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1. Introduction 

Risk management and decision-making under uncertainty are common chal-
lenges in business and public administration. Often the framework of a deci-
sion-making problem consists of various types of factors and variables whose 
mutual probabilistic dependencies may be difficult to know or perceive exactly. 
For instance, there might not be suitable historical data available, or the rele-
vant data may be difficult to identify. These problems are typical in situations 
where risks are novel or unprecedented. Instances like these include unique 
projects, the deployment of new production methods or business models, enter-
ing new marketplaces, ecological and economical disasters, governmental con-
flicts, and terrorist attacks.  

Even though there might be a lack of suitable historical data, there is often an 
abundance of expert insight available, along with diverse information or data on 
indirectly related factors. In these situations, analysis of risks and decision-
making under uncertainty can effectively be supported by Bayesian networks 
(BNs), see, e.g., [1] or [2]. A BN represents a system of linked components both 
visually and numerically enabling a rigorous quantification of risks and a clear 
communication of the components’ interaction. The visual side of the BN con-
sists of nodes and directed arcs joining them. The nodes correspond to random 
variables depicting the system components. The arcs indicate direct probabilis-
tic relationships between the nodes. The numerical side of the BN quantifies the 
probabilistic relationships indicated by the arcs. As a whole, the BN completely 
encodes the joint probability distribution of the nodes. This enables the conduc-
tion of detailed analyses concerning the nodes’ probabilistic interaction with 
each other. BNs allow combining data and expert knowledge, and there are 
many software available for their construction and use, like [3], [4], [5], and [6]. 
The applications of BNs are numerous and cover a wide range of domains, such 
as medical diagnosis and decision support [7], [8], [9], risk analysis of epidem-
ics [10], [11], ecosystems [12], genetics and biology [13], agriculture [14], [15], 
industry [16], [17], [18], finance [19], policy and military planning [20], [21], 
cybersecurity [22], as well as commutation and transport [23], [24], [25], [26]. 

If a comprehensive data collection is available, both the visual and the numer-
ical side of a BN can be constructed by data-fitting approaches, see, e.g., [27], 
[28], and [29]. However, in practical applications, it is common that the data 
available is too scarce or unsuitable for the needs of the BN construction [30], 
[31]. In such cases, the entire BN or some parts of it must be constructed by 
expert elicitation involving subjective assessments of a domain expert. The most 
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challenging part of this process is typically the quantification of the probabilistic 
relationships of the nodes [1], [2], [32], [33]. Usually, the nodes have discrete 
scales, whereby the probabilistic relationship between a descendant (called a 
child node) and its direct ancestors (called parent nodes) is defined in a condi-
tional probability table (CPT). A single CPT may consist of dozens or even hun-
dreds of conditional probabilities. Therefore, it is often impossible for the do-
main expert to assess the required probabilities either due to time constraints 
or mental fatigue [34], [33].   

This Dissertation elaborates and improves so-called ranked nodes method 
(RNM) [31] that is a semi-automated means to define CPTs for nodes with dis-
crete ordinal scales. Compared to assessing the CPT elements individually, 
RNM provides significant reduction t0 the elicitation burden of the expert. In 
RNM, the expert first assesses a small number of parameters that describe the 
probabilistic interaction between a child node and its parent nodes. The CPT of 
the child node is then generated based on these parameters for further verifica-
tion. RNM is implemented in a BN software [4] and it has been utilized in sev-
eral applications including, e.g., software defect prediction [35], supplier selec-
tion in automobile industry [18], and risk management of epidemics [10]. 

While RNM is actively utilized in applications, the efficient use of the method 
is hampered by various shortcomings. First, there remains ambiguity regarding 
the theoretical foundation of RNM. As the exact principle governing the results 
obtained with RNM is unclear, one may be suspicious of its deployment. In ad-
dition, RNM involves a user-controlled parameter whose role is not detailed in 
the literature. As the parameter affects the generated CPTs, one may be con-
fused on which value to assign for it during the use of RNM. Second, there is a 
lack of studies on how well in general CPTs constructed with RNM can represent 
probabilistic relationships occurring in practical BN applications, and which 
user-made choices affect this ability the most. Third, there does not exist exact 
guidelines for the elicitation of RNM parameters from the expert. Therefore, the 
parameters must be determined through trial and error, which can be cumber-
some and lacks rigor. Fourth, there are no guidelines concerning the application 
of RNM to nodes whose ordinal scales are formed by discretizing continuous 
scales. With such nodes, ignorance on the functioning of RNM may render it 
incapable of portraying the probabilistic views of the expert. In this setting, lack 
of technical insight on RNM can also lead to the generation of CPTs that produce 
misleading results in the analyses carried out with the BN. 

The aim of this Dissertation is to overcome the above shortcomings concern-
ing RNM and develop the method further for more versatile use. On one hand, 
this objective is achieved by theoretical analysis and experimental studying of 
RNM. On the other hand, it is realized through the development of novel ap-
proaches for the practical use of RNM. Overall, the Dissertation enhances the 
methodology for establishing probabilistic relationships in BNs based on expert 
elicitation. The contributions of the Dissertation are directly applicable also to 
influence diagrams that are decision-theory extensions of BNs [36]. Therefore, 
in a wider perspective, the Dissertation facilitates and promotes the effective 
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and diverse use of both BNs and influence diagrams to support risk manage-
ment and decision-making under uncertainty in various domains.  

The rest of this summary article is structured as follows. Section 2 presents 
the methodological background. This includes explaining the basic idea of BNs 
and influence diagrams, a general overview of the construction of BNs and CPTs 
by expert elicitation, and a more in-depth explanation of the functioning and 
challenges of RNM.  Section 3 presents the key contributions of Papers 1–4 of 
the Dissertation. Section 4 concludes and suggests topics for future research. 
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2. Methodological background

2.1 Bayesian networks

2.1.1 Bayesian networks with discrete nodes

Bayesian networks (BNs), see, e.g., [1] or [2], are directed acyclic graphs in 
which nodes represent random variables and arcs indicate their direct depend-
encies. Figure 1 presents an example BN that is adapted from [37] and concerns 
an air bombing run. The BN depicts how the bombing accuracy and the effec-
tiveness of the enemy’s ground-to-air defenses determine how well the bombers 
manage to hit their targets. 

Figure 1. Example BN concerning an air bombing run.

In order to perform probabilistic analyses with the BN, the direct relationships
indicated by the arcs must be quantified. Typically, the nodes have discrete 
scales whereby the quantification happens through conditional probability ta-
bles (CPTs). A CPT defines the conditional probability distribution of the child 
node for all the combinations of states of the parent nodes. If a node does not 
have any parents, a prior probability distribution must be defined. With the ex-
ample BN, given that all the nodes have discrete scales of the form {Low, Me-
dium, High}, Tables 1(a) and 1(b) present the prior distributions of Bombing 
Accuracy and Enemy Effectiveness whereas Table 1(c) presents the CPT of Tar-
get Hit Level. Table 1(a) indicates that high levels of bombing accuracy are gen-
erally more likely whereas Table 1(b) portrays how all levels of enemy effective-
ness are considered equally probable. In turn, Table 1(c) implies that the targets
are hit better with increasing levels of bombing accuracy and decreasing levels 
of enemy effectiveness. 
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Table 1. Prior distributions of Bombing Accuracy (a) and Enemy Effectiveness (b) along with
the CPT of Target Hit Level (c).

(a)     (b)

                    

(c)

The graph structure and the CPTs of a BN encode together the joint probability 
distribution of the nodes. For a BN consisting of nodes , the joint prob-
ability distribution is obtained according to

where denotes the parent nodes of . This encoding principle allows one 
to carry out with BNs various probabilistic analyses about the nodes. A common 
type of analysis is such that specific states of selected nodes are given 100% 
probability. This is often called instantiating or observing those nodes, or en-
tering evidence into the BN [2].  Once the selected nodes have been instantiated, 
the probability distributions of the remaining nodes are updated according to 
Bayes’ theorem, see, e.g., [1], [2]. The updating, known as, e.g., probabilistic in-
ference, propagation of evidence, or belief updating [2], is carried out in BN 
software through effective algorithms, see, e.g., [29], [38], that utilize the afore-
mentioned encoding principle. These sort of analyses can be used to support 
both predictive and diagnostic reasoning about the system or phenomenon that 
is modeled with a BN [39]. In predictive reasoning, evidence about causes is 
used to update beliefs about effects. The opposite applies for diagnostic reason-
ing. The ability to support both predictive and diagnostic reasoning makes BNs 
a useful tool for, e.g., comparing different courses of action or deducing fault 
sources.

As an illustration, Figure 2(a) displays the example BN when no evidence has 
been entered. The probability distributions of Bombing Accuracy and Enemy 
Effectiveness correspond to those defined in Tables 1(a) and 1(b) whereas Tar-
get Hit Level has a distribution obtained through the parents’ distributions and 
the CPT in Table 1(c). In Figure 2(b), Target Hit Level has been fixed to state
Low leading into new probability distributions of Bombing Accuracy and En-
emy Effectiveness. The figure indicates that if targets are observed to be hit 
poorly, one should consider different levels of the bombing accuracy being al-
most equally probable. In turn, the enemy effectiveness is most likely at high 
levels. In this regard, Figure 2(b) exemplifies diagnostic reasoning.
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                             (a)                                                                                    (b)                            

Figure 2. Example BN with (a) no evidence entered and (b) evidence Target Hit Level = Low.

2.1.2 Influence diagrams

Influence diagrams [36] are extensions of BNs used in the field of decision 
analysis. In these models, nodes representing random variables are joined with 
nodes representing objectives and possible actions of a decision maker. The 
three different node types are referred to as chance nodes, value nodes, and de-
cision nodes. To elaborate this concept, Figure 3 presents an influence diagram 
extension of the example BN in Figure 1. The diagram contains two new nodes. 
The rectangle-shaped decision node Bombing Altitude, with states {High, Me-
dium Low}, represents decision alternatives concerning the air bombing run.
The diamond-shaped value node Utility specifies how much the different out-
comes of Target Hit Level are valued with regard to each other. In practice, node 
Utility is defined by a utility function that maps the states of Target Hit Level   
into utility numbers representing subjective preferences. Like in the original 
BN, Bombing Accuracy, Enemy Effectiveness, and Target Hit Level are oval-
shaped chance nodes. 

Figure 3. Influence diagram adapted from the example BN in Figure 1.

With influence diagrams, the chance nodes and the value nodes enable the 
calculation of a probability distribution of utility for each of the decision alter-
natives. The alternatives can then be ranked from best to worst according to a 
selected property of the utility distributions. For instance, the ranking can be 
based on the expected utilities [40] of the decision alternatives. Furthermore, 
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like in BNs, evidence can be entered into influence diagrams by giving specific 
states of selected chance nodes 100% probability. This ability allows to compare 
the utility distributions of the decision alternatives with regard to various cir-
cumstances represented by the entered evidence.  

2.1.3 Representation of continuous variables 

In many domains, the system or phenomenon portrayed with a BN includes 
both discrete and continuous random variables. Yet, most practical BN models 
include only nodes with discrete scales [30], [41]. In these models, the nodes 
representing continuous random variables have ordinal scales formed by dis-
cretizing continuous scales into consecutive subintervals. The discretizations 
are static, i.e., they stay intact during the use of the BN. The reason for portray-
ing continuous variables with discrete nodes has a technical origin. The conduc-
tion of probabilistic inference in a BN is easier when the dependencies between 
nodes are defined through CPTs [41]. Therefore, besides discretization, many 
commonly used BN software provide only limited means for portraying contin-
uous variables, see [42] for a recent overview. Instead of being only a technical 
limitation, discretization can also be a means to ease the construction of BNs. 
For instance, a domain expert may find it easier to describe the probabilistic 
behavior of continuous variables through discretized scales. 

The downside of using static discretizations is that it limits the accuracy with 
which the probabilistic behavior of the underlying continuous variables can be 
represented. The accuracy can be improved by increasing the granularity of the 
discretizations. However, it comes at the expense of larger CPTs and an increas-
ing computational burden of probabilistic inference in the BN [41], [43]. There-
fore, the challenge with static discretization is to find a suitable trade-off be-
tween the desired levels of accuracy and the computational burden regarding 
the BN. 

An effective way to deal with the trade-off challenge of static discretization is 
the dynamic discretization algorithm [43]. In this approach, probabilistic rela-
tionships between child nodes and their parents are established through func-
tional expressions. For example, a child node could be defined to have a contin-
uous probability distribution whose parameters depend on the states of the par-
ent nodes. Based on these relationships, the continuous scales of the nodes are 
discretized repeatedly by the algorithm during the use of the BN. Whenever ev-
idence is entered into the BN, the algorithm discretizes the nodes iteratively so 
that the discretizations become denser in those regions of the continuous scales 
to which the probability mass is concentrated. On each iteration round, the al-
gorithm treats the discretized nodes as standard discrete nodes. This feature of 
the discretization algorithm enables it to utilize effective standard algorithms of 
probabilistic inference during the iteration rounds. As the nodes end up having 
non-uniform discretizations dependent on the entered evidence, it is possible to 
represent their probability distributions accurately without the need for dense 
static discretizations. 
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Besides the static discretization and the dynamic discretization algorithm, 
several other approaches have been developed to represent continuous varia-
bles in BNs, see, e.g., [44] for an overview. The approaches include the condi-
tional linear Gaussian (CLG) model, mixtures of truncated basis functions 
(MoTBFs), Monte Carlo-based methods, and non-parametric BNs. With the 
CLG model [45], the conditional probability distribution of each continuous 
child node is always a Gaussian, i.e., normal, distribution. The mean of the 
child’s Gaussian distribution is a linear combination of the continuous parent 
nodes. On the other hand, discrete nodes can have only discrete parents in CLG 
models. MoTBF models [46] generalize the basic static discretization with the 
idea that instead of a constant-valued function, the probability density function 
of a continuous node is approximated on each discretization interval with a lin-
ear combination of so-called basis-functions. The basis-functions can be, e.g., 
polynomials or exponential functions. Compared to the static discretization, 
this approach provides a higher flexibility to approximating the probability den-
sity function. In Monte Carlo methods [47], [48], probabilistic inference in the 
BN is performed through random sampling. With the non-parametric BNs [49], 
the basic idea is that the joint distribution of the nodes can be defined by the 
marginal probability distribution of each node and univariate copula functions 
that describe the probabilistic relationships between directly linked nodes.  

Papers 2 and 3 of this Dissertation address the application of the ranked nodes 
method (RNM) to nodes whose ordinal scales are formed by discretizing con-
tinuous scales. While both papers elaborate the use of static discretizations, Pa-
per 3 also presents a novel approach combining the use of RNM with the dy-
namic discretization algorithm. This pairing is convenient because the way 
nodes’ probabilistic relationships are defined in RNM readily allows the appli-
cation of the dynamic discretization algorithm. In addition, both RNM and the 
algorithm are implemented in an existing BN software (AgenaRisk [4]), which 
facilitates the deployment of the approach. By contrast, with MoTBF models and 
non-parametric BNs discussed above, one should develop a separate routine to 
estimate the parameters necessary in those models from the RNM parameters. 
The CLG model is incapable altogether to represent the range of probabilistic 
relationships that can be established with RNM. With Monte Carlo methods, 
probabilistic inference may become computationally expensive if the nodes’ 
probabilistic relationships are defined using deterministic functions [1], [43]. 
This can be problematic as RNM specifically involves defining nodes’ probabil-
istic relationships with deterministic functions.  

2.2 Construction of Bayesian networks by expert elicitation 

In practical applications, it is common that the entire BN or some parts of it 
must be constructed by expert elicitation due to a lack of suitable data. The con-
struction requires that a domain expert defines the structure of the BN, i.e., the 
necessary nodes and arcs. In addition, the expert must quantify the probabilistic 
relationships indicated by the arcs. These two phases of the BN construction are 
next discussed.  
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2.2.1 Defining structure 

The first task in defining the structure of a BN is identifying the nodes to be 
included [1], [2], [32], [33]. To select the relevant nodes, it is beneficial to have 
the expert describe and explain the system or phenomenon that is to be por-
trayed with the BN [32]. The description can reveal, e.g., causal processes that 
indicate necessary nodes. Related to this idea, it may be worthwhile to consider 
the system or phenomenon through different types of variables present [2]. 
Three main types of variables are defined in [2]. First, there are problem varia-
bles. These are the variables whose posterior probability distributions are of in-
terest given observations of other variables in the system. Usually, observations 
of the problem variables are not available. Next, there are information variables. 
These are the variables of which observations may be available. The information 
variables can represent background information concerning the problem varia-
bles. On the other hand, they can depict symptom information influenced by the 
problem variables. The final group are mediating variables. These are unobserv-
able variables through which the other types of variables may interact with each 
other. When considering the nodes to be included, it is useful that the expert 
understands the purpose for which the BN is constructed [1], [32]. This helps to 
define such nodes that the BN represents the underlying system or phenomenon 
at a suitable level of detail. In general, it is recommendable that the number of 
nodes in the BN is kept to the minimum [1], [2]. With fewer nodes, there will be 
less probabilistic relationships to be evaluated and probabilistic inference in the 
BN will be less complex. 

Along with or after identifying the nodes of the BN, also the states of the nodes 
should be defined [1], [2], [32], [33]. As discussed in Section 2.1.3, the nodes are 
often given finite sets of discrete states. In this case, the states must be defined 
so that the probabilistic relationships of the nodes can be represented precisely 
enough with regard to the purpose for which the BN is constructed [1], [2]. If a 
continuous scale is deemed necessary for a node, one may apply the approaches 
briefly described in Section 2.1.3. 

Once the nodes of the BN are defined, the ones having a direct probabilistic 
relationship should be connected to each other with directed arcs. Considering 
causal relationships between the nodes is generally a good guiding principle for 
defining the necessary arcs [1], [2], [32]. Then, arcs are drawn from nodes rep-
resenting causes to nodes representing effects. Two specific approaches for es-
tablishing the arcs are discussed in [2]. The first one, referred to as the basic 
approach in [2], is to utilize the idea of nodes representing problem, information 
(background and symptom), and mediating variables concerning the underlying 
system or phenomenon. These variables typically encode causal beliefs that dic-
tate the arc connections as follows. Background variables have problem and 
symptom variables as children. In addition, problem variables are parents of 
symptom variables. Mediating variables are often children of background and 
problem variables, and parents of symptom variables.  

The other approach discussed in [2] for defining the arcs of the BN is the use 
of so-called idioms [50], which are addressed extensively also in [1]. Idioms are 
BN fragments that represent generic types of probabilistic relationships. Among 
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the most common idioms are cause-consequence, measurement, and defini-
tional/synthesis idioms. The cause-consequence idiom measures the uncer-
tainty of a causal process with observable consequences. The example BN in 
Figure 1 represents this idiom with Bombing Accuracy and Enemy Effective-
ness being causes and Target Hit Level being the observable consequence. The 
measurement idiom describes the uncertainty about the accuracy of any type of 
measurement. The definitional/synthesis idiom represents the synthesis or 
combination of many nodes into a single node for the purpose of organizing the 
BN. It also models the deterministic or uncertain definitions between variables.  

The use of idioms promotes thinking in terms of semantic relations among a 
small group of variables rather than in terms of nodes and arcs. Structuring the 
BN is thus moved to a higher level of abstraction, leaving detailed arc selection 
to happen automatically through the predefined structures of the idioms [2]. 
Combining idioms provides a way to form BN fragments that may be con-
structed separately from each other. The fragments can then be combined to 
form large-scale BNs. In this regard, idioms exemplify the use of modular net-
work fragments in the BN construction, which is the core idea of a framework 
called object-oriented Bayesian networks, see, e.g., [51], [52], [1], [2], and [50]. 
In this framework, BN fragments are objects representing specific instances of 
generic network classes. The objects can be linked to each other through input 
and output nodes enabling the construction of a main BN model from smaller 
sub-models. 

In practice, defining the structure of a BN is likely to be an iterative process, 
where nodes and arcs are added, removed and updated as one tries to arrive to 
a form that portrays beliefs about the underlying system or phenomenon at a 
desired and manageable level of detail [2], [32], [33]. It is also possible that a 
need to modify the structure of the BN becomes evident only when the proba-
bilistic relationships of the nodes are being quantified and something new is 
realized about their interaction mechanics [1], [2].      

2.2.2 Quantifying probabilistic relationships 

While defining the structure of a BN can be a non-trivial iterative process, 
quantifying the probabilistic relationships of the nodes is generally regarded to 
be the more difficult part of the BN construction [1], [2], [32], [33]. As discussed 
in Section 2.1.3, in BN applications, the nodes typically have discrete states. In 
this case, the quantification of their probabilistic dependencies requires defin-
ing CPTs. The size of the CPT of a child node grows exponentially with the num-
ber of the parent nodes. Therefore, the CPT may consist of dozens or even hun-
dreds of conditional probabilities. For instance, if a child node and its three par-
ent nodes have five states each, the CPT consists of 625 elements. Assessing the 
necessary probabilities even for a single CPT can therefore be impossible for the 
expert either due to the cognitive strain or the scarcity of time [33], [34].  

To deal with the elicitation challenge of CPTs, their construction is often car-
ried out through methods referred to as parametric probability distributions 
[33], canonical models [53], canonical distributions [38], and filling-up meth-
ods [30], [54]. Common to these methods is that they allow constructing a CPT 
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through parameters that are assessed by a domain expert and whose number is 
significantly smaller than the number of elements in the CPT. Table 2 lists well-
known parametric methods along with information on their features. RNM 
elaborated in this Dissertation is one of them. Next, starting from RNM, an over-
view of the parametric methods included in Table 2 is presented. 

 
Table 2. Features of parametric methods for construction of CPTs concerning non-binary 
nodes. 

Method * 
 

Parameters assessed Optional 

number of 

parameters 

to use 

Proba-

bilities 
Weights 

of parent 

nodes 

Disper-

sion pa-

rameter 

Other 

Hassall et 

al. 
 3  X    

RNM**  4  X X  X 
Inter-

Beta** 
 11 X X  X X 

Røed et al.  12 X  X   

WSA  23 X X    

EBBN  26 X     

Likeli-

hood 
 26 X   X  

Func. 

interpol. 
 32 X     

Noisy-

MAX 
 48 X     

Cain***  48 X     
Chin et al.  60    X  
*  is the number of parameters elicited when a child node and its  parents have  states 

each. 

** The numbers of parameters correspond to default forms of use of the methods. 

*** The method does not provide a computational routine for the construction of a CPT when 

the child node has more than three states, i.e.,  > 3. 

 

The basic idea in RNM [31] is that for any combination of states of the parent 
nodes, the most probable state of the child node is defined by a general rule. The 
rule is selected by the expert from four alternatives. Within the framework of 
the selected rule, the parent nodes can have non-equal strengths of influence on 
the child node. The strengths of the parent nodes are expressed through weights 
that are also elicited from the expert. In addition, the expert also assigns a pa-
rameter describing how dispersed around the mode the probability distribution 
of the child node is for given states of the parents. The whole CPT may be con-
structed with a single set of parameters. Alternatively, it can be constructed in 
parts using part-specific values of the parameters. This feature of RNM is re-
ferred to with mark X in the last column of Table 2. 
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A method presented by Røed et al. [55] is similar to RNM in the sense that the 
construction of a CPT is based on a functional relationship between the parents 
and the child node. Moreover, like in RNM, the parents obtain weights reflecting 
their strengths of influence on the child, and a single parameter defines the dis-
persion of the probability distributions. However, whereas RNM provides four 
basic rules to describe the probabilistic relationship of the nodes, the method of 
Røed et al. uses only one function. This function is similar to a rule alternative 
of RNM, in which weighted averages are taken of the states of the parent nodes. 
Also, in a method suggested by Hassall et al. [56], the conditional probability 
distributions of the child node are calculated utilizing weighted averages of the 
parent states. However, this method does not involve the expert evaluating the 
dispersion of the distributions. Furthermore, for a child node with an odd num-
ber of states , the middle state obtains the probability  for any combina-
tion of the parent states. 

Noisy-MAX method [57], [58] is designed for settings in which parent nodes 
represent individual causes for a common effect, which is represented by the 
child node. The parameters elicited from the expert are CPT entries indicating 
the ability of each cause to bring about the effect individually. The rest of the 
CPT is calculated with the assumption that, in the presence of several causes, 
each cause affects the child node independently of the others. Noisy-MAX, 
which handles nodes with multiple ordinal states (i.e., multiple states on an or-
dinal scale), is a methodological extension of Noisy-OR method [53] designed 
for binary nodes. 

The EBBN method (Elicitation for Bayesian Belief Networks) [59], the 
weighted sum algorithm (WSA) [60] and the Cain calculator [61] are based on 
the interpolation of conditional probability distributions. In these methods, the 
expert first assesses the conditional probability distributions of the child node 
for so-called anchor combinations of states of the parent nodes. The remaining 
conditional probability distributions of the CPT are then derived by interpolat-
ing between the anchor distributions. Both the anchor state combinations and 
the interpolation techniques vary between the methods. 

The functional interpolation method [62] and the InterBeta method [34] also 
utilize the principle of interpolation to derive missing probability distributions 
of a CPT from method-specific anchor distributions assessed by the expert. 
However, in these methods, the interpolation does not directly involve the prob-
abilities of the anchor distributions. In the functional interpolation method, 
each anchor distribution is approximated by a normal distribution so that best-
fit estimates of the mean and variance parameters are determined. The missing 
probability distributions of the CPT are formed through normal distributions 
whose mean and variance parameters are interpolations of the estimates con-
cerning the anchor distributions. The InterBeta method applies a similar prin-
ciple except that Beta distributions are used instead of normal distributions. The 
InterBeta method also provides the expert an option to assign weights to parent 
nodes, their states, or their state combinations. Therefore, the method has mark 
X in the last column of Table 2. By increasing the weighting detail, the probabil-
istic relationship of the nodes can be portrayed more accurately. 
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In the likelihood method [63], the idea is that different state combinations of 
the parent nodes tend to move the probability distribution of the child node 
away from a “typical distribution” in a systematic way. The typical distribution, 
which is assessed by the expert, represents the probability distribution of the 
child node in the absence of information about the parent nodes. The condi-
tional probability distributions in the CPT are formed by multiplying the typical 
distribution by likelihood terms. These terms consist of weighting factors that 
the expert has selected for the states of the child node and the parents. The 
presentation of the method in [63] lacks any detailed guideline for the elicitation 
of the weighting factors. Some instruction is provided in [64] along with a re-
mark that the method becomes very complex if the child node has more than 
three states.  

Chin et al. [65] utilize the methodology of the Analytic Hierarchy Process 
(AHP) [66] for the construction of a CPT. First, the expert performs pairwise 
comparisons of the probabilities of the states of the child node given the state of 
an individual parent node. These comparisons are then used to calculate prob-
ability distributions of the child node conditioned to single parent nodes. By 
taking products of these distributions, the final probability distributions of the 
CPT are obtained.  

Table 2 indicates that RNM allows the construction of CPTs with a smaller 
number of expert-elicited parameters than most other parametric methods. In 
addition, RNM includes the option to define more parameters to portray the 
probabilistic relationship of nodes more accurately. Therefore, RNM appears to 
enable quick quantification of CPTs for verification and their systematic refine-
ment without excessive manual editing of individual CPT elements. The ability 
to generate CPTs quickly fits well also with the utilization of sensitivity analysis 
in the construction of a BN. With sensitivity analysis, see, e.g., [67], one can 
identify the CPT elements to which the BN’s behavior shows highest sensitivity. 
Attention can then be focused on refining these probabilities. Besides the small 
number of parameters to be elicited, a favorable feature of RNM is that the gen-
eral rules it involves can help experts to understand and describe the probabil-
istic relationships between nodes [31]. Furthermore, RNM is implemented in 
AgenaRisk software [4], which supports its easy deployment. All the aforemen-
tioned properties of RNM make it an appealing method for the construction of 
CPTs in BN applications by expert elicitation. Therefore, it has been selected to 
be the focus of substantial elaboration in this Dissertation.  

2.3 Ranked nodes method 

The ranked nodes method (RNM), introduced in a seminal paper [31], is de-
signed for constructing CPTs for a specific class of nodes called ranked nodes. A 
ranked node is a discrete random variable whose states are expressed with an 
ordinal scale such that each state can be considered to represent a range of val-
ues of a continuous quantity. The ordinal scale may consist of subjective labeled 
states, like {Low, Medium, High}, or it can be formed by a discretized continu-
ous scale, like {[0 km, 5 km], [5 km, 10 km], [10 km, 20 km]}. All the nodes in 
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the BN in Figure 1 are examples of ranked nodes. This section briefly presents 
the functioning of RNM and then discusses challenges concerning the method. 

2.3.1 Functioning 

The construction of a CPT with RNM consists of the following steps: 
1. Associate the states of the nodes with subintervals of a unit scale [0, 1]. 
2. Select a weight expression. 
3. Assign weights of the parent nodes. 
4. Assign a variance parameter. 
5. Compute a CPT using the above settings. 
6. Verify the CPT and refine it if needed. 

Steps 1–4 and 6 require the involvement of a domain expert, whereas Step 5 is 
carried out with a computational procedure. The main idea of each step is briefly 
presented below. A more through description of the steps is found, e.g., from 
Paper 1 of the Dissertation. 

In Step 1, consecutive states of each parent and the child node are associated 
with consecutive subintervals of the unit scale [0, 1]. In what follows, these sub-
intervals are referred to as state intervals. The state intervals of a single node 
are of equal width, do not intersect, and cover together the whole unit scale. The 
order in which the states of the nodes are linked with the state intervals must 
reflect the direction of influence of the parent nodes on the child node. An un-
derlying assumption in RNM is that the parent nodes affect the child node in a 
monotonic manner. That is, states of the parent nodes associated with small 
values on [0, 1] must promote states of the child node also linked with small 
values on [0, 1]. As an illustration, Figure 4 displays how state intervals could 
be defined for the states of nodes Bombing Accuracy, Enemy Effectiveness, and 
Target Hit Level of the example BN in Figure 1. Now, the state intervals indicate 
that high bombing accuracy and low enemy effectiveness both promote high tar-
get hit level.  

In Step 2, the expert selects a weight expression that can be seen as a general 
rule by which the parent nodes affect the child node. Technically, a weight ex-
pression is a function with a closed-form mathematical expression. Given a 
combination of states of the parent nodes, the weight expression maps sample 
points from the corresponding state intervals to points on the unit scale of the 
child node. There are four alternative weight expressions: 1) WMEAN, 2) 
WMIN, 3) WMAX, and 4) MIXMINMAX. With WMEAN, the output is the 
weighted average of the sample points whereas with MIXMINMAX, it is the 
weighted average of their minimum and maximum. WMIN and WMAX produce 
a value that is smaller or larger than the average of the sample points, respec-
tively.  

In Step 3, the expert selects weights to the parent nodes. The weights reflect 
the relative strengths of influence of the parents on the child node. If the weight 
expression is WMEAN, WMIN or WMAX, all the parent nodes receive their own 
weight. With MIXMINMAX, only two weights are assigned. For any combina-
tion of states of the parent nodes, these two weights become associated with the 
parents in the most extreme states. 
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Figure 4. Generation of probability Target Hit Level = Low Bombing Accuracy = Low, 
Enemy Effectiveness = Medium with RNM. Sample points and from the unit scales of the 
parent nodes are mapped by weight expression to mean parameter on the unit scale of 
Target Hit Level. Doubly truncated normal distribution is then inte-
grated over the state interval [0, 0.33], and the result is represented by area . The final prob-
ability value is obtained by taking the average of areas similar to that result from the use of 
different values of and .

In Step 4, the expert selects a value for a variance parameter. The larger this 
parameter is, the flatter each conditional probability distribution in the CPT will 
be.

In Step 5, the CPT is generated by calculating the conditional probability dis-
tributions of the child node for all the combinations of states of the parent nodes 
with a specific routine. With each combination of the parent states, the routine 
takes first sample points from the corresponding state intervals. These sample 
points are then mapped to points on the unit scale of the child node by the 
weight expression involving the parents’ weights. Finally, the conditional prob-
abilities of the child node over its ordinal states are formed by integrating nor-
mal distributions truncated to [0, 1] over the state intervals of the child node. 
The mean parameters of these distributions are the output values of the weight 
expression. The variance parameter of the distributions is the value selected by 
the expert in Step 4.

Figure 4 illustrates the generation of the probability 
regarding the exam-

ple BN in Figure 1. In Figure 4, sample points and , taken from the appro-
priate state intervals of the parent nodes, are mapped to mean parameter on 
the unit scale of Target Hit Level. The mapping function is the weight expres-
sion involving weights and assigned to Bombing Accuracy and Enemy 
Effectiveness, respectively. Then, distribution, i.e., normal 
distribution truncated to [0, 1], is integrated over the state interval [0, 
0.33] of Target Hit Level. Here, is the variance parameter selected by the 
expert. The value of the calculated integral is represented by the shaded area 
in Figure 4. The final probability value is obtained by taking the average of areas 
similar to that result from the use of different sample points taken from the 
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state intervals [0, 0.33 ] and [0.33, 0.67] of Bombing Accuracy and Enemy Ef-
fectiveness, respectively. 

In Step 6, the CPT is verified by checking that some representative conditional 
distributions of the child node reflect the probabilistic views of the expert. If the 
correspondence is deemed inadequate, the CPT has to be refined by adjusting 
the parameters used in RNM or possibly changing probabilities in the CPT by 
hand. It is also possible to divide the CPT in parts based on the states of selected 
parent nodes. Each part of the CPT can then be generated with a part-specific 
weight expression and part-specific values of the weights and the variance pa-
rameter. 

2.3.2 Shortcomings 

The theoretical principle of RNM lacks a detailed disclosure in the existing 
literature. While the basic idea of RNM is explained in [31] by referring to linear 
regression, the generation of CPTs is not fully explained. For instance, the gen-
eration of a CPT in Step 5 of RNM involves a user-controlled sample size param-
eter that affects both the values of the resulting probabilities and the time taken 
by the generation. However, the exact meaning or the value to be assigned to 
this parameter have not been discussed in the literature predating Papers 1–4 
of this Dissertation.  

In addition to ambiguity about its underlying principle, there is a shortage of 
studies on how well RNM allows to portray probabilistic relationships in real-
life BN applications. One study [54] explores the ability of CPTs constructed 
with RNM to portray probabilistic relationships typical in human reliability 
analysis. However, the study does not consider the option in RNM to construct 
a CPT in parts. Besides this type of partitioned use of RNM, the ability of RNM-
generated CPTs to represent probabilistic relationships of nodes may depend on 
other user-made choices too. For instance, the default range of weights in Age-
naRisk [4] implementation of RNM is [1, 5], which, if adapted, may limit the 
representation ability of the CPTs. 

Another shortcoming is that there are no exact guidelines for the elicitation of 
the weight expression (Step 2), the weights (Step 3), and the variance parameter 
(Step 4) from the expert. It is described in [31] how the selection of the weight 
expression can be supported by asking the expert to assess the mode of the child 
node for given extreme combinations of the states of the parent nodes. However, 
this description does not present any precise rules for inferring the suitable 
weight expression from the elicited information [68]. Therefore, technical in-
sight on RNM is required to conclude whether some weight expression is suita-
ble. Concerning the elicitation of the weights and the variance parameter, there 
exists no guidance, whereby they must be decided by trial and error. This means 
that the CPT is generated repeatedly with different values of the weights and the 
variance parameter until the result is considered satisfactory. For instance, the 
acceptance of the CPT may be based on the expert inspecting relevant condi-
tional probability distributions. The trial and error procedure is laborious, es-
pecially because the effect of the different parameters on the CPT may not be 
unambiguous to observe and comprehend. There are also no instructions for 
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deciding whether a CPT should be generated in parts and how a partition should 
be established. 

A challenge is also a lack of guidelines concerning the application of RNM to 
ranked nodes formed by discretizing continuous scales. If the discretizations are 
conducted in ignorance of the functioning of RNM, it may become impossible 
to find suitable RNM parameters to portray the probabilistic relationship of the 
nodes. Moreover, this consequence may not be realized before time is spent in 
vain in the search of suitable parameter values. Furthermore, if the discretiza-
tions are changed during the use of the BN, one may end up with CPTs that 
produce misleading results in the analyses carried out with the BN. 

Like the above discussion indicates, RNM suffers from shortcomings that can 
hamper its efficient use. This Dissertation is motivated by those shortcomings. 
The contributions of the Dissertation relate to overcoming them and developing 
RNM further for easier construction of CPTs, and thereby also BNs, based on 
expert elicitation.    
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3. Contributions

This Dissertation studies RNM through theoretical analysis (Papers 1–4) and 
experiments involving repeated trials and data fitting (Paper 1). Based on the 
results obtained, Paper 1 clarifies the underlying theoretical principle of RNM 
and provides new insight on its practical applicability. Paper 2 presents a novel 
approach concerning the application of RNM to nodes with continuous scales. 
The approach contains guidelines for the discretization of the continuous scales 
and the elicitation of RNM parameters. Paper 3 extends the work in Paper 2 by 
presenting two new discretization approaches that enhance the application of 
RNM to continuous nodes. Paper 4 presents a framework for the elicitation of 
RNM parameters concerning ranked nodes defined through ordinal scales with 
labeled states. Figure 5 displays an overview of the grouping of Papers 1–4 with 
regard to applied research methods, node types considered, and main contribu-
tions. The themes and contributions of Papers 1–4 are summarized in Table 3. 
The contributions of each paper are discussed in more detail below.   

Figure 5. Grouping of Papers 1–4 with regard to applied research methods (rounded rectan-
gles), node types considered (ovals), and main contributions (rectangles).
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Table 3. Summary of the themes and contributions of Papers 1–4. 

Paper Theme 
Theoretical 

Contribution 
Pragmatic 

Contribution 

1 Theoretical basis of 
RNM; 
Usability of RNM in 
real-life BN applica-
tions  

Clarification of the un-
derlying theoretical 
principle of RNM; 
Experiment on the cor-
respondence between 
RNM-generated CPTs 
and the underlying 
principle; 
Experiment on the 
ability of RNM-gener-
ated CPTs to represent 
probabilistic relation-
ships in practical BN 
applications 

Basis for the methodo-
logical development of 
RNM; 
Justification for the de-
ployment of RNM in 
practical applications; 
Advice concerning user-
controlled features of 
RNM  

2 Application of RNM to 
nodes with continuous 
scales 

Exact interpretations 
of weights of RNM; 
Feasibility conditions 
for the weight expres-
sions of RNM  

New approach for the 
discretization of continu-
ous scales of nodes and 
the elicitation of RNM 
parameters 

3 Application of RNM to 
nodes with continuous 
scales 

Novel principle of the 
probabilistic relation-
ship of ranked nodes 
being encoded by ini-
tial RNM-compatible 
discretizations and 
RNM parameters  

Two new approaches for 
the discretization of con-
tinuous scales of nodes 

4 Application of RNM to 
nodes with discrete or-
dinal scales consisting 
of labeled states 

Connection between 
weight intervals of par-
ent nodes and the 
probability distribu-
tions of a child node; 
Feasibility conditions 
for the weight expres-
sions of RNM 

New framework for the 
elicitation of RNM pa-
rameters; 
Two MATLAB imple-
mentations to facilitate 
the execution of the 
framework 

 

3.1 Paper 1 

Paper 1 first clarifies the underlying theoretical principle of RNM by showing 
how the generation of probabilities with RNM is underpinned by a regression 
model of continuous random variables. Especially, it is shown that as the value 
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of a user-controlled sample size parameter increases, the conditional probabili-
ties generated with RNM converge to probabilities provided by the regression 
model. Increasing the value of the sample size parameter also increases the 
computational burden of CPT generation with RNM. Related to this feature, the 
paper presents an experiment in which CPTs are generated for a child node so 
that the number of the parent nodes, the number of states of the nodes, and the 
value of the sample size parameter are varied. The results of the experiment in-
dicate that in typical applications of RNM, one can generate in a matter of sec-
onds CPTs whose elements reflect well probabilities given by the underlying re-
gression model. From the practical point of view, the connection between the 
regression model and the generated CPTs provides to the use of RNM transpar-
ency, which encourages its deployment. Furthermore, the connection means 
that the regression model can be used as a platform for further development of 
RNM. This opportunity is utilized in Papers 2–4 of the Dissertation. 

Paper 1 also includes an experiment in which CPTs generated with RNM are 
fitted to 151 CPTs from 19 real-life BN applications. The impact of four factors 
on the fitting ability is studied. These factors relate to choices that the user of 
RNM must make while applying the method. The factors are: 1) generating a 
whole CPT with single values of RNM parameters in comparison to generating 
it in parts with alternative part-specific parameter values; 2) the ranges allowed 
for the weights and the variance parameter; 3) the value of the sample size pa-
rameter; and 4) a property called elementary RNM-compatibility, which is in-
troduced in Paper 1. A child node and its parents are elementary RNM-compat-
ible if they have an equal number of states and their probabilistic relationship 
fulfils a feature common to all CPTs generated with RNM for such nodes. Over-
all, the CPTs generated with RNM are found to provide a good average fit to a 
large portion of the studied CPTs. The use of part-specific RNM parameters and 
the elementary RNM-compatibility are discovered to be the factors affecting the 
accuracy of the fit the most. As a whole, the results of the fitting experiment 
encourage and help to justify the deployment of RNM in practical applications. 
Based on the results, the paper also provides advice concerning the use of RNM. 
Especially, the paper discusses how to recognize and evaluate the necessity to 
generate a CPT in parts using part-specific RNM parameters. In addition, the 
paper presents tentative instructions on how to define the states of ranked 
nodes compatibly with the functioning of RNM. 

3.2 Paper 2 

Paper 2 presents a novel approach for applying RNM to ranked nodes whose 
discrete ordinal scales are formed by discretizing continuous scales. The ap-
proach consists of three phases. First, there is a guideline for discretizing the 
continuous scales into ordinal scales that are compatible with the functioning of 
RNM. In the guideline, the domain expert evaluates the mode of the child node 
on its continuous scale for given values of the parent nodes. The resulting dis-
cretizations involve all the nodes getting the same number of ordinal states. 
These states provide a basis for the discovery of suitable RNM parameters and 
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the construction of sensible CPTs. Second, there is a guideline for the elicitation 
of a weight expression and weights of the parent nodes. The guideline allows to 
determine a suitable weight expression and suitable values of the weights indi-
rectly. The domain expert only has to assess the mode of the child node in spe-
cific scenarios defined by the values of the parent nodes. The expert can state 
the mode either as a point value or as an interval. The guideline is premised on 
interpretations and feasibility conditions of the weights derived in the paper. 
Third, there are suggestions of ways to refine a generated CPT after its verifica-
tion to portray the probabilistic views of the expert more accurately.  

Several features of the new approach ease the use of RNM. One such feature 
are the mode enquiries in the discretization and weight elicitation guidelines. 
For a domain expert, considering the mode of the child node in various scenar-
ios may be a familiar form of reasoning in the daily work. Therefore, the mode 
enquiries can decrease the cognitive strain posed on the expert during the use 
of RNM. Furthermore, they provide for the expert elicitation a clear structure, 
which facilitates the effective execution of RNM.  

In the weight elicitation guideline, a single mode assessment always yields a 
single weight for each weight expression. In addition, the feasibility conditions 
of the weights derived in the paper allow automated determination of a suitable 
weight expression based on the weight values determined. These features have 
two practical benefits. First, the suitable weight expression and the suitable 
weights can be determined without deep understanding of the functioning of 
RNM. This property promotes the use of RNM directly by people who have do-
main expertise and/or basic knowledge over BNs, but lack insight on methods 
for CPT construction. Second, as a single weight follows from a single mode as-
sessment, the origins of the weight expression and the weights are straightfor-
ward to track. This transparency is helpful if there is a need to explain or justify 
the weight expression or the weights that are being used, e.g., to different stake-
holders related to the BN application in which RNM is utilized. Flexibility in the 
weight elicitation guideline is provided by the freedom of the expert to specify 
the mode of the child node as an interval of any width instead of a point value. 
Interval-valued mode assessments allow to take into account the uncertainty of 
the expert about the probabilistic relationship of the nodes. The use of mode 
intervals enables well also group elicitation. The approach is applicable for con-
structing a CPT either as a whole with a single set of RNM parameters or in parts 
with part-specific parameter values. 

3.3 Paper 3 

Paper 3 presents two novel discretization approaches for applying RNM to 
nodes with continuous scales. These approaches can be seen as extensions of 
the one presented in Paper 2. In comparison to the latter, the new approaches 
allow more flexible and diverse application of RNM to nodes with continuous 
scales. Both of the approaches are based on the original idea that besides the 
RNM parameters, the probabilistic relationship of a child node and its parents 
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is defined by so-called initial RNM-compatible discretizations. These discreti-
zations are elicited from a domain expert with the discretization guideline pre-
sented in Paper 2. Accordingly, they involve all the nodes getting the same num-
ber of ordinal states. However, once the initial RNM-compatible discretizations 
are defined, the new approaches provide options for rediscretizing the nodes in 
later phases of the CPT construction and even during the use of the BN.  

The first new approach is called the static discretization approach as it results 
in discretizations that stay intact during the use of the BN. After the elicitation 
of the initial RNM-compatible discretizations, this approach provides the option 
to rediscretize the nodes both before and after the elicitation of the RNM pa-
rameters. At both instants, the nodes can be rediscretized into any non-equal 
numbers of ordinal states. The rediscretizations before the elicitation of RNM 
parameters can be selected based on the way the domain expert naturally con-
siders the probabilistic relationship of the nodes. Here, the weight elicitation 
guideline presented in Paper 2 is usable independent of the chosen rediscreti-
zations. The rediscretizations after the elicitation of RNM parameters can be 
decided on the basis of the analyses that are to be carried out with the BN. This 
ability to change the discretizations without the need to re-elicit the RNM pa-
rameters is a novel feature that is lacking from the existing practices of applying 
RNM to nodes with continuous scales.  

The second new approach introduced in Paper 3 is called the dynamic discreti-
zation approach. It is complementary to the static approach and usable once the 
initial RNM-compatible discretizations and the RNM parameters have been de-
fined. The dynamic approach combines the use of RNM with an existing dy-
namic discretization algorithm [43]. Therefore, the discretizations of the nodes 
do not stay intact but update repeatedly during the use of the BN. For any evi-
dence entered into the BN, the density of the discretizations increases in those 
areas of the nodes' continuous scales in which the probability mass is more con-
centrated. The dynamic non-uniform discretizations enable the portrayal of the 
probability distributions accurately without a demand for dense uniform dis-
cretizations. Thus, if the granularity of the discretization required in the static 
approach causes computational memory problems, the dynamic approach al-
lows the probabilistic relationship of the nodes to be explored with the desired 
level of detail. The dynamic approach is useful especially when one would like 
to enter point-valued evidence into the BN or explore the statistics of the prob-
ability distributions, such as quantiles used in risk analysis [69].   

Besides presenting the technical ideas of the new discretization approaches, 
Paper 3 explains and demonstrates how they are implemented and applied with 
a suitable standard BN software, using AgenaRisk [4] as an illustrative example. 
The ability to use the new approaches with a well-known BN software facilitates 
their deployment in practice.  

3.4 Paper 4 

Paper 4 presents a novel framework for the elicitation of RNM parameters 
when the ordinal scales of ranked nodes correspond to subjective labeled states. 
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The framework is designed for a setting in which a child node and its parents all 
have the same number of ordinal states. Such a setting is common in RNM ap-
plications. The framework begins with an initial elicitation procedure, in which 
the expert has to assess the two most probable states of the child node for spe-
cific scenarios defined by the states of the parent nodes. This is followed by a 
computational procedure that determines a feasible weight expression and a 
feasible set of weights of the parent nodes which produce CPTs compatible with 
the assessments of the expert. The computational procedure utilizes weight in-
terval formulas and feasibility conditions of the weights derived in the paper. 
Finally, in a supplementary elicitation procedure, the expert selects point values 
for the weights from the feasible set along with the variance parameter. This 
procedure requires the expert to evaluate the probability distributions of the 
child node in the same scenarios that are considered in the initial elicitation 
procedure. The framework covers the construction of a CPT as one with a single 
set of RNM parameters and also in parts with part-specific parameter values. 
While the former is the default way, the need to shift to the latter is indicated in 
the framework clearly by the outcomes of different phases. 

To support the application of the framework, the paper provides two MATLAB 
[70] implementations [71]. The first one is an implementation of the computa-
tional procedure. Given the expert assessments acquired in the initial elicitation 
procedure, it determines the feasible weight expression and the feasible set of 
weights. If a weight expression is infeasible, the implementation advices how 
the expert assessments should change for that weight expression to become fea-
sible. The second implementation is designed to support the execution of the 
supplementary elicitation procedure. Using RNM parameters as its input, it 
generates and visualizes the probability distributions of the child node for the 
relevant scenarios. 

The practical benefits of the framework are similar to those of the weight elic-
itation guideline presented in Paper 2 regarding nodes with continuous scales. 
The initial elicitation procedure and the automated computational procedure 
enable the determination of a feasible weight expression and a set of feasible 
weights in a structured way with a low elicitation effort from the domain expert. 
In the supplementary elicitation procedure, the value of a single weight is spec-
ified based on a single scenario. This feature makes the origins of the weights 
easy to track and explain. Covering the non-partitioned and partitioned ways of 
using RNM, and indicating the need to change from the former to the latter, are 
properties of the framework that further ease the application of RNM. These 
properties are also unique in the sense that, besides the advice presented in Pa-
per 1, the existing literature does not present any guidelines for deciding in 
which of the two ways RNM should be used. In addition, like the weight elicita-
tion guideline of Paper 2, the framework of Paper 4 also suits well for group 
elicitation. 
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4. Discussion 

This Dissertation elaborates and develops the ranked nodes method (RNM) in 
multiple ways that enhance its use in the construction of conditional probability 
tables (CPTs) for Bayesian networks (BNs) and influence diagrams. With regard 
to the number of parameters to be elicited from a domain expert, RNM is among 
the least laborious methods for semi-automated construction of CPTs which is 
often required in real-life applications. Despite this favorable feature, the use of 
RNM can be cumbersome or compromised due to a lack of exact guidelines con-
cerning the parameter elicitation and other user-controlled features. Further-
more, there remains ambiguity regarding the underlying theoretical principle of 
RNM. In addition, a scarcity of knowledge exists on the general ability of CPTs 
generated with RNM to portray probabilistic relationships appearing in practi-
cal BN applications.  

The new insights and approaches presented in this Dissertation advance RNM 
with regard to all of the shortcomings mentioned above. Especially, Paper 1 clar-
ifies the underlying theoretical principle of RNM and provides experimental 
verification on its general practical applicability. These contributions clear the 
way for the further development of RNM and help to justify its deployment in 
applications. In turn, Papers 2–4 present novel approaches for the elicitation of 
RNM parameters (Papers 2 and 4) and the discretization of continuous nodes 
into ranked nodes (Papers 2 and 3). The approaches provide thorough and well-
structured means for easier as well as more flexible and versatile utilization of 
RNM in applications. Thus, overall, the Dissertation directly enhances the 
methodology for the construction of CPTs by expert elicitation. Consequently, 
the Dissertation also facilitates and promotes the effective and diverse use of 
BNs and influence diagrams to support risk management and decision-making 
under uncertainty in various domains.  

Paper 3 demonstrates how the new discretization approaches presented 
therein can be implemented with AgenaRisk software [4]. In addition, Paper 4 
provides two MATLAB implementations to support the application of the new 
framework it presents for the elicitation of RNM parameters. While all these 
implementations are useful, the deployment of the new approaches presented 
in Papers 2–4 would benefit from more advanced software realizations. For in-
stance, one could design to AgenaRisk an add-in component that would provide 
a graphical user interface for the elicitation of RNM parameters and the discreti-
zation of continuous nodes according to the new approaches. Moreover, imple-
mentations in open-source languages, such as R and Python, would make RNM 
and the new approaches accessible to a wider audience.       
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This Dissertation opens up several research avenues concerning further devel-
opment of RNM. The first theme concerns the validation of the new approaches 
of using RNM presented in Papers 2–4. The usefulness of the approaches is 
demonstrated in the papers with illustrative examples. Yet, experiments with 
humans testing the approaches in various setups are vital to understand better 
their strengths and weaknesses. In such experiments, knowledge could be ac-
quired on, e.g., how fast, easily and accurately CPTs are constructed by using 
the approaches in comparison to construction without them. 

The second theme is the determination of RNM parameters by data fitting. In 
the second experiment conducted in Paper 1, these parameters are determined 
by fitting CPTs generated with RNM to CPTs found from practical BN applica-
tions. By further elaborating the means used in the fitting, it might be possible 
to develop an approach in which the parameters are estimated by combining 
expert knowledge and any data available. With regard to data concerning con-
tinuous variables, the approach would benefit from an automated discretization 
procedure to form the discrete ordinal scales of ranked nodes. One aspect of this 
data fitting theme would be to compare how CPTs generated with RNM param-
eters estimated from data compare to CPTs estimated from the same data 
through other means.  

The third future research theme is further development and exploration of 
specific features of the approaches presented in Papers 2–4. The first feature 
concerns the elicitation framework of Paper 4. The framework is designed only 
for a setting in which the parent nodes and the child node all have the same 
number of states. While the setting is common in RNM applications, extending 
the framework to cover nodes with unequal numbers of states would bring more 
relief to the use of RNM. 

The second feature to explore concerns the elicitation of the variance param-
eter of RNM. In the guidelines of Papers 2 and 4, the variance parameter is elic-
ited from the domain expert by trial and error, which is the present norm. That 
is, the expert experiments with different values of the parameter until the CPT 
being constructed appears satisfactory. To complement this practice, one could 
try to develop an alternative way to elicit the variance parameter from the ex-
pert. For instance, before the generation of the CPT, the expert could be asked 
to quantify specific conditional probability distributions of the child node. The 
variance parameter would then be determined from these assessments. In this 
regard, the elicitation of the variance parameter connects back to the theme of 
determining RNM parameters by data fitting.  

The third feature worth more exploration concerns the new discretization ap-
proaches presented in Paper 3. They both utilize initial discretizations that are 
defined by the domain expert and involve a child node and its parents obtaining 
an equal number of ordinal states. Regarding this feature, it could be explored 
how the number of initial states of the nodes affects CPTs constructed with the 
new discretization approaches. This kind of study could help establish recom-
mendations about the suitable number of initial states.  
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