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Abstract
Forecasting of retail time series is an attractive topic due to the possible cost savings
it provides. Bayesian methods are often useful for the task since they provide a more
intuitive expression of uncertainty in comparison to traditional frequentist methods.
However, there are numerous ways to formulate a Bayesian forecasting model, which is
why it is important to craft the best possible model case by case in order to achieve the
greatest benefits. Models can be improved with variable selection methods, which aim to
simplify models and thereby achieve greater forecast accuracy.

In this thesis we model the daily total sales of an Ecuadorian grocery retailer with a
Bayesian time series model and perform variable selection using the projection predictive
method. Namely, variables are selected by fitting models with some explanatory variables
to the predictions of a model that includes all the available explanatory variables. We find
the relative order of importance of the variables by comparing the predictive performance
of models with different subsets of variables. Furthermore, we are able to determine
the smallest subset of explanatory variables that constitute to a model that has similar
predictive performance as the model with all explanatory variables included.

The results indicate that the daily total sales of the retailer can be predicted with
satisfactory accuracy using only one out of the eight available explanatory variables,
assuming the best variable is chosen. We find that from the available explanatory
variables, which include weather data, economic indicators and promotion information,
the most significant one is the price of potatoes. Including further explanatory variables
did not improve model performance significantly. We found that the projection predictive
method is applicable to selecting variables in retail time series models.

Keywords Bayesian, projpred, retail, projection predictive, Prophet
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Tiivistelmä
Vähittäiskaupan myynnin ennustaminen on houkuttelevaa, sillä osuvien ennusteiden
avulla voidaan alentaa liiketoiminnan kustannuksia. Erityisesti bayesilaiset menetelmät
ovat hyviä ennustamiseen, koska ne kuvaavat epävarmuutta helppotajuisemmin kuin
perinteiset frekventistiset menetelmät. Ennuste koostuu tällöin todennäköisyysjakaumis-
ta, jolloin on helppoa arvioida erilaisten myyntimäärien toteutumisen todennäköisyyttä.
Ennustavia bayesilaisia aikasarjamalleja voidaan silti luoda lukemattomia erilaisia, jo-
ten suurimman hyödyn saavuttamiseksi on tärkeää luoda mahdollisimman hyvä malli
tapauskohtaisesti. Bayesilaisia malleja voidaan parannella muun muassa muuttujanva-
lintamenelmin, joiden tarkoituksena on yksinkertaistaa malleja ja siten parantaa niiden
ennusteiden laatua.

Tässä työssä mallinnetaan Ecuadorissa toimivan vähittäiskaupan kokonaismyyntiä
bayesilaisella aikasarjamallilla ja valitaan sen muuttujia projektioprediktiivisellä me-
netelmällä. Kyseisessä menetelmässä kerätään ensin ennuste käyttämällä mallia, joka
hyödyntää kaikkia saatavilla olevia selittäviä muuttujia. Niitä on tässä työssä yhteensä
kahdeksan. Sen jälkeen aiemmin mainittuun ennusteeseen sovitetaan osan muuttujista
sisältäviä malleja. Muuttujien tärkeysjärjestys selvitetään vertailemalla mallien ennus-
tuskykyä. Lisäksi etsitään pienin mahdollinen osajoukko muuttujia, joista muodostetulla
mallilla on tyydyttävä ennustuskyky.

Työn tulokset osoittavat, että tarkastellun vähittäiskaupan myyntiä voidaan ennus-
taa tyydyttävällä tarkkuudella jo yhden muuttujan sisältävällä mallilla, kun valitaan
muuttujista paras. Tulosten mukaan testatuista muuttujista, joihin kuului muun muassa
säätietoja, yleisiä hintaindeksejä ja kaupan alennustietoja, paras selittäjä oli perunoiden
hinta. Muiden muuttujien lisääminen malliin ei enää parantanut mallin suorituskykyä
merkittävästi, kun perunoiden hinta oli mukana. Projektioprediktiivinen menetelmä
osoittautuu soveltuvaksi vähittäiskaupan ennustemallien muuttujien valitsemiseen.

Avainsanat Bayes, projpred, vähittäiskauppa, projektio, referenssimalli, Prophet
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1. Introduction

Forecasting demand and sales has been an attractive area of improvement

in retail because it provides business benefits, e.g., by decreasing storage

requirements and minimizing spoilage [Ketzenberg and Ferguson, 2008].

Furthermore, sales forecasting enables the analysis of sales drivers such as

marketing [Chan and Perry, 2017]. Importantly, the widespread practice of

gathering data [Kandel et al., 2012] has made it attractive to many sectors

to develop forecasting and inference.

The Bayesian approach to forecasting is gaining popularity due to ad-

vances in computational methods making it more viable. Furthermore,

Bayesian inference has several appealing benefits in the retail context

[Christ, 2011]. Case specific business knowledge can be inserted into mod-

els by setting prior distributions, and conclusions in interval estimation

are more intuitive with Bayesian probability statements than with the

frequentist definition of confidence intervals [Gelman et al., 2013]. For

these reasons, we focus on Bayesian methods.

However, in retail sales forecasting it is not obvious how the forecasting

model should be constructed. Choosing a model is a complex task that is

further discussed by Gelman et al. [2020] and Vehtari and Ojanen [2012].

We focus on a subproblem in model selection called variable selection,

which is defined by Piironen et al. [2020] as choosing a minimal subset of

explanatory variables such that the predictive performance of the model is

good and adding more variables does not significantly improve its perfor-

mance. Variable selection is an attractive topic in retail sales forecasting

because the resulting order of relative importance of explanatory vari-

ables can be used in business decision making, i.e., choosing promotions,

marketing campaigns or store locations.

We chose the projection predictive method because recent work in several

fields has shown interest towards it. Examples are found, for instance,
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Introduction

in ecology [Greenop et al., 2020], public health [Bartonicek et al., 2021],

meteorology [Mercer et al., 2020] and psychology [Kelter, 2021].

The projection predictive method provides answers to important business

problems in retail sales forecasting by quantifying which explanatory

variables are the most important when predicting sales. It also indicates

what the smallest subset of explanatory variables is, given a performance

level in predicting sales. Answering these questions provides business

value by possibly explaining customer behaviour and more importantly, by

possibly improving forecasting model performance.

This work was done in a company called Sellforte which develops its own

marketing mix model, thereby being interested in accurate forecasting of

retail sales. With this perspective in mind, we create a model for explaining

the daily total sales of a large grocery retailer and use the projection pre-

dictive method to answer the questions of explanatory variable importance

and optimal model size that were presented above.

Specifically, we explore popular model and variable selection methods in

Section 2, and in Section 3 we present the projection predictive method

in detail, along with a retail data set and a Bayesian model for predicting

the daily total sales of the data set. Finally, the results are presented in

Section 4 and the conclusions are summarized in Section 5.
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2. Background

Bayesian modelling is performed by setting up a full probability model,

computing and interpreting the conditional probability distributions of

model parameters given the observed data, and evaluating the computation

process and the implications of the conditional probability distributions

[Gelman et al., 2013]. Data scientists often end up repeating these stages

in the process of creating a good model [Gelman et al., 2020]. One of the

reasons is that there are many ways of defining the full probability model

for a problem. Model selection methods are some of the ways with which

scientists are able to reduce the number of configurations they have to test

before arriving to a satisfactory conclusion.

Bayesian model selection approaches can be categorized by their under-

lying assumptions of the true data generating mechanism. The categories

are called model views and the choice of a view determines the model

selection process.

• M-closed view assumes that one of the candidate models is the true

data generating mechanism.

• M-open view does not assume ability to construct a model which

correctly generates the distribution of future data.

• M-completed view assumes the existence of a model M∗ which ex-

plains the available data with enough accuracy. [Vehtari and Ojanen,

2012]

If the M-closed view can be adopted, the usual practice for model selec-

tion would be to calculate the posterior model probabilities

p(M |D) ∝ p(D|M)p(M) (2.1)

for the list of candidate models {Ml}Ll=1 over the model space M and data

set D, and select the model with maximum a posteriori (MAP) probability

3
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[Held and Bov, 2013, Kelter, 2021]. Accurate predictions of future data

values can also be obtained by Bayesian model averaging (BMA) [Raftery

and Zheng, 2003, Piironen and Vehtari, 2017]

p(ỹ|D) =
L∑︂
l=1

p(ỹ|D,Ml)p(Ml|D) . (2.2)

However, computing the BMA solution becomes more complicated with a

large number of candidate models. Furthermore, the assumptions of the

M-closed view can be hard to meet in practice [Kelter, 2021].

In contrast to the M-closed view, it is possible to get away with far less

assumptions by adopting the M-open view. Strict assumptions about the

true data generating mechanism are then avoided by using samples from

the obtained data D as a proxy for the true distribution of future data

[Vehtari and Ojanen, 2012]. The idea is used in practice by implementing

a cross-validation method or an information criterion estimation, examples

of which are given below.

Traditionally, Bayesian K-fold cross-validation (CV) [Geisser and Eddy,

1979] is used, but more modern methods also exist, such as leave-one-out

cross-validation with Pareto-smoothed importance sampling (PSIS-LOO-

CV), which aims to maximize the amount of cross-validation folds without

considerably increasing the computational burden [Vehtari et al., 2015,

Vehtari et al., 2017].

Using leave-one-out methods is problematic for estimating predictive

performance of time series models because information from future time

points t+ 1, t+ 2 would influence the predictions at time t. Instead, it is

possible to use a leave-future-out cross-validation approximation (PSIS-

LFO-CV) [Bürkner et al., 2020] or information criterion such as the focused

information criterion (FIC) [Pandhare and Ramanathan, 2020].

Finally, the M-completed view combines elements from both the open

and closed views. It is also is a compromise in terms of strictness, since

it weakens the assumptions of the M-closed view by only requiring an

encompassing model that is held as the best available description of future

data. Model selection in the M-completed context consists of first creating

an encompassing reference model in M-closed or M-open context and then

selecting one of the candidate models based on how well their predictive

performance matches the performance of the reference model [Vehtari

and Ojanen, 2012]. Common selection methods, as presented by Piironen

[2017], are the reference predictive method and the projection predictive
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method, the latter of which is presented in Section 3.3.

This work focuses on the projection predictive method because adopting

the M-completed view can sometimes be the most natural option in retail

time series forecasting. The assumptions of the M-closed view are often

too unrealistic. The M-open view can be a viable choice in many cases but

we choose the M-completed view in order to investigate our possibilities in

a situation where a gold standard model has already been established. It

is often unclear which factors explain sales best, and thus creating a large

reference model and then reducing the number of variables could be more

effective than other approaches. Furthermore, the projection predictive

method was found to perform better compared to other options by Piironen

[2017].
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3. Methodology

We perform variable selection on a forecasting model of the total sales of

an Ecuadorian grocery retailer. In this section we present the sales data

set, forecasting model and variable selection method along with discussion

about the selected data and model configurations.

The choice of data set is rather significant because the available explana-

tory variables in the data set determine how meaningful inferences we are

able to make out of the results that the projection predictive method gives.

In other words, if none of the explanatory variables have significance in

explaining the total sales, the relative importance of the variables is not

a very meaningful problem to solve. Therefore, we carefully present the

properties and possible restrictions of the explanatory variables that were

included in the data.

The forecasting model is selected in such a way that it meets the assump-

tions of our variable selection framework. We have selected the Facebook

Prophet model [Taylor and Letham, 2018] which is has several powerful

and adaptable features.

3.1 Data set

The Ecuadorian sales data set was chosen mainly due to sufficient amount

of data originating from a single city. This precision enables the usage of

location dependent data, in this case weather data, because averaging such

data from many locations would not represent the underlying phenomenon

well. Other reasons for the choice of data set are, for instance, availability

of special event dates, category information and explanatory features in

the data set.

The data set was donated by Corporación Favorita and it is available on

Kaggle as a competition data set [Favorita and Kaggle, 2017]. The data was
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restricted using the filters that are specified in Table 3.1. Furthermore,

some data points were interpolated by forward filling to preserve data

quality in a way that does not inject future information into the past.

Table 3.1. Filters that were applied to the sales data set.

Dimension Range
Date 2015-05-01 to 2017-03-31
City Quito

Categories BEVERAGES, BREAD/BAKERY, CLEANING,
DELI, GROCERY I, MEATS,

PERSONAL CARE, POULTRY, PRODUCE

The last 60 days of data were held out as a testing data set. Therefore, the

range from 2015-05-01 to 2017-01-31 was used for training the forecasting

model. The model was trained to fit a sales time series constructed from

the total sales of products from the categories in Table 3.1, and it explained

the sales using holiday information from the data set and the explanatory

variables that are described next. It is worth noting that the earthquake

in April 2016 in Ecuador is also listed as a holiday in order to fit the model

better despite probable demand outliers immediately after the disaster.

The Corporación Favorita data set contains promotion data and daily oil

price data which are used to create explanatory variables. We use the oil

price time series as-is and generate the total number of promotions per day

as an explanatory variable. In order to obtain more explanatory variables,

two other data sets were also merged to the Corporación Favorita data set,

but no further feature engineering was performed to edit the explanatory

variable time series or to create new ones.

The first additional data set is a monthly food price index that was col-

lected from United Nations Office for the Coordination of Human Affairs

(OCHA) [OCHA, 2021]. The data was converted to daily format by in-

terpolating the missing data points between collection days with linear

interpolation. The second data set is weather data for the Quito region

from the National Oceanic and Atmosphere Administration [NOAA, 2021].

In conclusion, the models in this work are provided with the explanatory

variables in Table 3.2 and we attempt to find the optimal subset of them

using the methods described in this section.
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Table 3.2. Explanatory variables were used for modelling

Category Data Type
Store data Total number of promotions Daily

Weather data Precipitation Daily
Average temperature Daily
Maximum temperature Daily
Minimum temperature Daily

Economic Oil price Daily
Price of potatoes Monthly
Price of yellow maize Monthly

3.2 Facebook Prophet model

Sales data is modeled by fitting a Prophet model that includes a linear

trend with changepoints, yearly, monthly and daily seasonalities, holi-

day components and the explanatory variables. This model is chosen be-

cause the different components describe common phenomena in customer

behaviour rather well. The model can be expressed with the following

equation:

y(t) = g(t) + s(t) + h(t) + v(t) + ϵt , (3.1)

where g(t) represents the linear piecewise trend with non-periodic change-

points, s(t) represents periodic components such as yearly or monthly

seasonality, h(t) represents holidays that can occur on irregular intervals

over one or more days, v(t) represents the explanatory variables that are

time series with daily values and ϵt is the error term that represents

changes not explained by the model [Taylor and Letham, 2018].

The model presented by Taylor and Letham [2018] does not include the

v(t) term in their model specification like Equation (3.1) does. However,

within this work it makes sense to add the term since the Prophet li-

brary includes capabilities for adding explanatory variables to the model

[Facebook, 2021].

Further details of the components of our model are almost identical to the

definitions of Taylor and Letham [2018]. They define the trend component

of model (3.1) as

g(t) = (k + a(t)Tδ)t+ (m+ a(t)Tγ) , (3.2)

where k is the growth rate, δ is a vector of rate adjustments, a(t) is a vector

determining how the rate has been adjusted at time t. The growth rate is

8
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offset by m, and γ is a vector that contains an offset for each time point t.

The offsets are calculated from δ to make the piecewise trend continous.

Seasonalities are modeled by including Fourier series components to the

model. For each seasonality period P , the seasonality component is

s(t) =
F∑︂
i=1

(︃
ai cos

(︃
2πit

P

)︃
+ bi sin

(︃
2πit

P

)︃)︃
, (3.3)

where ai and bi are the coefficients to be fitted and F is the Fourier order

[Taylor and Letham, 2018]. The Fourier order is recommended to be chosen

between 1 and 10 according to case specific needs [Facebook, 2021].

Table 3.3 describes the properties of seasonality components that were

included in the model in this work.

Table 3.3. Seasonality settings of the model

Seasonality Period Fourier order
Monthly 30.5 8
Weekly 7 5

Holidays and continuous explanatory variables are simpler to include

in the model since they can be thought of as applying a coefficient to the

corresponding holiday occurrence series or explanatory variable time series.

The holiday and explanatory variable components are written as

h(t) =

H∑︂
i=1

ci · 1(t ∈ Ci) (3.4)

v(t) =
V∑︂
j=1

dj · vj(t) , (3.5)

where H and V are the total number of holidays and explanatory variables,

respectively. Term vj(t) is the j:th time series, 1(t ∈ Ci) indicates if holiday

Ci is active on day t and ci, dj are the coefficients to be fitted. We use

holiday information from the data set but general sets of national holidays

are also available.

In conclusion, the model can be represented as

y ∼ N ((k +Aδ)t+ (m+Aγ) +Xβ, 10) (3.6)

k ∼ N (0, 5)

m ∼ N (0, 5)

δ ∼ Laplace(0, 0.01)

β ∼ N (0, 10)
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by first separating coefficients from the underlying component functions

to vector β of length f and giving them a prior distribution. In this case

β includes the coefficients for seasonalities, holidays and explanatory

variables. Then, all individual model components are combined to a n× f

matrix X, where n is the number of days or data points. [Taylor and

Letham, 2018]

Many of the explanatory variables are indicators of long term change.

Therefore, they compete with the trend component of the model because

the trend is also trying to explain long term changes in total sales. To

control this and to avoid trend overfitting, the trend changepoint prior

was set to a relatively low value of 0.01 and the number of changepoints

was restricted to five. On the contrary, other priors were left rather wide

because the risk of overfitting is smaller in frequent seasonalities.

3.3 Projection Predictive Framework

The projection predictive framework is defined as a two-stage procedure,

1. Construct the best possible model. This is called the reference model

and it might be complex for having a large number of variables.

2. If the reference model is too complex, find a simpler model that gives

similar predictions compared to the reference model. The simpler

model is called a submodel and its creation process is referred to as a

projection. For a given level of complexity (number of variables), the

submodel with the smallest predictive discrepancy compared to the

reference model is selected. [Piironen et al., 2020]

The predictive discrepancy between a submodel and the reference model

is defined as the average Kullback-Leibler (KL) divergence between the

predictive distributions of the models. Let the reference model and a

submodel be parameterized by θ∗ and θ respectively. Then, the predictive

distributions are p(ỹ|x,θ∗) and p(ỹ|x,θ), where ỹ represents an unseen

data point. In order to minimize discrepancy, the projected submodel

parameters are thus defined by

θ⊥ = argmin
θ

1

n

n∑︂
i=1

KL(p(ỹi|xi,θ∗)||p(ỹi|xi,θ))

= argmin
θ

1

n

n∑︂
i=1

p(ỹi|xi,θ∗) · log
(︃
p(ỹi|xi,θ∗)

p(ỹi|xi,θ)

)︃
, (3.7)
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where the equivalence follows from the definition of KL divergence. As long

as the observation model for yi belongs to the exponential family, projection

(3.7) is equivalent to finding the maximum expected likelihood parameters

for θ with the original observations yi replaced by their expected values

E(yi|xi,θ∗) over the distribution p(θ∗|D) as predicted by the reference

model. [Piironen et al., 2020]

As described in Section 3.2 where the selected model was defined, the

observation model for yi is a normal distribution. Therefore, the model

belongs to the exponential family and the original observations can be

replaced by the predictions of the reference model.

To obtain the posterior distribution of a submodel, the projection (3.7) is

performed several times. By projecting S draws {θs
∗}Ss=1 from the posterior

p(θ∗|D) we obtain corresponding draws {θs}Ss=1 in the projection space.

These projected draws form the posterior distribution of the submodel.

[Piironen et al., 2020]

Possible submodels are explored by forward search to decrease the

amount of projections that have to be computed. Even faster L1-like

heuristic methods exist but they are not necessary in this case. The for-

ward search means first projecting to an intercept model (no explanatory

variables) and then sequentially adding the variable which decreases dis-

crepancy to the reference model predictions the most. This is a greedy

approach that avoids checking many clearly non-optimal combinations

whilst still finding good solutions in practice. [Piironen et al., 2020]

Given the variable combinations and thus submodels for each size, the

final model selection is performed by choosing the submodel that has

predictive performance close enough to the predictive performance of the

reference model. It is common to consider 95% match in performance

to be sufficient. Predictive performance is measured by mean absolute

percentage error (MAPE) which is defined as

MAPE =

n∑︂
i=1

1

n

⃓⃓⃓⃓
y − ỹ

y

⃓⃓⃓⃓
(3.8)

and expected log predictive density (ELPD) which is defined as

ELPD =
n∑︂

i=1

∫︂
p(ỹi) log(p(ỹi|y))dỹi . (3.9)

11



4. Results

In this section we present the results of fitting the reference model to

the training data set and then projecting the information to submodels of

different sizes while using forward search to select the best combination

of explanatory variables for each size. The predictive performance of the

submodels is then evaluated against the performance of the reference

model on the training and test sets using mean absolute percentage error

(MAPE) and expected log predictive density (ELPD), which are defined

in Equations (3.8) and (3.9), respectively. Finally, model selection is per-

formed by selecting the submodel that has as few explanatory variables as

possible while matching reference model performance with 95% accuracy.

The reference model was fit to the training data set using Markov chain

Monte Carlo (MCMC) sampling with 400 samples. As explained in Section

3, the training set consists of two years of sales data and the test set is 60

days of sales data beginning from the day after the training data ends. The

amount of sales and items on promotion were log-transformed in order to

help model fitting. Predictions of the obtained model against the training

data points are plotted in Figure 4.1. Figures of fitted values for individual

model components can be found in Appendix A.

4.1 Order of importance for the explanatory variables

After the reference model was fitted, submodels were collected using for-

ward search. Submodels are hereon referred by their size, which means

the number of explanatory variables in the submodel. Submodel of size n

has the first n variables added by the forward search.

From Figure 4.2, it can be observed that when increasing the number of

explanatory variables in a submodel, the posterior predictive distribution

of the submodel approaches the posterior predictive distribution of the

12
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Figure 4.1. Reference model is fitted to the data. Model predictions seem reasonable
visually but on the contrary, some data points are clearly not fitted well.

reference model. This is indicated by the discrepancy (KL divergence)

approaching zero, which indicates that the search process is satisfactory.

Therefore, we can conclude that according to the order in which the vari-

ables were added by the forward search process, the order of importance

for the explanatory variables is:

1. Price of potatoes

2. Average temperature

3. Minimum temperature

4. Oil price

5. Total number of promotions

6. Precipitation

7. Maximum temperature

8. Yellow maize price.

0 1 2 3 4 5 6 7
Submodel size
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Figure 4.2. KL divergence of the predictive distributions of the best submodel and the
reference model decreases as the size of the submodel is increased.

Possible reasons for this particular order of variables can be found by

13



Results

analyzing the time series of all explanatory variables in Figure 4.3. For

example, the low ranking of maximum temperature is likely caused by the

high correlation between maximum and average temperature time series.

Adding the maximum temperature time series does not help in fitting

the model if it is nearly equivalent to adjusting the coefficient of average

temperature. A similar reasoning could also explain the low importance

of yellow maize prices compared to high ranking of the price of potatoes.

Visually, they seem to have very high inverse correlation which has similar

problems as high positive correlation.
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Figure 4.3. Time series plots of the explanatory variables help explain their relative
importance.

The relative order of importance could also be affected by model structure.

The trend component of our model tries to explain all non-seasonal long-

term changes and seasonal effects with season length longer than one

month. Therefore, by setting the maximum number of trend changepoints

to five, we intentionally avoid overfitting and could end up selecting more

explanatory variables that include some long-term changes that the trend

is not flexible enough to explain. It can be argued that the four most
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important variables all represent some type of long-term seasonal or non-

seasonal change: temperatures change on an annual cycle while prices of

oil and potatoes can have certain non-annual changes. Figure 4.4 displays

how the trend component of the smaller models, especially size 0, deviates

from the reference model trend component.
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Figure 4.4. The trend component of the model explains non-seasonal long-term changes
and seasonal changes with a period longer than 30 days. Trend components of
the smaller models deviate from the reference model trend, indicating that
the trend is compensating for the lack of explanatory variables.

4.2 Selecting the optimal submodel

Model selection is performed by plotting the predictive accuracy of the

reference model and each of the submodels that were found by the forward

search process. We then select the one that has as few variables as possible

but matches reference model performance well. Performance is measured

by using MAPE and ELPD, which are defined in Equations (3.9) and (3.8),

respectively.

Figure 4.5 displays the selected performance statistics against the ob-

served data over the training data set. Reference model performance, is

matched with 95% tolerance in MAPE and ELPD already at size one. The

performance is slightly improved in larger submodels but the increases

are negligible in comparison to the uncertainty of the metric.

Using the held out test data set, it is possible to also evaluate the pre-

dictive performance on actual unseen observations. The predictive perfor-

mance over the 60-day test data set is shown in Figure 4.6. Unlike in the

training data, the worst performing model seems to be the size 4 model

while reference model performance is matched or exceeded already with

the size 0 submodel. This is counterintuitive under the assumption that

the reference model is the best available description of the data.

Since we do not test alternative assumptions within the scope of this
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Figure 4.5. Performance of the submodels matches reference model performance already
with one explanatory variable when measuring over the training data.
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Figure 4.6. Performance statistics over the test data set are inconclusive of the correct
submodel size since they violate our assumptions and are under significant
uncertainty.

work, we settle for concluding we are unable to assess the predictive

performance for unseen data due to uncertainty in the test data and

difficulties in the predictive performance of the reference model. As seen

in the Figure 4.7, both the reference model and the size 1 submodel have

difficulties in predicting some data points, especially in the test set.

From Figure 4.7, we observe that the selected submodel mean fits rather

well to the original data, although some systematic error can be observed

in the test data portion. We can also see that the predictive distribution of

the submodel is slightly narrower than the distribution of the reference

model. This could be a side effect of the estimation process that was used

in projecting the reference model draws.

In conclusion, the results indicate that the predictive performance of

the reference model can be approximately matched with a submodel that

has only potato price as an explanatory variable. However, the reference

model performance has room for improvement, since we do not see clear
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Figure 4.7. Plot of the posterior predictive distributions of the selected submodel and the
reference model.

improvement of performance over the test set or narrow uncertainty for

performance over the training data set.
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5. Conclusions

In this thesis, we modeled the daily total sales of a grocery retailer using a

Bayesian forecasting model. We applied the projection predictive method

to reduce the number of explanatory variables in the model without signif-

icantly decreasing model performance. In the light of our experiment, the

projection predictive method was an excellent method for variable selection

because it provided us with quantitative information about the relative

importance of explanatory variables. Furthermore, it indicated that in

our experiment, a model with only the price of potatoes as an explanatory

variable achieves similar predictive performance as a model that has also

the other seven variables included.

Unfortunately, the experiment design posed some challenges. Relative to

the ELPD uncertainty, there were not many variables that significantly in-

creased the predictive performance of the model. The projection predictive

method would likely give stronger results if there were more explanatory

variables under consideration, and more importantly, more variables that

have significant predictive power.

Further studies could focus on improving the experiment by creating

more explanatory variables, for example, by creating boolean variables

that indicate some conditions such as heavy rain or a hot day. More product

category level information could also be included, such as the number of

promotions for each category. Using a vast range of detailed promotion

time series could give impactful insights especially from the retailer’s

perspective.

The M-complete assumption could also be questioned by experimenting

with variable and model selection in the M-open context which could

also be applicable for sales forecasting. That would, however, require

significantly more resources since structurally different models must also

be tested in addition to varying the number of explanatory variables.
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Conclusions

Regardless of the limitations of this experiment, the evidence suggests

that the projection predictive method is an applicable variable selection

method to modelling retail sales with the Facebook Prophet modelling

framework.
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A. Appendix
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Figure 1.1. Components of the Prophet reference model.
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