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Abstract

In difficult optimization problems, strong formulations and algorithmic techniques that exploit the
problem structure are often invaluable in designing efficient solution methods. Although
microprocessors and generic solvers have reduced solution times, these tools are often not enough
to solve hard problems of realistic size. To overcome these challenges, the standard practice has
typically been to develop tailored, problem-specific algorithms. This summary chapter introduces
efficient formulations and algorithms for three different optimization problems, each of which
either serves as a basis for future extensions or unifies previous approaches under one framework.
First, two algorithms are developed for the green vehicle routing problem. Both algorithms rely on
a novel multigraph reformulation that transforms refueling nodes into non-dominated refuel paths
between customers. This transformation allows combining routing and refueling decisions with
negligible overhead. Both algorithms serve as building blocks for developing new solution methods
for generalizations of the problem. The effectiveness of the multigraph and the developed
algorithms are demonstrated through computational evaluation.

Second, a new framework for centralized allocation of resources to a portfolio of decision-making
units is developed. This framework can handle multiple objectives with incomplete preferences and
compute all non-dominated portfolios satisfying these preferences. Each portfolio corresponds to
a Pareto-optimal allocation of resources among the decision-making units that maximizes
portfolio-level efficiency. The framework unifies several previous models that compute single
solutions from the efficient frontier, possibly involving non-linear utilities and many kinds of
production possibility sets. It also demonstrates that relying on conventional efficiency scores in
guiding resource allocation decisions may lead to inefficiencies at the portfolio level.

Third, a novel Decision Programming approach is developed that contributes towards unifying
stochastic programming and decision analysis within a single framework and relaxes two common
assumptions in decision analysis: (i) perfect recall where all prior decisions are known when
making a decision and (ii) regularity that assumes a total temporal order for decision variables.
Decision Programming relies on a mixed-integer linear programming formulation that can handle
both endogenous and exogenous uncertainties and can also optimize problems involving
simultaneous decisions by agents unable to communicate with each other. The Decision
Programming framework can be extended to incorporate deterministic and chance constraints,
and it can be harnessed to compute all non-dominated solutions in presence of multiple value
functions. Most importantly, it contributes towards approaches that can solve problems from both
decision analysis and stochastic programming, and may thus facilitate collaboration between these
two sub-disciplines in the future.
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Tiivistelma

Vaikeita optimointiongelmia ratkottaessa vahvat formulaatiot ja ongelman rakennetta hyédyntavéat
ratkaisutekniikat ovat usein keskeisid. Vaikka mikroprosessorit ja yleiset ratkaisuohjelmat ovat
nopeutuneet huomattavasti lyhyen ajan sisillé, ne eivit usein pysty yksindan ratkaisemaan isoja
reaalimaailman ongelmia. Tyypillisesti ainoa vaihtoehto on ollut ongelmakohtaisten algoritmien
kehittiminen jokaiselle ongelmalle erikseen. Tadma viitoskirjan tiivistelma esittdd tehokkaita
malleja ja ratkaisumenetelmia kolmelle optimointiongelmalle, jotka joko toimivat pohjana uusille
laajennuksille, tai yhdistavit useita eri menetelmia isommaksi viitekehykseksi.

Ensiksi on kehitetty kaksi algoritmia vihreille ajoneuvon reititysongelmalle. Molemmat algoritmit
hy6dyntavat uutta monigraafi-reformulaatiota, mika muuttaa tankkausasemia kuvaavat solmut ei-
dominoiduksi energiapoluiksi asiakkaiden vélilld. Tam4 muunnos mahdollistaa seka reititys- etta
tankkauspaatosten tekemisen samanaikaisesti ilman merkittavaa laskennallista haittaa. Molemmat
algoritmit toimivat my6s rakennuspalikoina uusien ratkaisumenetelmien kehittimiseen ongelman
laajennuksille. Monigraafi-reformulaatio sekd molemmat algoritmit ovat osoittautuneet tehok-
kaiksi laskennallisten testien avulla.

Toiseksi on kehitetty viitekehys keskitettyyn resurssien jakamiseen portfoliolle paatoksenteko-
yksikoitd. Tama viitekehys pystyy késittelemédan useita paatosfunktioita ottamalla huomioon
epatarkat preferenssit ja laskemaan kaikki ei-dominoidut portfoliot, mitka toteuttavat kyseiset
preferenssit. Jokainen ei-dominoitu portfolio vastaa Pareto-optimaalista resurssien jakoa
paatoksentekoyksikoiden kesken, mikd maksimoi portfolion tehokkuuden. Kehitetty viitekehys
yhdistda useita eri malleja, jotka itsekseen tuottavat yksittéisia ratkaisuja tehokkaalta rintamalta,
mahdollisesti siséltden epilineaarisia hyotyfunktioita, sekd monen laisia tuotantomahdollisuus-
joukkoja. Viitekehys my®s osoittaa, etté perinteisilla tehokkuusluvuilla ei voida luotettavasti ohjata
resurssien allokointipaatoksia maksimoidessa portfoliotason tehokkuutta.

Kolmanneksi on kehitetty Decision Programming menetelma, mika edistiaa stokastisen optimoin-
nin ja paatésanalyysin yhdistdmistd samaan viitekehykseen, seké relaksoi kaksi yleistd paatos-
analyysiin liittyvaa oletusta: (i) tiydellinen muisti, missi aikaisemmat paatokset tiedetddn uusia
tehdessa, seka (ii) sddnnollisyys (engl. regularity), missa paatokset noudattavat lineaarista jarjes-
tystd. Menetelma hyodyntaa sekalukuista lineaarista optimointimallia, mika pystyy késittelemaan
seki endo-, ettd eksogeenisia epavarmuuksia, ja ratkaisemaan ongelmia missd joukko agentteja,
jotka eivit pysty kommunikoimaan keskenéén, tekevit samanaikaisesti paatoksid. Menetelma voi-
daan yleistad huomioimaan deterministisia- ja satunnaisrajoitteita, seké laskemaan kaikki ei-domi-
noidut ratkaisut usealle tavoitefunktiolle. Mikéd tdrkeintd, se antaa edellytyksid sille, ettd
paitosanalyysin ja stokastisen optimoinnin asiantuntijat voivat tehda yhteistyo6ta tulevaisuudessa.
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1. Introduction

1.1 Methodological Background

Mathematical optimization is concerned with finding the best solution
from a set of alternative solutions subject to stated evaluation criteria. Op-
timization problems arise naturally in all quantitative fields of study from
computer science and engineering to operations research and economics.
Building blocks of an optimization problem are decision variables that take
values within specified domains, constraint functions that form a feasible
region which further restricts the decision variable domains, and one or
more objective functions that are optimized by finding optimal solutions
within the feasible region that either minimize or maximize the objective
function values. Some optimization problems may also have uncertain
stochastic elements either in the problem data or embedded in the problem
structure as endogenous or exogenous uncertainties (Hellemo et al., 2018).

As an example of a single-objective problem, let x € R” be the vector of
decision variables, f : R* — R the objective function, and g : R* — R™ the
constraint functions (in vector form) of an optimization problem. This

optimization problem can be formulated in general form as

maximize f(x) (1.1)
subject to g(x) <0, (1.2)
xeR". (1.3)

The goal is to maximize the objective function (1.1) such that its value
becomes as large as possible with respect to the decision variable values
(1.3). The constraint functions (1.2) impose limitations to the decision
variables by restricting their domains to be inside the feasible region. The

17



Introduction

constraints (1.2) thus play a key role in determining the best course of
action when searching for the optimal solution that gives the optimal (max-
imum) objective function value. Problems that have continuous variables,
linear objective function, and linear constraint functions are called linear
programming (LP) problems.

A maximization problem can always be transformed into an equivalent
minimization problem (and vice versa) by multiplying the objective func-
tion by —1. The domain of some (or all) decision variables can also be
restricted to take integer values x € Z". Problems that are linear and
have both integer and continuous variables are called mixed-integer linear
programming (MILP) problems. Some problems have decision variables
x €{0,1}" that take only binary values and typically involve finding the opti-
mal element (or a subset of elements) from a discrete set of elements. Such
problems are typically called combinatorial optimization problems (COPs).
An important example COP is the set partitioning problem (SPP) in which
a large set of elements is to be optimally divided into element-disjoint
subsets such that every element is part of an exactly one subset. COPs can
be solved using dynamic programming (Bellman, 1952) or formulated as
MILPs and solved with any MILP solver.

A prominent example of a SPP which can be formulated as a MILP is
the vehicle routing problem (VRP) in which a set of customers is to be
served by a number of vehicles located at a depot. The objective is to design
least-cost vehicle routes, each starting from and ending at the depot, such
that every customer is served exactly once. In this case, the set of elements
corresponds to the set of customers and the subsets correspond to different
vehicle customer subsets that can be served by any vehicle. The objective
is to find the least-cost partitioning of customers into subsets such that (i)
each customer is in exactly one subset and (ii) the customers in each subset
are served by a vehicle that visits them in such an order that minimizes
the traveled distance (Balinski & Quandt, 1964). VRP generalizes the
traveling salesman problem which is similar but has only one vehicle.
Because the TSP is NP-hard, so is the VRP (Papadimitriou, 2003).

To illustrate the use of the SPP formulation, let N ={1,...,n} be the
set of n customers and % the set of all vehicle routes associated with
all possible customer subsets visited in any given order. Define binary
variables x, € {0,1}, for all r € , so that x, = 1 if the vehicle route r is part of
the solution and x, = 0 otherwise. Let ¢, be the route costs and a;, scalars
so that a;» =1 if customer i is part of the route r and a;, = 0 otherwise for
all € # and i € N. Using this notation, the VRP can be formulated as the
SPP

18
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minimize Y cqx, (1.4)
re

subject to Zai,xr =1, Vie N (1.5)
re
x €{0,1}, Vre® (1.6)

The SPP formulation (1.4) — (1.6) has an exponential number of variables
xr € Z. Thus, solving it directly is impractical except for very small prob-
lems with a few customers. However, using advanced techniques such as
column generation, cutting planes, and dynamic programming to generate
feasible vehicle routes, VRPs with up to 200 customers can be solved to
optimality in reasonable times (see, e.g., Pessoa et al., 2020).

Hard optimization problems are typically solved by developing problem-
specific algorithms. However, when such problems become large enough,
exact methods may not be able to compute even good approximate solutions
in a reasonable time. In such cases, it may be necessary to develop heuris-
tic solution methods instead, with the goal of producing “good enough”
solutions without spending excessive amounts of time or computational
resources. A major drawback of relying only on heuristic methods is that
their unknown solution quality can be far from optimal. To alleviate this
trade-off between solution quality and computation time, exact methods
can often be transformed into heuristic ones by relaxing or modifying
some components of the exact method so that instead of working towards
global optimality, the focus is shifted into finding decent solutions with less
computational effort. Such relaxed exact optimization methods can then
not only compute feasible solutions, but also provide approximations of
solution quality through optimality gaps which give upper bounds on how
far the returned solutions are from an optimal solution. Specifically, the op-
timality gap corresponds to the percentage distance between the objective
value of the solution and the best dual bound found by the algorithm.

A large class of heuristics uses combinations of rules and operators that
produce feasible solutions fast, although without any optimality estimates.
These methods are typically assessed by comparing their performance
to exact methods on smaller problem instances that can be solved to
optimality, and hoping that similar performance is achieved also with
larger problems. Unfortunately, this is rarely the case. In fact, the opposite
is typically true. There are some simple ways to increase the probability of

finding better solutions through randomization. Multi-start local search
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(MSLS) (see, e.g., Marti et al., 2013) is one such method that generates
several different initial solutions by randomization, performs local search
on each generated solution, and finally selects the best one. The MSLS can
also handle problems with decomposable structures such as VRPs. First,
all vehicle routes of each generated solution are stored into a route pool.
Then, a new solution is computed by finding the best combination of routes
in the route pool by modeling and solving the problem as a SPP (1.4) —
(1.6) where % corresponds to the set of routes in the pool. These kinds
of heuristics that utilize mathematical optimization are typically called
matheuristics. Some authors further argue that the use of mathematical
optimization as part of the heuristic method alone is not enough: to be
classified as a matheuristic, the method should also provide an optimality
gap or a thorough comparison with other methods (Voss et al., 2009).

Optimization problems can also have multiple objective functions
f :R™ — R° in which case the problem typically has several non-dominated
solutions instead of a single optimal one. A solution x € R dominates
another solution x' € R" if both x and x’ are feasible and f;(x) = f;(x'), for
all i =1,...,s, and fi(x) > fi(x) for at least one i = 1,...,s, assuming that
each objective function f;(x) for all i =1,...,s is transformed into a maxi-
mization form. Non-dominated solutions are those that are not dominated
by any other solution. All non-dominated solutions form the solution set
to the problem. One possibility to choose a single solution from the non-
dominated set is to use a utility function U : R® — R that takes the objective
function values of a non-dominated solution to compute its utility. The
maximum-utility solution is then considered optimal.

Using the above notation, a general multi-objective optimization problem
with objective functions f :R" — R can be written as

v-maximize f(x) 1.7
subject to g(x) <0, (1.8)
xR, (1.9)

The only differences between the single-objective optimization problem
(1.1) — (1.3) and the multi-objective one (1.7) — (1.9) are the ’v-maximize’
notation which stands for vector maximization, and the number of objective
functions which in this case is s instead of one. When the objectives (1.7)
and constraint functions (1.8) of the problem are linear, it becomes a multi-
objective LP (MOLP) problem (Ehrgott, 2005; Lohne, 2011),

In order to model real-life decisions more accurately, the corresponding
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problem formulations often involve multiple decision stages and stochastic
elements. Indeed, uncertainty plays a significant role in many real-life deci-
sion problems that are difficult to model without problem-specific stochastic
components. For example, the problem data at each stage may be defined
over a discrete number of possible scenarios whose probabilities follow a
specific probability distribution. Moreover, the probability distributions
at different stages may be influenced endogenously by decisions made in
the previous stages of the problem. The probability distributions may also
change based on the timing of certain decisions, adding yet another layer
of complexity. The former type of decision-dependent uncertainty has re-
cently been categorized as Type-1 endogenous uncertainty, while the latter
in which uncertainty is related to the timing of decisions is categorized as
Type-2 endogenous uncertainty (Hellemo et al., 2018).

Multi-stage decision problems under uncertainty are typically modeled
as stochastic programming (SP) problems (Ruszczynski & Shapiro, 2003;
Birge & Louveaux, 2011). In conventional SP models, the uncertainty is
typically assumed to be exogenous, meaning that probability distributions
of uncertain realizations cannot be influenced by prior decisions. While
this is reasonable in many contexts, such as one cannot influence the prob-
ability that it will rain the next day, there are many problems in which
decisions have significant influence on the probability values of uncertain
future events. For example, the probability of fully recovering from a
bacterial infection in one week increases if the person makes the decision
of taking antibiotics. Over the last decade, the number of studies involving
endogenous uncertainties has been steadily increasing; however, the focus
has been mostly on the Type-2 endogenous uncertainty related to timing
of decisions (Goel & Grossmann, 2006; Solak et al., 2010; Gupta & Gross-
mann, 2014). SP problems with Type-1 decision-dependent endogenous
uncertainty are much less studied (see, e.g., Hellemo et al., 2018).

To illustrate how simple stochastic elements can affect deterministic
problems, consider an extension of the single-objective optimization prob-
lem (1.1) — (1.3) to a two-phase stochastic problem involving uncertain
elements. Let Q = {wy,...,w|q} be a discrete set of random outcomes where
each w € Q corresponds to a scenario with corresponding scenario probabili-
ties p(w) € P(Q), for all w € Q, for the |Q| different scenarios that can occur
after optimizing the first-stage variable x. Moreover, let y(w) denote the
second-stage variables that represent corrective recourse actions for each
scenario w € Q. For example, the first-stage decision x could represent how
many medical tests are needed to track the spread of COVID-19, and after
observing the outcome of the realized scenario w € Q, which could represent
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the fraction of people who were tested positive during a testing period, the
recourse variables y(w) could then either increase or decrease the testing
capacity depending on the scenario w.

The scenario-dependent problem data is typically denoted as g(w), T(w),
h(w), along with a matrix W, that all have appropriate dimensions. Also,
in this case, both the first-stage and second-stage variables x and y(w), for
all w € Q, must take integer values, because each variable corresponds to
a number of tests which cannot be fractional. Using this notation, the
two-stage SP problem can be formulated as

maximize f(x)+ Zp(w)q(w)y(w) (1.10)
weQ)

subject to g(x) <0, (1.11)

h(w) = T(w)x + Wy(w), YweQ (1.12)

y(w)EZ, YweQ (1.13)

xX€EZ, (1.14)

The optimal solution to (1.10) — (1.14) determines the first-stage decision
x € Z, such that f(x) plus the expected utility resulting from changes in
testing capacity would be maximized over all the scenarios. While this
simple example has only two stages, in general even two-stage SP problems
pose major computational challenges, because their complexity increases
rapidly when scenarios are produced by several parameters with different
values in real-world applications (see, e.g., Boland et al., 2018).

Probabilities in the SP problem (1.10) — (1.14) are exogenous, as the
probability distribution P(Q) = {p(w) | w € Q} remains the same regardless
of the first-stage variable value x € Z,. However, it is possible to induce
a decision-dependent endogenous probability structure by making the
probability distribution P(Q) dependent on the first-stage variable x. One
such approach would be to first restrict the domain of x such that it can
take % different values x1,...,x;. Then, instead of having just one proba-
bility distribution P((2), the problem would have % different probability
distributions P1(Q),...,Pr(Q), one for each possible value of x1,...x;.

Figure 1.1 shows these two types of uncertainties in an influence diagram
with three types of nodes. Squares represent decisions, circles represent
probability distributions, and diamonds represent objective function values.
Arcs between the nodes represent conditional and functional dependencies
(Lauritzen & Nilsson, 2001). The left diagram is an example of exogenous
uncertainty, while the right diagram exemplifies endogenous uncertainty
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where P(Q) is conditionally dependent on x.

Figure 1.1. Left: an example of exogenous uncertainty P(Q). Right: an example of decision-

dependent endogenous uncertainty where P(Q) is dependent on x.

1.2 Research Objectives

This introductory summary chapter presents the main contributions of
Papers [I] — [TV]. The goal of the first chapter is to present a methodologi-
cal overview of basic mathematical optimization concepts related to the
problems in Papers [I] — [IV]. This prepares ground for the theoretical
discussion about each individual problem and helps identify what is miss-
ing from the current literature that motivates the corresponding paper.
Specifically, the objective is to:

1. Present methodological and theoretical overviews with a focus on the
application areas addressed in the Papers [I] — [IV].

2. Present and discuss the most important contributions of these papers
with respect to the current body of research.

3. Identify important research questions and potential gaps in the earlier

literature.

1.3 Problem Classification

Section 1.1 describes the basic building blocks of the problems studied
in Papers [I] — [IV]. Table 1.1 provides a classification of these problems
and the optimization techniques (detailed in Section 1.1) that are used in
the corresponding papers. In addition, Table 1.2 provides a more detailed
account of the types of problems studied in each paper.
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Papers [I] — [IV] develop new algorithmic ideas and formulations for
important problems in green logistics, centralized resource allocation,
and discrete multi-stage stochastic optimization problems. While these
problems could be classified into different areas of operations research, the
Papers [I] — [IV] showcase a number of general modeling techniques that
can be utilized across a wider variety of optimization problems.

Table 1.1. Classification of problems and optimization techniques used in Papers [I] - [IV].

Alternative fuels include, for example, bio-diesel, electricity, and hydrogen.

Problem class Optimization techniques

Paper [I] Alternative fuel vehicle routing Mixed-integer linear programming
Combinatorial optimization
Dynamic programming
Linear programming

Paper [II] Alternative fuel vehicle routing Mixed-integer linear programming
Combinatorial optimization

Paper [III]  Centralized resource allocation Multi-objective linear programming
Linear programming

Paper [IV]  Multi-stage stochastic optimization Mixed-integer linear programming
Multi-objective programming
Linear programming

Table 1.2. Characteristics of problems in Papers [I] — [IV]

Objectives Variables Solution methods

Single Multiple Continuous Discrete Exact Heuristic  Stochastic

Paper [I] X X X X

Paper [II] X X X

Paper [III] X X X X

Paper [IV] X X X X X X

1.4 Organization of this Summary Chapter

The rest of this summary chapter is organized as follows. Chapter 2 gives
a brief theoretical background on the studied problems and discusses how
the current theory can benefit from new ideas. Chapter 3 presents these
ideas and summarizes research contributions of the papers. Chapter 4
provides concluding remarks on the problems studied in Papers [I] — [IV]
and ideas for future research.
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2. Theoretical Background

2.1 Vehicle Routing Problems for Alternative Fuel Vehicles

Vehicle routing problems (VRPs) constitute a large class of combinato-
rial optimization (CO) problems that involve designing least-cost delivery
routes for a fleet of vehicles to serve a set of customers. Several VRP vari-
ants have been studied extensively in the past 60 years (Laporte, 2009).
However, most VRP formulations that have been introduced are best suited
for gasoline- and diesel-powered vehicles with long driving ranges, rela-
tively short refueling times, and widespread refueling infrastructures.

Issues concerning fuel consumption, refueling delays, and their interplay
with different operational constraints that describe real-life applications
have been mostly overlooked. Specifically, the majority of VRP variants do
not consider possibilities to refuel when designing optimal routing plans.
This makes it difficult to apply conventional VRP formulations to routing
problems involving alternative fuel vehicles (AFVs) with limited fueling
infrastructures and shorter driving ranges. Without appropriate systems
to design routing plans that involve refueling stops, users may experience
range anxiety — the fear of running out of fuel en route — and become
reluctant to travel longer distances (Franke et al., 2012). Range anxiety
is regarded as one of the main barriers to large-scale adoption of electric
vehicles (Eberle & Von Helmolt, 2010; Philip & Wiederer, 2010).

New vehicle routing models are therefore needed in navigation support
and route planning to (i) mitigate range anxiety for private users and (ii)
ensure a reliable and adequate level of service for organizations planning
to adopt AFVs. To tackle these issues, Erdogan & Miller-Hooks (2012)
introduce the green VRP (G-VRP) that provides a modeling framework
involving refueling stations and constraints that monitor vehicles’ fuel
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consumption. The G-VRP has become the standard model for AFV routing
which can be augmented with additional constraints such as time windows
and customer demands (see, e.g., Schneider et al., 2014). The G-VRP itself
is inspired by Bard et al. (1998) who introduces intermediate facilities
where vehicles can restock supplies without returning to the depot.

As the G-VRP can be considered the core model that captures the com-
binatorial essence of AFV routing problems — specifically its extensions
that include additional constrains — it is crucial to develop and analyze
exact algorithms for the G-VRP in order to understand the complexities
of this class of problems. Exact algorithms for the G-VRP are also useful
for evaluating the quality of heuristic algorithms that serve as building
blocks for developing new heuristics (and exact methods that can utilize
such heuristics) to generalizations of the G-VRP.

From a modeling perspective, the standard formulation for the G-VRP,
proposed by (Erdogan & Miller-Hooks, 2012), requires making as many
copies of each refueling station node as there are possible times for visit-
ing each individual station. This is needed to maintain flow balance in
the model and to distinguish between different vehicle routes. However,
this also increases the number of variables and constraints significantly,
which makes it more challenging to develop exact solution methods that
guarantee optimality without limiting the number of possible stops to refu-
eling stations. Typically, a trade-off has to be made between two extremes
to either (i) allow all possible refueling stops to ensure optimality or (ii)
limit the number of such stops to one per station to obtain a model with
significantly less variables and constraints.

An alternative formulation for the electric VRP with time windows, cus-
tomer demands, and partial recharges (E-VRPTW-PR) is introduced by An-
delmin (2014) who generalizes the G-VRP and the E-VRPTW by Schneider
et al. (2014) by allowing AFVs to partially refuel instead of fully refueling
each AFV upon visiting a refueling station. It is also worth mentioning
that unlike the studies in the literature that credit Felipe et al. (2014)
for introducing the partial refueling (see, e.g., Asghari & Mirzapour Al-e-
hashem, 2021), it was first introduced by Andelmin (2014). Moreover, this
E-VRPTW-PR formulation is significantly stronger compared to the stan-
dard G-VRP formulation by Erdogan & Miller-Hooks (2012) and the
E-VRPTW formulation introduced by Schneider et al. (2014). A direct
comparison is possible, because the E-VRPTW-PR generalizes both the
G-VRP and the E-VRPTW and can thus solve instances of both problems
straightforwardly. The improved E-VRPTW-PR formulation is based on a
multigraph in which each arc corresponds to a sequence of non-dominated
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refueling stops between two customers. A similar problem-specific formula-
tion would be beneficial for the G-VRP, because it avoids the multiplication
of refueling station nodes, preserves optimality, and combines routing
and refueling decisions by simply choosing different arcs between two
customers or a customer and a depot.

Since the introduction of the G-VRP, there has been an increasing num-
ber of studies on the G-VRP and particularly its generalizations (for recent
surveys, see, e.g., Lin et al., 2014; Dammak et al., 2019; Schiffer et al., 2019;
and Asghari & Mirzapour Al-e-hashem, 2021). While most of these studies
consider heuristic solution methods, exact algorithms have received much
less attention. A possible reason for this could be the increased problem
complexity arising from the route duration constraints, inclusion of refu-
eling stations, and the need to keep track of vehicles’ fuel levels. Vehicle
routing problems with route duration constraints (or equivalently route
distance constraints) are known to be extremely difficult, as evidenced by
the problem instance CMT13 (Christofides et al., 1979) with 120 customers
and route duration constraints whose optimality has not been proven at
the time of this writing despite decades of research.

The first exact algorithm for the G-VRP is by Ko¢ & Karaoglan (2016)
who develop a “heuristic based exact solution approach" for the G-VRP,
although their method limits the number of consecutive refueling stations
visits to one. Nevertheless, even with this limitation on refueling station
stops, the results of this study are highly informative and suggest that the
G-VRP is extremely difficult to solve. Indeed, the authors’ exact branch-
and-cut algorithm is unable to solve 18 of the 40 benchmark instances by
Erdogan & Miller-Hooks (2012) with 6 — 20 customers and 2 — 10 refueling
stations to optimality within 1 hour of computation time.

Another exact method is introduced by Desaulniers et al. (2016) who
develop a branch-price-and-cut algorithm for the E-VRPTW. The authors
study 4 different variants that involve either full or partial refueling, and
either limiting the number of refueling stops per route to 1 or allowing
multiple stops per route. The authors demonstrate the effectiveness of
their algorithm by optimally solving instances with up to 100 customers
and 21 refueling stations. As their algorithm is a generalization of the
G-VRP, it can also solve the G-VRP in a straightforward manner. However,
no computational results on any of the G-VRP instances is provided.

As the authors mention, their algorithm for the E-VRPTW is particularly
efficient with narrow customer time windows. The G-VRP, on the other
hand, has a maximum time limit for every vehicle route which translates
into wide time windows for every customer. Thus, it is possible that the
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algorithm by Desaulniers et al. (2016) is unable to solve G-VRP instances
efficiently, because it relies on a labeling method whose performance ben-
efits from narrow time windows. Specifically, more strict customer time
windows limit the number of possible ways to visit customer subsets, thus
rendering a significant number of otherwise feasible vehicle routes infeasi-
ble and providing more opportunities for the labeling algorithm to discard
partial tours early on when generating new vehicle routes. It is difficult to
find similar, easily exploitable structures from the G-VRP.

In a more recent study, Tahami et al. (2020) develop 3 new formulations
and an exact branch-and-cut algorithm for a generalization of the G-VRP,
called electric capacitated VRP (ECVRP), in which route duration con-
straints are removed and customer demands and vehicle capacities are
added instead. The authors also design a set of new benchmark instances
for the ECVRP and demonstrate the effectiveness of their algorithm by
solving instances with up to 100 customers and 21 refueling stations to
optimality. The authors also consider an extension of the ECVRP by in-
cluding route duration constraints — which are essential part of the G-VRP
— and conclude that the problem becomes significantly more difficult: the
numerical results indicate that the addition of route duration constraints
limit the problem size their exact method can solve down to 50 customers
compared to the 100 customers without these constraints. Specifically,
with the route duration constraints, their algorithm is unable to solve any
of the 60 customer instances, and even finding a feasible solution proves
to be difficult within 3 hours of computation time. Finally, as the authors
point out, their exact method can also solve G-VRP instances in a straight-
forward way by treating the capacity constraints as route duration ones.
However, much like Desaulniers et al. (2016), no meaningful comparison
with other exact G-VRP algorithms is provided. This further reinforces
that the G-VRP is more difficult than its more constrained generalizations
E-VRPTW and ECVRP studied in (Desaulniers et al., 2016) and (Tahami et
al., 2020), respectively. The results of the exact branch-and-cut algorithm
for the G-VRP by Ko¢ & Karaoglan (2016) provide further evidence in
support of this conclusion.

To further appreciate the difficulty of solving the G-VRP with respect
to its more constrained generalizations with time windows and customer
demands, the stronger multigraph reformulation by Andelmin (2014) can
solve most of the small E-VRPTW test instances by Schneider et al. (2014)
with 5 — 15 customers and 3 — 7 refueling stations in a few seconds using a
commercial mixed-integer linear programming (MILP) solver. However,
the same formulation cannot close the optimality gap for many of the
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G-VRP benchmark instances by Erdogan & Miller-Hooks (2012) with 6 —
20 customers and 2 — 10 refueling stations within two hours of computing
time using the same MILP solver and computational environment. This
difference in problem difficulty can be attributed to the significantly larger
solution space of the G-VRP compared to the more tightly constrained
E-VRPTW and E-VRPTW-RP.

2.2 Efficient Centralized Resource Allocation

Data envelopment analysis (DEA) (see, e.g. Cooper et al., 2000) is often
used to evaluate efficiencies of decision making units (DMUs) that con-
sume several inputs and produce several outputs. Specifically, standard
measures of efficiency analysis are typically related to how well a DMU
utilizes its resources. A simplified way to measure this would be to divide
the DMU’s output production by its input consumption or vice versa. In
case of multiple inputs and outputs, both the inputs and outputs would
have to be aggregated into single measures by giving each input and output
a specific weight reflecting its importance and taking weighted sums of
the inputs and outputs separately. In this simplified example, a decision
maker (DM) wishing to decrease input resources would maximize the ben-
efit to cost ratio (i.e., outputs divided by inputs), while a DM wishing to
increase output production would instead minimize the cost to benefit ratio
(W. Cook & Hassan, 2020). A greater ratio in each case would indicate that
the corresponding DMU is more efficient than one with a smaller ratio.
However, relying on simple efficiency ratios alone is likely not sufficient.
Moreover, some of the data may be qualitative instead of quantitative and
cannot be straightforwardly transformed into an aggregate measure. To
handle different types of inputs and outputs and provide a non-parametric
framework for estimating DMUSs’ production possibilities, more sophis-
ticated models to quantify efficiency have been developed in the DEA
literature. The two most cited ones are the CCR by Charnes et al. (1978)
and the BCC by Banker et al. (1984). These two models have similar
characteristics, but they differ in how the efficiency of a DMU is measured
with respect to the other DMUs. The axioms of the CCR and the BCC
models each give rise to a different production possibility set (PPS) that
corresponds to the possible input/output mixes that the DMUs can attain.
Generally, the selection of the underlying PPS depends on how well it
represents DMUS’ input and output changes in the application at hand,
although the current (observed) input/output mixes of the DMUs typically
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define the constraints forming the efficient frontier that envelops the input
and output values that are attainable. Instead of selecting a single PPS;
it is likely beneficial to analyze the problem with respect to more than
one PPS to get a more comprehensive view of the DMUS’ efficiencies and
how their input/output mixes behave under different choices of the PPS.
Also, instead of computing solutions from the efficient frontier by, for
instance, maximizing the DMU efficiencies, it is worthwhile to explore
how the input resources consumed by the DMUs change over a number of
different alternative solutions and including additional constraints that,
for example, limit how much the DMUSs’ inputs are allowed to increase
and/or decrease.

Korhonen & Syrjanen (2004) are among the first to study the similarities
between DEA and multi-objective linear programming (MOLP). The au-
thors investigate combining the DEA methodology by including traditional
DEA efficiency scores into a MOLP formulation that involves additional
constraints preventing individual DMUs from increasing their efficiency.
They consider a resource allocation problem in a centralized context where
a single DM (or several DMs) control a portfolio of DMUs that correspond
to, for example, supermarkets whose inputs are man-hours and floor area
and outputs are profit and sales. The objective is to (re-)allocate input
resources among the DMUs efficiently by simultaneously maximizing the
sums of different outputs and minimizing the sums of different inputs
over all the DMUs in the portfolio. The solution set of this multi-objective
problem consists of all non-dominated DMU portfolios with respect to the
portfolio-level inputs and outputs (i.e., the sums of all different inputs/out-
puts over all DMUs in the portfolio).

In the example by Korhonen & Syrjanen (2004), it is assumed that no
inefficient DMU can increase its efficiency score after resource allocation.
While this assumption may seem unrealistic for many practical cases, the
resulting non-dominated DMU portfolios can nevertheless provide rea-
sonable short-term approximations. At the other extreme, many of the
related studies typically compute portfolio-level solutions from the efficient
frontier without limiting the increases in DMUS’ efficiency scores (see, e.g.,
W. D. Cook & Seiford, 2009). In the thus obtained solutions, all inefficient
DMUs end up with perfect efficiency scores either by (i) decreasing their
input resources while expecting the same output production, or (ii) increas-
ing their (expected) output production without making use of additional
input resources. Both approaches seem unrealistic for most practical cases,
especially in short-term. In comparison, not allowing the DMUs increase
their efficiency scores may lead to better approximations. A more sensible
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but application dependent approach would be to control DMUS’ efficiency
scores individually (see, e.g., Aristizabal-Torres et al., 2017).

At present, most research on centralized resource allocation in the con-
text of efficiency analysis typically involves scalarization techniques to first
transform the multi-objective portfolio-level problem into a single-objective
one, and then proceeds by computing solutions from the efficient frontier
(see, e.g., Nasrabadi et al., 2012; Fang, 2013; Lozano, 2014). Also, some of
these methods may be interactive such that the DM can change certain
parameters during the computation of non-dominated DMU portfolios. For
example, the Pareto race method by Korhonen & Wallenius (1988) allows
the DM to investigate the efficient frontier of a multi-objective problem.
The CUT method by Argyris et al. (2014) operates on a discrete set of
multi-criteria alternatives and relies cutting planes, derived from repeated
pairwise comparisons by the DM, to exclude a subset of the alternatives.
Despite these advances, obtaining a more comprehensive view of all possi-
ble non-dominated solutions can be impractical in these methods. Indeed, a
unified framework that computes all non-dominated solutions and presents
them to the DM in a visually meaningful way has been missing, possibly
due to the lack of efficient exact multi-objective optimization algorithms
that can handle problems with several objectives and decision variables.
Such an approach would make it possible to illustrate, for example, the
ranges of all possible resource values that each DMU can achieve over all
non-dominated DMU portfolios.

Recent advances in multi-objective programming (MOP) solvers, specif-
ically, the implementation of Benson-type algorithms (Benson, 1998) by
Lohne & Weifling (2017) and Doérfler et al. (2020) for MOLP and convex
MOP problems, respectively, operate in the objective space rather than
in the decision variable space and appear extremely promising for solv-
ing large multi-objective problems. While the algorithm for the convex
MOP problems necessarily induces approximation errors, these errors are
absolute rather than relative and can therefore be adjusted by setting a
maximum tolerance value to obtain an appropriate numerical precision. A
smaller tolerance leads to an increased computation time, but also gives a
better representation of the true non-dominated solution set.

Using an efficient MOP solver also offers further possibilities to augment
the resource allocation model by different kinds of constraints. For ex-
ample, DM’s preference information on the importance of unit increases
between different outputs can be translated into linear constraints in the
decision variable space. Such information could also be included by di-
rectly modifying the objective functions instead. As an example, if the
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preferences are linear and form a compact polyhedron V, the problem can
be transformed into an equivalent MOP in which the objective functions
are multiplied by the extreme points ext(V') of the polyhedron V.

Because the introduction of additional constraints restricts the solution
set, it also narrows down the ranges of at least some DMUSs’ possible
resource values, thus giving the DM more conclusive recommendations on
which DMUs should receive more input resources and identify possible
DMUs whose input resources are to be decreased over all remaining non-
dominated DMU portfolios. Such a framework would be extremely useful,
because it would provide significantly more information to the DM than
standard models from the current literature that compute and present only
a few solutions without the capability of visualizing the entire solution
space and the corresponding DMU- and portfolio-level information.

Finally, while DMUS’ efficiency scores under different DEA models in a
centralized context can be, in most cases, computed using an LP solver, it
may not be entirely obvious how these efficiency scores could be utilized in
practice. For example, in the case of allocating additional input resources
to a portfolio of DMUs in which the goal is to maximize all portfolio-level
outputs while minimizing all portfolio-level inputs, it might seem obvious
that the maximum output production would be achieved by allocating the
additional resources to the most efficient DMUs as long as they remain
inside the PPS. While this strategy appears sensible when maximizing
the outputs of single DMUs separately, the use of efficiency scores to
guide portfolio-level resource allocation may not be as straightforward.
Evaluating the impact of using efficiency scores to guide resource allocation
decisions when all DMUs are controlled by a single DM seems not to have
been studied in the current literature.

2.3 Discrete Multi-Stage Stochastic Optimization

Multi-stage decision problems under uncertainty are typically studied in
the context of stochastic programming (SP) with exogenous uncertainties
(Birge & Louveaux, 2011), or in decision analysis (Abbas & Howard, 2015)
with two simplifying assumptions: (i) perfect recall, that is, all earlier
information is remembered across time when making later decision, and
(ii) regularity, meaning that a total temporal order must exist over all deci-
sion variables (see, e.g., Koller & Friedman, 2009). While these problems
can include decision variables with continuous domains and probability

distributions, here the focus is specifically on discrete stochastic decision
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problems that are modeled with a discrete number of actions at each deci-
sion stage and a discrete number of chance events at each chance stage
with corresponding probability distributions that sum to one. In addition,
these problems have a discrete number of consequences evaluated by utility
functions at one or more value stages.

Different outcomes at chance, decision, and value stages are typically
called states of the corresponding stage. Also, in an influence diagram
representation, stages are typically called nodes in accordance with their
graph-like appearance. On the other hand, in a decision tree representation
states are typically referred to as nodes at different stages of the tree, while
each node in a corresponding decision diagram represents a stage of the
decision tree. For concrete examples of both representations and their
relations, see (Call & Miller, 1990; Abbas & Howard, 2015).

Discrete multi-stage stochastic optimization problems in the contexts of
standard SP and decision analysis consider different kinds of applications
and solution methods. Indeed, it can be surprisingly difficult to transform
SP problems to decision analysis framework and vice versa. The SP ap-
proach typically relies on MILP formulations while the standard approach
with decision analysis has usually been dynamic programming. Moreover,
experts in one of these two disciplines do not necessarily have deep knowl-
edge of the other one, although both approaches are tackling problems with
similar characteristics. Thus, contributing towards a unified framework
that could be used to model and solve problems from both disciplines seems
worthwhile. Such a framework could bring experts from both domains
closer and thus facilitate collaboration and emergence of novel ideas.

The multi-stage nature of these problems in the SP framework typically
implies that such a problem involves a sequence of discrete time steps such
that at each time step a decision is made and a chance outcome is observed.
The goal is to optimize a given objective function with respect to decisions
made at the first time step and recourse decisions made at later time steps.
This class of SP problems conventionally involves exogenous uncertainties,
meaning that probability distributions at chance nodes are unaffected by
prior decisions (Ruszczynski & Shapiro, 2003).

In decision analysis, on the other hand, these problems typically involve
not only exogenous but also endogenous uncertainties in that probabil-
ity distributions at chance nodes may be dependent on prior decisions
and change accordingly based on the decisions that influence the corre-
sponding chance stages. Figure 1.1 demonstrates the difference between
these two types of uncertainties based on the simplified 2-stage stochastic
programming example problem from Section 1.1.
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Discrete multi-stage decision problems under uncertainty are typically
represented by an influence diagram (ID), which has an intuitive graph
structure with directed arcs between specific nodes (Howard & Matheson,
2005). Another possibility is to use a decision tree which is a directed
acyclic graph whose depth equals the number of stages (Call & Miller,
1990). While both representations have their strengths, it is more conve-
nient to represent large problems as an ID due to its capability of describing
problems more concisely, whereas a decision tree representation grows ex-
ponentially with the number of stages. IDs can also represent information
structures between nodes intuitively by drawing directed arcs between
those nodes that have either a conditional or a functional relationship.
However, IDs lack some crucial information that is inherently embodied in
decision trees: probability distributions of uncertain realizations at chance
nodes, possible actions that can be taken at decision nodes, and different
outcomes at value nodes (see, e.g., Call & Miller, 1990). On the other hand,
decision trees, unlike IDs, cannot represent conditional or functional rela-
tionships between different stages that are represented by arcs between
the nodes in the corresponding ID. An example ID representing a discrete
stochastic decision problem with multiple stages (see pp. 1237 in Lauritzen
& Nilsson, 2001) is presented in Figure 2.1.

In this ID, chance nodes %; represents prior probabilities of being ill at the
beginning of each period i € {1,...,4} while u4 represents the consequences of
being ill or healthy at the end of period 4. The remaining nodes correspond
to testing outcomes ¢;, treatment decisions d;, and treatment costs u;, for
i €{1,2,3}). The objective is to maximize the utility of the consequences
at u4 by deciding each month i € {1,2,3} based on uncertain test results #;
whether to treat (d; = 1) or not (d; = 0). A generalization of this problem
which includes testing costs is presented by Hélsa (2020).

Limited memory influence diagram (LIMID) is an interesting gener-
alization of the ID (see Lauritzen & Nilsson, 2001 for a comprehensive
definition). In decision problems represented by LIMIDs, all information
arcs between nodes must be represented explicitly since perfect recall, the
assumption that all prior decisions and chance outcomes are known, no
longer holds. Instead, with LIMIDs it is possible to “forget” information
from previous stages and information is preserved only between those
nodes that are connected by a direct arc (i.e., parent nodes and their im-
mediate predecessors). Thus, each ID is a special case of a corresponding
LIMID in which perfect recall is enforced by drawing all arcs explicitly.
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Figure 2.1. An example ID (Lauritzen & Nilsson, 2001). Circles represent chance nodes,

squares represent decision nodes, and diamonds represent value nodes.

LIMIDs also relax the regularity assumption which requires a total
temporal order between all decision nodes. An example problem not satis-
fying the regularity assumption involves multiple simultaneous decisions
made by agents that cannot communicate with each other. In this exam-
ple, determining a unique strict total order among all decision nodes is
impossible and relaxing the total recall and regularity assumptions makes
the decision problem significantly harder to solve. In particular, conven-
tional solution methods for IDs that rely on regularity and total recall
such as dynamic programming and message passing algorithms cannot
find provably optimal solutions to LIMIDs in general. A simple example
problem with simultaneous decisions and imperfect recall represented by
a LIMID is shown in Figure 2.2. Note that while the two decisions A!
and A? made simultaneously by the two individual agents are unable to
communicate due to the imperfect recall assumption, they both eventually
strive to maximize a common utility U.

Also, when the ID in Figure 2.1 is defined as a LIMID, the problem
structure changes radically. For instance, in the LIMID representation,
the probability distribution of uncertain realizations at the chance node %4
is influenced only by the chance node #; and decision node d;. This type
of uncertainty where prior decisions affect the probability distribution of
uncertain realizations is referred to as endogenous. In the same example,
the chance node A is not influenced by any prior decision nodes: its prob-
ability distribution is independent of the decision variables. Thus, while
the uncertainty from 4 influences the system, specifically, the probability
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distributions at ¢; and &4, the system has no influence over 4. Uncertainty
of this kind is referred to as exogenous (see, e.g., Dupacova, 2006). It is
worth noting that endogenous uncertainty can also be temporal, meaning
that it is related to the timing of decisions rather than prior decisions
affecting probability distributions at chance nodes (Herrala, 2020).

(R

()

Figure 2.2. LIMID with simultaneous decisions Al and A2 corresponding to two agents

unable to communicate, yet striving to maximize the common utility U.

Discrete multi-stage decision problems represented by LIMIDs are fur-
ther classified as soluble and insoluble (see Lauritzen & Nilsson, 2001 for
the definition of soluble). In general, LIMIDs that satisfy the regularity
and total recall assumptions either directly or through problem modifi-
cations can be classified as soluble. Specifically, an ID is a special case
of LIMID that is soluble. Solubility allows the corresponding decision
problem to be solved to optimality with conventional methods that rely on
sequentially solving local optimization problems at different nodes. These
methods include dynamic programming and different message passing
algorithms (Koller & Friedman, 2009). However, for insoluble decision
problems (such as in Figure 2.1), the corresponding LIMID is NP-hard, in
the same vein as finding optimal (or even an approximate) solutions to IDs
with discrete variables is NP-hard in general (Maua et al., 2013).

36



3. Research Contributions

The main contributions of the papers [I] — [IV] are in Table 3.1.

1.

Paper [I] studies the green vehicle routing problem (G-VRP) that con-
sists of designing optimal routing plans for alternative fuel vehicles
(AFVs) to serve a set of customers. An exact algorithm is developed for
the G-VRP that can optimally solve problem instances with up to 110
customers and 28 refueling stations in a reasonable time. Moreover, the
average optimality gap over instances with 200 — 300 customers is on
average ~0.67%. The algorithm is tailored to a novel multigraph refor-
mulation that first removes all refueling nodes and then pre-computes
all non-dominated paths between any two customers that may visit
any number of refueling stations in between. The algorithm first com-
putes a tight lower bound using a dual ascent method that combines
Lagrangian relaxation, subgradient optimization, and column genera-
tion. The dual ascent first uses a state-space relaxation based on the
ng-paths by Baldacci et al. (2011) before generating elementary vehicle
routes to speed up computing a near-optimal dual solution. This is
followed by a Simplex-based cut and column generation procedure
which is hot-started using the feasible routes generated during the
dual ascent method. Number of generated columns is also limited
at different stages of algorithm (see, e.g., Larsen, 2004) to improve
convergence. Different sets of cutting planes are generated, including
subset-row cuts (Jepsen et al., 2008), weak subset-row cuts (Baldacci
et al., 2011), and k-path cuts (Laporte et al., 1985). Specifically, a
formal proof connecting £Z—path cuts and rank-1 Chvatal-Gomory cuts
(Fischetti & Lodi, 2007) is established and a formulation for separating
maximally violated £—path cuts is introduced. An early version of the
algorithm presented in Paper [II] is used to compute upper bounds.

Paper [II] also studies the G-VRP and develops a multi-start local
search (MSLS) matheuristic for the problem. The MSLS utilizes a
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similar multigraph reformulation introduced in paper [I] and develops
new variants of conventional heuristic operators by adapting them to
work directly on the multigraph. The MSLS uses these operators in a
heuristic column generation scheme in which each column corresponds
to a feasible route and stores the generated columns in a route pool.
This is followed by solving a set partitioning problem in order to find
an optimal subset of routes in the route pool that constitutes a feasible
G-VRP solution. The novelty of this approach comes from the ability to
use the new variants of the conventional heuristic operators to make
routing- and refueling decisions simultaneously when constructing
new routes by simply selecting different arcs between customers or
a customer and a depot. Computational tests demonstrate the effec-
tiveness of the developed MSLS algorithm and how to conveniently
trade-off computation time and solution quality by changing a single
parameter. The multigraph reformulation is inspired by Andelmin
(2014) who introduces a multigraph reformulation for the electric VRP
with time windows, customer demands, and partial recharges for the
first time along with a strong mathematical formulation.

Paper [III] develops a framework for computing all non-dominated
resource allocations to a portfolio of decision making units (DMUs) in
the context of efficiency analysis. These non-dominated DMU port-
folios are computed based on preferences of a decision maker (DM)
on, for example, unit value changes of certain inputs and outputs
while maximizing the sums of different outputs and minimizing the
sums of different inputs over all DMUs in the portfolio. To obtain the
whole non-dominated set of DMU portfolios, the problem is solved as a
multi-objective programming problem using an efficient Benson-type
algorithm (Benson, 1998) that operates in objective space and identifies
all non-dominated extreme points and facets of the efficient frontier
Hamel et al. (2014). This information is used to compute and illustrate,
at individual DMU- and portfolio-level, the ranges of attainable input
and output values over all non-dominated DMU portfolios.

Most importantly, based on the data from previous case studies by
Korhonen & Syrjanen (2004) and Lozano (2014), an interesting obser-
vation is made in Paper [III] on how resources are allocated among the
DMUs in non-dominated DMU portfolios. When maximizing portfolio-
level efficiency, resource allocation recommendations are not consistent
with conventional efficiency analysis scores. Specifically, in all case
studies, resources are taken from both efficient and inefficient DMUs
in all non-dominated DMU portfolios, while extra resources are also



Table 3.1. Contributions of Papers [1] — [IV].

Research
objectives

Methodologies

Research Contributions

Main
contributions

Paper [I]:

An exact algorithm
for the green vehicle
routing problem

Paper [II]:

A multi-start local
search heuristic for
the green vehicle

routing problem
based on a multi-
graph  reformula-
tion

Paper [III]:

Efficient allocation
of resources to a
portfolio of decision
making units

Paper [IV]:

Decision Program-
ming for mixed-
integer multi-stage
optimization under

uncertainty

Design an exact algo-
rithm for solving large
AFV routing problems
optimally. Establish a
standard for future re-
search and aid heuris-
tic developers calibrate
their work against the
optimal solutions.

Develop new building
blocks by modifying
conventional operators
to work directly in
the multigraph, al-
lowing simultaneous
routing and refueling
decisions. Design first-
class metaheuristic to
demonstrate the new
operators’  efficiency
and promote their use
in future research.

Develop a framework
for portfolio-level re-
source allocation that
includes DMs’ prefer-
ences. Unify earlier ap-
proaches by computing
not single but all non-
dominated portfolios.

Combine decision anal-
ysis and mathemati-
cal programming into
a single framework to
solve multi-stage de-
cision problems with
endogenous uncertain-
ties.

Dual ascent combining
Lagrangian relaxation,
subgradient optimiza-
tion, column
generation.  Simplex-
based cut and column
Rank-1
Chvatal-Gomory  cut
gen-
cuts.

and

generation.

separation for
erating k-path
Dynamic program-
ming
generating
MILP for  solving

reduced SP problems.

algorithm for
columns.

Problem decomposition
based on a multigraph
reformulation. Heuris-
tic column generation
using problem-specific
local search operators.
Multi-start
neighbourhood search.
MILP for
combining generated

variable

optimally

columns by solving an
SP problem.

MOLP for computing
all non-dominated port-
folios.
and present all possi-
ble resource and out-
put ranges over all allo-
cation portfolios.

LP to compute

MILP for computing
optimal decision strate-
gies strengthened by
probability cuts. Exact
MOP
computing all

algorithm  for
non-
dominated decision
strategies with more

than one utility using

valid inequalities to
discard dominated
solutions.

First-rate exact algo-
rithm for the G-VRP.
Problems with up to

109 customers and
28 stations solved
to optimality. =~ With

200 — 300 customer
instances, ~0.67%
average optimality gap.
Proof that connects
Chvatal-Go-
mory cuts and k-path

rank-1
cuts. Formulation of
separation problem to
compute k-path cuts.

New tailored variants
of conventional local
search operators that
work directly in the
multigraph, thus allow-
ing simultaneous rout-
ing and refueling deci-
sions. Demonstrating
the effectiveness of the
multigraph as a basis
for future AFV routing
algorithms.

Framework that uni-
fies prior centralized

allocation
Demonstrat-
ing the unreliability of

resource
models.

conventional efficiency
scores in centralized

resource allocation.

Framework that can be
used to formulate and
solve problems from
both decision analysis
and stochastic pro-
gramming as MILPs.
The MILP optimally
solves LIMIDs with
endogenous uncertain-
ties and accommodates
chance constraints and
risk measures such as

CVaR.
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given to both efficient and inefficient DMUs in the same problems.
This happens regardless of whether the DMU efficiencies are allowed
to increase or not. This crucial observation suggests that relying on
conventional efficiency scores in guiding resource allocation decisions
can cause inefficiencies and lead to dominated DMU portfolios.

4. Paper [IV] develops the Decision Programming framework for dis-
crete multi-stage decision-making problems under endogenous and
exogenous uncertainties that can solve problems from both stochastic
programming (SP) and decision analysis using a novel MILP formu-
lation. The new MILP formulation can incorporate different kinds of
risk measures, such as conditional value-at-risk (CVaR), directly by
adding constraints and/or modifying the objective function. Moreover,
in presence of multiple objectives, the MILP formulation can be used as
a basis for solving all non-dominated decision strategies with the help
of valid inequalities that discard dominated decision strategies until
there are no dominated ones remaining. Finally, the MILP formulation
provides a more flexible modeling tool compared to standard methods
in decision analysis such as dynamic programming to model different
kinds of constraints including the CVaR and other risk measures.

The solution methods of the optimization problems in Papers [I] — [IV]
seem different, but they use some common modeling techniques, such as
exploiting the problem structure by pre-computing parts of the problem
and reformulating it in terms of the pre-computed elements from the origi-
nal model. This is done, for example, in Paper [I] by removing all refueling
nodes and instead pre-computing all non-dominated paths between any
two customers that may visit any number of refueling stations in between.
Similarly, in Paper [II], the results of the heuristic column generation in
the first two phases are capitalized in the final phase by formulating a
set partitioning problem in order to find the best combination of columns
that constitute a feasible solution. In Paper [III], all extreme points of
the information set corresponding to the DM’s preferences are first com-
puted and arranged as columns of a matrix. The objective functions are
then multiplied by this extreme point matrix which gives a simplified
formulation. Finally, in Paper [IV], the model becomes much stronger by
first pre-computing the probabilities and utilities of all paths, and then
reformulating the problem by exploiting this path structure. Thus, while
the solution methods in Papers [I] — [IV] may seem different, similar al-
gorithmic techniques are utilized in each paper to facilitate solving the
corresponding problems.
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4. Discussion

This introductory summary discusses Papers [I] — [IV], each of which
focuses on a different optimization problem except Papers [I] and [II]
whose main topic is the green vehicle routing problem (G-VRP) by Erdogan
& Miller-Hooks (2012). The problems in Papers [I] — [IV] and their solution
methods are presented from two different viewpoints of mathematical opti-
mization. Specifically, in Papers [I] and [II], the focus is on the algorithmic
ideas, computational performance, and implementation details. In Papers
[IIT] and [IV], the focus is more on the properties of the corresponding
frameworks, with a special emphasis on the problem formulations.

The intention behind Papers [I] and [II] is to construct new efficient solu-
tion methods for the G-VRP, both of which combine different algorithmic
components that are executed repeatedly. It is therefore not possible to
provide formulations that would capture all the complexities of the cor-
responding algorithms. However, Andelmin (2014) introduces a strong
formulation based on a similar but more complex multigraph transfor-
mation for the electric VRP with time windows, customer demands, and
partial recharges. Because this formulation generalizes the G-VRP, it can
also solve G-VRP instances in a straightforward way.

In Papers [III] and [IV], the emphasis is on advancing formulations
rather than specialized solution approaches. Specifically, Paper [11I], which
focuses on the efficient allocation of resources to a portfolio of decision-
making units (DMUs), first introduces a new formulation that establishes
a connection between the efficient frontier and the efficient solution set of
the corresponding multi-objective linear programming (MOLP) problem.
The problem is then extended to include decision maker’s preferences
and formulated as another MOLP whose solution set constitutes all non-
dominated DMU portfolios and corresponds exactly to the non-dominated
frontier. Thus, both MOLP formulations play key roles in conveying their
corresponding information, which are then formalized into theoretical
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proofs. Most importantly, the LP formulations computing the ranges of
possible input/output values based on the extreme points and facets of
efficient or non-dominated DMU portfolios demonstrate through examples
from the literature how conventional efficiency scores are not reliable
in guiding resource allocation decisions. Overall, the main focus is not
on developing efficient solution methods but, rather, presenting the new
framework and demonstrating the importance of these new ideas.

Similarly, in Paper [IV], which introduces the Decision Programming
framework, no special algorithms are developed to solve the new mixed-
integer linear programming (MILP) formulations. A MILP solver is used
instead that relies on a generic branch-and-cut method. Cutting planes
derived from the problem structure are also added through the callback in-
terface of the MILP solver. Specifically, Paper [IV] introduces the Decision
Programming framework and its different extensions for the first time.
To describe such a seemingly simple but surprisingly complex framework
as clearly as possible requires careful planning in terms of notation and
definitions. Moreover, because the MILP formulations in Paper [IV] can
be challenging to interpret in a straightforward way, it is also necessary
to prove their correctness. Therefore, the main focus in Paper [IV] is not
to develop a fast algorithm — just presenting the Decision Programming
framework alone exceeds the typical 30 page limit.

Although the G-VRP in Papers [I] — [II], the efficient resource allocation
approach in Paper [III], and the Decision Programming framework in Pa-
per [IV] have been treated separately in this summary, some applications
could benefit from combining at least two of these different types of prob-
lems or solution methods. Considering all possible combinations suggests
some new ideas and avenues for future research. The final paragraphs
of this summary chapter are devoted to discussing the most prominent
combinations that could be studied in future.

Most importantly, because the MILP formulation for the Decision Pro-
gramming framework in Paper [IV] has not yet been studied much, there
exists considerable potential for future improvements. The most promising
approach involves developing a decomposition method that can reduce
both the memory consumption and computation time. Specifically, due to
its similarities with many combinatorial optimization problems, the MILP
formulation can be transformed into becoming amenable to a column gen-
eration approach, possibly coupled with strong cutting plane generators,
as further research reveals more about the structure of the formulation.
Because a column generation-based algorithm would generate promis-
ing strategies dynamically, a full state-space representation would not be
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necessary, much like in Paper [I] that utilizes cut and column generation.

Regarding the development of new heuristic algorithms for the G-VRP
or its generalizations, possibly based on the multigraph reformulation
that uses new variants of conventional heuristic operators, it is crucial to
assess the performance of each individual operator or a set of operators.
This assessment is typically necessary to demonstrate that the rationale
behind selecting the operators for the heuristic is sound and quantifiable
to some extent. Another reason for such an assessment is to decide which
operators are not contributing enough given their time consumption and
can be discarded. Some of the important criteria to consider are the num-
ber of times each operator is called, the number of times each call results
in a better solution, and the average computing time of each operator
call. The average improvement of each improving operator call could also
be recorded. After running the heuristic over benchmark instances, one
possibility to assess the operator performance could be to apply central-
ized efficiency analysis as in Paper [III]. The DMUs would correspond
to different operators or operator sets. The input resource could be the
total computing time. Outputs could then be the average improvement in
terms of solution quality and the success rate measured as the number
of calls that improve a solution divided by the total number of calls. In
this setting, not allowing the DMUs to increase their efficiency could be a
reasonable assumption, because it is unlikely that the success rate would
change drastically. In an optimal DMU portfolio, some operators would
get more computing time, while others would have less. In practice, this
can be achieved by either increasing or decreasing the number of times an
operator is called to achieve the target computing time. To achieve possible
computing time ranges over all efficient or non-dominated DMU portfolios,
random number scaling gives the correct ranges of all DMUs.

Further possibility could be to consider the G-VRP in either Paper [I] or
[II] and the Decision Programming in Paper [IV]. An interesting combina-
tion could be to consider the G-VRP under endogenous uncertainties. One
such application could be to add timing-related uncertainty to travel times
between cities such that the probability distribution of different travel
times between every two cities would change depending on the current
time of the day. For example, longer travel times would be more likely
during the rush hour in the morning when people drive to work and in
the afternoon when they typically return from work. Since the G-VRP
has a route duration constraint, adding travel time uncertainties would
make the problem extremely challenging but more realistic. Other types
of uncertainties could be added as well related to, for instance, customer
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service times or refueling delays.

Finally, a combination of efficient allocation of resources in Paper [III]
and Decision Programming in Paper [IV] could be as follows. The problem
could be to allocate resources to a portfolio of decision-making units under
uncertainties about how well the allocated resources will be utilized by
different DMUs. For example, it could be that the probabilities of DMUs
producing more or less than the predicted amounts of different outputs
may depend on the different levels of possible input resources that can be
allocated to each DMU. Moreover, the problem could have multiple stages
in which resources are allocated to a number of DMUs and after they
generate outputs, more resources could be bought and re-allocated to the
same and/or different sets of DMUSs. One could also consider continuous
probability distributions and continuous decision spaces, with each decision
corresponding to the amount of resources allocated.
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The dissertation of Juho Andelmin contains valuable research at a high
level. This is also indicated by the fact that the three papers that are al-
ready published are published in highly esteemed top journals of the
community. It is also my belief that the fourth paper is ready for publi-
cation resulting in all four publications of the dissertation being in top
journals within Operations Research. This is a strong mark of excellen-
ce. The papers are all nicely written, thorough, and good at explaining
the problem and the contribution. Each of the papers advances the re-
search in their given area. In conclusion, this dissertation clearly deser-
ves to be published. It is in my belief comparable to the top-level of dis-
sertations within our academic community. It shows the mastery of a
broad level of problems and solution techniques and deep insight into

the problems being researched in each of the four papers.
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