal pricing

Node Type

Wind Solar Nuclear Hydro Lignite Coal Gas

n1 2.88 0.11 1.19
n2 3.52 0.15
n3 2.32 0.10 1.19 0.06 0.34
n4 0.80 0.14 0.14 0.94
n5 0.56 0.33 1.11 0.10 1.30
n6 0.08 0.40 1.19 0.28 0.68 2.31
n7 0.16 0.13 2.30 0.02 1.53 0.55
n8 0.32 0.31 0.50 0.77 0.26
n9 0.88 0.10 1.11
n10 0.40 0.14 0.04 2.21 6.00
n11 1.04 0.13 0.04 1.79
n12 1.04 0.11 0.04 6.63
n13 1.28 0.18 0.04 3.06 0.73
n14 0.08 0.21 2.21 0.08
n15 5.76 0.27 0.17
n16 0.32 0.02 0.02
n17 1.92 0.17 0.32
n18 2.32 0.25 0.24 6.91

Table 21
Transmission flows in the extreme scenario with nodal pricing

l1 2.40 l2 0.68 l3 0.58 l4 1.13 l5 1.39 l6 2.27 l7 0.41 l8 1.77 l9* #2.70 l10 #1.56 l11 #0.58
l12 #0.23 l13 #0.02 l14* 2.70 l15 #1.25 l16 1.15 l17 0.82 l18* #2.70 l19 0.15 l20 1.21 l21 0.12 l22 #1.87
l23 #0.96 l24 1.45 l25 0.78 l26 #0.72 l27 #0.42 l28 0.29 l29 0.21 l30 1.00 l31 1.13 l32 #3.47 l33 #2.84

Table 22
Day-ahead generation in each power plant type in the multi-period case with support payments (empty cells are zero)

Node Type

Wind Solar Nuclear Hydro Lignite Coal Gas

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

n1 1.44 2.88 0.22 0.11 1.19 1.19 0.43 0.26
n2 1.76 3.52 0.30 0.15 1.36 0.60
n3 1.16 2.32 0.20 0.10 1.19 1.19 0.06 0.06 0.34 0.34 2.04 0.61
n4 0.40 0.80 0.28 0.14 0.14 0.14 0.94 0.94
n5 0.28 0.56 0.66 0.33 1.11 1.11 0.10 0.10 0.26 1.30
n6 0.04 0.08 0.80 0.40 1.19 1.19 0.28 0.28 0.68 0.68 0.34
n7 0.08 0.16 0.26 0.13 2.30 2.30 0.02 0.02 1.53 1.53
n8 0.16 0.32 0.62 0.31 0.50 0.50 0.77 0.77
n9 0.44 0.88 0.20 0.10 1.11 1.11 0.68 0.20
n10 0.20 0.40 0.28 0.14 0.04 0.04 2.21 2.21 6.21 6.21
n11 0.52 1.04 0.26 0.13 0.04 0.04 1.79 1.79
n12 0.52 1.04 0.22 0.11 0.04 0.04 6.63 6.63
n13 0.64 1.28 0.36 0.18 0.04 0.04 3.06 3.06
n14 0.04 0.08 0.42 0.21 2.21 2.21 0.08 0.08
n15 2.88 5.76 0.54 0.27 0.17 0.17 0.50
n16 0.16 0.32 0.04 0.02 0.02 0.02 0.43 0.13
n17 0.96 1.92 0.34 0.17 0.32 0.32 0.85 0.85
n18 1.16 2.32 0.50 0.25 0.24 0.24 7.57 7.57
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Appendix E. Nodal pricing model

For the nodal pricing model below, we introduce non-negative
dual variables bdan;u;t ; b

daup
n;u;t , and bda

down

n;u;t for Eqs. (A-38)e(A-40),
respectively.

Minimize
gda
n;u;t
&0

;dn;u;t

X

t

X

n

X

u
cmn;ug

da
n;u;t (A-36)

s:t:

consn;t #
X

u
gdan;u;t #

X

k

Bn;kdk;t ¼ 0 lcmn;t ðfreeÞ cn; t

(A-37)

gdan;u;t % gmax
n;u;t bupn;u;t & 0 cn;u; t (A-38)

gdan;u;t # gdan;u;t#1 % εda
up

n;u gmax
n;u;t bda

up

n;u;t & 0 cn;u; and ct & 2

(A-39)

gdan;u;t#1 # gdan;u;t % εda
down

n;u gmax
n;u;t bda

down

n;u;t & 0 cn;u; and ct & 2

(A-40)

X

n
H[;ndn;t % capmax

[ m[;t & 0 c[; t (A-41)

#
X

n
H[;ndn;t % capmax

[ m[;t & 0 c[; t (A-42)

Table 23
Day-ahead generation in each power plant type in the multi-period case without support payments (empty cells are zero)

Node Type

Wind Solar Nuclear Hydro Lignite Coal

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

n1 1.44 2.88 0.22 0.11 1.19 1.19 0.43 0.26
n2 1.76 3.52 0.30 0.15 1.36 0.82
n3 1.16 2.32 0.20 0.10 1.19 1.19 0.06 0.06 0.34 0.34 2.04 1.06
n4 0.40 0.80 0.28 0.14 0.14 0.14 0.94 0.94
n5 0.28 0.56 0.66 0.33 1.11 1.11 0.10 0.10
n6 0.04 0.08 0.80 0.40 1.19 1.19 0.28 0.28 0.68 0.68
n7 0.08 0.16 0.26 0.13 2.30 2.30 0.02 0.02 1.53 1.53
n8 0.16 0.32 0.62 0.31 0.50 0.50 0.77 0.77
n9 0.44 0.88 0.20 0.10 1.11 1.11 0.68 0.68
n10 0.20 0.40 0.28 0.14 0.04 0.04 2.21 2.21 6.21 6.21
n11 0.52 1.04 0.26 0.13 0.04 0.04 1.79 1.79
n12 0.52 1.04 0.22 0.11 0.04 0.04 6.63 6.63
n13 0.64 1.28 0.36 0.18 0.04 0.04 3.06 3.06
n14 0.04 0.08 0.42 0.21 2.21 2.21 0.08 0.08
n15 2.88 5.76 0.54 0.27 0.17 0.17 0.76 0.38
n16 0.16 0.32 0.04 0.02 0.02 0.02 0.43 0.26
n17 0.96 1.92 0.34 0.17 0.32 0.32 0.85 0.85
n18 1.16 2.32 0.50 0.25 0.24 0.24 7.57 7.57

Table 24
Deployment of up- and down-reserves in the multi-period case with and without support payments (empty rows and columns have been removed to save space)

Support payments enabled Support payments disabled

Node Type

Lignite Coal Gas Lignite Coal Gas

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

n1 #0.26 #0.26
n2 #0.60 #0.82
n3 #0.61 1.04
n5 0.42 1.92
n6 1.92
n7 0.48 0.48
n8 0.32 0.32
n9 #0.20
n13 0.34 0.71 0.17 0.97
n14 0.08 0.08
n15 #0.34 #0.59 #0.38
n16 #0.13 #0.26
n17 #0.51 #0.51
n18 #1.20 #2.60
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swndn;t ¼ 0 gn;t ðfreeÞ cn; t (A-43)
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a b s t r a c t 
The increase in intraday electricity market volumes due to intermittent renewable generation may give 
a strategic producer an opportunity to exert market power. We study offering strategies of a flexible 
producer in day-ahead and intraday markets using a bi-level model in which the upper level represents 
the profit-maximization problem of the producer and the lower-level problems clear the day-ahead and 
intraday markets sequentially. Using a three-node network, we first demonstrate that a flexible producer 
with perfect forecasts can increase its profit in both markets by coordinating its offer so as to cause 
transmission grid congestion or lack of competitive generation capacity. Moreover, we show that strategic 
behavior is possible even when the day-ahead and intraday markets are cleared simultaneously to lower 
balancing costs. We next assess these market designs in a Nordic test network and offer an explanation 
for high Nordic intraday prices. Finally, via an annual simulation using the Nordic market data, we verify 
that strategic offering in day-ahead and intraday markets under imperfect forecasts leads to increased 
profits vis-à-vis perfect competition but are mitigated through simultaneous market clearing. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 
In the continental European and Nordic electricity markets, 

the initial generation, load, and transmission flow plans are re- 
vealed after the clearing of the day-ahead spot market. As a result 
of asset failures and updated forecasts, these day-ahead plans 
may be altered in the intraday market until one hour (Nordic 
countries) or 15 minutes (Germany) before delivery. Ultimately, 
transmission system operators (TSOs) balance real-time deviations 
from the final plans by activating balancing power (see Fig. 1 
and Mauritzen, 2015; Pape, Hagemann, & Weber, 2016 ). While 
such a clearing mechanism may have been adequate for power 
systems based on conventional generation, it may not be effective 
in integrating intermittent renewable energy resources in line with 
EU policy ( European Commission, 2014; Morales, Zugno, Pineda, & 
Pinson, 2014 ). Indeed, from 2010 to 2016, intraday volumes have 

∗ Corresponding author at: Department of Statistical Science, University College 
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E-mail addresses: tuomas.rintamaki@aalto.fi (T. Rintamäki), 
afzal.siddiqui@ucl.ac.uk (A.S. Siddiqui), ahti.salo@aalto.fi (A. Salo). 

surged up to 200% in northwestern Europe due to the increase 
in the generation of intermittent renewables such as wind power 
( Nord Pool, 2017; EPEX Spot, 2017 ). Flexible producers such as 
hydropower and gas-fired generators can profit from trading in 
the intraday market because a deficit leads to a higher intraday 
price than the day-ahead spot price given that less expensive 
offers have already been settled in the spot market. By contrast, a 
surplus causes the intraday price to be lower than the day-ahead 
spot price, which enables the flexible producer to replace its ex- 
pensive generation with cheaper output from the intraday market 
( Boomsma, Juul, & Fleten, 2014 ). 

In this paper, we study how a flexible strategic producer can 
use day-ahead and intraday offers to exploit market designs in 
the presence of high intraday volumes. Because the day-ahead 
and intraday markets typically face inflexible demand and share 
the same generation and transmission constraints, such a strategic 
producer may affect the market-clearing transmission flows and 
the generation plans of its rivals in both markets. By correctly 
anticipating a deficit or surplus in the intraday market via time- 
series forecasting, for example ( Klæboe, Eriksrud, & Fleten, 2015 ), a 
flexible producer can increase its profit by decreasing or increasing 

https://doi.org/10.1016/j.ejor.2020.01.044 
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Fig. 1. Timeline of day-ahead and intraday markets in the Nordic countries. 

its offering to the day-ahead spot market, respectively. However, 
if the deviations do not realize as forecasted, then the producer 
can make a loss as it may not deploy its generation assets 
optimally. 

We build a stochastic bi-level model in which the strategic 
producer maximizes its profit in the upper level and the day-ahead 
and intraday markets are cleared in the lower level. Our main 
contribution is an assessment of coordinated strategic offering 
in both markets by allowing for endogenous determination of 
prices in the day-ahead and intraday markets in the presence 
of ramp restrictions and possible transmission grid congestion. 
Earlier work assumes exogenous intraday prices (e.g., Baringo & 
Conejo, 2016; Boomsma et al., 2014; Wozabal & Rameseder, 2020 ), 
Cournot competition without a transmission network model ( Ito 
& Reguant, 2016; Knaut & Obermüller, 2016 ), or a producer with 
limited opportunities for strategic behavior ( Dai & Qiao, 2015; Dai 
& Qiao, 2017 ). To this end, we address three objectives: 
1) We employ a representative test network to illustrate how a 

range of coordinated offering strategies in the day-ahead and 
intraday markets may be formed when the strategic producer 
has perfect forecasts for all market data. 

2) Building on these strategies, we conduct a case study using 
real market data to provide evidence for the very high intraday 
prices observed in Nord Pool in early 2016. 

3) By employing the real market data in a simulation of day-ahead 
and intraday markets over a year, we estimate the expected 
impact of strategic offering on both day-ahead and intraday 
profits and generation costs when the offer curves are built 
with imperfect forecasts. 
In addition, we show that an alternative market design that 

simultaneously minimizes day-ahead and expected intraday costs 
( Morales et al., 2014 ) can be manipulated by a strategic producer. 
However, via an annual simulation to assess the mean perfor- 
mance of the market designs, we find that this alternative market 
design mitigates the impact of strategic behavior vis-à-vis the 
conventional dispatch model in expectation. Methodologically, 
we provide computationally tractable model reformulations using 
duality theory ( Ruiz & Conejo, 2009 ) and by extending binary 
expansion ( Barroso, Carneiro, Granville, Pereira, & Fampa, 2006 ) 
for signed quantities. 

This paper is organized as follows. In Section 2 , we dis- 
cuss models for day-ahead and intraday electricity markets as 
well as strategic offering. Section 3 presents our bi-level model, 
and Section 4 gives numerical results for objectives (1)–(3). 
Section 5 concludes and provides directions for future work. 

2. Literature review 
Offering into day-ahead electricity markets is well-studied in 

the literature. Fleten and Kristoffersen (2007) develop a stochastic 
programming model for building detailed offer curves of a flexible 
hydropower producer when market prices are modeled by an 
exogenous stochastic process. Using a bi-level model, Ruiz and 
Conejo (2009) build offer curves of a strategic producer for a sin- 
gle transmission-constrained electricity market under uncertainty 
about demand bids and offer curves of rival firms. To maximize its 
profits, the strategic producer can withhold generation and utilize 
transmission grid congestion as well as limited ramping speed of 
its rivals ( Clements, Hurn, & Li, 2016 ). Moiseeva, Hesamzadeh, and 
Biggar (2015) consider a market design in which producers bid 
their ramp rates and show that flexible strategic generators seek 
to lift prices by bidding ramp rates below their technical capabil- 
ity. By contrast, Kazempour, Conejo, and Ruiz (2015) consider a 
strategic consumer with elastic demand who seeks to increase its 
utility by decreasing its bid prices. Kwon and Frances (2012) re- 
view such mathematical programming models for a power 
producer’s offers with both strategic and perfectly competitive 
assumptions. 

The day-ahead offering models can readily consider additional 
markets such as intraday markets by introducing exogenous prices. 
For example, Baringo and Conejo (2013b) build wind power offer 
curves while taking exogenous balancing market price scenarios 
into account. Kardakos, Simoglou, and Bakirtzis (2016) model 
a virtual power plant with load, generation, and storage that 
maximizes expected profit resulting from endogenous day-ahead 
sales revenue and exogenous balancing costs. On the other hand, 
Rahimiyan and Baringo (2015) use robust optimization to deter- 
mine offers into uncertain but perfectly competitive day-ahead 
and regulation markets. 

Ito and Reguant (2016) consider a Cournot competition model 
in which a monopolist decides its commitment into two sequential 
markets such as the electricity day-ahead and real-time markets. 
The demand that the monopolist faces in the day-ahead and 
intraday market is assumed to be linearly dependent on the day- 
ahead price and the price difference between the two markets, 
respectively. As a result, their theoretical framework predicts that 
the monopolist withholds quantity in the day-ahead market and 
increases its commitment in the intraday market. Meanwhile, 
price-taking competitive producers have an incentive to arbitrage 
the price difference between the two markets by selling more in 
the day-ahead market. The authors analyze market and plant-level 
data from the Iberian electricity market to confirm the predictions 
for the monopolist and competitive producers. 
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Knaut and Obermüller (2016) model Cournot competition 

between strategic renewable energy and competitive conven- 
tional producers in a day-ahead market with uncertainty about 
renewable generation, which is resolved in a sequentially cleared 
intraday market. They find that it is optimal for renewable energy 
producers to sell less than their expected generation in the day- 
ahead market. However, the sales volume approaches expected 
production if either the number of symmetric renewable energy 
producers increases or the flexibility of conventional producers in 
the intraday market decreases. 

Dai and Qiao (2015) consider a strategic wind power pro- 
ducer that builds offer curves for sequentially cleared day-ahead 
and real-time markets. They find that the producer can increase 
its profits in both markets with strategic offering. However, 
the strategic producer has limited offering possibilities into the 
real-time market as it needs to correct its deviations from the 
day-ahead dispatch caused by wind power forecast errors. Dai 
and Qiao (2017) find that day-ahead and real-time profits and 
prices increase further in the presence of multiple strategic wind 
power and conventional producers. However, due to computational 
challenges, they use an approximation algorithm to determine the 
strategies of wind power producers and a discrete set of strate- 
gies for the conventional generators, which are likely to ignore 
possibilities for strategic behavior. Bjørndal, Bjørndal, and Rud 
(2013) search iteratively for strategic spot price offers that lead to 
transmission grid congestion, higher prices in the intraday market, 
and lower social welfare. 

Morales et al. (2014) find that the market design that mini- 
mizes the sum of day-ahead and expected intraday costs is more 
economical than the sequential dispatch. Even though their mar- 
ket design can anticipate the cost-increasing impact of strategic 
offers in the intraday market, we show that a strategic player 
can still coordinate its offer to increase prices in the day-ahead 
market. Our result is in line with that of Lei, Zhang, Dong, and 
Ye (2016) who show that the strategic behavior of a wind power 
producer reduces social welfare when the day-ahead and intraday 
markets are cleared simultaneously. 

Indeed, there is recent empirical support for strategic behavior 
in different power markets: Tangerås and Mauritzen (2018) find 
evidence for day-ahead market power by flexible producers in cer- 
tain Swedish price areas in Nord Pool, Just and Weber (2015) for 
the German balancing market, Amountzias, Dagdeviren, and 
Patokos (2017) for the U.K. wholesale and retail markets, and 
California ISO (2018) for the 5-minute market in California. To this 
end, our objectives are to illustrate coordinated offering strategies 
into day-ahead and intraday markets, provide evidence for very 
high observed prices in Nord Pool using these strategies, and esti- 
mate the expected impact of strategic offering on both day-ahead 
and intraday generation costs. 
3. Mathematical model for strategic offering in day-ahead and 
intraday markets 
3.1. Overview of day-ahead and intraday bidding 

To enter the possibly more profitable intraday market, a flexible 
producer may choose to alter its day-ahead offer curves based 
on anticipated intraday deviations. As an example, the producer 
can offer lower volume in the day-ahead market if it anticipates 
a deficit and higher prices in the intraday market. Consequently, 
the two markets need to be considered jointly already when 
bidding to the day-ahead market. When the day-ahead plans 
are revealed around noon as shown in Fig. 1 , the producer can 
start submitting offer curves into intraday and balancing mar- 
kets. The producer can update these initial intraday offer curves 
as new information, such as updated wind power forecasts or 

outage schedules, becomes available. This process, which repeats 
every trading day, is done by all producers and consumers in the 
market. 

We focus on modeling the building of day-ahead and intra- 
day offer curves from the perspective of a flexible and strategic 
producer. In addition to adjusting the day-ahead and intraday 
offer curves based on external factors such as anticipated intraday 
deviations due to wind power forecast errors, the producer can 
pursue higher profits by manipulating prices in both markets by 
setting strategic price and volume offers. More specifically, strate- 
gic producer (SP) x ∈ X coordinates the building of day-ahead 
and intraday offer curves by selecting price ( p da , p up , and p down ) 
and quantity offers ( q da ) to maximize its expected profit in the 
day-ahead and intraday markets. To this end, the SP solves a 
bi-level problem in which the upper level represents the profit 
maximization of the SP and sets exchange-specific constraints on 
the permitted price and quantity offers. In turn, the profit of the 
SP is affected by the day-ahead and intraday prices ( λda 

s and λintra 
s ) 

and generation ( g da 
s , g up 

s , and g down 
s ), which are determined as the 

solution to a collection of lower-level problems that minimize 
the costs of generation in each scenario s given the price and 
quantity offers of the SP. Other producers are assumed to be 
perfectly competitive in that the price and quantity offers of these 
competitive producers (CPs) equal their marginal generation costs 
( C da , C up , and C down ) and available generation capacities ( G max ), 
respectively. These parameters can be estimated using market 
data. 

Similarly, we assume that all consumers are competitive and 
the total consumption in the day-ahead and intraday markets 
is represented using parameters D da 

s and D intra 
s , respectively. We 

make this simplification because (i) demand is very inelastic 
( Cialani & Mortazavi, 2018 ), (ii) demand-side flexibility is limited 
in availability ( Müller & Möst, 2018 ), and (iii) a part of D intra 

s is not 
controlled by consumers due to unexpected weather changes, for 
example. We do not model an explicit linkage between D da 

s and 
D intra 

s , but practitioners may use existing market data and predic- 
tive models for estimating D da 

s and D intra 
s so that possible correla- 

tions or consumer behavior are implicitly reflected in the param- 
eter values for each scenario s when the SP builds its offer curves. 

In this conventional dispatch model (ConvD), the day-ahead 
and intraday markets clear sequentially so that the intraday mar- 
ket is dependent on the generation and transmission flows in the 
day-ahead market ( g da and f da ). An illustration of strategic offer 
curve building in day-ahead and intraday markets with ConvD is 
shown in Fig. 2 . 

We compare the aforementioned ConvD model, which clears 
the day-ahead and intraday markets sequentially, to a market 
design that clears the day-ahead and intraday markets simultane- 
ously by representing the two markets with a single lower-level 
problem for each scenario. This design is similar to the StochD 
model of Morales et al. (2014) and may cause a generator to be 
dispatched out of merit order in the day-ahead market if that 
generator lowers the expected intraday cost. An illustration of 
building strategic day-ahead and intraday offer curves with StochD 
is shown in Fig. 3 . 

Moreover, we compare strategic offering with ConvD and 
StochD to a perfectly competitive (PC) model in which the price 
and quantity offers of the SP equal its marginal generation costs 
and available generation capacities, respectively. Consequently, the 
SP becomes one of the CPs and can no longer manipulate prices 
in the day-ahead and intraday markets. An illustration of the PC 
model is shown in Fig. 4 . 

In what follows, we present the mathematical formulation for 
building strategic offer curves with the ConvD model. The formu- 
lation for PC and StochD models is presented in Appendix A and 
Appendix C , respectively. 
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Fig. 2. Illustration of strategic offer curve building in day-ahead and intraday markets with ConvD (all variable indices except scenarios s have been omitted). 

Fig. 3. Illustration of strategic offer curve building in day-ahead and intraday markets with StochD (all variable indices except scenarios s have been omitted). 

Fig. 4. Illustration of PC in which the SP is no longer strategic but is one of the CPs (all variable indices except scenarios s have been omitted). 
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3.2. Mathematical formulation 
3.2.1. Notation 

Sets and indices 
n ∈ N Nodes 
u ∈ U Generation units 
b ∈ B Generation blocks 
" ∈ L Transmission lines 
s ∈ S Scenarios 
f ∈ F Generation firms 
x ∈ X ⊂ F 
y ∈ Y ⊂ F Strategic firms 

Competitive firms }X ∩ Y = ∅ and X ∪ Y = F
Parameters 
W s The probability of scenario s 
D da 

s,n Demand at node n in scenario s in the day-ahead market 
(megawatt) 

D intra 
s,n Demand at node n in scenario s in the intraday market 

(megawatt) 
C da 

f,n,u,b Day-ahead marginal cost of generation of the bth block of 
firm f ’s unit u at node n ( € per megawatt) 

C up/down 
f,n,u,b Up/down-regulation cost of the bth block of firm f ’s unit 

u at node n ( € per megawatt) 
G max 

f,n,u,b Maximum generation capacity of the bth block of firm f ’s 
unit u at node n (megawatt) 

G up/down,ramp 
f,n,u,b Maximum up/down-regulation ramp of the bth block of 

firm f ’s unit u at node n (megawatt) 
NT C max/min 

" Maximum/minimum transmission flow on the line " 
(megawatt) 

Y ",n Transmission line and node incidence matrix " × n 
#da,max/min Maximum/minimum day-ahead price in the power 

exchange ( € per megawatt) 
#intra,max/min Maximum/minimum intraday price in the power 

exchange ( € per megawatt) 
Free variables 
λda 

s,n Day-ahead price in scenario s at node n ( € per megawatt) 
λintra 

s,n Intraday price in scenario s at node n ( € per megawatt) 
p da 

x,n,u,b Price offer of the bth block of strategic firm x ’s unit u at 
node n for the day-ahead market ( € per megawatt) 

p up/down 
x,n,u,b Price offer of the b:th block of strategic firm x ’s unit u at 

node n for up/down-regulation ( € per megawatt) 
f da 
s," Transmission flow on line " in scenario s in the 

day-ahead market (megawatt) 
f intra 
s," Transmission flow on line " in scenario s in the intraday 

market (megawatt) 
Positive variables 
q da 

x,n,u,b Quantity offer of the bth block of strategic firm x ’s unit u 
at node n for the day-ahead market (megawatt) 

g da 
s, f,n,u,b Day-ahead generation of the bth block of firm f ’s unit u 

at node n in scenario s (megawatt) 
g up/down 

s, f,n,u,b Up/down-regulation of the bth block of firm f ’s unit u at 
node n in scenario s (megawatt) 

βda 
s, f,n,u,b Dual for maximum day-ahead generation of the bth block 

of firm f ’s unit u at node n in scenario s ( € per 
megawatt) 

βup/down 
s, f,n,u,b Dual for maximum up/down-regulation of the bth block 

of firm f ’s unit u at node n in scenario s ( € per 
megawatt) 

βup/down,ramp 
s, f,n,u,b Dual for maximum up/down-regulation ramp of the bth 

block of firm f ’s unit u at node n in scenario s ( € per 
megawatt) 

µda,max/min 
s," Dual for maximum/minimum flow on line " in scenario s 

in the day-ahead market ( € per megawatt) 
µintra,max/min 

s," Dual for maximum/minimum flow on line " in scenario s 
in the intraday market ( € per megawatt) 

Binary variables 
up s,x,n Indicator variables equal 1 if strategic firm x up-regulates 

at node n in scenario s 
3.2.2. Upper-level problem 

The bi-level problem is solved with respect to %UL = 
{ q da 

x,n,u,b , p da 
x,n,u,b , p up 

x,n,u,b , p down 
x,n,u,b , up s,x,n } , %LL da = { g da 

s, f,n,u,b , f da 
s," } , 

and %LL intra = { g up 
s, f,n,u,b , g down 

s, f,n,u,b , f intra 
s," } . The upper level of the 

bi-level problem is: 

Minimize 
%UL ∪ %LL da ∪ %LL intra 

∑ 
s W s [∑ 

n 
∑ 

u 
∑ 

b 
(

g da 
s,x,n,u,b (C da 

x,n,u,b − λda 
s,n )

+ g up 
s,x,n,u,b (C up 

x,n,u,b − λintra 
s,n )

− g down 
s,x,n,u,b (C down 

x,n,u,b − λintra 
s,n ))]

(1) 
s.t. 

#da,min ≤ p da 
x,n,u,b ≤ #da,max ∀ n, u, b (2) 

#intra,min ≤ p up 
x,n,u,b ≤ #intra,max ∀ n, u, b (3) 

#intra,min ≤ p down 
x,n,u,b ≤ #intra,max ∀ n, u, b (4) 

p da 
x,n,u,b + p da 

x,n,u,b−1 ∀ n, u, and ∀ b > 1 (5) 
p up 

x,n,u,b + p up 
x,n,u,b−1 ∀ n, u, and ∀ b > 1 (6) 

p down 
x,n,u,b ≤ p down 

x,n,u,b−1 ∀ n, u, and ∀ b > 1 (7) 
q da 

x,n,u,b ≤ G max 
x,n,u,b ∀ n, u, b (8) 

g up 
s,x,n,u,b ≤ M · up s,x,n ∀ s, n, u, b (9) 

g down 
s,x,n,u,b ≤ M · (1 − up s,x,n ) ∀ s, n, u, b, (10) 

Day-ahead market dispatch in Eqs. (11)–(15) 
Intraday market dispatch in Eqs. (16)–(22) 

The objective function (1) represents the maximization of the 
expected profit of the SP over a set of a scenarios s by adding the 
expected day-ahead profit to the expected profit from increasing 
and decreasing generation in the intraday market. We assume 
that every generation unit is divided into blocks that have a 
constant cost for day-ahead generation ( C da 

f,n,u,b ) as well as up- and 
down-regulation ( C up 

f,n,u,b and C down 
f,n,u,b , respectively), i.e., increasing 

or decreasing generation in the intraday market, respectively. 
Note that in case of day-ahead generation and up-regulation, the 
generators lose C da 

f,n,u,b or C up 
f,n,u,b and receive λda 

s,n or λintra 
s,n from a 

buyer, respectively, and in case of down-regulation, the generators 
save C down 

f,n,u,b and pay λintra 
s,n to a seller. The SP can specify a price 

offer for each of its generation blocks for both the day-ahead 
and intraday market, while a quantity offer is set only for the 
day-ahead market. This is because we assume that the volumes 
that are not dispatched in the day-ahead market are available in 
the intraday market. 

The upper-level problem is constrained by Eqs. (2) –(4) , which 
define maximum and minimum price offers of the SP for the 
day-ahead and intraday markets. Moreover, Eqs. (5) –(7) ensure 
that offer curves are increasing. The day-ahead quantity offers are 
limited by the generation capacity of each block (8) . Eqs. (9) and 
(10) forbid simultaneous up- and down-regulation at each node 
through the binary variable up s , x , n so that the SP is not able to 
increase its up-regulation profit by adversely down-regulating 
while it is also up-regulating. 



T. Rintamäki, A.S. Siddiqui and A. Salo / European Journal of Operational Research 284 (2020) 1136–1153 1141 
3.2.3. Day-ahead market dispatch 

The day-ahead market is given by a collection of lower-level 
problems in Eqs. (11)–(15). 

∀ s 

 
                
                

Minimize 
%LL da 

∑ 
n 

∑ 
u 

∑ 
b p da 

x,n,u,b g da 
s,x,n,u,b + ∑ 

y 
∑ 

n 
∑ 

u 
∑ 

b C da 
y,n,u,b g da 

s,y,n,u,b (11) 
s.t. 

D da 
s,n = ∑ 

f 
∑ 

u 
∑ 

b g da 
s, f,n,u,b + ∑ 

" Y ",n f da 
",n λda 

s,n free ∀ n (12) 
g da 

s,x,n,u,b ≤ q da 
x,n,u,b βda 

s,x,n,u,b + 0 ∀ n, u, b (13) 
g da 

s,y,n,u,b ≤ G max 
y,n,u,b βda 

s,y,n,u,b + 0 ∀ y, n, u, b (14) 
NT C min 

" ≤ f da 
s," ≤ NT C max 

" µda,min/max 
s," + 0 ∀ " (15) 

The objective function (11) minimizes the day-ahead cost of 
generation in each scenario s , which consists of the price offers of 
the SP and the marginal costs of the CPs. Eq. (12) ensures that, in 
each scenario and node, supply matches demand, which is given 
by the parameters D da 

s,n . These constraints consider the effect of 
flows f da 

s," using an incidence matrix Y whose element ( " , n ) equals 
to 1 if node n is the starting point of the line " , −1 if n is the end 
point, and 0 otherwise. Such a flow model is used in the Nordic 
market, for example Nord Pool (2009) . Also, the dual variables 
on the right-hand side of Eq. (12) correspond to nodal day-ahead 
prices. Eqs. (13) and (14) limit the generation of the SP blocks 
by the quantity offers and the CP blocks by the block capacities, 
respectively. Eq. (15) bounds day-ahead transmission flows so that 
congestion occurs in the transmission network in the day-ahead 
market if any of these constraints becomes binding. 
3.2.4. Intraday market dispatch 

The intraday market is given by a collection of lower-level 
problems in Eqs. (16) –(22) . 

∀ s 

 
                     
                     

Minimize 
%LL intra 

∑ 
n 

∑ 
u 

∑ 
b 

(
p up 

x,n,u,b g up 
s,x,n,u,b − p down 

x,n,u,b g down 
s,x,n,u,b ) + ∑ 

y 
∑ 

n 
∑ 

u 
∑ 

b 
(
C up 

y,n,u,b g up 
s,y,n,u,b − C down 

y,n,u,b g down 
s,y,n,u,b ) (16) 

s.t. 
D intra 

s,n = ∑ 
f 

∑ 
u 

∑ 
b 

(
g up 

s, f,n,u,b − g down 
s, f,n,u,b ) + ∑ 

" Y ",n f intra 
",n λintra 

s,n free ∀ n (17) 
g down 

s, f,n,u,b ≤ g da 
s, f,n,u,b βdown 

s, f,n,u,b + 0 ∀ f, n, u, b (18) 
g da 

s, f,n,u,b + g up 
s, f,n,u,b ≤ G max 

f,n,u,b βup 
s, f,n,u,b + 0 ∀ f, n, u, b (19) 

g down 
s, f,n,u,b ≤ G down,ramp 

f,n,u,b βdown,ramp 
s, f,n,u,b + 0 ∀ f, n, u, b (20) 

g up 
s, f,n,u,b ≤ G up,ramp 

f,n,u,b βup,ramp 
s, f,n,u,b + 0 ∀ f, n, u, b (21) 

NT C min 
" ≤ f da 

s," + f intra 
s," ≤ NT C max 

" µintra,min/max 
s," + 0 ∀ " (22) 

Similar to the day-ahead market, the objective function (16) min- 
imizes the cost of intraday generation in each scenario s given 
the intraday price offers of the SP and the marginal costs of the 
CPs. In intraday balance Eq. (17) , scenario- and node-wise intraday 
demand D intra 

s,n is a parameter that can take on either positive or 
negative values because real-time demand can be higher or lower 
than anticipated in the day-ahead market, respectively. Note that 
D intra 

s,n can be estimated by an exogenous model that correlates 
it with day-ahead demand D da 

s,n . Also, the dual variables on the 
right-hand side of Eq. (17) correspond to nodal intraday prices. 
The intraday dispatch takes the day-ahead generation and trans- 
mission plans as an input so that Eqs. (18) and (19) ensure that 
the final generation of each block is between zero and the block 

capacity if ramping constraints (20) and (21) are not already met. 
Finally, Eq. (22) constrains the final transmission flows between 

the minimum and maximum transmission capacity ( NT C min 
" and 

NT C max 
" , respectively). 

We compare the results of the above conventional dispatch 
(ConvD) model with a perfectly competitive (PC) model in 
which just the two lower-level problems (11) –(15) and (16) –(22) 
are run sequentially. Similar to the CPs, the price and quan- 
tity offers of the SP are set to its blockwise generation costs 
( p d a/up/d own 

x,n,u,b = C d a/up/d own 
x,n,u,b ) and capacities ( q da 

x,n,u,b = G max 
x,n,u,b ), respec- 

tively. Moreover, we compare our results to the StochD model of 
Morales et al. (2014) that combines the two lower-level problems 
by adding the intraday objective function (16) to that of the 
day-ahead market clearing (11) and by augmenting the constraints 
of the day-ahead problem (12) –(15) with the intraday constraints 
(17) –(22) . Morales et al. (2014) consider only perfect competition, 
and we show that their market design can be manipulated by a 
strategic producer even if it leads to lower total generation cost 
than ConvD in expectation. 

Following the solution procedure of Gabriel and Leuthold 
(2010) , the bi-level ConvD problem is reformulated as a single- 

level mathematical program with equilibrium constraints (MPEC) 
in Appendix A , which is further reformulated and solved as a 
mixed-integer linear programming (MILP) problem in Appendix B . 
For ConvD, the bilinear terms g up 

s,x,n,u,b λintra 
s,n and g down 

s,x,n,u,b λintra 
s,n in 

Eq. (1) are discretized using a reformulation of binary expansion of 
Barroso et al. (2006) so that the terms can become negative. The 
discretization may lead to suboptimal results, but the suboptimal- 
ity can be reduced by making the related discretization intervals 
Ḡ up/down 

x,n,u,b > 0 smaller. For StochD, we are able to provide an exact 
MILP reformulation without discretization using strong duality 
( Ruiz & Conejo, 2009 ) in Appendix C . The PC model can be solved 
exactly as a series of linear systems as detailed in Appendix A . 
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Fig. 5. Three-node network indicating conventional direction of flow and each 
node’s units. 
4. Numerical results 

In Section 4.1 , we address our first objective to demonstrate the 
logic of coordinated offering strategies in detail using a represen- 
tative test network. Consequently, we take only the perspective of 
a strategic producer by building the day-ahead and intraday offer 
curves and by analyzing what would happen in the day-ahead 
and intraday markets if both would realize exactly as the SP 
anticipates. In Section 4.2 , we use the strategies and insights from 
Section 4.1 to address our second objective to explain high prices 
observed in Nord Pool in 2016. Finally, in Section 4.3 , we address 
our third objective to estimate the expected impact of strategic 
offering on day-ahead and intraday costs by considering a more 
realistic setting in which a market operator clears the day-ahead 
and intraday markets sequentially given real market data and 
the coordinated day-ahead and intraday offer curves that the SP 
builds using estimated market data. This process simulates the real 
timeline of day-ahead and intraday markets as shown in Fig. 1 . 
4.1. Three-node network 

To address our objective (1) to demonstrate coordinated offer- 
ing strategies in day-ahead and intraday markets, we first consider 
an illustrative three-node network in which there is demand 
at each node and each transmission line has a capacity of 10 
megawatts in both directions ( Fig. 5 ). The SP operates a flexible 
generation unit at node 1 (unit 0), while the remaining less flex- 
ible, but low marginal cost units at nodes 1, 2, and 3 (units 1, 2, 3, 
respectively) are owned by a CP (see Table 1 for generation-related 
parameters). We illustrate three distinct cases in which strategic 
behavior can lead to higher profits through three scenarios: (1) 
the scenario “Congestion” demonstrates how the SP can cause 
and profit from transmission network congestion, (2) the scenario 
“Ramp limit” demonstrates how the SP can profit from limited 
flexibility of other producers, (3) the scenario “Surplus” illustrates 
how the SP can profit from not only deficit but also a large surplus 
in the intraday market. 
Table 1 
Blockwise generation parameters in the three-node example. 

SP CP 
Unit Unit 

Parameter u0 u1 u2 u3 
C da 

f,n,u,b ( € per megawatt) 8 5 6 7 
C up 

f,n,u,b ( € per megawatt) 25 10 15 20 
C down 

f,n,u,b ( € per megawatt) 1 4 3 2 
G max 

f,n,u,b (megawatt) 25 2 25 25 
G up,ramp 

f,n,u,b (megawatt) 5 2 2 2 
G down,ramp 

f,n,u,b (megawatt) 5 2 2 2 

Table 2 
Demand parameters in the three-node example (in the intraday market, positive 
figures indicate a deficit and negative figures a surplus). 

Parameter 
D da 

s,n D intra 
s,n 

Node Node 
Scenario n1 n2 n3 n1 n2 n3 
Congestion 22 22 22 10 0 0 
Ramp limit 4 2 2 10 0 0 
Surplus 14 22 30 −9 0 0 

Table 3 
Offer curve of the SP in the three-node example with PC. 

Variable 
p x , n , u , b ( € per megawatt) q x , n , u , b (megawatt) 
Block Block 

Offer b 1 b 2 b 1 b 2 
Day-ahead 8 8 25 25 
Up-regulation 25 25 – –

Down-regulation 1 1 – –

The demand in the day-ahead and intraday markets for each 
equally weighted scenario is in Table 2 . Each generation unit is 
divided into two blocks, and, with ConvD, the discretization in- 
terval of the binary expansion for up- and down-regulation of the 
SP ( ̄G up 

x,n,u,b, j and Ḡ down 
x,n,u,b,k ) is 1 megawatt, which causes no error 

in the results with the selected parameter values. 1 Maximum and 
minimum day-ahead and intraday prices are set to 30 0 0 and −500 
€ per megawatt, respectively, to match those of Nord Pool (2019) . 
Note that in this illustrative example, we assume that the SP has 
perfect knowledge of all model parameters including the intraday 
demand, the real value of which would be revealed only after the 
intraday market is cleared. In what follows, we study scenariowise 
generation and transmission flows in the day-ahead and intraday 
markets resulting from the offer curves of the SP. These values are 
obtained by solving Eqs. (1) –(22) (ConvD), or (C.1) - (C.5) (StochD), 
or (11) –(15) as well as (16) –(22) (PC) with the above input data. 

Table 3 shows the offer curve with PC. Table 4 shows that, 
in each scenario, most of the demand in day-ahead and intraday 
markets is met by the CP units 1, 2, and 3 as the SP unit 0 has 
higher marginal costs. Both day-ahead and intraday prices are at 
the marginal costs of the different units. 

Tables 5 and 7 show the offer curves, and Tables 6 and 8 in- 
dicate the resulting generation, flows, and prices with ConvD 
and StochD, respectively. With ConvD, the SP’s day-ahead price 
offer p da 

x,n,u,b1 /b2 = 7 e per megawatt is not competitive enough 
for the SP unit to be dispatched in the day-ahead market in the 
scenario “Congestion.” As a result, the CP unit 1 at node 1 is fully 
dispatched in the day-ahead market and the transmission lines to 
node 1 are nearly congested to meet the high day-ahead demand 
at node 1. The SP recognizes that, in the intraday market, there 
is no more CP capacity available at node 1 and only a part of 
the intraday demand at node 1 can be met by the CP before the 
transmission lines to node 1 become fully congested. Thus, the SP 
is able to cover the remaining intraday demand at a high profit by 
setting its up-regulation price offer p up 

x,n,u,b1 /b2 to maximum price 
1 All parameters are integral and the discretization interval is 1 megawatt. Also, 

since all cost parameters are distinct, there do not exist multiple solutions in which 
one producer would produce 0 ≤ x ≤ D and another one D − x for some constant 
demand D . Thus, the discretization does not lead to errors. 
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Table 4 
Day-ahead and intraday generation, flows, and prices in the three-node example with PC, where positive (negative) intraday generation corresponds to up-regulation (down- 
regulation). 

Variable 
∑ 
b g da 

s, f,n,u,b (megawatt) f da 
s," (megawatt) λda 

s,n ( € per megawatt) ∑ 
b g up/down 

s, f,n,u,b (megawatt) f intra 
s," (megawatt) λintra 

s,n ( € per megawatt) 
Unit Line Node Unit Line Node 

Scenario u0 u1 u2 u3 " 1 " 2 " 3 n1 n2 n3 u0 u1 u2 u3 " 1 " 2 " 3 n1 n2 n3 
Congestion 4 42 20 −10 10 −8 7 6 7 8 2 −2 25 3 20 
Ramp limit 4 4 2 6 6 6 2 4 4 −4 −4 25 15 20 
Surplus 4 42 20 −10 10 7 6 7 −4 −4 −1 4 1 1 3 2 

Table 5 
Offer curve of the SP with ConvD. 

Variable 
p x , n , u , b ( € per megawatt) q x , n , u , b (megawatt) 
Block Block 

Offer b 1 b 2 b 1 b 2 
Day-ahead 7 7 0 25 
Up-regulation 3000 3000 – –

Down-regulation −500 −500 – –

of 30 0 0 € per megawatt. In Section 4.2 , we show how a similar of- 
fering strategy can explain very high intraday prices in Nord Pool. 

Likewise, in scenario “Congestion” with StochD, the SP 
sets the same high up-regulation price offer p up 

x,n,u,b1 /b2 = 
30 0 0 e per megawatt . With StochD, the market operator is 
able to anticipate the high intraday cost caused by the combina- 
tion of the SP’s high up-regulation offer, congestion, and the lack 
of CP capacity at node 1 in the intraday market. To counter this, 
the market operator can dispatch the SP already in the day-ahead 
market. However, the SP is able to anticipate this action and sets 
a strategic day-ahead offer p da 

x,n,u,b2 = 2991 e per megawatt with 
a positive capacity. As a result, the market operator chooses to 
dispatch the SP unit both in the day-ahead and intraday mar- 
kets in quantities that minimize its objective function. Indeed, 
we check numerically that (1) perturbing the SP’s price offer 
p da 

x,n,u,b2 = 2991 e per megawatt even by a small constant ε leads 
to a lower profit for the SP, and (2) having higher dispatch for 
the SP in the day-ahead or intraday market does not lead to an 
improvement in the market operator’s objective. Consequently, 
this scenario shows that the SP is able to game also the alternative 
dispatch method StochD. 

In scenario “Ramp limit” with ConvD, the low day-ahead de- 
mand is covered without any congestion on the transmission lines 
to node 1 by having the cheapest CP unit 1 fully dispatched and 
the second cheapest CP unit 2 partially dispatched. Regardless of 
the abundant transmission capacity left for the intraday market, 
the high intraday demand at node 1 cannot be met by the CP 
units 2 and 3 because they are limited by ramping constraints. 
As a consequence, the SP is able to lift the intraday price to the 

Table 7 
Offer curve of the SP with StochD. 

Variable 
p x , n , u , b ( € per megawatt) q x , n , u , b (megawatt) 
Block Block 

Offer b 1 b 2 b 1 b 2 
Day-ahead −500 2991 0 6 
Up-regulation 3000 3000 – –

Down-regulation −500 −500 – –

maximum level even though none of the transmission lines is 
congested. By contrast, StochD is able to anticipate the limited 
ramping of the CP units 2 and 3 and decides to deviate from the 
lowest cost day-ahead dispatch by not dispatching the CP unit 1. 
Consequently, the CP unit 1 is available in the intraday market and 
displaces the SP unit with the high up-regulation offer. Thus, this 
shows how StochD can mitigate the impact of strategic offering in 
some scenarios. 

In scenario “Surplus,” there is high demand in the day-ahead 
market and a large surplus at node 1 in the intraday market. 
With ConvD, the CP units are not able to down-regulate all of the 
surplus due to (1) limited capacity of the CP unit 1, (2) limited 
ramping of the CP unit 2, and (3) transmission network congestion 
that leaves the CP unit 3 unutilized. Again, the SP anticipates 
this situation and sets its down-regulation price p down 

x,n,u,b1 /b2 to 
the minimum intraday price of −500 € per megawatt to gain a 
high profit. Indeed, negative intraday prices are caused by insuf- 
ficient downward flexibility ( Brijs, Vos, Jonghe, & Belmans, 2015 ). 
However, with StochD, the market operator is able to anticipate 
and avoid the SP’s expensive down-regulation offer. By increasing 
the CP unit 3’s day-ahead generation, transmission congestion 
is alleviated in the intraday market and the CP unit 3 is able to 
replace the SP unit’s down-regulation. Therefore, intraday costs 
are greatly reduced with StochD in this scenario. 

If the day-ahead and intraday markets would realize as in 
these three scenarios, then, with ConvD, the SP would achieve an 
expected profit of € 9979.53, whereas with StochD, its expected 
profit would be € 7869.84 ( Table 9 ). Compared to ConvD, StochD 
leads to 69% lower intraday costs because in scenario “Congestion,”

Table 6 
Day-ahead and intraday generation, flows, and prices in the three-node example with ConvD. 

Variable 
∑ 
b g da 

s, f,n,u,b (megawatt) f da 
s," (megawatt) λda 

s,n ( € per megawatt) ∑ 
b g up/down 

s, f,n,u,b (megawatt) f intra 
s," (megawatt) λintra 

s,n ( € per megawatt) 
Unit Line Node Unit Line Node 

Scenario u0 u1 u2 u3 " 1 " 2 " 3 n1 n2 n3 u0 u1 u2 u3 " 1 " 2 " 3 n1 n2 n3 
Congestion 4 42 20 −10 10 −8 7 6 7 8 2 −2 3000 3 20 
Ramp limit 4 4 2 6 6 6 2 4 4 −8 −4 3000 3000 3000 
Surplus 10 4 42 10 −10 10 10 7 6 7 −1 −4 −4 4 −500 −500 20 
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Table 8 
Day-ahead and intraday generation, flows, and prices in the three-node example with StochD. 

Variable 
∑ 
b g da 

s, f,n,u,b (megawatt) f da 
s," (megawatt) λda 

s,n ( € per megawatt) ∑ 
b g up/down 

s, f,n,u,b (megawatt) f intra 
s," (megawatt) λintra 

s,n ( € per megawatt) 
Unit Line Node Unit Line Node 

Scenario u0 u1 u2 u3 " 1 " 2 " 3 n1 n2 n3 u0 u1 u2 u3 " 1 " 2 " 3 n1 n2 n3 
Congestion 6 38 22 −10 6 −6 2991 6 7 2 4 4 4 −4 3000 15 16 
Ramp limit 8 −4 2 6 6 6 4 4 2 −4 −2 20 20 20 
Surplus 4 42 20 −10 10 7 6 7 −4 −4 −1 4 1 2 2 2 

Table 9 
Expected profits and costs in the three-node example. 

Design 
Metric Conventional 

dispatch Stochastic 
dispatch Perfect 

competition 
SP day-ahead profit ( €) −3.3 5906.34 0.0 
SP intraday profit ( €) 9982.83 1963.5 0.0 
SP total profit ( €) 9979.53 7869.84 0.0 
CP day-ahead profit ( €) 6.6 2.64 6.6 
CP intraday profit ( €) 9203.04 3970.56 3.96 
CP total profit ( €) 9209.64 3973.2 10.56 
Day-ahead generation cost ( €) 293.04 6202.68 293.04 
Intraday generation cost ( €) 19318.2 6019.86 135.96 
Total generation cost ( €) 19611.24 12222.54 429.0 

StochD reduces the SP’s expensive up-regulation and in scenarios 
“Ramp limit” and “Surplus” the SP’s expensive intraday price offers 
are avoided entirely by dispatching CP units out of merit order 
in the day-ahead market. As a consequence, the total day-ahead 
generation costs increase by approximately 20 times. Such a 
large increase can occur because the objective function of StochD 
(C.3) does not model the changes to the day-ahead price and, thus, 
day-ahead generation costs caused by out-of-merit-order dispatch. 
Nevertheless, the total generation costs are still 38% lower with 
StochD, and, as we show later in Section 4.3 , StochD outperforms 
ConvD in expectation in real market conditions, too. With PC, the 
SP has no profit, and the total generation costs are only a fraction 
of those of ConvD and StochD. All problem instances are solved 
in one second with Gurobi 8.1.1 with an Intel i7 4.2 gigahertz 
processor with 8 gigabytes RAM. 
4.2. Case study: strategic behavior in Nord Pool in 2016 

In 2016, extremely high intraday prices were observed in Nord 
Pool. For example, on 22 January 2016, the Finnish up-regulation 
price peaked at € 30 0 0 per megawatt hour. In accordance with 
our objective (2), we seek to examine reasons for these high prices 
using the offering strategies from Section 4.1 . 

We model the electricity markets in the Nordic countries with 
a simplified five-node network in Fig. 6 , which is adequate for 
capturing congestion and the resulting area price differences. We 
obtain transmission capacities for the lines shown in Fig. 6 from 
Nord Pool (2016) and show them in Table 13 of Appendix D . In 
this network, each node contains demand as well as generators of 
different types. The day-ahead demand and generation capacities 
of wind, nuclear, and thermal in Tables 14 and 15 , respectively, 
are set by averaging realized peak-hour data in January 2016 from 
Nord Pool, ENTSO-E, and the Finnish and Swedish TSOs ( ENTSO-E, 
2016; Fingrid, 2016; Svenska Kraftnät, 2016; Nord Pool, 2016 ). Due 
to the flexibility of hydropower, we take the maximum generation 
as its capacity. Also, we adjust the day-ahead demand with the 
average peak-hour exchange with neighboring countries such as 
Germany and Estonia. The piecewise constant generation cost pa- 

Fig. 6. Nordic network indicating conventional direction of flow (SE N and SE S 
refer to Sweden north and south, respectively). 
rameters in Table 16 are fitted to match to the observed day-ahead 
and regulation price range approximately. We round generation 
and transmission capacity as well as demand data to the nearest 
50 megawatt and, with ConvD, set the discretization interval of the 
binary expansion for up- and down-regulation of the SP ( ̄G up 

x,n,u,b, j 
and Ḡ down 

x,n,u,b,k ) to match the 50 megawatt precision, which leads to 
optimal results. 2 Using a higher precision keeps our conclusions 
unchanged because the 50 megawatt precision introduces only 
small discrepancies to the computed values as it is small compared 
to the market-clearing transmission flows and generation. 

Corresponding to maximum regulation volumes observed in 
January 2016, we study two scenarios: one with 400 megawatt 
up-regulation (“Maximum deficit”) and one with 300 megawatt 
down-regulation in Finland (“Maximum surplus”). We place a 
hypothetical SP with 500 megawatt capacity in Finland because 
the extremely high Finnish intraday price was set by a producer 
in Finland as the transmission lines from Sweden to Finland were 
congested. The SP with 500 megawatt capacity may correspond 

2 Since cost parameters are not distinct now, there are likely to be solutions with 
different generation and transmission flows but with the same objective value. 
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Table 10 
Price and quantity offers of the strategic producer in the Nordic example. 

Conventional dispatch Stochastic dispatch Perfect competition 
p x , n , u , b ( € per megawatt) q x , n , u , b (megawatt) p x , n , u , b ( € per megawatt) q x , n , u , b (megawatt) p x , n , u , b ( € per megawatt) q x , n , u , b (megawatt) 
Block Block Block Block Block Block 

Offer b 1 b 2 b 1 b 2 b 1 b 2 b 1 b 2 b 1 b 2 b 1 b 2 
Day-ahead 50 50 250 250 2990 2990 250 50 20 30 250 250 
Up-regulation 3000 3000 – – 3000 3000 – – 30 40 – –

Down-regulation 20 20 – – 3000 2960 – – 20 15 – –

Table 11 
Expected profits and costs in the Nordic example. 

Policy 
Metric Conventional 

dispatch Stochastic 
dispatch Perfect 

competition 
SP day-ahead profit (k €) 6.25 152.75 12.5 
SP intraday profit (k €) 148.5 −0.125 0.0 
SP total profit (k €) 154.75 152.625 12.5 
CP day-ahead profit (k €) 732.0 15136.0 732.0 
CP intraday profit (k €) 438.0 2.0 0.0 
CP total profit (k €) 1170.0 15138.0 732.0 
Day-ahead generation cost (k €) 2005.0 16562.0 2005.0 
Intraday generation cost (k €) 597.0 5.0 13.0 
Total generation cost (k €) 2602.0 16567.0 2018.0 

to a single large conventional plant or a few hydropower plants. 
All other generation capacities in Table 15 are assigned to CPs. 
The day-ahead generation as well as up- and down-regulation 
marginal costs of the SP are the same as those of hydropower 
( Table 16 ). In the following, the SP builds offer curves with the 
above input data, and we analyze the resulting generation and 
transmission flows in the day-ahead and intraday markets in the 
scenarios “Maximum deficit” and “Maximum surplus.”

The optimal price and quantity offers are in Table 10 . The 
generation, transmission flow, and price results in the day-ahead 
and intraday markets for each scenario are in Tables 17–22 of 
Appendix D , respectively. In both PC scenarios, the SP is fully dis- 
patched in the day-ahead market as its marginal cost equals that 
of hydropower. All up- and down-regulation is done by the CPs. 

By contrast, with ConvD, the SP sets its day-ahead price offer at 
the same level as the most expensive thermal generation so that 
in scenario “Maximum deficit,” the SP does not produce in the 
day-ahead market but, rather, lets the transmission lines between 
Sweden and Finland become congested. Also, the SP’s withdrawal 
from the day-ahead market results in high CP day-ahead gen- 
eration and, thus, lack of CP capacity in the intraday market. 
Consequently, the SP can increase its up-regulation price to the 
maximum and gain a high profit as in the scenario “Congestion”
of the three-node example. This leads to the very high intraday 
price of 30 0 0 e per megawatt with ConvD in Finland as observed 
in the market data. 

As in scenario “Congestion” in the three-node example with 
StochD, the strategic offer p da 

x,n,u,b = 2990 e per megawatt < 
p up 

x,n,u,b = 30 0 0 e per megawatt causes the market operator 
in scenario “Maximum deficit” to (i) dispatch the SP in the 
day-ahead market and (ii) reserve CP capacity from the day-ahead 
market to the intraday market to avoid a high intraday cost. Thus, 
StochD effectively introduces an opportunity for the SP to affect 
the day-ahead market with intraday offers unlike with ConvD. 
However, this offering strategy leads to very high total day-ahead 
generation costs as the day-ahead price of Finland becomes high. 
This was not considered by Morales et al. (2014) as they assume 

perfect competition. Indeed, if we disable strategic offering in the 
intraday market, then the SP does not withhold generation in the 
day-ahead market but seeks to increase it both with ConvD and 
StochD because the SP anticipates that the intraday price remains 
at its marginal cost. This supports the interpretation that the 
high prices in Nord Pool were caused by strategic offering and 
shows that the possibility for high intraday profits impacts the 
SP’s day-ahead generation decisions. 

In scenario “Maximum surplus” with ConvD, the SP competes 
against the thermal generators and becomes fully dispatched in 
the day-ahead market. As a consequence, it can participate in bal- 
ancing the down-regulation need. However, the SP observes that 
there is abundant down-regulation capacity in Finland and in the 
adjacent nodes, and, thus, it sets its down-regulation price offer 
at the same level as the cost of down-regulation for hydropower. 
Indeed, in 2016, the lowest down-regulation price in Finland was 0 
€ per megawatt, which is close to the marginal cost of hydropower 
and other renewables. With StochD, the SP is dispatched out of 
merit order in the day-ahead market as it offers down-regulation 
at a price higher than any of the CPs. This leads to higher total 
profits because the day-ahead profit of the SP is higher than its 
intraday loss as the SP buys back the capacity it offered in the 
day-ahead market. 

If the day-ahead and intraday markets would realize as in 
these two scenarios, then the SP would make an expected profit of 
154.75 k € with ConvD and 152.625 k € with StochD Table 11 . Thus, 
StochD is not able to reduce the profit of the SP significantly. More- 
over, the total generation costs of StochD are significantly higher 
because of the extremely high day-ahead prices in Finland in 
scenario “Maximum deficit.” However, as we show in Section 4.3 , 
possibilities for adverse offering similar to scenario “Maximum 
deficit” are rare, and, therefore, StochD can outperform ConvD 
in expectation. In the perfectly competitive case, the SP makes a 
profit of 12.5 k € as the SP is dispatched together with hydropower. 
In summary, the extremely high peak prices observed in Finland 
can be attributed to the combination of low up-regulation capac- 
ity, transmission congestion, and strategic behavior. All problem 
instances are solved to optimality in approximately one second. 
4.3. Mean performance of the market designs in Nord Pool 

Finally, in order to address our objective (3) to estimate the ex- 
pected impact of the offering strategies on day-ahead and intraday 
costs, we conduct a simulation that resembles the real timeline 
of day-ahead and intraday markets as shown in Fig. 1 and the 
procedure in Baringo and Conejo (2016) . The decision sequence is 
as follows: 
1) The SP generates a set of initial day-ahead and intraday de- 

mand scenarios ( D da 
s,n , D intra 

s,n ) by applying k-means clustering to 
historical data. 

2) The SP builds coordinated offer curves ( p d a/up/d own 
x,n,u,b and q da 

x,n,u,b ) 
for the day-ahead and intraday markets by solving Eqs. (B.2) –
(B.42) (ConvD) or (C.12) –(C.15) (StochD) given the initial 
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Fig. 7. Impact of the number of clusters on the k-means objective function value in the validation set. 
day-ahead and intraday scenarios from 1). With PC, the SP sets 
p d a/up/d own 

x,n,u,b = C d a/up/d own 
x,n,u,b and q da 

x,n,u,b = G max 
x,n,u,b . 

3) The market operator receives the offer curves of the partici- 
pants. It clears the day-ahead market by solving Eqs. (11) –(15) 
(ConvD and PC) or (C.3) –(C.5) (StochD) using real market data 
and communicates the resulting generation, transmission flows, 
and prices to the participants. 

4) The SP generates an updated set of intraday scenarios by 
applying k-means clustering to historical data selected based 
on the day-ahead realization. 

5) The SP updates its intraday offer curves ( p up/down 
x,n,u,b ) by solving 

Eqs. (E.6) –(E.9) (ConvD and StochD) using the updated intraday 
scenarios and the day-ahead results. With PC, no update is 
required. 

6) The market operator receives the intraday offer curves of 
the participants and clears the intraday market by solving 
Eqs. (16) –(22) using real market data. 
The steps 2)–6) are repeated for 10 0 0 randomly sampled time 

steps t to obtain good estimates of expected profits and costs. 
We use the Nord Pool network from Section 4.2 , and each time 
step t ∈ [1, 8760] is defined by realized hourly day-ahead demand, 
generation, flows to neighboring countries, and regulation volumes 
in 2016. Similar to Section 4.2 , input data are rounded to 50 
megawatt precision to match the discretization intervals Ḡ up 

x,n,u,b, j 
and Ḡ down 

x,n,u,b,k of ConvD. The mean rounding error for the input data 
is less than 1 megawatt, which may cause small discrepancies 
in the estimated values but does not affect our conclusions. The 
transmission and generation capacity data used in the market 
clearings are assumed to be known exactly when building the 
offer curves. 

The day-ahead and intraday scenarios at step 1) are given by 
(D da 

s,n , D intra 
s,n ) = ( ̂  D da 

t,n + ˜ e da 
s,n , ̃  e intra 

s,n ) , (23) 

where ˆ D da 
t,n is the predicted day-ahead demand in node n at 

time step t and ( ̃  e da 
s,n , ̃  e intra 

s,n ) are estimated day-ahead forecast 
error and regulation volume in scenario s at node n , respectively. 
Following Baringo and Conejo (2013a) , we compute ( ̃  e da 

s,n , ̃  e intra 
s,n ) 

by applying k-means clustering from scikit-learn ( Pedregosa et al., 
2011 ) to nodewise, hourly total of forecast errors for demand 
and wind power in 2015 and to the nodewise, hourly regulation 
volumes in 2015 obtained from Nord Pool data, respectively. 
Consequently, each data point ( ̃  e da 

n 1 , . . . , ̃  e da 
n 5 , ̃  e intra 

n 1 , . . . , ̃  e intra 
n 5 ) is a 

vector of length 10. This representation of the data allows us to 
capture spatial correlations between the nodes as well as possible 
correlations between the day-ahead and intraday markets. We 
randomize the order of the data points and use 80% of the data 
for fitting the clusters and the remaining 20% as a validation 
set. We select seven clusters ( k = 7 ), because additional clusters 
increase solution times while not improving the k-means objective 
function value in the validation set significantly as shown by 
Fig. 7 . By assigning each of the seven cluster centers to one sce- 
nario, we obtain seven 10-vectors [( ̃  e da 

s 1 ,n 1 , . . . , ̃  e da 
s 1 ,n 5 , ̃  e intra 

s 1 ,n 1 , . . . , 
˜ e intra 
s 1 ,n 5 ) , . . . , ( ̃  e da 

s 7 ,n 1 , . . . , ̃  e da 
s 7 ,n 5 , ̃  e intra 

s 7 ,n 1 , . . . , ̃  e intra 
s 7 ,n 5 )] , which, using 

Eq. (23) , allow us to compute seven day-ahead and intraday 
scenarios (D da 

s,n , D intra 
s,n ) , ∀ s ∈ (s 1 , . . . , s 7) , ∀ n ∈ (n 1 , . . . , n 5) . The 

weight of a scenario is the weight of the corresponding cluster 
defined as the ratio of the number of data points belonging to 
the cluster to the total number of data points. Fig. 8 indicates 
that there is a positive correlation between the day-ahead and 
intraday deviations. Finally, near-zero and negative deviations have 
the highest probability, which is consistent with the fact that 
down-regulation is more frequent than up-regulation in the Nord 
Pool market as shown by Nord Pool regulation data. 

Using these seven day-ahead and intraday scenarios includ- 
ing negative, near-zero, and positive deviations as an input to 
Eqs. (B.2) –(B.42) (ConvD) or (C.12) –(C.15) (StochD), the SP builds 
coordinated day-ahead and intraday offer curves ( p d a/up/d own 

x,n,u,b and 
q da 

x,n,u,b ) at step 2). As an additional uncertainty, we sample uni- 
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Fig. 8. Nodewise day-ahead and intraday clusters, where the diameter of the marker indicates the weight of a cluster. 
form noise from U (−5 e per megawatt , 5 e per megawatt ) to 
the day-ahead and intraday generation cost parameters of the CP 
( C da 

y,n,u,b , C up 
y,n,u,b , C down 

y,n,u,b ). Note that, as shown in Sections 4.1 and 
4.2 , coordinated offering requires considering the intraday mar- 
ket when building the day-ahead offer curve. However, with 
PC, the offer curve building reduces to setting p da 

x,n,u,b = C da 
x,n,u,b , 

p up 
x,n,u,b = C up 

x,n,u,b , p down 
x,n,u,b = C down 

x,n,u,b , and q da 
x,n,u,b = G max 

x,n,u,b . Given the 
offer curves and realized hourly day-ahead demand ( D da 

t,n ), the 
market operator clears the day-ahead market at step 3) by solving 
Eqs. (11) –(15) (ConvD and PC) or (C.3) –(C.5) (StochD). The market 
operator communicates the day-ahead market-clearing generation, 
transmission flows, and prices to the participants. 

Then, given the day-ahead results from step 3), the SP updates 
its intraday scenarios at step 4). We update the values of D intra 

s,n 
by running k-means clustering on the set of regulation volumes 
corresponding to the 10 0 0 closest (in terms of mean L 2 distance) 
day-ahead demand and wind power realizations in historical data. 
The weights of the scenarios are defined as above. At step 5), 
the SP updates its intraday offer curves by solving Eqs. (E.6) –(E.9) 
(ConvD and StochD) by using the updated intraday scenarios and 
the realized day-ahead generation and transmission flows. With 
PC, the intraday offer curves from step 2) remain unchanged. 
Finally, the market operator clears the intraday market at step 6) 
by solving Eqs. (16) –(22) given the updated intraday offer curves, 
realized day-ahead generation, transmissions flows, and intraday 
demand ( D intra 

t,n ). 
Table 12 shows the results of this simulation. The total gen- 

eration costs and the profits of the SP are approximately 123% 
and 466% higher with ConvD than with PC, respectively. StochD 
leads to lower costs and SP profits at approximately 100% and 
404% higher than PC, respectively. Consequently, the StochD model 
is able to mitigate strategic behavior to some extent, but it can- 
not eliminate it in all cases as our examples illustrate. The PC, 
ConvD, and StochD simulations are executed in approximately 20 
seconds, 18 hours and 15 minutes, and 7 hours and 5 minutes, 
respectively. 

Table 12 
Expected profits and costs in the mean performance analysis. 

Policy 
Metric Conventional 

dispatch Stochastic 
dispatch Perfect 

competition 
SP day-ahead profit (k €) 42.61 37.61 8.15 
SP intraday profit (k €) 3.53 3.43 0.0 
SP total profit (k €) 46.14 41.04 8.15 
CP day-ahead profit (k €) 2305.23 1992.36 619.96 
CP intraday profit (k €) 0.20 1.11 0.23 
CP total profit (k €) 2305.43 1993.47 620.18 
Day-ahead generation cost (k €) 3123.95 2807.10 1420.11 
Intraday generation cost (k €) 6.04 5.02 2.81 
Total generation cost (k €) 3129.99 2812.12 1404.92 
Regulation volume (megawatt) 450 446 450 

5. Conclusion 
Due to high barriers to entry, many day-ahead electricity 

markets have major players that can exert market power. Often, 
intraday markets have even less competition because flexible 
capacity is required. In fact, Knaut and Paschmann (2017) find 
restricted participation to be one reason for the high price volatil- 
ity of the 15-minute German intraday products. Moreover, there 
may be less competition in areas that have low transmission 
capacity to neighboring areas. Consequently, as day-ahead prices 
decrease due to the increasing penetration of renewable energy 
with zero marginal costs, it is plausible to expect that higher 
profits are being pursued in the intraday market. Motivated by 
this possibility, we have developed a model that captures strategic 
offering not only in the day-ahead but also in the intraday market. 
Indeed, in Section 4.1 (objective 1), we show using a three-node 
network that transmission grid congestion and the lack of flexible 
capacity allow an SP to increase its profit in the day-ahead and 
intraday markets. On the one hand, withholding generation from 
the day-ahead market forces the CPs to generate more, which can 
lead to higher prices in the intraday market as the non-dispatched 
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competitive capacity decreases. On the other hand, the SP can put 
forward generation in the day-ahead market and buy it back at a 
lower price from the intraday market if there is a surplus. Also, 
in Section 4.2 (objective 2), we have provided evidence that such 
strategic offering can explain high intraday prices observed in Nord 
Pool in 2016. Finally, Section 4.3 (objective 3) shows that strategic 
offering based on forecasts leads to higher expected profits and 
total generation costs vis-à-vis perfect competition (PC). However, 
the stochastic dispatch model of Morales et al. (2014) (StochD) can 
reduce the expected impact of strategic offering on total genera- 
tion costs compared to the conventional dispatch model (ConvD). 

Our model simplifies the building of day-ahead and intraday 
offer curves by ignoring more complex bid types spanning multi- 
ple time periods, for example. In addition, our model has only one 
intraday market, whereas, in reality, one-hour and 15-minute in- 
traday trades can be made several hours before delivery and closer 
to real-time at different response times. Due to these structures 
and a low degree of competition, there are likely additional strate- 
gies for exerting market power. However, the impact of strategic 
offering will be mitigated if other players change their behavior in 
response to the strategic offers. Exploring the impact of multiple 
supply- and demand-side strategic players is left as a future re- 
search direction as it would result in an equilibrium problem with 
equilibrium constraints (EPEC) problem that generally requires cus- 
tom heuristics to obtain a Nash equilibrium possibly out of many. 

Additionally, the model could be made more realistic by in- 
troducing multiple time steps, elastic demand, and piecewise 
linear offer curves for hydropower, in particular. Regardless of the 
simplifications, the ConvD model is still computationally intensive 
due to the discretization procedure applied to non-convexities. 
Consequently, alternative solution methods –, such as reformulat- 
ing the discretization procedure through Benders decomposition 
of the products of binary and continuous variables –, could be 
explored to tackle larger problem instances. Also, it is often possi- 
ble to build smaller problem instances by reducing the size of the 
network by aggregating nearby areas into larger areas like in our 
Nordic network in Section 4.2 and by using clustering methods 
such as k-means ( Section 4.3 ) for scenario reduction. Moreover, 
the endogenously computed day-ahead ( λda 

s,n ) and intraday prices 
( λintra 

s,n ) can be replaced with exogenous values before solving only 
the upper-level problem in Eqs. (1) –(10) to quickly construct com- 
petitive coordinated offering into day-ahead and intraday markets. 

Our results indicate that more transmission and flexible- 
generation capacity as well as development of more robust 
dispatch mechanisms may mitigate the impact of market power 
in intraday markets with a high penetration of variable renewable 
generation. As strategic behavior could be detected from plant- 
level data ( Clements et al., 2016 ), data-transparency policies are 
also warranted. 
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Appendix A. MPEC formulation 

The lower-level problems (11) –(15) and (16) –(22) are linear, 
and, therefore, convex. To solve the bi-level program as if it were 
a single optimization problem, we reformulate it as a single- 
level mathematical program with equilibrium constraints (MPEC) 
by replacing the lower-level problems by their Karush–Kuhn–
Tucker (KKT) conditions (A .2) –(A .9) and (A .10) –(A .21) , respectively 

( Gabriel & Leuthold, 2010 ). Correspondingly, the set of dual vari- 
ables is denoted by %DV = { λda 

s,n , λintra 
s,n , βda 

s, f,n,u,b , βup 
s, f,n,u,b , βdown 

s, f,n,u,b , 
βup,ramp 

s, f,n,u,b , βdown,ramp 
s, f,n,u,b , µda,max 

s," , µda,min 
s," , µintra,max 

s," , µintra,min 
s," } . The 

MPEC is non-convex due to the bilinear terms g da 
s,x,n,u,b λda 

s,n , 
g up 

s,x,n,u,b λintra 
s,n , and g down 

s,x,n,u,b λintra 
s,n in Eq. (A.1) and the complementar- 

ity conditions (A .4) –(A .9) and (A .12) –(A .21) . These non-convexities 
are resolved in Appendix B . 
Minimize 

%UL ∪ %LL da ∪ %LL intra ∪ %DV 
∑ 

s W s [∑ 
n 

∑ 
u 

∑ 
b 

(
g da 

s,x,n,u,b (C da 
x,n,u,b − λda 

s,n )

+ g up 
s,x,n,u,b (C up 

x,n,u,b − λintra 
s,n )

− g down 
s,x,n,u,b (C down 

x,n,u,b − λintra 
s,n ))]

(A.1) 
s.t. 
Eqs. (2)–(10) (upper-level conditions) 
f da 
s," free, −

∑ 
n Y l,n λda 

s,n + µda,max 
s," − µda,min 

s," = 0 ∀ s, " (A.2) 
λda 

s,n free, D da 
s,n − ∑ 

f 
∑ 

u 
∑ 

b g da 
s, f,n,u,b − ∑ 

" Y ",n f da 
",n = 0 ∀ s, n (A.3) 

g da 
s,x,n,u,b + 0 ⊥ p da 

x,n,u,b − λda 
s,n + βda 

s,x,n,u,b + 0 ∀ s, x, n, u, b (A.4) 
g da 

s,y,n,u,b + 0 ⊥ C da 
y,n,u,b − λda 

s,n + βda 
s,y,n,u,b + 0 ∀ s, y, n, u, b (A.5) 

βda 
s,x,n,u,b + 0 ⊥ q da 

x,n,u,b − g da 
s,x,n,u,b + 0 ∀ s, x, n, u, b (A.6) 

βda 
s,y,n,u,b + 0 ⊥ G max 

y,n,u,b − g da 
s,y,n,u,b + 0 ∀ s, y, n, u, b (A.7) 

µda,max 
s," + 0 ⊥ NT C max 

" − f da 
s," + 0 ∀ s, " (A.8) 

µda,min 
s," + 0 ⊥ f da 

s," − NT C min 
" + 0 ∀ s, " (A.9) 

f intra 
s," free, −

∑ 
n Y l,n λintra 

s,n + µintra,max 
s," − µintra,min 

s," = 0 ∀ s, " 
(A.10) 

λintra 
s,n free, D intra 

s,n −
∑ 

f 
∑ 

u 
∑ 

b 
(
g up 

s, f,n,u,b − g down 
s, f,n,u,b )

−
∑ 

" Y ",n f intra 
",n = 0 ∀ s, n (A.11) 

g up 
s,x,n,u,b + 0 ⊥ p up 

x,n,u,b − λintra 
s,n + βup 

s,x,n,u,b + βup,ramp 
s,x,n,u,b + 0 

∀ s, x, n, u, b (A.12) 
g up 

s,y,n,u,b + 0 ⊥ C up 
y,n,u,b − λintra 

s,n + βup 
s,y,n,u,b + βup,ramp 

s,y,n,u,b + 0 
∀ s, y, n, u, b (A.13) 

g down 
s,x,n,u,b + 0 ⊥ −p down 

x,n,u,b + λintra 
s,n + βdown 

s,x,n,u,b + βdown,ramp 
s,x,n,u,b + 0 

∀ s, x, n, u, b (A.14) 
g down 

s,y,n,u,b + 0 ⊥ −C down 
y,n,u,b + λintra 

s,n + βdown 
s,y,n,u,b + βdown,ramp 

s,y,n,u,b + 0 
∀ s, y, n, u, b (A.15) 

βup 
s, f,n,u,b + 0 ⊥ G max 

f,n,u,b − g da 
s, f,n,u,b − g up 

s, f,n,u,b + 0 ∀ s, f, n, u, b 
(A.16) 

βdown 
s, f,n,u,b + 0 ⊥ g da 

s, f,n,u,b − g down 
s, f,n,u,b + 0 ∀ s, f, n, u, b (A.17) 

βup,ramp 
s, f,n,u,b + 0 ⊥ G up,ramp 

f,n,u,b − g up 
s, f,n,u,b + 0 ∀ s, f, n, u, b (A.18) 

βdown,ramp 
s, f,n,u,b + 0 ⊥ G down,ramp 

f,n,u,b − g down 
s, f,n,u,b + 0 ∀ s, f, n, u, b (A.19) 

µintra,max 
s," + 0 ⊥ NT C max 

" − f da 
s," − f intra 

s," + 0 ∀ s, " (A.20) 
µintra,min 

s," + 0 ⊥ f da 
s," + f intra 

s," − NT C min 
" + 0 ∀ s, " (A.21) 

In the PC model, the systems (A .2) –(A .9) and (A .10) –(A .21) are 
solved to optimality sequentially by setting p da 

x,n,u,b = C da 
x,n,u,b , 

p up 
x,n,u,b = C up 

x,n,u,b , p down 
x,n,u,b = C down 

x,n,u,b , and q da 
x,n,u,b = G max 

x,n,u,b . 
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Appendix B. MILP formulation 

First, the day-ahead lower-level problem in Eqs. (11)–(15) 
is linear, and, thus, strong duality holds. Consequently, we can 
follow the procedure in Ruiz and Conejo (2009) and linearize the 
non-convex term g da 

s,x,n,u,b λda 
s,n exactly by using Eqs. (A .2) –(A .9) : 

v da 
s,x = ∑ 

n 
∑ 

u 
∑ 

b g da 
s,x,n,u,b λda 

s,n 
= ∑ 

y 
∑ 

n 
∑ 

u 
∑ 

b 
(
−C da 

y,n,u,b g da 
s,y,n,u,b − βda 

s,y,n,u,b G max 
y,n,u,b )

+ ∑ 
" 

(
−µda,max 

s," N T C max 
" + µda,min 

s," N T C min 
" )

+ ∑ 
n D da 

s,n λda 
s,n 

(B.1) 
Second, the bilinear term g up 

s,x,n,u,b λintra 
s,n is replaced by the term 

v up 
s,x,n,u,b using our reformulation of binary expansion ( Barroso 

et al., 2006 ) that allows the term to become negative, which can 
happen if λintra 

s,n is negative. We do this because applying the pro- 
cedure of Ruiz and Conejo (2009) to g up 

s,x,n,u,b λintra 
s,n would require 

a more expensive reformulation of a larger number of bilinear 
terms g up 

s,y,n,u,b βup 
s,y,n,u,b . To this end, Eq. (B.3) represents g up 

s,x,n,u,b as 
a binary number scaled by the discretization interval Ḡ up 

x,n,u,b > 0 
by selecting binary variables h up 

s,x,n,u,b, j . If h up 
s,x,n,u,b, j equals to one, 

then (B.4) enforces ˆ h up 
s,x,n,u,b, j to equal λintra 

s,n but (B.5) limits its 
value between #intra , min and #intra , max . However, if h up 

s,x,n,u,b, j equals 
to zero, then (B.4) is not binding but (B.5) sets ˆ h up 

s,x,n,u,b, j to zero. 
As a result, (B.6) sets v up 

s,x,n,u,b to the sum of selected generation 
levels multiplied by the intraday price. The term g down 

s,x,n,u,b λintra 
s,n is 

linearized similarly in Eqs. (B.7) –(B.10) using the binary variable 
h down 

s,x,n,u,b,k and free variable ˆ h down 
s,x,n,u,b,k . This reformulation may lead 

to suboptimal results, but the suboptimality can be reduced by 
making the discretization intervals Ḡ up/down 

x,n,u,b > 0 smaller. 
Third, the complementarity conditions (A .4) –(A .9) and 

(A .12) –(A .21) are modeled by disjunctive constraints in 
Eqs. (B.11) –(B.42) as in Gabriel and Leuthold (2010) . 
In the following formulation, we have set %MILP = 
{ v da 

s,x , v up 
s,x,n,u,b, j , v down 

s,x,n,u,b,k , h up 
s,x,n,u,b, j , h down 

s,x,n,u,b,k , ̂  h up 
s,x,n,u,b, j , ̂  h down 

s,x,n,u,b,k , 
r 1 , . . . , r 16 } and we use M = 2#da,max in all numerical results in 
Section 4 . 
Minimize 

%UL ∪ %LL da ∪ %LL intra ∪ %DV ∪ %MILP 
∑ 

s W s [ ∑ 
n,u,b 

(
C da 

x,n,u,b g da 
s,x,n,u,b + C up 

x,n,u,b g up 
s,x,n,u,b − C down 

x,n,u,b g down 
s,x,n,u,b 

−v up 
s,x,n,u,b + v down 

s,x,n,u,b ) − v da 
s,x ] (B.2) 

s.t. 
g up 

s,x,n,u,b = Ḡ up 
x,n,u,b ∑ 

j 2 j−1 h up 
s,x,n,u,b, j ∀ s, x, n, u, b (B.3) 

−M(1 − h up 
s,x,n,u,b, j ) ≤ λintra 

s,n − ˆ h up 
s,x,n,u,b, j ≤ M(1 − h up 

s,x,n,u,b, j ) 
∀ s, x, n, u, b, j (B.4) 

#intra,min h up 
s,x,n,u,b, j ≤ ˆ h up 

s,x,n,u,b, j ≤ #intra,max h up 
s,x,n,u,b, j ∀ s, x, n, u, b, j 

(B.5) 
v up 

s,x,n,u,b = Ḡ up 
x,n,u,b ∑ 

j 2 j−1 ̂  h up 
s,x,n,u,b, j ∀ s, x, n, u, b (B.6) 

g down 
s,x,n,u,b = Ḡ down 

x,n,u,b ∑ 
k 2 k −1 h down 

s,x,n,u,b,k ∀ s, x, n, u, b (B.7) 

−M(1 − h down 
s,x,n,u,b,k ) ≤ λintra 

s,n − ˆ h down 
s,x,n,u,b,k ≤ M(1 − h down 

s,x,n,u,b,k ) 
∀ s, x, n, u, b, k (B.8) 

#intra,min h down 
s,x,n,u,b,k ≤ ˆ h down 

s,x,n,u,b,k ≤ #intra,max h down 
s,x,n,u,b,k ∀ s, x, n, u, b, k 

(B.9) 
v down 

s,x,n,u,b = Ḡ down 
x,n,u,b ∑ 

k 2 k −1 ̂  h down 
s,x,n,u,b,k ∀ s, x, n, u, b (B.10) 

Eqs. (2)–(10) (upper-level conditions) 
Eqs. (A.2), (A.3), (A.10), (A.11) (lower-level equality conditions) 
Mr1 s,x,n,u,b + p da 

x,n,u,b − λda 
s,n + βda 

s,x,n,u,b + 0 ∀ s, x, n, u, b (B.11) 
M(1 − r1 s,x,n,u,b ) + g da 

s,x,n,u,b + 0 ∀ s, x, n, u, b (B.12) 
Mr2 s,y,n,u,b + C da 

y,n,u,b − λda 
s,n + βda 

s,y,n,u,b + 0 ∀ s, y, n, u, b (B.13) 
M(1 − r2 s,y,n,u,b ) + g da 

s,y,n,u,b + 0 ∀ s, y, n, u, b (B.14) 
Mr3 s,x,n,u,b + q da 

x,n,u,b − g da 
s,x,n,u,b + 0 ∀ s, x, n, u, b (B.15) 

M(1 − r3 s,x,n,u,b ) + βda 
s,x,n,u,b + 0 ∀ s, x, n, u, b (B.16) 

Mr4 s,y,n,u,b + G max 
y,n,u,b − g da 

s,y,n,u,b + 0 ∀ s, y, n, u, b (B.17) 
M(1 − r4 s,y,n,u,b ) + βda 

s,y,n,u,b + 0 ∀ s, y, n, u, b (B.18) 
Mr5 s," + NT C max 

" − f da 
s," + 0 ∀ s, " (B.19) 

M(1 − r5 s," ) + µda,max 
s," + 0 ∀ s, " (B.20) 

Mr6 s," + f da 
s," − NT C min 

" + 0 ∀ s, " (B.21) 
M(1 − r6 s," ) + µda,min 

s," + 0 ∀ s, " (B.22) 
Mr7 s,x,n,u,b + p up 

x,n,u,b − λintra 
s,n + βup 

s,x,n,u,b + βup,ramp 
s,x,n,u,b + 0 

∀ s, x, n, u, b (B.23) 
M(1 − r7 s,x,n,u,b ) + g up 

s,x,n,u,b + 0 ∀ s, x, n, u, b (B.24) 
Mr8 s,y,n,u,b + C up 

y,n,u,b − λintra 
s,n + βup 

s,y,n,u,b + βup,ramp 
s,y,n,u,b + 0 

∀ s, y, n, u, b (B.25) 
M(1 − r8 s,y,n,u,b ) + g up 

s,y,n,u,b + 0 ∀ s, y, n, u, b (B.26) 
Mr9 s,x,n,u,b + −p down 

x,n,u,b + λintra 
s,n + βdown 

s,x,n,u,b + βdown,ramp 
s,x,n,u,b + 0 

∀ s, x, n, u, b (B.27) 
M(1 − r9 s,x,n,u,b ) + g down 

s,x,n,u,b + 0 ∀ s, x, n, u, b (B.28) 
Mr10 s,y,n,u,b + −C down 

y,n,u,b + λintra 
s,n + βdown 

s,y,n,u,b + βdown,ramp 
s,y,n,u,b + 0 

∀ s, y, n, u, b (B.29) 
M(1 − r10 s,y,n,u,b ) + g down 

s,y,n,u,b + 0 ∀ s, y, n, u, b (B.30) 
Mr11 s, f,n,u,b + G max 

f,n,u,b − g da 
s, f,n,u,b − g up 

s, f,n,u,b + 0 ∀ s, f, n, u, b 
(B.31) 

M(1 − r11 s, f,n,u,b ) + βup 
s, f,n,u,b + 0 ∀ s, f, n, u, b (B.32) 

Mr12 s, f,n,u,b + g da 
s, f,n,u,b − g down 

s, f,n,u,b + 0 ∀ s, f, n, u, b (B.33) 
M(1 − r12 s, f,n,u,b ) + βdown 

s, f,n,u,b + 0 ∀ s, f, n, u, b (B.34) 
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Mr13 s, f,n,u,b + G up,ramp 

f,n,u,b − g up 
s, f,n,u,b + 0 ∀ s, f, n, u, b (B.35) 

M(1 − r13 s, f,n,u,b ) + βup,ramp 
s, f,n,u,b + 0 ∀ s, f, n, u, b (B.36) 

Mr14 s, f,n,u,b + G down,ramp 
f,n,u,b − g down 

s, f,n,u,b + 0 ∀ s, f, n, u, b (B.37) 
M(1 − r14 s, f,n,u,b ) + βdown,ramp 

s, f,n,u,b + 0 ∀ s, f, n, u, b (B.38) 
Mr15 s," + NT C max 

" − f da 
s," − f intra 

s," + 0 ∀ s, " (B.39) 
M(1 − r15 s," ) + µintra,max 

s," + 0 ∀ s, " (B.40) 
Mr16 s," + f da 

s," + f intra 
s," − NT C min 

" + 0 ∀ s, " (B.41) 
M(1 − r16 s," ) + µintra,min 

s," + 0 ∀ s, " (B.42) 
Appendix C. Stochastic dispatch (StochD) formulation 

In the following StochD bi-level formulation, Eqs. (C.1) and 
(C.2) are the upper-level objective function and constraints, respec- 
tively, which are constrained by the lower-level objective functions 
and constraints in Eqs. (C.3) and (C.4) –(C.5) , respectively: 
Minimize 

%UL ∪ %LL da ∪ %LL intra 
∑ 

s W s [∑ 
n 

∑ 
u 

∑ 
b 

(
g da 

s,x,n,u,b (C da 
x,n,u,b − λda 

s,n )

+ g up 
s,x,n,u,b (C up 

x,n,u,b − λintra 
s,n )

− g down 
s,x,n,u,b (C down 

x,n,u,b − λintra 
s,n ))]

(C.1) 
s.t. 
Eqs. (2)–(10) (upper-level conditions) (C.2) 

∀ s 

 
                
                

Minimize 
%LL da ∪ %LL intra 

∑ 
n 

∑ 
u 

∑ 
b p da 

x,n,u,b g da 
s,x,n,u,b + ∑ 

y 
∑ 

n 
∑ 

u 
∑ 

b C da 
y,n,u,b g da 

s,y,n,u,b 
+ ∑ 

n 
∑ 

u 
∑ 

b 
(

p up 
x,n,u,b g up 

s,x,n,u,b − p down 
x,n,u,b g down 

s,x,n,u,b )
+ ∑ 

y 
∑ 

n 
∑ 

u 
∑ 

b 
(
C up 

y,n,u,b g up 
s,y,n,u,b − C down 

y,n,u,b g down 
s,y,n,u,b ) ( C.3 ) 

s.t. 
Eqs. (12)–(15) (day-ahead constraints) ( C.4 ) 
Eqs. (17)–(22) (intraday constraints) ( C.5 ) 

Compared to ConvD, there is only one lower-level problem with 
the objective functions (C.3) . Consequently, the KKT conditions 
(A.2) and (A.4) –(A.5) are replaced by: 
f da 
s," free, −∑ 

n Y l,n λda 
s,n + µda,max 

s," −µda,min 
s," + µintra,max 

s," −µintra,min 
s," =0 

∀ s, " (C.6) 
g da 

s,x,n,u,b + 0 ⊥ p da 
x,n,u,b − λda 

s,n + βda 
s,x,n,u,b − βdown 

s,x,n,u,b + βup 
s,x,n,u,b + 0 

∀ s, x, n, u, b (C.7) 
g da 

s,y,n,u,b + 0 ⊥ C da 
y,n,u,b − λda 

s,n + βda 
s,y,n,u,b − βdown 

s,y,n,u,b + βup 
s,y,n,u,b + 0 

∀ s, y, n, u, b (C.8) 
As a result, the disjunctive constraints (B.11) and (B.13) become: 
Mr1 s,x,n,u,b + p da 

x,n,u,b − λda 
s,n + βda 

s,x,n,u,b − βdown 
s,x,n,u,b + βup 

s,x,n,u,b + 0 

∀ s, x, n, u, b (C.9) 
Mr2 s,y,n,u,b + C da 

y,n,u,b − λda 
s,n + βda 

s,y,n,u,b − βdown 
s,y,n,u,b + βup 

s,y,n,u,b + 0 
∀ s, y, n, u, b (C.10) 

Using strong duality and Eqs. (C.7) –(C.8) and (A .12) –(A .19) , we can 
linearize the bilinear terms in the upper level objective function 
in Eq. (C.1) exactly: 
∑ 

n 
∑ 

u 
∑ 

b 
(
g da 

s,x,n,u,b λda 
s,n + g up 

s,x,n,u,b λintra 
s,n − g down 

s,x,n,u,b λintra 
s,n )

= v da 
s,x + ∑ 

y 
∑ 

n 
∑ 

u 
∑ 

b 
(

− C up 
y,n,u,b g up 

s,y,n,u,b + C down 
y,n,u,b g down 

s,y,n,u,b 
−βup 

s,y,n,u,b G max 
y,n,u,b − βup,ramp 

s,y,n,u,b G up,ramp 
y,n,u,b − βdown,ramp 

s,y,n,u,b G down,ramp 
y,n,u,b )

−
∑ 

l 
(
µintra,max 

s," N T C max 
" − µintra,min 

s," N T C min 
" )

+ ∑ 
n D intra 

s,n λintra 
s,n = v da 

s,x + v StochD 
s,x (C.11) 

Therefore, the discretization scheme in Eqs. (B.3) –(B.10) can be 
omitted from the following StochD MILP formulation in which we 
have set %MILP,StochD = { v da 

s,x , v StochD 
s,x , r1 , . . . , r16 } : 

Minimize 
%UL ∪ %LL da ∪ %LL intra ∪ %DV ∪ %MILP,StochD 

∑ 
s W s [ ∑ 

n,u,b 
(

C da 
x,n,u,b g da 

s,x,n,u,b + C up 
x,n,u,b g up 

s,x,n,u,b − C down 
x,n,u,b g down 

s,x,n,u,b )

− v da 
s,x − v StochD 

s,x ]
(C.12) 

s.t. 
Eqs. (2)–(10) (upper-level conditions) (C.13) 
Eqs. (C.6), (A.3), (A.10), (A.11) 

(lower-level equality conditions) (C.14) 
Eqs. (C.9), (B.12), (C.10), (B.14), (B.15) –(B.42) 

(disjunctive constraints) (C.15) 
Appendix D. Calibration and results for the Nordic example 

Table 13 
Network parameters of the Nordic example. 

Line 
Parameter " 1 " 2 " 3 " 4 " 5 " 6 " 7 
NT C max 

" (megawatt) 1600 2000 1600 2100 7300 1500 1200 
NT C min 

" (megawatt) −1600 −2400 −1900 −2100 −7300 −1100 −1200 

Table 14 
Demand parameters in the Nordic example. 

Node 
Parameter DK FI NO SE N SE S 
D da 

s,n (megawatt) 4900 12,900 21,600 3700 17,600 
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Table 15 
Total generation capacities (in megawatt) in the Nordic example. 

Type 
Node Wind Nuclear Hydro Thermal SP 
DK 1800 2900 
FI 200 2800 2400 4400 500 
NO 300 26,100 400 
SE N 600 11,200 200 
SE S 1100 8100 2200 1500 

Table 16 
Generation parameters in the Nordic example. 

Type, block 
Parameter Wind Nuclear Hydro Thermal SP 

b 1 b 2 b 1 b 2 b 1 b 2 b 1 b 2 b 1 b 2 
C da 

f,n,u,b ( € per megawatt) 0 0 5 5 20 30 40 50 20 30 
C up 

f,n,u,b ( € per megawatt) 30 40 60 80 30 40 
C down 

f,n,u,b ( € per megawatt) 20 15 10 5 20 15 
G up,ramp 

f,n,u,b (megawatt) 1000 1000 1000 1000 250 250 
G down,ramp 

f,n,u,b (megawatt) 1000 1000 1000 1000 250 250 
Table 17 
Total day-ahead generation of marginal units in FI in the Nordic example. 

∑ 
b g da 

s, f,n,u,b (megawatt) 
ConvD StochD PC 
Type Type Type 

Scenario Hydro Thermal SP Hydro Thermal SP Hydro Thermal SP 
Maximum deficit 2400 4100 2400 4400 100 2400 3600 500 
Maximum surplus 2400 3600 500 2400 3800 300 2400 3600 500 

Table 18 
Day-ahead exchange between FI and SE in the Nordic example. 

f da 
s," (megawatt) 

ConvD StochD PC 
Line Line Line 

Scenario " 6 " 7 " 6 " 7 " 6 " 7 
Maximum deficit 1500 1200 1500 800 1500 1200 
Maximum surplus 1500 1200 1500 1200 1500 1200 

Table 19 
Total intraday generation of marginal units in the Nordic example, where positive (negative) figures 
correspond to up-regulation (down-regulation). 

∑ 
b g up/down 

s, f,n,u,b (megawatt) 
ConvD StochD PC 
Type Type Type 

Scenario Hydro (NO) Thermal SP Hydro (NO) SP Thermal hydro 
Maximum deficit 300 100 400 400 
Maximum surplus −300 −300 −300 

Table 20 
Intraday exchange between FI and SE in the Nordic example. 

f da 
s," (megawatt) 

ConvD StochD PC 
Line Line Line 

Scenario " 6 " 7 " 6 " 7 " 6 " 7 
Maximum deficit 400 
Maximum surplus −300 



1152 T. Rintamäki, A.S. Siddiqui and A. Salo / European Journal of Operational Research 284 (2020) 1136–1153 
Table 21 
Day-ahead price results in the Nordic example. 

λda 
s,n ( € per megawatt) 

ConvD StochD PC 
Node Node Node 

Scenario DK FI NO SE N SE S DK FI NO SE N SE S DK FI NO SE N SE S 
Maximum deficit 30 50 30 30 30 30 2990 30 30 30 30 50 30 30 30 
Maximum surplus 30 50 30 30 30 30 50 30 30 30 30 50 30 30 30 

Table 22 
Intraday price results in the Nordic example. 

λintra 
s,n ( € per megawatt) 

ConvD StochD PC 
Node Node Node 

Scenario FI FI FI 
Maximum deficit 3000 3000 80 
Maximum surplus 20 20 20 

Appendix E. Model for updating intraday offer curves 
The intraday offer curves ( %UL,intra = { p up 

x,n,u,b , p down 
x,n,u,b , up s,x,n } ) 

can be updated by solving the following problem with g da 
s, f,n,u,b 

and f da 
s," fixed to the values G da 

f,n,u,b and F da 
" from the day-ahead 

market clearing, respectively: 
Minimize 

%UL,intra ∪ %LL intra 
∑ 

s W s [∑ 
n 

∑ 
u 

∑ 
b 

(
g up 

s,x,n,u,b (C up 
x,n,u,b − λintra 

s,n )

− g down 
s,x,n,u,b (C down 

x,n,u,b − λintra 
s,n ) )]

(E.1) 
s.t. 
Eqs. (3), (4), (6), (7), (9), (10) (intraday upper-level conditions) 

(E.2) 

∀ s 

 
          
          

Minimize 
%LL intra 

∑ 
n 

∑ 
u 

∑ 
b 

(
p up 

x,n,u,b g up 
s,x,n,u,b − p down 

x,n,u,b g down 
s,x,n,u,b )

+ ∑ 
y 

∑ 
n 

∑ 
u 

∑ 
b 

(
C up 

y,n,u,b g up 
s,y,n,u,b − C down 

y,n,u,b g down 
s,y,n,u,b ) ( E.3 ) 

s.t. 
Eqs. (17)–(22) (intraday constraints) ( E.4 ) 

Using strong duality, the bilinear terms in the objective function 
(E.1) can be linearized exactly: 
∑ 

n 
∑ 

u 
∑ 

b 
(
g up 

s,x,n,u,b λintra 
s,n − g down 

s,x,n,u,b λintra 
s,n )

= ∑ 
y 

∑ 
n 

∑ 
u 

∑ 
b 

(
− C up 

y,n,u,b g up 
s,y,n,u,b + C down 

y,n,u,b g down 
s,y,n,u,b 

−βup 
s,y,n,u,b (G max 

y,n,u,b −G da 
y,n,u,b ) −βdown 

s,y,n,u,b G da 
y,n,u,b − βup,ramp 

s,y,n,u,b G up,ramp 
y,n,u,b 

−βdown,ramp 
s,y,n,u,b G down,ramp 

y,n,u,b )
−

∑ 
l (µintra,max 

s," (NT C max 
" − F da 

" ) 
−µintra,min 

s," (NT C min 
" − F da 

" )) + ∑ 
n D intra 

s,n λintra 
s,n = v intra 

s,x (E.5) 
Therefore, discretization is not required for the follow- 
ing MILP formulation for updating the intraday offer 
curves in which we have set %MILP,intra = { v intra 

s,x , r7 , . . . , r16 } 
and %DV,intra = { λintra 

s,n , βup 
s, f,n,u,b , βdown 

s, f,n,u,b , βup,ramp 
s, f,n,u,b , βdown,ramp 

s, f,n,u,b , 

µintra,max 
s," , µintra,min 

s," } : 
Minimize 

%UL,intra ∪ %LL intra ∪ %DV,intra ∪ %MILP,intra 
∑ 

s W s [ ∑ 
n,u,b 

(
C up 

x,n,u,b g up 
s,x,n,u,b − C down 

x,n,u,b g down 
s,x,n,u,b ) − v intra 

s,x ]
(E.6) 

s.t. 
Eqs. (3), (4), (6), (7), (9), (10) (intraday upper-level conditions) 

(E.7) 
Eqs. (A.10), (A.11) (intraday lower-level equality conditions) 

(E.8) 
Eqs. (B.23)–(B.42) (intraday disjunctive constraints) (E.9) 
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Achieving Emission-Reduction Goals: Multi-Period
Power-System Expansion Under Short-Term

Operational Uncertainty
Tuomas Rintamäki, Fabricio Oliveira, Afzal S. Siddiqui , and Ahti Salo

Abstract—Stochastic adaptive robust optimization is capable
of handling short-term uncertainties in demand and variable
renewable-energy sources that affect investment in generation and
transmission capacity. We build on this setting by considering a
multi-year investment horizon for finding the optimal plan for
generation and transmission capacity expansion while reducing
greenhouse gas emissions. In addition, we incorporate multiple
hours in power-system operations to capture hydropower opera-
tions and flexibility requirements for utilizing variable renewable-
energy sources such as wind and solar power. To improve the
computational performance of existing exact methods for this prob-
lem, we employ Benders decomposition and solve a mixed-integer
quadratic programming problem to avoid computationally expen-
sive big-M linearizations. The results for a realistic case study for
the Nordic and Baltic region indicate which investments in trans-
mission, wind power, and flexible generation capacity are required
for reducing greenhouse gas emissions. Through out-of-sample
experiments, we show that the stochastic adaptive robust model
leads to lower expected costs than a stochastic programming model
under increasingly stringent environmental considerations.

Index Terms—Emission reduction, generation and transmission
expansion, robust optimization, stochastic programming, Benders
decomposition.

NOMENCLATURE

Indices

n/u/! node/generation unit/transmission line.
o operating condition.
t/τ time step in the master problem/subproblem.

Manuscript received 11 March 2022; revised 11 July 2022, 21 October 2022,
and 5 January 2023; accepted 31 January 2023. Date of publication 13 February
2023; date of current version 26 December 2023. This work was supported in
part by the Swedish Energy Agency under Project 49259-1, in part by Academy
of Finland under Project 326346, and in part by the Academy of Finland under
Project 348094. Paper no. TPWRS-00342-2022. (Corresponding author: Afzal
S. Siddiqui.)

Tuomas Rintamäki, Fabricio Oliveira, and Ahti Salo are with the De-
partment of Mathematics and Systems Analysis, Aalto University, 00076
Aalto, Finland (e-mail: tuomas.rintamaki@aalto.fi; fabricio.oliveira@aalto.fi;
ahti.salo@aalto.fi).

Afzal S. Siddiqui is with the Department of Computer and Systems Sciences,
Stockholm University, Kista, Sweden, and also with the Department of Math-
ematics and Systems Analysis, Aalto University, 00076 Aalto, Finland (e-mail:
Siddiqui,asiddiq@dsv.su.se).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TPWRS.2023.3244668.

Digital Object Identifier 10.1109/TPWRS.2023.3244668

ν/k iteration in the column-and-constraint algo-
rithm/Benders decomposition.

Sets

ΨG/L existing generation units/transmission lines.
ΨG,H/L,AC existing hydropower units/alternating current

(AC) transmission lines.
ΨG+/L+ candidate generation units/transmission lines.
ΦL1/L2/L3 1st/2nd/3rd level decision variables.
ΩM/S master problem/subproblem decision variables.
Ω/Ξ uncertainty/feasibility set.
r(!)/s(!) receiving/sending node of line !

T0/−1 first/last subproblem time step within each master
problem time step.

Tr subproblem time steps in which the ramp con-
straints are considered.

Parameters

P scaling factor to make investment and operation
costs comparable.

Wo weight of operating condition o

D demand growth factor.
D̃/D̂o,τ,n nominal demand/demand increase at node n in

condition o in period τ (MWh)
Et CO2 emission target in period t (tonne)
R discount factor.
C

x

t,u
investment cost of candidate unit u in period t (€
/MW)

C
y

t,"
investment cost of building candidate transmis-
sion line ! in period t (€)

C
g

o,τ,u
generation cost of unit u in condition o in period
τ (€ /MWh)

Ao,τ,u availability of unit u in condition o in period τ

(%)
Xu maximum invested capacity in candidate unit

u(MW)
Ḡo,τ,u maximum generation of unit u in condition o in

period τ (MWh)
Ḡ/G

r

o,τ,u
maximum ramp up/ramp down of unit u in con-
dition o in period τ (MWh)

G
e

u
CO2 emission rate of unit u (tonne/MWh)

S
0
o,τ,u

initial storage level of hydropower unit u in con-
dition o in period τ (MWh)
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S̄/So,τ,u maximum/minimum final storage level of hy-
dropower unit u in condition o in period τ (MWh)

Io,τ,u inflow to hydropower unit u in condition o in
period τ (MWh)

F̄ /F o,τ," maximum/minimum flow on line ! in condition o

in period τ (MWh)
B" susceptance of line ! (S)
Λw demand uncertainty budget.
Λ̄/Λ minimum/maximum price in the exchange (€

/MWh)

Binary variables

y/ŷt," equals 1 if the candidate transmission line ! is
available/built in period t

wn equals 1 if demand is increased from the nominal
level at node n

Continuous variables

x/x̂t,u total/new capacity of candidate generation unit u

in period t (MW)
do,τ,n demand at node n in condition o in period τ

(MWh)
zo,τ,n auxiliary variables for linearizing λo,τ,ndτ,n (€)
λo,τ,n price in condition o at node n in period τ (€

/MWh)
λ̃o,τ,n auxiliary variables for linearizing λo,τ,ndτ,n (€)
fo,τ," transmission flow in line ! in condition o in period

τ (MWh)
δo,τ,n voltage angle at node n in condition o in period τ

(rad)
go,τ,u generation at unit u in condition o in period τ

(MWh)
so,τ,u storage level at hydropower unit u in condition o

in period τ (MWh)
β̄/β

o,τ,u
dual variable for maximum/minimum generation
of unit u in condition o in period τ (€ /MWh)

β̄/β
r

o,τ,u
dual variable for maximum/minimum ramp of
unit u in condition o in period τ (€ /MWh)

β
e

t
dual variable for maximum CO2 emissions in
period t (€ /tonne)

φ
0
o,τ,u

dual variable for initial storage level of hy-
dropower unit u in condition o in period τ (€
/MWh)

φ
o,τ,u

dual variable for minimum storage of hydropower
unit u in condition o in period τ (€ /MWh)

φo,τ,u dual variable for storage level of hydropower unit
u in condition o in period τ (€ /MWh)

φ̄/φ
−1
o,τ,u

dual variable for maximum/minimum final stor-
age level of hydropower unit u in condition o in
period τ (€ /MWh)

µo,τ," dual variable for flow in AC line ! in condition o

in period τ (€ /MWh)
µ̄/µ

o,τ,"
dual variable for maximum/minimum flow in line
! in condition o in period τ (€ /MWh)

µ̄/µ
va

o,τ,n
dual variable for maximum/minimum voltage an-
gle at node n in condition o in period τ (€ /rad)

µ
ref

o,τ
dual variable for reference node voltage angle in
condition o in period τ (€ /rad)

θ auxiliary variable for the CC master problem ob-
jective function (€)

σo,τ,n dual variable for Benders decomposition (€
/MWh)

η auxiliary variable for Benders decomposition (€)

I. INTRODUCTION

MOST nations have ratified the Paris Agreement that aims
at capping the increase in the global average temper-

ature by lowering greenhouse gas (GHG) emissions [1]. To
this end, there are national policies that set specific goals for
GHG emission reductions through measures such as increasing
energy efficiency and the share of renewable energy of total
energy consumption [2]. Due to the limited availability of dis-
patchable renewable-energy sources (RES) such as hydropower
and biomass, investments in non-dispatchable variable RES
(VRES), such as wind and solar power, are required. How-
ever, integrating substantial VRES capacities in existing power
systems is likely to require significant investments in transmis-
sion capacity as well as flexible generation technologies (e.g.,
combined cycle gas turbines, CCGT) and storage to guarantee
power-system adequacy and security [3].

Given this background, we consider the generation and trans-
mission expansion planning (G&TEP) problem, i.e., the re-
quired infrastructural expansions, e.g., transmission line, VRES,
and other generation, for meeting long-term GHG emission-
reduction goals. We require meeting short-term operational
constraints on demand, transmission, generator ramping, and
availability taking into account related uncertainties and the
decision maker’s robustness requirements. Thus, we employ a
two-stage robust optimization model that can be formulated as
a tri-level model, in which the first stage and level consider a
multi-year investment horizon for generation and transmission
expansion. At the second stage, the second level uses robust
optimization (RO) to choose a worst-case demand for the third
level that uses stochastic programming (SP) to minimize the
cost of detailed, multi-hour power-system operation under a
set of operating conditions (scenarios) for uncertain parameters
such as VRES output and generation costs. We choose demand
as the uncertain variable at the second level as it is a key
driver for the long-term uncertainty of investment decisions and
generation adequacy, which are the foremost interests of our
analysis. Meanwhile, at the third level, we capture short-term,
hourly operational uncertainties. This combination of RO and SP
in two stages is called stochastic adaptive robust optimization
(SARO) [4]. We apply the framework to a realistic case study
covering Denmark, Estonia, Finland, Latvia, Lithuania, Norway,
and Sweden.

The two-stage robust optimization problems, also known as
SARO problems, for G&TEP are computationally challeng-
ing. [5] combine the best features of earlier exact solution
algorithms to develop a more effective solution method based
on the column-and-constraint (CC) algorithm in which solving
the first-level and the second- as well as third-level problems
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alternate until their costs match. These alternating problems
are called the master problem and subproblem, respectively. In
the context of G&TEP, the master problem is a mixed-integer
linear program (MILP) and the subproblem is a mixed-integer
non-linear problem (MINLP), which can be reformulated as
a computationally expensive MILP using a big-M-based lin-
earization. To this end, [6] develop an approximate block co-
ordinate descent method to avoid the expensive linearization
of the subproblem. Other inexact solution methods involve
metaheuristics such as genetic algorithms [7]. However, in this
paper, we note that the subproblem is a mixed-integer quadratic
program (MIQP), which can be solved faster than the linearized
MILP using modern solvers such as Gurobi [8]. The MIQP
solution method removes the need for additional constraints
and parameters, which facilitates its application to other bi-level
model instances, too. Moreover, we profile the CC algorithm
and note that the master problem is a computational bottleneck
as its size increases at every CC iteration. Consequently, we
employ Benders decomposition [9] to break up the large MILP
master problem into a small MILP and a large linear program
(LP), which are faster to solve for large problem instances and
lend themselves to parallelization. Accelerating the CC master
problem allows us to solve larger problem instances faster and
with less computational resources. To the best of our knowledge,
our paper is the first one to accelerate the CC master problem in
the SARO setting.

The two-stage robust optimization framework is employed
for the G&TEP problem in [4], [5], and [10] but without the
multi-year and multi-hour time dimensions and a goal for GHG
emission reduction. [11] and [12] consider multiple years, but
they do not focus on GHG emission reduction, do not model stor-
age or hydropower, and do not provide an accelerated solution
method for the master problem. [13] and [14] consider multiple
years, but they do not use either a GHG emission-reduction goal
or an accelerated solution method for the master problem. Also,
the G&TEP problem has been studied extensively in single-
([15], [16], [17]) and bi-level settings ([18], [19], [20]), but these
do not employ RO as an uncertainty modeling framework. Con-
sequently, our SARO model for the G&TEP problem extends
the state of the art to enable us to make policy contributions on
the large-scale integration of VRES.

Likewise, approaches for GHG emission reduction in the
power system have been studied extensively. [21], [22], [23],
[24], [25] explore the long-term plan toward a fully renewable
power system in the Baltic region, Germany, Australia, Cal-
ifornia, and Japan, respectively. They all find that significant
amounts of VRES generation need to be complemented with
dispatchable RES generation as well as storage technologies.
However, their methodologies are limited in that they consider
fixed cases for generation and transmission expansion and omit
details such as the transmission network or ramping in short-term
power-system operations. In fact, [26] solve a deterministic
mixed-integer linear program (MILP) to optimize an expansion
plan with constraints on GHG emissions and the share of RES
generation and show that ignoring operational constraints leads
to large errors in estimating GHG emissions.

Typically, the G&TEP problem is solved from the perspective
of a central planner such as the transmission system operator
(TSO). Although transmission investments are often made by
such a central planner, the generation investments are usually
made by independent market participants [4]. However, the
central planner may use policies to incentivize investment in
certain generation units [27], [28]. Also, alternative market
designs could be considered to ensure cost recovery [29]. Nev-
ertheless, [30], [31], [32] consider multiple companies investing
in generation, but this leads to problems with multiple equilibria,
which require custom solution algorithms, possibly with com-
putationally expensive linearization schemes and no optimality
guarantees. These approaches are outside the scope of our work.

Given this context, the contributions of this paper are:
C1) To consider multi-year and multi-hour time scales as well

as detailed power-system operations, e.g., hydropower
and a constraint for GHG emissions, in a SARO problem
for G&TEP.

C2) To improve the solution time of earlier exact methods by
applying Benders decomposition to the master problem
and by solving the subproblem as an MIQP. Using MIQP
removes the need for the expensive big-M linearization
used in earlier work.

C3) To show which investments in transmission, wind power,
and flexible generation capacity are required for reduc-
ing GHG emissions in a centrally planned system using
a realistic case study for Nordic and Baltic countries.
We show that these investments are robust to changes in
uncertainty parameters with a preference for wind power
at higher uncertainty levels.

C4) Through out-of-sample comparisons, to lay bare how
investment plans obtained using an SP model or a model
with less detailed power-system operations would not
be able to cope with random load changes under in-
creasingly stringent environmental considerations. By
contrast, a SARO-based investment plan would mitigate
the severest economic consequences by adopting more
VRES generation.

The remainder of this paper is organized as follows. Section II
presents the mathematical formulation of our SARO problem,
and Section III details our solution methods. Section IV presents
the results from a realistic case study. Finally, Section V sum-
marizes and provides future research directions.

II. PROBLEM DESCRIPTION

At the 1st stage and level of the SARO G&TEP problem, we
consider a central planner that makes an expansion plan in a long-
term horizon consisting of time steps t that we interpret as years.
While doing this, the central planner considers the 2nd stage,
where the 2nd level chooses the worst-case demand so as to
maximize power-system operation costs. Also, at the 2nd stage,
the central planner considers the 3rd level in which a market
operator minimizes the operational costs in multiple operating
conditions o and time steps τ for each 1st level time step t given
the worst-case demand determined by the 2nd level. In order to
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capture the intraday demand and VRES generation profile, we
model power-system operations within each 1st level time step
t using a number of 3rd level time steps τ that we interpret as
hours. To model several different intraday demand and VRES
generation profiles, we consider multiple operating conditions o

at the 3rd level. In addition to minimizing operational costs, the
driver for the expansion plan is an upper bound for emissions in
each 1st level time step.

A combination of RO and SP is used for modeling uncertainty
when making the expansion plan. Following [4], we use RO at
the 2nd level to identify the worst-case realization for the demand
level. The demand level is seen as a long-term uncertainty
that is affected by economic development and electrification
of different sectors, for example. The demand level and its
uncertainty are key drivers for investment decisions and gen-
eration adequacy. The demand-level uncertainty is controlled
using an uncertainty budget. On the other hand, following [4]
(and other references, e.g., [15], [16], [31])), we use an SP-based
formulation that simultaneously considers multiple operating
conditions and their respective weights (which are analogous
to scenarios and probabilities, respectively) at the 3rd level to
model uncertain parameters such as the short-term variability of
VRES generation, demand, conventional generation capacities
and costs, transmission capacities, and hydro inflows. To capture
the short-term variability of demand and VRES generation, i.e.,
their intraday profiles, we define multiple operating conditions
o and 3rd level time steps τ within each 1st level time step t.
These intraday profiles are sampled from real power-system data
using the hierarchical clustering method of [33]. In addition,
we represent short-term uncertainty in conventional generation
capacities and costs, transmission capacities, and hydro inflows
by sampling from a probability distribution in each operating
condition o and 3rd level time step τ .

A. Model Formulation

In the following, Ω denotes the uncertainty set from which the
worst-case demand is selected and Ξ denotes the feasibility set
for the operational decisions once the 1st and 2nd level decisions
have been made. The mathematical formulation for our SARO
G&TEP problem is:

min
ΦL1

P

X

t

R
−t

"
X

u∈ΨG+

C
x

t,u
x̂t,u +

X

"∈ΨL+

C
y

t,"
ŷt,"

#

+ max
ΦL2∈Ω

min
ΦL3∈Ξ

X

o

Wo

X

τ

R
−t(τ)

X

u

C
g

o,τ,u
go,τ,u (1)

s.t.

xt,u =
tX

t′=1

x̂t,′u ∀t, u ∈ ΨG+ (2)

yt," =
tX

t′=1

ŷt,′" ∀t, ! ∈ ΨL+ (3)

xt,u ≤ Xu ∀t, u ∈ ΨG+
, (4)

Fig. 1. T 0, T r , T −1, t(τ), and τ ∈ t in an example problem with five
subproblem time steps within each of the two master problem time steps.

where

ΦL1 = {x̂t,u, xt,u, ∀u ∈ ΨG+; ŷt,", yt,", ∀! ∈ ΨL+}, ∀t,

ΦL2 = {do,τ,n, ∀o, τ ; wn}, ∀n, and ΦL3 = {go,τ,u, ∀u;

so,τ,u, ∀u ∈ ΨG,H ; fo,τ,", ∀!; δo,τ,n, ∀n}, ∀o, τ.

In the objective function (1), the first minimization prob-
lem represents the generation and transmission expansion costs
(1st level), and the maximization problem represents the se-
lection of the worst-case demand (2nd level) for the second
minimization problem of attaining the least-cost power-system
operations (3rd level). The parameter P is used to annualize
the expansion costs to make them comparable with operational
costs. Constraints (2) and (3) define the capacities of candidate
units and transmission lines that are available at each 1st level
time step t, respectively. Constraints (4) define maximum in-
vestments in the new generation units.

Following [5] and [4], the uncertainty set Ω is given by:

{do,τ,n = D
t(τ)(D̃o,τ,n + wnD̂o,τ,n) ∀o, τ, n (5)

X

n

wn ≤ Λw}. (6)

Equation (5) defines that the demand is equal to the sum of nom-
inal demand (D̃o,τ,n) and a possible demand increase (D̂o,τ,n)
multiplied by demand growth factor (D) that compounds at each
1st level time step t. The demand increase is selected using binary
variables wn in an attempt to maximize the operation costs. (6)
sets an uncertainty budget on the number of demand increases
the 2nd level model can activate.

For formulating power-system operations in (7)–(20), we
define n(u) as the node at which unit u is located. Also, the
notation τ ∈ t indicates the 3rd level time steps τ within a
1st level time step t, and an inverse mapping t(τ) gives the
1st level time step t that the 3rd level time step τ belongs to.
The definition of the two different time scales and the related
sets are shown in Fig. 1. Consequently, given the optimal val-
ues x

∗
t,u

, ∀t, u ∈ ΨG+, y∗
t,"

, ∀t, ! ∈ ΨL+, and d
∗
o,τ,n

, ∀o, τ, n, the
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feasibility set Ξ(go,τ,u, so,τ,u, fo,τ,", δo,τ,n) is:

⇢ X

u|n(u)=n

go,τ,u −
X

"|s(")=n

fo,τ,"

+
X

"|r(")=n

fo,τ," = d
∗
o,τ,n

∀o, τ, n (7)

0 ≤ go,τ,u ≤ Ao,τ,uḠo,τ,u ∀o, τ, u ∈ ΨG

n
(8)

0 ≤ go,τ,u ≤ Ao,τ,ux
∗
t(τ),u ∀o, τ, u ∈ ΨG+

n
(9)

G
r

o,τ,u
≤ go,τ+1,u − go,τ,u ∀o, τ ∈ Tr

, u (10)

go,τ+1,u − go,τ,u ≤ Ḡ
r

o,τ,u
∀o, τ ∈ Tr

, u (11)

so,τ,u ≥ 0 ∀o, τ, u ∈ ΨG,H (12)

so,τ,u = S
0
o,τ,u

∀o, τ ∈ T0
, u ∈ ΨG,H (13)

so,τ+1,u = so,τ,u − go,τ,u + Io,τ,u ∀o, τ ∈ Tr
, u ∈ ΨG,H

(14)

So,τ,u ≤ so,τ,u ≤ S̄o,τ,u ∀o, τ ∈ T−1
, u ∈ ΨG,H (15)

fo,τ," = B"(δo,τ,s(") − δo,τ,r(")) ∀o, τ, ! ∈ ΨL,AC (16)

F o,τ," ≤ fo,τ," ≤ F̄o,τ," ∀o, τ, ! ∈ ΨL (17)

F o,τ,"y
∗
t(τ)," ≤ fo,τ," ≤ F̄o,τ,"y

∗
t(τ)," ∀o, τ, ! ∈ ΨL+ (18)

− π ≤ δo,τ,n ≤ π ∀o, τ, n (19)

δo,τ,0 = 0 ∀o, τ (20)

X

o

X

τ∈t

X

u

WoG
e

o,τ,u
go,τ,u ≤ Et ∀t

�
(21)

Equation (7) requires that the (possibly worst-case) demand
is equal to the generation and exchange at each node. (8) and (9)
impose that the generation of each unit is non-negative but less
than or equal to the product of the unit’s availability (Ao,τ,u) and
the maximum capacity of an existing unit (Ḡo,τ,u) or the built
capacity of a candidate unit x

∗
t(τ),u, respectively. Moreover, the

generation is limited by ramping constraints (10) and (11).
Following [34], we assume that each hydropower unit has

one reservoir that can act as storage. (12) imposes that storage
levels are non-negative. (13) sets the initial storage level at the
first 3rd level time step τ within each 1st level time step t. (14)
defines the storage level at the following time step τ + 1 as the
current storage plus the difference of hydropower generation
(go,τ,u, u ∈ ΨG,H ) and inflows (Io,τ,u) at τ . To avoid possible
storage depletion, (15) requires that the storage level at the
last 3rd level time step τ within each 1st level time step t is
within desired levels So,τ,u and S̄o,τ,u. We do not model the
link between the final and initial storage levels as these time
steps may correspond to representative days many weeks or
months apart. Using exogenous values for the initial storage
levels reduces the risk of making hydropower too flexible where
it could carry too much water between the representative days.
As we show in Section IV-E, this hydropower model is more
realistic than assuming that hydropower is fully flexible [35],

[36]. However, this model does not consider the time value of
water or additional constraints imposed by river systems, for
example.

The transmission network is represented by alternating cur-
rent (AC) and direct current (DC) circuits in (16)–(20). For AC
lines, the transmission flow is determined by (16). However,
flows in existing and candidate transmission lines must be within
the capacities of the lines as given by (17) and (18), respectively.
Related to the AC circuit, the voltage angles at each node and a
reference voltage angle are given by (19) and (20), respectively.

Finally, (21) determines the upper bound for CO2 emissions,
which we use as a proxy for GHG emissions, at each 1st level
time step t. This constraint applies to the entire region consid-
ered, which allows the model to optimize investments based on
renewable generation conditions across the region, for example.
The framework allows for other criteria such as a country-wise
emissions caps or a lower bound on renewable power generation.

In the above formulation, we have assumed that all candidate
transmission lines are DC lines for which flow is determined in
the power exchange. This is because we focus on emission re-
duction and VRES integration using cross-border transmission,
which is typically implemented via high-voltage DC (HVDC)
lines to minimize heat and other relevant losses. However, the
above formulation can readily be extended to cover candidate
AC lines, too.

III. SOLUTION METHOD

Following [5], the problem (1)–(4) is solved using a column-
and-constraint (CC) algorithm in which solving the first mini-
mization problem of (1) and solving the max-min problem of (1)
alternates. These two problems are called CC master problem
and CC subproblem, respectively. The alternation terminates
when the total costs computed from the two problems match
indicating the convergence of the method. The formulations for
CC master problem and subproblem are given in the follow-
ing subsections (22)–(39) and (40)–(45), respectively) and the
solution algorithm is described in detail in Algorithm 1.

A. CC Master Problem

At iteration ν, we have ΩM = {go,τ,u,ν ′ , ∀u; so,τ,u,ν ′ , ∀u ∈
ΨG,H ; fo,τ,",ν ′ , ∀!; δo,τ,n,ν ′ , ∀n}, ∀o, τ, ν

′ ≤ ν. Given d
∗
o,τ,n,ν ′ ,

∀o, τ, n, ν
′ ≤ ν as input data obtained from all the previous

solutions of the subproblem, the master problem at iteration ν

is:

min
ΦL1,ΩM ,θ

P
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Algorithm 1: Algorithm for Solving the Problem (1)–(4).
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B. CC Subproblem

For the subproblem, we define the following:
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(40)

s.t.

λo,τ,n(u) − β̄o,τ,u + β
o,τ,u

+ 1τ∈Tr∧u∈ΨG,Hφo,t,u

− 1τ /∈T0 β̄
r

o,τ−1,u
+ 1τ /∈T−1 β̄

r

o,τ,u
+ 1τ /∈T0β

r

o,τ−1,u

− 1τ /∈T−1β
r

o,τ,u
− WoG

e

u
β

e

t(τ)=R
−t(τ)

C
g

o,τ,u
Wo ∀o, τ, u

(41)

1τ∈T0φ
0
o,τ,u

+ β
s

o,τ,u
− 1τ /∈T−1φo,τ,u + 1τ /∈T0φo,τ−1,u

+ 1τ∈T−1(φ
o,τ,u

− φ̄o,τ,u) = 0 ∀o, τ, u ∈ ΨG,H (42)

− λo,τ,s(") + λo,τ,r(") + 1"∈ΨL,ACµo,τ,"
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− µ̄o,τ," + µ
o,τ,"

= 0 ∀o, τ, ! (43)

−
X

"∈ΨL,AC |s(")=n

B"µo,τ," +
X

"∈ΨL,AC |r(")=n

B"µo,τ,"

− µ̄
va

o,τ,n
+ µ

va

o,τ,n
+ 1n=0µ

ref

o,τ
= 0 ∀o, τ, n (44)

(5) − (6), (45)

where 1cond equals 1 if cond is true and 0 otherwise.
The subproblem can be solved directly as an MIQP us-

ing solvers such as Gurobi. Alternatively, the subproblem
can be reformulated as an MILP by linearizing the prod-
uct of the continuous and binary variables in λo,τ,ndo,τ,n =

λo,τ,nD
−t(τ)(D̃o,τ,n + wnD̂o,τ,n) in the objective func-

tion (40) exactly with λo,τ,ndo,τ,n = D
−t(τ)(zo,τ,nD̂o,τ,n +

λo,τ,nD̃o,τ,n) and by adding the following constraints to the
subproblem:

zo,τ,n = λo,τ,n − λ̃o,τ,n ∀o, τ, n (46)

Λwn ≤ zo,τ,n ≤ Λ̄wn ∀o, τ, n (47)

Λ(1 − wn) ≤ λ̃o,τ,n ≤ Λ̄(1 − wn) ∀o, τ, n, (48)

where parameters Λ and Λ̄ can be set to exchange-specific values
such as -500 € /MWh and 3000 € /MWh, respectively.

C. Benders Decomposition of the CC Master Problem

The CC master problem in (22)–(39) is an MILP that grows
in the number of constraints at every CC iteration ν, whereas
the CC subproblem remains fixed in size. If multiple iterations
are required for solving a medium to large problem instance
(i.e., several nodes, generation units, transmission lines and time
steps), then the CC master problem can become prohibitively
large. To tackle this issue, we apply Benders decomposition to
the CC master problem to convert it to a small MILP and a large
LP that are solved alternatively. Even though these two problems
grow also at every CC iteration, they are typically faster to
solve than the original MILP, as illustrated in the computational
experiments presented in Section IV.

Specifically, the complicating variables in the original CC
master problem are the binary variables yt," and ŷt," that, once
fixed, render an LP problem. Thus, the Benders master problem
at iteration k of the Benders decomposition chooses ΦL1,BM =
{yt,", ŷt,", ∀t, ! ∈ ΨL+} by solving the following problem given
d

∗
o,τ,n,ν

from the CC subproblem:

min
ΦL1,BM ,η

P

X

t

R
−t
X

"∈ΨL+

C
y

t,"
ŷt," + η (49)

s.t.
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τ
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⌘

+
X

"∈ΨL+
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+
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�
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0
o,τ,u

φ
0
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)
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−
X

t

X

ν

Etβ
e

t
≥ 0. (50)

With y
∗
t,",k

and ŷ
∗
t,",k

as input data, the Benders subproblem
at the iteration k of the Benders decomposition is then given by
ΦL1,BS = {xt,u, x̂t,u, ∀t, ! ∈ ΨG+}

min
ΦL1,BS ,ΩM ,θ

P

X

t

R
−t

"
X

u∈ΨG+

C
x

t,u
x̂t,u +

X

"∈ΨL+

C
y

t,"
ŷ

∗
t,"

#
+θ

(51)

s.t.

1st level constraints (2) and (4)

3rd level constraints (24)-(36), (38), and (39)

F o,τ,"y
∗
t(τ),",k ≤fo,τ,",ν ′ ≤ F̄o,τ,"y

∗
t(τ),",k ∀o, τ, ! ∈ ΨL+

, ν
′ ≤ν.

(52)

The Benders master problem and subproblem are solved in
an alternating fashion until their objective values are within a
tolerance ε = 10−6 from each other.

IV. CASE STUDY: TEN-YEAR INVESTMENT PLAN FOR

MODIFIED NORDIC AND BALTIC NETWORK

We have made the data and code for our case studies available
at https://github.com/tuomasr/robust-dev.

A. Data

In order to examine a robust G&TEP plan with a target
for CO2 emissions, we use the Nordic and Baltic network in
Fig. 2 and its generation, load, and transmission-line data
from [35] as a base system for developing our case study. The
system has a total of 14 nodes, of which six (without country
codes) are dummy nodes used to represent the transmission
network and have no load. The dashed and solid lines in Fig.
2 are DC and AC links, respectively. We augment this base
system by having ten time steps in the CC master problem (t)
for making investments. For each master problem time step, we
consider 24 time steps in the CC subproblem (τ ) to capture the
intraday variability of load and renewables. Consequently, the
subproblem has 240 time steps in total. To consider increasing
electricity demand, we assume that load values increase by a
factor of D = 1.01 at each master problem time step [37].

In addition, we define 15 operational conditions o for each
subproblem time step. We apply the hierarchical clustering
method of [33] on hourly load and wind power data for 2014
to obtain 15 representative days. In short, we concatenate the
hourly load and wind power data for each non-dummy node to
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Fig. 2. Nordic and Baltic power system [35].

obtain 365 vectors of length 192 (24 hours × 8 non-dummy
nodes). These vectors are clustered using agglomerative cluster-
ing with Ward’s linkage into the desired number of representative
days (15 in our case). We then find the center of each cluster by
taking the mean of the vectors in the cluster. Next, we obtain the
representative days by finding the nearest vector to the cluster
center using mean absolute distance. The hourly load, wind,
and solar power data in these 15 representative days are used
as the operational conditions for each set of 24 subproblem
time steps. This allows us to capture the short-term variability
of load and renewables over 15 representative days for each
CC master problem time step (t). We select 15 representative
days because we observed that the accuracy of the clustering as
measured by mean squared distance from cluster centers does not
improve significantly with additional representative days (see
Fig. 3), while the solution time of the SARO problem steadily
increases. For comparison, reference [33] finds 6 representative
days appropriate. In fact, [38] show that if a sufficient number
of the constraints corresponding to all scenarios are sampled,
then the resulting solution fails to satisfy only a small portion of
them.

Since hydropower data such as initial storage levels (S0
o,τ,u

)
and inflows (Io,τ,u) have weekly granularity, for each operating
condition, we take the weekly value corresponding to each rep-
resentative day. However, for generation (Ḡo,τ,u) and transmis-
sion capacities (F̄o,τ," and F o,τ,"), the operating conditions are
defined by sampling uniform noise from U(−50 MW, 50 MW)
and adding the noise to historical values of these variables
from [35]. Likewise, we sample perturbations to conventional
generation costs (Cg

o,τ,u
) from U(−1€/MWh, 1€/MWh). These

perturbations represent the short-term variability in generation
costs as well as generator and transmission capacities due to

Fig. 3. Mean absolute distance between data points and cluster centers by the
number of clusters (representative days).

maintenance and market conditions, for example. The pertur-
bations are small compared to the historical values of these
variables. The weights of the operating conditions (Wo) are
equal to the weights of the representative days as defined in [33].

Open-cycle gas turbine (OCGT), combined-cycle gas turbine
(CCGT), oil, biomass, wind, and solar power can be built at each
(non-dummy) node. Each candidate unit has a maximum capac-
ity (Ginv,max

u
) of 10 GW except for biomass units, which we

limit to 1 GW due to limited fuel supply. In addition, neighboring
(non-dummy) node pairs can be connected with a candidate DC
transmission line with 1 GW of capacity in either direction.
The investment costs for OCGT, CCGT, oil, biomass, wind, and
solar power are 0.8, 1.0, 0.8, 3.9, 1.6, and 1.8 million € /MW,
respectively, and 1000 million € for each transmission line [39].
The discount factor is 1.03, which is typical for this region [40].
We use the factor P = 1

365 to annualize the expansion costs to
the same level as the operational costs.

The initial CO2 emission limit E0 = 90000 tonnes is obtained
from the CO2 emissions corresponding to the first master prob-
lem time step when solving the problem with no investments.
This initial emission bound is realistic given that the average
daily CO2 emissions of both power and heat production were
approximately E0 = 140000 tonnes in this area in 2014 [41].
We assume that the CO2 emissions are required to decrease by
approximately 6000 tonnes at every master problem time step
to a final emission limit of E9 = 35000 tonnes.

The 2nd level of the problem (1)–(4) chooses the worst-case
load for power-system operations at the 3rd level. The budget
(∆w) for choosing the worst-case load in (6) is 4 meaning that
the model can increase load at a maximum of four nodes. Each
increase that the model makes increases load in a node for all
operating conditions and subproblem time steps (D̂o,τ,n) by 5%
of average hourly load in that node.

B. Summary of Results

We solve the case study using Algorithm 1 such that, for the
CC master problem, we consider MILP and Benders decompo-
sition formulations and, for the CC subproblem, we consider
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TABLE I
RESULTS FOR THE DIFFERENT MASTER AND SUBPROBLEM ALGORITHMS

USING THE NORDIC AND BALTIC NETWORK

Fig. 4. CO2 emissions and prices during the planning horizon.

MILP and MIQP formulations. The results in Table I show
that all formulations attain the same objective value using the
same number of iterations. The majority of the time is spent
solving the CC master problems, which Benders decomposition
solves nearly 2.5x faster than MILP. For the CC subproblems,
MIQP outperforms MILP with a 1.5x speed-up. Consequently,
Benders decomposition significantly reduces computational re-
source usage and, consequently, solution times, at the cost of a
more technically complex implementation. The employment of
MIQP to solve the subproblems yields smaller improvements in
solution times but removes the need for the big-M linearization
used in [4], [5], and in many bi-level model instances.1 This
demonstrates contributions C1 and C2.

Fig. 4 shows the evolution of CO2 emissions to the final
desired level during the planning horizon and the corresponding
CO2 emission prices (βe

t
). Already at t = 0, 1000 MW trans-

mission lines are built from Finland to Norway and Sweden (see
Table II) and a total of 1650 MW of wind power in Finland as well
as 1200 MW of CCGT units in Latvia and Lithuania as shown
by Fig. 5. As a consequence, CO2 emissions from t = 0 to t = 4
are below the limits. To reduce CO2 emissions to meet the final
level under increasing load, an additional 100 MW of CCGT
and 2000 MW of biomass units in Finland and in the Baltic
countries are built during steps t = 5 to t = 9. The generation
investments are similar to those in [21] except that they have

1We acknowledge the computational resources provided by the Aalto Scien-
tific Computing initiative. All cases were solved using Gurobi 9.1 [8] running
on a server with two 20-core Intel Xeon Gold 6248 processors at 2.50 GHz base
frequency and with 128 GB of RAM.

TABLE II
RESULTS FOR THE IMPACT OF UNCERTAINTY BUDGET ON THE EXPANSION

PLAN IN THE SARO MODEL

Fig. 5. Generation investments during the planning horizon with country codes
indicating the node where each generation unit is built (EE = Estonia, FI =
Finland, LV = Latvia, LT = Lithuania).

less CCGT and more solar power. Additionally, we find that
our generation-expansion plan remains similar if we decrease
the generation-investment costs by 40%-50%. If wind-power
investment costs are decreased further, then the model prefers to
build more wind-power capacity due to its low operational costs.
In all cases, transmission-line expansion remains unchanged.
Hence, we have tested the validity of our results with respect to
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Fig. 6. Generation mix by fuel type in a SARO model with an emission
constraint and changes in generation shares without the emission constraint.

the assumed cost estimates and found that the main insights are
unaffected.

The generation mixes in Fig. 6 show that, compared to a
solution with minimal investments and no emission constraint,
the transmission and generation investments of the SARO model
allow for replacing coal-, oil- and oil-shale-fired generation with
less-polluting gas- and biomass-fired generation as well as wind
power. In addition, new transmission lines between Finland,
Norway, and Sweden enable increasing hydropower and nuclear
generation close to their maximum capacity.

For the sake of comparison, we consider the investment
decisions from an SP or randomly sampled model, in which
the 2nd level uncertainty is modeled by representing the load
increase (D̂o,τ,n) of non-dummy nodes by a set of randomly
sampled values. More precisely, we sample a vector of random
values ŵn from a uniform distribution and scale the magnitude
of the vector to 1 to obtain the load for the SP or randomly
sampled model:

X

n

ŵn = 1 (53)

d
∗
o,τ,n

= D
t(τ)(D̃o,τ,n + ŵnD̂o,τ,n) ∀o, τ, n (54)

The scaling in (53) is selected to represent an average load
increase across all nodes. Consequently, the SP or randomly
sampled model is given by

min
ΦL1

P

X

t

R
−t

"
X

u∈ΨG+

C
x

t,u
x̂t,u +

X

"∈ΨL+

C
y

t,"
ŷt,"

#

+ min
ΦL3∈Ξ

X

o

Wo

X

τ

R
−t(τ)

X

u

C
g

o,τ,u
go,τ,u (55)

s.t.

(2)–(4) (56)

(53)–(54) (57)

Fig. 7. Generation mix by fuel type in an SARO model and changes in
generation shares with an SP or randomly sampled model.

The objective function in (55) is the same as in the SARO
model in (1)–(4) except that the 2nd level objective function
( max
ΦL2∈Ω

) is removed. This is because the 2nd level constraints (5)–

(6) are replaced by (53)–(54), which allocate the load increase
(D̂o,τ,n) to non-dummy nodes randomly instead of finding the
worst-case load increase. This makes d

∗
o,t,n

a parameter in the SP
or randomly sampled model, whereas in the SARO model d

∗
o,t,n

is a variable. The SP or randomly sampled model has the same
constraints (7)–(21) as the SARO model 3rd -level constraints
(represented by the feasibility set Ξ). Furthermore, the operating
conditions (scenarios) remain the same.

The SP or randomly sampled model can, in principle, be
solved as an MILP by substituting x

∗
t,u

= xt,u and y
∗
t,"

= yt," in
the SP or randomly sampled model formulation. However, we
solve this SP or randomly sampled model using the same CC
algorithm as we use for solving our base SARO model except
that in Algorithm 1, we set do,t,n = do,t,n,ν = d

∗
o,t,n

∀o, t, n, ν

using (53)–(54). The CC algorithm can potentially speed-up the
computational performance of large problem instances.

Fig. 7 shows the generation mixes of the SARO and SP
(or randomly sampled) models using their investment decisions
and the same load. Compared to the SP or randomly sampled
model, the SARO model allows for replacing coal-, oil-, gas-,
and oil-shale-fired generation with wind power. Compared to
the worst-case demand increases selected by the SARO model,
the randomly allocated demand increases of the SP or randomly
sampled model lead to lower transmission network congestion
that leads the SP or randomly sampled model to invest less
in wind power and utilize more existing hydro, biomass, and
less-polluting gas plants.

C. Impact of Uncertainty Budget

The optimal generation and expansion decisions for differ-
ent uncertainty budgets lead to Finland-Norway and Finland-
Sweden transmission lines and gas-fired, biomass, and wind
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TABLE III
RESULTS FOR THE IMPACT OF LOAD UNCERTAINTY ON THE EXPANSION PLAN

IN THE SP OR RANDOMLY SAMPLED MODEL

power in all cases, which indicates the robustness of the invest-
ment decisions (Table II). Investments in wind power grow in
relative terms at higher uncertainty levels. All models are solved
using Benders decomposition and MIQP. This demonstrates
contribution C3.

Table III shows the investment plan made by an SP or ran-
domly sampled model in which the load increases (D̂o,τ,n) are
randomly allocated to the nodes. The transmission line invest-
ments are the same as those in the SARO model, but generation
investments in biomass are lower without investment in wind
power.

D. Cost of Robustness

Next, we demonstrate contribution C4 by evaluating the
out-of-sample performance of the investment plan made by
the SARO model by computing its expected total costs un-
der different load levels sampled from do,τ,n ∼ D̃o,τ,n[1 +
U(min(0, L), max(0, L))], ∀o, τ, n, where L ∈ [−0.05, 0.10] is
a load change. As we have 15 operating conditions, 240 time
steps, and 8 non-dummy nodes, we sample a total of 15 ×
240 × 8 = 28800 load change values. Otherwise, we use the
same parameter values as in our base model in Section IV-B.
As a comparison, we use the investment plan made by an SP
or randomly sampled model of Section IV-B in which the load
increases of 5% (D̂o,τ,n) are randomly allocated to the nodes.

Since the models can become infeasible at higher load lev-
els, we relax the emission constraints and assign different
penalty levels for violating them. This penalty corresponds to
the marginal emissions cost β

e

t
, which reaches the range 50 €

/tonne to 500 € /tonne in our base model as shown by Fig. 4. We
expect the emission cost to increase as the emission policy is
anticipated to get more stringent over time and, hence, consider
penalty levels of 100, 1000, and 10000 € /tonne. Fig. 8 indicates
that the SARO model is more conservative in that it has higher
total costs when load changes are zero or negative. However,
for positive load changes, the SARO model can have lower total
costs than the SP or randomly sampled model when the penalty
for violating the emission constraint is 1000 €/tonne or higher.
Moreover, for load changes close to the upper limit, the SP or
randomly sampled model becomes infeasible.

E. Impact of Detailed Hydro-Reservoir Modeling

To further demonstrate our contributions C3 and C4, we
remove the hydropower storage variable so,τ,u and constraints
(12)–(15) from the problem (1)–(4) to explore the impact of
detailed power-system modeling. In effect, we treat hydro-
reservoir generation as if it were a fully flexible resource. We

Fig. 8. Out-of-sample performance of the investment plans made by the SARO
and SP (or randomly sampled) models under different load levels and penalties
for violating the emission constraints.

Fig. 9. Out-of-sample performance of the investment plans made by the SARO
model with and without hydropower storage variable so,t,u and constraints
(12)–(15) under different load levels and penalties for violating the emission
constraints.

find that without the hydropower constraints, there is no new
generation investment while 1000 MW transmission lines are
built from Finland to Norway and Sweden at t = 0 similar to
our base model in Section IV-B. Following Section IV-D, we
evaluate the investment plan made by the SARO model without
the hydropower storage constraints by inserting the storage
constraints back and computing the total expected cost under
different load changes L and penalties for violating the emission
constraints. Fig. 9 shows that the investment plan made by the
SARO model with hydropower storage constraints has slightly
higher total costs when the penalty for violating the emission
constraints is 100 €/tonne. However, when either the penalty
is 1000 €/tonne or the load change L is higher than 6%, the
investment plan made by the SARO model without storage con-
straints either leads to significantly higher total costs or results
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in infeasibility as indicated by the truncated blue series in Fig. 9.
Consequently, it is important to model hydropower at a detailed
level to obtain realistic investment decisions that can avoid
severe economic consequences and issues with power-system
adequacy.

V. CONCLUSION

Many nations have set specific goals for GHG emission
reductions through measures such as increasing the share of
renewable energy. Integrating substantial VRES capacities in ex-
isting power systems is likely to require significant investments
in transmission capacity and flexible generation technologies
to guarantee power-system adequacy and security in the short
and long terms. Therefore, the first contribution (C1) of this
paper is to propose a SARO model for the G&TEP problem
with multiple long- and short-term time periods along with
detailed power-system operations and an emission-reduction
goal. Earlier work has either omitted detailed short-term power-
system operations, considered fixed investment scenarios, or not
focused on emission reduction. Our second contribution (C2)
is to deploy Benders decomposition and MIQP reformulations
for improving the solution time of the problem. Earlier work
has either used expensive big-M linearizations to obtain an
expensive MILP or developed methods to accelerate the CC
subproblem that may not be the computational bottleneck in
all cases. We apply the model to a Nordic and Baltic power
system and make the following conclusions on energy policy to
contribute to the state-of-the-art policy analysis of large-scale
integration of renewable energy in power systems (C3 and C4):

1) New transmission lines are built to make flexible and en-
vironmentally friendly hydropower production available
in the entire system. The investment decisions are robust
to load uncertainty and changes in generation-investment
costs.

2) New wind power units are built to reduce emissions. In
addition, CCGT and biomass generation units are built to
displace more polluting coal, oil, and oil-shale units and
to provide flexibility for offsetting the variability of wind
and solar power. Building more wind power is preferred
at higher uncertainty levels.

3) The SARO model invests more in biomass and wind power
than the SP or randomly sampled model does.

4) The investment plan found by the SARO model outper-
forms that of an SP or randomly sampled model at higher
load levels but is more expensive at lower load levels.

5) Omitting hydro-reservoir constraints in modeling leads to
significantly lower generation investment, which results
in higher expected costs and infeasibility at higher load
levels.

Building on our improved computational methods, future
work could explore longer-term investment plans with various
scenarios on the electrification of transportation as well as de-
ployment of emerging technologies such as storage other than
hydropower. Moreover, the model could be extended to cover
larger power systems such as all of Europe to find a more
globally optimal investment plan that takes into account the
pool of resources and spatio-temporal correlations of VRES

generation in a larger geographical area. Our model assumes
a central planner, while future work could take game-theoretic
approaches with multiple independent market participants. The
hydropower model could be further improved to consider the
time value of water and constraints related to river systems.
Also, future research can develop more realistic models for
additional sources of uncertainty such as long-term uncertainties
in fuel costs, transmission and generation outages, and climate
conditions affecting renewable-energy availability that could
lead to more robust investment plans for renewable-rich systems.
In fact, our framework can be readily extended with additional
long- and short-term uncertainties at the 2nd and 3rd levels
of the model, respectively. Finally, the large-scale LP in the
Benders subproblem remains a bottleneck, which means that
further decomposition could lead to significant improvements
in solution times.
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