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1. Introduction

1.1 Background

When making decisions, inaccurate information about the consequences
can lead to unfavorable outcomes. Alas, our world is and has always
been full of uncertainty. When you leave your house, there is a chance
it will start raining at some point; investment strategies are based on
possibly inaccurate models of how the value of stocks will develop in the
future; and even the scientific community faces challenges when discussing
climate change because we are uncertain about its effects. Despite all this
uncertainty, we still need to make decisions. Should you take an umbrella
with you in the morning? What combination of stocks is the most likely to
result in high profits with low risk? What should the global CO2 emission
target levels be in the future?

Sun Tzu wrote, “Thus a victorious army wins its victories before seeking
battle; an army destined to defeat fights in the hope of winning.” While this
dissertation does not further discuss military tactics, this quote powerfully
describes the more general idea of decision making under uncertainty, as
careful planning of a decision strategy usually results in better outcomes
than making decisions without considering the possible futures (Birge,
1982). For example, in climate change mitigation, it is imperative to factor
in uncertainties by choosing actions that position us favorably in probable
future scenarios while safeguarding against catastrophic outcomes in less
likely scenarios. As our understanding of climate dynamics evolves, these
strategies should be adjusted accordingly to ensure both short- and long-
term benefits.

The theory of decision-making under uncertainty started with sequen-
tial decisions under uncertainty (Wald, 1947; Dvoretzky et al., 1952), and
shortly after, dynamic programming (Bellman, 1954) was introduced as an
approach to solve such problems. The following year, Linear Programming
Under Uncertainty (Dantzig, 1955) was published, eventually leading to
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many of the fundamental developments making the models in, e.g., this
dissertation possible to solve. Simultaneously, Von Neumann and Morgen-
stern (1947) introduced the field of game theory for modeling problems
with more than one decision maker.

1.2 Representing and solving decision problems

The philosophy and methodology of forming quantitative models to repre-
sent decision problems is referred to as decision analysis, considering the
interplay between decisions, uncertainty, and outcomes while seeking a
decision strategy that maximizes some form of utility1. Two well-known
visual representations in decision analysis are decision trees and influence
diagrams (discussed in detail in Section 2.2). The usefulness of influence
diagrams lies in the idea that they are “at once both a formal description
of the problem that can be treated by computers and a representation
easily understood by people in all walks of life and degrees of technical
proficiency” (Howard and Matheson, 2005).

This dissertation discusses a number of linear, mixed-integer, and equilib-
rium models, all of which fall under the modeling paradigm of mathemati-
cal programming. In mathematical programming, a real-world decision
problem is expressed in a language that allows one to use optimization
methods to solve the problem. The decisions are represented as variables,
and the solution quality is measured with an objective function depending
on the decision variables and uncertainty realizations. Finally, the con-
straints of the problem are relations such as inequalities and equalities
defining the feasible values of the decision variables.

The language of mathematical programming allows not only efficient
communication of models but also the development of efficient solution
methods for these problems. For instance, the Simplex method (Dantzig
et al., 1954) can solve problems with real-valued decision variables, a linear
objective function, and constraints represented with affine inequalities or
equalities. A particular class of problems in this dissertation turns out to
be very close to this linear formulation: if some of the decision variables
are instead allowed to take only integer values, the resulting mixed-integer
linear problem can be solved using, e.g., branch-and-bound methods (Land
and Doig, 1960). The details of formulating and solving these mixed-integer
programming models are discussed in Section 2.1.
1In practice, probabilities and utility functions can be subjective, and obtaining
them from decision makers can thus be difficult. However, in this dissertation,
we assume that these necessary elements of the model are available and instead
focus on the representations of the decision problem.
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1.3 Climate change mitigation

As discussed earlier, decision making under uncertainty can be as simple
as choosing whether or not to take an umbrella with you in the morning,
but it can also be as complex and global as climate change mitigation.
The scientific discourse on the latter began in 1979 in Geneva, Switzer-
land, where climate experts gathered to discuss the possibility that human
action is changing the global climate (World Climate Conference, 1979).
Today, we understand the mechanisms of climate change significantly bet-
ter (Lee et al., 2023) and have set target limits for global temperature
increase (UNFCCC, 2015). Despite this increased understanding, there
is still considerable uncertainty in some of the underlying mechanisms,
making it challenging to create efficient policies for limiting global warm-
ing. Of course, immediately building enormous amounts of solar or wind
power generation capacity would help reduce emissions from electricity
production, but it would also result in challenges with raw material avail-
ability, energy system stability, and overall costs. On the other hand, doing
nothing would result in significant climate damages (Lee et al., 2023),
suggesting that some level of emission reduction is beneficial.

Nordhaus (1991) first discussed greenhouse gas abatement cost-benefit
analysis, with the goal of maximizing overall net economic welfare. The
analysis is based on formulating a greenhouse damage function and an
abatement cost function, then finding an abatement level that minimizes
the total cost of abatement and damages (i.e., maximizes overall welfare).
Similar analysis is used today, with improvements to the aforementioned
functions and the overall structure of the model. A model of particular
interest in this dissertation is SCORE (Stochastic Cost Optimization for Re-
ducing Emissions) (Ekholm, 2014), an integrated assessment model where
abatement decisions and uncertainty revelation happen gradually. This
gradual learning in the model results in a more realistic analysis where
the abatement strategies can adapt after more information is revealed,
compared to similar models without learning. However, this adds a level
of complexity to the model in the form of uncertainty, and determining the
probability structure of this learning process is a significant challenge in
itself.

Even if we had perfect information about the climate dynamics and could
determine the most efficient trajectories for emission reduction, reaching
these emission targets requires changes in the behavior of both energy
consumers and producers, posing an entirely different problem that must
be tackled from a more local energy market level. For this reason, differ-
ent incentives for emissions reduction have been considered. A relatively
straightforward incentive is carbon tax (Köppl and Schratzenstaller, 2023)
that energy producers pay according to the amount of emissions produced
in their operation. However, in a connected market where multiple pro-
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ducers compete in different countries, and the producers are assumed
to maximize their profit with no interest in decreasing emissions, such
incentives might have unexpected effects on the system. For example, a
carbon tax might simply result in higher prices for consumers with little
impact on production or increased imports from countries with a lower
carbon tax (Lin and Li, 2011). These market equilibrium problems are
commonly modeled using bilevel optimization, discussed in Section 2.3 of
this dissertation.

1.4 Dissertation objectives

This dissertation is motivated by challenging decision problems stemming
from climate change mitigation, considering two applications with differ-
ent methodological contributions. While the focus is on climate change
mitigation, the formulations in this dissertation can be utilized in a wide
range of applications. Methodologically, the overall goal of this dissertation
is to develop and improve solution methods for limited memory influence
diagrams and hierarchical decision making. The main application is a
large-scale climate research and development planning problem extending
the SCORE model (Ekholm, 2014) to consider investments into climate
research. The assumption is that research efforts can provide better infor-
mation about the dynamics underlying climate change, and thus enable
more informed decisions on the emission targets.

To efficiently model the decision-dependent or endogenous effect of cli-
mate research, a large part of this dissertation is devoted to influence
diagrams and how to convert this intuitive representation into an efficient
mathematical optimization formulation. Paper I discusses and improves
Decision Programming (originally presented in Salo et al., 2022) and Paper
II extends the rooted junction tree models originally presented in Parmen-
tier et al. (2020). In addition to computational improvements, Paper I also
introduces a Julia (Bezanson et al., 2017) interface for creating and solving
(limited memory) influence diagrams, increasing the potential impact of
the method as users no longer need substantial knowledge about MIP
models to solve their influence diagrams.

While influence diagrams offer an intuitive way to represent decision-
dependent probability distributions, learning the climate dynamics repre-
sents a second type of decision-dependent uncertainty. The formulations in
Papers I and II are further generalized in Paper III by introducing “Type
2” endogenous uncertainty (Apap and Grossmann, 2017; Hellemo et al.,
2018), specifically conditional information revelation, allowing us to solve
the large-scale climate change mitigation problem in Paper III. Overall,
these developments result in an efficient, generally applicable solution
framework for decision problems represented as influence diagrams.
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The global CO2 target levels obtained in Paper III stem from a high-
level perspective of climate change, while in reality, reaching these targets
requires the cooperation of different decision makers with competing inter-
ests. In order to model this setting, Paper IV considers a trilevel perspective
of power markets where electricity producers only consider operational
profit and incentives such as a carbon tax (Köppl and Schratzenstaller,
2023) are required for them to decrease their emissions. Taking this com-
petitive aspect into consideration allows for investigating the effectiveness
of different incentives in a realistic, hierarchical system. To solve these
market models, Paper IV presents a novel single-level reformulation for
trilevel optimization problems, aiming to improve computational efficiency
compared to the reformulation presented in Gabriel et al. (2022). The two
reformulations are compared using a case study representing the electric-
ity market in the Nordic countries. Overall, this dissertation considers two
connected perspectives in climate change mitigation, providing effective
solution methods for the problems arising in an energy system and a global
level of reducing greenhouse gas emissions.
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2. Methodological background

In mathematical programming, the goal is to find values for decision
variables such that the constraints of the problem are satisfied and the
objective function value is minimized (or maximized). A general form of an
optimization problem is

min. f(x) (2.1)

s.t. gi(x) ≤ 0, ∀i ∈ {1, ...,m} (2.2)

hj(x) = 0, ∀j ∈ {1, ..., l} (2.3)

x ∈ X, (2.4)

where f , gi and hj are functions mapping the values of the decision vari-
ables x to R. The nature of these functions as well as the set X determines
the complexity of finding the optimal solution (or even a feasible solution).
A particularly notable example is linear programming (LP) where f is
linear, and g and h are affine. Often, for linear problems, we assume X to
be the nonnegative orthant. Such problems can be efficiently solved using,
e.g., Simplex or Barrier methods (Dantzig et al., 1954; Mehrotra, 1992).

This chapter starts by introducing mixed-integer optimization, a special
case of (2.1)-(2.4), and the relevant solution methods for such problems.
Section 2.2 continues with a description of influence diagrams and two
MIP reformulations for finding optimal strategies for an influence diagram.
Finally, Section 2.3 discusses the optimality conditions of the problem
(2.1)-(2.4) and how they are used in bilevel optimization.

2.1 Mixed-integer optimization

When modeling real-world decision problems, one soon notices that many
decisions are discrete instead of continuous. In mixed-integer linear pro-
gramming (MILP), the set X contains a restriction that some or all of
the variables x are integer-valued, and the functions f , g and h are affine.

21



Methodological background

Enforcing integrality not only allows for more realistic modeling of discrete
phenomena but also enables representing logical relationships (Raman and
Grossmann, 1994) within the model. During the last few decades, efficient
methods for solving such problems have been developed, making these
techniques meaningful in practice. In contrast, nonlinear functions f , g or
h would result in mixed-integer nonlinear programming (MINLP) (Lee and
Leyffer, 2011), a considerably harder class of problems with less prominent
solution methods. In this dissertation and a significant part of optimization
literature (e.g., Wolsey, 2020), the term mixed-integer programming (MIP)
is used interchangeably with MILP.

Solving MIP problems is based on the idea of solving linear programming
(LP) relaxations (that is, removing the integrality constraints from the
formulation) of the original problem and iteratively adding constraints,
removing non-integer solutions until the convex hull of the integer feasible
region is correctly approximated at the integer optimal solution. The basic
idea of such constraints is presented in Fig. 2.1, where an LP optimal
point xLP is “cut” out of the problem by adding two affine constraints,
exposing the true optimum xIP . With these constraints, the LP relaxation
solution becomes xIP , and the solution process terminates with the optimal
solution. Solution methods based solely on adding new constraints to the
MIP are referred to as cutting plane methods, using, e.g., Gomory fractional
cuts (Gomory, 1958) and lift-and-project cuts (Lovász and Schrijver, 1991).
However, these solution methods are considered ineffective and prone to
numerical issues.

Figure 2.1. An LP feasible region and two inequalities exposing xIP

This idea of iteratively adding constraints approximating the convex
hull of the integer feasible region X leads to a discussion on good MIP
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formulations. If the LP relaxation of the problem is exactly the convex hull
of the integer feasible region, no additional constraints are required as the
initial relaxation solution is guaranteed to be optimal for the MIP. This is
the case for problems min{c⊤x : Ax ≤ b, x ∈ Zn

+} with totally unimodular
A and integral b (Wolsey, 2020). Notably, such problems include maximum
flow or minimum cost flow problems where we consider a network of nodes.
However, most MIP problems do not have this structure and thus require
additional constraints to describe the convex hull. For such problems,
it is important to use formulations that approximate the convex hull as
closely as possible.1 Notably, Papers I and II in this dissertation compare
different MIP formulations corresponding to influence diagrams, discussed
in Section 2.2.

The most prominent alternative for cutting-plane methods is branch-and-
bound (Land and Doig, 1960), a divide-and-conquer approach where the
original LP relaxation is recursively split into subproblems. For example,
the LP optimal solution to the problem in Fig. 2.1 is xLP = (2, 2.5), where
x2 = 2.5 is fractional. The first step of branch-and-bound would be to
solve two subproblems corresponding to the original LP relaxation with an
additional constraint x2 ≤ 2 or x2 ≥ 3. Each integer feasible point in the
original problem is in exactly one of these MIP subproblems, and thus, the
better integer optimal point between these two subproblems is the optimal
solution to the original MIP problem.

When these two subproblems are solved, whenever we obtain a fractional
LP relaxation solution, we either create new subproblems (branching) or
prune the branch if the LP solution value is worse than the best integer
solution found so far (bounding). Once all branches have been explored or
pruned, the best integer solution found is the optimal solution to the MIP
problem. Similarly to the pure cutting plane approach, branch-and-bound
can be computationally inefficient.

Despite the practical issues with both branch-and-bound and cutting
planes, they are widely used today for solving MIPs. The key observation
was made by Padberg and Rinaldi (1991): combining the two approaches by
adding cutting planes during a branch-and-bound search greatly improves
the computational efficiency of solving MIPs. This approach is known
as branch-and-cut and is the cornerstone of modern MIP solvers, finding
globally optimal solutions efficiently. These developments, combined with
the versatility of MIP in modifying the model with additional constraints,
are the main reason for utilizing MIPs in this dissertation. To make the
solvers even more efficient is a continuing line of research, as companies
like Gurobi (Gurobi Optimization, LLC, 2023), FICO (Fair Isaac Corpo-
ration, 2024) and IBM (Cplex, IBM ILOG, 2022) aim to have the fastest

1The formulations should also have a small number of constraints to avoid com-
putational challenges; in practice, one might have to balance between the volume
of the LP feasible region and the number of constraints.
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solver in the market.
Another key component of an efficient MIP solver is heuristics (Berthold,

2006). While cutting planes can be useful in approaching the optimal
solution “from the outside”, the bounding part of branch-and-bound relies
on finding good integer solutions. The goal of heuristics is to find good
integer solutions by, e.g., using knowledge about the problem structure
in constructing a feasible solution (constructive heuristics, e.g., Petch and
Salhi (2003)) or starting with an integer solution found by the solver
and trying to improve it by making small changes to the variable values
(improvement heuristics, e.g., Van Breedam (1995)).

2.2 Influence diagrams

An influence diagram (ID) G(N,A) is a directed acyclic graph with directed
arcs a ∈ A = {(i, j) | i, j ∈ N} connecting nodes j ∈ N . In Fig. 2.2, the
influence diagram representation of the pig farm problem from Lauritzen
and Nilsson (2001) is presented. The circular chance nodes j ∈ NC ⊆ N

represent uncertain events, and the square decision nodes j ∈ ND ⊆ N

represent decisions. Finally, the diamond-shaped2 value nodes j ∈ NV ⊆ N

represent consequences associated with the decisions and chance event
realizations.

H1

T1

D1

U1

H2

T2

D2

U2

H3

T3

D3

U3

H4 U4

Figure 2.2. The influence diagram of the pig farm problem.

In the visual representation of an ID, the arrows between nodes represent
the arcs a ∈ A that, in turn, represent influence between the nodes in an
intuitive way. We define the information set of a node j ∈ N as the set of
its immediate predecessors I(j) = {i ∈ N | (i, j) ∈ A}. We assume each
decision and chance node to have a discrete, finite set of states sj ∈ Sj . The
probability distribution over the states sj ∈ Sj for a chance node j ∈ NC is
conditional on the states of the nodes in the information set I(j). We denote

2Some authors use hexagonal value nodes instead.

24



Methodological background

this information state as sI(j) ∈ SI(j), and the realization of the random
event as Xj ∈ Sj . Therefore, the (conditional) probability distribution
associated with a chance node j is denoted as P(Xj = sj | XI(j) = sI(j)).
The value nodes v ∈ NV represent utility functions Uv : SI(v) → R, and
while we assume these to be functions mapping each information state to
exactly one utility value, some references (e.g., Parmentier et al., 2020)
instead discuss stochastic value nodes. We note that this is not a significant
difference, as we can instead use a deterministic value node v and introduce
an additional chance node j ∈ I(v) representing the stochasticity.

For decision nodes j ∈ ND, the incoming arcs (and thus, the informa-
tion set) specify the information available to the decision maker at the
time of the decision. For example, in Fig. 2.2, the decision in D1 is made
knowing the outcome of T1, but not H1. We define a local decision strat-
egy Zj : SI(j) → Sj so that when observing sI(j) results in choosing the
decision alternative sj , we have Zj(sI(j)) = sj . This can be written using
an indicator function I : SI(j) × Sj → {0, 1} such that I(sI(j), sj) = 1 if and
only if Zj(sI(j)) = sj . We note that this is a somewhat restrictive approach
precluding mixed strategies where an arbitrary number of decision alter-
natives sj ∈ Sj would have a nonzero probability of being chosen given
a single information state sI(j), but this is a necessary restriction for the
models used in the dissertation. We will next discuss how to solve influence
diagrams, that is, find strategies Z ∈ Z maximizing (or minimizing) an
objective function such as expected utility.

Often, influence diagrams can be solved using decision trees or by re-
ducing the diagram representation as discussed in Howard and Matheson
(2005). However, if the no-forgetting assumption, stating that the previ-
ous information must be available to the decision maker when making a
decision, does not hold, these approaches can not be used. To circumvent
this limitation, Lauritzen and Nilsson (2001) introduce limited memory
influence diagrams (LIMID). The disadvantage of LIMIDs compared to
influence diagrams satisfying the no-forgetting assumption is that the
well-established dynamic programming solution methods for influence
diagrams cannot be used. For this purpose, Lauritzen and Nilsson (2001)
present single policy update, a solution heuristic that finds a locally op-
timal strategy for a LIMID. However, these solutions have no guarantee
for optimality unless specific conditions are met. Exact solution methods
for finding a maximum expected utility (MEU) solution for a LIMID were
first proposed by de Campos and Ji (2012) and Mauá et al. (2012). We will
instead next discuss two concomitantly developed mixed-integer formu-
lations for solving limited memory influence diagrams. Compared to the
previous approaches, these two have significant advantages, such as being
able to consider different constraints and objective functions, including
chance constraints and conditional value-at-risk (CVaR), while still guar-
anteeing the optimality of solutions due to the problems being represented
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as MIPs.

2.2.1 Decision Programming

Salo et al. (2022) present Decision Programming, a framework based on
a mixed-integer linear reformulation of LIMIDs. Their model is based on
the concept of paths s = (sj)j∈NC∪ND consisting of decision and chance
node states, and Paper I presents various improvements to this path-based
model. For a given strategy Z = (Zj)j∈ND , the influence diagram can be
seen as a Bayesian network (Koller and Friedman, 2009), and the chain
rule

P(Xs) =
∏︂

j∈NC∪ND

P(Xj = sj | XI(j) = sI(j))

can be applied to obtain the probability of a path. Importantly, we have
defined a conditional probability distribution for all chance and decision
nodes, and the probability of a path s given a strategy Z can be calculated
as

P(s | Z) =
∏︂

c∈NC

P(Xc = sc | XI(c) = sI(c))
∏︂

d∈ND

I(sI(d), sd).

Recall that we assume the value nodes v ∈ NV to be deterministic
mappings from each information state sI(v) ∈ SI(v). For any path s, we can
thus obtain the utility U(s) as

∑︁
v∈NV Uv(sI(v)). To explain the formulation,

we will consider a MEU problem, but it should be noted that using, e.g.,
CVaR in the objective function is relatively straightforward, as shown in
Salo et al. (2022). Suppose we are interested in maximizing the expected
utility EU(Z) =

∑︁
s∈S P(s | Z)U(s). If we introduce binary variables

z(sj | sI(j)) representing the local decision strategies Zj(sI(j)) such that
z(sj | sI(j)) = 1 ⇐⇒ I(sI(d), sd) = 1, a direct approach to the problem
would be to solve

max.
∑︂

s∈S
p(s)U(s)

∏︂

d∈ND

z(sd, sI(d)) (2.5)

s.t.
∑︂

sd∈Sd

z(sd | sI(d)) = 1, ∀d ∈ ND, sI(d) ∈ SI(d) (2.6)

z(sd | sI(d)) ∈ {0, 1}, ∀d ∈ ND, sd ∈ Sd, sI(d) ∈ SI(d), (2.7)

where p(s) =
∏︁

c∈NC P(Xc = sc | XI(c) = sI(c)) for brevity. However, this
formulation has a major practical issue: the objective function contains
products of |ND| binary variables, which need to be linearized before
applying the efficient solution methods discussed earlier. Salo et al. (2022)
tackle this issue by introducing variables π(s) and affine constraints forcing
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their values to p(s)
∏︁

d∈ND z(sd, sI(d)). Their formulation then becomes

max.
∑︂

s∈S
π(s)U(s) (2.8)

s.t.
∑︂

sd∈Sd

z(sd | sI(d)) = 1, ∀d ∈ ND, sI(d) ∈ SI(d) (2.9)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (2.10)

π(s) ≤ z(sd | sI(d)),∀s ∈ S, d ∈ ND (2.11)

π(s) ≥ p(s) +
∑︂

d∈ND

z(sd | sI(d))− |ND|, ∀s ∈ S (2.12)

z(sd | sI(d)) ∈ {0, 1}, ∀d ∈ ND, sd ∈ Sd, sI(d) ∈ SI(d), (2.13)

where constraint (2.11) sets π(s) = 0 if the path s is not compatible with the
strategy Z defined by the z-variables. Constraints (2.10) and (2.12) then set
π(s) = p(s) for paths s that are compatible with Z, that is, paths for which∑︁

d∈ND z(sd | sI(d)) = |ND|. This is a mixed-integer linear formulation for
which branch-and-cut methods can be used to find the solution, and Salo
et al. (2022) show how CVaR or chance constraints can be added to the
formulation while still preserving the mixed-integer linear nature of the
models.

2.2.2 Rooted junction trees

In their introduction of Decision Programming, Salo et al. (2022) discuss
the computational performance of the formulation, and one of the con-
clusions is that the model (2.8)-(2.13) suffers greatly from the curse of
dimensionality. While the path-based approach makes different extensions
easy, it is also a major computational roadblock, as the size of the model
inevitably becomes exponential in the number of decision and chance nodes.
Parmentier et al. (2020) circumvent the exponential growth of the model
by first converting the LIMID to an equivalent gradual rooted junction tree
(G-RJT), then reformulating the junction tree as a mixed-integer problem.
We will next present a summary of G-RJTs, and for a thorough description,
we refer the reader to Parmentier et al. (2020).

A G-RJT G = (V ,A ) is a directed acyclic graph, much like an influence
diagram. Instead of individual chance/decision/value nodes, a junction tree
consists of clusters C ∈ V , each containing a subset of the nodes j ∈ N

from the influence diagram. We first specify that G must be a rooted tree.
For this graph to be a G-RJT, allowing for the upcoming formulation, it
must first satisfy the running intersection property. This states that for
any two distinct clusters C1 and C2 in V , every cluster C on the undirected
path between C1 and C2 must satisfy C1 ∩C2 ⊂ C. Next, we define the root
cluster of a node j ∈ N as the root of the subgraph induced by the node j
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and further require that each cluster is the root cluster of exactly one node
j ∈ N . Finally, for each cluster, we require I(j) ⊂ Cj , where Cj is the root
cluster of node j ∈ N . The G-RJT corresponding to the pig farm problem
in Fig. 2.2 is presented in Fig. 2.3.

H1 H1T1 H1T1D1 D1V1

H1D1H2 H2T2 H2T2D2 D2V2

H2D2H3 H3T3 H3T3D3 D3V3

H3D3H4 H4V4

Figure 2.3. The gradual rooted junction tree of the pig farm problem.

We will next present the mixed-integer formulation corresponding to a
G-RJT representation of a LIMID. Instead of probability variables over
the full set of paths as in Decision Programming, we consider probability
distributions µCj over each cluster Cj ∈ V . These properties ensure that
we can tie the distributions of adjacent clusters (that is, (C1, C2) ∈ A )
together and, starting from the trivial distribution of the root cluster, build
the distribution of each cluster. The properties listed above result in the
root cluster having only one node. For the pig farm problem in Fig. 2.3,
the root node/cluster is H1, and µCH1

(sH1) = P(XH1 = sH1). For the next
cluster, µCT1

(sH1 , sT1) = P(XT1 = sT1 | XH1 = sH1)µCH1
(sH1). Finally, for

any pair of adjacent clusters, we require that the marginal distribution
over SC1∩C2 is the same whether it is obtained from µC1 or µC2 to ensure
that the distributions are updated correctly as we move along the directed
path(s) from the root cluster. The resulting formulation is

max.
∑︂

v∈NV

∑︂

sCv∈SCv

µCv(sCv)uCv(sCv) (2.14)

s.t.
∑︂

sCj
∈SCj

µCj (sCj ) = 1, ∀j ∈ N (2.15)
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∑︂

sCi
∈SCi

,
sCi∩Cj

=s∗Ci∩Cj

µCi(sCi) =
∑︂

sCj
∈SCj

,

sCi∩Cj
=s∗Ci∩Cj

µCj (sCj ), ∀(Ci, Cj) ∈ A , s∗Ci∩Cj
∈ SCi∩Cj

(2.16)

µCj (sCj ) = µCj
(sCj

)P(Xj = sj | XI(j) = sI(j)), ∀j ∈ NC ∪NV , sCj ∈ SCj

(2.17)

µCj (sCj ) = µCj
(sCj

)z(sj , sI(j)), ∀j ∈ ND, sCj ∈ SCj (2.18)

µCj (sCj ) ≥ 0, ∀j ∈ N, sCj ∈ SCj (2.19)

z(sj , sI(j)) ∈ {0, 1}, ∀j ∈ ND, sj ∈ Sj , sI(j) ∈ SI(j), (2.20)

where z(sj , sI(j)) represent the decision strategy Z ∈ Z as before and
uCv(sCv) is the utility from the cluster corresponding to a value node
v ∈ NV . Constraints (2.18) involve a product of a continuous variable µ and
a binary variable z, which technically makes the model nonlinear. However,
these constraints can be seen as indicator constraints and reformulated
using affine big-M constraints (Parmentier et al., 2020) or other techniques
discussed in Bonami et al. (2015).

For large models, constraints (2.16) predominate the total number of
constraints in (2.14)-(2.20). From the properties of a G-RJT listed above,
it can be seen that for (Ci, Cj) ∈ ARJT , we have I(j) ⊆ Ci ∩ Cj , and the
number of constraints in the model is thus O(|SI(j)|). Taking this a step
further, we define the width of a junction tree as the size of the largest
cluster minus one. We then see that because (I(j) ∪ j) ⊆ Cj by construc-
tion, the rooted treewidth (the minimum width of an RJT on a LIMID) is
greater or equal to the size of the largest information set. The number of
constraints in (2.14)-(2.20) thus grows exponentially with the width of the
tree, not the number of nodes. For problems with a moderate treewidth,
this results in vastly superior computational performance compared to
Decision Programming. While the approach of considering clusters and
their probability distribution makes the formulation more efficient, it has
the disadvantage that, unlike with Decision Programming, the full prob-
ability/utility distributions are not readily available in the model. This,
in turn, prevents directly formulating, e.g., chance constraints and CVaR,
further discussed in Paper II.

2.3 Bilevel optimization

The last part of this dissertation, Paper IV, explores the novel field of
trilevel optimization. Before we can discuss trilevel, or even bilevel opti-
mization, it is necessary to first discuss the concept of (Lagrangian) duality.
We start the discussion with linear problems, mainly because the following
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motivation is natural for LP problems. However, the results generalize to
convex problems satisfying a constraint qualification. Notably, Dorn (1960)
presents similar dual formulations for quadratic problems.

For a linear problem max{c⊤x : Ax ≤ b, x ≥ 0} we can exploit the
information in the constraints to obtain an upper bound for the objective
function c⊤x. Assuming that Ax ≤ b holds, it is evident that a weighted
combination p⊤Ax ≤ p⊤b of the constraints also holds for any vector p ≥ 0.
Furthermore, because we only consider non-negative variables x, if c⊤ ≤
p⊤A, we have c⊤x ≤ p⊤Ax ≤ p⊤b, and p⊤b is thus an upper bound for c⊤x.
What remains is to make the bound as tight (small) as possible, and we
obtain the Lagrangian dual problem

min. b⊤p (2.21)

s.t. A⊤p ≥ c (2.22)

p ≥ 0. (2.23)

It is easy to see that, by construction, we have c⊤x ≤ b⊤p, a property
known as weak duality. For linear problems, we additionally have strong
duality, that is, the optimal objective values of the primal and dual prob-
lems are equal. From the primal and dual problems, we can finally arrive
at two results allowing us to replace an optimization problem with a set
of constraints for which any feasible solution is optimal to the original
problem.

First, we can use strong duality and observe that any solution satisfying
primal and dual feasibility with equal primal and dual objective values
is primal-dual optimal. For the problem stated above, these conditions
become

c⊤x = b⊤p (2.24)

Ax ≤ b (2.25)

A⊤p ≥ c (2.26)

x, p ≥ 0. (2.27)

Alternatively, we can use complementary slackness, which states that
for linear problems at the primal-dual optimal solution, any primal/d-
ual constraint corresponding to a nonzero dual/primal variable must be
active (that is, satisfied as an equality), and any primal/dual variable
corresponding to an inactive dual/primal constraint must be zero. This can
be represented using a complementarity constraint 0 ≤ a ⊥ b ≥ 0, stating
that two non-negative vectors a and b are perpendicular to each other, that
is, a⊤b = 0. Note that for non-negative vectors, perpendicularity implies
that either ai or bi must be zero for all i ∈ {1, ..., n}, where n is the length
of vectors a and b. A primal-dual optimal solution can thus be obtained
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from

0 ≤ x ⊥ A⊤p− c ≥ 0 (2.28)

0 ≤ p ⊥ b−Ax ≥ 0, (2.29)

where complementary slackness and primal/dual feasibility are combined
in the complementarity constraints. The constraints (2.28) and (2.29) form
a linear complementarity problem (LCP), for which specialized solvers
such as PATH (Dirkse and Ferris, 1995) exist. These optimality conditions
state that any solution (x∗, p∗) satisfying either the constraints (2.24)-
(2.27) or (2.28)-(2.29) is an optimal solution to the corresponding primal
and dual problems. That is, solving the optimization problem and its dual
is equivalent to finding a solution satisfying a set of constraints.

To consider more general problems, one can use the results of Karush
(1939) and Kuhn and Tucker (1951), referred to as the Karush-Kuhn-
Tucker (KKT) conditions. The KKT conditions can be considered an exten-
sion of the above discussion, combining primal and dual feasibility with
complementary slackness for a general problem of the form

min. f(x) (2.30)

s.t. gi(x) ≤ 0, ∀i ∈ I (2.31)

hj(x) = 0, ∀j ∈ J (2.32)

x ≥ 0. (2.33)

For this problem, the KKT conditions become

0 ≤ x ⊥ ∇f(x) +
∑︂

i∈I
λi∇gi(x) +

∑︂

j∈J
µj∇hi(x) ≥ 0 (2.34)

0 ≤ λ ⊥ −g(x) ≥ 0 (2.35)

h(x) = 0, (2.36)

where for notational compactness, x, g, h, λ and µ are assumed to be
vectors. For convex problems satisfying a constraint qualification, the
KKT conditions are both necessary and sufficient for optimality (Bertsekas,
2016).

The main practical challenge with KKT conditions is often the com-
plementarity, which tends to result in non-convexity, requiring more so-
phisticated and, consequently, more computationally demanding solution
methods. Multiple approaches exist for modeling the complementarity
constraints; notable examples include SOS1 constraints (Beale and Tomlin,
1970; Siddiqui and Gabriel, 2013) and Fortuny-Amat big-M constraints
(Fortuny-Amat and McCarl, 1981; Pineda and Morales, 2019). However,
the complementarity constraints can be avoided altogether if one instead
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constructs the dual of (2.30)-(2.33) and observes that (again, for convex
problems satisfying a constraint qualification) strong duality holds and
the primal and dual solutions are equal at optimum.

Finally, these results can be used to rationalize the idea of bilevel opti-
mization. In bilevel optimization, as the name suggests, two hierarchical
levels of decision making are considered. The upper-level player has an
objective function and constraints as usual, but must also take into ac-
count their impact on the lower-level player(s) whose decisions impact the
upper-level objective value and/or constraints. A relevant example for this
dissertation and bilevel optimization literature in general is energy market
modeling, where the lower-level players are profit-maximizing electricity
generators and the upper-level player is a transmission system operator
aiming to maximize social welfare or profit. The upper-level player then
makes decisions on, e.g., transmission capacity expansion, taking into
account the effect this will have on the electricity producers’ strategies and,
consequently, social welfare.

The two main solution approaches for bilevel optimization are based
on using either complementarity or strong duality to add the lower-level
problem(s) to the upper-level problem as constraints. As discussed earlier,
using the KKT conditions introduces complementarity constraints within
this single-level reformulation, resulting in a mathematical programming
with equilibrium constraints (MPEC) problem, and a suitable solver such
as KNITRO (Artelys, 2023) or NLPEC (GAMS Development, 2023) can be
used to obtain solutions. Enforcing primal and dual feasibility along with
strong duality instead results in a mathematical programming with primal
and dual constraints (MPPDC) formulation of the problem. Because of the
lack of complementarity constraints, such models can be solved using more
general-purpose mathematical programming solvers.
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In both mixed-integer and bilevel optimization, decision problems can
admit multiple alternative representations and the choice of modeling
approach can have a major impact on computational performance. For
MIPs, as discussed in Section 2.1, if an exact representation of the convex
hull of the feasible set was available, the problem could be solved as a
single linear programming problem. Extending this idea, if a formulation
closely approximates the convex hull, the initial LP relaxation solution is
likely to be close to the optimum and not require significant computational
effort in terms of branch-and-bound and/or cutting planes before reaching
the integer optimal point. Similarly, for bilevel optimization, the choice of
using a complementarity or strong duality -based reformulation determines
the type of solver required for solving the model, which can have a major
impact on the computational performance.

Table 3.1 summarizes the individual contributions of Papers I-IV. These
individual papers intersect both in methodology and applications, focus-
ing on developing novel mixed-integer formulations for problems arising
from energy-environmental decision making. Papers I and II concentrate
on further developing two recently proposed MIP reformulations (Salo
et al., 2022; Parmentier et al., 2020) for limited memory influence dia-
grams (LIMIDs), allowing one to efficiently solve problems with decision-
dependent probabilities (also known as type 1 endogenous uncertainty).
Notably, Paper I presents an improved MIP reformulation for influence
diagrams, enhancing computational performance compared to the model in
Salo et al. (2022), while Paper II instead focuses on extending the modeling
capabilities of the rooted junction tree reformulation in Parmentier et al.
(2020).

Paper III shows how conditionally observed information (type 2 endoge-
nous uncertainty) can be considered in the LIMID reformulations. The
combined developments in the first three papers are also applied to a
large-scale climate change mitigation case study comprising both types
of endogenous uncertainty in Paper III. These two types of endogenous
uncertainty have not been considered together in the prior literature, and
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Contributions

Paper Objectives Methodologies Results
I: Solving influence
diagrams via effi-
cient mixed-integer
programming formula-
tions and heuristics

To explore the
computational
impact of tighter
MIP
formulations and
heuristics for
Decision
Programming

Mixed-integer
linear
programming,
primal
heuristics,
Decision
Programming

The proposed novel
formulation is an order of
magnitude faster and the
implemented heuristic
produces good solutions
in a very short time
compared to solving the
full model to optimality.

II: Risk-averse deci-
sion strategies for in-
fluence diagrams using
rooted junction trees

To bring the
different
constraints and
objectives from
Decision
Programming to
the RJT models

Mixed-integer
programming,
rooted junction
trees, risk
measures

Conditional value-at-risk,
chance constraints and
other constraints are
implemented for an
example problem using
the RJT formulation.

III: Solving decision
problems with endoge-
nous uncertainty and
conditional informa-
tion revelation using
influence diagrams

To provide a
methodology for
including
conditional
information
revelation in
RJT models

Mixed-integer
programming,
rooted junction
trees,
cost-benefit
analysis

Two different methods of
incorporating conditional
information revelation in
RJT-based models. A
climate change
mitigation case study is
solved and the resulting
emission strategies are
discussed.

IV: A novel strong du-
ality -based reformula-
tion for trilevel infras-
tructure models in en-
ergy systems develop-
ment

To explore the
novel class of
trilevel
optimization
problems,
present a novel
single-level
reformulation
and demonstrate
an illustrative
energy system
model

Equilibrium
modeling, primal
and dual
constraints, com-
plementarity
constraints

A novel strong duality
-based single-level
reformulation for trilevel
equilibrium problems.
The novel formulation
outperforms the
previously proposed
formulation and is
demonstrated using a
case study representing
the Nordic power market.

Table 3.1. Summary of publications

the developments in these papers thus allow for a potentially broad range
of new applications.

Finally, Paper IV considers a different class of problems with multiple
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decision makers in a hierarchical structure. In our example problem, this
structure arises from a more localized system perspective of climate change
mitigation. On the top level, an international policy-maker such as the
European Union sets a carbon tax incentivizing the bottom-level electric-
ity producers to lower their production emissions. At the middle level,
transmission system operators control electricity transmission between
countries. The main methodological contribution of Paper IV is a novel
single-level reformulation of such trilevel problems, using strong duality
where (Gabriel et al., 2022) used complementarity. The computational
experiments show that the novel reformulation outperforms the previous
method both in terms of model size and solution time.

3.1 Paper I

Decision Programming, as presented in Salo et al. (2022), presents a
powerful concept of converting influence diagrams to mixed-integer linear
formulations. Influence diagrams are intuitive visual representations
of complicated decision problems, and powerful MIP solvers have been
developed in the past 20 years. The main contributions of Paper I are
related to making Decision Programming easier and faster to use. First,
it shows how the existing MIP formulation can be made considerably
tighter, resulting in obtaining optimal solutions faster. Second, the single
policy update heuristic (Lauritzen and Nilsson, 2001) is implemented for
Decision Programming, allowing for obtaining locally optimal solutions
quickly. Third, a Julia (Bezanson et al., 2017) package is presented, greatly
lowering the barriers to entry for new users. Finally, the novel formulation
is applied to a coronary heart disease prevention case study from Hynninen
et al. (2019).

3.2 Paper II

Despite the novel MIP formulations in Paper I, Decision Programming
still suffers from exponential model growth as the influence diagrams
become larger, greatly limiting the applicability of the framework in large
problems. Parmentier et al. (2020) present a computationally more efficient
approach to solving MIP reformulations of influence diagrams using rooted
junction trees (RJT), but their contribution is limited to expected utility
maximization with no additional risk constraints. Paper II implements
the risk measures and constraints in Salo et al. (2022) for RJT models,
significantly improving the modeling capabilities of the method. On the
other hand, this can also be seen as developing a solution method for
influence diagrams that is computationally more efficient than Decision
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Programming while still retaining its modeling capabilities.

3.3 Paper III

Influence diagrams offer a natural avenue for modeling decision-dependent
probabilities, something that the field of stochastic programming has strug-
gled with. Hellemo et al. (2018) poses decision-dependent probabilities as
Type 1 endogenous uncertainty and discusses a Type 2: decision-dependent
information structure. A common example of Type 2 endogenous uncer-
tainty is conditional information revelation, often used in multi-stage
stochastic programming (MSSP) models such as the ones in Apap and
Grossmann (2017). Paper III introduces two approaches for including
conditional information revelation in influence diagrams. The results are
presented for RJT models but could be implemented for Decision Pro-
gramming with minimal modifications. Finally, the paper combines type
2 endogenous uncertainty and the contributions from Papers I and II in
a case study of climate change mitigation, involving two-stage research
projects for reducing abatement costs and revealing information about
underlying climate parameters. The integrated assessment model and the
data on CO2 abatement costs are from Ekholm (2018), and the data on
technological progress is based on expert elicitation in Baker et al. (2015).

3.4 Paper IV

Paper III gives insights on the cost-benefit optimal emission pathways to
mitigate climate change but does not discuss any concrete methods for
reaching the proposed emission targets. Bilevel and, more recently, trilevel
optimization can be used for modeling energy systems and the interactions
between different players with competing interests. Paper IV introduces
a novel single-level reformulation for trilevel problems and presents an
illustrative case study on how such models could be used to find incentives
for reducing emissions. The novel reformulation uses a strong duality
representation of the bottom-level optimality conditions, outperforming
the LCP solution set reformulation presented in Gabriel et al. (2022). In
particular, the model in the paper is focused on finding a carbon tax that
decreases emissions without significantly decreasing total production and
thus increasing prices. For the Nordic case study, the data is from Belyak
et al. (2023), who collected the data from the ENTSO-E platform (Hirth
et al., 2018).
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4. Discussion

This dissertation focuses on developing novel mixed-integer formulations
for challenging problems arising in energy-environmental decision making.
Papers I-III discuss different approaches to finding optimal solutions to
limited memory influence diagrams, and Paper IV considers a system-level
perspective on the climate change mitigation case study in Paper III and
uses trilevel equilibrium modeling to provide insight on how the emissions
targets could be achieved using a carbon tax.

Since their introduction (Lauritzen and Nilsson, 2001), limited memory
influence diagrams (LIMIDs) have received moderate attention. However,
considering how influence diagrams are regarded as a user-friendly prob-
lem representation (Howard and Matheson, 2005), it is surprising that no
user interface seems to exist for formulating a LIMID and obtaining the
optimal strategy. In Paper I, we describe a Julia (Bezanson et al., 2017)
package implementing the Decision Programming framework originally
from Salo et al. (2022).

To further improve the computational efficiency of the developed frame-
work, Paper II explores an alternative mixed-integer formulation for solv-
ing LIMIDs, introduced in Parmentier et al. (2020). Their approach is
based on first converting the LIMID into a gradual rooted junction tree,
thus avoiding the exponential growth of the MIP model that makes larger
influence diagrams computationally intractable when using Decision Pro-
gramming. In Paper II, we show that all the risk-related objective functions
and constraints presented for Decision Programming in Salo et al. (2022)
can be implemented for rooted junction tree (RJT) models. However, it
should be noted that introducing these additional elements to the RJT
model can come at the cost of significantly increasing the computational
complexity compared to the expected utility maximization problem for a
LIMID with no additional constraints.

The concept of decision-dependent or endogenous uncertainty has been
discussed in the literature for the past 30 years, and a summary can be
found in Hellemo et al. (2018). While influence diagrams are a natural rep-
resentation of decision-dependent probability distributions, a significant
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part of research on endogenous uncertainty focuses on conditional infor-
mation revelation (e.g., Apap and Grossmann, 2017). To bridge the gap
between these two types of uncertainty, Paper III discusses two approaches
for incorporating conditional information revelation into our influence dia-
gram models, either by modifying the LIMID or the resulting optimization
problem. Additionally, Paper III illustrates the extended RJT models in a
climate change mitigation cost-benefit analysis, showing how the contri-
butions of Papers I-III can be used to solve large-scale decision problems
under endogenous uncertainty.

Finally, Paper IV approaches an energy system problem as a trilevel
equilibrium model. To efficiently solve the model, we present a novel refor-
mulation for trilevel problems, based on strong duality, greatly reducing
the size of the model compared to the model in Gabriel et al. (2022) as no
complementarity constraints need to be further reformulated. A compari-
son between the novel reformulation and the previous approach in Gabriel
et al. (2022) also shows that the proposed approach solves the problems
significantly faster. This reformulation is used in an illustrative example
of the Nordic electricity market, exploring the effect of a carbon tax on
emissions and electricity prices.

The four papers in this dissertation propose novel MIP formulations for
different problems, outperforming existing approaches. The main focus
is on the formulations themselves, and we use general-purpose, off-the-
shelf MIP solvers to obtain solutions to these problems. However, limiting
ourselves to MIP formulations and solving them using off-the-shelf solvers
can be somewhat restrictive. First, as discussed earlier, computational
efficiency can greatly vary between two MIP formulations of the same
problem. This idea can be extended further, as some decision problems
formulated as MIP models could also be implemented as, e.g., Boolean
satisfiability problems (Manquinho et al., 1998) with different solution
methods and computational performance. Second, for limited memory
influence diagrams, alternative solution methods have been presented in
de Campos and Ji (2012) and Mauá et al. (2012), but it should be noted
that they only consider expected utility maximization with no additional
constraints and thus would need further research to allow for the same
modeling flexibility as Decision Programming or the RJT models.

Additionally, more specialized approaches for solving MIP problems have
been developed. For example, the computational issues arising from the
large number of constraints in Decision Programming could possibly be
mitigated using methods such as Benders decomposition (Laporte and Lou-
veaux, 1993) or Lagrangian decomposition (Guignard and Kim, 1987). Sim-
ilarly, for the trilevel models, column-and-constraint generation (Dvorkin
et al., 2017) and bilevel branch-and-bound (Fischetti et al., 2018) could
yield significant performance improvements.

A major benefit of using mathematical programming to represent deci-
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sion problems is the ability to incorporate a variety of different modeling
paradigms. For LIMID models, we show that risk can be explicitly consid-
ered using chance constraints or CVaR, but further research is still needed
for, e.g., robust or bilevel optimization over influence diagrams. The pre-
vious work on multi-agent influence diagrams (Koller and Milch, 2003)
provides a starting point for bilevel influence diagrams, and robust coun-
terparts to linear programming problems are discussed in, e.g., Ben-Tal
et al. (2009).

Combining the developments in this dissertation for influence diagrams
and hierarchical decision models would allow for better representing
decision-dependent uncertainties in bilevel or even trilevel models. A
seemingly simple approach would be to consider bilevel problems where
the lower level is represented with an influence diagram. However, we
only discuss the case of convex quadratic bottom-level problems in Paper
IV, and considering MIP models instead would require accommodating
algorithms similar to those in, e.g., Fischetti et al. (2017) and Fischetti
et al. (2018).

Finally, the case studies presented in these papers should be viewed as
illustrative, and their results are not meant to be directly used to support
decision-making. Nevertheless, we find that the results of our example
problems are in line with the related literature (Ekholm and Baker, 2022;
Hynninen et al., 2019; Belyak et al., 2023), suggesting that the models can
be used to obtain sensible results for difficult decision problems. Making
the case studies more detailed and realistic would be a promising research
avenue yielding interesting policy results.
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Abstract

In this paper, we propose novel mixed-integer linear programming (MIP) formulations to

model decision problems posed as influence diagrams. We also present a novel heuristic

that can be employed to warm start the MIP solver, as well as provide heuristic solutions

to more computationally challenging problems. All of those improvements are imple-

mented in DecisionProgramming.jl, a new Julia package for modelling decision

problems as MIP equivalents using the proposed formulations. We provide computa-

tional results showcasing the superior performance of these improved formulations as

well as the performance of the proposed heuristic. Lastly, we describe a novel case study

showcasing decision programming as an alternative framework for modelling multi-stage

stochastic dynamic programming problems.

Keywords: decision problems under uncertainty, influence diagrams, decision analysis,

mixed-integer programming

1. Introduction

A powerful way to tackle complex real-life decision-making problems is to frame them

as multi-stage decision problems under uncertainty. This helps one to understand the

interactions between parts of the decision process and how uncertainty behaves from a

rigorous, quantitative standpoint. State-of-the-art approaches for modeling and solving

multi-stage decision problems stem from two main areas: decision analysis and stochastic

programming. Each field has provided time-tested modeling and solution approaches

with varying degrees of success depending on how uncertainty is modeled.

These modeling approaches require specifying probability values and measurable con-

sequences to uncertain events such that the decisions maximizing an expected utility

function value can be made. However, it remains extremely challenging to analytically



model decision problems due to the particularly interdependent nature that decision prob-

lems can exhibit. Outcomes of random events change the optimal decisions and decisions

can influence the probability distributions of random events. The task of representing

such dependencies may be equally challenging, if not more so, than finding the best

decisions.

Influence diagrams [7] provide both a formal description of a decision problem and

serve as a communication tool which requires minimal technical proficiency. Furthermore,

they are useful in conveying structural relationships of the problem in a simple manner

and thus crucially bridge the gap between quantitative specifications and qualitative

descriptions.

Due to their generality, influence diagrams pervade many modeling-based approaches

that require a formal description of relationships between uncertainty, decisions and con-

sequences. Figure 1 shows an influence diagram for the N -monitoring problem, where

N agents (A1 to AN) must decide whether to countervail an unknown load (L) based on

imprecise readings of this load from their respective sensors (R1 to RN). The chance of

failure (F ) is influenced by the unknown load and the eventual decision to countervail the

load. The final utility (T ) is calculated considering whether the agents intervened and

if a failure was observed. As such, this setting represents independent agents who must

make decisions based only on observations of the state of the world but without being

able to completely know it or share information among themselves.

L

R1

R2

R...

RN

A1

A2

A...

AN

F T

Figure 1: An influence diagram representing the N-monitoring problem. Decisions are represented by
squares, chance events by circles and consequences by diamonds

Differently from decision trees, the nodes in an influence diagram do not need to be

totally ordered nor do they have to depend directly on all predecessors. This freedom
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from dependence on all predecessors allows for the decisions to be made by, e.g., decision-

makers who partially observe a common state of information (node L in Figure 1) but

may differ in their ability to observe or are incapable of sharing information.

Unfortunately, quantitative methods employed to obtain optimal decisions from influ-

ence diagram representations typically require that some of that generality is curbed. In-

fluence diagrams are, in essence, representations of (possibly partially observable) Markov

decision processes [13]. Thus, if (i) a single decision-maker is assumed (implying a to-

tal ordering among decision nodes) and (ii) the no-forgetting assumption holds (implying

that each decision node and its direct predecessors influence all successor decision nodes),

then Markovian assumptions hold. This, in turn, enables one to solve influence diagrams

with well-established techniques, for instance, by forming the equivalent decision tree

that can be solved through dynamic programming; or by removing decision and chance

nodes from the diagram one by one [4].

As one may suspect, many problems, including that illustrated in Figure 1, violate

assumptions (i) and (ii). Indeed, there may be no memory or communication between

deciding agents (meaning that they cannot know each other’s decisions) or constraints

imposed across the diagram, such as budget limitations or logical conditions (e.g., stating

that a given action can only occur if a prerequisite project has been started/completed

in the past). All of these either violate the assumption that the previous state is “re-

membered” at a later stage or that all information influencing the decision alternatives

is known when making said decision. These limitations create severe deficiencies in rep-

resenting real-world problems.

Lauritzen and Nilsson [9] proposed an analytical framework to characterise these lim-

ited memory influence diagrams. Note that the notion of limited memory can also be

used to encompass settings with multiple decision-makers, the limited or absent sharing

of information being its defining feature (regardless of whether it is due to lack of mem-

ory or communication between decision-makers). In any case, limited-memory influence

diagrams are essentially influence diagrams that do not satisfy assumptions (i) and (ii).

However, the fact that they do not satisfy assumptions (i) and (ii) means that much more

sophisticated analysis is required for designing methods that can extract optimal deci-

sions from these diagrams. These methods involve specialised structures such as junction

trees and message-passing mechanisms.
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Existing approaches for solving influence diagrams are deficient in many ways. First,

solution methods are typically based on ad-hoc algorithm implementations that require

the user to be proficient in manipulating influence diagrams. Additionally, such meth-

ods are often designed only for problems where expected utility is maximized, with no

constraints connecting different decisions (e.g., budget/chance constraints). This limits

their capabilities in modeling risk-averse decision making. Finally, tackling the challenges

related to implementing computationally efficient methods (e.g., memory allocation, and

thread-safe parallelisation) is required for larger problems. This creates a significant entry

barrier to the wider adoption of such approaches.

It is precisely against this backdrop that the development of decision programming

[14] started. Decision programming leverages the capabilities of stochastic programming

[5] and decision analysis to model and solve multi-stage decision problems using mathe-

matical optimization techniques. In essence, decision programming exploits the expres-

siveness of influence diagrams in structuring problems to develop deterministic equiv-

alent [5] mixed-integer programming (MIP) formulations. In turn, commercial-grade,

professionally developed, off-the-shelf software can be readily utilised for solving these

problems in a relatively straightforward manner instead of relying on ad-hoc implemen-

tations. It is worth highlighting that the latter, in stark contrast with the former, tend

to be problem-specific and provide few guarantees for complying with sound software

engineering practices in terms of versioning, updating and continuous improvements.

Concomitantly, the fact that decision programming models can be formulated as MIP

problems gives rise to major benefits from the modeling perspective. In particular, de-

cision programming exploits the exceptional modeling expressiveness provided by MIP

to tackle challenging decision problems originally posed in the field of decision analysis.

Having an underpinning MIP-based approach is extremely timely, especially due to the

recent remarkable progress in MIP technology, with some estimating that the combined

hardware and software speed-ups amount to a factor of two trillion between the early

1990s and mid-2010s [2]! Thus, there is convincing evidence that MIP approaches for

decision analysis problems are practically relevant, perhaps contrary to a few decades

ago.

In this paper, we provide multiple contributions in terms of practical and methodolog-

ical aspects associated with decision programming. First and foremost, we present novel
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contributions that further improve upon the original ideas in Salo et al. [14]. Specifically,

we present a novel formulation for decision programming problems that is considerably

more efficient from a computational standpoint. This is illustrated in the computational

experiments we provide. Furthermore, we propose a heuristic inspired by the single policy

update heuristic, originally proposed in Lauritzen and Nilsson [9]. This heuristic can be

used not only to generate feasible solutions in case of more computationally challenging

problems but also can be employed to warm start the MIP model.

We also present DecisionProgramming.jl, a Julia [3] package that provides a

seamless interface for users to pose decision problems as influence diagrams. The problem

is then automatically converted into a MIP formulation using JuMP.jl [6], a Julia

package for formulating mathematical programming models which provides an interface

to a wide range of open-source and commercial mathematical optimization solvers.

Finally, we present a comprehensive case study in which we use the decision program-

ming framework to develop an optimal decision strategy for allocating preventive care

for coronary heart disease (CHD). The aim of this study is to evaluate the suitability

of decision programming for performing the cost-benefit analysis originally performed by

Hynninen et al. [8]. In Hynninen et al. [8], a set of alternative predefined testing and

treatment strategies for CHD are optimized using dynamic programming. We show how

the same problem can be solved precluding the need to define strategies a priori. This is

because all of the possible strategies are within the feasible solution set of the model and,

thus, once solved, the solution defines the optimal strategy. This showcases both the ben-

efits of posing such decision problems as MIP formulations and the range of applications

that can be tackled by decision programming.

This paper is structured as follows. Section 2 presents the technical details associated

with the decision programming framework. In Section 3, we present the novel formulation

proposed in this paper, followed by the proposed adaptation of the single policy update

heuristic presented in Section 4. In Section 5, we present details of the user interface

made available by DecisionProgramming.jl and how it allows users to implement

decision programming problems based on their influence diagrams. In Section 6, we

provide computational results showcasing the benefits of the methodological innovations

proposed in this paper and in Section 7 we describe the case study considering optimal

preventive care strategies for CHD. Lastly, in Section 8 we provide conclusions and discuss
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some potential directions for further research.

2. Decision Programming

Decision programming relies on influence diagrams, which are graphical representa-

tions of decision problems. In influence diagrams, nodes represent chance events, deci-

sions and consequences. Specifically, let G(N,A) be an acyclic graph formed by nodes in

N = C ∪D ∪ V , where C is a subset of chance nodes, D a subset of decision nodes, and

V a subset of value nodes. Value nodes represent consequences incurred from decisions

made at nodes D and chance events observed at nodes C. Each decision and chance node

j ∈ C ∪D can assume a state sj from a discrete and finite set of states Sj. For a decision

node j ∈ D, Sj represents the decision alternatives. For a chance node j ∈ C, Sj is the

set of possible outcomes.

In the diagram, arcs represent interdependency among decisions and chance events.

Set A = {(i, j) | i, j ∈ N} contains the arcs (i, j), which represent the influence between

nodes i and j. This influence is propagated in the diagram in the form of information.

That is, an arc (i, j) that points to a decision node j ∈ D indicates that the decision at

j ∈ D is made knowing the realisation (i.e., uncertainty outcome or decision made) of

state si ∈ Si, with i ∈ C ∪ D. On the other hand, an arc that points to a chance node

j ∈ C indicates that the realisation sj ∈ Sj is dependent (or conditional) on realisation

si ∈ Si of node i ∈ C ∪D.

The information set I(j) = {i ∈ N | (i, j) ∈ A} comprises all immediate predecessors

(or parents) of a given node j ∈ N . Despite being a less common terminology, we opt

for the term “information set” to highlight the role of information in the modeling of the

decision process. The decisions sj ∈ Sj made in each decision node j ∈ D depend on

their information state sI(j) ∈ SI(j), where SI(j) =
∏

i∈I(j) Si is the set of all possible

information states for node j. Analogously, the possible realisations sj ∈ Sj for each

chance node j ∈ C and their associated probabilities also depend on their information

state sI(j) ∈ SI(j).

Let us define Xj ∈ Sj as the realised state at a chance node j ∈ C. For a decision

node j ∈ D, let Zj : SI(j) → Sj be a mapping between each information state sI(j) ∈ SI(j)

and decision sj ∈ Sj. That is, Zj(sI(j)) defines a local decision strategy, which represents

the choice of some sj ∈ Sj in j ∈ D, given the information sI(j). Such a mapping can be
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represented by an indicator function I : SI(j) × Sj → {0, 1} defined so that

I(sI(j), sj) =

⎧⎪⎨
⎪⎩
1, if Zj maps sI(j) to sj, i.e., Zj(sI(j)) = sj;

0, otherwise.

A (global) decision strategy is the collection of local decision strategies in all decision

nodes: Z = (Zj)j∈D, selected from the set of all possible strategies Z.

A path is a sequence of states s = (si)i=1,...,n, with n = |C|+ |D| and

S = {(si)i=1,...,n | si ∈ Si, i = 1, . . . , n} (1)

is the set of all possible paths. We assume that the nodes C ∪ D are numbered from

1 to n such that for each arc (i, j) ∈ A, i < j. Moreover, we say that a strategy Z is

compatible with a path s ∈ S if Zj(sI(j)) = sj for all j ∈ D. We denote as S(Z) ⊆ S the

subset of all paths that are compatible with a strategy Z.

Using the notion of information states, the conditional probability of observing a given

state sj for j ∈ C is P(Xj = sj | XI(j) = sI(j)). The probability associated with a path

s ∈ S being observed given a strategy Z can then be expressed as

P(s | Z) =
(∏

j∈C
P(Xj = sj | XI(j) = sI(j))

)(∏
j∈D

I(sI(j), sj)

)
(2)

Notice that the term
∏

j∈D I(sI(j), sj) in equation (2) takes value one if the strategy Z is

compatible with the path s ∈ S, being zero otherwise. Furthermore, notice that one can

pre-calculate the probability

p(s) =

(∏
j∈C

P(Xj = sj | XI(j) = sI(j))

)
. (3)

of a path s ∈ S being observed, in case a compatible strategy is chosen.

At the value node v ∈ V , a real-valued utility function Uv : SI(v) → R maps the

information state sI(v) to a utility value Uv(sI(v)). We usually assume the utility value of

a path s to be the sum of individual value nodes’ utilities: U(s) =
∑

v∈V Uv(sI(v)). The

default objective is to choose a strategy Z ∈ Z maximizing the expected utility, which

can be expressed as

max
Z∈Z

∑
s∈S

P(s | Z)U(s). (4)

Notice that other objective functions can also be modeled. For example, Salo et al. [14]

discuss the use of the conditional value-at-risk.
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To formulate this into a mathematical optimization problem, we start by representing

the local strategies Zj using binary variables z(sj | sI(j)) that take value one if I(sI(j), sj) =

1, and 0 otherwise. We then observe that using (2) and (3), the objective function (4)

becomes

max
z

∑
s∈S

p(s)U(s)
∏
j∈D

z(sj | sI(j)).

This function is nonlinear, and is used only for illustrating the nature of the formulations.

The usefulness of this construction becomes more obvious in Section 3. Salo et al. [14]

instead replace the conditional path probability P(s | Z) in (4) with a continuous decision

variable π(s), enforcing the correct behavior of this variable using affine constraints.

With these building blocks, the problem can be formulated as a mixed-integer lin-

ear programming (MILP) model, which allows for employing off-the-shelf mathematical

programming solvers. The MILP problem presented in Salo et al. [14] can be stated as

(5)-(10).

max
Z∈Z

∑
s∈S

π(s)U(s) (5)

subject to
∑
sj∈Sj

z(sj | sI(j)) = 1, ∀j ∈ D, sI(j) ∈ SI(j) (6)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (7)

π(s) ≤ z(sj | sI(j)), ∀j ∈ D, s ∈ S (8)

π(s) ≥ p(s) +
∑
j∈D

z(sj | sI(j)) − |D|, ∀s ∈ S (9)

z(sj | sI(j)) ∈ {0, 1}, ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j). (10)

Variables π(s) are nonnegative continuous variables representing the conditional path

probability in equation (2). They take the value of the path probability p(s) in case the

selected strategy Z is compatible with the path s ∈ S and zero otherwise. Notice that

this compatibility is equivalent to observing z(sj | sI(j)) = 1 for all sj ∈ S such that

j ∈ D.

The objective function (5) defines the expected utility value, which is calculated con-

sidering only the paths that are compatible with the strategy. Constraint (6) enforces

the one-to-one nature of the mapping I(sI(j), sj), represented by the z-variables. The

correct behaviour of variables π(s) is guaranteed by constraints (7)-(9), which enforce

that π(s) = p(s) if z(sj | sI(j)) = 1 for all sj ∈ S such that j ∈ D. The term |D| in

8



(9) represents the cardinality of the set D, that is, the number of decision nodes in the

diagram. Notice that the domain of π(s) is defined in (7).

3. Improved formulations

One key challenge associated with formulation (5)–(10), and, in fact, any MILP for-

mulation, is that computational performance is strongly tied to the tightness of the

formulation. In this context, the tightness of a MILP formulation is related to how close

the linear relaxation solution is to the initial primal bound, e.g., the first integer feasible

solution value obtained by the solver during the solution process or one obtained using

primal heuristics.

Next, we present reformulations developed to enhance the numerical performance of

the decision programming formulation (5)–(10). For that, let us first define the subset of

paths

Ssj |sI(j) =
{
s ∈ S | (sI(j), sj) ⊆ s

}
.

Notice that we use the notation (sI(j), sj) to represent a portion of a path s, formed by

the combination of the information state sI(j) (which may itself be a collection of states,

if |I(j)| > 1) and the state sj. We also utilise the set operator ⊆ to indicate that the

states (sI(j), sj) are part of the path s ∈ S. Notice that the states (sI(j), sj) do not need

to be consecutive in the path s, although the ordering between sI(j) and sj is naturally

preserved in s.

Considering j ∈ D, the subset Ssj |sI(j) allows us to define the notion of locally compat-

ible paths, that is, the collection of paths s compatible with local strategies Zj for which

I(sI(j), sj) = 1. The definition of the subset Ssj |sI(j) allows us to derive the following valid

inequality for (5)–(10).

∑
s∈Ssj |sI(j)

π(s) ≤ z(sj | sI(j)), ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j). (11)

Constraint (11) states that only paths that are compatible with the selected strategy

might be allowed to have a probability different than zero. Moreover, since it is enforced

on all decision nodes, it means that this constraint guarantees that only the paths that are

compatible with the strategy Z are active. Recall that we denote this set of compatible

paths as S(Z) ⊆ S.
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As pointed out in Salo et al. [14], for expected utility maximization, constraint (9),

which prevents variables π(s) from wrongly taking value zero, is only required when some

of the utility values U(s), s ∈ S, are negative. Notice that this is otherwise prevented by

the maximization of the objective function (5), naturally steering these variables to their

upper bound values. Another way to guarantee that the variables π(s) take their correct

value, i.e., π(s) = p(s), if s ∈ S(Z), is to impose the constraint

∑
s∈S

π(s) = 1. (12)

As it will be discussed in Section 6, replacing (8) and (9) with (11) and (12) provides

considerable gains in terms of linear relaxation strengthening. Furthermore, we observe

that the computational performance can be even further improved by employing a simple

variable substitution. Recall that in the original formulation (5)-(10), variables π(s)

represent the conditional path probability P(s | Z) = p(s)
∏

j∈D z(sj | sI(j)). If we let

x(s) ∈ [0, 1], s ∈ S represent the product
∏

j∈D z(sj | sI(j)), then we can reformulate the

problem by substituting π(s) = p(s)x(s) for all s ∈ S.

Although x(s), s ∈ S, is continuous, it behaves as a binary variable which takes

value one whenever the path is compatible with the strategy and zero, otherwise. This is

analogous to the behaviour of variable π(s) ∈ [0, p(s)] in (5)–(10). We highlight that, from

a theoretical standpoint, there is no obvious reason for performing such a substitution.

On the other hand, we will show that it yields significant practical benefits in terms of

computational performance.

Using these x-variables, we can reformulate (11) as

∑
s∈Ssj |sI(j)

x(s) ≤ |Ssj |sI(j) |z(sj | sI(j)), ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j), (13)

a consequence of x(s) ∈ [0, 1] and the fact that z(sj | sI(j)) must be equal to 1 for x(s)

to be positive for s ∈ Ssj |sI(j) .

Constraint (13) can be strengthened further. We note that a path must be in the

set of compatible paths S(Z) in order for x(s) to be positive with strategy Z. Using

this information, we can infer a tighter upper bound for the number of paths that can

be active (x(s) > 0) from the set of locally compatible paths. We observe that in a

set of compatible paths S(Z), each information state sI(j) maps to exactly one decision

alternative sj for each decision node j ∈ D, in accordance with constraint (6). However,
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the set of locally compatible paths for a given pair of information state and decision node

state (sI(j), sj) of decision node j ∈ D, includes paths for all combinations (sI(k), sk) of

information states and decisions for the other decision nodes k ∈ D \ {j}. Hence, only

a fraction of the locally compatible paths can be active. The fraction is linked to the

number of states |Sk| of the other decision nodes k ∈ D \ {j}. The number of locally

compatible paths that will also be active, i.e., |Ssj |sI(j) ∩ S(Z)| can be defined as

|Ssj |sI(j) ∩ S(Z)| = |Ssj |sI(j)|
Πk∈D\({j}∪I(j))|Sk| . (14)

Notice that the calculation of the number of active paths must take into account the fact

that some decision nodes may be part of the information state I(j) of node j ∈ D, and,

as such, will have their states observed (or fixed) in the set Ssj |sI(j). Therefore, these

decision nodes must be excluded from the product in the denominator in equation (14).

Using (14), we can reformulate (13) into the strengthened form

∑
s∈Ssj |sI(j)

x(s) ≤ |Ssj |sI(j)|
Πk∈D\({j}∪I(j))|Sk|z(sj | sI(j)), ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j). (15)

One last aspect that can be taken into account is that, depending on the problem

structure, some sequence of states s = (si)i=1,...,n forming a path may never be observed

and can be preemptively filtered out from the set of paths S. This is the case, for example,

in problems where earlier decisions or uncertain events dictate whether alternatives or

uncertainties are observed. For instance, an initial decision regarding whether or not

to build an industrial plant naturally restricts subsequent decisions regarding capacity

expansion. Analogously, it may be that an uncertain production rate is only observed if

one decides to build the production facility in the first place. To prevent the assembling of

these unnecessary paths, we consider a set of forbidden paths, which, once removed, lead

to a set S∗ ⊆ S of effective paths. Notice that these forbidden paths have probability zero

by the structure of the problem, and therefore their removal does not affect the expected

utility nor the constraints of the model. Furthermore, their removal allows for significant

savings in terms of the scale of the model.

One issue emerges in settings where S∗ ⊂ S regarding the term (14). Notice that the

bound is based on the premise that we can infer the total number of paths by considering

the Cartesian product of the state sets Sj, j ∈ N . However, as forbidden paths are

removed, some of the x-variables corresponding to paths s ∈ Ssj |sI(j) might be removed,

11



making inequality (15) loose. A simple safeguard for this is to consider

Γ(sj|sI(j)) = min

{
|S∗

sj |sI(j) |,
|Ssj |sI(j)|

Πk∈D\({j}∪I(j))|Sk|
}

(16)

and reformulate (15) as

∑
s∈Ssj |sI(j)

x(s) ≤ Γ(sj|sI(j))z(sj | sI(j)), ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j). (17)

Combining the above, we can reformulate (5)–(10) as follows.

maximize
Z∈Z

∑
s∈S∗

U(s)p(s)x(s) (18)

subject to
∑
sj∈Sj

z(sj | sI(j)) = 1, ∀j ∈ D, sI(j) ∈ SI(j) (19)

∑
s∈Ssj |sI(j)

x(s) ≤ Γ(sj|sI(j))z(sj | sI(j)), ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j) (20)

∑
s∈S∗

p(s)x(s) = 1, (21)

0 ≤ x(s) ≤ 1, ∀s ∈ S∗ (22)

z(sj | sI(j)) ∈ {0, 1}, ∀j ∈ D, sj ∈ Sj, sI(j) ∈ SI(j). (23)

where Γ(sj|sI(j)) is defined as in (16). Note that this formulation preserves the (mixed-

integer) linear nature of (5)–(10).

As discussed earlier, one of the main advantages of the decision programming formu-

lation is the ability to incorporate objectives and constraints involving arbitrary utility

functions and probability distributions within the model. Salo et al. [14] demonstrate this

by proposing a model that considers conditional value-at-risk as one of the utility func-

tions. The same can be achieved with our proposed formulation, by simply substituting

p(s)x(s) in place of variables π(s).

The path-based structure of (5)–(10) makes formulating chance and budget con-

straints straightforward. For modeling chance constraints, we can define S̃ as the set of

“undesirable" paths, the total probability of which must not exceed ρ. The corresponding

chance constraint is then ∑
s∈S̃

x(s)p(s) ≤ ρ. (24)

Likewise, the set S̃ could further be defined as, e.g., the set of paths with a small

utility U(s) ≤ uthreshold. With ρ = 0, (24) can be seen as a budget constraint, stating
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that for all compatible paths s ∈ S(Z) with p(s) > 0, the utility U(s) must be at least

uthreshold.

4. Primal heuristic: single policy update (SPU)

While our approach of formulating influence diagrams into mixed-integer linear models

does allow us to use powerful off-the-shelf solvers, it is still hindered by the well-known fact

that solving such problems is NP-hard [15]. To make MIP solvers more efficient, primal

heuristics are used to obtain and improve integer solutions. Obtaining good starting

integer solutions can have a significant impact on the performance of branch-and-bound

solvers, as it helps in pruning poor-quality solutions early.

Decision programming is based on limited-memory influence diagrams (LIMIDs) and

solution approaches presented in previous literature can be used to obtain solutions to

these problems. A notable contribution of Lauritzen and Nilsson [9] is the single policy

update (SPU) heuristic for obtaining “locally optimal” strategies in the sense that the

corresponding solutions cannot be improved by changing only one of the local strategies

Zj(sI(j)).

Our proposed heuristic is loosely based on the ideas in Lauritzen and Nilsson [9], as

described in Algorithm 1. The first step of the heuristic is to obtain a random strategy Z

(note that this too is a heuristic, albeit a very simple one). Additionally, we initialize the

lastImprovement variable that will be used to stop the algorithm after finding a local

optimum. The strategy Z is then iteratively improved by examining each information

state sI(j) ∈ SI(j) for each decision node j ∈ D in order, choosing the local strategy

Z ′
j(sI(j)) maximizing the expected utility. We obtain incrementally improving strategies

by replacing the local strategy Zj(sI(j)) with Z ′
j(sI(j)) whenever the change results in an

increase in expected utility. Finally, the pair (j, sI(j)) is stored in the lastImprovement

variable if an improvement has been observed.

This process of locally improving the strategy is performed repeatedly for all pairs

(j, sI(j)) until no improvement is made during a whole iteration through the set of such

pairs, that is, (j, sI(j)) = lastImprovement. The number of possible strategies Z is finite,

and the algorithm thus converges in a finite number of iterations. It is also easy to see

that at termination, there is no possible local improvement and the strategy Z is thus,

in that sense, locally optimal. Lauritzen and Nilsson [9] show that for soluble LIMIDs,

this heuristic results in a globally optimal solution. However, influence diagrams are not
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Z ← randomstrategy();
lastImprovement ← (undef, undef);
while true do

for j ∈ D, sI(j) ∈ SI(j) do
if (j, sI(j)) = lastImprovement then

return Z;
else

Z ′
j(sI(j)) ← bestLocalStrategy(Z, j, sI(j));

Z ′ ← modifyStrategy(Z,Z ′
j(sI(j)));

if EU(Z ′) > EU(Z) then
Z ← Z ′;
lastImprovement ← (j, sI(j));

end
end

end
end

Algorithm 1: The single policy update heuristic

generally soluble. The performance of the heuristic in DecisionProgramming.jl is explored

in Section 6.

5. Julia interface

The ideas and formulations presented in this paper have been implemented as a Julia

[3] package. The main purpose of the package is to provide an interface through which a

user can build an influence diagram and automatically convert it to a MILP model that

can be solved using an off-the-shelf solver. This brings us to the main reasons for choosing

Julia as the language of the package. Thanks to JuMP [6] and MathOptInterface [10],

implementing optimization problems in a general form is straightforward, and the models

constructed in this way can be passed to many different solvers.

In order to create a user-friendly package that precludes a deeper understanding of

MILP modeling by the user, we implemented a structure for influence diagrams and an

interface for constructing them, demonstrated in Figure 3. In that, we illustrate the

implementation of the pig farm problem, originally proposed in Lauritzen and Nilsson

[9]. The influence diagram of the pig farm problem is presented in Figure 2.

The influence diagram structure consists of nodes and their state spaces and infor-

mation sets, as well as the corresponding probabilities and utility values. The interface

includes functions for adding these elements into the influence diagram and type struc-

tures that guide the user to include the required information. For example, all node
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Figure 2: The influence diagram of the pig farm problem.

types require the user to define an information set for the node, even if it is empty (in

the case of a root node). In turn, the function for adding nodes stops the user from

accidentally including a node in its own information set, ensures that the names of all

nodes are unique, and warns about redundant nodes.

� �
using JuMP, Gurobi, DecisionProgramming

const N = 4

diagram = InfluenceDiagram()

# Syntax:
# ChanceNode(<name>, <information set>, <states>)
# DecisionNode(<name>, <information set>, <states>)
# ValueNode(<name>, <information set>)

add_node!(diagram, ChanceNode("H1", [], ["ill", "healthy"]))
for i in 1:N-1

# Testing result
add_node!(diagram, ChanceNode("T$i", ["H$i"], ["positive", "negative"]))
# Decision to treat
add_node!(diagram, DecisionNode("D$i", ["T$i"], ["treat", "pass"]))
# Cost of treatment
add_node!(diagram, ValueNode("C$i", ["D$i"]))
# Health of next period
add_node!(diagram, ChanceNode("H$(i+1)", ["H$(i)", "D$(i)"], ["ill", "healthy"]))

end
add_node!(diagram, ValueNode("MP", ["H$N"]))

generate_arcs!(diagram)
� �

Figure 3: Code to generate the nodes in the pig farm problem [9]

Furthermore, specialised structures and functions (Figure 4) for defining and adding

chance nodes’ conditional probabilities and value nodes’ utility values ensure that these

matrices have correct dimensions, that the probabilities sum to one and that utility values

are defined for all information states of value nodes. The interface also includes a function

15



for generating the arcs in the diagram and giving the nodes a topological order based on

the information sets that the user has defined for them. This function also throws an

error if the diagram has a directed cycle.

� �
# Add probabilities for node H1
add_probabilities!(diagram, "H1", [0.1, 0.9])

# Declare probability matrix for health nodes H_2, ... H_N
X_H = ProbabilityMatrix(diagram, "H2")
X_H["healthy", "pass", :] = [0.2, 0.8]
X_H["healthy", "treat", :] = [0.1, 0.9]
X_H["ill", "pass", :] = [0.9, 0.1]
X_H["ill", "treat", :] = [0.5, 0.5]

# Declare probability matrix for test result nodes T_1...T_{N-1}
X_T = ProbabilityMatrix(diagram, "T1")
X_T["ill", "positive"] = 0.8
X_T["ill", "negative"] = 0.2
X_T["healthy", "negative"] = 0.9
X_T["healthy", "positive"] = 0.1

for i in 1:N-1
add_probabilities!(diagram, "T$i", X_T)
add_probabilities!(diagram, "H$(i+1)", X_H)

end

for i in 1:N-1
add_utilities!(diagram, "C$i", [-100.0, 0.0])

end

add_utilities!(diagram, "MP", [300.0, 1000.0])

generate_diagram!(diagram)
� �

Figure 4: Code to parametrize and generate an influence diagram

After the user has successfully generated an influence diagram, they can generate the

model directly from the diagram structure, as shown in Figure 5. The model is gen-

erated using specialised functions for declaring decision variables and constraints which

merely require the (empty) JuMP model and the influence diagram structure as parame-

ters. These functions include optional keyword arguments which allow the user to define

forbidden and fixed subpaths, probability cuts and probability scaling for better computa-

tional performance. A significant advantage of implementing the framework using JuMP

is that more advanced users can easily extend these models by adding new variables or

constraints as needed. All of the features presented in this paper are implemented in the

framework. These include valid inequalities as lazy constraints, a conditional Value-at-

Risk objective function and the single policy update heuristic.

Finally, the results of the optimization model can be extracted using a variety of

functions. Figure 6 showcases arguably the most important of these, namely the functions
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� �
model = Model(Gurobi.Optimizer)
z = DecisionVariables(model, diagram)
x_s = PathCompatibilityVariables(model, diagram, z)
EV = expected_value(model, diagram, x_s)
@objective(model, Max, EV)
optimize!(model)

� �

Figure 5: Code to solve the pig farm problem

for showing the optimal strategy. Other functions for analyzing results allow printing the

distribution and statistics for the path utilities, and printing so-called state probabilities,

that is, probabilities of given states occurring with the chosen strategy. For instance, in

the pig farm problem, with the optimal strategy, the probability of the pig being healthy

in stages 2, 3 and 4 is 73%, 70.5% and 69.5%, respectively.

� �
Z = DecisionStrategy(z)
S_probabilities = StateProbabilities(diagram, Z)

print_decision_strategy(diagram, Z, S_probabilities)
# Output:
#
# State(s) of T1 Decision in D1
#
# positive pass
# negative pass
#
#
# State(s) of T2 Decision in D2
#
# positive treat
# negative pass
#
#
# State(s) of T3 Decision in D3
#
# positive treat
# negative pass
#

� �

Figure 6: Code to obtain the optimal strategy for the pig farm problem

6. Computational experiments

We present a collection of computational experiments carried out to assess the per-

formance of the proposed reformulation against the original formulation presented in

Salo et al. [14]. Hereinafter, we use v1.2 to refer to our proposed model version as

presented in (18)-(23) and v0.1 to refer to (5)-(10). These refer to the versions of

DecisionPrograming.jl these formulations were available in.
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In addition, we present computational results highlighting the performance of the pro-

posed SPU heuristic. Those are tested considering (i) a modified version of the pig farm

problem [9] in which we can artificially augment the number of time periods and generate

input parameters randomly; (ii) the N-monitoring problem, as proposed in Salo et al. [14],

in which we also can artificially augment the number of decision agents and randomly

generate instances. All experiments are run using 16GB of memory and 8 threads on an

Intel Xeon Gold 6248 CPU and the code can be found in https://github.com/gamma-

opt/DecisionProgramming.jl.

6.1. Problem size

First, we compare the model sizes of the two formulations presented in Sections 2 and

3. In both formulations, the number of variables is the same. There are
∑

j∈D |Sj||SI(j)|
z-variables and |S| path variables, either π or x, depending on the formulation. As for

the number of constraints, the formulation (5)-(10) has
∑

j∈D |SI(j)| constraints (6), 2|S|
bounds for π-variables, |D||S| constraints (8) and |S| constraints (9). Arranging the

terms, the total number of constraints becomes

(3 + |D|)|S|+
∑
j∈D

|SI(j)|. (25)

The formulation (18)-(23) has
∑

j∈D |SI(j)| constraints (19),
∑

j∈D |Sj||SI(j)| con-

straints (20), one constraint (21) and 2|S| bounds for x-variables. Arranging the terms,

the total number of constraints becomes

2|S|+
∑
j∈D

(1 + |Sj|)|SI(j)|. (26)

We note that |S| = ∏
j∈C∪D |Sj| and that especially with a large number of nodes, the

first term becomes impractically large in both (25) and (26). The increase in the number

of path-related constraints is exponential, while the increase in the rest of the constraints

is often linear, as shown in the following two example problems.

6.1.1. Pig farm

For the pig farm example presented in Lauritzen and Nilsson [9], we observe that the

problem consists of 3n+ 1 decision and chance nodes, where n is the number of decision

stages, and that |Sj| = 2 for all nodes j ∈ C ∪ D. Note that this is slightly different

to Lauritzen and Nilsson [9], where the length of the problem is tied to the number of

health nodes. The length of a problem with n decision nodes would then be n+ 1.
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With these observations, |S| = 23n+1 and |D| = n. Thus, the number of constraints in

Eq. (25) becomes (3 + n)23n+1 + 2n and the corresponding number in Eq. (26) becomes

23n+2 + 6n.

6.1.2. N-monitoring

We can perform a similar analysis for the N-monitoring example presented in Salo et al.

[14]. The problem consists of 2n + 2 decision and chance nodes, where n is the number

of report-action pairs. As in the pig farm problem, |Sj| = 2 for all nodes j ∈ C ∪D.

With these observations, |S| = 22n+2 and |D| = n. Thus, the number of constraints in

Eq. (25) becomes (3 + n)22n+2 + 2n and the corresponding number in Eq. (26) becomes

22n+3 + 6n.

6.2. Solution times

(a) The pig farm problem (b) The N-monitoring problem

Figure 7: The solution times of the two example problems with different number of decision nodes using
different formulations. Notice the logarithmic y-axis.

Figure 7 shows the increase in average solution times over 50 instances as the number

of decision stages increases in the two example problems. For the original formulation (5)-

(10), Salo et al. [14] show that solution times are greatly improved by adding a probability

cut
∑

s∈S π(s) = 1 as a lazy constraint to the model. A lazy constraint is a constraint that

is added to the model formulation when it is deemed violated by an incumbent feasible

solution found in the branch-and-cut tree search, instead of adding it from the beginning

of the solution process. This approach is thus used in the computational experiments for

the original formulation. For (18)-(23), a similar constraint is included in the formulation

by default. However, we additionally analyze an instance of the the reformulated model

(18)-(23), where constraint (21) is implemented as a lazy constraint.
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For both problems, it seems that the rate of increase in the solution times quickly

renders the original formulation (5)-(10) computationally intractable, as seen in Fig 7.

This was also noted by Salo et al. [14] in their computational results. The solution times

for the improved formulation (18)-(23) using locally compatible path sets seem to increase

at a slower rate than for the original formulation. Finally, the lazy probability cut that

was found to improve solution times in Salo et al. [14] is detrimental to computational

performance in the new formulation (18)-(23).

v0.1 v1.2
10th percentile 15.4 1.00
median 26.4 1.21
90th percentile 31.1 1.81
mean 25.0 1.34

Table 1: Statistics of the root relaxation quality relative to the optimal solution for 50 randomly generated
pig farm problems with 5 decision stages. The solutions are scaled so that a value of 1 corresponds to
the optimal solution.

In Table 1, we present statistics on the LP relaxation quality. As discussed before,

the hypothesis is that the formulation (18)-(23) (implemented in v1.2 of the package)

is considerably tighter than (5)-(10) (implemented in v0.1). The results from the pig

farm problem strongly support this, as more than half of the LP relaxation solutions for

the novel formulation are within 25% of the optimal solution, while the solutions using

(5)-(10) are orders of magnitude further from the optimal solution.

Figure 8 shows the process of improving solutions in the single policy update (SPU)

heuristic. For the 50 instances in this test set, the last solution is found within eight

seconds, and the solution is the global optimum in all but one of the instances. Note

that Lauritzen and Nilsson [9] showed that this version of the pig farm problem is not

soluble, and thus the SPU heuristic is not guaranteed to find the optimal solution. We

observe that while the single policy update heuristic is successful in finding good initial

solutions quickly, the effect of providing the solver with these initial solutions is negligible

(see Figure 7). Thus, our results suggest that improving the LP relaxation bound has a

much greater impact on improving the solution time.

7. Case study: optimal preventive healthcare for CHD

One of the first frameworks for medical decision-making considering whether to treat,

test or not treat was developed by Pauker and Kassirer [12]. This framework provides

20



Figure 8: The median and first and third quartiles of solutions found by the SPU heuristic in 50 randomly
generated pig farm problems with 6 decision stages. The solutions are scaled so that a value of 1
corresponds to the optimal solution.

0% 100%

do not treat test treat

Tt Ttt

Figure 9: Testing (Tt) and test-treatment (Ttt) thresholds.

an analytical basis for optimal testing and treatment strategies. They developed two

thresholds, referred to as “testing” and “test-treatment” thresholds. The thresholds are

probability cut-offs and they divide subjects into three groups: if the risk of disease is

below the “testing” threshold, treatment and testing should be withheld, if it is above

the “test-treatment” threshold, treatment should be given and if the risk falls in between

these thresholds then a diagnostic test should be performed and the treatment decision

made based on its results. The thresholds are visualised in Figure 9.

In this case study we use decision programming to optimize the use of traditional and

genetic testing to support the targeting of statin medication treatment for preventing

coronary heart disease (CHD). This case study is replicated from Hynninen et al. [8],

where the authors developed a testing and treatment strategy by optimizing net monetary

benefit (NMB), a cost-benefit objective consisting of the health outcomes and testing costs

within a 10-year time horizon.
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The decision process stems from the patient’s state of health, represented by a chance

event H describing whether the patient will or will not have a CHD event in the following

10 years. The probability of a CHD event is assumed to be described by a prior risk

estimate R0 based on factors such as the age and sex of the patient. The likelihood

of a correct prognosis can be improved by carrying out tests on traditional risk factors

(TRS), genetic risk factors (GRS) or both. Based on their prognosis, a decision is made

on whether a patient is subjected to preventive treatment with statin medication.

In Hynninen et al. [8], six predefined testing and treatment strategies were evaluated

independently. In each of these strategies, the optimal allocation of tests and treatment

according to risk estimates was obtained by solving the associated decision tree via dy-

namic programming. The six strategies considered in Hynninen et al. [8] were: (i) no tests

and no treatment (‘No treatment’); (ii) using prior risk to allocate treatment (‘Treatment

optimized’); (iii) performing TRS on optimized patient segment and allocating treatment

based on updated risk estimates (‘TRS optimized’); (iv) performing GRS on optimized

patient segment and allocating treatment based on updated risk estimates (‘GRS op-

timized’); (v) performing TRS on optimized patient segment and based on its results

performing GRS optimally to allocate treatment (‘TRS & GRS optimized’); (vi) per-

forming GRS on optimized patient segment and based on its results performing TRS

optimally to allocate treatment (‘GRS & TRS optimized’).

Essentially, this comprises determining optimal “testing” and “test-treatment” thresh-

olds (cf. Figure 9) for TRS and GRS from the perspective of net monetary benefit (NMB)

for each strategy (i-vi). Interestingly, the threshold values for GRS in Hynninen et al. [8]

were different than the ones found in the study presented in Tikkanen et al. [16]. This

is due to the different perspectives – pure patient welfare versus NMB – that the studies

were conducted from. For example, the national health care guidelines for allocating

treatment were not considered in the optimization in Hynninen et al. [8]. This showcases

that the two thresholds described in Pauker and Kassirer [12] are not unique for a given

disease and prognostic test because the perspective of the study affects the threshold

values.

Analogously, our decision programming model determines an optimal decision strategy

for allocating preventive care for CHD. The data and structure of the problem are the

same as those utilised in Hynninen et al. [8]. However, due to the flexibility of decision
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programming, the strategies (i-vi) do not need to be predefined. Instead, we can optimize

the design of the strategy simultaneously with the threshold values, because all of these

strategies are within the feasible solutions of the model.

The problem setting is such that the patient is assumed to have a prior risk estimate

R0. A risk estimate is a prediction of the patient’s chance of having a CHD event in the

next ten years. The risk estimates are grouped into risk levels, which range from 0% to

100% with a suitable discretization, e.g., SR0 = {0%, 1%, ..., 99%, 100%}. We note that it

might be beneficial to consider a less trivial discretization that is finer in the region where

most of the probability mass is assumed to lie and coarser elsewhere. Nevertheless, we

chose to proceed as such since it requires no information on the probability distributions.

The first testing decision T1 is made based on the prior risk estimate. This entails deciding

whether to perform TRS or GRS or if no testing is needed. If a test is conducted, the

risk estimate is updated (R1) and based on the new information a second testing decision

T2 follows. It entails deciding whether further testing should be conducted or not. The

second testing decision is constrained so that the same test which was conducted in the

first stage cannot be repeated. If a second test is conducted, the risk estimate is updated

again (R2). The treatment decision TD (dictating whether the patient receives preventive

statin medicine or not) is made based on the resulting risk estimate of this testing process.

Note that if no tests are conducted, the treatment decision is made based on the prior

risk estimate. Figure 10 provides an influence diagram for the decision problem.

R0 R1 R2

H

TDT1 T2

TC

HB

Figure 10: Influence diagram for the optimising the preventive care decision strategy for CHD.

Node H represents the uncertainty of whether the patient has a CHD event or re-

mains healthy during the 10-year time frame. Node H has the prior risk level R0 in its

information set because a premise of the modeling proposed in Hynninen et al. [8] is that
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the prior risk accurately describes the probability of having a CHD event, i.e.,

P (H = CHD | R0 = α) = α.

On the other hand, nodes R1 and R2 represent the updated risk level after the first and

second test decisions, respectively. If a test is conducted, the risk estimate is updated

using the Bayes’ rule

P (CHD | test result) =
P (test result | CHD)× P (CHD)

P (test result)
,

where the conditional probabilities P (test result | CHD) are from Abraham et al. [1]

and the probability of having a CHD event, denoted by P (CHD), is the prior risk level

R0 or the updated risk level R1, depending on whether it is the first or second test in

question. The denominator P (test result) is calculated as a sum of the numerator and

P (test result | no CHD)×P (no CHD), where P (no CHD) = 1−P (CHD). As the states

of nodes Ri, i ∈ {0, 1, 2}, represent risk levels, the probability of a state in these nodes is

the probability of the given test updating the risk estimate to that level from the previous

estimate.

The first and second testing decisions are represented by T1 and T2, respectively. Since

conducting the same test twice is forbidden, all paths where the same test is repeated

in T1 and T2 are included in the set of forbidden paths (cf. Section 3). Furthermore,

the forbidden paths include all paths where the first testing decision T1 is to not perform

testing but then the second testing decision T2 is to perform a test. This is because the

information yielded from performing only one test is not affected by whether the test is

performed in the first or second stage of testing. Therefore, forbidding the paths where

no test is performed in T1 and a test is performed in T2 reduces redundancy in the model

without information loss. The final treatment decision is represented by node TD, where

the options are to provide or withhold treatment. The treatment decision is made based

on the updated risk estimate represented by node R2.

Since the first node in the influence diagram presented in Figure 10 is the chance

node R0, any decision strategy would be conditioned on its realisation. This leads to a

natural separability of the problem, meaning that it can be solved for individual risk levels

0%, 1%, . . . 100%. This has the benefit of allowing the calculations to be parallelised, at

the expense of potentially causing inconsistencies related to e.g., multiple solutions in the

MIP problem or rounding-induced errors.
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Population
0% - 100%

>60% (59%)

8-60%
(10-59%)

<8% (10%)

Treatment

TRS

No treatment

>21% (22%)

16-21%
(17-22%)

<16% (17%)

Treatment

GRS

No treatment

≥19% (19%)

<19% (19%)

Treatment

No treatment

Figure 11: Optimal strategy obtained by our model (in parentheses, the original value from Hynninen
et al. [8])

An interesting result is that the optimal strategy found by our model is the same

strategy that was deemed the best among strategies (i-vi) in Hynninen et al. [8]. In a

way, this provides optimality guarantees to their results, which, in principle, they could

not have determined without exhaustively testing all possible (9) testing strategies. In

addition, the optimal thresholds from our model correspond closely to those in Hynninen

et al. [8]. Figure 11 illustrates the strategy obtained by our model, indicating also the

thresholds found in Hynninen et al. [8] for comparison. We are confident that the small

differences in the threshold values are simply artefacts related to the way the discretization

(i.e., rounding) was performed.

8. Conclusions

In this paper, we expand on the ideas originally proposed in Salo et al. [14] providing

multiple methodological enhancements. These enhancements include a novel and more

efficient formulation, valid bounds to tighten relaxations, and a heuristic which can be

used to find feasible solutions and, consequently, to warm start the MIP solver. We

also introduce DecisionProgramming.jl, a Julia package that allows representing

decision problems as MIP models.

Furthermore, we conduct a novel case study based on the study originally proposed

by Hynninen et al. [8]. Our objective is to demonstrate that our package can be used

in settings which would normally require resorting to more ad-hoc computational tools

and that it lends itself to be a general and accessible tool for practitioners. We believe

that this intuitive and accessible interface, using JuMP.jl, a state-of-the-art mathemat-
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ical programming modeling package, will allow for a much wider range of practitioners

and researchers to have access to mathematical optimization-based tools for supporting

decision-making. Furthermore, this will create novel inroads for the use of mathemati-

cal optimization in the area of decision analysis at large, potentially unveiling new and

promising directions for future developments.

In terms of alternative further developments, we see several directions that deserve

further investigation. First, decision programming as a modeling framework is still in

its infancy, and, consequently, many obstacles are still to be overcome for its widespread

adoption. One of these obstacles is computational requirements. Decision programming

models grow large as the number of nodes and/or states increase, and thus it would

greatly benefit from alternative ideas that can tackle such large-scale problems. These

can be, for example, related to alternative formulations that convert the influence diagram

into an intermediate structure and employ ideas from Bayesian inference to yield a more

compact MIP model (see Parmentier et al. [11]). Another direction worth exploring is

the employment of decomposition methods, in particular, those which allow for a delayed

generation of structural elements of the model, in our case the paths s ∈ S (see Section

2). Another interesting avenue would be to pursue methods that can reap benefits from

employing parallelization, given the increasing availability of high-performance computing

clusters.
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Abstract

This paper focuses on a mixed-integer programming formulation for influence diagrams, based on a gradual rooted junction tree

representation of the diagram. We show that different risk considerations, including chance constraints and conditional value-at-

risk, can be incorporated into the formulation with targeted, appropriate modifications to the diagram structure. The computational

performance of the formulation is assessed on two example problems and is found to be highly dependent on the structure of the

junction tree.

Keywords: influence diagram, mixed-integer programming, risk-aversion

1. Introduction

Influence diagrams (ID) [11] are an intuitive structural rep-

resentation of decision problems with uncertainties and inter-

dependencies between random events, decisions and conse-

quences. Traditional solution methods for influence diagrams

[25] often require strong assumptions such as the no-forgetting

assumption. Lauritzen and Nilsson [16] present the notion of

limited memory influence diagrams (LIMID) that, albeit more

general in terms of representation capabilities, do not satisfy

the no-forgetting assumption and, therefore, are not amenable

to these traditional methods.

The algorithms presented in the literature for solving de-

cision problems represented as IDs are mostly suited only to

problems where an expected utility function is maximized and

no additional constraints are considered. Thus, often risk con-

siderations are encoded in the utility function itself, by making

it concave using, e.g., utility extraction techniques [4, 20, 8].

Very often, utility functions represent monetary values, such

as costs or revenues. In that case, maximizing expected utility

assumes a risk-neutral stance from the decision-maker. How-

ever, decision-makers may still have different risk tolerance

profiles, which must be represented in the decision process.

There are numerous ways to incorporate risk aversion into

decision models without requiring utility extraction techniques.

A typical method is to minimize a risk measure instead of ex-

pected utility [18]. A commonly used measure is the Condi-

tional Value-at-Risk (CVaR), which measures the expected loss

value in the α-tail, α being a confidence level parameter [22].

Another typical way of incorporating risk aversion is to use con-

straints such as those related to chance events or budget viola-

tions [2]. Both mentioned methods have been used widely in

various applications (See, e.g., [6, 27, 13]). The main challenge

with all of these is that they connect different decisions so that

∗Corresponding author: fabricio.oliveira@aalto.fi

methods based on local computations (e.g., decision trees) can-

not be straightforwardly employed.

Recently, two different mixed-integer programming (MIP)

reformulations for influence diagrams have emerged, likely

stemming from the considerable computational improvements

in MIP solution methods. The reformulation considered in this

paper is originally presented in Parmentier et al. [21], where

the authors first show how to convert a LIMID representing

an expected utility maximization problem into a gradual rooted

junction tree. This junction tree consists of clusters of nodes

from the LIMID and is reformulated as a MIP problem using

marginal probability distributions of nodes within each cluster.

In contrast, Salo et al. [23] present decision programming,

which directly reformulates a LIMID as a mixed-integer lin-

ear programming (MILP) formulation without the intermediate

clustering step of forming a junction tree. The main advan-

tage of decision programming is that its formulation can be

adapted to minimize (conditional) value-at-risk, and its path-

based MILP formulation makes it easy to consider different

constraints, as discussed in Hankimaa et al. [10].

Comparing the two approaches, the clustering step employed

in Parmentier et al. [21] generally results in considerably im-

proved computational performance compared to decision pro-

gramming. Against this backdrop, this paper presents an ap-

proach to incorporate the risk measures and constraints from

Salo et al. [23] and Hankimaa et al. [10] in the rooted junction

tree reformulation proposed by Parmentier et al. [21]. This al-

lows us to enjoy the modelling flexibility of Decision Program-

ming while reaping the computational benefits of the junction

tree reformulation.

In Section 2, we present background on (limited memory)

influence diagrams and the MIP reformulations of such dia-

grams. Section 3 continues with extending the rooted junction

tree-based reformulation to consider different risk measures and

constraints, demonstrated in two example problems in Section

4. Finally, Section 5 concludes the paper with ideas on future

research directions and the potential of reformulating influence



diagrams as MIP problems.

2. Background

2.1. Pig farm problem

The pig farm problem is an example of a partially observable

Markov decision process (POMDP) and is used throughout this

paper as the running example to illustrate the proposed develop-

ments. Cohen and Parmentier [3] further discuss the modelling

of POMDPs using the methodology from Parmentier et al. [21],

but we keep our focus on the more general formulations pre-

sented in the latter.

In the pig farm problem [16], a farmer is raising pigs for a

period of four months after which the pigs will be sold. During

the breeding period, a pig may develop a disease, which nega-

tively affects the retail price of the pig at the time they are sold.

In the original formulation, a healthy pig commands a price of

1000 DKK and an ill pig commands a price of 300 DKK. Dur-

ing the first three months, a veterinarian visits the farm and tests

the pigs for the disease. The specificity (or true negative rate)

of the test is 80%, whereas the sensitivity (true positive rate) is

90%. Based on the test results, the farmer may decide to in-

ject a medicine, which costs 100 DKK. The medicine cures an

ill pig with a probability of 0.5, whereas an ill pig that is not

treated is spontaneously cured with a probability of 0.1. If the

medicine is given to a healthy pig, the probability of developing

the disease in the subsequent month is 0.1, whereas the proba-

bility without the injection is 0.2. In the first month, a pig has

the disease with a probability of 0.1.

2.2. Influence Diagrams

An influence diagram is a directed acyclic graph G = (N, A),

where N is the set of nodes and A is the set of arcs. Let

N = NC ∪ ND ∪ NV be the set of chance nodes NC , value

nodes NV and decision nodes ND in the influence diagram. Let

I( j), j ∈ N, denote the information set (also often called par-

ents) of j, i.e., nodes from which there is an arc to j. The in-

fluence diagram of the pig farm problem is presented in Figure

1.

Each node j ∈ N has a discrete and finite state space S j

representing possible outcomes. The outcome (i.e., state) s j of

a stochastic node m ∈ NC ∪ NV is a random variable with a

probability distribution P(Xm = sm | XI(m) = sI(m)), where the

notation Xj = s j means that the node(s) j attain the state(s) s j.

The states of a value node v ∈ NV represent different outcomes

that have a utility value u(sv) associated with them. The out-

come of a decision node d ∈ ND is determined by a decision
strategy δ(sd | sI(d)) : S I(d) ∪ S d → {0, 1}.

The solution of an influence diagram is a decision strategy

that optimizes the desired metric, typically expected utility, at

value nodes. A common additional assumption is perfect recall,

meaning that previous decisions can be recalled in later stages.

Under this assumption, the optimal decision strategy may be

obtained by arc reversals and node removals [24] or dynamic

programming [26], for example.

Perfect recall is a rather strict assumption and in many appli-

cations, it does not hold. This challenge is circumvented with

limited memory influence diagrams [16]. Many algorithms for

solving the decision strategy that maximizes the expected util-

ity have been developed, such as the single policy update [16],

multiple policy updating [17], branch and bound search [12]

and the aforementioned methods converting the influence dia-

gram to a MI(L)P [21, 23].

2.3. Rooted Junction Trees

An influence diagram G = (N, A) can be represented as a

directed rooted tree G = (V ,A ) composed of clusters C ∈
V , which are subsets of the nodes of the ID, that is, C ⊂ N.

Both G and G are directed acyclic graphs whose vertices are

connected with directed arcs in A and A , respectively. The

main difference between these diagrams lies in the nature of the

vertices. In an influence diagram, the set of nodes N consists

of individual chance events, decisions and consequences, while

the clusters in V comprise multiple nodes, hence the notational

distinction between N and V .

In order to reformulate this tree into a MIP model, we impose

additional conditions, making G a gradual rooted junction tree.

Definition 2.1 states the necessary properties of a gradual rooted

junction tree.

Definition 2.1. A directed rooted tree G = (V ,A ) consisting
of clusters C ∈ V of nodes j ∈ N is a gradual rooted junction
tree corresponding to the influence diagram G if

(a) given two clusters C1 and C2 in the junction tree, any clus-
ter C on the unique undirected path between C1 and C2

satisfies C1 ∩C2 ⊂ C;
(b) each cluster C ∈ V is the root cluster of exactly one node

j ∈ N (that is, the root of the subgraph induced by the
clusters with node j) and all nodes j ∈ N appear in at
least one of the clusters;

(c) and, for each cluster, I( j) ∈ C j, where C j is the root cluster

of j ∈ N.

A rooted tree satisfying part (a) in Definition 2.1 is said to

satisfy the running intersection property. This condition is suf-

ficient for making G a rooted junction tree (RJT). In addition,

as a consequence of part (b), we see that a gradual RJT has as

many clusters as the original influence diagram has nodes, and

each node j ∈ N can be thought as corresponding to one of the

clusters C ∈ V . Because of this, we refer to clusters using the

corresponding nodes j ∈ N in the influence diagram as the root
cluster of node j ∈ N, which is denoted as C j ∈ V .

Formulating an optimization model based on the gradual RJT

representation starts by introducing a vector of moments μC j

for each cluster C j, j ∈ N. Parmentier et al. [21] show that for

RJTs, we can impose constraints so that these become moments

of a distribution μN that factorizes according to G(N, A). The

joint distribution P is said to factorize [14] according to G if P

can be expressed as

P(XN = sN) =
∏

j∈N
P(Xj = s j | XI( j) = sI( j)). (1)

2



In the formulation, μC j (sC j ) represents the probability of the

nodes within the cluster C j being in states sC j and part (c) of

Definition 2.1 ensures that P(Xj = s j | XI( j) = sI( j)) can thus

be obtained from μC j (sC j ) for each j ∈ N. The resulting MIP

model is

max
∑

j∈NV

∑

sC j∈S C j

μC j (sC j )uC j (sC j ) (2)

s.t.
∑

sC j∈S C j

μC j (sC j ) = 1, ∀ j ∈ N (3)

∑

sCi∈S Ci ,

sCi∩C j=s∗Ci∩C j

μCi (sCi ) =
∑

sC j∈S C j ,

sCi∩C j=s∗Ci∩C j

μC j (sC j ),

∀(Ci,C j) ∈ A , s∗Ci∩C j
∈ S Ci∩C j (4)

μC j (sC j ) = μC j
(sC j

)p(s j | sI( j)), ∀ j ∈ NC ∪ NV , sC j ∈ S C j

(5)

μC j (sC j ) = μC j
(sC j

)δ(s j | sI( j)), ∀ j ∈ ND, sC j ∈ S C j (6)

μC j (sC j ) ≥ 0, ∀ j ∈ N, sC j ∈ S C j (7)

δ(s j | sI( j)) ∈ {0, 1}, ∀ j ∈ ND, s j ∈ S j, sI( j) ∈ S I( j). (8)

The formulation (2)-(8) is an expected utility maximization

problem where uC j in the objective function (2) represents the

utility values associated with different realizations of the nodes

within the cluster C j, and C j = C j \ j is used in constraints (5)

and (6) for notational brevity. Constraints (3) and (7) state that

the variables μC j must represent valid probability distributions,

with nonnegative probabilities summing to one.

Constraint (4) enforces local consistency between adjacent

clusters, meaning that for a pair Ci,C j of adjacent clusters, the

marginal distribution for the nodes in both Ci and C j (that is,

Ci ∩C j) must be the same when obtained from either Ci or C j.

To ease the notation, moments μC j
(sC j

) =
∑

s j∈S j
μC j (sC j )

are used in constraints (5) and (6). The expression μC j
repre-

sents the marginal distribution for cluster C j with the node j
marginalized out. The value p(s j | sI( j)) is the conditional prob-

ability of a state s j given the information state sI( j) and δ(s j |
sI( j)) the decision strategy in node j ∈ ND. It should be noted

that constraint (6) involves a product of two variables, and is

thus not linear. Since we are limiting ourselves to settings with

deterministic strategies (i.e., δ(sd | sI(d)) : S I(d) ∪ S d → {0, 1}),
these constraints become indicator constraints and can be effi-

ciently handled by solvers such as Gurobi [9]. We remark that

this would not be the case for more general strategies of the

form δ(sd | sI(d)) : S I(d) ∪ S d → [0, 1].

Any rooted tree satisfying the properties in Definition 2.1 is

a gradual RJT and can therefore be used to obtain a valid ver-

sion of model (2)-(8). For instance, a junction tree where each

cluster C j, j ∈ N, contains the nodes i ∈ N such that i ≤ j
would satisfy the definition. However, this would result in large

clusters, and consequently, a large number of constraints (4)-

(6). It is thus important to find a gradual RJT representation

where the clusters are as small as possible. Parmentier et al.

[21] present two algorithms for creating a gradual RJT from

an ID. The first algorithm uses a given topological order of the

nodes and builds the RJT starting from the last cluster and pro-

ceeding in the reverse direction of this topological order. This

algorithm returns a gradual RJT with minimal clusters given the

ordering of nodes. The second algorithm has an additional step

of finding a “good” topological order that would lead to smaller

clusters. The contribution of this paper is focused on modifying

the underlying influence diagram to which both algorithms can

be applied. For simplicity, we chose to use the algorithm re-

quiring a topological order in the examples of this paper. Using

H1,T1,D1,V1,H2, ...,H4,V4 as a topological order, the pig farm

influence diagram in Figure 1 is transformed to the gradual RJT

in Figure 2.

H1 H2 H3 H4 V4

T1 T2 T3

D1 D2 D3

V1 V2 V3

Figure 1: The pig farm problem [16].

H1 H1T1 H1T1D1 D1V1

H1D1H2 H2T2 H2T2D2 D2V2

H2D2H3 H3T3 H3T3D3 D3V3

H3D3H4 H4V4

Figure 2: Gradual RJT of the pig farm problem.
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3. Our contributions

3.1. Extracting the utility distribution

For problems with multiple value nodes, e.g., multi-stage de-

cision problems, the expected utility has the convenient prop-

erty that the total expected utility is the sum of expected utili-

ties in each value node. This property can be exploited in the

solution process, and for this reason, many solution methods

for influence diagrams, including the RJT approach in Parmen-

tier et al. [21], only tackle maximum expected utility (MEU)

problems.

In contrast, risk measures (such as CVaR) require that the full

probability distribution of the consequences is explicitly repre-

sented in the model. However, such representations are lost

when the value nodes are placed in separate clusters, as in Fig-

ure 2, since the probability distributions are only defined for

each cluster separately. For example, in the pig farm problem

described in Section 2.1, the joint distribution of V1 and V2 can-

not be inferred from the probability distributions of clusters CV1

and CV2
, as we cannot assume the probabilities of consequences

in V1 and V2 to be independent.

We note that after solving the model (2)-(8), any distribution

can be obtained for the MEU solution. As stated in Definition

2.1, part (c), the rooted junction trees in this paper have I( j) ⊆
C j by construction, and we can thus use the optimal values μ̄ j

to obtain P(Xj = s j | XI( j) = sI( j)) for all nodes j ∈ N, and

consequently use Eq. 1 to obtain μN . Then, we can obtain the

marginal distribution for nodes N1 ⊂ N by marginalizing out

N \ N1. More formally,

P(s∗N1
) =

∑

sN∈{S N |sN1
=s∗N1

}
μN .

Using this approach for incorporating constraints and objec-

tives involving the utility distribution of multiple value nodes

in (2)-(8) would require obtaining the distribution μN within

the model. This, however, would require products of arbitrarily

many continuous variables μC j within the model, resulting in

nonlinearity and the associated computational challenges.

The issue can be circumvented by modifying the influence

diagram such that the consequences of the problem are repre-

sented by a single value node. Generally, multiple value nodes

represent components of a separable utility function such that

U(s) =
∑

v∈NV Uv(sI(v)) [26] and, being such, the value nodes

can be combined under a single value node v̄, in which the con-

sequences can simply be evaluated with U(sI(v̄)).

This transformation requires that arcs (p, v̄),∀v ∈ NV , p ∈
I(v), are added to A. Then, according to Definition 2.1, part (c),

we have that ∪v∈V I(v) ⊂ Cv̄. Consequently, the marginal prob-

ability distribution μCv̄ contains information on the joint proba-

bility P(∩v∈Nv v) and this can be exposed to produce a probabil-

ity distribution for utility values. Following this approach, the

modified influence diagram of the modified pig farm problem

is presented in Figure 3 and the corresponding gradual RJT in

Figure 4.

This however, incurs in computationally more demanding

versions of model (2)-(8). In the modified pig farm problem,

all nodes Dk are in the information set of V̄ , and it follows from

the running intersection property that Dk must be contained in

every cluster that is in the undirected path between CDk and Cv̄.

Therefore, the clusters become larger as the parents of value

nodes are “carried over”, instead of evaluating separable com-

ponents of the utility function at different value nodes. As will

be discussed in Section 3.4, this transformation comes with a

cost on the computational efficiency.

H1 H2 H3 H4 V̄

T1 T2 T3

D1 D2 D3

Figure 3: The pig farm problem reformulated [16].

H1 H1T1 H1T1D1

H1D1H2 D1H2T2 D1H2T2D2

D1H2D2H3 D1D2H3T3 D1D2H3T3D3

D1D2H3D3H4 D1D2D3H4V̄

Figure 4: Gradual RJT of the reformulated pig farm problem.

3.2. Imposing chance, logical, and budget constraints

The proposed reconfiguration of the influence diagram al-

lows us to expose the vector of moments of the value node v̄,

which in turn, enables the formulation of a broad range of risk-

aversion-related constraints.

For example, a chance constraint can be constructed based on

the utility distribution from the vector of moments of the value

node v̄ as: ∑

sCv̄∈{S Cv̄ |sv̄∈S o
v̄ }
μ(sCv ) ≤ p, (9)

where S o
v̄ is the set of outcomes that the decision maker wishes

to constrain and p ∈ [0, 1]. For instance, assume that a decision
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maker wishes to add chance constraints enforcing that the prob-

ability of the payout of the process being less than some fixed

limit l is at most p. Then S o
v̄ would contain all states sv̄ such

that U(sv̄) < l.

Chance constraints on the probability distribution of a single

node can be straightforwardly added to any cluster containing

the node. For instance, chance constraints enforcing that a node

n must be in state s∗n with a probability greater or equal than p
can be formulated as

∑

sCn∈{S Cn |sn=s∗n}
μC(sCn ) ≥ p.

Note that this formulation can be enforced for any clusters Ck

such that n ∈ Ck. Then, to keep the number of variables in the

constraint to a minimum, one can choose the smallest of such

clusters, i.e., choose cluster k′ = arg mink∈N{|Ck |, n ∈ Ck}.
Logical constraints can be seen as a special case of chance

constraints. For example, in the pig farm problem (in Section

2), the farmer may wish to attain an optimal decision strategy

while ensuring that the number of injections is at most two per

pig due to a limited availability of injections. Then, S o
v̄ would

contain all realizations of the nodes in Cv̄ that would lead to a

violation of the constraint, i.e., the state combinations in which

three injections would be given to a pig. Then, constraint (10)

that makes these scenarios impossible could be imposed, i.e.,

∑

sCv̄∈{S Cv̄ |sv̄∈S o
v̄ }
μ(sCv ) ≤ 0. (10)

Budget constraints are analogous to logical constraints, as the

farmer could instead have an injection budget, say 200 DKK

per pig. Then, S o
v̄ should contain all states sv̄, where more than

200 DKK is used for treating a pig, with the constraint enforced

similarly as in (10).

3.3. Conditional Value-at-Risk

In addition to a number of utility distribution-related con-

straints, a single value node also enables the consideration of al-

ternative risk measures. Next, we focus our presentation on how

to maximize conditional value-at-risk. However, we highlight

that other risk metrics such as absolute or lower semi-absolute

deviation [23] can, in principle, be used. The entropic risk mea-

sure [7] can also be used as a constraint. However, incorporat-

ing it in the objective function is likely to introduce nonlinearity

in the model due to the logarithmic nature of the measure.

The proposed formulation for conditional value-at-risk max-

imization is analogous to the method developed for decision

programming in [23]. Denote the possible utility values with

u ∈ U and suppose we can define the probability p(u) of attain-

ing a given utility value. In the presence of a single value node,

we would define p(u) =
∑

sCv∈{S Cv |U(sCv )=u} μ(sCv ). We can then

pose the constraints

η − u ≤ Mλ(u), ∀u ∈ U (11)

η − u ≥ (M + ε)λ(u) − M, ∀u ∈ U (12)

η − u ≤ (M + ε)λ(u) − ε, ∀u ∈ U (13)

η − u ≥ M(λ(u) − 1), ∀u ∈ U (14)

ρ(u) ≤ λ(u), ∀u ∈ U (15)

p(u) − (1 − λ(u)) ≤ ρ(u) ≤ λ(u), ∀u ∈ U (16)

ρ(u) ≤ ρ(u) ≤ p(u), ∀u ∈ U (17)∑

u∈U
ρ(u) = α (18)

λ(u), λ(u) ∈ {0, 1}, ∀u ∈ U (19)

ρ(u), ρ(u) ∈ [0, 1], ∀u ∈ U, (20)

η ∈ R (21)

where α is the probability level in VaRα. The constraints force

the values of the decision variables to the values in Table 1.

variable value

η VaRα
λ(u) 1 if u < η
λ(u) 0 if u > η
ρ(u) 0 if λ(u) = 0, p(u) otherwise

ρ(u)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p(u) if u < η,
α −∑u∈U p(u) if u = η,
0 if u > η (λ̄(u) = 0)

Table 1: Variables and the corresponding values that satisfy (11)-(20)

In constraints (11)-(20), M is a large positive number and ε is

a small positive number. The parameter ε is used to model strict

inequalities, which generally cannot be directly used in math-

ematical optimization solvers. For example, x ≥ ε is assumed

to be equivalent to x > 0. When λ(u) = 0, constraints (11) and

(12) become −M ≤ η − u ≤ 0, or η ≤ u. When λ(u) = 0, they

instead become ε ≤ η − u ≤ M, or η > u. Constraints (13) and

(14) can be examined similarly to obtain the results in Table 1.

The correct behavior of variables ρ(u) is enforced by (16)

and (17). If λ(u) = 0, constraint (16) forces ρ(u) to zero. If

λ(u) = 1, ρ(u) = p(u). Finally, assuming η is equal to VaRα,

now that we have λ(u) = 1 −→ ρ(u) = p(u) for all u < η, the

value of ρ(u) has to be α−∑u∈U ρ(u) for u = η. It is easy to see

that η must be equal to VaRα for there to be a feasible solution

for the other variables. For a more rigorous proof, see Salo et al.

[23, Appendix A].

By introducing the constraints above to the optimization

model, CVaRα can then be obtained as 1
α

∑
u∈U ρ(u)u. This can

be either used as in the objective function or as a part of the

constraints of the problem. We also note that the described ap-

proach is very versatile in that u can be selected to be, e.g.,

a stage-specific utility function, thus allowing us to limit risk

in specific stages of a multi-stage problem. Krokhmal et al.

[15] discusses the implications of stage-wise CVaR-constraints

in detail.

5



3.4. Problem size

From Definition 2.1, we can derive a relationship between

the width of the tree and the size of the corresponding model.

By definition, a tree with a width k has a maximum cluster Cn

containing k+1 nodes. In a gradual RJT, the cluster Cn includes

exactly one node n ∈ N not contained in its parent cluster Ci.

Using the running intersection property, the k other nodes in Cn

must also be in Ci. If we make the very light assumption that

all nodes l ∈ Ci ∪ Cn have at least two states sl, this implies

that there are
∏

l∈Ci∪Cn
|S n| ≥ 2k local consistency constraints

(4) for the pair (Ci,Cn) ∈ A and the number of constraints in

the model (2)-(8) is thus at least O(ck), where k is the width of

the gradual RJT. This is in line with Parmentier et al. [21] point-

ing out that the RJT-based approach is only suited for problems

with moderate rooted treewidth.

The width of the tree in Figure 4 is N + 1, where N is the

number of treatment periods in the pig farm problem (N = 3

in the example), while the width of the original pig farm RJT

in Figure 2 is only 2. Furthermore, we note that the rooted

treewidth of a problem is defined as the size of the largest clus-

ter minus one. In an RJT, we have (I(n) ∪ n) ⊂ Cn for all n ∈ N
and the treewidth is thus at least max(|I(n)|, n ∈ N). For the

single value node pig farm problem, |I(V̄)| = N + 1 and for the

original pig farm problem, |I(H2)| = 2. Therefore, we conclude

that there are no RJT representations for these problems with a

smaller width than the ones presented in Figures 2 and 4.

These results imply that the optimization model for the origi-

nal pig farm problem grows linearly with the number of stages,

but both the single value node pig farm grows exponentially

with the number of decisions, suggesting possible computa-

tional challenges in larger problems.

4. Computational experiments

To assess the computational performance of the model (2)-

(8), we use the pig farm problem described earlier and the N-

monitoring problem from Salo et al. [23]. Both problems are

solved with varying numbers of decision nodes, providing in-

sights into the growth in solution times with increasing problem

sizes. The models were implemented using Julia v1.7.3 [1] and

JuMP v1.5.0 [5] and solved with the Gurobi solver v10.0.0 [9].

4.1. Pig farm problem

A six-month pig farm problem (five treatment periods and a

final selling period) is used to highlight the use of the devel-

oped formulations. The constraints presented in Section 3.3 are

added to the optimization model so that the problem can be op-

timized taking into account the CVaR of the chosen solution.

This enables determining nondominated strategies based on

CVaR and expected utility values using, for example, the ep-

silon constraint method [19]. The example in Figure 5 shows

the nondominated strategies based on expected utility and

CVaR with probability level α = 0.05 (orange points) and a

sample of the dominated strategies (blue points).

The nondominated strategies from highest expected utility to

lowest are:

Figure 5: Nondominated strategies

• Treat the pig in the 4th and 5th period if the test result is

positive

• Treat the pig in the 5th period regardless of the test result

• Never treat the pig

Using the formulations presented in Section 3.2 the six-

month pig farm problem can also be solved with a variety of

chance constraints. For instance, we might be interested in a

decision strategy that maximizes the expected utility while en-

suring the following:

• A pig is healthy in the last period with a probability of 80%

or higher;

• The payout is at least 800 DKK with a probability greater

or equal to 50%.

The decision strategy is then to treat the pig in the 3rd period

if the test result is positive and in the 4th and 5th periods no

matter the test result. This way the expected utility is 627 DKK.

4.2. N-monitoring

The N-monitoring problem [23] represents a problem of dis-

tributed decision-making where N decisions are made in paral-

lel with no communication between the decision-makers. The

node L in Figure 6 represents a load on a structure, nodes Ri

are reports of the load, based on which the corresponding for-

tification decisions Ai are made. The probability of failure in

node F depends on the load and the fortification decisions, and

the utility in T comprises fortification costs and a reward if the

structure does not fail.

With topological order L,R1, A1, ...,RN , AN , F,T , the rooted

junction tree corresponding to the diagram in Figure 6 is pre-

sented in Figure 7. The structure of parallel observations

and decisions in the N-monitoring problem is very different

compared to the partially observed Markov decision process

(POMDP) structure of the pig farm problem. From Figure 6,

we can see that |I(F)| = N + 1, and consequently, there are no

RJT representations for the N-monitoring problem with a width

less than N + 1. In contrast, as discussed in Section 3.4, the pig
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L

R1

R2

...

RN

A1

A2

...

AN

F T

Figure 6: An influence diagram representing the N-monitoring problem.

farm RJT has a constant width of 2, independent of the num-

ber of decision stages. We note that the width of the RJT in

Figure 7 is the same as of the single value node pig farm RJT

(Figure 4). However, in the N-monitoring problem, this is a

consequence of the inherent structure of the problem, instead

of the influence diagram manipulation described in Section 3.1.

That is, for the pig farm problem, there is a small width RJT

representation for MEU problems, but such representations are

impossible for the N-monitoring problem due to its structure.

L LR1 LR1A1

LA1...Ak−1Rk LA1...Ak−1RkAk

LA1...AN−1RN AN LA1...AN F A1...AN FT

Figure 7: A rooted junction tree representing the N-monitoring problem.

4.3. Computational results

Figure 8 shows the increase in solution times as the prob-

lem size increases. First, we see that the solution time for

the N-monitoring problem increases the fastest. While the pig

farm problem with a single value node is faster than the N-

monitoring problem, the solution time seems to also increase

exponentially. Finally, the solution time for the pig farm prob-

lem as presented in Section 2.1 does not change significantly.

These results are in line with the analysis of model sizes in

Section 3.4 and highlight the importance of keeping the clus-

ter sizes small in junction trees. Both versions of the pig farm

problem compared in Figure 8 solve exactly the same problem,

but the structure of the diagram in the single value node prob-

lem increases the width of the tree, and subsequently, the model

size and solution time.

Figure 8: Mean solution times for 50 random instances in the pig farm and N-

monitoring problems with 2-10 decision nodes.

Finally, we compare these results to the corresponding results

using decision programming, presented in Hankimaa et al. [10].

In the N-monitoring problem and the single value node pig farm

problem, we see similar exponential growth for both models,

with the solution times in this paper being 2-3 orders of mag-

nitude smaller. For the original pig farm problem, the decision

programming formulation remains the same, as the model size

is determined by the chance and decision nodes in the diagram.

However, for this version of the problem, the solution times for

(2)-(8) hardly even change with the model sizes tested in this

section, illustrating the superior computational efficiency of the

model with small treewidths.

5. Conclusions

In this paper, we have described a MIP reformulation of de-

cision problems presented as (limited memory) influence dia-

grams, originally proposed in Parmentier et al. [21]. Our main

contribution is to extend the modelling framework from Par-

mentier et al. [21] to embed it with more general modelling ca-

pabilities. We illustrate how, e.g., chance constraints and con-

ditional value-at-risk can be incorporated into the formulation.

We also present some results on the relationship between the

rooted treewidth of the RJT representation and the size of the

corresponding MIP model, along with solution times from two

different decision problems. The pig farm problem is a par-

tially observed Markov decision process (POMDP) and very

large instances can be solved to optimality within seconds. The

N-monitoring problem, on the other hand, is an example of dis-

tributed decision-making, where N decision-makers must make

decisions in parallel with no communication between them. We

found that, for such problems, the size of the formulation (2)-

(8) grows exponentially with N, resulting in the solution times

becoming considerably large for N as small as 10.

We find that the model presented in Parmentier et al. [21] can

be extended beyond pure expected utility maximization prob-

lems to incorporate most of the constraints and objective func-
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tions present in decision programming, the alternative MIP re-

formulation based on LIMIDs described in Salo et al. [23] and

Hankimaa et al. [10]. The advantage of using the models de-

scribed in this paper is that in terms of model size, decision

programming models grow exponentially with respect to the

number of nodes, which seems to be only the worst-case be-

haviour with rooted junction trees. Inspecting the formulation

(2)-(8), we notice that the number of constraints is mainly af-

fected by the local consistency constraints (4), as the number

of all other constraints is linear in the number of nodes. The

number of constraints for the pig farm RJT in Figure 2 is O(N),

where N is the number of decision stages. On the other hand,

the same formulation for the N-monitoring RJT in Figure 7 has

O(2N) constraints, exponential in the number of parallel deci-

sions. For a worst-case example, in a diagram with arcs (i, j)
for each i, j ∈ N, i < j (semicomplete digraph), the number of

constraints would be exponential in the number of nodes.

In this paper, the extraction of relevant probability/utility dis-

tributions is made possible by modifying the underlying influ-

ence diagram. For future research, it might be beneficial to note

that any gradual RJT (Definition 2.1) can be used to formulate

the MIP model (2)-(8). Notably, it should be possible to mod-

ify the RJT so that relevant nodes are “carried over” to, e.g., the

last cluster, giving us access to the joint probability distributions

required for the models described in this paper.
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Abstract

Despite methodological advances for modeling decision problems under uncertainty, represent-
ing endogenous uncertainty still proves challenging both in terms of modeling capabilities and
computational requirements. A novel reformulation based on rooted junction trees (RJTs)
provides an approach for solving such decision problems using off-the-shelf mathematical opti-
mization solvers. This is made possible by using influence diagrams to represent a given decision
problem and reformulating them as RJTs, which are then represented as a mixed-integer linear
programming problem.

In this paper, we focus on the type of endogenous uncertainty that received less atten-
tion in the rooted junction tree approach: conditionally observed information. Multi-stage
stochastic programming models use conditional non-anticipativity constraints to represent such
uncertainties, and we show how such constraints can be incorporated into RJT models. This
allows us to consider the two main types of endogenous uncertainty simultaneously, namely
decision-dependent information structure and decision-dependent probability distribution. Fi-
nally, the extended framework is illustrated with a large-scale cost-benefit problem regarding
climate change mitigation.

Keywords: endogenous uncertainty, stochastic programming, junction trees, climate change
mitigation

1. Introduction

Stochastic programming (SP) is one of the most widespread mathematical programming-
based frameworks for decision-making under uncertainty. In general, SP casts decision problems
subject to parametric uncertainty as deterministic equivalents in the form of large-scale linear
or mixed-integer programming (LP/MIP) problems that can be solved with standard opti-
mization techniques. A common assumption in SP models is that the stochastic processes,
particularly the state probabilities and/or observed values, are not influenced by the previously
made decisions. The uncertainty is thus exogenous. This is methodologically convenient, for
the deterministic equivalent model has the same nature as its stochastic counterpart, retaining
important characteristics such as linearity, or more generally, convexity.

In this paper, we focus on a much less explored class of stochastic problems presenting
endogenous uncertainty. In this more general setting, the decisions made at previous stages can
affect the uncertainty faced in later stages. It is common to classify SP problems according to the
nature of the endogenous structure arising in the decision problem. Hellemo et al. (2018) propose
a taxonomy of such problems, classifying the endogenous uncertainties into two distinct types.
In Type 1 problems, earlier decisions influence the later events’ probability distribution (i.e.,

∗Corresponding author: fabricio.oliveira@aalto.fi



realizations and/or the probabilities associated with each realization). For example, deciding to
perform maintenance on a car engine influences the probability of it breaking in the future. In
Type 2 problems, the information structure is influenced by the decision-making. Continuing
with the car example, deciding to inspect the engine does not affect the probability of it breaking,
but provides information that enables a better-informed maintenance decision. It is noteworthy
that Type 2 is more common in the literature on decision-making under endogenous uncertainty.
Hellemo et al. (2018) also introduce Type 3, which combines the Type 1 and Type 2 endogenous
uncertainties.

Our main contribution is to provide a framework general enough to address both types
simultaneously, resulting in Type 3 endogenously uncertain SP (T3ESP) problems, while still
retaining prior computationally favorable properties of the mathematical model such as linear-
ity or convexity. Our proposed framework builds upon the work by Parmentier et al. (2020)
and Herrala et al. (2023) and expands the models to consider Type 2 endogenous uncertainty.
A major advantage of this approach is the ability to incorporate Type 1 endogenous uncertain-
ties in the decision process in an intuitive way by using an influence diagram representation of
the problem. This representation is then reformulated into a rooted junction tree and further
converted to a mixed-integer linear programming (MILP) problem, for which powerful off-the-
shelf solvers exist. The intermediate step is not strictly necessary, as Salo et al. (2022) present
an alternative formulation directly converting the influence diagram into a MILP. However, as
discussed in Herrala et al. (2023), the RJT representation results in better computational per-
formance. Salo et al. (2022) present a simple problem with Type 2 endogenous uncertainty using
their Decision Programming framework but do not discuss this class of endogenous uncertainty
in detail. This paper explores Type 2 endogenous uncertainty further, showing explicitly how
the RJT reformulation can be enhanced to become a suitable framework for T3ESP problems
comprising both Type 1 and 2 endogenous uncertainties.

The formulation presented in Parmentier et al. (2020) accommodates only discrete decisions,
and Salo et al. (2022) acknowledge the limitations of using influence diagram-based formulations
for problems involving continuous decisions, discussed in more detail in Bielza et al. (2011). In
addition to discussing T3ESP problems, we show that if the problem has a separable structure,
it is possible to incorporate continuous decisions that do not affect the endogenous probabilities
in the model. This is demonstrated in a climate change mitigation case study, but we note
that similar structures are likely to arise in other problems as well. Indeed, Lee et al. (2021)
show how such structures can be used in a submodel-tree decomposition for influence diagrams.
In the case study that originally motivated our developments, we consider uncertain climate
parameters and technological progress and the problem of determining the optimal strategy for
climate and technology research, as well as the optimal emission levels for 2030-2070.

This paper is structured as follows. In Section 2, we present an overview of multi-stage
stochastic programming. In Section 3, our methodological contributions are described in detail,
starting from the formulation in Parmentier et al. (2020) and continuing with conditionally
observed information. In Section 4 we illustrate the use of the framework by considering a
larger-scale problem of climate change cost-benefit analysis. Section 5 concludes and provides
directions for further development.

2. Modeling problems with endogenous and exogenous uncertainties

Solution approaches for MSSP are often based on formulating the deterministic equivalent
problem using a scenario tree, as described in, e.g., Ruszczyński (1997). A scenario tree repre-
sents the structure of the uncertain decision process, and non-anticipativity constraints (NACs)
(Rockafellar and Wets, 1991) are employed to enforce the information structure in the formu-
lation. NACs state that a decision must be the same for two scenarios if those scenarios are
indistinguishable when making the decision.
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In endogenously uncertain problems, the decisions can affect the timing, event probabilities,
or outcomes of uncertain events further in the process. As previously discussed, endogenous un-
certainty is often divided into decision-dependent probabilities (Type 1) and decision-dependent
information structure (Type 2) (Hellemo et al., 2018). In this context, information structure
often refers to when the realization of each uncertain event is observed, if ever. In contrast, ex-
ogenously uncertain problems have a fixed information structure with the timing of observations
known a priori.

Type 2 uncertainty has been more widely addressed in the SP literature, perhaps due to
one of its subclasses having a strong connection to exogenously uncertain problems. In the
taxonomy presented in Hellemo et al. (2018), this specific type of endogenous uncertainty is
called conditional information revelation. In this subclass, the decisions only affect the time
at which the (exogenous) uncertainty is revealed to the decision maker. One of the earliest
publications on such uncertainty is Jonsbr̊aten et al. (1998), where the authors describe a
branching algorithm for solving a subcontracting problem. Goel and Grossmann (2006) consider
a process network problem where the yield of a new process is uncertain prior to installation.
Other applications include open pit mining (Boland et al., 2008), clinical trial planning for
drug development (Colvin and Maravelias, 2010) and technology project portfolio management
(Solak et al., 2008).

Similar solution methods are employed in problems with exogenous uncertainty and condi-
tionally revealed information. The main difference is that conditional information revelation
requires the use of conditional non-anticipativity constraints (C-NACs), as the distinguishability
is dependent on earlier decisions. This conditional dependency results in disjunctive constraints
that require specific reformulation techniques (Apap and Grossmann, 2017). The main chal-
lenge arising from this approach is that the number of constraints rapidly increases with problem
size, resulting in computational intractability for large problems. Apap and Grossmann (2017)
also propose omitting redundant constraints, in an attempt to mitigate the tractability issues.
In their example production planning problem, this results in roughly a 99% decrease in the
problem size. Despite these substantial improvements, the reduced model is still very large and
cannot be solved to the optimum within a reasonable computation time under their experimental
setting, illustrating how challenging such problems are.

In addition to conditional information revelation, Type 2 uncertainty also encompasses prob-
lems where the information structure is altered by modifying the support of decision variables
and changing the objective or constraint coefficients. Hellemo et al. (2018) report a 2SSP prob-
lem where the recourse costs depend on first stage decisions (Ntaimo et al., 2012). Gustafsson
and Salo (2005) present a model for contingent portfolio programming, a project scheduling
problem where projects can be expanded or terminated before they are finished. The decisions
thus affect the decision spaces of future decision variables, resulting in additional consistency
constraints, e.g., that a project can be continued in period t only if it was ongoing in period
t− 1.

Type 1 endogenous uncertainty is more challenging from a mathematical modeling stand-
point because the uncertain events depend on earlier decisions, which, in turn, precludes a
scenario tree-based representation as the scenario probabilities in a tree cannot depend on deci-
sions. Therefore, the well-established solution techniques for MSSP cannot be directly applied
to these problems. Despite these challenges, some discussion on Type 1 endogenous uncer-
tainty is found in the literature. Peeta et al. (2010) discuss the fortification of a structure in
a network, where the probability of failure depends on the fortification decision. Lauritzen
and Nilsson (2001) present the “pig farm problem”, where the health of a pig depends on the
treatment decisions, introducing the concept of limited memory influence diagrams (LIMID),
thus relaxing the no-forgetting assumption in influence diagrams. The no-forgetting assumption
states that when making a decision, all prior decisions and outcomes of uncertain events are
known. This assumption results in significant limitations for distributed decision-making and
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leads to computational challenges in multi-period problems where the decisions towards the
end are conditional on the full history of the problem. Dupačová (2006) presents a summary of
problems with Type 1 uncertainties and Escudero et al. (2020) present solution approaches to
multi-stage problems where the first-stage decisions influence the scenario probabilities in later
stages. Examples of such problems can be found in Zhou et al. (2022) and Li and Liu (2023).
Finally, reformulations and custom algorithms for various Type 1 problems are further summa-
rized in Hellemo et al. (2018). However, these approaches assume specific relationships between
decisions and probabilities and result in non-convex nonlinear formulations. Consequently, these
approaches are not easily generalizable to different problems.

In this paper, we present a general solution framework for problems with both types of
endogenous uncertainty discussed here. Modeling Type 1 endogenous uncertainty has previ-
ously relied on specific problem structures and reformulations, and the ability to model these
uncertainties in a general setting makes the proposed framework versatile compared to these
earlier methods. Additionally, we present two alternative approaches for incorporating Type
2 endogenous uncertainty in the decision models formulated with our framework. The ease of
considering any combination of the two types of endogenous uncertainty also makes the frame-
work more generally applicable to problems with endogenous uncertainty than the approaches
discussed earlier.

3. Rooted junction trees with conditionally observed information

3.1. Influence diagrams

An influence diagram GID = (N,AID) is an acyclic graph formed by nodes j ∈ N =
NC ∪ ND ∪ NV and arcs a ∈ AID = {(i, j) | i, j ∈ N}1. Nodes NC and ND are the sets of
chance and decision nodes, respectively, and NV is a collection of value nodes representing the
consequences incurred from the decisions made at nodes ND and the chance events realized at
nodes NC . In Fig. 1, the decision nodes are represented by squares, the chance nodes by circles,
and the value nodes by diamonds.

Each decision and chance node j ∈ NC∪ND can assume a state sj from a discrete and finite
set of states Sj . For a decision node j ∈ ND, Sj represents the available choices; for a chance
node j ∈ NC , Sj is the set of possible realizations. The arcs (i, j) in AID = {(i, j) | i, j ∈ N}
represent influence between nodes. In Fig. 1, the arcs are represented by arrows between
the nodes. Before defining this notion of influence further, let us first define a few necessary
concepts.

C1

D1 C2 D2

V1 V2

V3

Figure 1: An influence diagram representation of a decision problem

The information set comprises the immediate predecessors of a given node j ∈ N and is
defined as I(j) = {i ∈ N | (i, j) ∈ AID}. In the graphical representation, this corresponds to

1We use the subscript ID for GID and AID to distinguish between influence diagrams and rooted junction
trees. Rooted junction trees are described in Section 3.2.
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the set of nodes that have an arrow pointing directly to node j. For example, in Fig. 1, the
information set of C2 consists of D1 and C1. The decision sj ∈ Sj made in each decision node
j ∈ ND and the conditional probabilities of the states sj ∈ Sj in each chance node j ∈ NC

depend on their information state sI(j) ∈ SI(j), where SI(j) =
∏

i∈I(j) Si. Referring back to
our example, the probabilities of different outcomes in C2 are conditional on the decision in D1

and the random outcome in C1. Let us define Xj ∈ Sj as the realized state at a chance node
j ∈ NC . Using the notion of information states, the conditional probability of observing a given
state sj for j ∈ NC is P(Xj = sj | XI(j) = sI(j)).

For a decision node j ∈ ND, let Zj : SI(j) → Sj be a mapping between each information
state sI(j) ∈ SI(j) and decision sj ∈ Sj . That is, Zj(sI(j)) defines a local decision strategy, which

represents the choice of some sj ∈ Sj in j ∈ ND, given the information sI(j). Note that we do
not consider mixed strategies, where each information state would be mapped to an arbitrary
probability distribution over Sj . Instead, we only consider deterministic strategies that can be
represented by an indicator function I : SI(j) × Sj → {0, 1} defined so that

I(sI(j), sj) =

{
1, if Zj maps sI(j) to sj , i.e., Zj(sI(j)) = sj ;

0, otherwise.
(1)

A (global) decision strategy is the collection of local decision strategies in all decision nodes:
Z = (Zj)j∈ND , selected from the set of all possible strategies Z.

At the value node v ∈ NV , a real-valued utility function Uv : SI(v) → �maps the information
state sI(v) of v to a utility value Uv. The default objective is to maximize the expected utility of
a strategy, but other objectives such as conditional Value-at-Risk can also be used (Salo et al.,
2022; Herrala et al., 2023).

3.2. Rooted junction trees

As shown in Salo et al. (2022), it is possible to obtain a mixed-integer linear programming
(MILP) model directly from the influence diagram representation of the problem. However, the
authors observe that the model size increases exponentially with the number of nodes, resulting
in computational challenges with relatively small problems. To mitigate this exponential growth,
Parmentier et al. (2020) proposes first reformulating the influence diagram into a rooted junction
tree (RJT) GRJT = (V,ARJT ), a directed graph consisting of clusters C ∈ V of nodes j ∈ N ,
and arcs between these clusters, with the underlying undirected graph (obtained by replacing
the directed edges ARJT with undirected edges) being a tree. The first important property of
an RJT is the running intersection property, i.e., if a node j ∈ N is in two clusters of the tree,
it is also in all clusters on the (undirected) path between these clusters. For example, in Fig.
2, the node D1 appears in the four leftmost clusters. From this property, it follows that the
subgraph of GRJT induced by a node j (formed by clusters C ∈ V for which j ∈ C, and the
arcs connecting such clusters) is a rooted tree.

D1 D1C1 D1C1C2 C1C2D2

D1V1 D2V2

C1D2V3

Figure 2: A gradual RJT representation of the ID in Fig. 1

More specifically, Parmentier et al. (2020) consider gradual RJTs, where each cluster is the
root cluster of exactly one node j ∈ N , and the root cluster of node j is denoted with Cj . A root
cluster is defined as the root of the subgraph of the RJT induced by a node j. For example, the
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subgraph induced by D1 consists of the four leftmost clusters in Fig. 2 and the arcs connecting
them. The root of this subtree (and the full RJT) is the leftmost cluster. Finally, it is required
that I(j) ⊂ Cj for all j ∈ N . These properties result in a convenient structure where for
each pair of adjacent clusters (Ci, Cj) ∈ ARJT , we have Cj \ Ci = j, and the joint probability
distribution of all nodes in Cj can thus always be obtained from the probability distribution
of Ci and P(Xj = sj | XI(j) = sI(j)). As will be described next, this allows the problem
to be formulated as a mixed-integer programming (MIP) model, which allows for employing
standard techniques widely available in off-the-shelf solvers. For more detailed description of
the properties of gradual RJTs, we refer the reader to Parmentier et al. (2020) and Herrala
et al. (2023).

Let us define the binary variable z(sj | sI(j)) that takes value 1 if Zj(sI(j)) = sj , and 0

otherwise, for all j ∈ ND, sj ∈ Sj , and sI(j) ∈ SI(j). These variables correspond to the indicator

function (1), representing local decision strategies at each decision node j ∈ ND. Additionally,
we define variables μCj ≥ 0 representing the joint probability distribution of nodes i ∈ Cj .
The expected utility maximization problem corresponding to the gradual RJT can then be
formulated as

max
∑
j∈NV

∑
sCj

∈SCj

μCj (sCj )uCj (sCj ) (2)

s.t.
∑

sCj
∈SCj

μCj (sCj ) = 1, ∀j ∈ N (3)

∑
sCi

∈SCi
,

sCi∩Cj
=s∗Ci∩Cj

μCi(sCi) =
∑

sCj
∈SCj

,

sCi∩Cj
=s∗Ci∩Cj

μCj (sCj ), ∀(Ci, Cj) ∈ ARJT , s
∗
Ci∩Cj

∈ SCi∩Cj (4)

μCj (sCj ) = μCj
(sCj

)p(sj | sI(j)), ∀j ∈ NC ∪NV , sCj ∈ SCj (5)

μCj (sCj ) = μCj
(sCj

)δ(sj | sI(j)), ∀j ∈ ND, sCj ∈ SCj (6)

μCj (sCj ) ≥ 0, ∀j ∈ N, sCj ∈ SCj (7)

δ(sj | sI(j)) ∈ {0, 1}, ∀j ∈ ND, sj ∈ Sj , sI(j) ∈ SI(j). (8)

The objective function (2) is the expected utility associated with the strategy Z ∈ Z rep-
resented by the decision variables z. The first constraint states that probability distributions
μCj must sum to one, and constraint (4) enforces local consistency between adjacent clusters.
Here, local consistency means that the distribution μCi∩Cj must be the same when obtained
as a marginal distribution from Ci or Cj . Constraints (5) and (6) propagate the probabil-
ity information in the junction tree. For notational brevity, we use Cj = Cj \ j, for which
μCj

(sCj
) =

∑
sj
μCj (sCj ). It should be noted that while constraint (6) contains a product of

two decision variables, the decision strategy variables z are binary, making (6) an indicator con-
straint. This allows one to linearize the product using methods discussed in, e.g., Mitra et al.
(1994), and the problem can be considered an instance of mixed integer linear programming
(MILP).

3.3. Conditionally observed information

As originally proposed, the approaches to formulate influence diagrams as MILP models
can only be applied to problems with Type 1 endogenous uncertainty, i.e., decision-dependent
probabilities. However, many MSSP problems involve conditionally observed information, often
also referred to as conditional information revelation.

Consider again an example of inspecting the engine of a car, where the decision maker
(DM) can pay an expert to reveal information about the uncertain state of the engine before
deciding whether or not to perform maintenance. A key concept with conditionally observed
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information is distinguishability. Suppose we represent the state of the engine as a chance node
j. The outcome of this node is independent of the DM’s choice to inspect the engine and is
observed after inspection. If we have two different states that the engine can be observed to be,
say sj and s′j , from the DM’s perspective, there is no difference between sj and s′j if the engine is
not inspected and the state is thus not observed. In this case, such states are indistinguishable.

In conditionally observed information, the two key elements are the decisions or random
events that the observation is conditional on, and the condition that the observation depends
on. We refer to these as the distinguishability set Ti,j ⊂ NC ∪ ND and the distinguishability
condition Fi,j : STi,j → {0, 1}, respectively. Here, i ∈ NC ∪ ND denotes the conditionally
observed node, usually a chance node, and j ∈ ND is the decision node where that information
is available if the distinguishability condition is fulfilled. Note that both i and Ti,j must be
contained in the cluster Cj , which can be achieved by making them a part of the information
set I(j) when converting the ID to an RJT.

In some cases, the conditionally observed node could also be a decision node. Such cases
might arise in the context of distributed decision-making, where the decisions are made by
multiple agents and observing the decision of another agent does not happen automatically, or
problems in which previous decisions are not remembered by default and the decision maker
must instead pay a price to retrieve information on past decisions. Distributed decision making
in the context of influence diagrams is discussed in, e.g., Detwarasiti and Shachter (2005),
and Piccione and Rubinstein (1997) point out that decision makers can often affect what they
remember by choosing to keep track of information (including decisions) they would otherwise
forget.

Using the notion of distinguishability sets and conditions, we can define conditional arcs

ac ∈ Ac = {(i, j) | i ∈ NC ∪ND, j ∈ ND, i < j, Ti,j �= ∅, Fi,j(sTi,j ) = 1} (9)

to describe conditionally observed information in influence diagrams. Specifically, we say that a
conditional arc ac from node i ∈ NC∪ND to node j ∈ ND is active (i.e., node i is observed when
making the decision corresponding to node j) if the condition Fi,j is fulfilled by the states of
the nodes k ∈ NC ∪ND in the distinguishability set Ti,j . If Ti,j is empty, there is no conditional
observation of i in j and, thus, no conditional arc between these nodes exists. The concept is
illustrated in Fig. 3.

i

k

j

Figure 3: An illustration of a conditional arc (i, j). Nodes i and j correspond to the earlier notation where the
realization of i is conditionally observed in j. The distinguishability set is Ti,j = {k} and the middle part of the
arc represents that the flow of information from i to j is conditional on k.

Using the example of inspecting a car engine before making a maintenance decision, the
chance node i in Fig. 3 corresponds to the state of the engine, decision node k to the inspection
decision, and j to a maintenance decision. The information about the engine is available when
making the maintenance decision only if the decision maker chooses to inspect the engine. The
distinguishability set is Ti,j = {k}, and the distinguishability condition is Fi,j(sTi,j ) = I(sk =
“inspect engine”), where the indicator function I( · ) is defined as

I(x = x∗) =

{
1 (true), if x = x∗,
0 (false), otherwise.
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If the distinguishability set includes more than one node, alternative functions Fi,j might be
employed for modeling the conditional dependencies between the nodes. For example, if there
are several projects that reveal the same information in node i ∈ N and completing any of these
projects is sufficient for information revelation, Fi,j(sTi,j ) =

∨
k∈Ti,j

I(sk = s∗k) can be used; or

if all of the projects are required for the information revelation, Fi,j(sTi,j ) =
∧

k∈Ti,j
I(sk = s∗k)

is appropriate. An example of such conditions is found in Tarhan et al. (2009), where different
uncertainties in oil field development are gradually revealed, and the uncertainty in the amount
of recoverable oil in a reservoir can be resolved in two different ways, namely drilling a sufficient
number of wells or using the reservoir for production for long enough.

3.4. Incorporating conditionally observed information in rooted junction trees

The conditional arcs are designed to describe conditionally observed information in influence
diagrams. However, they are a general representation of the concept, not a modeling solution. In
what follows, we present two alternative approaches for incorporating this concept into the RJT
models, which ultimately enables solving Type 3 endogenously uncertain stochastic problems.
The first approach employs observation nodes, used in decision analysis problems such as the
used car buyer problem (Howard and Matheson, 2005) or the oil wildcatter problem (Raiffa,
1968). The second approach utilizes conditional non-anticipativity constraints, which are used
in stochastic programming for modeling the decision-dependent information structure.

Observation nodes portray how the decision maker observes the information. By enforcing
that earlier decisions affect the probability distribution of the observations, Type 2 uncertainty
is effectively transformed into Type 1 uncertainty, making it directly amenable to an influence
diagram. This approach is also used in Salo et al. (2022).

In effect, each conditional arc is replaced with an observation node, as illustrated in Fig.
4. The information set of the observation node is the union of the chance node i and the
distinguishability set Ti,j (Ti,j = {k} in the example from Fig. 3), and the state space is
Si ∪ “no observation”. Then, the observation node replaces the node i ∈ NC in the information
set of j ∈ ND, controlling whether or not the information in i is available in j. A benefit of this
approach is that the modifications are done to the influence diagram, and the RJT formed from
the resulting diagram can immediately be used in (2)-(8). Additionally, wrong or imperfect
observations can also be modeled, e.g., if the inspector in the car engine example only provided
an educated but nevertheless uncertain guess on the state of the engine.

i o

k

j

Figure 4: Replacing a distinguishability arc with an observation node in the example from Fig. 3.

One can also utilize the ideas of Ruszczyński (1997) and Apap and Grossmann (2017)
for modeling conditional information revelation, in which the information structure can be
connected to the decisions by using disjunctive constraints called conditional non-anticipativity
constraints (C-NACs). These constraints are similar to the more traditional non-anticipativity
constraints (Rockafellar and Wets, 1991) in stochastic programming, but the constraints are
only imposed if the distinguishability conditions between the corresponding paths are satisfied.

To integrate C-NACs into our model, the conditional arcs introduced earlier need to be
supplemented with the conditional information set Ic(j) = {i ∈ NC ∪ ND | (i, j) ∈ Ac} to
represent the conditionally available information at node j ∈ ND. The C-NACs then control
whether or not this information is available when making the decision in node j. For the
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upcoming developments, we require that Ic(j) ⊂ Cj and Ti,j ⊂ Cj . We observe that two
cluster states sCj and s′Cj

are always distinguishable at node j ∈ ND if the non-conditional

information states sI(j) and s′I(j) are different. Instead, C-NACs are needed when the conditional
information states differ between cluster states with the same non-conditional information state.
For notational clarity, we separate the conditional and non-conditional information sets Ic(j)
and I(j). C-NACs are used to enforce conditional non-anticipativity when only the conditional
information states sIc(j) differ between sCj and s′Cj

, and we use this notation to emphasize the
fact that C-NACs are only introduced for such pairs.

If the conditional information states differ (i.e., node i ∈ Ic(j) has different states in sCj

and s′Cj
), distinguishability is dependent on the corresponding distinguishability condition(s)

Fi,j(sTi,j ). This distinguishability of two cluster states at node j ∈ ND can be formulated as a

Boolean variable f
sCj

,s′Cj

j , defined as

f
sCj

,s′Cj

j =
∨

i∈Ic(j)|si �=s′i

Fi,j(sTi,j ).

The value of f
sCj

,s′Cj

j is True (i.e., 1) if the conditionally revealed information makes scenarios
sCj and s′Cj

distinguishable at node j, and False (i.e., 0) otherwise.

Finally, we extend the definition of the local decision strategy Zj(sI(j)) and the corresponding
binary variables z(sj | sI(j)) to include the conditional information set Ic(j). If the value of

f
sCj

,s′Cj

j is False, the local strategies Zj(sI(j), sIc(j)) and Zj(sI(j), s
′
Ic(j)

) must be the same.
Combining these ideas, we can define C-NACs in the context of our model as

¬f
sCj

,s′Cj

j =⇒ z(sj | sI(j), sIc(j)) = z(sj | sI(j), s′Ic(j)), ∀sCj , s
′
Cj

∈ SCj , . (10)

In light of the above, the C-NACs for binary variables z can also be conveniently written as

|z(sj | sI(j), sIc(j))− z(sj | sI(j), s′Ic(j))| ≤ f
sCj

,s′Cj

j , ∀sCj , s
′
Cj

∈ SCj . (11)

Notice that the absolute value function used in the left-hand side of (11) can be trivially
linearized without significantly increasing the model complexity. This constraint states that for
each decision node j ∈ ND, if the non-conditional information states sI(j) are the same for two
cluster states sCj and s′Cj

, and conditionally revealed information does not make these cluster
states distinguishable either, the local decision strategy represented by the z-variables must be
the same between them.

In practice, the main challenge with using C-NACs is that the number of constraints (11)
quickly becomes overwhelmingly large. With this in mind, Apap and Grossmann (2017) present
a number of C-NAC reduction properties that can be exploited to decrease the number of such
constraints. By making use of these C-NAC reduction properties, representing the decision-
dependent information structure within the RJT model might be more compact with C-NACs
than the corresponding model using observation nodes. However, C-NACs lack the ability
to model Type 1 endogenous uncertainty. Observation nodes are more versatile, allowing for
modeling both types of endogenous uncertainty within one observation node, making it possible
to model and solve T3ESP problems. In Section 4, we present a large-scale example problem
involving different endogenous uncertainties.

4. Cost-benefit analysis for climate change mitigation

4.1. Model description

To illustrate the setting, we now consider the cost-benefit analysis on mitigating climate
change under uncertainty (see, e.g., Ekholm, 2018). Climate change is driven by greenhouse
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gas (GHG) emissions and can be mitigated by reducing these emissions, which incurs costs.
However, mitigation reduces the negative impacts of climate change, referred to as climate
damage. In cost-benefit analysis, the objective is to minimize the discounted sum of mitigation
costs and climate damage over a long time horizon. However, multiple uncertainties complicate
the analysis.

Here, we consider three salient uncertainties involving both decision-dependent probabilities
(Type 1) and conditionally observed information (Type 2). Moreover, some decision nodes
involve continuous variables. The resulting problem is a multi-stage mixed-integer nonlinear
problem (MINLP) with Type 3 endogenous uncertainty, thus demonstrating the proposed novel
features to the rooted junction tree framework described in this paper.

The considered uncertainties concern 1) the sensitivity of climate to GHG emissions, 2) the
severity of climate change damages to society, and 3) the cost of reducing emissions. Decisions
can be made to first conduct costly research and development (R&D) efforts towards each source
of uncertainty. For the uncertainties regarding climate sensitivity and damages, a successful
R&D effort results in an earlier revelation of the parametrization, whereas an unsuccessful or
no R&D effort reveals this information later. Similar models of R&D pipeline optimization
under (Type 2) endogenous uncertainty are considered in Colvin and Maravelias (2011).

For the mitigation costs, the model considers that technological R&D can be conducted
to decrease the costs of bioenergy with carbon capture and storage (BECCS). These can take
place at three intensity levels and in two distinct stages. The first stage is a choice between low
or medium R&D effort. The low-effort choice represents a business-as-usual perspective, which
carries throughout the decision process. If the medium effort is chosen, one observes whether
the R&D looks promising or not, and can then decide whether to continue with the medium or
switch to a higher R&D effort. The three R&D effort levels and whether the development seems
promising or not all affect the probabilities for achieving either low, medium or high mitigation
costs later during the century. For a related discussion, we refer the reader to Rathi and Zhang
(2022), who consider endogenous technology learning on power generation.

The presented model is an extension from Ekholm and Baker (2022), which in turn is a
simplification from the SCORE model (Ekholm, 2018). Compared to the formulation proposed
here, these earlier analyses have assumed that the uncertainties are resolved exogenously over
time and dealt with the mitigation cost uncertainty through separate scenarios. The details of
the model structure and parametrization are described in Appendix B.

The influence diagram for the problem is presented in Fig. 5, and a corresponding RJT in
Fig. 6. For converting the influence diagram into a rooted junction tree, we use the algorithm
from Parmentier et al. (2020). The algorithm takes a set of nodes and their information sets,
along with a topological order for the nodes and returns a gradual rooted junction tree. A
topological order for a graph assigns a unique index to each node, so that for each arc (i, j) ∈
AID, the index of node j is larger than that of node i.

The first stage of the diagram involves R&D decisions towards climate sensitivity (DCS),
damages (DDmg) and technology (DT1). If successful, the climate parameter (climate sensitivity
and damage exponent) R&D efforts modify the information structure so that the parametriza-
tion is partially revealed in 2050 instead of 2070. This is represented by the nodes ODmg and
OCS and the outcome (success/failure) of the projects by CDmg and CCS . Because the value
nodes v ∈ NV represent deterministic mappings sI(v) → R, the value nodes are not explic-
itly represented in the RJT. Instead, the components of the expected utility can be extracted
from the clusters containing I(v), following the ideas used in the computational experiments of
Parmentier et al. (2020).

Decisions over emission reductions (DEi, i ∈ {1, 2, 3}) are made in three stages: in 2030, 2050
and 2070, which represent the medium-term and long-term climate actions. The technological
R&D potentially lowers the costs of emission reductions in 2050 and 2070. We connect our
example to the discussion on the feasibility of large-scale deployment of BECCS, which has
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DDmg
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DT1
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DCS
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DE1
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DT2
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DE2
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DE3
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CT1

2

CCS

7

CT2

4

ODmg

11
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8

Costs,
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2020 2030 2050 2070 2100

Figure 5: Influence diagram of the climate change cost-benefit problem with endogenous uncertainty due to R&D.
We assume that all prior decisions and uncertainty realizations apart from the conditionally observed parameters
are remembered when making decisions, but omit the arcs for clarity. Additionally, the individual value nodes
associated with decision nodes 1, 3, 6 and 9 are omitted for clarity. The nodes are numbered according to the
topological order used for forming the RJT.

DT1 DT1CT1 CT1DT2 CT1DT2CT2 CT1CT2DE1 CT2DE1DCS

CT2DE1DCSCCSCT2DE1CCSOCSCT2DE1CCSOCSDDMG

CT2DE1CCSOCSDDMGCDMG CT2DE1CCSOCSCDMGODMG

CT2DE1CCSOCSCDMGODMGDE2CT2DE1OCSODMGDE2DE3

Figure 6: A rooted junction tree representation of the ID in Fig. 5

been a crucial but contested result of many mitigation scenarios (Calvin et al., 2021). The R&D
costs and probabilities for the three levels of BECCS costs are parametrized using expert-elicited
estimates in Baker et al. (2015). These are then reflected in the overall emission reduction costs.
It is worth noting the major challenges in long-term technological foresight, which is manifested
in the wide spectrum of responses from the experts; but elicitation data is nevertheless useful
for illustrating the importance of technological progress.

After 2070, the level of climate change is observed based on the chosen emission reductions
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and the observed branch of climate sensitivity, which then determines the climate damages
along with the observed branch of climate damages.

4.2. Modifying the influence diagram

As discussed in Section 3, the original formulation is limited to problems with discrete and
finite state spaces for all nodes. However, discretizing the emission levels DEi, i ∈ {1, 2, 3} would
inevitably result in suboptimal solutions, thereby limiting the representability of the naturally
continuous nature of the decision variables representing the emission levels.

To achieve this, we observe that the utilities in the value node(s) can be thought of as
representing solutions to optimization problems. We thus modify the influence diagram and
move the nodes DEi, i ∈ {1, 2, 3} to a subproblem whose solution becomes the utility value
in the main problem, loosely following the ideas in Lee et al. (2021). The influence diagram
resulting from this decomposition is presented in Fig. 7.

DDmg

DT1

DCS

DT2CT1 subproblem

2020 2030 2070

(a) Influence diagram of the climate change cost-benefit
main problem.

DE1

DE2 DE3

CDmg

CCS

CT2

ODmg

OCS

Costs,
damages

2030 2050 2070 2100

(b) Influence diagram of the climate change cost-benefit
subproblem.

Figure 7: The decomposed climate change cost-benefit problem.

As a result, there is no Type 1 endogenous uncertainty in the subproblem and it can be
modeled as a nonlinear three-stage stochastic programming problem with continuous decision
variables. The nonlinearity comes from the SCORE model described in Appendix B. The
impact of the decomposition on computational performance is discussed in Section 4.4.

4.3. Model results

The optimal R&D strategy for this problem is to carry out all R&D projects. Fig. 8 presents
the emission levels of the optimal mitigation strategy. The effect of the technology R&D on
optimal emission pathways is shown with the three subfigures corresponding to the final R&D
outcome after 2030. Intuitively, successful research and therefore cheaper abatement leads to
more abatement. This has also a major impact on the total costs of the optimal strategy: with
the low cost curves, the total expected cost is roughly 30% lower than with medium costs, and
with high abatement costs 30% higher than with the medium cost curve.

The climatic parameter R&D, the other endogenous effect in this model has a magnitude
smaller effect on the expected costs than the technology R&D, but the effect on abatement levels
is remarkable. The branches after 2030 represent different realizations of the technology research
and partial learning of the climate parameters. If the research efforts for both parameters fail
(blue lines in Fig. 8), the 2050 abatement decisions are made knowing only the outcome
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Figure 8: Abatement levels for different outcomes of technology research and parameter observations in 2030.

of the technology projects, and the four scenarios of partial learning only occur after 2050.
Learning the parameters before 2050 results in more dispersed abatement strategies. Finally,
the underlying parameter branching is represented with shapes in 2070. It can be seen that the
impact of climate sensitivity is considerably smaller than that of the damage exponent. This
is in line with the results in Ekholm and Baker (2022) and shows that the proposed framework
could be applied in planning for optimal R&D pathways.

4.4. Computational aspects

Using the decomposed model presented in Fig. 7, the main problem is solved in 0.4 seconds,
while solving all of the subproblems takes one second. If we instead solve a problem corre-
sponding to Fig. 5 without decomposition, the framework requires discretizing the abatement
levels. Using discrete decision spaces to approximate a continuous variable leads to suboptimal
solutions. Furthermore, even with only five levels for each abatement decision, the problem
becomes more computationally demanding than the continuous version. The damage costs are
calculated in a tenth of a second, but solving the model takes four seconds. In larger problems,
the discretized problem could quickly become intractable. The decomposed problem instead
uses continuous decision variables to represent the abatement decisions, precluding the need for
a discretization. As a consequence, it is faster to solve than the rudimentary approximation
with five abatement levels.

The discretized model has 2172 constraints and 4332 variables, of which 327 are binary; and
the main problem of the decomposed model has 40 constraints and 66 variables, of which 12
are binary. The discretized model is thus two orders of magnitude larger than the decomposed
model, but the damage costs in the discretized model are calculated almost instantaneously.
However, the trade-off of moving some of the computational burden into the subproblems makes
it possible to solve the continuous problem to optimality. The discretized model can technically
also be solved to optimality, but it requires a very rough discretization of the abatement levels,
which are continuous decisions by nature. Even with a low number of abatement options, the
solution times are larger than those for the decomposed model. In addition, such a rough dis-
cretization is likely to result in solutions that are far from the optimal values. While discretizing
the decision spaces may seem like an obvious approach, as it enables direct implementation us-
ing the MIP formulation (2)-(8), it is not computationally viable in all cases. Overall, this case
study provides an illustrative example of an application where the developments in this paper

13



make it possible to consider settings that are challenging both from modelling and computa-
tional standpoints.

5. Conclusion

In this paper, we propose a framework for Type 3 endogenously uncertain stochastic pro-
gramming (T3ESP) problems. Our contributions consist of two different modelling approaches
to consider conditionally observed information, making the framework more generally applicable
to decision-making problems in contexts such as capacity expansion. The proposed framework
is based on the work by Parmentier et al. (2020), originally developed for solving decision prob-
lems with decision-dependent uncertainties by converting an influence diagram representation
of the problem to a mixed-integer programming (MIP) problem.

To the best of our knowledge, and in line with Hellemo et al. (2018), Type 3 endogenously
uncertain stochastic programming (T3ESP) problems have not been previously addressed in
the literature. To make RJT a framework applicable to such problems, we show how Type 2
endogenous uncertainties can be modeled by either adding observation nodes to the influence
diagram or by adding conditional non-anticipativity constraints (C-NACs) to the model. We
note that with minimal modifications, the developments presented in this paper can also be
applied to extend the Decision Programming framework (Salo et al., 2022; Hankimaa et al.,
2023).

In practice, both approaches have their advantages and disadvantages. Adding observation
nodes only requires modifying the influence diagram by adding new nodes, while C-NACs are
additional constraints that must be added to the decision model. On one hand, it would be
beneficial to not require explicit modification of the decision model, i.e., the MIP model. On
the other hand, if one allows for modifying the decision problem by using C-NACs, this might
also allow for representing other parts of the decision process explicitly as added variables or
constraints. Further research in this direction is thus relevant.

However, if decision-dependent probability distributions and conditional information rev-
elation are intertwined in the problem structure, for example, by the presence of imperfect
conditional observations, one cannot employ C-NAC constraints. An example of such a prob-
lem would be a version of the climate CBA problem in Section 4 where the climate parameter
research does not reveal the correct branch, that is, remove one of the extreme parameter values,
but instead gives a probability distribution that provides better information than the original.
However, observation nodes can be applied even for such uncertainties.

Considering alternative modeling paradigms would make the framework suitable to a broader
set of problems. Interesting examples of such research ideas are (distributionally) robust op-
timization and further examination of multi-objective decision-making. For large problems, it
might be necessary to improve the computational performance using, e.g., decomposition meth-
ods for solving the MIP formulation (2)-(8), and solution heuristics. Influence diagram decom-
position (e.g., Lee et al., 2021) can be used for improving the computational efficiency of finding
maximum expected utility strategies for influence diagrams, and in the climate CBA problem,
we demonstrate a simple influence diagram decomposition. Perhaps more interestingly, in the
context of our MILP reformulations, we also show that such decomposition approaches can
allow for solving decision problems with continuous decision variables, significantly improving
the general applicability of the formulation.

In conclusion, the proposed developments turned the framework sufficiently general to model
a challenging example problem with Type 3 endogenous uncertainty. It should also be noted
that the influence diagrams are reformulated as MILP problems, guaranteeing global optimality
of solutions despite the challenging nature of the underlying decision problems.
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Appendix A. Computational environment

All problems are solved using an Intel E5-2680 CPU at 2.5GHz and 128GB of RAM, pro-
vided by the Aalto University School of Science Science-IT project. The problem code was
implemented in Julia v1.7.3 (Bezanson et al., 2017) with the Gurobi solver v10.0.0 (Gurobi
Optimization, LLC, 2022) and JuMP v1.5.0 (Dunning et al., 2017). All the code used in the
computational experiments is available at a GitHub repository (Herrala, 2023).

Appendix B. Cost-benefit model description

The idea in climate change cost-benefit analysis (CBA) is the minimization of emission
reduction costs and climate damages. The abatement cost calculation is based on marginal
abatement cost curves, as presented in equation (B.1), using numerical estimates from the
SCORE model (Ekholm, 2018). Coefficients α and β are the parameters of the cost curves, R
is the total abatement level and c is the marginal cost of abatement. In (B.3), C is the total
cost for abatement level R. The subscript t has been omitted for clarity, but parameters α and
β change between stages due to assumed technological progress.

R = αcβ (B.1)

=⇒ c =

(
R

α

)1/β

(B.2)

=⇒ C =

∫ R

0

( r

α

)1/β
dr =

β

1 + β

(
1

α

)1/β

R1+1/β . (B.3)

Departing from the predetermined technological progress that was assumed by Ekholm
(2018), the parameter α in the model depends here on the result of technological R&D, as
presented in Figure 5. We consider three levels of R&D effort in 2020 and 2030, which can then
lead to three possible levels of MAC curves for years 2050 and 2070.

For the effect of R&D efforts on bioenergy and carbon capture and storage (CCS) costs,
we used expert elicited estimates from Baker et al. (2015). To convert these into emission
reduction costs, we assume a coal power plant as a baseline and calculate the additional costs
from bioenergy with carbon capture and storage (BECCS) relative to the amount of reduced
emissions by switching from coal to BECCS. Both plants were assumed to have a lifetime of 30
years and operate at 80% capacity on average. The coal power plant was assumed to have a
40% efficiency and produce 885 tonnes of CO2 per GWh of electricity. The generation cost was
assumed to be 50$/MWh. Costs were discounted at 5% rate.

Compared to coal, BECCS accrues additional costs per generated unit of electricity from
the higher cost of biofuel and lower efficiency, and the additional investment to CCS and loss of
efficiency from using some of the generated electricity in the carbon capture process. Baker et al.
(2015) presented probability distributions for these parameters following three different levels
of R&D efforts (low, medium and high). To calculate the cost differential to coal power plant,
we performed a Monte Carlo sampling of these four parameters, separately for each R&D level,
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which was then compared to the amount of reduced emissions per generated unit of electricity.
This yields a distribution of emission reduction costs for BECCS for each R&D level.

We generalize the impact of R&D on BECCS’s emission reduction cost to the overall
marginal abatement cost (MAC) curve. This is obviously a simplification, but nevertheless
reflects the major role that BECCS might have in decarbonizing the economy (e.g. Fuss et al.,
2018; Rogelj et al., 2018). We take the high MAC from Ekholm (2018) as the starting point
and define two MAC curves that are proportionally scaled down from the high MAC.

The low R&D level yields an average emission reduction cost of around 100 $/t. We set three
bins for three cost levels: high costs correspond to above 75 $/t, medium costs are between 25
and 75 $/t, and low costs are below 25 $/t. The probabilities of achieving high, medium or low
emission reduction costs are then estimated from the Monte Carlo sampling for each R&D level,
and presented in Table B.1. With medium and high R&D effort, the average cost in the low
cost bin is around 20 $/t. Therefore we assign the reduction in the MAC as 50% for medium
costs and 80% for low costs. The corresponding parameters are listed in Table B.2. These are
still within the range of costs used in Ekholm (2018), where the low-cost MAC yielded the same
emission reductions than the high-cost MAC with approximately 90% lower costs in 2050.

Table B.1: Probabilities for different abatement costs (rows) with different levels of R&D effort (columns).

Low R&D Medium R&D High R&D

High costs 73 % 31 % 9 %
Medium costs 27 % 64 % 73 %
Low costs 0 % 5 % 18 %

Table B.2: Cost curve parametrization

year αhigh αmedium αlow β

2030 3.57 3.57 3.57 0.340
2050 11.2 13.3 16.7 0.250
2070 21.1 24.3 29.3 0.203

The climate damage cost calculation is from DICE (Nordhaus, 2017). The damage function
is presented in (B.4), where Y (t) is the world gross economic output at time t, a is a scaling pa-
rameter and b is the damage exponent. While climate change and the abatement decisions have
an effect on the economic output, the effect is assumed small and Y (t) is defined exogenously
in SCORE.

D(t,ΔT ) = Y (t)aΔT b. (B.4)

Finally, the temperature change ΔT is approximated with (B.5), where c is the climate
sensitivity (the temperature increase from doubling of CO2 emissions), M is the sum of emissions
in 2030-2070 and ki are coefficients.

ΔT = k1cM + k2c+ k3M + k4. (B.5)

In SCORE, both the DICE damage parameter and the climate sensitivity are uncertain with
three options, low, medium and high, as presented in Table B.3, and the uncertainty is revealed
in two steps in a binomial lattice. First, between 2050 and 2070, one of the extreme alternatives
is removed from both uncertainties, that is, for both parameters, we know either that the value
is not high or that it is not low. Then, after 2070, we learn the actual value.

The implementation here combines influence diagrams and MSSP in a way that the under-
lying branching probabilities are used as the probabilities of the observations ODmg and OCS in
Fig. 5. For the damage exponent, all branching probabilities are 50%. The observation ODmg
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thus has a 50% probability of removing either the high or low value. Depending on the branch,
the low or high value then has a 50% probability in the later branching, with the other 50% for
the medium value. This makes the medium branch have a 50% probability in total, while the
two extreme values both have a 25% probability. For the climate sensitivity, the first branching
is with a 50% probability for both branches. However, the second branching is different. If the
high sensitivity is excluded in the first branch, there is a 21% conditional probability of the
low branch in the second branching, meaning a 10.5% total probability for the low sensitivity.
Similarly, there is a 23% conditional probability of high damages in the other branch, resulting
in a 11.5% probability for the high sensitivity. The remaining 78% is the final probability of
medium sensitivity.

Table B.3: Climate sensitivity and damage exponent values

Climate sensitivity Damage exponent

High 6 4
Medium 3 2
Low 1.5 1

This uncertain process is modeled by means of a multi-stage stochastic programming prob-
lem, where new information is obtained gradually. It is possible to perform research on these
parameters. If the research succeeds, one of the extreme values is excluded already before 2050,
revealing the first branching in the observation process earlier than without or with failed re-
search. The observation of the actual parameter value (the second branching) still happens
after 2070, after all abatement decisions have been made. The total cost we aim to minimize is
then a discounted sum of research costs, abatement costs (B.3) for years 2030, 2050 and 2070,
and damage costs (B.4).
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ABSTRACT 
We explore the class of trilevel equilibrium problems with a focus on energy-environmental 
applications and present a novel single-level reformulation for such problems, based on 
strong duality. To the best of our knowledge, only one alternative single-level reformulation 
for trilevel problems exists. This reformulation uses a representation of the bottom-level 
solution set, whereas we propose a reformulation based on strong duality. Our novel refor-
mulation is compared to this existing formulation, discussing both model sizes and compu-
tational performance. In particular, we apply this trilevel framework to a power market 
model, exploring the possibilities of an international policymaker in reducing emissions of 
the system. Using the proposed approach, we are able to obtain globally optimal solutions 
for a five-node case study representing the Nordic countries and assess the impact of a car-
bon tax on the electricity production portfolio.
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1. Introduction

Hierarchical optimisation models with three levels of 
decision-makers arise in contexts such as traffic equilib-
rium (Gabriel, et al., 2022; Gu et al., 2019) and electri-
city market modelling (Huppmann and Egerer, 2015; 
Jin and Ryan, 2014). The hierarchical structure can be, 
e.g., such that the bottom-level players use a network 
operated by a middle-level player and regulated by a 
top-level player. For both electricity and traffic net-
works, similar models without the top-level regulators 
have been explored using bilevel optimisation, see Sinha 
et al. (2018) for a review.

Albeit challenging from both methodological and 
computational standpoints, including a top-level regula-
tor as the third level, as opposed to considering only 
bilevel models, can provide important policy insights. 
In the particular case of energy systems, these models 
can yield more realistic solutions in which more stake-
holders are assumed to act in coordination considering 
their own objectives. Obtaining equilibrium solutions 
for these models can thereby provide policy insights on 
pathways towards decarbonisation goals. Gabriel, et al. 
(2022) present a single-level reformulation for bilevel 
problems with complementarity-constrained bottom 
levels and discuss the possibility of using the model in 
a trilevel power market setting. However, their article 
includes no computational experiments demonstrating 
the practical usability of the proposed methods. Our 

aim is to explore the computational efficiency of the 
method using an illustrative power system setting rep-
resenting the market structure in the Nordic countries.

The contribution of this article is twofold. First, 
in Section 2, we present background on bi- and tri- 
level optimisation, ending with our novel approach 
for solving trilevel equilibrium problems based on 
strong duality in Section 2.4. Compared to the for-
mulation presented in Gabriel, et al. (2022) and 
summarised in Section 2.3, our proposed formula-
tion results in fewer constraints, which is likely to 
result in increased computational efficiency. Second, 
we illustrate the methodological contributions using 
a stylised trilevel power market model described in 
Section 3. The motivation for our application stems 
from the recent discussion about optimal carbon 
taxation and its impact on electricity production 
(e.g., H�ajek et al., 2019). The computational per-
formance of the model is explored in Section 4.1, 
and finally, in Section 4.2, we apply the trilevel equi-
librium modelling framework to a power market 
case study based on Belyak et al. (2023). These con-
tributions are significant for the novel class of trile-
vel optimisation problems, and equilibrium 
modelling area in general. Finally, Section 5 con-
cludes the article and discusses future research 
directions.
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2. Background

2.1. Earlier research

Bilevel optimisation considers problems with a hier-
archical structure consisting of an upper-level player 
and one or more lower-level players (Bard, 1983). 
In power sector models (Gabriel, et al., 2012), the 
upper-level player is often a transmission system 
operator and the bottom level consists of electricity 
producers in a Cournot oligopoly. The general 
structure of a bilevel problem with linear upper- 
and lower-level problems is presented in (1) and 
(2). The upper-level problem Pu is

ðPuÞ : minx, y�0 c>1 x þ d>
1 y (1a) 

s:t: A1x þ B1y � a1, (1b) 
y solves PlðxÞ, (1c) 

where PlðxÞ denotes the lower-level problem. Here, 
c1, x 2 Rnx , d1, y 2 Rny , A1 2 Rmu�nx , B1 2 Rmu�ny , 
and a1 2 Rmu : The overall idea of this formulation is 
that the upper-level player’s decision variable x 
affects the lower-level players’ optimal decisions y, 
which is reflected back to the upper level in the 
constraint (1c). The linear lower-level problem is 
formulated as

ðPlðxÞÞ : miny�0 d>
2 y (2a) 

s:t: A2x þ B2y � a2: (2b) 

In general, both problems can also include equal-
ity constraints, but they have been omitted here for 
brevity, without loss of generality.

Solution methods for bilevel problems are based 
on the idea of replacing the upper-level constraint 
(1c) with the optimality conditions of the lower- 
level problem (2). The two main alternatives are the 
Karush–Kuhn–Tucker (KKT) optimality conditions 
(Karush, 1939; Kuhn and Tucker, 1951), leading to 
a mathematical program with equilibrium con-
straints (MPEC); and mathematical programming 
with primal and dual constraints (MPPDC) 
(Baringo and Conejo, 2012; Ruiz et al., 2012). 
Additionally, approaches based on optimal value 
functions (Ye and Zhu, 1995) can be used. Bilevel 
optimisation models can be used in contexts such as 
Stackelberg games (Bard, 1991), Cournot competi-
tion (Gabriel, et al., 2012), and robust optimisation 
(Leyffer et al., 2020). For a recent survey on applica-
tions and algorithms for bilevel optimisation, we 
refer to Kleinert et al. (2021).

A major challenge in bilevel optimisation is that, 
even for linear bilevel problems, single-level refor-
mulations using complementarity constraints lead to 
non-linear and non-convex problems. This signifi-
cantly increases the computational complexity of 
solving such problems and requires specialised 
approaches such as the simplex method-inspired 

projected gradient method by Still (2002) or the 
(spatial) branch-and-bound methods discussed by 
Bard and Moore (1990) and implemented in the 
Gurobi solver (Gurobi Optimization, LLC, 2022). 
Alternatively, one can use heuristics such as genetic 
programming (Kieffer et al., 2020) and particle 
swarm optimisation (Gao and Liu, 2021). For a 
review on heuristic solution methods for bilevel pro-
gramming, we refer the reader to Camacho-Vallejo 
et al. (2023).

2.2. Trilevel equilibrium models

Consider a problem with a trilevel structure, in 
which players interact with each other at all three 
levels: top, middle, and bottom. In this structure, 
the top-level problem P1 is assumed to be a linear 
optimisation problem with the middle-level problem 
P2ðxÞ represented by the constraint (3c).

ðP1Þ : minx, y, z c>1 x þ d>
1 y þ e>1 z (3a) 

s:t: A1x þ B1y þ C1z � a1 (3b) 
y, z solve P2ðxÞ, (3c) 

where P2ðxÞ denotes the middle-level problem

ðP2ðxÞÞ : miny, z d>
2 y þ e>2 z (4a) 

s:t: A2x þ B2y þ C2z � a2 ðcÞ (4b) 
y � 0 (4c) 

z solves P3ðx, yÞ, (4d) 

where c is the vector of dual variables associated 
with constraint (4b) and z is the vector of bottom- 
level variables. In trilevel settings, the “lower-level” 
problem P2ðxÞ is itself a bilevel problem. This is 
challenging, because bilevel optimisation problems 
are generally non-convex and directly obtaining 
their optimality conditions is thus difficult. The 
middle-level problem P2ðxÞ constraints contain a 
bottom-level problem P3ðx, yÞ that is parameterised 
by the upper-level variables x and middle-level vari-
ables y. In particular, Gabriel, et al. (2022) discuss 
the case of the bottom-level problem being a linear 
complementarity problem (LCP)

P3ðx, yÞ : 0 � ~z ? q þ Nxx þ Nyy þ M~z � 0 (5) 

parameterised via the vector terms Nxx and Nyy: It 
should be noted that (5) can be viewed as the KKT 
conditions of convex quadratic problems and in 
Section 2.4, we discuss such problems in more 
detail. Hereinafter, we use the standard ? -notation

0 � a? b � 0 () a, b � 0, a>b ¼ 0 

for complementarity constraints with vectors a 
and b.

Trilevel problems have been researched by, e.g., 
Sauma and Oren (2007), who do not solve the 
models directly and instead iteratively solve the 
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middle- and bottom-level problems for different val-
ues of the top-level decision variables, and Dvorkin 
et al. (2018), who employ a column-and-constraint 
generation algorithm. In contrast, the goal of this 
article is to explore novel single-level reformulations 
for trilevel problems and solve them using an off- 
the-shelf solver, thus lowering the barrier-to-entry 
for using these models. However, this comes at the 
expense of imposing constraints on the structure of 
the models that are tractable in this manner. In (4), 
a general form of the problem is used, and the bot-
tom-level problem in (4d) is assumed to be parame-
terised by both x and y. For the sake of clarity, we 
define two classes of trilevel problems with different 
degrees of computational challenges.

Definition 2.1. If P3 is parameterised by both x and 
y, we say that the problem has a strong trilevel struc-
ture. In contrast, if P3 is parameterised only by the 
top-level variables x, i.e., it is not directly dependent 
on y, we say that the problem has a weak trilevel 
structure.

Gabriel, et al. (2022) show that in order to use 
their single-level reformulation, the problem must 
have a weak trilevel structure, allowing such prob-
lems to be solved rather effectively by borrowing 
from the results in Cottle et al. (2009, Theorem 
3.1.6) as long as the matrix M in the lower-level 
problem (5) is positive semi-definite (PSD). We also 
show that our novel reformulation in Section 2.4
retains this structural limitation and that the 
energy-environmental planning problem considered 
in this article has this structure. The aim of this art-
icle is to develop an alternative reformulation 
improving computational tractability and efficiency 
compared to the reformulation in Gabriel, et al. 
(2022), and the discussion on ways for lifting this 
restriction on problem structure is outside the scope 
of this article.

While the lack of direct influence for the middle- 
level player is a limitation, there are still structures 
that necessitate the use of a trilevel framework. As 
an example of a setting where a trilevel approach is 
required, we use the power market example in 
Section 3, where the bottom level consists of electri-
city generators, and on the middle level we have a 
profit-maximising system operator who has to sat-
isfy a minimum renewable share in electricity pro-
duction. If the bottom-level LCP matrix M in (5) is 
PSD, the bottom-level problem can have multiple 
optima. This could result in, e.g., a situation where 
it makes no difference for a generator to produce 
electricity using coal in one node or wind power in 
another.

Using the optimistic bilevel assumption 
(Dempe and Zemkoho, 2020), while the system 

operator cannot directly influence the generators, 
they can choose a bottom-level optimum that 
maximises their profit while satisfying the min-
imum renewable share constraint. In turn, maxi-
mising the middle-level player’s profit could, in 
some settings, result in worse objective values for 
the top-level player. These interactions could not 
be represented in a setting where the middle-level 
player is insensitive to the bottom-level player’s 
decisions, as the middle-level player must con-
sider the bottom-level optimality conditions to be 
able to choose between bottom-level optimal 
solutions.

2.3. Bottom-level LCP with a positive semi- 

definite coefficient matrix

For completeness, we summarise the solution 
approach introduced in Gabriel, et al. (2022). Let us 
assume that the matrix M in (5) is PSD and that we 
have a solution �z of (5). Furthermore, we assume 
the problem to have a weak trilevel structure and 
thus Ny ¼ 0, i.e., the middle-level decisions y do not 
influence the bottom-level problem (c.f. Definition 
2.1). Gabriel, et al. (2022) show that for a PSD M 
and a weak trilevel structure, a solution to the trile-
vel problem consisting of (3)–(5) can be obtained by 
solving the equivalent single-level reformulation

min
x, y,~z ,�z, b, c, d, f, g c>1 x þ d>

1 y þ e>1 ~z (6a) 

s:t: A1x þ B1y þ C1~z � a1, (6b) 
0 � y? d2 − B>

2 c � 0, (6c) 
0 � ~z ? e2 − C>

2 c − M>d − fðq þ NxxÞ
− ðM þ M>Þ>g � 0,

(6d) 

0 � �z ? q þ Nxx þ ðM þ M>Þ�z − M>b � 0, (6e) 
0 � b? q þ Nxx þ M�z � 0, (6f) 

0 � d?ðq þ NxxÞ þ M~z � 0, (6g) 
ðq þ NxxÞ>ð~z − �zÞ ¼ 0, ðM þ M>Þð~z − �zÞ ¼ 0,

(6h) 
0 � c?A2x þ B2y þ C2~z − a2 � 0, (6i) 

where �z is a solution to the bottom-level problem (5)
and ð�z�Þ>ðq þ Nxx� þ M�z�Þ ¼ 0 has to thus hold at 
an optimal solution x�,�z� to (6). Appendix A sum-
marises the reformulation steps taken in Gabriel, 
et al. (2022), including the constraints correspond-
ing to the dual variables b, d, f, and g. This for-
mulation assumes non-negativity for all variables y, 
but we note that this is not a requirement and 
including free variables in the middle level only 
requires small changes to the corresponding KKT 
conditions (6c).

Finally, we note that the reformulation (6) is not 
linear due to the non-linear products fNxx, x>N>

x ~z 
and x>N>

x �z, resulting in a non-convex problem. In 
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general, obtaining global optimal solutions to non- 
convex problems is enormously challenging, but this 
particular non-convexity can be handled by using a 
solver capable of handling problems with bilinear 
terms in special ordered sets of type 1 (SOS1) con-
straints (Beale and Tomlin, 1970). An SOS1 con-
straint states that out of a set of variables or 
functions, only one can have a non-zero value. A 
complementarity constraint 0 � a? b � 0 can thus 
be reformulated as two non-negative variables a and 
b in an SOS1 constraint. This can be achieved using, 
e.g., the spatial branch-and-bound method in the 
Gurobi solver (Gurobi Optimization, LLC, 2022); 
see also Siddiqui and Gabriel (2013).

2.4. Mathematical programming with 

complementarity from primal and dual constraints

We are now ready to discuss our novel single-level 
reformulation. Let us first consider a setting where 
the bottom level is a convex quadratic minimisation 
problem. So far, we have discussed a reformulation 
based on adding the KKT optimality conditions of 
the bottom-level problem to the middle-level prob-
lem. In our trilevel case, the KKT optimality condi-
tions, having complementarity constraints, require a 
reformulation of the LCP solution set so that we 
can obtain a single-level equivalent formulation of 
the trilevel problem. This eventually results in the 
middle- and bottom-level problems being repre-
sented as two optimisation problems, potentially 
leading to computational challenges with the refor-
mulation (6). Representing these two nested opti-
misation problems as a single-level equivalent 
requires a large number of complementarity con-
straints (6e)–(6i), possibly leading to prohibitive 
computational requirements.

To circumvent these challenges, we note that 
some bilevel optimisation problems can also be 
reformulated as MPPDC, using strong duality 
instead of complementarity. We present a novel 
strong duality-based reformulation for trilevel prob-
lems, in which a linear middle-level problem and 
convex quadratic bottom-level problems are refor-
mulated into a single quadratically constrained lin-
ear problem instead of two optimisation problems 
(a quadratic program (QP) and a linear program 
(LP)) as in Appendix A and Gabriel, et al. (2022). 
The model sizes resulting from using complemen-
tarity (Section 2.3) and strong duality (this section) 
for the bottom level are compared in Section 2.5.

Consider a trilevel problem with a set of bottom- 
level problems P3iðxÞ

ðP3iðxÞÞ : min
zi

1
2

z>i Fizi þ ei3ðxÞ>zi (7a) 

s:t: Ci3zi � ai3ðxÞ (7b) 

zi � 0, (7c) 

where zi is a vector of decision variables and Fi is 
PSD for all i 2 I: In our illustrative example 
described in the next section, the set I represents 
the electricity producers. Note that we assume a 
weak trilevel structure, that is, P3i does not depend 
on y. Dorn (1960) presents Lagrangian dual formu-
lations for quadratic problems,1 and using these for-
mulations, the dual of each problem P3iðxÞ is

max
pi, zi

−

1
2

z>i Fizi þ ai3ðxÞ>pi (8a) 

s:t: C>
i3pi − Fizi � ei3ðxÞ (8b) 

pi � 0: (8c) 

In MPPDC, the complementarity constraints in 
the KKT optimality conditions are replaced with a 
strong duality constraint. The strong duality the-
orem (e.g., Bazaraa et al., 2013) states that if the 
problem has no duality gap, that is, some constraint 
qualification holds for the problem,2 The optimal 
primal and dual objective values are equal. This 
implies that such problems can be solved to opti-
mality by finding any solution that is both primal 
and dual feasible with the primal and dual objective 
values being equal.

Combining formulations (7) and (8), we obtain 
the following primal and dual constraints, combined 
with a strong-duality constraint:

Ci3zi � ai3ðxÞ 8i 2 I (9a) 
C>

i3pi − Fizi � ei3ðxÞ 8i 2 I (9b) 
z>i Fizi þ ei3ðxÞ>zi − ai3ðxÞ>pi � 0 8i 2 I (9c) 

zi, pi � 0 8i 2 I: (9d) 

The strong duality constraint (9c) states that the 
objective value of each bottom-level primal (mini-
misation) problem must not be higher than the 
value of the dual (maximisation) problem. Recall 
that the weak duality theorem (Bazaraa et al., 2013) 
states that the objective value of any solution of a 
minimisation problem is greater or equal to any 
objective value of the corresponding dual problem. 
This result allows us to write the strong duality con-
straint in an inequality form, following the approach 
in Huppmann and Egerer (2015), thus avoiding a 
quadratic equality constraint that would render a 
non-convex feasible region. Since the matrices Fi are 
PSD, constraints (9c) are convex. Knowing that 
weak duality guarantees the left-hand side of each 
constraint (9c) to be non-negative also allows us to 
combine the jIj constraints into one by taking a 
sum over the left-hand side values, reducing the 
number of constraints.

By combining the middle-level problem (4a)–(4c)
with the bottom-level problem reformulation (9), we 
obtain the resulting bilevel MPPDC formulation of 
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(4):

min
y, zi, pi

d>
2 y þ

X
i2I

e>i2zi (10a) 

s:t: A2x þ B2y þ
X
i2I

Ci2zi � a2 (10b) 

Ci3zi � ai3ðxÞ 8i 2 I (10c) 
C>

i3pi − Fizi � ei3ðxÞ 8i 2 I (10d) X
i2I

ðz>i Fizi þ ei3ðxÞ>zi − ai3ðxÞ>piÞ � 0 (10e) 

y � 0 (10f) 
zi, pi � 0 8i 2 I: (10g) 

The objective function (4a) and constraint (4b)
have been modified from (4) by adding a sum over 
the set I to highlight the fact that we consider jIj
sets of decision variables zi.

The last step is to take the (KKT) optimality con-
ditions of the middle-level MPPDC problem (10) and 
add them to the top-level problem, resulting in a (tri-
level) mathematical program with complementarity 
from primal and dual constraints. Similar to the LCP- 
based reformulation summarised in Section 2.3, this 
strong duality reformulation has the requirement that 
the bottom level is not directly influenced by the mid-
dle-level decision variables. With a weak trilevel struc-
ture (as per Definition 2.1), both the objective 
function and constraints are convex (or affine) and 
the KKT conditions of (10) are thus sufficient for 
optimality. However, to the best of our knowledge, 
no constraint qualification is known to hold for the 
problem (10). For example, Slater’s constraint qualifi-
cation (all non-linear constraints can be satisfied as 
strict inequalities, Slater, 1950) is not satisfied because 
weak duality states thatX

i2I
ðz>i Fizi þ e>i3zi − a>i3piÞ � 0 

and thus, the non-linear strong duality constraint 
(10e) cannot be strictly satisfied. This means that 
the KKT conditions of this problem are only suffi-
cient but not necessary for optimality. Nevertheless, 
this tells us that if we find a point that satisfies the 
KKT conditions, that point is optimal for the prob-
lem (10). The complete single-level strong duality 
reformulation is thus

minx, y, z c>1 x þ d>
1 y þ e>1 z (11a) 

s:t: A1x þ B1y þ C1z � a1 (11b) 
0 � y? d2 þ B>

2 c � 0 (11c) 
0 � c? a2 − A2x − B2y −

X
i2I

Ci2zi � 0 (11d) 

0 � zi ? ei2 þ C>
i2c − C>

i3pb
i − F>

i zb
i þ ðFi þ F>

i Þzi�

þ ei3ðxÞ>� � 0 8i 2 I
(11e) 

0 � pi ?Ci3zb
i − ai3ðxÞ� � 0 8i 2 I (11f) 

0 � zb
i ? ei3ðxÞ − C>

i3pi þ Fizi � 0 8i 2 I (11g) 
0 � pb

i ?Ci3zi − ai3ðxÞ � 0 8i 2 I (11h) 
0 � �? −

X
i2I

ðz>i Fizi þ ei3ðxÞ>zi − ai3ðxÞ>piÞ � 0,

(11i) 

where pb
i and zb

i are the dual variables of the bottom- 
level primal and dual constraints (10c) and (10d), 
respectively, and � is the dual variable of the strong 
duality constraint (10e). That is, pb

i can be interpreted 
as the middle-level shadow prices associated with the 
bottom-level primal constraints. On the other hand, it 
is well known that the dual of the dual problem is the 
primal problem, and the dual variables associated with 
dual constraints are the primal variables. The value of 
these bottom-level primal variables must be the same 
for the middle- and bottom-level players, i.e., zb

i ¼ zi:

Note that the right-hand sides of constraints (11e), 
(11f), and (11i) contain bilinear terms (assuming ei3ðxÞ
and ai3ðxÞ are affine) including the top-level variables 
x, making the resulting model non-convex in general. 
As discussed before, such constraints can be modelled 
as quadratic SOS1 constraints and solved using spatial 
branch-and-bound-based methods.

If the problem instead has a strong trilevel struc-
ture, some of the terms ai3 or ei3 would effectively 
be functions of y, and the strong duality constraint 
(10e) would consequently have non-convex bilinear 
terms. The middle-level variables would be consid-
ered fixed for the bottom-level problems, but not 
for the middle level. A non-convex strong duality 
constraint in the middle-level problem (10) would 
result in the KKT conditions of the problem not 
even being sufficient for optimality. If we assume 
for example that the middle-level variables y 
appeared in linear terms added to the constant 
terms a and e, constraint (10e) would becomeX

i2I
ðz>i Fizi þ ei3 þ Nobj

y y
� �>

zi

− ai3ðxÞ þ Ncon
y y

� �>
piÞ � 0, 

resulting in bilinear terms ðNobj
y yÞ>z and ðNcon

y yÞ>p, 
where Nobj

y and Ncon
y are the coefficient matrices of 

the y-variables in the bottom-level objective and 
constraints, respectively.

2.5. Comparison of trilevel formulations

In the reformulation (6) (Gabriel, et al., 2022), the 
vector ~z contains both the primal and dual variables 
of each bottom-level problem. This is because the 
variable ~z appears in the LCP (5), which, in the 
problems presented in this article, represents the 
concatenated KKT conditions of the bottom-level 
problems. We denote by n2 the number of variables 
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in the middle-level problem and by m2 the number 
of constraints in the same problem, and analo-
gously, n3 and m3 for the number of variables and 
constraints, respectively, in the bottom-level prob-
lem. There are then n2 þ m2 þ 4ðn3 þ m3Þ comple-
mentarity constraints (6e)–(6g) and (6i) in 
formulation (6), and one variable for each comple-
mentarity constraint. Additionally, there are n3 þ
m3 þ 1 equality constraints (6h) used in the refor-
mulation, and the constraints (6b) for the top-level 
problem.

The novel strong duality formulation (11)
(assuming only inequality constraints and non- 
negative variables in the middle- and bottom-level 
problems for comparison) results in n2 þ m2 com-
plementarity constraints for the middle-level varia-
bles and constraints, 2ðn3 þ m3Þ complementarity 
constraints for the bottom-level primal and dual 
variables and constraints, and one complementarity 
constraint for the strong duality. Because strong 
duality is represented as an inequality constraint, no 
equality constraints are needed for the strong dual-
ity reformulation.

The strong duality reformulation of the bottom 
level results in half the number of complementarity 
constraints compared to the LCP reformulation pre-
sented in Gabriel, et al. (2022), plus one for strong 
duality, and no equality constraints. While the LCP 
reformulation results in two nested optimisation 
problems, the intermediate MPPDC (10) in the 
strong duality reformulation is a single problem, 
explaining the difference in the number of con-
straints. This is computationally beneficial, as large 
numbers of complementarity constraints contribute 
greatly to the computational challenges with equilib-
rium problems. Additionally, it should be noted that 
the column-and-constraint generation algorithm 
(Dvorkin et al., 2018) requires the middle- and bot-
tom-level problems to be represented as a single 
optimisation problem, suggesting that the strong 
duality approach could be easily extended to that 
context, unlike the LCP solution set reformulation.

On the other hand, the main disadvantage of our 
strong duality formulation is that the strong duality 
constraint (10e) retains the quadratic term from the 
bottom-level objective function, while the previous 
formulation has only affine constraints. This results 
in the formulation (10) not satisfying a constraint 
qualification, making the KKT conditions only suffi-
cient for optimality. Additionally, unlike the strong 
duality formulation, the formulation in Gabriel, 
et al. (2022) is applicable to settings where the bot-
tom-level complementarity conditions are not 
derived as KKT conditions of an optimisation prob-
lem. For example, the spatial price equilibrium 

problem in Gabriel, et al. (2022) could not be refor-
mulated using strong duality.

3. Applications in energy-environmental 
planning

In this section, we describe a trilevel power market 
equilibrium model that contains environmental con-
siderations for the top-level regional policy-maker. 
Finding effective instruments for emission reduction 
and climate change mitigation is becoming increas-
ingly important, and we focus our attention on car-
bon tax (see K€oppl and Schratzenstaller, 2023, for a 
review). At the middle level, a single regional system 
operator is responsible for operating transmission 
lines a 2 A between nodes k 2 K, maximising its 
profit from operating the system.

At the bottom level, each energy producer i 2 I 
produces electricity at nodes k 2 K using energy 
sources j 2 J and sells the electricity to nodes k0 2
K, that is, the electricity is not necessarily sold to 
the same node it is produced in. The producers 
maximise their profit from selling electricity, know-
ing that their decisions will affect the selling prices, 
making the bottom level a Cournot oligopoly. 
Instead of considering a fixed demand that must be 
satisfied exactly, we model the demand side as react-
ing with an affine relationship between production 
and price so that total demand increases linearly as 
the price of electricity decreases. This means, e.g., 
that if the producers started to generate unreason-
ably large amounts of electricity, the price would go 
down because more and more of the (elastic) 
demand is satisfied.

Finally, we consider a set D of representative 
days (Poncelet et al., 2017) of renewable generation 
availability factors and demand curves. The top-level 
regulator chooses a tax and minimum renewable 
share which apply for all days. In contrast, the oper-
ational decisions at the system operator and produ-
cer levels can differ between the days d 2 D: The 
weights of the representative days are denoted with 
Pd, with 

P
d2D Pd ¼ 1, that is, Pd represents the 

fraction of days in a year that is represented by day 
d. The purpose of representative days is to reduce 
the size and complexity of the model while still 
being able to realistically convey the variability in 
renewable energy availability and demand, and they 
are used in models such as US-REGEN (Young, 
2020) and LIMES-EU (Nahmmacher et al., 2014).

Our illustrative example is based on the model in 
Hobbs (2001). This model is chosen because of its 
simple nature, as using a more realistic model 
would require further discussion on assumptions 
and data, shifting the focus away from the methodo-
logical contributions of this article. We highlight 
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however, that while this reference model is a simpli-
fied representation of reality, models containing an 
equivalent structure to that in Hobbs (2001) are 
used in case studies by, e.g., Keles et al. (2020) and 
Rib�o-P�erez et al. (2019).

3.1. The top-level regulator

On top of this trilevel hierarchy is the regional regula-
tor which tries to both maximise the amount of electri-
city produced and minimise the carbon dioxide 
emissions from doing so. The motivation for this set-
ting is to balance the utility from electricity generation 
and to maintain reasonable electricity prices, while sim-
ultaneously mitigating negative environmental 
outcomes.

In addition to maximising production, the regula-
tor wants to minimise the total emissions P

ijk gijkzijkd from electricity generation, where gijk is 
the emissions factor corresponding to the produc-
tion level zijkd. For carbon-emitting energy sources, 
gijk > 0, while it is zero for zero-emission energy 
sources. These two objectives are then converted 
into a single objective by giving the total production 
value a weight r 2 ð0, 1Þ and the total emissions a 
weight ð1 − rÞ: By varying the value of this weight 
parameter, one could, for example, consider differ-
ent priorities between these two objectives.

The top-level player decides on a carbon tax x, 
which affects each firms’ variable costs: cijk ¼
�ijk þ gijkx, where �ijk > 0 is the cost specific to the 
firm-fuel combination (i, j) in node k, and gijk is the 
emissions factor. Additionally, the top-level player can 
impose a minimum renewable share q that the system 
operator must satisfy at each node k 2 K: We assume 
q to be the same for all nodes, but it would be 
straightforward to extend our model to consider this 
minimum renewable share to differ by node. The car-
bon tax and minimum renewable share affect the 
optimal solutions of the middle- and bottom-level 
players, resulting in different values for z, and conse-
quently, the top-level objective value. Increasing the 
carbon tax results in lower emissions as the high- 
emission sources become more expensive for the 
producers. However, this also results in the market 
equilibrium in the lower levels shifting towards lower 
total production and higher electricity prices.

Given the upper-level variables x and q, the over-
all problem for this top-level player is given as

max
x,q, y, z

X
d2D

Pd
X

i2I, j2J, k2K
ðr − ð1 − rÞgijkÞzijkd (12a) 

s:t: x, q � 0 (12b) 
z and y solve ð13Þ for all d 2 D: (12c) 

3.2. Profit-maximising system operator

At the middle level, following the model in Hobbs 
(2001), we consider a profit-maximising independent 
system operator (ISO). This ISO is responsible for 
operating the transmission lines a 2 A between nodes 
k 2 K for each representative day d 2 D and has to 
make sure that the lines function within their capacity 
limits, between −T−

a and Tþ
a : The ISO chooses each 

node’s net import ykd of electricity through the trans-
mission lines (i.e., negative ykd implies that more elec-
tricity is produced than used in node k, and electricity 
is exported to other nodes). The line flows are deter-
mined from these using power transmission distribu-
tion factors (see, e.g., Burr Metzler (2000) for a 
thorough description).

The ISO’s problem for the representative day d 2
D can be stated as the following linear program.

max
ykd, zijkd

X
k2K

wkdykd (13a) 

s:t: −

X
k2K

PTDFkaykd � T−

a ð/−

adÞ 8a 2 A

(13b) X
k2K

PTDFkaykd � Tþ
a ð/þ

adÞ 8a 2 A (13c) 

X
i2I, j2R

zijkd � q
X

i2I, j2J
zijkd ðwkdÞ 8k 2 K (13d) 

zijkd solve ð14Þ for all i 2 I, (13e) 

where wkd is a congestion-based wheeling fee for 
node k 2 K in day d 2 D and R � J is the set of 
renewable energy sources. The wheeling fee is the 
unit price the producers have to pay to the ISO for 
selling electricity at node k, and the price that the 
ISO pays to the producer for each unit of electricity 
produced at node k, and the prices of buying and 
selling electricity in a node are assumed to be the 
same. The variables in parentheses to the right of 
each constraint are the corresponding dual variables.

Constraint (13d) states that the ISO has to choose 
such transmission values that the renewable produc-
tion share in each node is at least q, decided by the 
top-level regulator. We assume that the ISO has no 
mechanism for influencing the producers to, for 
example, increase their renewable share. This 
assumption results in a weak trilevel structure 
(Definition 2.1). Instead of directly influencing the 
producers, the optimistic bilevel assumption 
described earlier results in the ISO “choosing” the 
best (in terms of (13a)) equilibrium solution for the 
bottom-level problems that satisfies (13d).
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3.3. Oligopoly of the producers

We next consider the lower-level optimisation prob-
lems for a set of energy firms i 2 I ¼ f1, :::, nFg: We 
start by presenting these problems formulated for a 
bilateral market where electricity producers sell dir-
ectly to consumers, which turns out to be the sim-
pler case, and then proceed to add arbitragers to 
arrive at a POOLCO market model where the pro-
ducers instead sell their electricity to a central auc-
tion. The POOLCO model more accurately 
represents the Nordic system and is thus used in the 
case study in Section 4.2. For a detailed discussion 
on different market types, we refer the reader to Ilic 
et al. (1998).

Let us first assume that at this lower level, these 
nF firms constitute the entire market. Each firm has 
a production capacity in some of the nodes k 2 K 
and can bilaterally sell their electricity directly to 
any of the nodes. For production, the producers 
have a set of energy sources j 2 J: Our formulation 
for this producer level follows the ideas in Hobbs 
(2001).

In this first model without arbitragers, every firm 
i 2 I decides on its sales and production for each 
node k 2 K and day d 2 D, taking into account lin-
ear inverse demand functions pkdðs1kd, :::, snFkdÞ ¼
akd − bkd

PNF
i¼1 sikd with price intercept akd > 0 and 

slope bkd > 0: These parameters are assumed to 
vary per day, representing the changes in demand. 
Recall that sikd is the amount of electricity sold by 
producer i to node k in day d, and the market price 
at node k thus depends on the sum of the sales of 
all firms into node k.

Additionally, each producer i 2 I has maximum 
production levels zmax

ijkd determined by their installed 
production capacity. For wind and solar power, the 
maximum production level depends on the repre-
sentative day d. Each producing firm solves the 
profit-maximisation problem

max
sikd, zijkd

X
k2K

 
akd − bkd

X
i02I

si0kd
� �

sikd −

X
j2J

cijkzijkd

− ðsikd − zijkdÞwkd

!

(14a) 
s:t: zijkd � zmax

ijkd ðkijkdÞ 8j 2 J, k 2 K (14b) X
k2K

sikd ¼
X

j2J, k2K
zijkd ðhidÞ (14c) 

zijkd, sikd � 0, (14d) 

where cijk is the marginal production cost for firm i 
in node k with fuel type j, composed as the sum of 
a firm-specific cost �ijk and an emissions cost gijkx, 
depending on the carbon tax x determined by the 
regulator.

The first term in (14a), involving the sales varia-
bles sikd represents the revenue from selling electri-
city to different nodes k 2 K: The nodal price is 
pkd ¼ akd − bkd

P
i2I sikd: The cost of producing 

energy is cijk. The producers pay a wheeling fee wkd, 
which is determined by the transmission network 
congestion and paid to the ISO. In this hub-network 
model, the wheeling fee is also what the ISO pays 
the producers for producing extra energy in each 
node k.

Constraint (14b) states that production cannot 
exceed capacity zmax

ijkd and constraint (14c) states that 
for each producer, the total sales must equal total 
production. It is easy to see that the objective func-
tion (14a) is concave for bkd > 0 and the constraints 
are affine. Thus, the bottom-level problem (14) has 
the same structure as the quadratic problems dis-
cussed in Section 2.4.

Finally, we include a market-clearing constraintX
i2I

sikd −

X
i2I, j2J

zijkd ¼ ykd ðwkdÞ 8k 2 K, d 2 D:

(15) 

This constraint is similar to constraint (14c), 
which instead considers the difference between sales 
and production for each producer i 2 I: We adopt 
the Bertrand assumption used in Hobbs (2001): the 
system operator sees the wheeling fees as fixed, 
instead of using market power to affect their values. 
In order to achieve this, the market-clearing con-
straint (15) is considered outside the system oper-
ator and producer problems, appearing “separately” 
in the final single-level formulation, effectively 
becoming a top-level constraint.

3.3.1. Extending the producer oligopoly: including 
arbitrage
We are interested in modelling the Nordic market 
and, to achieve that, we extend the bilateral market 
model represented by (14) into a POOLCO model. 
In a POOLCO market model, it is assumed that the 
producers sell their electricity to a central auction 
where the price is determined based on the amount 
of sold electricity and network congestion. Burr 
Metzler (2000) and Hobbs (2001) show that a bilat-
eral market with arbitragers is equivalent to a 
POOLCO market, assuming Cournot competition. 
Arbitragers are bottom-level players who have no 
production capacity, but they instead make their 
profits by exploiting the price differences between 
nodes, buying cheap electricity and selling it to 
nodes with a higher price. They act as price-takers 
and thus do not anticipate their effect on the price 
pkd. The arbitrager’s problem is

max
a

X
k2K

ðpkd − wkdÞakd (16a) 
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s:t:
X
k2K

akd ¼ 0 ðpH
d Þ, (16b) 

where akd is the amount of electricity sold by the 
arbitrager to node k in day d and the price at node 
k 2 K depends on the sales from the producers and 
the arbitragers, thus becoming pkd ¼ akd − 

bkdð
P

i2I, j2J sikd þ akdÞ: We can trivially obtain the 
KKT conditions of (16), a linear maximisation prob-
lem (recall that the arbitragers are price-takers, and 
pkd is thus treated as a constant). The KKT condi-
tions (17d) and (17e) are necessary and sufficient 
for optimality and adding them to (14), we obtain

max
sikd, zijkd, aikd

X
k2K

 
akd − bkd

X
i02I

si0kd þ aikd
� �� �

sikd

−

X
j2J

cijkzijkd − ðsikd − zijkdÞwkd

!

(17a) 
s:t: zijkd � zmax

ijkd ðkijkdÞ 8j 2 J, k 2 K (17b) X
k2K

sikd ¼
X

j2J, k2K
zijkd ðhidÞ (17c) 

akd − bkd
X
i02I

si0kd þ aikd
� �

¼ pH
id þ wkd 8k 2 K

(17d) X
k2K

aikd ¼ 0 (17e) 

zijkd, sikd � 0, (17f) 

where aikd is the net amount of power sold in node 
k by the arbitrager(s), and pH

id, the dual variable 
associated with the arbitrager constraint, is the price 
at the central auction H. Both aikd and pH

id are 
indexed over the different producers i 2 I, to high-
light that each producer can influence these values 
with their decisions and to avoid decision variables 
shared by players. This would result in a generalised 
Nash equilibrium problem (Facchinei and Kanzow, 
2010) that would be computationally more challeng-
ing. However, the values aikd and pH

id are the same 
for all producers at equilibrium, as shown in 
Appendix C, and the approach of having separate 
variables for each producer is thus valid. Constraint 
(17d) can be therefore written as pkd − wkd ¼ pH

id:

That is, including arbitragers results in the pro-
ducers selling their electricity to the central auction 
at the hub price pH

id (or simply pH
d at equilibrium), 

which is the sum of the price pkd at node k 2 K and 
the wheeling fee wkd paid to the system operator. 
Constraint (17e) states that since the arbitragers 
have no production capacity, their net sales amounts 
must be zero. The objective function is still concave 
after adding the arbitrage variables, and the new 
constraints are affine. Burr Metzler (2000) shows 
further substitutions and simplifications to the 

producer and system operator problems, which are 
shown in Appendix C, along with the resulting 
model that is used for the computational experi-
ments in Section 4.

4. Computational experiments

To illustrate the performance of the trilevel opti-
misation framework in a realistic problem setting, 
we solve the trilevel model described in the previous 
section, using randomly generated instances of vary-
ing sizes. The data used in these computational 
experiments mimic the data in the case study of 
Belyak et al. (2023), whose data are from the 
ENTSO-E Transparency Platform (Hirth et al., 
2018) and are further described in Section 4.2. The 
computational experiments were performed using 
eight CPU threads and 16GB of RAM. All code 
were implemented in Julia v1.7.3 (Bezanson et al., 
2017) using the Gurobi solver v10.0.0 (Gurobi 
Optimization, LLC, 2022) and JuMP v1.5.0 
(Dunning et al., 2017) and are available in (github. 
com/gamma-opt/trilevel-energy).

4.1. Comparing formulations

We compare the performance of the two single-level 
reformulations, the LCP-based reformulation from 
Gabriel, et al. (2022) (Section 2.3) and our strong 
duality reformulation (Section 2.4) by solving 50 
randomly generated problems with two producers, 
five energy sources, three nodes, and three represen-
tative days. This problem size was chosen as the 
base case because it seems to be large enough to 
make the problems challenging to solve, but small 
enough for them to be mostly solvable within a 
time limit of 1 h.

The results are presented in Figure 1, and the 
main observation here is that the novel strong dual-
ity formulation is faster in most cases. In Figure 1, 
markers below the diagonal (dashed line) corres-
pond to such cases. In 13 instances, the formulation 
of Gabriel, et al. (2022) did not find an optimal 
solution in an hour while our strong duality formu-
lation did. One major issue with both models com-
pared here is that usually the first feasible solutions 
are found at the end of the solution process, and 
most of the solution time is spent on improving the 
dual bound without finding any feasible solutions. 
Nevertheless, changing solver parameters to empha-
sise finding feasible solutions was not found to have 
a major impact on performance.

As discussed in Section 2.5, the strong duality 
formulation results in fewer constraints than the 
reformulation in Gabriel, et al. (2022). Recall that in 
our models, complementarity constraints are 
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formulated as SOS1 constraints. The model sizes in 
the base case test problems are presented in Table 1, 
and out of the two, our strong duality model is 
smaller, except for having one more quadratic SOS1 
constraint to represent the strong duality constraint 
(11i). In our model, all non-complementarity quad-
ratic constraints are inequality constraints, while in 
the LCP-based model, there is one quadratic equal-
ity constraint (the first one in (6h)).

Next, we analyse how problem size affects solu-
tion times by varying either the number of pro-
ducers, energy sources, nodes, and representative 
days from the base case, one parameter at a time. 
The results are presented in Figure 2. The medium- 
sized cases in each subfigure are similar to each 
other, which is expected as the problem sizes are 
the same. Varying the number of producers or 
energy sources seems to have only a small effect on 
the solution times while changing the number of 
nodes has a far stronger effect. The effect of the 
number of representative days is stronger than that 
of the number of producers and energy sources but 
seems to be weaker than that of the number of 
nodes.

We can also see that the number of problems 
that were not solved to optimality within the time 
limit is affected by the number of nodes and repre-
sentative days, but not by the number of firms or 
energy sources. Additionally, the novel strong dual-
ity model finds an optimal solution more frequently 
than the previous formulation. As predicted in 

Section 2.4, the larger number of complementarity 
constraints in the LCP formulation (Table 1) proves 
to be computationally challenging, and the smaller 
strong duality model is solved faster.

4.2. Case study: a five-node Nordic energy 

system

The case study in Belyak et al. (2023) considers five 
nodes, representing Finland, Sweden, Norway, 
Denmark, and the combined Baltic countries 
(Estonia, Latvia, and Lithuania). There are five pro-
ducers, each owning production capacity in one of 
the five nodes. Nine different energy sources are 
available, consisting of five conventional sources: 
nuclear, coal, gas (closed- and open-cycle) and bio-
mass, and four renewable sources: solar, hydro, 
onshore, and offshore wind. Additionally, we con-
sider three representative days of renewable gener-
ation availability factors and demand curves. Recall 
that in our model, the top-level regulator makes 
their decisions independent of the day considered, 
that is, the carbon tax and minimum renewable 
share are constant across different representative 
days. These representative days are obtained in 
Belyak et al. (2023) by performing hierarchical clus-
tering on demand, price, and renewable availability 
data.

Day 1 is a winter day with higher demand, low 
solar availability, and medium wind availability. 
Days 2 and 3 have a lower demand with day 2 rep-
resenting a windy day with medium solar availabil-
ity, and day 3 representing a sunny day with low 
wind availability. The details of the hierarchical clus-
tering process can be found in Belyak et al. (2023).

In Figure 3, the production portfolio (a weighted 
average over the representative days) is presented 
for a model with no carbon tax (i.e., the regulator 
heavily prefers maximising production over mini-
mising emissions) and a carbon tax of 23 e/ton 
(enough to remove nearly all emissions). Compared 
to the baseline with no carbon tax, this 23 e/ton tax 
decreases the total production by 2.8%. In this 
example, these carbon tax values are achieved by 
setting the weight parameter r in the top-level 
objective (12a) to 0.8 and 0.4, respectively.

Because of the substantial hydropower production 
capacity in the Nordic system, particularly in 
Norway and Sweden (IRENA, 2023), the renewable 

Figure 1. Solution times for the two formulations on 50 ran-
dom instances with 2 producers, 5 energy sources, 3 nodes, 
and 3 representative days. If one of the methods failed to 
find a solution within 3600 s, an orange marker is used, and 
the marginal distributions on the right and top sides exclude 
unsolved instances.

Table 1. Model sizes for the two reformulations.
Strong duality (this article) LCP (Gabriel et al., 2022)

Variables 678 949
Affine constraints 306 757
Quadratic constraints 100 100
Affine SOS1 288 648
Quadratic SOS1 100 99
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share of production is large even without a carbon 
tax. A part of the increase in hydropower usage 
when the carbon tax is introduced comes from 
decreasing onshore wind production. This is a con-
sequence of the simplified nature of the model and 
data, as the operational costs for both hydropower 
and onshore wind power are zero, resulting in mul-
tiple optima and indifference for the producers to 
use one or the other, as long as the production cap-
acity of neither is exceeded. This artefact of the 
model could be easily removed by, e.g., setting the 
operational cost of either energy source to a small 
positive number instead of zero, causing the pro-
ducers to prefer the cheaper source. However, this 
would imply an artificial preference for one source 
over the other. The only significant source of emis-
sions is coal, and introducing a carbon tax of 23e/ 

ton removes all coal from the portfolio, bringing in 
a small amount of closed-cycle gas power instead. 
The closed-cycle gas production occurs in the 
Baltics for day 1, and to understand this emergence 
of gas better, we must examine the transmission 
network in Figure 4.

The first representative day has the highest net-
work usage with large amounts of electricity trans-
mitted from Norway to Finland through Sweden. 
With the carbon tax, the importance of transmission 
is further highlighted as the hydropower capacity in 
Norway is used for lowering overall prices under 
high demand and low production from both solar 
power and high-emission sources. The differences 
between representative days 2 and 3 are more sub-
tle, but we can see, e.g., the reliance on wind power 
in Denmark: in the low-wind day 3, the carbon tax 

Figure 2. Cumulative distribution functions of solution times for the two formulations with 1–3 producers, 4–6 energy sour-
ces, and 2–4 nodes and representative days. For each problem size, 50 instances are generated and solved.

Figure 3. Weighted average electricity production portfolio over the five nodes and three representative days.
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results in Denmark importing a significant amount 
of electricity from Norway, compared to the high- 
wind day 2. On the first day with a carbon tax of 23 
e/ton, both lines connecting the Baltic countries to 
the rest of the system are at their capacity, explain-
ing why the Baltic countries start using gas power 
after a carbon tax is introduced. This illustrates the 
complex interplay between the three levels that is 
captured by our model.

5. Conclusions

In this article, we propose a novel formulation for 
trilevel optimisation problems focusing on energy 
systems planning with environmental considera-
tions. Additionally, we characterise the notion of 
weak and strong trilevel structures and compare the 
computational performance of the novel strong 
duality-based reformulation in this article and the 
LCP-based reformulation in Gabriel, et al. (2022).

The computational results are encouraging, as we 
are able to solve the case study to optimality within 
a few minutes despite the fact that both single-level 
reformulations considered are non-convex problems. 
However, we note that preliminary experiments 
with seemingly small extensions to the model, such 
as adding ramping constraints (limiting the change 
in production between consecutive periods) to the 
producer problem made the problem computation-
ally intractable. The small size of the case study is 
indicative of the very challenging (non-convex) 
nature of these problems, and the authors note that 
the reformulations and solution methods in this 

article should be viewed as one of the first steps 
towards an efficient solution framework for trilevel 
problems.

For the results in this article, an off-the-shelf 
solver is used, which is useful to ensure a low bar-
rier-to-entry for using the developed formulation. 
However, we believe that the computational per-
formance can be increased considerably using speci-
alised solution methods like column-and-constraint 
generation (Dvorkin et al., 2018). Notably, ideas 
such as bilevel branch-and-bound (Fischetti et al., 
2018) and convex hull reformulations of the middle- 
level feasible region (Santana and Dey, 2020) may 
be explored in the context of the problems pre-
sented in this article. In addition, the model could 
also be extended to consider transmission and/or 
production capacity expansion over multiple time 
periods, especially if computationally more efficient 
reformulations and solution methods are developed.

Despite the outstanding computational challenges, 
we show that the novel reformulation improves 
computational performance compared to the previ-
ous formulation (Gabriel, et al., 2022), and we show 
that the framework can be applied to a setting rep-
resenting the Nordic electricity market, and results 
on the effect of carbon tax can be obtained. A limi-
tation of the formulation approach presented in this 
article and that originally proposed by Gabriel, et al. 
(2022) is that they require a weak trilevel structure. 
In practice, relevant problems may instead have a 
strong trilevel structure, precluding the use of these 
reformulations. Thus, further research is needed on 

Figure 4. Transmission grid usage with different carbon taxes and representative days. The size of an arrow is proportional to 
the flow on the line and the colour of an arrow represents congestion: black arrows correspond to lines operating at their 
limit. The nodes are FI¼ Finland, SE¼ Sweden, NO¼Norway, DK¼Denmark, BA¼ Baltic countries.

12 O. HERRALA ET AL.



developing (heuristic) solution methods for prob-
lems with a strong trilevel structure.
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Appendix A. Reformulation of a bottom-level 
LCP with a positive semi-definite M

Cottle et al. (2009) show that if the matrix M is positive 
semi-definite (PSD), all solutions to the LCP

0 � z ? q þ Nxx þ Nyy þ Mz � 0, (A1) 

can be obtained as the following polyhedral set:

fz 2 Rnz
�0 : q þ Nxx þ Nyy þ Mz � 0,

ðq þ Nxx þ NyyÞTðz − �zÞ ¼ 0,
ðM þ MTÞðz − �zÞ ¼ 0g,

(A2) 

where �z is a solution to the LCP.
Hence, the middle-level problem can be rewritten as

miny, z�0 d>
2 y þ e>2 z (A3a) 

s:t: A2x þ B2y þ C2z � a2 (A3b) 
q þ Nxx þ Nyy þ Mz � 0 (A3c) 

ðq þ Nxx þ NyyÞ>ðz − �zÞ ¼ 0 (A3d) 
ðM þ M>Þðz − �zÞ ¼ 0: (A3e) 

We observe that (A3d) includes a bilinear term 
y>N>

y z in an equality constraint. This is a non-convex 
constraint, precluding the direct use of KKT conditions 
for obtaining an optimal solution to (A3). However, for 
problems with a weak trilevel structure, Ny ¼ 0 and 
these bilinear terms vanish. In the next theorem, we 
assume Ny ¼ 0.
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Theorem A.1. Let M be a positive semi-definite matrix. 
Then, ðx�, y�, z�Þ is an optimal solution of Problem (3)
with middle level (4) if and only if ðx�, y�, z�,�z�Þ is an 
optimal solution of the problem

minx, y, z,�z c>1 x þ d>
1 y þ e>1 z (A4a) 

s:t: A1x þ B1y þ C1z � a1 (A4b) 
�z 2 arg min

z0�0
fz0>ðq þ Nxx þ Mz0Þ :

q þ Nxx þ Mz0 � 0 ðbÞg,
(A4c) 

y, z 2 arg min
ŷ, ẑ�0

fd>
2 ŷ þ e>2 ẑ :

q þ Nxx þ Mẑ � 0 ðdÞ
ðq þ NxxÞ>ðẑ − �zÞ ¼ 0 ðfÞ
ðM þ M>Þðẑ − �zÞ ¼ 0 ðgÞ

A2x þ B2ŷ þ C2ẑ � a2 ðcÞg,
such that ð�z�Þ>ðq þ Nxx� þ M�z�Þ ¼ 0:

(A4d) 

See Theorem 6 in Gabriel et al. (2022) for a proof of 
this result as well as related theoretical aspects of the gen-
eral form of the problem.

The two nested optimisation problems in (A4) are a 
convex QP (A4c) and an LP (A4d). Hence, the KKT con-
ditions of both problems are necessary and sufficient for 
optimality and the two inner problems can be replaced by 
their necessary and sufficient KKT conditions, leading to 
the single-level reformulation (6).

Appendix B. Formulating the dual of a QP 
with affine constraints

Given a quadratic program with affine constraints
min

zi

1
2

z>i Fizi þ ei3ðxÞ>zi (B1a) 

s:t: Ci3zi � ai3ðxÞ ðpiÞ (B1b) 
zi � 0 ðsiÞ, (B1c) 

where we assume Fi is a positive semi-definite (PSD) 
symmetric matrix, the Lagrangian of the problem is

Lðzi, si, piÞ ¼ 1
2

z>i Fizi þ ei3ðxÞ>zi þ p>i ðai3ðxÞ − Ci3ziÞ
− s>i zi,

(B2) 

where pi and si are non-negative Lagrange multipliers or 
dual variables. The first-order optimality condition is thus

rzi Lðzi, si, piÞ ¼ Fizi þ ei3ðxÞ − C>
i3pi − si ¼ 0 (B3) 

and rearranging (B2) gives us
1
2

z>i Fizi − z>i C>
i3pi þ z>i ei3ðxÞ − z>i si þ ai3ðxÞ>pi, (B4) 

which, using the first-order condition −Fizi ¼ −C>
i3pi þ

ei3ðxÞ − si, becomes

−

1
2

z>i Fizi þ ai3ðxÞ>pi: (B5) 

Maximising Eq. (B5), subject to the first-order opti-
mality condition for zi and treating si as a slack variable 
and removing its explicit representation from the problem 
results in the Lagrangian dual formulation

max
pi, zi

−

1
2

z>i Fizi þ ai3ðxÞ>pi (B6a) 

s:t: C>
i3pi − Fizi � ei3ðxÞ (B6b) 

pi � 0: (B6c) 

Appendix C. Further substitutions for the 
middle and bottom levels

The producer model can be further simplified using the 
substitution sikd ¼Pj2J zijkd, removing the sales variables 
and the balance constraint (17c). For a further reduction, 
the remaining equality constraints (17d) and (17e) can be 
used to solve for a and pH.

We have the necessary and sufficient KKT conditions  

akd − bkd
X
i02I

si0kd þ aikd
� �

¼ pH
id þ wkd8k 2 K (C1) 

X
k2K

aikd ¼ 0 (C2) 

of the arbitrager’s problem, and with the substitution P
j2J zijkd ¼ sikd, we get  

akd − bkdðZkd þ aikdÞ ¼ pH
id þ wkd8k 2 K (C4) X

k2K
aikd ¼ 0, (C5) 

where Zkd ¼Pi2F, j2J zijkd: In matrix form, we get  

Qd 1
1> 0

� �
aid
pH

id

� �
¼ ad − QZd − wd

0

� �
, (C7) 

where Qd is a square diagonal matrix with the element on 
the kth row and column being bkd and 1 is a vector of 
ones. It can be shown that

Qd 1
1> 0

� �
−1

¼ Ld hd
h>

d ĥd

� �
, (C8) 

where

ĥd ¼ 1P
k2K b−1

kd
hkd ¼ b−1

kd ĥd

Ld
k, k ¼ ĥdb

−1
kd
P

k02Knk b
−1

k0d
Ld

k, k0 ¼ −ĥdb
−1
kd b

−1

k0d, k 6¼ k0:

This results in the solution

aikd ¼ hkdZd − Zkd −

X
k02K

ðak0d − wk0dÞLd
k, k0 (C9) 

pH
id ¼

X
k2K

ðakd − wkdÞhkd − Zdĥd, (C10) 

where
Zd ¼Pi2I, j2J, k2K zijkd

Zkd ¼Pi2I, j2J zijkd:

It can be seen that the values of aikd and PH
id are the 

same for each firm i 2 I and we can drop the index i. 
Burr Metzler (2000) shows that the arbitrage amounts 
correspond to the transmission values: akd ¼ ykd.
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These substitutions result in the problem formulation

max
zid

X
k2K

ðakd − wkdÞhkd − Zdĥd
� �

Zid

−

X
j2J, k2K

cijk − wkdð Þzijkd (C11a) 

s:t: zijkd � zmax
ijkd ðkijkdÞ 8j 2 J, k 2 K (C11b) 

zijkd � 0 (C11c) 

and we can see that the substitutions do not change the 
concavity of the objective function: the quadratic term for 
producer i 2 I is ĥdZ2

id: Finally, the sales variables sikd are 
also eliminated from the market-clearing constraint, 
resulting in

hkdZd − Zkd þ
X
k02K

ðak0d − wk0dÞLd
kk0 ¼ ykd ðwkdÞ 8k 2 K:

(C12) 
The formulation (C11) can be converted into an LCP 

by using the KKT optimality conditions. The combined 
KKT conditions of (C11) for all producers i 2 I are

0 � zd ?Bdzd þ kd þ qz
d � 0 (C13a) 

0 � kd ? − zd þ zmax
d � 0, (C13b) 

where qz
ijkd ¼ −

P
k2Kðakd − wkdÞhkd þ ðcijk − wkdÞ and Bd 

is a PSD matrix with

Bdðijk, i0j0k0Þ ¼ 2ĥd i ¼ i0
ĥd i 6¼ i0,

(

making the bottom level an LCP with a PSD coefficient 

matrix Bd I
−I 0

� �
: This makes the problem setting suitable 

for the method described in Section 2.3, but we will con-
tinue by presenting the strong duality approach to this 
problem.

C.1. Strong duality reformulation of the 
trilevel electricity market model

Using the primal–dual conversion rules for quadratic pro-
grams summarised in Dorn (1960), the dual of the bot-
tom-level problem (C11) can be stated as

min
kijkd, zijkd

ĥdZ2
id þ

X
j2J, k2K

zmax
ijkd kijkd (C14a) 

s:t: − kijkd � ĥdðZd þ ZidÞ −

P
k2K hkdðakd − wkdÞ

þ ðcijk − wkdÞ ðzijkdÞ 8j 2 J, k 2 K
(C14b) 

zijkd, kijkd � 0: (C14c) 

As described in Section 2.4, we impose a strong duality 
constraint stating that the objective value of the dual 
(minimisation) problem is less or equal to that of the pri-
mal (maximisation) problem, and combine constraints 
(C11b)–(C11c), (C14b)–(C14c) and the strong duality 
constraint. A solution that satisfies these constraints must 
be optimal to (C11) and (C14). Notice that the inequality 
version of the strong duality constraint is convex (as 
opposed to an equality constraint between the primal and 
dual objective values), and the other constraints are 
affine.

Finally, we can write the primal and dual constraints 
and the strong duality constraint as  

zijkd � zmax
ijkd ðk0ijkdÞ 8i 2 I, j 2 J, k 2 K (C15a) 

−kijkd − ĥd Zd þ Zidð Þ � −

X
k2K

ðakd − wkdÞhkd

þ ðcijkd − wkdÞ ðz0ijkdÞ 8i 2 I, j 2 J, k 2 K
(C15b) X

i2I
ðĥdZ2

id þ ĥdZdZid þ
X

j2J, k2K
zmax

ijkd kijkd

−ð
X
k2K

ðakd − wkdÞhkdÞZid

þ
X

j2J, k2K
ðcijk − wkdÞzijkdÞ � 0 ð�dÞ

(C15c) 
zijkd, kijkd � 0, (C15d) 

where the strong duality constraints for all producers i 2
I have been combined into a single constraint (C15c) to 
reduce the number of constraints as suggested in Pineda 
et al. (2018).

The KKT conditions of the ISO problem (13) com-
bined with the constraints (C15) and the market-clearing 
constraint (C12) are  

0 � zijkd ? k0ijkd − ĥdðZd þ ZidÞ þ ð2ĥd Zd þ Zidð Þ −

X
k2K

ðakd − wkdÞhkdþ
ðcijkd − wkdÞÞ�d − ð ðj 2 RÞ − qÞwkd � 0 8i 2 I, j 2 J, k 2 K

(C16a) 
0 � kijkd ? − z0ijkd þ zmax

ijkd �d � 0 8i 2 I, j 2 J, k 2 K
(C16b) 

0 � z0ijkd ? kijkd þ ĥdðZd þ ZidÞ −

X
k2K

ðakd − wkdÞhkd

þ ðcijkd − wkdÞ � 0 8i 2 I, j 2 J, k 2 K
(C16c) 

0 � k0ijkd ? zmax
ijkd − zijkd � 0 8i 2 I, j 2 J, k 2 K (C16d) 

0 � /−

ad ?T−

a þ
X
k2K

PTDFkaykd � 0 8a 2 A (C16e) 

0 � /þ
ad ?Tþ

a −

X
k2K

PTDFkaykd � 0 8a 2 A (C16f) 

0 � wkd ?
X

i2I, j2R
zijkd − q

X
i2I, j2J

zijkd � 0 8k 2 K (C16g) 

0 � �d ? −

X
i2I

ðĥdZ2
id þ ĥdZDZid þ

X
j2J, k2K

zmax
ijkd kijkd−

X
k2K

ðakd − wkdÞhkd
� �

Zid þ
X

j2J, k2K
cijk − wkdð ÞzijkdÞ � 0

(C16h) 
wkd ¼

X
a2A

PTDFkað/þ
ad − /−

adÞ 8k 2 K (C16i) 

ykd ¼ −Zkd þ hkdZd þ
X
k02K

Ld
k, k0ðak0d − wk0dÞ 8k 2 K:

(C16j) 
The indicator term ðj 2 RÞ is 1 if j 2 R, 0 otherwise, 

and the variables z0ijkd and k0ijkd are the dual variables of 
the primal and dual constraints from the producer level 
for the system operator problem, and � is the dual vari-
able for the strong duality constraint.
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		Komentosarjat		Hyväksyttiin		Ei komentosarjoja, joita ei voi käyttää



		Ajoitetut vastaukset		Hyväksyttiin		Sivu ei edellytä ajoitettuja vastauksia



		Suunnistuslinkit		Hyväksyttiin		Suunnistuslinkit eivät ole toistuvia



		Lomakkeet





		Säännön nimi		Tila		Kuvaus



		Koodimerkityt lomakekentät		Hyväksyttiin		Kaikki lomakekentät on merkitty



		Kenttäkuvaukset		Hyväksyttiin		Kaikilla lomakekentillä on kuvaus



		Vaihtoehtoinen teksti





		Säännön nimi		Tila		Kuvaus



		Kuvien vaihtoehtoinen teksti		Epäonnistui		Kuvilla on oltava vaihtoehtoinen teksti



		Sisäkkäinen vaihtoehtoinen teksti		Epäonnistui		Vaihtoehtoinen teksti, joka ei tule koskaan näkyviin



		Liitetty sisältöön		Epäonnistui		Vaihtoehtoinen teksti täytyy liittää sisältöön



		Piilottaa huomautuksen		Epäonnistui		Vaihtoehtoinen teksti ei saa piilottaa huomautusta



		Muiden elementtien vaihtoehtoinen teksti		Epäonnistui		Muut elementit, jotka edellyttävät vaihtoehtoista tekstiä



		Taulukot





		Säännön nimi		Tila		Kuvaus



		Rivit		Epäonnistui		TR-elementin täytyy olla Table-, THead-, TBody- tai TFoot-alielementti



		TH ja TD		Epäonnistui		TH- ja TD-elementtien täytyy olla TR-alielementtejä



		Otsikot		Epäonnistui		Taulukoissa täytyy olla otsikot



		Säännöllisyys		Epäonnistui		Taulukoiden jokaisella rivillä on oltava sama määrä sarakkeita ja jokaisessa sarakkeessa sama määrä rivejä



		Yhteenveto		Ohitettiin		Taulukoissa on oltava yhteenveto



		Luettelot





		Säännön nimi		Tila		Kuvaus



		Luettelon kohteet		Epäonnistui		LI-elementin on oltava L-alielementti



		Lbl ja LBody		Epäonnistui		Lbl- ja LBody-elementtien täytyy olla LI-alielementtejä



		Otsikot





		Säännön nimi		Tila		Kuvaus



		Kelvollinen sisäkkäisyys		Epäonnistui		Kelvollinen sisäkkäisyys










Takaisin alkuun



