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1. Introduction

Today, the increased requirements for efficiency and improved management 
practices in environmental and energy problems often lead to dynamic 
multiobjective optimization models. One needs to consider the changing 
demand and coordinate the production and use of energy accordingly, or one 
needs to optimize the regulation of river flows to sustain energy production 
and at the same time avoid flooding. This dissertation focuses on modeling 
challenges where these dynamic effects are met. Typically, there are no off-
the-shelf solutions to these problems, but the solution methods need to be 
customized in each particular case.

This dissertation develops approaches to a number of such dynamic 
multiobjective optimization problems. These include the multiobjective 
optimization of an electrically heated house with an hourly varying price of 
electricity. This model is extended to the wider context of an electricity market 
by considering a coalition of cooperative space heating consumers aiming to 
optimize their total welfare by designing a within coalition time-of-use tariff. 
The dynamic regulation of a lake-river system is described by optimizing 
multiple objectives with interval goals and constraints. An industrial problem 
emerging from the combined production planning and energy supply is also 
considered. 

The dynamic multiobjective problems studied here consist of three parts. 
First, there is a model describing the dynamics of the system. Second, the 
goals and the user’s preferences are determined to define the objectives to be 
optimized. Finally, the solution approach and algorithm are developed. The 
challenge is to tackle all of these three parts so that the numerical solution will 
be practical and implementable in real life situations. These kinds of challenges 
emerge often in industrial problems but they are not typically discussed in the 
literature on multiobjective optimization. 

In this summary, the approaches introduced in the dissertation are reflected 
against methods presented in the more recent literature. This summary article is 
structured as follows. Section 2 presents the methodological background of the 
dissertation. Section 3 discusses the results of Papers 1-5. Section 4 concludes 
by summarizing the contributions of the dissertation and discusses possibilities 
for future research.
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2. Methodological background

The following chapters provide short introductions to the literature on the basic 
concepts and methods used in the dissertation. The more recent modeling efforts 
in the application areas considered in the dissertation are also summarized.

2.1 Multiobjective optimization

A multiobjective optimization problem can be defined as 

Minimize𝒙𝒙  { f1(x), f2(x),…, fk(x) }  

subject to  

x ∊ S = { gj(x) ≤ 0, j = 1,…, M }, 

where the objective functions are fi(x) and x is the n-dimensional decision 
variable. The constraint functions gj(x) define the decision space S and a point 
x belonging to the decision space is called a feasible solution of the problem. 
The vector z = f(x) = ( f1(x), f2(x),…, fk(x) ) related to a single solution is called 
an objective or criterion vector. In maximization, the problem definition applies 
similarly using negation of the objective functions, i.e., -fi(x). All objective 
and constraint functions are typically assumed to be convex and continuously 
differentiable to guarantee the existence of solutions. 

2.1.1	 Solution concepts

In a multiobjective problem, there is typically not a single best solution over all 
the objectives. The solution methods for multiobjective optimization problems 
aim to produce a set of nondominated solutions that are also called noninferior, 
efficient or Pareto optimal solutions. A solution is Pareto optimal, if none of the 
objective functions can be improved without degrading at least one of the other 
objectives. In other words, the solution is Pareto optimal when an improvement 
in one objective would lead to a weakening in at least one other objective. 
Formally, a solution xp is Pareto optimal, if there does not exist another feasible 
solution x’ that dominates it, i.e.,
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fi(x’) ≤ fi(x
p) for all i ∈∈ {1,…, k} and

fj(x’) < fj(x
p) for some index j ∈∈ {1,..., k}.

The solution xwp is called weakly Pareto optimal, if there does not exist another 
solution that is better with respect to each objective function, i.e., there does not 
exist another feasible solution x’ such that fj(x’) < fj(x

wp) for all j ∈∈ {1,..., k}. The 
set of all Pareto optimal solutions is called the Pareto set and the set of all Pareto 
optimal objective vectors is called the Pareto frontier. The decision maker, i.e., 
the owner of the multiobjective problem, is assumed to be rational in the sense 
of selecting the final solution from the set of Pareto optimal solutions.

The mapping of feasible solutions to multidimensional objective function 
values is called the objective function space Z. The space Z is often characterized 
by so called Ideal z* and Nadir points, see, e.g., Miettinen (1999) and Antunes et 
al. (2016). The Ideal point z* refers to the point defined by the values obtained 
by minimizing each objective function separately. The Nadir point znadir refers 
to the upper bounds of the objective functions on the Pareto frontier. The 
Ideal and Nadir points provide the range of Pareto optimal objective values 
for the decision maker to consider. The Ideal and Nadir points can be used to 
normalize the objective functions to a common scale in order to avoid numerical 
difficulties in optimization. In a higher dimension (k > 2), computing the true 
Nadir point is a difficult task on its own, since it requires knowledge of all the 
Pareto solutions. 

The approximation of the Nadir point starts from calculating each single 
objective optimization separately to produce the Ideal point. The approximated 
Nadir point is formed by taking the worst value for each objective separately 
over all single objective optimizations. Figure 1 illustrates the Ideal and Nadir 
points in a two dimensional case.

Figure 1. Ideal z* and Nadir znadir points in a two-dimensional case. z1* and z2* are the optimal 
objective values for the first and the second objective, respectively. The Ideal point z* is the 
combination of these. The Pareto frontier is the line segment between points f1* and f2*. The 
Nadir Point znadir is the upper bound of the objective values with respect to the Pareto frontier.
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2.1.2	 Solution methods

The solution methods for multiobjective optimization can be classified according 
to the availability of the decision maker’s preference information, see, e.g., 
Miettinen (1999). There are no-preference, a priori, a posteriori and interactive 
methods. In the no-preference methods, a solution without preference 
information is generated, e.g., by minimizing the solution’s distance to the ideal 
point. In a priori methods, the decision maker is first asked about preference 
information, such as the preferred values for each of the objective functions, and 
a solution closest to these values is generated. In a posteriori methods, a subset 
of the Pareto frontier is generated by converting the multiobjective function to 
a scalar objective function. This scalarization can be done typically with stated 
preference information. The decision maker is asked to choose a solution from 
of this subset of Pareto solutions generated. In interactive methods, the decision 
maker chooses a solution from the Pareto frontier in an interactive manner by 
stating desirable changes to the current objective vector. In this dissertation, the 
methods used mainly belong to a priori methods where stated preferences are 
ideal levels of indoor temperature and water reservoirs. In the following, typical 
methods in each of these classes are briefly described.

2.1.2.1	 No-preference methods

In no-preference methods, a Pareto solution is generated directly without 
asking for any preference information. This is carried out, e.g., by minimizing 
the solution’s distance to the Ideal point z* using a suitable norm for the 
distance. An example norm is absolute deviation between an Ideal point z* and 
an objective function space point z = ( f1(x), f2(x),…, fk(x) ), i.e., 

Minimize𝒙𝒙 ∑ |𝑓𝑓��𝒙𝒙� � ��∗|����  subject to x ∊ S. 

This minimization problem gives a Pareto optimal point, see, e.g., Miettinen 
(1999). Different Pareto solutions can be generated using alternative norms, 
such as Euclidean second order or Chebyshev infinity order norms. Note that 
the minimization of the norm can be sensitive to the scaling of the objective 
functions, i.e., depending on the scaling used resulting solutions can differ 
considerably.

2.1.2.2	 A priori methods

In a priori methods, the idea is to convert the multiobjective optimization 
problem back into a single objective optimization problem with the use of a 
scalarizing function. Typical scalarization methods include weighting (Gass 
and Saaty 1955), constraint methods (Chankong and Haimes 1983) and goal 
programming (Charnes et al. 1955). In the weighting method, the objective 
functions are associated with nonnegative weighting coefficients wi to convert 
the problem into a single objective problem
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Minimize𝒙𝒙   f(x) = ∑ 𝑤𝑤�𝑓𝑓��𝒙𝒙�����  subject to x ∊ S, ∑ 𝑤𝑤� � 1, 𝑤𝑤� � 0���� . 

The solution of the weighting method is Pareto optimal, if a nonzero weight is 
given for each objective, see Miettinen (1999).

In the constraint method, all but one of the minimized objective functions are 
constrained with given bounds ci:

Minimize𝒙𝒙   fj(x) subject to fi(x) ≤ ci, i ∈ {1, 2,…, j-1, j+1,…, k} 

This minimizes one objective function and states strict bounds for the other 
objective functions. The decision maker states preferences by giving the bounds 
ci for the other objective functions. In general, the constraint method generates 
weakly Pareto optimal solutions, but if the solution is unique it is also Pareto 
optimal, see Miettinen (1999). Different Pareto solutions can be generated by 
varying the weights or the bounds set to the objectives.

Goal programming is a widely used multiobjective optimization method. In 
this method, one minimizes the solution’s distance to a given goal point for the 
objectives. The goal point zgoal = (z1

goal, z2
goal,…, zk

goal) represents the desirable 
values of the objective functions. One such an example is the Ideal point z*. 
Here, the decision maker states preferences by the giving goal points. In many 
cases, the goal selected is unachievable.

The resulting weighted goal programming problem assuming unachievable 
goals is

Minimize𝒙𝒙 ∑ 𝑤𝑤�𝑑𝑑�����

subject to  

fi(x) - di ≤ zigoal,

di ≥ 0, x ∊ S, 

where di are positive deviations from the goals of the objective functions, and wi

are nonnegative weighting coefficients. This problem produces a Pareto optimal 
solution, if all deviations from the goal point are strictly positive, i.e., the goal 
point cannot be achieved (Miettinen 1999). 

A different distance measure is used in the achievement scalarizing function 
method (Wierzbicki 1982, Steur and Choo 1983). This method allows even 
achievable goal points, i.e., the zgoal point can belong to the objective function 
space Z. Formally, the method uses a distance measure

Minimize𝒙𝒙 𝑚𝑚𝑚𝑚𝑚𝑚���,…,��𝑤𝑤��𝑓𝑓��𝒙𝒙� � ��
������ � � ∑ �𝑤𝑤��𝑓𝑓��𝒙𝒙� � ��

����������
subject to x ∊ S,  

which can have also negative value. Here, wi are positive weights similarly as in 
the weighting method, and ρ is a small positive scalar. This method produces 
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so called ∈-Pareto optimal solution. A solution x∈p is ∈-Pareto optimal, if there 
exists no another feasible solution x’ with given ∈>0 so that

fi(x’) ≤ fi(x
∈p) – ∈ for every i ∈ {1,…, k} and

fj(x’) < fj(x
∈p) – ∈ for some j ∈ {1,…, k}.

The goal can also represent a goal set, such as an interval goal, see, e.g., Romero 
(2019) and Oliveira and Antunes (2007). The goal interval states lower and upper 
bounds for the objective function instead of a single value. For a more general 
overview of goal programming, see Jones and Tamiz (2010). Goal programming 
has continued its popularity in many engineering and management problems, 
see, e.g., the survey by Colapinto et al. (2017). Many other possible forms of 
scalarization functions using goal points also exist, see, e.g., Miettinen and 
Mäkelä (2002). 

2.1.2.3	 A posteriori methods

In a posteriori methods, first multiple Pareto optimal solutions are generated. 
After a representative part of the Pareto optimal solutions is generated, they are 
presented to the decision maker from which he or she chooses the preferred 
one. A difficulty is that how to present a large set of alternative solutions to 
the decision maker. Scalarizing methods can be considered as one category 
of a posteriori methods. Multiple Pareto solutions are obtained by changing 
preference parameters, such as the weights of the objectives or the goal points. 
More recently population based methods, such as genetic algorithms, have 
gained interest in a posteriori methods (Deb 2001, Li et al. 2015, Azzouz et al. 
2017) because of their capability to produce multiple solutions simultaneously. 
Genetic algorithms are inspired by natural selection of the fittest, see, e.g., Tang 
et al. (2012). In these algorithms, candidate solutions for the multiobjective 
problem are encoded and evaluated with objective functions in each iteration. 
Candidate solutions are chosen to a mating pool based on their associated 
overall fitness value. The entire pool is then exposed to a number of genetic 
operations, such as crossover, to combine solutions into a new candidate 
solutions. A randomization operation produces random alterations to candidate 
solutions called mutations. These operations try to find a balance between 
exploring for unknown better solutions and improving the solutions found so 
far. These phases are then repeated until the stopping condition of an algorithm 
is satisfied. The stopping condition can be, e.g., the maximum number of 
generations. However, the solutions obtained using genetic algorithms are not 
generally true Pareto optimal solutions, but points close to the actual Pareto 
optimal solutions (Deb 2001). A well known genetic algorithm is the non-
dominated sorting genetic algorithm (NSGA-II) for problems with two or three 
objectives, see Deb et al. (2002). The method has been extended to the so called 
NSGA-III algorithm (Deb and Jain 2014) and unified NSGA-III (Vesikar et al. 
2018) which are more efficient in solving problems with a higher number of 
objectives. Another multiobjective evolutionary algorithm is MOEA/D, which 
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is based on decomposing a multiobjective problem into a number of single 
objective problems and solving them simultaneously. The single objective 
problems are solved using information from solutions of neighboring problems 
during the execution of algorithm (Zhang and Li 2007).

2.1.2.4	 Interactive methods

There are also interactive approaches for multiobjective optimization, see, e.g., 
Miettinen et al. (2016), Antunes et al. (2016), and Xin et al. (2018). Interactive 
methods typically start by presenting one initial Pareto optimal solution to the 
decision maker. The decision maker is then asked to provide some preference 
information. This can be done, e.g., by asking her to allocate the objectives 
in different categories. These categories could define, e.g., objectives which 
should be decreased, objectives which are satisfactory, or objectives which can 
be allowed to increase, with respect to the current solution, see, e.g., Sindhya 
et al. (2014). New solutions are generated using this preference information. 
An approach is to add constraints with respect to the current solution to force 
the solution into directions given by the decision maker. The new solution then 
replaces the current solution. This process is repeated until the decision maker 
is satisfied with the solution. 

The motivation for using interactive methods is that initially the decision 
maker might not have clear preferences over Pareto optimal points. By 
interactively exploring the Pareto frontier more knowledge is gained. Interactive 
methods reduce the number of Pareto solutions that decision maker needs to 
consider. This aspect can be relevant especially in complex real life problems.

2.1.3	 Solution methods used in the dissertation

Solutions methods considered in this dissertation are based mainly on constraint, 
weighted goal programming and interval goal programming methods. The 
dissertation develops an interval goal programming method with multiple 
intervals and points out that in dynamic optimization problems the goals of the 
objective functions might be time dependent. The dissertation formulates also a 
combined method of a constraint method and goal programming.

In Paper 3, goal programming is combined with a constraint method. In this 
method, original objective functions are classified into a constraint set E and a 
goal set G. For objective functions in the constraint set, hard upper bounds cj

are given. On the other hand, only goal values zi
goal for objective functions in the 

goal set are stated. The deviations from the goals are minimized. In this way, the 
original multiobjective optimization problem is converted into the form

Minimize𝒙𝒙 ∑ 𝑤𝑤�𝑑𝑑��∈�

subject to 

 fi(x) - di ≤  zigoal, di ≥ 0, ∀ i ∊ G, 

 fj(x) ≤ cj, ∀ j ∈ E, 

x ∊ S. 
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The combined constraint and goal programming method is illustrated in Figure 
2 in a two dimensional case. The first objective is given a hard upper bound c1, 
while the second objective is associated with an unachievable goal z2

goal. The 
optimal solution for the combined problem formulation provides in this case a 
Pareto solution z* with deviation d2 from the goal of the second objective. Other 
Pareto solutions could be produced by making the upper bound restriction for 
the first objective smaller, i.e., more constraining.

Figure 2. Illustration of the combined goal programming and constraint method. The 
objective function space is Z. The axes z1 and z2 are the objective function values for the 
first and second objective, respectively. The constant c1 is the hard upper bound for the first 
objective, and z2

goal is an unachievable goal for the second objective. z* is the Pareto optimal 
solution with d2 being the deviation to the goal for the second objective.

In Paper 3, the Pareto optimality of the solution for the problem formulation 
above is proven under an assumption that there is only a single optimal 
solution. The combined goal programming and constraint method is used in 
Paper 3 for solving a multiobjective house heating problem. House heating 
costs and heating energy are turned into hard constraints, while minimal indoor 
temperature discomfort remains as a goal.

In Papers 1, 3, and 4, the interaction with the decision maker is based on asking 
the decision maker’s goals and constraints for variables describing a system 
under consideration at different time points. In the applications addressed in 
this dissertation, the dynamics of problems originate on the one hand from the 
characteristics of systems in question, i.e., the heat capacity and dissipation in 
the house in Paper 1 and 3, and the geographical form of lakes and rivers in 
Paper 4. On the other hand, these problems also have external dynamics due to 
the time-varying price of electricity and the time-varying inflow of water. 

In the house heating problem, the goal level for indoor discomfort is defined by 
stating desired hourly temperatures in the house, and in the river management 
case the interaction with the decision maker is based on lake water levels at 
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different days of a planning period. The resulting optimal solution is presented 
and visualized to the decision maker after which the decision maker is allowed 
to adjust the goals of the system states to find a more desirable solution. This 
is repeated until a satisfactory solution is found. Thus, the method used can be 
called an interactive goal programming.

2.2 Dynamic multiobjective optimization

The dynamics in multiobjective optimization problems can be due to a number 
of factors including time varying objectives, constraints and parameters as well 
as due to the dynamics of the system being studied. Such a setting results in a 
continuous time dynamic optimization or optimal control problem. In practice, 
time is discretized making it possible to convert the problem into a standard 
form of a multiobjective optimization problem. This introduces vector of 
decision variables for each time discretization point x(tI) = xI, I = 1,…,N. The 
entire decision vector containing all time discretization points t = (t1,…,tN) is 
denoted by x(t). The same applies for dynamic parameters affecting the objective 
functions. That is for each objective function, there is a parameter vector at each 
time discretization point wi(tI) = (wi

1(tI),…, wi
Ki(tI)), where Ki is the number of 

parameters of objective function i.  The entire parameter vector containing all 
time discretization points for the object function i is denoted by wi(t), i = 1,…,k. 
The formal formulation of this problem is

Minimize
𝒙𝒙��� {f1(x(t), w1(t)), f2(x(t), w2(t)),…, fk(x(t), wk(t))}  

subject to 
g(x(t)) ≤ 0,  

x(t) ∊S, 

where the constraints are g(x(t)), and S defines lower and upper limits of the 
decision variables. 

In electricity market models introduced in Papers 1, 2, and 3 of this 
dissertation, the time dependent parameter represents the time varying price 
of electricity. In the lake-river regulation models elaborated in Paper 4, the 
parameters are related to the inflow of water at different times. A quite similar 
model with dynamic goals is found, e.g., in the health-care related dietary menu 
planning problem studied by Jridi et al. (2018).

The house heating problem of the home owner developed in Paper 3 is used 
here to illustrate the above general formulation of a dynamic multiobjective 
problem with a dynamic goal programming approach. The problem has 
two objectives, i.e., minimization of the total heating costs over the day and 
maximization of the living comfort, which is converted to minimization of living 
discomfort. The measure used for the loss of living comfort is the temperature 
deviation from the ideal indoor temperature. In this case, the time dependent 
parameters are electricity prices and outdoor temperatures. The discrete time 
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index is i = (1,…,N) as in Paper 3, and N is the number of discretization points. 
The dynamics of the problem are related to the heat dynamics of the house. The 
house acts as an energy storage, and heat flow out of the house is assumed to 
depend linearly on the difference between the indoor and outdoor temperatures. 
The heating problem for a cyclic period, such as one day, is

Minimize
𝒒𝒒���  (heating costs) f1(q(t), p(t)) = ∑i pi qi 

Minimize
𝑻𝑻���   (discomfort) f2(T(t), Tref(t)) = ∑i |Ti – Tiref| 

subject to 
Ti+1 = Ti + β∆tqt - αβ∆t(Ti – Tiout)   (Heat dynamics of the house),  (1) 

T1 = TN+1      (Periodicity of the indoor temperature), 
0 ≤ qi ≤ q    (Heating power limits), 
li ≤ Ti ≤ ui   (Indoor temperature limits), 

where Ti is the indoor temperature, Ti
ref is the ideal indoor temperature for the 

decision maker, and Ti
out is the outdoor temperature at time i, respectively. The 

qi represents the heating power and pi price of the electricity at time i. The time 
difference between the discretization points is ∆t. The initial indoor temperature 
T1 and the end temperature TN+1 are constrained to be the same to ensure the 
cyclic behavior of indoor temperatures. The lower and upper limits for the 
indoor temperature are denoted by li and ui. The maximum heating capacity q is 
here constant over time. The heat dissipation coefficient of the house is α, and 
the inverse of the heat capacity of the house is β.

The solution approaches to discrete time dynamic multiobjective problems 
are based on the same ideas as for the static multiobjective problems. The 
dynamic goal programming approaches used in Paper 1, 3, and 4, are extensions 
of the static ones. For instance, the combined goal programming and constraint 
method developed in Paper 3 can be applied to the house heating problem. The 
first objective function f1 of Problem (1) is the heating costs of the house. The 
minimal heating costs of the house, when thermodynamical and heating power 
limitations are only considered, is denoted by f1

*. Additionally, the goal level for 
the heating costs is parameterized with constant eps, where 0 ≤ eps < 1. The 
minimal discomfort level, i.e., the objective function f2 in Problem (1), would be 
zero for obvious reasons. Deviation from that can be measured and is denoted 
by d. This gives a combined goal programming and constraint method problem 
as

Minimize
𝒒𝒒���, 𝑻𝑻���, 𝑑𝑑 d 

subject to 
f1 ≤ (1-eps)f1* (Constraint for heating costs), 
f2 – d ≤ 0  (Goal for discomfort), 
d ≥ 0  (Deviation from minimal discomfort), 

Ti+1 = Ti + β∆tqt - αβ∆t(Ti – Tiout), T1 = TN+1  (House dynamics), 
0 ≤ qi ≤ q, li ≤ Ti ≤ ui (Heating and indoor temperature limits). 
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In practical problems, time varying parameters can be affected by 
uncertainties. Such a case in the lake regulation problem of Paper 4 is due to 
uncertain water inflow forecasts to the lake-river system. The idea of a rolling 
horizon solution approach used here is that the dynamic goal programming 
problem is solved repeatedly. Goals are set ahead of time for a rolling time 
window as illustrated in Figure 3. In practice, this means solving the dynamic 
goal programming problem whenever the rolling time period is changed. This 
kind of approach has also been called a myopic solution approach in Virtanen 
et al. (2004).

Figure 3. Solution of the dynamic goal programming problem using the rolling time horizon 
approach.

In general, the introduction of dynamics brings complexities as the problem 
size can increase essentially, which in turn makes it more difficult to generate 
efficient solutions (Farina et al. 2004, and Helbig et al. 2016). The increase in 
problem size with a high number of decision variables also makes interactive 
approaches difficult to use. Yet, interest in dynamic multiobjective problems 
has been increasing and new approaches have been suggested based on, e.g., 
genetic algorithms (Raquel et al. 2013) and evolutionary techniques (Deb 
et al. 2007, Helbig and Engelbrecht 2014, and Orouskhani et al. 2019). New 
interactive approaches have also been developed by focusing on only part of 
the possible Pareto solutions directly by using the decision maker’s preference 
knowledge (Nowak and Trzaskalik 2021, and Aghaei Pour et al. 2021). For a 
recent extensive survey on dynamic multiobjective optimization, see Jiang et 
al. (2022).

The importance of dynamic problems is emphasized in the reviews of Helbig 
and Engelbrecht (2014) and Helbig et al. (2016). However, the survey of Azzouz 
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et al. (2017) suggests that so far there are still only a few real-world applications 
of dynamic multiobjective optimization models.

2.3 Bi-level optimization and price coordination

In bi-level optimization problems, the lower level optimal reactions to upper 
level decisions appear as constraints for the upper level optimization. For a 
general introduction to bi-level optimization, see, e.g., Talbi (2013) and Dempe 
et al. (2015). A bi-level optimization problem is of the form

Minimize𝒖𝒖,𝒙𝒙 fL(u,x) 

subject to gL(u,x) ≤ 0,   

x ∊ argmin {Minimize𝒙𝒙  fF(u,x) subject to gF(u,x) ≤ 0}.    

The upper level’s decision variable vector u affects the lower level reactions 
x. The function fL is the objective function of the upper level (leader), and gL

represents the constraints of the upper level. The fF is the objective function of 
the lower level (follower), and gF is the constraints functions of the lower level. 
The solution methods for bi-level optimization usually assume that the upper 
level optimization can be carried out under the knowledge of the objective of 
the lower level problem. Bi-level optimization problems are computationally 
difficult to handle, and they can be hard to solve even in a simple case with 
linear objective and constraint functions (Ben-Ayed and Blair 1990). The 
solution methods for bi-level optimization can be based on reducing the original 
bi-level problem into one larger single level problem. This can be done under a 
suitable convexity and the assumptions of constraint qualification. One such a 
method is adding the Karush-Kuhn-Tucker optimality conditions of the lower 
problem into the upper level problem as constraints using Lagrangian and 
complementary constraints, see, e.g., Dempe (2020). This is stated as

Minimize 𝛌𝛌,𝒖𝒖,𝒙𝒙 fL(u,x) 

subject to  

gL(u,x) ≤ 0, 

gF(u,x) ≤ 0, 

∇xfF(u,x) +  ∑i λ i∇xgFi(u,x) = 0 (Lagrangian),

λi  gFi(u,x) = 0, λi ≥ 0, i = 1,…, M (Complementary),

where M is the number of constraint functions, λi are the Lagrangian coefficients, 
and ∇x is the gradient with respect to lower level reaction x. Especially, in the case 
of linear objective and constraint functions, the complementary constraints can 
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be solved by transforming the problem into a mixed integer linear optimization 
problem by using the so-called big-M method. This can be accomplished by 
replacing the complementary constraint with the constraint

λi ≤ Mbig yi  and  gFi(u,x) ≤ Mbig (1–yi), 

where the binary decision variable yi ∊ {0,1} represents the activity of the lower 
level constraint, i.e., in case yi = 1 the associated constraint is active gFi(u,x) = 
0. The big-M constant (Mbig) should be a sufficiently large constant for both 
Lagrangian coefficients λi and lower level constraints. This enables solving 
the above single level reformulation by using modern general purpose mixed 
integer linear programming solvers. However, the choice of the value Mbig itself 
is a hard problem, see, e.g., Pineda and Morales (2019).

The scope of bi-level multiobjective problems is vast and has been constantly 
growing during the past years. This is pointed out in the extensive reviews of 
Lachhwani and Dwivedi (2018), Sinha et al. (2018) and Said et al. (2021). Bi-
level optimization problems arise in many practical settings. For example, there 
can be an upper level actor/agent (e.g., a department, a manager or a leader) 
which optimizes its own objectives which depend on the performance of the 
lower level actors/agents (followers) which again have their own optimization 
objectives. For examples of different bi- and multi-level settings, see the survey 
by Lachhwani et al. (2018). Bi-level problems are typically also asymmetric so 
that the upper level has more information about the lower level’s problem than 
the lower level about the upper level’s. The Stackelberg game, which is common 
in pricing models (van Hoesel 2008), also results in a bi-level optimization 
problem. For a survey of price setting problems, see, e.g., Labbé and Violin 
(2016). In a price setting problem, the upper level sets the price of the service 
by taking into account the reactions of the customers on the lower level. The bi-
level structure can also emerge from the decomposition of a larger problem into 
smaller ones. Optimization problems can contain nested inner optimization 
problems as constraints (Bracken and McGill 1973). Similar setups can be 
found, e.g., in Kuo et al. (2015).

Research on different hierarchical coordination methods was active in the 
1970s in the field of control and systems theory dealing with the so-called 
large-scale systems, for a review, see Mahmoud (1977). Later the literature has 
focused on market type settings in different industries. Current interest in price 
based coordination is strong in the analyses of electricity markets (Tohidi et al. 
2018). Price coordination is an approach in pricing problems where the price or 
tariff is iterated towards the optimal one by taking into account the reactions of 
the lower level agents which typically represent the customers.

In Papers 2 and 5 of this dissertation, the solution methods used for bi-level 
problems apply price coordination where the idea is to divide the solution process 
into the optimization of two simpler problems and to solve these iteratively. The 
upper level chooses a price for the lower level. The lower level reacts optimally 
to the price with the consumption decision. The reaction affects the value of the 
upper level’s objective function. The upper level then updates the price signal in 
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each iteration by re-optimizing against the reaction of the lower level. In Paper 
2, this is realized by defining the a total welfare function U(q,p) for the coalition 
of electrical heating consumers. It is the sum of the utility function of a coalition 
coordinator Up(q,p) and the utility functions of individual consumer groups 
Uj(qj,p). Here, p is the price signal of the electricity, qjk is consumption of the 
consumer group j, and q is the total consumption over all consumer groups. 
The coalition coordinator’s cost in the Paper 2 is assumed to be quadratic with 
respect to consumptions of the consumer groups, and the utility function of the 
coordinator is the profit subtracted by cost. The consumer’s utility function is 
a weighted sum of energy costs and degradation of living comfort. The entire 
price coordination scheme is illustrated in Figure 4.

Figure 4. Price coordination scheme for the coalition of consumers in Paper 2. 
The lower level consumers determine their consumptions qjk by maximizing their utility 
functions independently at each iteration k, and the upper level iterates the overall utility by 
updating the price signal pk.

The total utility function U(q,p) depends on the consumptions of the individual 
consumer groups qj, which on the other hand depend implicitly on price p. The 
iteration process is based on the marginal costs (mc) of the total welfare, which 
is a function of the sum of the individual consumptions qj. The price iteration 
proceeds by updating the price using a weighted updating formula, i.e., 

pk+1 = µ pk + (1-µ) mck(∑jqj),

where k is the iteration round, and µ is a small constant 0 ≤ µ < 1.
In Paper 5, combined production scheduling and energy management 

optimization problems are discussed for process industrial cases. Such 
problems are often large and hard to solve as a single problem. In Paper 5, the 
decomposition of the original combined production scheduling and energy 
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management optimization problem is tackled with two well know decomposition 
methods, i.e., Benders and Dantzig-Wolfe decomposition methods. 

The Benders decomposition (Benders 1962), also called primal decomposition, 
was first developed for large linear programming problems which have a 
special block structure with common constraints and independent sets of other 
constraints and variables. Stating a given values for the part of the variables of 
the common constraints of the original problem defines a primal subproblem. 
The primal subproblem is a function of the fixed common constraint variables. 
Each solution of the primal subproblem generates an extreme solution for the 
original problem, which can be used to add a new constraint, i.e., so called 
Benders cut, to the Benders master problem representing the original problem. 
The master problem yields another point of the fixed variables, and the iteration 
continues by forming a new primal subproblem with the current values of the 
fixed variables to generate a new extreme solution of the original problem. 
Therefore, the primal master problem iteratively approaches the original 
problem. It can be shown that the Benders subproblem provides an upper 
bound for the optimal value of the objective function of the original problem, 
and that the decomposition stops after a finite number of iterations, see, e.g., 
Holmberg (1994).

The Dantzig-Wolfe (Dantzig and Wolfe 1960) decomposition, also called 
dual decomposition, starts by dualization of common constraints. This means 
that penalties are given for the violations of the common constraints and the 
penalty term is added to the objective function of the original problem. Fixing 
the penalties, i.e., the dual variables of the common constraints, the solution of 
this dual subproblem generates an extreme solution for the original problem. 
This solution is used to add a new constraint to the Dantzig-Wolfe master 
problem representing the original problem. The solution of the master problem 
then gives new values of the dual variables, and the iteration is continued to 
a new subproblem to generate a new extreme solution. The master problem 
approaches the original problem with the addition of each new constraint. It 
can be shown that the Dantzig-Wolfe subproblem provides a lower bound for 
the optimal value of the objective function of the original problem, and that 
the decomposition stops after a finite number of iterations, see, e.g., Holmberg 
(1994).

The idea of the cross decomposition algorithm (Van Roy (1983), Holmberg 
(1992), and Holmberg (1997)) used in Paper 5 is to omit the need of master 
problems. The algorithm is based on iterating between the subproblems of 
the Benders and Dantzig-Wolfe decompositions. This cross decomposition 
algorithm is illustrated in Figure 5.
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Figure 5. Cross decomposition algorithm. The marginal price p is the input to the dual 
subproblem and the reaction q is the input to the primal subproblem.

In the cross decomposition algorithm, the Bender’s primal subproblem 
provides new values of dual variables, i.e., marginal prices, to be given to the 
Dantzig-Wolfe dual subproblem (see Figure 5). The solution of the Dantzig-
Wolfe subproblem reveals a new fixed values of common constraint variables, 
i.e., reaction, to be given back to the primal subproblem. The marginal price and 
reaction are used as exchanged information called here as signals between the 
subproblems (Holmberg 1999). There can be multiple ways to adjust the price 
and reaction signals before giving them to subproblems according to previous 
values of these signals as illustrated in Figure 6 with four basic schemes. 
The heuristic scheme uses a direct passing of price and reaction without any 
changes. The mean value scheme updates both price and reaction as the mean 
values of the previous prices and reactions. The weighted mean value scheme 
is similar, but it gives less weight to the previous price and reaction values. The 
one sided weighted mean values scheme passes the reaction without change, but 
it uses weighted mean values updating for the price. The cross decomposition 
algorithm converges for a linear programming using either mean value scheme 
(Homberg 1994). The cross decomposition algorithm is proven to converge 
for a certain mixed integer linear programming problem under special block 
structure using the mean value coordination scheme for both price and reaction 
signals (Holmberg 1997). 
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Coordination scheme Updating price and reaction
Heuristic (direct) qk = qk̃, pk = mck

Mean value qk = (1/k) q̃k + (k-1/k) qk-1, pk = (1/k) mck + (k-1/k) pk-1

Weighted mean value qk = δk q̃k + (1-δk) qk-1, pk = δk mck + (1-δk) pk-1

One sided weighted mean value qk = qk̃, pk = δk mck + (1-δk) pk-1, where weight 0 < δk < 1

Figure 6. Different price coordination schemes. The marginal price mc from the upper level 
problem is updated to the price p signal, and the reaction q̃ from the lower level problem is 
updated to the reaction q signal.

In the industrial combined production planning and energy optimization 
problems in Paper 5, i.e., a thermo mechanical pulping planning in the pulp and 
paper industry and a stainless-steel production planning in the steel industry, 
a two level structure reflects a natural two-level settings with a producer and a 
consumer. The convergence of the cross decomposition algorithm using the one 
sided weighted mean value price coordination scheme to the optimal solution of 
the original combined problem is case dependent and no general convergence 
results exist in the current literature.

2.4 Applications of multiobjective approaches in house 
heating and river management

More than twenty years have passed since the publication of the initial papers 
in this dissertation. The topic has since proven to be of great importance. 
Multiobjective modeling has become widely known and applied in different 
application areas including, in particular, energy and environmental studies. 
This has resulted in an explosion of research papers in the areas, and a 
comprehensive survey of the relevant literature is not possible within the scope 
of this dissertation summary. However, key references to articles which reflect 
the development of the field are provided. Developments in the measurement, 
communication and computational technologies have also made the practical 
implementation and use of dynamic multiobjective methodologies and models 
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attractive. Dynamic multiobjective approaches are increasingly important both 
in energy and environmental problems. Today, there is a strong interest in 
finding ways to change behavior in energy use, and these settings are typically 
dynamic and have multiple criteria (Lopes et al. 2020). The methodological 
development studied in this dissertation relates directly to the challenges met 
in the currently active research areas of smart cities, smart homes, intelligent 
energy use and smart grid, see, e.g., Kirimtat et al. (2020), Ringler et al. (2016), 
Xu et al. (2020). 

2.4.1	 House heating

The use of multicriteria optimization in house design originated early. Gero 
et al. (1983) and D’Cruz and Radford (1987), were among the first to consider 
multiple objectives in building design. Later the related literature has expanded 
rapidly and environmental sustainability criteria have also become important. 
For a recent survey, see, e.g., Gassar et al. (2021). The idea, in Papers 1 and 3, 
that the home-owner would be able to react to the electricity price by changing 
the indoor temperature is a different one than the optimization of the design 
of the house. Technically the resulting multiobjective problems can, however, 
become similar. The inclusion of hourly thermal comfort in a house heating 
model is considered in Paper 1 of this dissertation. Comfort is described as a 
time-varying ideal indoor temperature at different hours of the day. Cost and 
the sum of deviations from the ideal temperature are minimized subject to 
time-varying tariff and outdoor temperature. The model is developed further in 
Paper 3. These models are developed to support the house owner in choosing 
the hourly heating pattern. At the same time, a similar type of multiobjective 
model was developed by Wright et al. (2002) to support the design of the 
house. In their paper, the objectives included cost and thermal comfort and the 
optimization is done subject to time varying outdoor temperature but without 
a dynamic tariff.

There has also been interest in control models regarding multiobjective 
heating and ventilation strategies, see, e.g., Wright et al. (2002) and Ascione et 
al. (2019). These papers have considered buildings including residential units 
and schools. Ascione et al. (2016) have developed a control model for a home 
which has similar characteristics with user defined goals as in the papers in 
this dissertation. The control model of Álvarez et al. (2013) takes into account 
the comfort needs in different rooms of a house. The design of energy efficient 
homes and buildings by including comfort criteria remains of continuous 
interest. For example, Asadi et al. (2012) as well as Ascione et al. (2017) consider 
the retrofitting strategies of houses using multiple objective optimization. Yu et 
al. (2015) is another highly cited building design focused paper. 

Today, the literature on intelligent buildings is extensive. Mofidi and Akbari 
(2020) provide a comprehensive review of factors such as thermal comfort to be 
considered in the multiobjective modeling approaches for intelligent buildings. 
The authors emphasize that in future models more emphasis should be paid 
to the occupant behavior and feedback possibilities to occupants, such as 
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household energy consumption values. New energy management systems for 
buildings also have similar elements as the original home heating models in the 
dissertation. The system described in Pallante et al. (2020) can carry out day-
ahead optimizations taking into account the building dynamics as well as hourly 
comfort and cost. The time frame can also be longer and seasonal strategies for 
different weather conditions can be optimized like in Ascione at al. (2019). 

The optimization techniques used in building design applications vary. 
Wright et al. (2002), Hamdy (2012), Hirvonen (2017), Ascione et al. (2017) 
and Ascione et al. (2019) all use genetic algorithms to generate multiple Pareto 
solutions in one execution run of the algorithm. In their methods, penalties 
are sometimes used to avoid infeasible solutions. The objective function values 
are evaluated for the solution candidates using a simulation model for the 
building’s energy performance. Gomes et al. (2007) also use genetic algorithms. 
Their evolutionary algorithm accommodates a progressive articulation of the 
decision maker’s preferences by changing aspiration or reservation levels used 
in the fitness assessment of the individuals in the solution population. The 
inclusion of preferences in this manner may reduce the run time of the genetic 
algorithm substantially. Asadi et al. (2012) use the weighted Tchebycheff goal 
programming approach for generating Pareto solutions for the multiobjective 
problem. Yu et al. (2015) take a different approach and use an artificial neural 
network to approximate the building model trained with results from a building 
simulation model. The neural network model is then used in the multiobjective 
approach where the design variables of the building are optimized with respect 
to objectives representing energy costs and thermal discomfort. The Pareto 
frontier is obtained by using the non-dominated sorting genetic algorithm 
(NSGA-II). The paper by Pallante et al. (2020) also uses a simulation module 
for the building which generates the comfort and cost estimates and the number 
of unsatisfied people in the building. They too apply the NSGA-II method and 
compare it with the so-called surrogate method.

One can say that multiobjective house design is today a hot research area. 
New methods are continuously introduced and tested. One example is the re-
cent paper by Chegari et al. (2021) which applies artificial neural networks 
and metaheuristic algorithms.

2.4.2	 River Management

Water resources management has for long been an application area for 
multiobjective optimization (Haimes 1974, Duckstein and Opricovic 1980). The 
number of studies has grown extensively over the years and today there is a wide 
range of dynamic formulations too. Different versions of the goal programming 
method for the operation of reservoirs were studied early (Can and Houck, 1984, 
Eschenbach et al. 2001). Loganathan and Bhattacharya (1990) already note the 
possibility of using interval goal programming which is also used in Paper 4. 

Many papers consider water reservoir management under uncertainty. The 
objectives considered in these models range from minimizing flood damages 
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and energy optimization to social and ecological goals (Yan et al. 2020). The 
popularity of evolutionary and genetic algorithms is also strongly visible in this 
literature (Reed et al. 2013, Hojjati et al. 2018, Stretch and Adeyemo 2018). 
For example, Liu and Luo (2019) propose an interactive model which is solved 
with the genetic algorithms NSGA-II and MOEA/D. The optimization problems 
become difficult when whole river basins, rather than just one reservoir, are 
studied.

Multiobjective river flow management is also approached by multicriteria 
decision analysis where the solutions are sought interactively rather than by 
optimization, see, e.g., Vassoney et al. (2017). The ways decision processes are 
carried out with stakeholders need growing attention. There can be behavioral 
impacts both in the modeling stages and in the interaction and communication 
with the stakeholders which need to be taken into account (Hämäläinen 2015, 
Marttunen et al. 2015).

2.5 Bi-level optimization in electricity market models and in 
industrial energy management

2.5.1	 Electricity markets

Today, there is a strong interest in analyzing cooperation of agents in the 
electricity markets by bi-level modeling. Such papers include, e.g., Alves et 
al. (2016), Siano et al. (2014) and Acuña et al. (2018). The review by Antunes 
et al. (2020) shows that the bi-level approach is relevant in many different 
settings and a variety of modeling and optimization methods are used. Soares 
et al. (2020) is an example of a new approach as they use particle swarm 
optimization for setting electricity prices in retail’s upper level problem for 
lower level residential consumer groups. On the lower level, they apply an exact 
mixed integer linear optimization model. Their model contains residential 
thermostatic consumption behavior having a discomfort term associated with 
the resulting indoor temperatures. They also give suggestions for estimating 
the lower and upper bounds for the optimal value of the upper level’s objective 
function. This is accomplished by using sup-optimal lower levels solutions, and 
by disregarding the discomfort term on the consumer’s side.

The bi-level setting in Paper 2 is close to models that have a broker or an 
intermediary between the consumer and the electricity market. The idea of 
Paper 2 that consumers create a coalition in the market has also been considered 
among others by Menniti et al. (2006 and 2009). These formulations are 
receiving increasing interest today, see, e.g., Yammani and Prabhat (2018), 
Kou et al. (2020). Smart metering technologies allow the development of new 
strategies for collaborative coalitions where the coalition can also produce 
electricity. This results in multilevel coordination models, see, e.g., Brusco et 
al. (2014). Similarly the introduction of a demand response aggregator results 
in a three level setting which is approached by bi-level optimization by Feng et 
al. (2020). With these opportunities offered by digitalization technology and 

https://scholar.google.com/citations?user=tLnG3lwAAAAJ&hl=en&oi=sra


26

Methodological background

increase of sustainable consumption goals there is a growing interest in new 
kinds of business models in the energy communities including cooperative 
coalitions, for a review, see Reis et al. (2021).

2.5.2	 Industrial energy management

There are different perspectives and levels to be considered in industrial 
optimization approaches. Problems are typically dynamic and have multiple 
objectives. There are many industrial settings in which there is a dynamic 
energy cost and a challenging production scheduling problem. For an 
illustrative summary, see Merkert et al. (2015). The paper describes different 
approaches to the production scheduling problem when the dynamic pricing of 
electricity is also considered. Gahm et al. (2016) provide an extensive survey on 
energy-efficient scheduling in manufacturing companies, which clearly shows 
the richness of the problems need to be considered in energy optimization. 
The solution methods are also different. Wang et al. (2018) consider job-shop 
scheduling and they apply a modified genetic algorithm at the first machine 
tool selection stage and a hybrid method that integrates genetic algorithm with 
particle swarm optimization at the second operation sequencing stage. 

The combined optimization of production planning and energy use has 
for long been an important challenge in industry. The range of optimization 
approaches used is wide. Recently Leenders et al. (2022) studied the problem 
with a similar bi-level optimization approach as considered in Paper 5. The 
use of bi-level optimization is still relatively new and, e.g., Leenders et al. 
(2022) claim that their model would be the first one to use it. In their set up, 
the production planning system represents the upper level and the energy 
management system the lower level. The time dependent energy demand from 
the production planning system acts as a coupling constraint to the lower level 
energy scheduling problem. The problem is solved iteratively by gradually fixing 
the time depended states of the energy production units on the lower level. 
For an extensive recent survey about combining energy use with production 
planning, see Terbrack et al. (2021).
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3. Research contribution

The overview of the dissertation is presented in Figure 7. The papers study 
methods and approaches to solve dynamic multiobjective and bi-level 
optimization problems arising from real life cases. The practical problems 
considered relate to environmental management and energy markets. One case 
is the management of a lake-river system over time and the others consider 
residential and industrial demand side management settings where the price 
of electricity varies over time. Methodologically dynamic multiobjective 
optimization is used in both problem areas in Papers 1-4. Bi-level optimization 
approaches are used in the electricity market cases in Papers 2 and 5. Paper 2 
includes both of the methodological themes. 

Figure 7. Overview of the dissertation.
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The papers present new methodological developments as well as new ways 
of using traditional multiobjective optimization methods. They also provide 
new formulations to the practical problems. The summaries of the papers are 
presented in Table 1.

Table 1: Summary of the topics, objectives, approaches and results of the papers

Paper Topic Objective Approach Results
Paper 1 Smart 

reactive 
space heating 
home-owner 
customers in 
the electricity 
market.

To build a model for 
the estimation of the 
load of the electricity 
distributor when 
customers optimize 
their space heating 
strategies subject to 
the time varying price 
of electricity.

To provide a tool 
for home-owners to 
optimize their thermal 
comfort and electricity 
cost.

A dynamic 
multiobjective space 
heating model for 
the house and 
thermal comfort 
of the consumer 
is developed. The 
model generates the 
load estimate for the 
distributor.

The implementation 
of the model in a 
spreadsheet program 
was successful and 
it provided a working 
tool.

Paper 2 A coalition of 
cooperative 
space heating 
customers in 
the electricity 
market. 

To find an optimal time-
of-use electricity tariff 
within the coalition 
which maximizes the 
overall utility of the 
customers. The utility 
of each customer type 
depends on the hourly 
deviations of thermal 
living comfort and total 
cost.

The space heating 
model of Paper 1 is 
used and an iterative 
price coordination 
approach is developed 
to find an optimal 
electricity tariff.

The price coordination 
approach was able to 
produce solutions in a 
computational example 
that included three 
consumer types. 

Paper 3 Smart space 
heating of a 
home under 
time varying 
price of 
electricity.

To find an optimal 
heating strategy 
minimizing deviations 
from thermal comfort 
under time varying 
price of electricity.

The space heating 
model of Paper 1 was 
used. A dynamic goal 
programming model 
with interval goals 
is developed. The 
solution is generated 
by using a GPϵ 
constraint method. 

The implementation 
of the model and the 
solution method in the 
spreadsheet program 
was successful. 
The capability of 
the GPϵ method 
to produce Pareto 
optimal solutions was 
theoretically proven. 

Paper 4 Decision 
support for 
the regulation 
of a lake-river 
system. 

To generate a forward 
looking regulation 
strategy which takes 
into account the lake 
dynamics and satisfies 
both soft and hard 
flow rate constraints in 
the river when inflow 
forecasts are updated 
only periodically.

A dynamic goal 
programming model 
with interval goals 
and a rolling planning 
horizon solution 
method are developed. 

The model and the 
solution method 
were implemented 
successfully in a 
spreadsheet program. 
They were found 
to produce good 
strategies that were 
used in real life 
practice too.

Paper 5 Demand side 
management 
in industry 
by joint 
optimization 
of production 
planning 
and energy 
supply.

To develop an 
approach for the 
joint optimization of 
production planning 
and energy supply.

Optimization 
approaches based 
on decomposition 
are developed. 
The iterative price 
coordination approach 
is found to be 
applicable.

The price coordination 
approach and its 
computational 
procedure were 
successfully tested 
in two real-world 
cases. Convergence 
of the computational 
approach cannot be 
guaranteed in general.



29

Research contribution

3.1 Paper 1 - Dynamic multiobjective optimization model for 
space heating and load analysis

Paper 1 introduces an implementation of a demand side management model for 
a space heating consumer as a dynamic multiobjective optimization problem. As 
far as the author knows, it is among the first papers where the dynamic demand 
response of consumers is related to living comfort. Paper 1 also implements 
an agent based modeling framework for the electricity distributor to take the 
customers’ responses into account when setting the electricity tariff. Paper 1 
introduced the concept and the approach was further developed and analyzed 
in Papers 2 and 3. 

In the model introduced in Paper 1, the dynamic multiobjective optimization 
problem is obtained when the decision maker, i.e., the home-owner, in an 
electrically heated house optimizes the hourly indoor temperature subject to 
the time varying price of electricity and outdoor temperature. The dynamics are 
also driven by the capability of the house to act as a heat storage. The objective 
function for living comfort is defined as a weighted sum of quadratic penalties 
of hourly deviations from the goal indoor temperatures over the day. The total 
heating costs over the day is another objective function. A weighted sum of 
these objective functions is used as a scalarizing function which leads into a 
standard linearly constrained quadratic optimization problem. The nonlinear 
optimization method included in the Excel spreadsheet program is utilized for 
solving the model. The prototype spreadsheet implementation of the model 
could be used with real house-owners since its user interface is simple.

The idea of including thermal comfort as an objective was a novel idea which 
has received an increasing interest only much later in the literature, see, e.g, Yang 
and Wang (2012). Today there is a wide interest in multiobjective formulations 
for comfort and more detailed objective functions have been suggested, see, e.g., 
Enescu (2017). 

Paper 1 also demonstrated the power of spreadsheet programs as a prototyping 
environment for small sized optimization and decision making problems. The 
spreadsheet environment allows to integrate data and parameters handling, 
build an optimization model and solve it with the embedded nonlinear 
programming solver, and finally to illustrate the results graphically in a user 
friendly way. At the time of writing Paper 1, the use of spreadsheet programs as 
a framework for complicated optimization problems was still uncommon. The 
use of spreadsheet programs for modeling has continued and widened. Often 
the goal is to create a prototype, see, e.g, Briones et al. (2019). Naturally, there 
are practical limitations when the problem sizes grow but today even portable 
computers allow relatively large problems to be handled.
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3.2 Paper 2 - Price coordination in deregulated electricity 
markets

Paper 2 considers a demand side management problem within the coalition 
of space heating consumers with different price reaction characteristics. It 
continues from the setting described in Paper 1 which included both dynamic 
price and dynamic multiobjective optimization. A new extension to the model 
is to consider a coalition of cooperative space heating consumers buying 
electricity with a single contract at a time varying price. The coalition aims at 
joint optimization of the cost of their total load by creating a joint time-of-use 
tariff within the coalition. In this two-level setting, the decision maker, i.e., the 
coalition coordinator, purchases the energy from the market and sets the time-
of-use price to the consumers so that the overall social benefit is maximized.

This setting was a new contribution and an early paper on two-level market 
models. Recently, similar models have been considered in the literature. For 
example, see the paper by Yammani and Prabhat (2018) that presents a two-
level formulation with an intermediary virtual operator. Today there is already 
interest in multiple level collaboration possibilities in energy markets, see, 
e.g., Guerrero et al. (2020) and Kou et al. (2020). Paper 2 was also an early 
introduction of agent based modeling to the literature on electricity markets. 
Agent based modeling of electricity markets has become already quite popular, 
see, e.g., Ringler et al. (2016). 

Coalition coordinator
Designs a time-of-use tariff for 

the coalition members 
who are space heating consumers.

Optimizes the total welfare of 
the coalition against the current 

market price of electricity

Individual consumers
Objective to minimize cost and deviations 

from their ideal temperature.
Optimize their own consumption against 

the time-of-use tariff price 
offered by the coalition coordinator.

Consumers have individual preferences 
with respect to cost and comfort.

Upper level

Lower level

Price Consumptions

Figure 8. Price coordination in a coalition of electric space heaters.
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The solution method developed in Paper 2 is an iterative approach based 
on price coordination. In the approach, price and consumption patterns are 
information signals exchanged between the coalition coordinator and the 
consumers as illustrated in Figure 8. In order to identify the coalition’s optimal 
time-of-use tariff, the following steps are carried out. The consumption pattern 
for different consumer groups is gained from their own optimal reactions to 
the time varying tariff. Next, a new tariff is calculated by maximizing the total 
welfare of the coalition. In the last step, a closest tariff by minimizing the 
quadratic difference between the tariff and the marginal price is solved. This 
scheme was shown to converge in the example case with three consumer classes 
although, in general, the convergence is hard to guarantee.

It is also noteworthy that the space heating model presented in Paper 2 has 
been followed by a model for the optimal use of air conditioning (Menniti et 
a. 2009). A similar demand side management problem is also studied more 
recently in a paper by Ekaterina et al. (2019).

3.3 Paper 3 - Dynamic goal programming combined with a 
constraint method

Paper 3 further elaborates the multiobjective space heating problem of 
the decision maker, i.e., the home-owner, considered in Papers 1 and 2. The 
extended model introduced in Paper 3 uses a goal programming with interval 
goals for the indoor temperature at different times of the day. Some objectives 
are converted into constraints by defining upper bounds for these objectives as 
in the constraint method, and goals are used for other objectives. This results 
in a new dynamic multiobjective solution method that combines the traditional 
weighting, goal programming and constraint methods. The new method is called 
the GPϵ method. In the space heating problem, objectives related to the energy 
consumption and heating costs are constrained with upper bounds. These 
bounds are used together with living comfort relaxation which means that the 
indoor temperature is not constrained with a strict upper bound – instead the 
interval goal temperature is applied. The implementation of the model and the 
method was carried out using the Excel spreadsheet program.

Figure 9 illustrates the solutions generated by the weighting and GPϵ
methods. When using a weighting method different weights are given for 
heating costs and living discomfort objectives. In the GPϵ method, each solution 
corresponds to a given constrained level of heating costs and goal preferences 
over living discomfort. The GPϵ method produces rather evenly distributed 
Pareto solutions. This is a desired property for multiobjective methods, see, e.g., 
a recent survey by Cui et al. (2017). The commonly used weighting method does 
not perform well in this respect for the house heating problem.

It is worth mentioning that the space heating model has been later used as a 
test model when new methods are developed, see Orouskhani et al. (2019) and 
Falahiazar et al. (2022).
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Figure 9. Pareto solutions in the objective space generated by the weighting and GPϵ 
methods for the house heating problem. 

3.4 Paper 4 - Dynamic rolling horizon and interval goals in 
goal programming

Paper 4 develops a model to regulate a lake-river system consisting of a series 
of four lakes and a connecting river, see Figure 10. The overall goal is to find a 
regulation policy which keeps the water level of the lakes and the flow rate of the 
river within acceptable limits at different times of the year and under different 
weather conditions. These limits are specified by the general rules set by the 
authorities for the river system. Thus, the regulation rule for the flow rate in 
the river introduces strict lower and upper bounds for this rate and its changes. 
However, the flow rate bounds cannot always be met in practice and, therefore, 
they are represented as soft constraints using penalties in the lake-river system 
model. The water levels of the lakes are driven by the difference between the 
inflow and outflow of the main lake, and the levels also depend on the surface 
area of the main lake. The dependence between this area and lake’s water level 
is approximated with a piecewise linear function using historical data.

The goal programming approach developed in Paper 4 was used to generate 
different regulation policy candidates. The evaluation of possible regulation 
policies was based on 30 primary and 27 secondary economical, social and 
natural objectives. The new solution approach uses both dynamic goal points 
and dynamic interval goal sets of water level. Here, quadratic penalty functions 
for the deviations from the water level goals were used as a distance measure. 
The use of interval goals for water reservoirs, that is for inflows and reservoir 
levels, was noted already early in Loganathan and Bhattacharya (1990), however 
in Paper 4 also an additional goal points within the goal intervals are used.
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Figure 10. Description of the lake-river system of Päijänne-Kymijoki in Paper 4. 

The lake-river model was planned to be used in the real life setting where 
the rate of incoming water is uncertain and it varies greatly both seasonally and 
annually. In practice, the inflow forecasts to the lake-river system are updated 
periodically and repetitive updating of the regulation policy is needed. To take 
this into account in the model, an innovative rolling horizon goal optimization 
approach was developed. It updates the solution with new look-ahead goal 
points. This approach describes the actual decision environment of the decision 
maker, i.e., the operational regulator. 

The model and the solution approach were implemented with the Excel 
spreadsheet program. The implementation included handling of data, lake-
river dynamics, visualizing of the results, and a user interface for operating the 
model and defining parameters related to water level goals. The implementation 
was successful, but the spreadsheet platform had its limitations. The size of 
the model made it hard to maintain, and computing the solutions was slow at 
the time of publication of Paper 4. Multiple computers were needed to obtain 



34

Research contribution

solutions with different parameter values. In fact, a whole computer classroom 
with tens of computers was reserved for days to produce the whole set of 
solutions which were of interest.

Later in the literature the lake-river model has been used as a reference 
case when evaluating a new solution approach. It was utilized in Orouskhani 
et al. (2019) when evaluating their evolutionary dynamic multiobjective Borda 
method.

3.5 Paper 5 - Price coordination in industrial production 
planning and energy optimization

Paper 5 introduces a coordination approach for industrial settings when 
combining production planning and energy supply optimization. The traditional 
sequential approach in the process industry has been that the production 
schedule is determined first. This is followed by energy supply optimization 
where the portfolio of energy purchases and generation is optimized, e.g., using 
a generalized minimum-cost flow network model presented in the appendix 
of Paper 5. The sequential approach does not, however, guarantee overall 
optimality. A new approach, illustrated in Figure 11, is developed using the 
idea of price coordination where the overall problem is solved iteratively using 
two separated optimization problems. The iterative coordination approach 
works such that the internal time varying price of the energy is updated in the 
energy optimization part for the given demand obtained from the production 
optimization part. Correspondingly, the production is optimized for the given 
price which results in a new demand for energy.

Price 
update

Energy 
demand
update

Production planning
Production schedule 

optimization 

Energy management

Energy supply optimization

Figure 11. Coordination approach in combined production planning and energy supply 
optimization.

The coordination approach resulted from the analysis of the overall model 
combining production planning and energy supply optimization. The Bender’s 
and Danzig-Wolfe’s decomposition schemes were first applied to the overall 
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model. The resulting master problem of the decomposition scheme was not 
tractable with either of these. A coordination approach based on the mean 
value cross decomposition algorithm of Holmberg (1992) was also studied. This 
algorithm iterates between the Lagrangian dual (Danzig-Wolfe) subproblem 
and Benders primal subproblem. The algorithm exchanges values of decision 
variables, in this case demand patterns, from the dual subproblem to the 
primal subproblem. The tested iterative updating schemes for both the price 
and demand patterns included three gradual and one heuristic schemes. The 
one-sided weighted mean value cross decomposition scheme (Holmberg 1999), 
updating only one of the patterns, namely price, in each iteration, was found to 
produce the best convergence towards the optimal solution.

The performance of the approach was tested in numerical examples in 
which real data from a thermo mechanical pulping process in the pulp and 
paper industry and a stainless-steel production process in the steel industry 
were used. The decision maker could be either the production planner or the 
energy manager of the mill site. The suggested coordination approach cannot be 
guaranteed to converge to the optimal solution in general, see Holmberg (1997), 
but in the numerical examples presented in Paper 5, it was able to produce near-
optimal solutions. The coordination approach in Paper 5 could be extended to 
a multi mill production planning environment where energy supply takes place 
in centralized energy management centers. In this case price setting on the 
upper level would take into consideration the responses from different mills 
and possible sales and purchase agreements and generation units available for 
the centralized energy management.
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4. Summary and future research 
directions

The contributions of this dissertation are two-fold. First, new approaches have 
been developed to model real life problems. Secondly, new methodological ideas 
have been presented to generate the solutions to these problems in practice.

Demand side management in the electricity market is one problem area. A 
new model was developed for space heating home-owners to optimize comfort 
and costs under the time varying price of electricity. The model for comfort was 
studied both with goal points and with goal intervals. Using this model, the 
electricity distributor could design the time-of-use tariff by taking into account 
the customer reactions. The coalition of cooperative consumers was a new 
setting and the bi-level problem was found to be solvable by a price coordination 
approach. The bi-level coordination setting in Paper 2 was an early contribution 
on two-level market models which have recently received strong interest.

The model developed for the regulation of a lake-river system reflected the 
practical operational requirements at the time and it included interval goals and 
a rolling planning horizon. The model was solved successfully with the methods 
developed. It was also accepted as a tool to support practical operational 
management.

The industrial problem of combined production planning and energy supply 
optimization was formulated as a bi-level optimization problem. A successful 
solution was found by the price coordination algorithm developed.

The theoretical contributions of the dissertation are related to the 
development of new multiobjective optimization methods. One of them was the 
use of interval goals in dynamic goal programming which was new at the time. 
The GP∈ method developed in connection with the space heating problem was 
also a new contribution. The price coordination approaches in Papers 2 and 5 
for the bi-level optimization problems proved to be useful.

There are different future research directions in the settings considered in 
the dissertation. The popularity of the Excel spreadsheet program discussed in 
Papers 1, 3 and 4 has continued over the years. A recent application example is 
given by Pačaiová et al. (2021). They use Excel for prototyping and optimization. 
To tackle more complicated practical problems, one still needs to consider other 
frameworks. In recent years, there has been progress in modeling frameworks, 
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such as GAMS or LPL1. In addition, Python and Julia programming languages 
and their modeling libraries, such as Pyomo, Pymoo and JuMP2, have increased 
their popularity in applications. According to my personal experience, the use of 
spreadsheet programs as the first line of prototyping platforms in optimization 
studies has continued within the process industry.

The optimal responses of coalitions of consumers in the electricity market 
discussed in Paper 2 is a theme which is quite relevant today as new technologies 
provide possibilities for realistic applications of the new approaches. The two-
level setting continues to draw interest, see, e.g., Soares et al. (2020) and Zhao 
et al. (2021). The topic is likely to receive increasing interest in particular in 
the literature on smart grids and in combined district energy systems (Capone 
et al. 2021). The agent based approach (see Weidlich et al. 2008, Ringler et 
al. 2016) and the demand side response mechanisms (see, e.g., Menniti et al. 
2009, Sharifi et al. 2019) have continued to be of interest. Modeling comfort 
as a consumer’s objective has also been further extended, see, e.g., Alves et al. 
(2018). It is interesting to note that the idea of price responsive house heating 
has already lead into commercial products3. The effect of the installation of 
home energy management systems studied by Tuomela et al. (2021) results 
in shifted consumption towards off-peak hours and reduction of total energy 
usage similarly as in Paper 2.

Interest in dynamic multiobjective optimization is clearly growing. The need 
for testing and evaluating dynamic multiobjective optimization methods in real-
world applications have recently been emphasized by Helbig and Engelbrecht 
(2014) and Helbig et al. (2016). The dynamic interval goal programming 
approach considered in Papers 3 and 4 has not received much interest as of 
yet but it is also a theme which can be of more interest soon due to the needs to 
create more flexible approaches in smart grids based on wind and solar energy, 
see, e.g., Jones and Romero (2019). Evolutionary algorithms have received a 
growing interest as a possible solution approach (see, e.g., a survey in Azzouz et 
al. 2017). However, these algorithms face problems already in medium and, in 
particular, in large scale problems if getting one evaluation of objective functions 
is time consuming. This can be an issue when evaluation is based on solving 
other optimization problems like in the lake-river regulation. Thus, generating 
a population of multiple solutions can become practically intractable. A possible 
new research direction could be to utilize approximate dynamic programming 
methods (Powell 2011) used widely for single objective dynamic optimization to 
solve dynamic multiobjective problems.

 The price coordination approaches developed in Papers 2 and 5 proved 
successful in producing solutions for bi-level optimization problems. The 
practical implementation does still require more investigation to assure 
the convergence and near optimality of solutions obtained. The combined 
production planning and energy management optimization has recently 

1  GAMS: https://www.gams.com/ , LPL: https://virtual-optima.com/ 

2  Pyomo: http://www.pyomo.org/ , Pymoo: https://pymoo.org/, JuMP: https://jump.dev/ 

3 FORTUM: https://www.fortum.fi/kotiasiakkaille/sahkoa-kotiin/fiksu, OptiWatti: https://www.optiwatti.fi 

https://www.gams.com/
https://virtual-optima.com/
http://www.pyomo.org/
https://pymoo.org/
https://jump.dev/
https://www.fortum.fi/kotiasiakkaille/sahkoa-kotiin/fiksu
https://www.optiwatti.fi
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received more attention, see, e.g., Terbrack et al. (2021). This could be one area 
of industrial applications where price coordination schemes might be of use. 
My personal opinion based on decades long experience in developing industrial 
solutions is that there is still a lot to be done in combining production planning 
and energy management optimization systems. 

Applying multiobjective methods in practice requires the interaction of the 
modeler and the problem owners and stakeholders. This brings in the need to 
also consider behavioral factors in the whole problem solving process. Recent 
emergence of the new area of behavioral operational research (Hämäläinen 
et al. 2013) has raised important new research topics. These behavioral 
considerations are particularly important in environmental modeling 
(Hämäläinen 2015) where multiobjective models are commonly used. Today, 
there is also increased interest in behavioral studies analyzing and modeling the 
use of electricity to reach environmental targets, see, e.g., Lopes et al. (2020). 
This area is closely related to the models studied in Papers 1-3. An industrially 
interesting area would be behavioral obstacles and their overcoming related to 
the execution of industrial energy efficiency programs. So, this is clearly one 
direction of research in the future when applying multiobjective approaches.

In practical industrial settings, multiple optimization levels may exist, such 
as in planning with strategic, tactical and short-term horizons. In general, 
difficulties to find numerical solutions may easily arrive as the planning horizon 
grows. One might also be faced with model instances that are hard to solve 
even with modern solvers, such as CPLEX or Gurobi4, see, e.g., Karjalainen 
et al. (2015). In today’s demanding online world, problem’s parameters may 
change rapidly and the time available for generating solutions can be restricted. 
Therefore, in practice, there can be interest in generating satisfying near 
optimal solutions using different heuristics like rolling time horizon window 
or price coordination approaches elaborated in this dissertation. For these 
solutions, fast heuristic methods can possibly be found (Grossmann 2012). The 
integration of energy costs and the environmental impacts of energy production 
into industrial production planning especially in multiple planning levels is an 
area of future research which has, so far, been overlooked.

As a practice-oriented conclusion, one can expect to see an increasing number 
of real-world applications using the modern methods of dynamic multiobjective 
and bi-level optimization. Potential application areas are versatile ranging from 
environmental and energy problems to industrial enterprise-wide planning 
tasks. 

4  CPLEX: https://www.ibm.com/analytics/cplex-optimizer, Gurobi: https://www.gurobi.com

https://www.ibm.com/analytics/cplex-optimizer
https://www.gurobi.com/
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