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Ydinvoimaloiden operatiivisen turvallisuuden takaamiseksi ohjesäännöt vaativat
reaktoreiden visuaalisen tarkastamisen säännöllisin väliajoin. Tarkastus suoritetaan
käymällä läpi reaktorin pintarakenteita kameran avulla. Aiemmin käytössä olevaan
kamerayksikköön on kehitetty koneoppimismalli tunnistamaan kamerakuvasta vikoja.
Käytössä oleva standardilaatuinen (SD) kamera tullaan päivittämään teräväpiirto-
laatuiseen (HD) kameraan, minkä vuoksi kehitetty koneoppimismallin tulee pystyä
käsittelemään HD-laatuista kuvaa.

Tutkimuksessa tarkastellaan HD-laatuisen koneoppimismallin kehittämistä ydin-
reaktoreiden visuaalisten vikojen havaitsemiseksi SD-laatuisen datan avulla. Vi-
suaalisessa tarkastuksessa käytettävä kamera tullaan päivittämään HD-laatuisen,
minkä vuoksi tarvitaan HD-kuvalla toimiva koneoppimismalli viantunnistukseen.
Koska todenmukaista HD-dataa ei ole vielä saatavilla, koulutuksessa, testauksessa ja
validoinnissa käytetään SD-dataa. SD-dataa muunnetaan alkuperäisestä koosta kah-
della tavalla: kuvan suurentamisella ja reunojen täyttämisellä (engl. padding), jotta
voidaan simuloida HD-laatuista dataa. Käytössä on u-net-niminen konvolutiivinen
neuroverkko (engl. convolutional neural network), joka tuottaa segmentointikuvan
alkuperäisestä kuvasta.

Tutkimuksessa kehitettiin neljä HD mallia, jotka oli kehitetty käyttäen eri datan
kokomuutosmenetelmiä. Kehitettyjä malleja verrataan aiemmin kehitettyyn SD
malliin. Vertailussa käytetään kahta mittaria: segmentointitarkkuutta, jota mitataan
leikkaus yli yhdisteen -arvolla (engl. intersection over union) (IOU) ja F1-arvolla, sekä
tarkastussuoriutumista, jota mitataan vian havaitsemisprosentilla ja virhelöytöjen
määrällä.

Tulokset osoittavat, että HD-mallit tuottavat tarkan segmentoinnin, mutta ovat
herkempiä visuaalisille poikkeavuuksille kuvissa, mikä lisää virhelöytöjen vaikutusta.
Lisäksi huomataan, että HD-mallien suorituskyky on vahvasti riippuvainen valitusta
kokomuutosmenetelmästä. Segmentointitarkkuus on samankaltainen HD-malleissa
ja vertailtavassa SD-mallissa, ja osa HD-malleista kykenee segmentoimaan viat
paremmin kuin SD-vertailumalli. Huomataan, että HD-mallit eivät kuitenkaan ole
yhtä tehokkaita vikojen tunnistamisessa, ja ne tuottavat enemmän virhelöytöjä.
Tulokset ovat riippuvaisia käytetyistä testikuvista, ja tarkempien tulosten saaminen
vaatii isomman ja HD-laatuisen testijoukon. Kokonaisuudessaan tulokset osoittavat,
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että HD-mallit kykenevät tunnistamaan ja segmentoimaan vikoja myös SD-laatuisella
harjoitusaineistolla.

Tutkimuksessa havaittiin, että SD-dataa on mahdollista käyttää datalähteenä
kunnes HD-dataa on saatavilla. Lisäksi todetaan SD-datan tarjoavan mahdollisuuden
lisätä datan määrää ja varianssia myös HD-datan saatavuuden jälkeen.
Avainsanat Koneoppiminen, U-Net, NDT, Automaattinen Visuaalinen

Tarkastaminen
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Abstract

To ensure the safe operation of nuclear power plants, visual inspection of the
reactors must be made at regular intervals. The inspection requires scanning the
surfaces of reactors with a camera unit. A machine learning model was developed
for previously used standard definition (SD) camera unit. The camera unit will
be changed to high-definition (HD) quality which requires the model to be able to
process HD-quality data.

This study focuses on the use of SD data in developing a HD machine learning
model for visual flaw detection in nuclear reactors. For training, testing and validation,
SD data is used as HD data was not available during the time of this study. The
original SD data is resized with two methods, upscaling and padding the original
image, in an effort to simulate HD quality data. A convolutional neural network
called u-net is used which produces a segmentation map of the original image.

Four HD models were developed with varying data resize methods, which were
compared to a previously developed SD model which is used as a baseline. Two
metrics are used for comparison, segmentation accuracy with intersection-over-union
(IOU) and F1-score, and inspection performance with detection percentage and false
call rate.

The HD models were concluded to produce an accurate segmentation of the
images but had a higher sensitivity to visual anomalies, which led to a higher number
of false calls. The performance of HD models was noted to be highly dependent on
the chosen image resize method. The segmentation accuracy of the HD models was
very similar to the baseline SD, where the HD outperformed the baseline model in
some metrics. However, the HD models were not as effective in identifying flaws and
produced a higher false call effect. These results are dependent on the test images
used and should be reproduced with larger and HD-sized test set for more accurate
results. Overall the results indicated HD models’ ability to identify and segment
flaws even with SD-sized training data.

It was determined that SD data can serve as a viable substitute data source until
HD data becomes accessible. Furthermore, it has the potential to offer additional
data quantity and variance even after the availability of HD data.
Keywords Machine Learning, U-Net, NDT, Automatic Visual Inspection
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1 Introduction
Nuclear power is one of the main energy production methods in the world. There are
around 450 nuclear power plants in the world producing 10 % of the world’s electricity
Krikorian (2020). To ensure their operational safety, regulations require a visual
inspection to be done at regular intervals. The frequency of these visual inspections
is based on a variety of factors, such as the design and operating history of the plant,
the criticality of the components, and the result of the previous inspection IAEA
(2009).

The inspections are done using a color or black-and-white camera which is attached
to a control unit. The inspector watches the camera feed to search for visual anomalies
on the surface, which will be referred to as indications. Detailed accounting is made
of prior indication findings, even if the finding is not relevant, such as scratch marks.
Relevant indications, such as cracks, are inspected with particular diligence, and any
changes to the indication are recorded.

The inspection requires the reactor to be in shutdown condition, which is why
the inspections are done during the yearly maintenance. The inspection requires the
inspector to scan specific surfaces of the reactor thoroughly, from multiple angles
and with multiple lighting conditions, which is very time-consuming. Additionally,
keeping the reactors non-operational is very expensive, which is why the inspection and
maintenance have a tight schedule. The inspections are done with time pressure and
often overnight. These factors may induce human-factor issues, which can decrease
the probability of finding relevant indications. To combat this issue, Trueflaw Ltd
has previously developed a machine learning model to analyze the camera feed and
flag potential indications to the inspector in real-time.

This thesis is a part of Trueflaw Ltd’s project with the Electric Power Research
Institute (EPRI) to further develop this machine learning model to aid in the visual
reactor inspection. The inspections have previously been done with a camera with
standard-definition (SD) quality which usually means the images are sized 720x576
pixels. The aim is to develop a machine learning model for high-definition (HD) size
video, which means the size of one image is 1280x720 or greater. The main challenge
in this is to find suitable training data for the model, as recordings of previous
inspections are only in SD quality. The aim of this project is to further develop
and assess the performance of a machine learning model for visual inspections. This
thesis focuses on examining the use of SD video to train a machine learning model
to analyze HD sized video.

2 Background
Automation of defect detection has been used in some sectors for over 30 years.
In the manufacturing industry, classic machine vision has been used to detect
surface flaws since the 1980s, and it was capable of assessing the surface quality
in terms of colour and texture and identifying defects Smith et al. (2021). These
tasks required the inspected objects to be unchanging in a fixed location in a fixed
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position with unchanging lighting conditions. This is achievable in many industrial
manufacturing production processes, however, this kind of environmental structuring
would be impossible in the nuclear plant inspection. The environment for nuclear
plant inspections varies highly in terms of background, colors, distance to objects,
and defect shapes and sizes. For these reasons, classic machine vision has not been
able to be used. For a visual inspection task in nuclear power plants, the tool used
needs to be able to reliably flag the indications from unseen images and at the same
time, not flag the non-relevant indications. The requirements of this type of tool
match the capabilities of convolutional neural networks (CNNs) and deep learning.

With advanced and more efficient models, the integration of machine learning
into various NDT inspection methods has become increasingly prominent. Notably,
machine learning techniques have been successfully applied to identify defects in
ultrasonic data Virkkunen et al. (2021b). The resulting model was able to achieve
a level of performance surpassing human inspectors, referred to as superhuman
performance. This improvement in accuracy and efficiency is the overall motivation
behind using machine learning in NDT inspections. However, for safety reasons, the
NDT field is a heavily regulated industry and the integration of machine learning
into NDT inspection requires a careful approach to align with established standards
to ensure safety and reliability. Especially with nuclear power plant inspections, the
tools and methods used must go through a rigorous inspections themselves and must
be approved by the relevant authorities.

The European Network for Inspection Qualification (ENIQ) is a network focused
on addressing the reliability and effectiveness of non-destructive testing (NDT) for
nuclear power plants and one of the main contributors of today’s global qualification
guidelines for in-service inspections (ISI). ENIQ has published a recommended
practice report concerning the qualification of NDT systems that make use of machine
learning Virkkunen et al. (2021a). The report outlines the challenges and benefits of
the use of machine learning. The report states machine learning to be well suited
in all inspection techniques where data can be digitized. The report highlights that
while the performance of inspectors exhibit variation, machine learning systems
would provide highly repeatable and consistent results. The report also provides
guidance on how to address the challenges and qualify an inspection system using
machine learning.

One of the most influential milestones in using deep learning in computer vision
processes was the development of AlexNet model Krizhevsky et al. (2012). The
model won multiple image recognition contests and utilized the graphical processing
units (GPUs) during training, which allowed for much faster training which in turn
allowed for deeper model architecture. The AlexNet is a classic CNN architecture,
which consists of five convolutional layers, two hidden fully-connected layers, and one
fully-connected output. In the convolutional layers, a "filter" or "kernel", is applied
to the image, which is a matrix of weights that slides over the original image values
and calculates the sum of their element-wise product Dumoulin and Visin (2016). By
changing the weights in the filter, different patterns, such as edges, can be detected.
The resulting image after this convolution process is then max pooled. This is done to
reduce the spatial size of the output while retaining the most important information.
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After repeating this process for five times, the resulting values were run through a
fully connected layer, which is typically a product with a weight matrix, to produce
a vector output.

The usage of GPUs for training and the network design of using convolutional
layers followed by max pooling layers is still the core basis of current deep learning
models. The rapid development of GPUs has enabled the development of larger
and deeper models. In comparison, the AlexNet model had 60 million learnable
parameters, as one of the best-performing image recognition models called BASIC-L
has 7.5 billion parameters Chen et al. (2023).

In a typical convolution network, the network ’learns’ by optimizing the weights
in the convolution layers and in the fully connected layers. These types of models
usually require a large number of training data samples and output only a vector of
classification probabilities. However, in visual flaw detection, the number of samples
is often very limited, and the desired output of a sample image should contain precise
information about where the flaw is located. These same requirements apply to
biomedical image segmentation, which is what the deep learning model u-net was
developed for Ronneberger et al. (2015). The u-net model is fully convolutional,
meaning it only consists of convolution and pooling layers. Removing the connected
layers enables the model to produce a semantic segmentation image instead of a
one-dimensional vector output. This, in our implementation, means the output will
be the same size as the original image, where the values of the pixels represent
probabilities of that pixel in the original image belonging to the class of interest, i.e.
being a flaw.

The u-net model consists of a contracting path and an expanding path. Similarly
to the classic convolution model, the contracting path consists of convolution and
max pooling layers that downsample the image. However, instead of flattening the
output as in the classic CNN model, the resulting output is then upsampled in
an expanding path, which is more or less symmetrical to the contracting path, to
restore the original spatial dimensions of the image. The role of the contracting path
is to extract the most important features and to reduce the spatial dimensions to
improve computational efficiency. These operations make the model more efficient
with the cost of information loss. The expanding path is then needed to restore the
spatial dimension of the image. However, to properly restore the image to its original
size, and to place the extracted features correctly, additional information is needed
from the contracting path. This is provided with the model’s ’skip connections’
which concatenate the information of a downsampling layer to the corresponding
upsampling layer. This enables the model to make use of higher level details and
context which improves segmentation accuracy. The model architecture is illustrated
in Figure 1.

In the downsampling, bottleneck, and upsampling phases, convolution and Recti-
fied Linear Unit -activation (ReLU) are applied multiple times. In the first convolution
layers, the extracted features are simple, such as edges or basic shapes, such as circles
or squares. With multiple convolution operations, the network is able to build a
hierarchy of more complex features by combining the information from previous
convolution layers. Using ReLU-activation after a convolution layer improves the
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performance of the model. This activation function applies non-linearityy to the
result of the convolution.

2.1 Research question
The transition to HD-quality cameras is motivated by the potential for increased
efficiency and accuracy. With HD quality, an image taken of an area of interest can
be captured with more details. Fine details and better-defined edges enable more
precise and accurate detection of details for both automated systems and human
inspectors. The HD-quality image is also able to provide the same level of detail from
an area of interest as an SD camera from farther away. This means the captured
area is larger which can improve efficiency during inspections.

The focus of this study is to examine whether SD quality data can be used to
train HD-sized model without performance loss. Performance is measured with
different metrics to describe how well defects could be found from a set of test images.
Previously developed SD model is used as a baseline for comparison. If no significant
performance drop is observed, can the SD data be considered suitable for HD model
training.

3 Methods

3.1 Model
The machine learning model used is based on a convolutional neural network for
image segmentation called u-net Ronneberger et al. (2015). The model was chosen
based on it being suitable for large image segmentation and performing well in similar
segmentation tasks. Furthermore, changing only data and model size makes the
results easier to compare to previously acquired results.

The architecture of the used model is presented in Figure 1. The encoding path
of the model is the left side of the U-shape, which captures hierarchical features from
the input image. Each convolution layer increases the network’s ability to abstract
and understand more complex features. The original image gets downsampled in
the encoding process which then needs to be upsampled before the output. The
upsampling is done in the decoder path which reconstructs the segmentation image
based on the features learned in the encoder path. This reconstruction is enhanced
with the skip connections, which are represented by arrows between the encoder and
decoder paths.

The encoder path consists of 6 Convolution block, and max pool operations, one
Bottleneck block, and 5 Concat, Convolution -block, 6 upsampling operations, and
one Output block. The used model has a total of 707713 trainable parameters.

The model is implemented with Tensorflow Abadi et al. (2015), version 2.11.0.
Convolutions, ReLU-activations, batch normalizations, max poolings and upsam-
pling, are implemented respectively with functions Conv2D, Activation(’ReLU’),
BatchNormalization, MaxPool2D, and UpSampling2D from Tensorflows keras.layers
library.
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Figure 1: Implemented u-net architecture

In a Convolution block, convolution is applied to the image with a 3x3 convolution
kernel with added zero-padding with ReLU -activation. This is repeated for a second
time, with batch normalization applied before ReLU-activation. The resulting image
has now only the non-negative values of the normalized distribution.

After one Convolution block, the image is max pooled with selected pool sizes,
in which the pooled region is truncated to retain only the maximum value within
the pool. This operation will decrease the spatial dimension of the image based on
the size of the pool and stride size. The stride size determines step size between the
pooling operations. The stride size used is the same as the pool size, i.e. there is no
overlap in the pooled pixels.

After the encoder path, the image, which has dimensions 5x10, then goes through
the Bottleneck block. Convolution and activation are repeated again two times, after
which the image is upsampled with a specified size. This resizing uses the ’Nearest
neighbor’ method, which fills new pixels with the value of the nearest pixel. After
this resizing, convolution and ReLU-activation are applied once more, after which
the resulting image is outputted and will be taken as input in the decoder path. This
Bottleneck phase is a crucial part of the network. The features learned in this block
serve as a foundation for the subsequent layers to construct the segmentation map.

The second half of the network is the decoder path in which the image is expanded
to its original size. The decoder path is symmetric to the encoder path. The decoder
path consists of 5 ’Concat, Convolution’ blocks. In every block, the image of the
previous block is first concatenated with the corresponding block from the encoder
path, which is represented as an arrow in Figure 1. The resulting concatenated
image then goes through similar operation as in the Convolution block, as we apply
convolution, ReLu-activation, convolution, BatchNormalization, and ReLu-activation
again. These are done to find more complex patterns in the concatenated image.
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After these operations, the resulting image goes through the same upsampling process
as after the bottleneck block, in which the image is resized and applied convolution
and ReLU-activation.

The final step in the network is the Output block after which the resulting
segmentation map is obtained. In the block, the input is concatenated with the
corresponding Convolution block, and after this, convolution with 3x3 kernel and
ReLU-activation is done twice. Now in the final step, convolution is done with the
kernel size of 1x1 and with filter size 1 to produce 1 channel segmentation map.
The activation function used in the last step is the Sigmoid -function. Using this
activation function allows us to interpret the output of this as probability values.
Typically, the predicted segmentation map is later thresholded to show values over 0.5
as one and everything else as zero. A successfully trained model should predict pixel
values that are close to 0 or 1, which indicates a high confidence of segmentation.

3.2 Data
The used field data has been provided by EPRI and an undisclosed European nuclear
power plant. The field data videos are recordings of the actual inspection, in which
the inspector scans the reactor surfaces from different angles and in different lighting
conditions. The field data is invaluable for the training of the model as it will be the
environment in which the model will be used. All the inspection videos used are in
SD size as HD-sized data is not available.

The amount of indication data is typically small compared to the amount of clean
data available. As the indications can be diverse and complex, the model needs to
have enough indication samples and variation to be able to learn and generalize the
task. This means the training data set needs to have a diverse set of indications,
of different sizes, shapes, and other relevant properties such as light reflection. In
addition to indication representation, the training data set needs to contain enough
of indication samples to not default to predicting the majority class. This, in the
absence of enough indication data, means the model would consistently predict the
absence of indications, which will result in a higher number of false negatives and
lower sensitivity to detecting actual indications. To address this problem, laboratory
samples and virtual flaws are added to the data set.

Virtual flaws are flaws that have been inserted into a ’clean sample’, i.e. a sample
without flaws. These virtual flaws are first extracted from their source sample and
then added to a flaw dataset. The virtual flaws are inserted into an image with the
eflaw function, which chooses a random flaw from the flaw dataset and inserts it into
the image in a position where the flaw could naturally occur, such as an open surface
or weld borders. For increased variety in the samples, the flaws are resized randomly
before they are inserted into the sample. To make these virtual flaw samples look as
realistic as possible, the inserted flaw is manipulated to match the conditions of the
clean sample it will be inserted into. This process enables us to add variety and the
quantity of the flawed data in the dataset, allowing us to use the limited amount of
data more effectively.

To further increase the amount and variety of flaw samples and for the model,



13

Figure 2: Example laboratory flaw with the original SD image on the left and hand
annotation on right. The image represents a typical flaw which might occur at weld
borders.

laboratory samples are used in the data set. The laboratory data contains videos or
images taken from samples that mimic the inspection environment. These laboratory
samples contain indications that have been manufactured into them. These can be
flaws, such as cracks, and non-flaws, including non-relevant indications like scratch
marks. The non-relevant indications are added to help the model distinguish between
between relevant and non-relevant indications. An example of laboratory produced
sample is shown in Figure 2. The image exemplifies a flaw that can typically appear
at the border of welds. For laboratory samples, the environmental conditions can be
altered easily, such as the angle of the imaging, the angle and intensity of the light,
and the distance between the camera and the sample. The real reactor environment
is too complex to be modeled with laboratory samples. This is why they only work
as additional source of data variety.

For large images, it is suggested in the original u-net paper Ronneberger et al.
(2015) to use a tiling method for the image processing, in which the original image is
divided into smaller tiles, which are then processed separately and later reattached.
However, it was noted that dividing the image into smaller tiles makes it difficult for
the model to predict flaws that are on the border region of the tiles. Furthermore, the
processing speed of the final model is faster if the image can be inputted directly to
the model. As the model is intended to work with the live feed of the camera unit in
the inspection, this means the lag between the camera movements and the outputted
video must be as small as possible. Dissecting every frame into tiles, running those
tiles through the model, and combining the tiles takes additional processing power
and time. The refresh rate in HD cameras is usually 24 frames-per-second (fps) but
can also be even more. This would mean the model would have to process at least 24
images in a second. Using the described tiling method for each image takes longer
than running a larger image through a larger model. The response time between the
inspection unit and inspector needs to be fast enough to not be too noticeable as
that could affect the performance of the inspector. It is for these reasons that the
model was decided to process the whole image at once.
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3.2.1 Data resizing

The main objective of this study is to establish the usability of SD images in HD
model, and as the HD model can only be trained with HD-sized images, the SD data
must be resized appropriately. This means choosing an appropriate resize method is
a crucial step in this task as it directly impacts the quality of data.

Only one size of images can be used to train the model, which has been chosen to
be of size 1280x720x3. This size was chosen based on it being the standard of high-
definition resolutions, and the resolution can be changed in later model developments
after the usability of the data resizing has been confirmed. The SD-sized data was
resized in two ways, by upsampling the image itself, and by inserting padding to
SD-sized images to increase the dimensions to HD-sized.

The padding method does not modify the original image but rather adds padding,
meaning zero-pixels, to every side of the image to fit the dimension requirement.
The frame placement, or the amount of padding on each side, was done randomly
to change the frame position in each resulting image. This is done to prevent the
model from learning any type of spatial preference in the occurrence of indications.

The other method of resizing is to use an upsampling function which adds pixels
between the original pixels and uses interpolation to derive the new pixel values.
This method was used to provide the model with larger images and indications.
The training images are resized in two ways: resize them to as large as possible,
and resize them to a random size between maximum and original size. Maximum
resizing provides the model with the largest possible indications and the indications
are proportionally the same size as for the SD model. Randomizing the size of the
images adds variety to the sizes of indications in the dataset. This change in size also
mimics the change in distance between the camera unit and the inspected surface.

In both resize methods, the aspect ratio, meaning the ratio between the image
width and height, is preserved. As the aspect ratio of SD frames, 720

480 = 3
2 , is less

than the HD frames, 1280
720 = 16

9 , some padding still needs to be added to the sides of
the images resized with maximum upscale for them to be HD sized. Similarly, for
the random resize method, padding is added to fit the size requirement of the model.
For both methods, the amount of padding on each side is decided randomly for the
same reasons as previously.

Upsampling the SD image to HD size results in a proportional increase in flaw
size. It should therefore be as easy for the model to detect as for the SD model.
This is done to provide the model with large indications which can span the width
of the image. However, upsampling the image means new pixels are created with
an interpolated value which increases the image size but worsens the image quality.
Despite the selected interpolation function mitigating this effect, the quality does
not match that of an original HD image. This drop in quality can make it harder
for the model to detect the indications. Padding the original SD image does not
change the quality, and the resulting image resembles a HD image with black borders.
Employing both resizing methods enhances dataset variety and improves the model’s
generalization. Varying sizes of the images mimics varying the distance to the
inspected surface.
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Taking an SD image of an area of interest and padding it mimics taking a HD
image of the same area but farther away. If the indications are found from the padded
images, it means the HD model is able to find the same indications from a larger
distance and a larger area of interest. With a larger imaging area, the inspections
can be done more efficiently. If the distance to the surface is kept the same for the
HD quality camera, it can capture the area of interest in more detail which improves
indication detection.

The chosen upscaling method for the sample images is bicubic interpolation. It
was chosen visually to provide accurate interpolation methods. In theory, bicubic
interpolation works by considering the 4x4 pixel values surrounding the area of
interest and applying a cubic spline to both horizontal and vertical dimensions of
the 16 pixels. The new pixel value is calculated based on interpolating between the
fitted splines. However, in practical applications, these operations truncate into a
weighted sum of the 16 nearby pixel values which can be done efficiently with vector
and matrix multiplications.

3.2.2 Data augmentation

Ronneberger et al. (2015) show that to efficiently make use of the limited amount of
data, the data can be augmented in various ways to teach the network robustness
and desired invariance. The flaws need to be recognized regardless of their position,
orientation, and scale, and the model needs to be able to perform well even with noisy
and imperfect data. Position and scale augmentation is done through image resizing
and scaling virtual flaws. In addition to this, the data is augmented in three ways:
image flipping, Gaussian noise, and Gaussian blurring. Every image is run through
these augmentation functions which augments the images with some probability.

3.3 Development process
In this study, we build upon the foundation of the previously developed SD model to
create the current code base. The earlier project served as the initial framework for
our work, providing valuable insights and functionality that we extend and customize
to meet the specific requirements of this project. First, without changes to the code,
we train an SD model to work as a baseline for later models. In addition, this step
confirms the functionality of the used code. After this step, the model is changed to
work for HD-sized images. This requires changing the max pooling and upsampling
dimensions to correspond with the dimension changes, and resizing the existing SD
data to HD size. After verifying the model training is done correctly after these
changes, the development is focused on optimizing the performance. This can be
done by changing model parameters, for example, the number of convolution filters
or layers, or changing the data augmentation methods, such as adding or decreasing
the amount of Gaussian noise added. The optimize the performance, we need to
establish methods of measuring it which is discussed in the next section.

After optimization, the final models used for this study can be trained. To learn
how different resize methods affect the performance of the model, 4 different HD
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models are developed. Three models, each with their own resize methods described
previously, padding, max resize, and random resize, and a fourth model, which we
call the ’full model’, which combines all these three methods.

3.4 Performance evaluation
The used models output a segmentation map of the previous image with pixel-wise
prediction of being a flaw. The prediction of one pixel can be categorized into
four groups: true positive, false positive, true negative, and false negative. These
categorizations are visualized in Table 1. Each annotated pixel is categorized into
these four categories. When referring to these values, the referred value is the amount
of these categories in one sample.

Table 1: Classes of classification outcomes

Predicted condition
Positive Negative

Real Positive True Positive (TP)
annotated correctly

False Negative (TN)
Real indication left unannotated

condition Negative False Positive (FP)
Annotated but no real indication

True Negative (TN)
correctly unannotated

For classification accuracy, typically precision and recall are used. Precision, also
known as positive predictive value, means what percentage of the indicated values
are correct. This is expressed in equation 1. Recall, also known as sensitivity, means
what percentage of the real indication was annotated correctly. This is expressed in
equation 2.

Precision = correct annotations
all annotations = TP

TP + FP . (1)

Recall = correctly annotated pixels
amount of pixels with real indication = TP

TP + FN . (2)

F1-score is a measure of a model’s performance which provides a balance between
both the precision and the recall values. The F1-score is expressed in 3 and returns
the harmonic mean of the values.

F1 = H(precision, recall) = 2
1

precision + 1
recall

= 2
TP+FP

TP + TP+FN
TP

= 2TP
2TP + FP + FN .

(3)

The F1 score is a good metric for calculating a balance between classification
classes. However, it does not provide an understanding of the spatial overlap between
the predicted and true labels. For this purpose, we use Intersection Over Union
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-metric (IOU) which measures the ratio between the intersection and union of the
true and predicted labels. This is expressed in equation 4 with true label T and
predicted label P, and also with the binary classification classes.

The used model produces a segmentation mask with continuous values between
0 and 1 representing the pixel-wise probability of being a flaw. In order to use the
F1-score and IOU metrics, the prediction label needs to be converted into binary.
This is done by thresholding the values to convert values above the threshold to
1, and rest to zero. Typically, a threshold value of 0.5 is chosen. In addition, the
threshold value of 0.9 is used for the IOU metric. This is to measure the confidence
of the predicted values. If the IOU(0.5) value is much larger than the IOU(0.9), we
can determine that the confidence of the model in the predictions is low. And if the
values are similar in size, we can determine the model to be predict the labels with
large confidence.

IOU = |T ∩ P|
|T ∪ P|

= TP
TP + FN + FP .

(4)

These well-established metrics are good in expressing different types of perfor-
mance in the model. However, they cannot be used as the loss function. The problem
in these is that they need the output to be a binary value, 0 or 1, or hit or miss.
Cross entropy is chosen to be the loss function in the model’s training, as it is able
to use the non-binary confidence values of the pixels.

Cross entropy is a well established and typically used metric for classification
problems as it quantifies the difference between probability distributions, as explained
in De Boer et al. (2005). In this case, the distributions are the predicted probabilities
and the true probability distribution. During the model’s training, the objective of
the model is to minimize this loss function, which means minimizing the difference
between the true labels and the predicted labels. Cross entropy can be used also
for multiclass classification problems that have more than 2 categories. Our model
only has 2 categories, flaw or no-flaw, which means we use binary cross entropy.
Furthermore, as the flaws are typically very small compared to the background, we
are most concerned about minimizing the loss in the flawed area, meaning we care
more about finding the flaw rather than marking wrongly non-flaws. To achieve this
imbalanced importance, we assign a loss weight to the minority class. Overall, this
makes the chosen loss function be weighted binary cross entropy.

During a visual inspection, it is important for the model to be able to create an
accurate segmentation of a defect. However, it is as important for the model to be
able to find all the existing defects. The described metrics are useful in training
the model and estimating the segmentation accuracy but do not explicitly state
whether all defects were found from the images. For this, a new metric is created
which considers the hit percentages, misses, false calls, and false call sizes. This
new metric will be referred to as the NDT metric. The defects and predictions are
grouped from the labels by considering connected True-value pixels. For every defect
in an image, we define a defect to be found or ’hit’ if the hand-annotate defect label
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has an intersection with the prediction label. The hit percentage is the percentage
of defects found from an image. Similarly, the defect is defined to be not found
or ’miss’ if no intersection with the prediction label exists. Additionally, we define
a prediction to be a false call if a prediction group does not have an intersection
with the hand-annotated true label. To estimate how large false calls are made, the
average number of false call pixels is calculated per image. We use the product of
the number and size of false calls to estimate their combined effect. These metrics
are calculated for each image and the average values are calculated for each model.

3.4.1 Implementation

To evaluate the performance of the developed models, they need to be tested on an
unseen test set. For this, we have chosen an inspection video which contains a large
indication. The video is filmed in SD quality, size 720x480, which we upscale for
the models by adding padding. With this method, the resulting images are most
representative of HD quality images as no interpolation or resizing to the original
image happens.

From this video, 33 frames are extracted, where 15 frames contain the indication
and 18 frames that do not. The frames containing the indication are hand-annotated
with a brush tool. The diameter of the brush tool needs to be large enough for
the annotator to be able to smoothly trace the indication and for the indication
to be fully inside the annotation brush. Furthermore, the diameter needs to be as
small as possible to not also annotate the background. After testing different sizes,
a diameter of 6 pixels was decided. However, the indications are mostly 1-3 pixels
in diameter, which means at least half of the annotated pixels do not contain the
indication. This difference can be seen in Figure 3, where we see the difference in
the predicted label on the right and hand-annotated label in the center. This will
drastically affect the performance metrics as the models are trained to only label
the indication. The metrics are still useful for comparing the performance of the
models and to see whether the performance of the HD models differs significantly
from the performance of the original SD model. Only visible parts of the indication
is annotated, i.e. parts where the indication is present but is not visible are not
annotated.

The segmentation accuracy metrics, meaning precision, recall, IOU, and F1 are
calculated for the prediction label for the flawed images. For clean images, the label
is inverted, meaning these metrics are calculated for the background. For the NDT
metric, hits and misses are not presented for clean images as both would be zero for
every clean image.

In order to simulate HD quality, the SD test images need to be resized. This is
done with the two previously discussed methods: padding and maximum resize. For
better performance comparison, the images given as input to the SD model need to
correspond to the changes made for HD resize. With the maximum resize method,
the original SD image is given as input without modifications as it is already the
maximum size for SD size. For the padded method, the SD image is padded to be
HD size. For the SD baseline model, the image is then downsampled with the nearest
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neighbor method to be SD sized again. This is to ensure the input images are as
similar as possible, as both then have black frames and similar relative indication
size.

prediction label IoU:0.3852

Figure 3: Visual comparison of model results and IOU metric. This consists of
prediction label with threshold of 0.5, and the hand annotated true label. The IOU
is plotted in the rightmost image, where the union is colored with light blue, and the
intersections as red. The IOU50 score can be seen as the title of the third plot.

4 Results
Four different models were developed with the three different resize methods men-
tioned earlier. Each of the methods had multiple models developed with different
model parameters, and only the best was used in comparing the results.

The used model had 708161 total parameters, of which 707713 are trainable. The
training was run for 100 epochs consisting of 1000 steps. However, early stopping
was used, which stops the training if the validation loss decreases for 30 consecutive
epochs, and then it returns the best model in terms of validation loss.

• Precision 1

• Recall 2

• IOU(0.5) 4

• IOU(0.9) 4

• F1-score 3

And for the NDT metric:

• Hit percentage

• Misses

• False calls

• False call size
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• Product of the number of false calls and the size

The models are listed and named by model size and the resize method used. The
produced models are either SD sized (720, 504, 1) or HD sized (1280, 720, 3).

0. SD model: original SD sized model developed to have a performance comparison
for HD models.

1. Max resize model: HD sized model trained with SD images resized to fill the
HD image.

2. Random resize model: HD sized model trained with SD images which have
been resized randomly between the original and max resize size.

3. Padded only model: HD sized model trained with SD images which have not
been resized, only padding has been added to

4. Full model: HD sized model which has been trained with SD images which
have been resized with all available methods: max resize, random resize and
padding in equal amounts.

Table 2: Segmentation metrics for flawed images with maximum resize. Threshold of
0.9 used for IOU90 and 0.5 otherwise

Model Precision Recall IOU50 IOU90 F1
Full model 0.673 0.436 0.323 0.215 0.445

Padded only model 0.667 0.394 0.316 0.204 0.438
Random resize model 0.667 0.368 0.299 0.172 0.418

Max resize model 0.636 0.374 0.288 0.176 0.402
SD model 0.830 0.315 0.301 0.086 0.404

Table 3: Segmentation metrics for flawed test images with padding. Threshold of 0.9
used for IOU90 and 0.5 otherwise

Model Precision Recall IOU50 IOU90 F1
Full model 0.640 0.570 0.390 0.280 0.530

Padded only model 0.690 0.530 0.390 0.290 0.520
Random resize model 0.670 0.500 0.370 0.240 0.500

Max resize model 0.700 0.460 0.330 0.210 0.460
SD model 0.844 0.496 0.444 0.061 0.601

The segmentation results are presented in Tables 2 and 3 for max resize and
padded images, respectively, with the best values in each column in bold. With the
max resize method, we can see that the ’Full model’ achieves the best results in all
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Table 4: NDT metrics for flawed images with maximum resize method and threshold
value of 0.5

Model Hit percentage Misses False call
average amount

False call
average size

Product of false call
size and amount

Full model 0.61 3.13 4.40 8.66 38.09
Padded only model 0.64 2.93 6.73 5.64 37.97

Random resize model 0.52 3.00 1.53 7.72 11.84
Max resize model 0.50 4.00 0.87 7.07 6.13

SD model 0.83 1.47 3.87 3.64 14.06

Table 5: NDT metrics for flawed images with padded images and threshold value of
0.5

Model Hit percentage Misses False call
average amount

False call
average size

Product of false call
size and amount

Full model 0.784 1.733 10.867 8.277 89.939
Padded only model 0.795 1.600 14.667 14.736 216.127

Random resize model 0.574 2.467 4.067 4.932 20.056
Max resize model 0.580 3.467 0.800 4.890 3.912

SD model 0.886 1.000 3.467 8.253 28.612

Table 6: Segmentation and NDT metrics for clean test images with maximum resize.
The segmentation accuracy is calculated for the background. Threshold of 0.9 used
for IOU90 and 0.5 otherwise

Model IOU50 IOU90 F1 False call
average amount

False call
average size

Product of false call
size and amount

Full model 0.99965 0.99996 0.99982 11.79 82.48 972.29
Padded only model 0.99947 0.99982 0.99973 23.21 55.12 1279.47

Random resize model 0.99954 0.99986 0.99977 11.09 35.17 390.08
Max resize model 0.99973 0.99996 0.99986 6.00 74.84 449.01

SD model 0.9985 0.9997 0.9993 19.61 43.74 857.56

Table 7: Segmentation and NDT metrics for clean test images with padding. The
segmentation accuracy is calculated for the background. Threshold of 0.9 used for
IOU90 and 0.5 otherwise

Model IOU50 IOU90 F1 False call
average amount

False call
average size

Product of false call
size and amount

Full model 0.9981 0.9995 0.9991 18.12 47.09 853.38
Padded only model 0.9977 0.9991 0.9989 30.88 64.78 2000.3

Random resize model 0.9981 0.9993 0.9990 13.67 28.09 383.9
Max resize model 0.9990 0.9997 0.9995 6.94 30.88 214.25

SD model 0.9985 0.9998 0.9993 23.12 22.80 527.14

metrics but precision value, for which the SD model achieves the best value. For
most of the categories, the segmentation accuracy values are very similar between the
SD model and HD models. However, the baseline SD model has significantly lower
IOU90 values compared to the HD models. The results obtained with padded test
images in Table 3 show more variation in the best values. The overall segmentation
accuracy values can be seen to be higher in almost every metric for every model.
Despite the increased accuracy scores for the HD models, the baseline SD model
achieves the highest precision, IOU50 and F1 -scores. Overall, the HD models have
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similar performances across all metrics, with the ’Full model’ and the ’Padded only
model’ having the best IOU and F1 scores.

In Tables 4 and 5, the results for NDT metrics are presented for max resize
and padded images, respectively. With both methods, the baseline SD model
achieves the highest hit percentage and the lowest amount of misses. Similarly to the
segmentation results, the hit percentages of all models increase when the padding
method is used. This is especially apparent with the ’Full model’ and ’Padded only
model’ hit percentage scores which increased by around 25%. The performance
of ’Full model’ and ’Padded only model’ seem to be very similar in terms of hit
percentage and misses and get the best hit percentage scores among the HD models
with both resize methods. However, these models seem to have a significantly bigger
false call product value compared to other models. The ’Max resize model’ and
’Random resize model’ have both the lowest false call effect as the product of false
call sizes and amounts is the lowest. However, the models produce the lowest hit
percentage score with both test image resize methods.

The segmentation and NDT metrics are combined for the clean images and are
presented in Tables 6 and 5 for max resize and padded resize methods, respectively.
With the max resize method, we see the ’Max resize model’ to produce the most
accurate background segmentation and have the second lowest false call product score.
The ’Random resize model’ achieves the best and second best false call product scores
for max resize and padding methods, respectively. The ’Full model’ and ’Padded
only model’ can be seen to have the largest false call product values with both test
image resize methods. The baseline SD model produces false call values somewhere
between the highest and lowest values.

5 Discussion
From the numerical results, we see that the number of false calls made by the
HD models seems to be correlated with the number of padded images provided,
meaning smaller training data. This is most apparent with the ’Padded only model’
consistently having the largest false call product values and the ’Max resize model’
having the lowest. This is most likely due to padded images having smaller flaw
sizes, meaning the model needs to have higher detection sensitivity compared to
models trained with larger flaws present in training data. This would reflect the
results acquired from the clean images presented in Tables 6 and 7, where the ’Max
resize model’ has the lowest false call product, but then has low hit percentage scores
presented in Tables 4 and 5.

In both accuracy metrics, we see a trend of increased accuracy with the padded
test images. This is likely due to the interpolation function with the max resize
method affecting the image quality and sharpness. The flaws are typically darker
than the surrounding area and have a sharp edge which helps to detect them. The
image resize interpolates new pixel values between these flaw edge areas which
makes the images appear smoother with the cost of decreasing image sharpness. The
image sharpness caused by higher image resolution is one of the motives behind the
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transition to HD-quality inspection cameras.
As can be seen from the segmentation accuracy values presented in Tables 2 and

3, the HD models achieve very similar segmentation accuracy scores as the baseline
SD model. Moreover, as the IOU90 value is significantly higher, the segmentations
are made with a higher confidence. Based on this, the results indicate HD models to
be able to produce as accurate segmentations as an SD model.

In terms of NDT accuracy presented in Tables 4 and 5, the baseline SD achieves
the highest hit percentage with a relatively low false call product. The differences
between the hit percentages of SD and HD models is high with the max-sized test
images, but become relatively similar between the ’Padded only model’ and SD
model when padded test images are used. The performance of the ’Full model’ is
very similar to the ’Padded only model’ in terms of hit percentage and misses, but it
produces fewer and smaller false calls with padded images. The decreased detection
percentage with the max resized test images is likely again due to the decreased
sharpness and quality, and the higher false call product in padded images is likely
due to higher model sensitivity.

The objective of this study was to study the usability of SD-sized data in developing
a HD-sized CNN model. The obtained results show that a HD model trained with
SD images is able to achieve similar segmentation accuracy and indication detection
percentage. The best results were achieved with the ’Full model’ and ’Padded only
model’ with ’Full model’ having fewer false calls. Based on this, SD images can be
considered suitable for HD model training in the absence of true HD images, with the
best results achieved with a model using all three types of discussed resize methods.

Limitation of these results is that they were obtained with a fairly small set of
resized SD images. Most accurate results would have come from a large test set of
HD-sized inspection data where the SD and HD images would be of the same area
of interest. As this was not available, the used resized methods for test images were
deemed to be sufficient for the purposes of this study.

For future models, a limiting factor with HD models can come from the increased
memory requirements for model training. The size of the input image and the sizes
of the proceeding convolution layers affect the required memory for model training.
With larger images, the increased memory requirement can impact the depth of the
model and the amount of model parameters, which can then affect model performance.
As previously mentioned, the HD images can be divided into smaller sections with
the tiling method, but this can introduce additional issues discussed previously.

With the confirmation of the usability of existing data, HD size can be used as
a standard for future model sizes. The performance of later developed models can
be improved even further, and these models can work as a foundation for models
developed with actual HD-sized data. Furthermore, as the annotation of inspection
video is labor intensive, and the amount of available data will be limited, existing
SD data continues to be useful even after HD sized data is available. The benefits of
using SD data in the HD models should be re-evaluated when enough HD data is
available.
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6 Conclusions
The focus of this study was to establish the usability of SD-sized data in training a
HD-sized convolutional neural network for flaw detection in visual inspections. Four
different HD models were developed which were compared to a baseline SD model
developed in previous projects. The performance of the models was tested in terms of
segmentation and inspection accuracy with multiple metrics. The performance of HD
models was concluded to be similar to the used baseline SD model. For this reason,
it was concluded that the use of SD data is appropriate for developing HD-sized
models. This enables the use of vast amounts of existing inspection data to be used
before true HD-sized inspection data becomes available, and also after to increase
the amount of data and variety used for training.
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