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Téan& pdivana niin ympéristopaatoksenteossa kuin sdhkon kiytosséd on otettava huomioon ajan
mukana kehittyvia ilmi6ité, kuten hinnat ja ilmiGiden dynamiikka, ja monia eri kriteereitd. Taméan
tyyppiset tehtavét ovat esimerkkejd, joissa voidaan hyodyntaa dynaamista monitavoiteoptimointia
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olla myds johtaja-seuraaja tyyppinen asetelma, jossa johtaja pyrkii maksimoimaan kokonaishyotya
ottaen huomioon seuraajien reaktiot. Tassa vaitoskirjassa tarkastellaan tdiménkaltaisia
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ongelma. Viitdskirjassa tutkitaan myds uutta toimintamuotoa sihkomarkkinoilla, missa kuluttajat
toimivat yhteisty0ssa. Lisdksi tarkastellaan tuotannon suunnittelun ja energianhallinnan
yhdistimisen ongelmaa prosessiteollisuudessa.
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1. Introduction

Today, the increased requirements for efficiency and improved management
practices in environmental and energy problems often lead to dynamic
multiobjective optimization models. One needs to consider the changing
demand and coordinate the production and use of energy accordingly, or one
needs to optimize the regulation of river flows to sustain energy production
and at the same time avoid flooding. This dissertation focuses on modeling
challenges where these dynamic effects are met. Typically, there are no off-
the-shelf solutions to these problems, but the solution methods need to be
customized in each particular case.

This dissertation develops approaches to a number of such dynamic
multiobjective optimization problems. These include the multiobjective
optimization of an electrically heated house with an hourly varying price of
electricity. This model is extended to the wider context of an electricity market
by considering a coalition of cooperative space heating consumers aiming to
optimize their total welfare by designing a within coalition time-of-use tariff.
The dynamic regulation of a lake-river system is described by optimizing
multiple objectives with interval goals and constraints. An industrial problem
emerging from the combined production planning and energy supply is also
considered.

The dynamic multiobjective problems studied here consist of three parts.
First, there is a model describing the dynamics of the system. Second, the
goals and the user’s preferences are determined to define the objectives to be
optimized. Finally, the solution approach and algorithm are developed. The
challenge is to tackle all of these three parts so that the numerical solution will
be practical and implementable in real life situations. These kinds of challenges
emerge often in industrial problems but they are not typically discussed in the
literature on multiobjective optimization.

In this summary, the approaches introduced in the dissertation are reflected
against methods presented in the more recent literature. This summary article is
structured as follows. Section 2 presents the methodological background of the
dissertation. Section 3 discusses the results of Papers 1-5. Section 4 concludes
by summarizing the contributions of the dissertation and discusses possibilities
for future research.



2. Methodological background

The following chapters provide short introductions to the literature on the basic
concepts and methods used in the dissertation. The more recent modeling efforts
in the application areas considered in the dissertation are also summarized.

2.1 Multiobjective optimization

A multiobjective optimization problem can be defined as

Mini;nize { fi(x), f2(X), ..., fi(x) }
subject to

xeS={g(x)<0,j=1,.,M}

where the objective functions are f(x) and x is the n-dimensional decision
variable. The constraint functions gj(x) define the decision space S and a point
x belonging to the decision space is called a feasible solution of the problem.
The vector z = f(x) = (f (x), {,(x),..., f, (x) ) related to a single solution is called
an objective or criterion vector. In maximization, the problem definition applies
similarly using negation of the objective functions, i.e., -f(x). All objective
and constraint functions are typically assumed to be convex and continuously
differentiable to guarantee the existence of solutions.

2.1.1 Solution concepts

In a multiobjective problem, there is typically not a single best solution over all
the objectives. The solution methods for multiobjective optimization problems
aim to produce a set of nondominated solutions that are also called noninferior,
efficient or Pareto optimal solutions. A solution is Pareto optimal, if none of the
objective functions can be improved without degrading at least one of the other
objectives. In other words, the solution is Pareto optimal when an improvement
in one objective would lead to a weakening in at least one other objective.
Formally, a solution xP is Pareto optimal, if there does not exist another feasible
solution x’ that dominates it, i.e.,
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f(x) < f(x?) for alli € {1,..., k} and
fj(x’) < fj(xP) for some index j € {1,..., k}.

The solution x*? is called weakly Pareto optimal, if there does not exist another
solution that is better with respect to each objective function, i.e., there does not
exist another feasible solution x’ such that fj(x’) < fJ.(xWP) for all j € {1,..., k}. The
set of all Pareto optimal solutions is called the Pareto set and the set of all Pareto
optimal objective vectors is called the Pareto frontier. The decision maker, i.e.,
the owner of the multiobjective problem, is assumed to be rational in the sense
of selecting the final solution from the set of Pareto optimal solutions.

The mapping of feasible solutions to multidimensional objective function
values is called the objective function space Z. The space Z is often characterized
by so called Ideal z* and Nadir points, see, e.g., Miettinen (1999) and Antunes et
al. (2016). The Ideal point z* refers to the point defined by the values obtained
by minimizing each objective function separately. The Nadir point z"% refers
to the upper bounds of the objective functions on the Pareto frontier. The
Ideal and Nadir points provide the range of Pareto optimal objective values
for the decision maker to consider. The Ideal and Nadir points can be used to
normalize the objective functions to a common scale in order to avoid numerical
difficulties in optimization. In a higher dimension (k > 2), computing the true
Nadir point is a difficult task on its own, since it requires knowledge of all the
Pareto solutions.

The approximation of the Nadir point starts from calculating each single
objective optimization separately to produce the Ideal point. The approximated
Nadir point is formed by taking the worst value for each objective separately
over all single objective optimizations. Figure 1 illustrates the Ideal and Nadir
points in a two dimensional case.
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Figure 1. Ideal z* and Nadir 2" points in a two-dimensional case. z,* and z,* are the optimal
objective values for the first and the second objective, respectively. The Ideal point z* is the
combination of these. The Pareto frontier is the line segment between points f1* and f2*. The
Nadir Point z"" js the upper bound of the objective values with respect to the Pareto frontier.
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2.1.2 Solution methods

The solution methods for multiobjective optimization can be classified according
to the availability of the decision maker’s preference information, see, e.g.,
Miettinen (1999). There are no-preference, a priori, a posteriori and interactive
methods. In the no-preference methods, a solution without preference
information is generated, e.g., by minimizing the solution’s distance to the ideal
point. In a priori methods, the decision maker is first asked about preference
information, such as the preferred values for each of the objective functions, and
a solution closest to these values is generated. In a posteriori methods, a subset
of the Pareto frontier is generated by converting the multiobjective function to
a scalar objective function. This scalarization can be done typically with stated
preference information. The decision maker is asked to choose a solution from
of this subset of Pareto solutions generated. In interactive methods, the decision
maker chooses a solution from the Pareto frontier in an interactive manner by
stating desirable changes to the current objective vector. In this dissertation, the
methods used mainly belong to a priori methods where stated preferences are
ideal levels of indoor temperature and water reservoirs. In the following, typical
methods in each of these classes are briefly described.

2.1.2.1 No-preference methods

In no-preference methods, a Pareto solution is generated directly without
asking for any preference information. This is carried out, e.g., by minimizing
the solution’s distance to the Ideal point z* using a suitable norm for the
distance. An example norm is absolute deviation between an Ideal point z* and
an objective function space point z = (f (x), f (x),..., f (x) ), i.e.,

Minimize yk |f(x) — ;| subject tox € S.
This minimization problem gives a Pareto optimal point, see, e.g., Miettinen
(1999). Different Pareto solutions can be generated using alternative norms,
such as Euclidean second order or Chebyshev infinity order norms. Note that
the minimization of the norm can be sensitive to the scaling of the objective
functions, i.e., depending on the scaling used resulting solutions can differ
considerably.

2.1.2.2 A priori methods

In a priori methods, the idea is to convert the multiobjective optimization
problem back into a single objective optimization problem with the use of a
scalarizing function. Typical scalarization methods include weighting (Gass
and Saaty 1955), constraint methods (Chankong and Haimes 1983) and goal
programming (Charnes et al. 1955). In the weighting method, the objective
functions are associated with nonnegative weighting coefficients w, to convert
the problem into a single objective problem
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Minimize f(x) = 3%, w,f;(x) subject tox € S, X w; = 1, w; > 0.

The solution of the weighting method is Pareto optimal, if a nonzero weight is
given for each objective, see Miettinen (1999).

In the constraint method, all but one of the minimized objective functions are
constrained with given bounds c;:

Minimize f(x) subject to fi(x) < ¢i, 1 € {1, 2,..., j-1, j+1,..., k}

This minimizes one objective function and states strict bounds for the other
objective functions. The decision maker states preferences by giving the bounds
c, for the other objective functions. In general, the constraint method generates
weakly Pareto optimal solutions, but if the solution is unique it is also Pareto
optimal, see Miettinen (1999). Different Pareto solutions can be generated by
varying the weights or the bounds set to the objectives.

Goal programming is a widely used multiobjective optimization method. In
this method, one minimizes the solution’s distance to a given goal point for the
objectives. The goal point z&°* = (z5°%, 7 &4,. .., 7 ) represents the desirable
values of the objective functions. One such an example is the Ideal point z*.
Here, the decision maker states preferences by the giving goal points. In many
cases, the goal selected is unachievable.

The resulting weighted goal programming problem assuming unachievable
goals is

Mlnl)gmze Z{'(:1 w;d,

subject to
fi(x) - di < zigeal,

dizo,x€8,

where d, are positive deviations from the goals of the objective functions, and w,
are nonnegative weighting coefficients. This problem produces a Pareto optimal
solution, if all deviations from the goal point are strictly positive, i.e., the goal
point cannot be achieved (Miettinen 1999).

A different distance measure is used in the achievement scalarizing function
method (Wierzbicki 1982, Steur and Choo 1983). This method allows even
achievable goal points, i.e., the z&*! point can belong to the objective function
space Z. Formally, the method uses a distance measure

Minimize pnax,_, ofwi(fix) — 28°*)} + p Ty (wilFi@) — 27°))
subjecttox € S,

which can have also negative value. Here, w, are positive weights similarly as in
the weighting method, and p is a small positive scalar. This method produces

10
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so called e-Pareto optimal solution. A solution x*? is e-Pareto optimal, if there
exists no another feasible solution x’ with given €>0 so that

f(x) < f(x*P) — € for everyi € {1,..., k} and
fj(x’) < fj(xep) — e for somej € {1,..., k}.

The goal can also represent a goal set, such as an interval goal, see, e.g., Romero
(2019) and Oliveira and Antunes (2007). The goal interval states lower and upper
bounds for the objective function instead of a single value. For a more general
overview of goal programming, see Jones and Tamiz (2010). Goal programming
has continued its popularity in many engineering and management problems,
see, e.g., the survey by Colapinto et al. (2017). Many other possible forms of
scalarization functions using goal points also exist, see, e.g., Miettinen and
Mikela (2002).

2.1.2.3 A posteriori methods

In a posteriori methods, first multiple Pareto optimal solutions are generated.
After a representative part of the Pareto optimal solutions is generated, they are
presented to the decision maker from which he or she chooses the preferred
one. A difficulty is that how to present a large set of alternative solutions to
the decision maker. Scalarizing methods can be considered as one category
of a posteriori methods. Multiple Pareto solutions are obtained by changing
preference parameters, such as the weights of the objectives or the goal points.
More recently population based methods, such as genetic algorithms, have
gained interest in a posteriori methods (Deb 2001, Li et al. 2015, Azzouz et al.
2017) because of their capability to produce multiple solutions simultaneously.
Genetic algorithms are inspired by natural selection of the fittest, see, e.g., Tang
et al. (2012). In these algorithms, candidate solutions for the multiobjective
problem are encoded and evaluated with objective functions in each iteration.
Candidate solutions are chosen to a mating pool based on their associated
overall fitness value. The entire pool is then exposed to a number of genetic
operations, such as crossover, to combine solutions into a new candidate
solutions. A randomization operation produces random alterations to candidate
solutions called mutations. These operations try to find a balance between
exploring for unknown better solutions and improving the solutions found so
far. These phases are then repeated until the stopping condition of an algorithm
is satisfied. The stopping condition can be, e.g., the maximum number of
generations. However, the solutions obtained using genetic algorithms are not
generally true Pareto optimal solutions, but points close to the actual Pareto
optimal solutions (Deb 2001). A well known genetic algorithm is the non-
dominated sorting genetic algorithm (NSGA-II) for problems with two or three
objectives, see Deb et al. (2002). The method has been extended to the so called
NSGA-III algorithm (Deb and Jain 2014) and unified NSGA-III (Vesikar et al.
2018) which are more efficient in solving problems with a higher number of
objectives. Another multiobjective evolutionary algorithm is MOEA/D, which
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is based on decomposing a multiobjective problem into a number of single
objective problems and solving them simultaneously. The single objective
problems are solved using information from solutions of neighboring problems
during the execution of algorithm (Zhang and Li 2007).

2.1.2.4 Interactive methods

There are also interactive approaches for multiobjective optimization, see, e.g.,
Miettinen et al. (2016), Antunes et al. (2016), and Xin et al. (2018). Interactive
methods typically start by presenting one initial Pareto optimal solution to the
decision maker. The decision maker is then asked to provide some preference
information. This can be done, e.g., by asking her to allocate the objectives
in different categories. These categories could define, e.g., objectives which
should be decreased, objectives which are satisfactory, or objectives which can
be allowed to increase, with respect to the current solution, see, e.g., Sindhya
et al. (2014). New solutions are generated using this preference information.
An approach is to add constraints with respect to the current solution to force
the solution into directions given by the decision maker. The new solution then
replaces the current solution. This process is repeated until the decision maker
is satisfied with the solution.

The motivation for using interactive methods is that initially the decision
maker might not have clear preferences over Pareto optimal points. By
interactively exploring the Pareto frontier more knowledge is gained. Interactive
methods reduce the number of Pareto solutions that decision maker needs to
consider. This aspect can be relevant especially in complex real life problems.

2.1.3 Solution methods used in the dissertation

Solutions methods considered in this dissertation are based mainly on constraint,
weighted goal programming and interval goal programming methods. The
dissertation develops an interval goal programming method with multiple
intervals and points out that in dynamic optimization problems the goals of the
objective functions might be time dependent. The dissertation formulates also a
combined method of a constraint method and goal programming.

In Paper 3, goal programming is combined with a constraint method. In this
method, original objective functions are classified into a constraint set E and a
goal set G. For objective functions in the constraint set, hard upper bounds c,
are given. On the other hand, only goal values z# for objective functions in the
goal set are stated. The deviations from the goals are minimized. In this way, the
original multiobjective optimization problem is converted into the form

Minimize
x Yiec Wid;

subject to
fix)-di< zga,di=0,VieG,
fi(x) < ¢, VjEE,

x € S.
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The combined constraint and goal programming method is illustrated in Figure
2 in a two dimensional case. The first objective is given a hard upper bound c ,
while the second objective is associated with an unachievable goal z . The
optimal solution for the combined problem formulation provides in this case a
Pareto solution z* with deviation d, from the goal of the second objective. Other
Pareto solutions could be produced by making the upper bound restriction for
the first objective smaller, i.e., more constraining.

' //%f//%%%’ﬁ 2

.

.
4 .
/ L 7
Pareto points i

Z2 A

:%%%%%%%%

7

AN

{

7 o
4
e

Figure 2. lllustration of the combined goal programming and constraint method. The
objective function space is Z. The axes z, and z, are the objective function values for the
first and second objective, respectively. The constant c, is the hard upper bound for the first
objective, and z,?' is an unachievable goal for the second objective. z* is the Pareto optimal
solution with d, being the deviation to the goal for the second objective.

In Paper 3, the Pareto optimality of the solution for the problem formulation
above is proven under an assumption that there is only a single optimal
solution. The combined goal programming and constraint method is used in
Paper 3 for solving a multiobjective house heating problem. House heating
costs and heating energy are turned into hard constraints, while minimal indoor
temperature discomfort remains as a goal.

InPapers1, 3, and 4, the interaction with the decision maker is based on asking
the decision maker’s goals and constraints for variables describing a system
under consideration at different time points. In the applications addressed in
this dissertation, the dynamics of problems originate on the one hand from the
characteristics of systems in question, i.e., the heat capacity and dissipation in
the house in Paper 1 and 3, and the geographical form of lakes and rivers in
Paper 4. On the other hand, these problems also have external dynamics due to
the time-varying price of electricity and the time-varying inflow of water.

Inthehouse heating problem, the goal level for indoor discomfort is defined by
stating desired hourly temperatures in the house, and in the river management
case the interaction with the decision maker is based on lake water levels at
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different days of a planning period. The resulting optimal solution is presented
and visualized to the decision maker after which the decision maker is allowed
to adjust the goals of the system states to find a more desirable solution. This
is repeated until a satisfactory solution is found. Thus, the method used can be
called an interactive goal programming,.

2.2 Dynamic multiobjective optimization

The dynamics in multiobjective optimization problems can be due to a number
of factors including time varying objectives, constraints and parameters as well
as due to the dynamics of the system being studied. Such a setting results in a
continuous time dynamic optimization or optimal control problem. In practice,
time is discretized making it possible to convert the problem into a standard
form of a multiobjective optimization problem. This introduces vector of
decision variables for each time discretization point x(t) = x, I = 1,...,N. The
entire decision vector containing all time discretization points t = (t,...,t) is
denoted by x(t). The same applies for dynamic parameters affecting the objective
functions. That is for each objective function, there is a parameter vector at each
time discretization point w(t) = (W' (t),..., wi,(t)), where K is the number of
parameters of objective function i. The entire parameter vector containing all
time discretization points for the object function i is denoted by w(t),i=1,...k.
The formal formulation of this problem is
Minimize
x(t) {fi(x(1), wi(1)), f2(x(1), wa(1)),..., filx(t), wi(t))}
subject to
gx(®) <o,
x(t) €S,

where the constraints are g(x(t)), and S defines lower and upper limits of the
decision variables.

In electricity market models introduced in Papers 1, 2, and 3 of this
dissertation, the time dependent parameter represents the time varying price
of electricity. In the lake-river regulation models elaborated in Paper 4, the
parameters are related to the inflow of water at different times. A quite similar
model with dynamic goals is found, e.g., in the health-care related dietary menu
planning problem studied by Jridi et al. (2018).

The house heating problem of the home owner developed in Paper 3 is used
here to illustrate the above general formulation of a dynamic multiobjective
problem with a dynamic goal programming approach. The problem has
two objectives, i.e., minimization of the total heating costs over the day and
maximization of the living comfort, which is converted to minimization of living
discomfort. The measure used for the loss of living comfort is the temperature
deviation from the ideal indoor temperature. In this case, the time dependent
parameters are electricity prices and outdoor temperatures. The discrete time
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index isi = (1,...,N) as in Paper 3, and N is the number of discretization points.
The dynamics of the problem are related to the heat dynamics of the house. The
house acts as an energy storage, and heat flow out of the house is assumed to
depend linearly on the difference between the indoor and outdoor temperatures.
The heating problem for a cyclic period, such as one day, is

Mlgl(rtn)lze (heating costs)  fi(q(t), p(t)) = Xipiqi
M1;111(r;1)12e (discomfort) £o(T (), T(D) = i [ Ti — Tiref|
subject to
Tiss = Ti + PAtq: - apAL(T; — Tewt)  (Heat dynamics of the house), (€]

T, =Tn+  (Periodicity of the indoor temperature),
0<qi<q (Heating power limits),
li < Ti<u (Indoor temperature limits),

where T, is the indoor temperature, T, is the ideal indoor temperature for the
decision maker, and T, is the outdoor temperature at time i, respectively. The
q, represents the heating power and p, price of the electricity at time i. The time
difference between the discretization points is At. The initial indoor temperature
T, and the end temperature T, are constrained to be the same to ensure the
cyclic behavior of indoor temperatures. The lower and upper limits for the
indoor temperature are denoted by 1. and u.. The maximum heating capacity q is
here constant over time. The heat dissipation coefficient of the house is a, and
the inverse of the heat capacity of the house is .

The solution approaches to discrete time dynamic multiobjective problems
are based on the same ideas as for the static multiobjective problems. The
dynamic goal programming approaches used in Paper 1, 3, and 4, are extensions
of the static ones. For instance, the combined goal programming and constraint
method developed in Paper 3 can be applied to the house heating problem. The
first objective function f of Problem (1) is the heating costs of the house. The
minimal heating costs of the house, when thermodynamical and heating power
limitations are only considered, is denoted by f . Additionally, the goal level for
the heating costs is parameterized with constant eps, where 0 < eps < 1. The
minimal discomfort level, i.e., the objective function f, in Problem (1), would be
zero for obvious reasons. Deviation from that can be measured and is denoted
by d. This gives a combined goal programming and constraint method problem
as

Minimize
4@, 7(0),d1
subject to

f, < (1-eps)f,” (Constraint for heating costs),

f.—d<o (Goal for discomfort),

d=o0 (Deviation from minimal discomfort),
Tir = Ti + PAtq: - afAL(T; — Tiew), Ty = Tnw: (House dynamics),
0=<qi<q,li<Ti<u (Heating and indoor temperature limits).
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In practical problems, time varying parameters can be affected by
uncertainties. Such a case in the lake regulation problem of Paper 4 is due to
uncertain water inflow forecasts to the lake-river system. The idea of a rolling
horizon solution approach used here is that the dynamic goal programming
problem is solved repeatedly. Goals are set ahead of time for a rolling time
window as illustrated in Figure 3. In practice, this means solving the dynamic
goal programming problem whenever the rolling time period is changed. This
kind of approach has also been called a myopic solution approach in Virtanen

et al. (2004).
Goal optimization >

Beginning of month

Goal optimization >

Beginning of month

Updating of inflow forecast

Updating of inflow forecast

Updating of inflow forecast

Goal optimization >
Beginning of month

Optimal

Adjusted by Goal —
measurement 10 days
Goal optimization >
Beginning of month

Figure 3. Solution of the dynamic goal programming problem using the rolling time horizon
approach.

In general, the introduction of dynamics brings complexities as the problem
size can increase essentially, which in turn makes it more difficult to generate
efficient solutions (Farina et al. 2004, and Helbig et al. 2016). The increase in
problem size with a high number of decision variables also makes interactive
approaches difficult to use. Yet, interest in dynamic multiobjective problems
has been increasing and new approaches have been suggested based on, e.g.,
genetic algorithms (Raquel et al. 2013) and evolutionary techniques (Deb
et al. 2007, Helbig and Engelbrecht 2014, and Orouskhani et al. 2019). New
interactive approaches have also been developed by focusing on only part of
the possible Pareto solutions directly by using the decision maker’s preference
knowledge (Nowak and Trzaskalik 2021, and Aghaei Pour et al. 2021). For a
recent extensive survey on dynamic multiobjective optimization, see Jiang et
al. (2022).

The importance of dynamic problems is emphasized in the reviews of Helbig
and Engelbrecht (2014) and Helbig et al. (2016). However, the survey of Azzouz
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et al. (2017) suggests that so far there are still only a few real-world applications
of dynamic multiobjective optimization models.

2.3 Bi-level optimization and price coordination

In bi-level optimization problems, the lower level optimal reactions to upper
level decisions appear as constraints for the upper level optimization. For a
general introduction to bi-level optimization, see, e.g., Talbi (2013) and Dempe
et al. (2015). A bi-level optimization problem is of the form

Minimize fi.(u,x)
ux

subject to gi(u,x) < 0,

x € argmin {Minimize fr(u,x) subject to gr(u,x) < 0}.
X

The upper level’s decision variable vector u affects the lower level reactions
x. The function fL is the objective function of the upper level (leader), and g,
represents the constraints of the upper level. The fF is the objective function of
the lower level (follower), and g is the constraints functions of the lower level.
The solution methods for bi-level optimization usually assume that the upper
level optimization can be carried out under the knowledge of the objective of
the lower level problem. Bi-level optimization problems are computationally
difficult to handle, and they can be hard to solve even in a simple case with
linear objective and constraint functions (Ben-Ayed and Blair 1990). The
solution methods for bi-level optimization can be based on reducing the original
bi-level problem into one larger single level problem. This can be done under a
suitable convexity and the assumptions of constraint qualification. One such a
method is adding the Karush-Kuhn-Tucker optimality conditions of the lower
problem into the upper level problem as constraints using Lagrangian and
complementary constraints, see, e.g., Dempe (2020). This is stated as

Mirimize fr(u,x)
subject to
g(u,x) <o,
gr(u,x) <o,
Vife(u,x) + YA iVagri(u,Xx) = 0 (Lagrangian),
Ai gri(u,x) = 0, A 2 0,1 = 1,..., M (Complementary),
where M is the number of constraint functions, A are the Lagrangian coefficients,

and Vx isthe gradient with respect tolowerlevel reaction x. Especially, in the case
of linear objective and constraint functions, the complementary constraints can
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be solved by transforming the problem into a mixed integer linear optimization
problem by using the so-called big-M method. This can be accomplished by
replacing the complementary constraint with the constraint

A< Mbig y, and g (u,x) < Mbig (1-y),

where the binary decision variable y, € {0,1} represents the activity of the lower
level constraint, i.e., in case y, = 1 the associated constraint is active g_(u,x) =
0. The big-M constant (M) should be a sufficiently large constant for both
Lagrangian coefficients A, and lower level constraints. This enables solving
the above single level reformulation by using modern general purpose mixed
integer linear programming solvers. However, the choice of the value M, itself
is a hard problem, see, e.g., Pineda and Morales (2019).

The scope of bi-level multiobjective problems is vast and has been constantly
growing during the past years. This is pointed out in the extensive reviews of
Lachhwani and Dwivedi (2018), Sinha et al. (2018) and Said et al. (2021). Bi-
level optimization problems arise in many practical settings. For example, there
can be an upper level actor/agent (e.g., a department, a manager or a leader)
which optimizes its own objectives which depend on the performance of the
lower level actors/agents (followers) which again have their own optimization
objectives. For examples of different bi- and multi-level settings, see the survey
by Lachhwani et al. (2018). Bi-level problems are typically also asymmetric so
that the upper level has more information about the lower level’s problem than
the lower level about the upper level’s. The Stackelberg game, which is common
in pricing models (van Hoesel 2008), also results in a bi-level optimization
problem. For a survey of price setting problems, see, e.g., Labbé and Violin
(2016). In a price setting problem, the upper level sets the price of the service
by taking into account the reactions of the customers on the lower level. The bi-
level structure can also emerge from the decomposition of a larger problem into
smaller ones. Optimization problems can contain nested inner optimization
problems as constraints (Bracken and McGill 1973). Similar setups can be
found, e.g., in Kuo et al. (2015).

Research on different hierarchical coordination methods was active in the
1970s in the field of control and systems theory dealing with the so-called
large-scale systems, for a review, see Mahmoud (1977). Later the literature has
focused on market type settings in different industries. Current interest in price
based coordination is strong in the analyses of electricity markets (Tohidi et al.
2018). Price coordination is an approach in pricing problems where the price or
tariff is iterated towards the optimal one by taking into account the reactions of
the lower level agents which typically represent the customers.

In Papers 2 and 5 of this dissertation, the solution methods used for bi-level
problems apply price coordination where the idea is to divide the solution process
into the optimization of two simpler problems and to solve these iteratively. The
upper level chooses a price for the lower level. The lower level reacts optimally
to the price with the consumption decision. The reaction affects the value of the
upper level’s objective function. The upper level then updates the price signal in
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each iteration by re-optimizing against the reaction of the lower level. In Paper
2, this is realized by defining the a total welfare function U(q,p) for the coalition
of electrical heating consumers. It is the sum of the utility function of a coalition
coordinator U (q,p) and the utility functions of individual consumer groups
Uj(qj,p). Here, p is the price signal of the electricity, qj is consumption of the
consumer group j, and ( is the total consumption over all consumer groups.
The coalition coordinator’s cost in the Paper 2 is assumed to be quadratic with
respect to consumptions of the consumer groups, and the utility function of the
coordinator is the profit subtracted by cost. The consumer’s utility function is
a weighted sum of energy costs and degradation of living comfort. The entire
price coordination scheme is illustrated in Figure 4.

Coalition coordinator

/S N\
pk// / Q1 Pe| | Qi Pk

Consumer
group 1: vo0 group j: vo0 group N:

Consumer

Consumer

U1(91.P4) Uj(qjkrpk) Un(QniPi)

Figure 4. Price coordination scheme for the coalition of consumers in Paper 2.
The lower level consumers determine their consumptions q; by maximizing their utility
functions independently at each iteration k, and the upper level iterates the overall utility by
updating the price signal p,.

The total utility function U(q,p) depends on the consumptions of the individual
consumer groups g, which on the other hand depend implicitly on price p. The
iteration process is based on the marginal costs (mc) of the total welfare, which
is a function of the sum of the individual consumptions q; The price iteration
proceeds by updating the price using a weighted updating formula, i.e.,

pk+1 =pu pk + (1—].].) mck(quj)’

where k is the iteration round, and p is a small constant 0 < p < 1.

In Paper 5, combined production scheduling and energy management
optimization problems are discussed for process industrial cases. Such
problems are often large and hard to solve as a single problem. In Paper 5, the
decomposition of the original combined production scheduling and energy
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management optimization problem is tackled with two well know decomposition
methods, i.e., Benders and Dantzig-Wolfe decomposition methods.

The Bendersdecomposition (Benders 1962), also called primal decomposition,
was first developed for large linear programming problems which have a
special block structure with common constraints and independent sets of other
constraints and variables. Stating a given values for the part of the variables of
the common constraints of the original problem defines a primal subproblem.
The primal subproblem is a function of the fixed common constraint variables.
Each solution of the primal subproblem generates an extreme solution for the
original problem, which can be used to add a new constraint, i.e., so called
Benders cut, to the Benders master problem representing the original problem.
The master problem yields another point of the fixed variables, and the iteration
continues by forming a new primal subproblem with the current values of the
fixed variables to generate a new extreme solution of the original problem.
Therefore, the primal master problem iteratively approaches the original
problem. It can be shown that the Benders subproblem provides an upper
bound for the optimal value of the objective function of the original problem,
and that the decomposition stops after a finite number of iterations, see, e.g.,
Holmberg (1994).

The Dantzig-Wolfe (Dantzig and Wolfe 1960) decomposition, also called
dual decomposition, starts by dualization of common constraints. This means
that penalties are given for the violations of the common constraints and the
penalty term is added to the objective function of the original problem. Fixing
the penalties, i.e., the dual variables of the common constraints, the solution of
this dual subproblem generates an extreme solution for the original problem.
This solution is used to add a new constraint to the Dantzig-Wolfe master
problem representing the original problem. The solution of the master problem
then gives new values of the dual variables, and the iteration is continued to
a new subproblem to generate a new extreme solution. The master problem
approaches the original problem with the addition of each new constraint. It
can be shown that the Dantzig-Wolfe subproblem provides a lower bound for
the optimal value of the objective function of the original problem, and that
the decomposition stops after a finite number of iterations, see, e.g., Holmberg
(1994).

The idea of the cross decomposition algorithm (Van Roy (1983), Holmberg
(1992), and Holmberg (1997)) used in Paper 5 is to omit the need of master
problems. The algorithm is based on iterating between the subproblems of
the Benders and Dantzig-Wolfe decompositions. This cross decomposition
algorithm is illustrated in Figure 5.
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Figure 5. Cross decomposition algorithm. The marginal price p is the input to the dual
subproblem and the reaction q is the input to the primal subproblem.

In the cross decomposition algorithm, the Bender’s primal subproblem
provides new values of dual variables, i.e., marginal prices, to be given to the
Dantzig-Wolfe dual subproblem (see Figure 5). The solution of the Dantzig-
Wolfe subproblem reveals a new fixed values of common constraint variables,
i.e., reaction, to be given back to the primal subproblem. The marginal price and
reaction are used as exchanged information called here as signals between the
subproblems (Holmberg 1999). There can be multiple ways to adjust the price
and reaction signals before giving them to subproblems according to previous
values of these signals as illustrated in Figure 6 with four basic schemes.
The heuristic scheme uses a direct passing of price and reaction without any
changes. The mean value scheme updates both price and reaction as the mean
values of the previous prices and reactions. The weighted mean value scheme
is similar, but it gives less weight to the previous price and reaction values. The
one sided weighted mean values scheme passes the reaction without change, but
it uses weighted mean values updating for the price. The cross decomposition
algorithm converges for a linear programming using either mean value scheme
(Homberg 1994). The cross decomposition algorithm is proven to converge
for a certain mixed integer linear programming problem under special block
structure using the mean value coordination scheme for both price and reaction
signals (Holmberg 1997).
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Figure 6. Different price coordination schemes. The marginal price mc from the upper level
problem is updated to the price p signal, and the reaction q from the lower level problem is
updated to the reaction q signal.

In the industrial combined production planning and energy optimization
problems in Paper 5, i.e., a thermo mechanical pulping planning in the pulp and
paper industry and a stainless-steel production planning in the steel industry,
a two level structure reflects a natural two-level settings with a producer and a
consumer. The convergence of the cross decomposition algorithm using the one
sided weighted mean value price coordination scheme to the optimal solution of
the original combined problem is case dependent and no general convergence
results exist in the current literature.

2.4 Applications of multiobjective approaches in house
heating and river management

More than twenty years have passed since the publication of the initial papers
in this dissertation. The topic has since proven to be of great importance.
Multiobjective modeling has become widely known and applied in different
application areas including, in particular, energy and environmental studies.
This has resulted in an explosion of research papers in the areas, and a
comprehensive survey of the relevant literature is not possible within the scope
of this dissertation summary. However, key references to articles which reflect
the development of the field are provided. Developments in the measurement,
communication and computational technologies have also made the practical
implementation and use of dynamic multiobjective methodologies and models
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attractive. Dynamic multiobjective approaches are increasingly important both
in energy and environmental problems. Today, there is a strong interest in
finding ways to change behavior in energy use, and these settings are typically
dynamic and have multiple criteria (Lopes et al. 2020). The methodological
development studied in this dissertation relates directly to the challenges met
in the currently active research areas of smart cities, smart homes, intelligent
energy use and smart grid, see, e.g., Kirimtat et al. (2020), Ringler et al. (2016),
Xu et al. (2020).

2.4.1 House heating

The use of multicriteria optimization in house design originated early. Gero
et al. (1983) and D’Cruz and Radford (1987), were among the first to consider
multiple objectives in building design. Later the related literature has expanded
rapidly and environmental sustainability criteria have also become important.
For a recent survey, see, e.g., Gassar et al. (2021). The idea, in Papers 1 and 3,
that the home-owner would be able to react to the electricity price by changing
the indoor temperature is a different one than the optimization of the design
of the house. Technically the resulting multiobjective problems can, however,
become similar. The inclusion of hourly thermal comfort in a house heating
model is considered in Paper 1 of this dissertation. Comfort is described as a
time-varying ideal indoor temperature at different hours of the day. Cost and
the sum of deviations from the ideal temperature are minimized subject to
time-varying tariff and outdoor temperature. The model is developed further in
Paper 3. These models are developed to support the house owner in choosing
the hourly heating pattern. At the same time, a similar type of multiobjective
model was developed by Wright et al. (2002) to support the design of the
house. In their paper, the objectives included cost and thermal comfort and the
optimization is done subject to time varying outdoor temperature but without
a dynamic tariff.

There has also been interest in control models regarding multiobjective
heating and ventilation strategies, see, e.g., Wright et al. (2002) and Ascione et
al. (2019). These papers have considered buildings including residential units
and schools. Ascione et al. (2016) have developed a control model for a home
which has similar characteristics with user defined goals as in the papers in
this dissertation. The control model of Alvarez et al. (2013) takes into account
the comfort needs in different rooms of a house. The design of energy efficient
homes and buildings by including comfort criteria remains of continuous
interest. For example, Asadi et al. (2012) as well as Ascione et al. (2017) consider
the retrofitting strategies of houses using multiple objective optimization. Yu et
al. (2015) is another highly cited building design focused paper.

Today, the literature on intelligent buildings is extensive. Mofidi and Akbari
(2020) provide a comprehensive review of factors such as thermal comfort to be
considered in the multiobjective modeling approaches for intelligent buildings.
The authors emphasize that in future models more emphasis should be paid
to the occupant behavior and feedback possibilities to occupants, such as
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household energy consumption values. New energy management systems for
buildings also have similar elements as the original home heating models in the
dissertation. The system described in Pallante et al. (2020) can carry out day-
ahead optimizations taking into account the building dynamics as well as hourly
comfort and cost. The time frame can also be longer and seasonal strategies for
different weather conditions can be optimized like in Ascione at al. (2019).

The optimization techniques used in building design applications vary.
Wright et al. (2002), Hamdy (2012), Hirvonen (2017), Ascione et al. (2017)
and Ascione et al. (2019) all use genetic algorithms to generate multiple Pareto
solutions in one execution run of the algorithm. In their methods, penalties
are sometimes used to avoid infeasible solutions. The objective function values
are evaluated for the solution candidates using a simulation model for the
building’s energy performance. Gomes et al. (2007) also use genetic algorithms.
Their evolutionary algorithm accommodates a progressive articulation of the
decision maker’s preferences by changing aspiration or reservation levels used
in the fitness assessment of the individuals in the solution population. The
inclusion of preferences in this manner may reduce the run time of the genetic
algorithm substantially. Asadi et al. (2012) use the weighted Tchebycheff goal
programming approach for generating Pareto solutions for the multiobjective
problem. Yu et al. (2015) take a different approach and use an artificial neural
network to approximate the building model trained with results from a building
simulation model. The neural network model is then used in the multiobjective
approach where the design variables of the building are optimized with respect
to objectives representing energy costs and thermal discomfort. The Pareto
frontier is obtained by using the non-dominated sorting genetic algorithm
(NSGA-II). The paper by Pallante et al. (2020) also uses a simulation module
for the building which generates the comfort and cost estimates and the number
of unsatisfied people in the building. They too apply the NSGA-II method and
compare it with the so-called surrogate method.

One can say that multiobjective house design is today a hot research area.
New methods are continuously introduced and tested. One example is the re-
cent paper by Chegari et al. (2021) which applies artificial neural networks
and metaheuristic algorithms.

2.4.2 River Management

Water resources management has for long been an application area for
multiobjective optimization (Haimes 1974, Duckstein and Opricovic 1980). The
number of studies has grown extensively over the years and today there is a wide
range of dynamic formulations too. Different versions of the goal programming
method for the operation of reservoirs were studied early (Can and Houck, 1984,
Eschenbach et al. 2001). Loganathan and Bhattacharya (1990) already note the
possibility of using interval goal programming which is also used in Paper 4.
Many papers consider water reservoir management under uncertainty. The
objectives considered in these models range from minimizing flood damages
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and energy optimization to social and ecological goals (Yan et al. 2020). The
popularity of evolutionary and genetic algorithms is also strongly visible in this
literature (Reed et al. 2013, Hojjati et al. 2018, Stretch and Adeyemo 2018).
For example, Liu and Luo (2019) propose an interactive model which is solved
with the genetic algorithms NSGA-IT and MOEA/D. The optimization problems
become difficult when whole river basins, rather than just one reservoir, are
studied.

Multiobjective river flow management is also approached by multicriteria
decision analysis where the solutions are sought interactively rather than by
optimization, see, e.g., Vassoney et al. (2017). The ways decision processes are
carried out with stakeholders need growing attention. There can be behavioral
impacts both in the modeling stages and in the interaction and communication
with the stakeholders which need to be taken into account (Hamaéldinen 2015,
Marttunen et al. 2015).

2.5 Bi-level optimization in electricity market models and in
industrial energy management

2.5.1 Electricity markets

Today, there is a strong interest in analyzing cooperation of agents in the
electricity markets by bi-level modeling. Such papers include, e.g., Alves et
al. (2016), Siano et al. (2014) and Acuiia et al. (2018). The review by Antunes
et al. (2020) shows that the bi-level approach is relevant in many different
settings and a variety of modeling and optimization methods are used. Soares
et al. (2020) is an example of a new approach as they use particle swarm
optimization for setting electricity prices in retail’s upper level problem for
lower level residential consumer groups. On the lower level, they apply an exact
mixed integer linear optimization model. Their model contains residential
thermostatic consumption behavior having a discomfort term associated with
the resulting indoor temperatures. They also give suggestions for estimating
the lower and upper bounds for the optimal value of the upper level’s objective
function. This is accomplished by using sup-optimal lower levels solutions, and
by disregarding the discomfort term on the consumer’s side.

The bi-level setting in Paper 2 is close to models that have a broker or an
intermediary between the consumer and the electricity market. The idea of
Paper 2 that consumers create a coalition in the market has also been considered
among others by Menniti et al. (2006 and 2009). These formulations are
receiving increasing interest today, see, e.g., Yammani and Prabhat (2018),
Kou et al. (2020). Smart metering technologies allow the development of new
strategies for collaborative coalitions where the coalition can also produce
electricity. This results in multilevel coordination models, see, e.g., Brusco et
al. (2014). Similarly the introduction of a demand response aggregator results
in a three level setting which is approached by bi-level optimization by Feng et
al. (2020). With these opportunities offered by digitalization technology and
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increase of sustainable consumption goals there is a growing interest in new
kinds of business models in the energy communities including cooperative
coalitions, for a review, see Reis et al. (2021).

2.5.2 Industrial energy management

There are different perspectives and levels to be considered in industrial
optimization approaches. Problems are typically dynamic and have multiple
objectives. There are many industrial settings in which there is a dynamic
energy cost and a challenging production scheduling problem. For an
illustrative summary, see Merkert et al. (2015). The paper describes different
approaches to the production scheduling problem when the dynamic pricing of
electricity is also considered. Gahm et al. (2016) provide an extensive survey on
energy-efficient scheduling in manufacturing companies, which clearly shows
the richness of the problems need to be considered in energy optimization.
The solution methods are also different. Wang et al. (2018) consider job-shop
scheduling and they apply a modified genetic algorithm at the first machine
tool selection stage and a hybrid method that integrates genetic algorithm with
particle swarm optimization at the second operation sequencing stage.

The combined optimization of production planning and energy use has
for long been an important challenge in industry. The range of optimization
approaches used is wide. Recently Leenders et al. (2022) studied the problem
with a similar bi-level optimization approach as considered in Paper 5. The
use of bi-level optimization is still relatively new and, e.g., Leenders et al.
(2022) claim that their model would be the first one to use it. In their set up,
the production planning system represents the upper level and the energy
management system the lower level. The time dependent energy demand from
the production planning system acts as a coupling constraint to the lower level
energy scheduling problem. The problem is solved iteratively by gradually fixing
the time depended states of the energy production units on the lower level.
For an extensive recent survey about combining energy use with production
planning, see Terbrack et al. (2021).
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3. Research contribution

The overview of the dissertation is presented in Figure 7. The papers study
methods and approaches to solve dynamic multiobjective and bi-level
optimization problems arising from real life cases. The practical problems
considered relate to environmental management and energy markets. One case
is the management of a lake-river system over time and the others consider
residential and industrial demand side management settings where the price
of electricity varies over time. Methodologically dynamic multiobjective
optimization is used in both problem areas in Papers 1-4. Bi-level optimization
approaches are used in the electricity market cases in Papers 2 and 5. Paper 2
includes both of the methodological themes.

Research question: How to develop solutions to
challenging real life optimization problems
which include multiple objectives and dynamics

4 — )

Dynamic _
Multiobjective Paper1 o filflgve;
Optimization Paper 2 ] Iptinuzation

(s

Energy:
Demand Side
Management

Environment:
Lake-river
System

)

i New dynamic multiobjective New bi-level price coordination approaches.
goal programming approach with New interval goal formulation with
interval goals and rolling time-horizon. a constraint method.
Successfull practical implementation. ) Successfull practical implementations.

Conclusion: Practical solutions can be achieved by using dynamic multiobjective
and coordination approaches with new methodological elements.

J

Figure 7. Overview of the dissertation.
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The papers present new methodological developments as well as new ways
of using traditional multiobjective optimization methods. They also provide
new formulations to the practical problems. The summaries of the papers are
presented in Table 1.

Table 1: Summary of the topics, objectives, approaches and results of the papers

management
in industry
by joint
optimization
of production
planning

and energy
supply.

approach for the

joint optimization of
production planning
and energy supply.

approaches based

on decomposition

are developed.

The iterative price
coordination approach
is found to be
applicable.

Paper | Topic Objective Approach Results

Paper 1 | Smart To build a model for A dynamic The implementation
reactive the estimation of the multiobjective space of the model in a
space heating | load of the electricity heating model for spreadsheet program
home-owner | distributor when the house and was successful and
customers in | customers optimize thermal comfort it provided a working
the electricity | their space heating of the consumer tool.
market. strategies subject to is developed. The

the time varying price model generates the

of electricity. load estimate for the
distributor.

To provide a tool

for home-owners to

optimize their thermal

comfort and electricity

cost.

Paper 2 | A coalition of | To find an optimal time- | The space heating The price coordination
cooperative of-use electricity tariff model of Paper 1 is approach was able to
space heating | within the coalition used and an iterative produce solutions in a
customers in | which maximizes the price coordination computational example
the electricity | overall utility of the approach is developed | that included three
market. customers. The utility to find an optimal consumer types.

of each customer type | electricity tariff.
depends on the hourly

deviations of thermal

living comfort and total

cost.

Paper 3 | Smart space | To find an optimal The space heating The implementation
heating of a heating strategy model of Paper 1 was | of the model and the
home under | minimizing deviations | used. A dynamic goal solution method in the
time varying | from thermal comfort programming model spreadsheet program
price of under time varying with interval goals was successful.
electricity. price of electricity. is developed. The The capability of

solution is generated the GPe method

by using a GPe to produce Pareto

constraint method. optimal solutions was
theoretically proven.

Paper 4 | Decision To generate a forward | A dynamic goal The model and the
support for looking regulation programming model solution method
the regulation | strategy which takes with interval goals were implemented
of a lake-river | into account the lake and a rolling planning | successfully in a
system. dynamics and satisfies | horizon solution spreadsheet program.

both soft and hard method are developed. | They were found
flow rate constraints in to produce good
the river when inflow strategies that were
forecasts are updated used in real life
only periodically. practice too.
Paper 5 | Demand side | To develop an Optimization The price coordination

approach and its
computational
procedure were
successfully tested

in two real-world
cases. Convergence
of the computational
approach cannot be
guaranteed in general.
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3.1 Paper 1 - Dynamic multiobjective optimization model for
space heating and load analysis

Paper 1 introduces an implementation of ademand side management model for
a space heating consumer as a dynamic multiobjective optimization problem. As
far as the author knows, it is among the first papers where the dynamic demand
response of consumers is related to living comfort. Paper 1 also implements
an agent based modeling framework for the electricity distributor to take the
customers’ responses into account when setting the electricity tariff. Paper 1
introduced the concept and the approach was further developed and analyzed
in Papers 2 and 3.

In the model introduced in Paper 1, the dynamic multiobjective optimization
problem is obtained when the decision maker, i.e., the home-owner, in an
electrically heated house optimizes the hourly indoor temperature subject to
the time varying price of electricity and outdoor temperature. The dynamics are
also driven by the capability of the house to act as a heat storage. The objective
function for living comfort is defined as a weighted sum of quadratic penalties
of hourly deviations from the goal indoor temperatures over the day. The total
heating costs over the day is another objective function. A weighted sum of
these objective functions is used as a scalarizing function which leads into a
standard linearly constrained quadratic optimization problem. The nonlinear
optimization method included in the Excel spreadsheet program is utilized for
solving the model. The prototype spreadsheet implementation of the model
could be used with real house-owners since its user interface is simple.

The idea of including thermal comfort as an objective was a novel idea which
hasreceived an increasing interest only much later in the literature, see, e.g, Yang
and Wang (2012). Today there is a wide interest in multiobjective formulations
for comfort and more detailed objective functions have been suggested, see, e.g.,
Enescu (2017).

Paper1alsodemonstrated the power of spreadsheet programs as a prototyping
environment for small sized optimization and decision making problems. The
spreadsheet environment allows to integrate data and parameters handling,
build an optimization model and solve it with the embedded nonlinear
programming solver, and finally to illustrate the results graphically in a user
friendly way. At the time of writing Paper 1, the use of spreadsheet programs as
a framework for complicated optimization problems was still uncommon. The
use of spreadsheet programs for modeling has continued and widened. Often
the goal is to create a prototype, see, e.g, Briones et al. (2019). Naturally, there
are practical limitations when the problem sizes grow but today even portable
computers allow relatively large problems to be handled.
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3.2 Paper 2 - Price coordination in deregulated electricity
markets

Paper 2 considers a demand side management problem within the coalition
of space heating consumers with different price reaction characteristics. It
continues from the setting described in Paper 1 which included both dynamic
price and dynamic multiobjective optimization. A new extension to the model
is to consider a coalition of cooperative space heating consumers buying
electricity with a single contract at a time varying price. The coalition aims at
joint optimization of the cost of their total load by creating a joint time-of-use
tariff within the coalition. In this two-level setting, the decision maker, i.e., the
coalition coordinator, purchases the energy from the market and sets the time-
of-use price to the consumers so that the overall social benefit is maximized.

This setting was a new contribution and an early paper on two-level market
models. Recently, similar models have been considered in the literature. For
example, see the paper by Yammani and Prabhat (2018) that presents a two-
level formulation with an intermediary virtual operator. Today there is already
interest in multiple level collaboration possibilities in energy markets, see,
e.g., Guerrero et al. (2020) and Kou et al. (2020). Paper 2 was also an early
introduction of agent based modeling to the literature on electricity markets.
Agent based modeling of electricity markets has become already quite popular,
see, e.g., Ringler et al. (2016).

Upper level

Coalition coordinator
Designs a time-of-use tariff for
the coalition members
who are space heating consumers.
Optimizes the total welfare of
the coalition against the current
market price of electricity

Price Consumptions

Individual consumers
Objective to minimize cost and deviations
from their ideal temperature.
Optimize their own consumption against
the time-of-use tariff price
offered by the coalition coordinator.
Consumers have individual preferences
with respect to cost and comfort.

Lower level

Figure 8. Price coordination in a coalition of electric space heaters.
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The solution method developed in Paper 2 is an iterative approach based
on price coordination. In the approach, price and consumption patterns are
information signals exchanged between the coalition coordinator and the
consumers as illustrated in Figure 8. In order to identify the coalition’s optimal
time-of-use tariff, the following steps are carried out. The consumption pattern
for different consumer groups is gained from their own optimal reactions to
the time varying tariff. Next, a new tariff is calculated by maximizing the total
welfare of the coalition. In the last step, a closest tariff by minimizing the
quadratic difference between the tariff and the marginal price is solved. This
scheme was shown to converge in the example case with three consumer classes
although, in general, the convergence is hard to guarantee.

It is also noteworthy that the space heating model presented in Paper 2 has
been followed by a model for the optimal use of air conditioning (Menniti et
a. 2009). A similar demand side management problem is also studied more
recently in a paper by Ekaterina et al. (2019).

3.3 Paper 3 - Dynamic goal programming combined with a
constraint method

Paper 3 further elaborates the multiobjective space heating problem of
the decision maker, i.e., the home-owner, considered in Papers 1 and 2. The
extended model introduced in Paper 3 uses a goal programming with interval
goals for the indoor temperature at different times of the day. Some objectives
are converted into constraints by defining upper bounds for these objectives as
in the constraint method, and goals are used for other objectives. This results
in a new dynamic multiobjective solution method that combines the traditional
weighting, goal programming and constraint methods. The new method is called
the GPe method. In the space heating problem, objectives related to the energy
consumption and heating costs are constrained with upper bounds. These
bounds are used together with living comfort relaxation which means that the
indoor temperature is not constrained with a strict upper bound — instead the
interval goal temperature is applied. The implementation of the model and the
method was carried out using the Excel spreadsheet program.

Figure 9 illustrates the solutions generated by the weighting and GPe
methods. When using a weighting method different weights are given for
heating costs and living discomfort objectives. In the GPe method, each solution
corresponds to a given constrained level of heating costs and goal preferences
over living discomfort. The GPe method produces rather evenly distributed
Pareto solutions. This is a desired property for multiobjective methods, see, e.g.,
arecent survey by Cui et al. (2017). The commonly used weighting method does
not perform well in this respect for the house heating problem.

It is worth mentioning that the space heating model has been later used as a
test model when new methods are developed, see Orouskhani et al. (2019) and
Falahiazar et al. (2022).
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Figure 9. Pareto solutions in the objective space generated by the weighting and GPe
methods for the house heating problem.

3.4 Paper 4 - Dynamic rolling horizon and interval goals in
goal programming

Paper 4 develops a model to regulate a lake-river system consisting of a series
of four lakes and a connecting river, see Figure 10. The overall goal is to find a
regulation policy which keeps the water level of the lakes and the flow rate of the
river within acceptable limits at different times of the year and under different
weather conditions. These limits are specified by the general rules set by the
authorities for the river system. Thus, the regulation rule for the flow rate in
the river introduces strict lower and upper bounds for this rate and its changes.
However, the flow rate bounds cannot always be met in practice and, therefore,
they are represented as soft constraints using penalties in the lake-river system
model. The water levels of the lakes are driven by the difference between the
inflow and outflow of the main lake, and the levels also depend on the surface
area of the main lake. The dependence between this area and lake’s water level
is approximated with a piecewise linear function using historical data.

The goal programming approach developed in Paper 4 was used to generate
different regulation policy candidates. The evaluation of possible regulation
policies was based on 30 primary and 27 secondary economical, social and
natural objectives. The new solution approach uses both dynamic goal points
and dynamic interval goal sets of water level. Here, quadratic penalty functions
for the deviations from the water level goals were used as a distance measure.
The use of interval goals for water reservoirs, that is for inflows and reservoir
levels, was noted already early in Loganathan and Bhattacharya (1990), however
in Paper 4 also an additional goal points within the goal intervals are used.
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Figure 10. Description of the lake-river system of Paijanne-Kymijoki in Paper 4.

The lake-river model was planned to be used in the real life setting where
the rate of incoming water is uncertain and it varies greatly both seasonally and
annually. In practice, the inflow forecasts to the lake-river system are updated
periodically and repetitive updating of the regulation policy is needed. To take
this into account in the model, an innovative rolling horizon goal optimization
approach was developed. It updates the solution with new look-ahead goal
points. This approach describes the actual decision environment of the decision
maker, i.e., the operational regulator.

The model and the solution approach were implemented with the Excel
spreadsheet program. The implementation included handling of data, lake-
river dynamics, visualizing of the results, and a user interface for operating the
model and defining parameters related to water level goals. The implementation
was successful, but the spreadsheet platform had its limitations. The size of
the model made it hard to maintain, and computing the solutions was slow at
the time of publication of Paper 4. Multiple computers were needed to obtain
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solutions with different parameter values. In fact, a whole computer classroom
with tens of computers was reserved for days to produce the whole set of
solutions which were of interest.

Later in the literature the lake-river model has been used as a reference
case when evaluating a new solution approach. It was utilized in Orouskhani
et al. (2019) when evaluating their evolutionary dynamic multiobjective Borda
method.

3.5 Paper 5 - Price coordination in industrial production
planning and energy optimization

Paper 5 introduces a coordination approach for industrial settings when
combining production planning and energy supply optimization. The traditional
sequential approach in the process industry has been that the production
schedule is determined first. This is followed by energy supply optimization
where the portfolio of energy purchases and generation is optimized, e.g., using
a generalized minimum-cost flow network model presented in the appendix
of Paper 5. The sequential approach does not, however, guarantee overall
optimality. A new approach, illustrated in Figure 11, is developed using the
idea of price coordination where the overall problem is solved iteratively using
two separated optimization problems. The iterative coordination approach
works such that the internal time varying price of the energy is updated in the
energy optimization part for the given demand obtained from the production
optimization part. Correspondingly, the production is optimized for the given
price which results in a new demand for energy.

Energy management

Energy
demand
update

Price
update

Production planning

Figure 11. Coordination approach in combined production planning and energy supply
optimization.

The coordination approach resulted from the analysis of the overall model

combining production planning and energy supply optimization. The Bender’s
and Danzig-Wolfe’s decomposition schemes were first applied to the overall
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model. The resulting master problem of the decomposition scheme was not
tractable with either of these. A coordination approach based on the mean
value cross decomposition algorithm of Holmberg (1992) was also studied. This
algorithm iterates between the Lagrangian dual (Danzig-Wolfe) subproblem
and Benders primal subproblem. The algorithm exchanges values of decision
variables, in this case demand patterns, from the dual subproblem to the
primal subproblem. The tested iterative updating schemes for both the price
and demand patterns included three gradual and one heuristic schemes. The
one-sided weighted mean value cross decomposition scheme (Holmberg 1999),
updating only one of the patterns, namely price, in each iteration, was found to
produce the best convergence towards the optimal solution.

The performance of the approach was tested in numerical examples in
which real data from a thermo mechanical pulping process in the pulp and
paper industry and a stainless-steel production process in the steel industry
were used. The decision maker could be either the production planner or the
energy manager of the mill site. The suggested coordination approach cannot be
guaranteed to converge to the optimal solution in general, see Holmberg (1997),
but in the numerical examples presented in Paper 5, it was able to produce near-
optimal solutions. The coordination approach in Paper 5 could be extended to
a multi mill production planning environment where energy supply takes place
in centralized energy management centers. In this case price setting on the
upper level would take into consideration the responses from different mills
and possible sales and purchase agreements and generation units available for
the centralized energy management.
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4. Summary and future research
directions

The contributions of this dissertation are two-fold. First, new approaches have
been developed to model real life problems. Secondly, new methodological ideas
have been presented to generate the solutions to these problems in practice.

Demand side management in the electricity market is one problem area. A
new model was developed for space heating home-owners to optimize comfort
and costs under the time varying price of electricity. The model for comfort was
studied both with goal points and with goal intervals. Using this model, the
electricity distributor could design the time-of-use tariff by taking into account
the customer reactions. The coalition of cooperative consumers was a new
setting and the bi-level problem was found to be solvable by a price coordination
approach. The bi-level coordination setting in Paper 2 was an early contribution
on two-level market models which have recently received strong interest.

The model developed for the regulation of a lake-river system reflected the
practical operational requirements at the time and it included interval goals and
arolling planning horizon. The model was solved successfully with the methods
developed. It was also accepted as a tool to support practical operational
management.

The industrial problem of combined production planning and energy supply
optimization was formulated as a bi-level optimization problem. A successful
solution was found by the price coordination algorithm developed.

The theoretical contributions of the dissertation are related to the
development of new multiobjective optimization methods. One of them was the
use of interval goals in dynamic goal programming which was new at the time.
The GPe method developed in connection with the space heating problem was
also a new contribution. The price coordination approaches in Papers 2 and 5
for the bi-level optimization problems proved to be useful.

There are different future research directions in the settings considered in
the dissertation. The popularity of the Excel spreadsheet program discussed in
Papers 1, 3 and 4 has continued over the years. A recent application example is
given by Pacaiova et al. (2021). They use Excel for prototyping and optimization.
To tackle more complicated practical problems, one still needs to consider other
frameworks. In recent years, there has been progress in modeling frameworks,
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such as GAMS or LPL. In addition, Python and Julia programming languages
and their modeling libraries, such as Pyomo, Pymoo and JuMP2, have increased
their popularity in applications. According to my personal experience, the use of
spreadsheet programs as the first line of prototyping platforms in optimization
studies has continued within the process industry.

The optimal responses of coalitions of consumers in the electricity market
discussed in Paper 2 is a theme which is quite relevant today as new technologies
provide possibilities for realistic applications of the new approaches. The two-
level setting continues to draw interest, see, e.g., Soares et al. (2020) and Zhao
et al. (2021). The topic is likely to receive increasing interest in particular in
the literature on smart grids and in combined district energy systems (Capone
et al. 2021). The agent based approach (see Weidlich et al. 2008, Ringler et
al. 2016) and the demand side response mechanisms (see, e.g., Menniti et al.
2009, Sharifi et al. 2019) have continued to be of interest. Modeling comfort
as a consumer’s objective has also been further extended, see, e.g., Alves et al.
(2018). It is interesting to note that the idea of price responsive house heating
has already lead into commercial products3. The effect of the installation of
home energy management systems studied by Tuomela et al. (2021) results
in shifted consumption towards off-peak hours and reduction of total energy
usage similarly as in Paper 2.

Interest in dynamic multiobjective optimization is clearly growing. The need
for testing and evaluating dynamic multiobjective optimization methods in real-
world applications have recently been emphasized by Helbig and Engelbrecht
(2014) and Helbig et al. (2016). The dynamic interval goal programming
approach considered in Papers 3 and 4 has not received much interest as of
yet but it is also a theme which can be of more interest soon due to the needs to
create more flexible approaches in smart grids based on wind and solar energy,
see, e.g., Jones and Romero (2019). Evolutionary algorithms have received a
growing interest as a possible solution approach (see, e.g., a survey in Azzouz et
al. 2017). However, these algorithms face problems already in medium and, in
particular, in large scale problems if getting one evaluation of objective functions
is time consuming. This can be an issue when evaluation is based on solving
other optimization problems like in the lake-river regulation. Thus, generating
a population of multiple solutions can become practically intractable. A possible
new research direction could be to utilize approximate dynamic programming
methods (Powell 2011) used widely for single objective dynamic optimization to
solve dynamic multiobjective problems.

The price coordination approaches developed in Papers 2 and 5 proved
successful in producing solutions for bi-level optimization problems. The
practical implementation does still require more investigation to assure
the convergence and near optimality of solutions obtained. The combined
production planning and energy management optimization has recently

" GAMS: https://www.gams.com/ , LPL: https://virtual-optima.com/
2 Pyomo: http://www.pyomo.org/ , Pymoo: https://pymoo.org/, JUMP: https://jump.dev/
3 FORTUM: https://www.fortum.fi/kotiasiakkaille/sahkoa-kotiin/fiksu, OptiWatti: https://www.optiwatti.fi
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received more attention, see, e.g., Terbrack et al. (2021). This could be one area
of industrial applications where price coordination schemes might be of use.
My personal opinion based on decades long experience in developing industrial
solutions is that there is still a lot to be done in combining production planning
and energy management optimization systems.

Applying multiobjective methods in practice requires the interaction of the
modeler and the problem owners and stakeholders. This brings in the need to
also consider behavioral factors in the whole problem solving process. Recent
emergence of the new area of behavioral operational research (Himaildinen
et al. 2013) has raised important new research topics. These behavioral
considerations are particularly important in environmental modeling
(Hamalainen 2015) where multiobjective models are commonly used. Today,
there is also increased interest in behavioral studies analyzing and modeling the
use of electricity to reach environmental targets, see, e.g., Lopes et al. (2020).
This area is closely related to the models studied in Papers 1-3. An industrially
interesting area would be behavioral obstacles and their overcoming related to
the execution of industrial energy efficiency programs. So, this is clearly one
direction of research in the future when applying multiobjective approaches.

In practical industrial settings, multiple optimization levels may exist, such
as in planning with strategic, tactical and short-term horizons. In general,
difficulties to find numerical solutions may easily arrive as the planning horizon
grows. One might also be faced with model instances that are hard to solve
even with modern solvers, such as CPLEX or Gurobi4, see, e.g., Karjalainen
et al. (2015). In today’s demanding online world, problem’s parameters may
change rapidly and the time available for generating solutions can be restricted.
Therefore, in practice, there can be interest in generating satisfying near
optimal solutions using different heuristics like rolling time horizon window
or price coordination approaches elaborated in this dissertation. For these
solutions, fast heuristic methods can possibly be found (Grossmann 2012). The
integration of energy costs and the environmental impacts of energy production
into industrial production planning especially in multiple planning levels is an
area of future research which has, so far, been overlooked.

As apractice-oriented conclusion, one can expect to see an increasing number
of real-world applications using the modern methods of dynamic multiobjective
and bi-level optimization. Potential application areas are versatile ranging from
environmental and energy problems to industrial enterprise-wide planning
tasks.

4 CPLEX: https://www.ibm.com/analytics/cplex-optimizer, Gurobi: https://www.gurobi.com
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