
Training decision trees using
mixed-integer optimisation

Joel Vääräniemi

School of Science

Bachelor’s thesis
Espoo 16.6.2023

Supervisor

Prof. Fabricio Oliveira

Advisor

MSc (Tech.) Nikita Belyak

Copyright © 2023 Joel Vääräniemi

The document can be stored and made available to the public on the open in-
ternet pages of Aalto University.
All other rights are reserved.

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the bachelor’s thesis

Author Joel Vääräniemi
Title Training decision trees using mixed-integer optimisation
Degree programme Bachelor’s Programme in Science and Technology
Major Mathematics and Systems Sciences Code of major SCI3029
Teacher in charge Prof. Fabricio Oliveira
Advisor MSc (Tech.) Nikita Belyak
Date 16.6.2023 Number of pages 23 Language English
Abstract
Decision trees are popular machine learning methods used in classification and
regression problems which nowadays have numerous applications in the real world.
Traditionally, decision trees have been trained by greedy methods yielding locally
optimal solutions. Although the problem of training a globally optimal decision tree
is NP-hard, developments in optimal decision tree methods started to appear in the
literature after the recent improvements in hardware and solver software.

In this thesis, we study a mixed-integer optimisation (MIO) approach used
to define optimal classification trees (OCT). OCT trains an optimal tree for a
given depth making axis-aligned splits. The objective of OCT is to minimise the
misclassification error of training data given the preference on the complexity of the
tree structure, i.e., the number of splits made. OCT has shown better prediction
accuracy than similar greedy methods such as CART but the training time required
by the OCT method is not well studied. Therefore, we perform an analysis of
OCT on a chosen data set focusing on its training time, also considering training
accuracy, for different combinations of hyper-parameters. These results are compared
to corresponding ones generated by CART in order to evaluate the difference in
performance between the two methods. Furthermore, we study how much the training
time of OCT improves when using CART-generated initial solutions as a warm start
for OCT. In addition, we examine how the model performs when the maximum
amount of splits is strictly predetermined without other mechanisms for penalising
the complexity of the tree.

The results show that training OCT is burdensome already for medium depths
as the 30-minute time limit was not enough to train the trees with depths of 3 or
higher when no penalty on tree complexity was used. Although we were able to train
trees up to depths of 4 within the time limit with a higher penalty on complexity,
the training accuracies were not considerably higher compared to those trained with
CART. However, using warm starts provided reductions in training times up to a
factor of 1.6. Additionally, we were able to prove the ability of OCT to significantly
outperform CART in terms of training accuracy when using the maximum number
of splits approach.
Keywords optimal classification trees, decision trees, mixed-integer optimisation

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Tekniikan kandidaatintyön tiivistelmä

Tekijä Joel Vääräniemi
Työn nimi Training decision trees using mixed-integer optimisation
Koulutusohjelma Teknistieteellinen kandidaattiohjelma
Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029
Vastuuopettaja Prof. Fabricio Oliveira
Työn ohjaaja DI Nikita Belyak
Päivämäärä 16.6.2023 Sivumäärä 23 Kieli Englanti
Tiivistelmä
Päätöspuut ovat suosittuja koneoppimismalleja, joita käytetään luokittelu- ja regressio-
ongelmiin monissa käytännön sovelluksissa. Perinteisesti päätöspuita on koulutettu
ahneilla menetelmillä, jotka tuottavat lokaalisti optimaalisia ratkaisuja. Vaikka glo-
baalisti optimaalisen päätöspuun kouluttaminen on NP-kova ongelma, laskentatehon
ja ratkaisijaohjelmistojen kehityksen seurauksena myös toimivia optimaalisia päätös-
puumenetelmiä on esitetty viime aikoina.

Tässä työssä tutkitaan optimaalisia luokittelupuita (OCT), menetelmää, joka
kouluttaa optimaalisia luokittelupuita kokonaislukuoptimointia (mixed-integer opti-
misation) hyödyntäen. Menetelmä kouluttaa optimaalisen puun annetulle syvyydelle
käyttäen akseleihin nähden kohtisuoria jakoja. OCT:n tavoitteena on minimoida da-
tapisteiden luokittelun virhe samalla huomioiden annetun preferenssin puun komplek-
sisuudesta, eli jakojen määrästä. OCT:n ennustustarkkuuden on osoitettu olevan
korkeampi kuin vastaavien ahneiden päätöspuuvaihtoehtojen, kuten CART:n, mutta
OCT:n kouluttamisajoista ei ole paljoa tutkimusta. Tästä syystä OCT:n suoritus-
kykyä tutkittiin valitulla datasetillä useilla eri ennakkoparametrien yhdistelmillä
keskittyen kouluttamisaikoihin, kuitenkin kouluttamistarkkuutta silmällä pitäen. Näi-
tä tuloksia verrattiin vastaaviin CART:n avulla saatuihin tuloksiin suorituskykyjen
erojen tarkastelun vuoksi. Lisäksi OCT:n kouluttamisajan nopeutumista tutkittiin,
kun CART:n avulla tuotettuja alkuratkaisuja käytettiin lämpiminä käynnistyksinä
(engl. warm start). Lopulta tarkasteltiin, kuinka OCT suoriutuu, kun tehtyjen ja-
kojen määrä rajoitetaan ennalta määrättyyn lukuun ilman muita kompleksisuutta
rajoittavia mekanismeja.

Saadut tulokset osoittavat, että OCT:n kouluttaminen on raskasta jo keskisuu-
rille puun syvyyksille. Asetettu 30 minuutin aikaraja ei riittänyt kouluttamaan
optimaalista puuta ilman kompleksisuuteen kohdistuvaa rankaisua, kun puun sy-
vyys oli 3 tai enemmän. Vaikka optimaalisia puita saatiin koulutettua aikarajan
puitteissa syvyyteen 4 asti rankaisemalla kompleksisuutta enemmän, eivät niiden
kouluttamistarkkuudet olleet huomattavasti korkeampia vastaaviin CART:n avulla
koulutettuihin puihin verrattuna. Kuitenkin lämpimät käynnistykset osoittivat lyhen-
tävän optimaalisten puiden kouluttamisaikoja kymmeniä prosentteja. Lisäksi OCT:n
avulla kyettiin aikarajan puitteissa kouluttamaan puita, joiden kouluttamistarkkuus
oli merkittävästi korkeampi CART:hen verrattuna, kun kompleksisuutta rajoitettiin
ainoastaan määrittämällä jakojen enimmäismäärä.

5

Avainsanat optimaaliset luokittelupuut, päätöspuut, kokonaislukuoptimointi

6

Contents
Abstract 3

Abstract (in Finnish) 4

Contents 6

1 Introduction 7

2 Related work 8

3 Methodology 9
3.1 Background for OCT . 9
3.2 MIO formulation of the OCT model 10
3.3 Warm starting OCT . 15
3.4 The maximum number of splits approach 16

4 Experiments 16
4.1 Design of the experiments . 16
4.2 Results . 18

5 Conclusions 20

7

1 Introduction
A decision tree is a machine learning method commonly used in classification and
regression problems. The design of a decision tree consists of branch and leaf nodes.
When training a decision tree, branch nodes are assigned branching rules based on
the attributes of the data. According to these branching rules, every data point is
eventually allocated to one of the leaf nodes. Based on the labels of data points
that were allocated to a designated leaf node, the leaf node is given a corresponding
indicator that is commonly considered to be the most frequent label among the points.
After training the tree, each leaf indicator label is further used as a prediction value
or class for new data points that get allocated to that leaf node.

Due to the generally high prediction accuracy, i.e., the ability to make correct
predictions for unseen data, decision trees are considered to be useful tools in classi-
fication and regression problems. In addition, decision trees are highly interpretable
due to their uncomplicated rule-based design. Due to their interpretability, decision
trees are broadly exploited in real-world problems. They are widely used for example
in the healthcare sector, for the problems such as diagnosis and clinical decision-
making (Podgorelec et al., 2002). Also, decision trees have been used in the banking
industry for credit approval (Chitra and Subashini, 2013) to mention just a few of
the possible applications. At the moment there are numerous off-the-shelf decision
tree software available for use, thus making them an appealing alternative amongst
different machine learning techniques.

Traditionally, decision trees have been trained with greedy top-down algorithms
such as CART (Breiman et al., 1984). Although being computationally affordable,
CART and similar algorithms construct the decision tree by sequentially making
locally optimal splits in the input space, thus ultimately providing a decision tree
structure that might not necessarily be optimal in terms of training accuracy. Training
accuracy represents how accurately a model captures the characteristics of the training
data, which is normally used as the metric for training classification and regression
models. If a trained machine learning model is too tailored for given training data
and does not generalise well for new data, the model is said to overfit. In order to
avoid overfitting with decision trees, pruning is usually needed.

In the past, an approach of creating a globally optimal decision tree, i.e., the
structure that provides the highest training accuracy, has been computationally
infeasible for moderate-sized datasets. However, as computational hardware and
optimisation software have improved (Bixby, 2012), studies targeting the method-
ologies for creating globally optimal decision tree methods started to appear in the
literature.

In this thesis, we address the methodology proposed in Bertsimas and Dunn
(2017) named optimal classification trees (OCT). An OCT approach represents a
decision tree as a mixed-integer optimisation (MIO) problem and has been proven to
find optimal trees for medium-sized trees. The OCT approach generates a globally
optimal decision tree. That is due to the fact that when deciding on the position of the
splits in the input space, the OCT algorithm considers all of the splits simultaneously.
For classification tasks, the training accuracy is measured by in-sample accuracy,

8

i.e., the portion of correctly classified data points within training data. Moreover,
the prediction accuracy is measured by out-of-sample accuracy, i.e., the portion
of correctly classified data points from unseen data. The objective of OCT is to
minimise the in-sample accuracy while taking into account the given requirement
regarding the decision tree complexity, i.e., the total number of splits. Results show
that OCT reaches on average better out-of-sample accuracy than CART.

In this thesis, we study the performance and behaviour of OCT on a chosen data
set. In particular, the focus is on the time taken for training the decision tree as
there is no distinguished literature thereof. We also compare the results of globally
optimal OCT against a greedy approach, CART, to analyse the trade-off between
training time and training accuracy. In addition, we study how OCT behaves when
the maximum amount of splits allowed in the model is strictly predetermined, or
when a greedily generated initial solution is utilised as a warm start for solving the
OCT MIO problem.

2 Related work
Binary decision trees perform a binary decision at each branch node, i.e., divide the
points into two branches. This is the most popular decision tree type and it has
been known for a long time that constructing an optimal binary decision tree is an
NP-hard problem (Laurent and Rivest, 1976). Therefore, in the past, the problem of
training a decision tree was tackled by greedy top-down algorithms making one split
after another sequentially. Greedy algorithms were not necessarily considered to be
superior in terms of prediction accuracy compared to optimal models. Yet, due to
being computationally tractable and requiring smaller training time, greedy methods
were considered to be a standard approach for decision trees.

In contrast to greedy approaches, it is possible to train optimal decision trees.
We define an optimal decision tree to be the tree which is optimal with respect to a
given objective under the constraints of the tree structure. Usually, the objective is
to minimise the training error of the tree. In case of a classification problem that
would mean minimising the misclassification error, i.e., maximising the in-sample
accuracy. However, as the objective may vary, one should be careful with the meaning
of optimality associated with decision trees.

In recent years, there were numerous attempts to solve the optimal decision tree
problem in the literature. Norouzi et al. (2015) utilise continuous optimisation to
optimise the upper bound for tree loss with the help of Stochastic Gradient Descent.
Although the authors use an approach which optimises a global objective function,
this method cannot be generally used for defining the optimal decision tree for
given parameters. Also Blanquero et al. (2021) make use of continuous optimisation
in their new approach called optimal randomized classification trees (ORCT). In
ORCT, randomisation is used to train an optimal decision tree model without integer
variables. That is because the number of integer variables is usually the bottleneck
for minimising the computational time required to solve MIO problems.

Verhaeghe et al. (2020) considered a constraint programming model for clas-

9

sification problems combining several existing algorithms. However, the model is
applicable only for binary classification tasks. Another recent paper utilises Dynamic
Programming (Lin et al., 2020). The data is preprocessed such that it preserves
optimality guarantee but on the other hand generates a considerable number of
binary variables. Therefore, the training algorithm applies only to moderate-scale
data sets.

A breakthrough considering optimal decision trees took place with the appearance
of OCT (Bertsimas and Dunn, 2017) allowing for a novel MIO classification tree
formulation which is considered in this thesis. OCT constructs optimal binary
classification trees with respect to maximising in-sample accuracy. In the OCT
formulation, the maximum depth of the tree is bounded by a predefined value. The
tree complexity, i.e., the number of splits made in the tree, can be limited also by
altering the value of the complexity parameter implemented in the model. OCT
design considers univariate splits (axis-aligned splits) at each branch node, i,e., each
branch node considers only a single feature to split on. However, in the same paper
(Bertsimas and Dunn, 2017) a multivariate alternative, OCT-H, is introduced. This
approach allows for the consideration of hyperplane splits that take multiple variables
into account at a time. Often multivariate models are considerably more complicated
than their univariate counterparts, yet OCT-H is actually as easy to train as OCT.

Inspired by OCT, other optimal MIO decision tree approaches have also emerged.
Verwer and Zhang (2019) introduce BinOCT which uses binary encoding to reduce
the number of decision variables. This method is less dependent on the training data
size which reduces the search space drastically. Although the BinOCT is able to
operate with higher tree depths, the binary preprocessing sacrifices guarantee of the
optimality for the resulting decision tree. Aghaei et al. (2021) propose flowOCT,
which operates merely on problems with binary features. For these types of problems,
flowOCT appears to be more efficient compared to OCT in terms of computational
time.

3 Methodology

3.1 Background for OCT
The design of the OCT formulation is inspired by greedy alternatives such as CART.
However, rather than finding a locally optimal tree, it aims to consider the problem
holistically and choose the splits made in a globally optimal manner.

CART is a top-down decision tree algorithm which starts the procedure from the
root node, i.e., the initial branch node. At the root node CART makes an observation
of the entire training data and it splits the data into two parts as CART builds
a binary tree. The splitting criterion with CART in classification problems is the
Gini Impurity. The algorithm chooses the split which minimises the Gini Impurity
measure among all of the possible splits. The Gini impurity measure for a given split

10

is calculated by:

Gini = nl

n
(1 −

K∑︂
i=1

p2
L,i) + nr

n
(1 −

K∑︂
j=1

p2
R,j),

where n is the number of data points in the given branch node, nl and nr the number
of data points falling in the left and right branches respectively, K is the number
of possible classes, p2

L,i is the probability of points from the left branch belonging
to class i and p2

R,j is the probability of points from the right branch belonging to
class j. As CART performs univariate splits, it selects the optimal feature to split
on, and additionally, the optimal value of the chosen feature as a point to split the
data on. After CART completes the split for the root node, the algorithm continues
downwards recursively making the splits in this manner for every branch node until
the termination criterion is met, i.e., the tree has grown up to the maximum depth.
If a node does not proceed to branch, it is a leaf node and thereby predicts a label
based on the most common label from the data points in that node. As the algorithm
executes locally optimal splits recursively, it constructs a locally optimal tree in
terms of minimising the misclassification error. For more details on CART please
refer to Breiman et al. (1984).

The MIO model behind OCT mimics the CART tree design yet produces an
optimal solution, i.e., an optimal tree. This is achieved by formulating the MIO
problem such that it makes decisions regarding the possible branches at the same
time. Solving the MIO problem produces the optimal tree for a given data set.
Thus, solving the MIO problem represents the training phase for OCT. OCT uses
the misclassification error of the tree as the objective function for the optimisation
problem. Therefore, unlike CART, OCT does not need splitting criterions such as
the Gini Impurity measure in order to generate the splits.

3.2 MIO formulation of the OCT model
In this thesis, we consider the version of the OCT formulation presented in Bertsimas
and Dunn (2019). The proposed formulation is closely followed in our presentation
of the model. Some minor modifications are made and mentioned further in the text.

In the following notation, ordinary letters (n, K, ...) express scalars, lowercase
bold letters (x, ...) express vectors, uppercase bold letters (X, ...) express matrices
and calligraphic type letters (T , ...) express sets. Furthermore, [n] expresses the set
{1, ..., n}.

The starting point for the classification problem is as follows. We have training
data (X, y) which consists of n observations (xi, yi), i ∈ [n]. Each observation i ∈ [n]
has p features xi ∈ Rp and a class label yi ∈ K indicating which of the possible K
classes the observation is assigned to. Without loss of generality, the training data is
normalized to the 0-1 interval such that xi ∈ [0, 1]p, ∀i ∈ [n].

As previously mentioned, the OCT generates a binary tree using only univariate
splits. In order to successfully create an MIO formulation which captures the archi-
tecture of the tree and is able to find the optimal solution, we have to predetermine

11

the value for the maximum depth of the tree D. This allows us to create a maximal
tree for the depth D which has T = 2D+1 − 1 nodes. A decision tree is a maximal
tree if every branch node applies a split and every leaf node is located at the maximal
depth. The nodes are indexed by t ∈ [T]. The maximal tree with a depth of 2 is
shown in Figure 1.

6 754

a1
Txi < b1

2 3

1

a1
Txi ≥ b1

a3
Txi < b3a2

Txi < b2 a3
Txi ≥ b3a2

Txi ≥ b2

Figure 1: The maximal tree for depth of 2. Branch nodes are grey and leaf nodes
are white.

The nodes in the tree are separated into two sets: branch nodes t ∈ TB =
{1, ..., ⌊T/2⌋} and leaf nodes t ∈ TL = {⌊T/2⌋ + 1, ..., T}. The split rule applied to
a branch node is of the form aTx < b. A data point proceeds to the left branch if
the inequality is satisfied, and proceeds to the right branch otherwise. When a data
point reaches a leaf node, the leaf node makes a class prediction for it.

For the node t, the notation p(t) refers to its immediate parent node and A(t)
defines the set of its all ancestors. We also define AL(t) as the set of ancestors of t,
from which the left branch was followed when forming a path from the root node to t.
Similarly AR(t) are the ancestors whose right branch was followed on the path from
the root node to t and A(t) = AL(t) ∪ AR(t). For instance, in the tree in Figure 1,
A(6) = {1, 3}, AL(6) = {3}, and AR(6) = {1}.

A split made at node t ∈ TB is identified with variables at ∈ Rp and bt ∈ R.
In order to ensure that each split is univariate, the hyperplane formed by the
corresponding split takes only one feature into account. To ensure this, we assume
the elements of variable vector at to take binary values such that their sum is 1. The
splitting rule is based on the inequalities associated with each branch node as shown
in Figure 1 for nodes 1, 2 and 3. If the selected feature value of a given point is less
than the splitting value bt, the data point advances to the left branch, and otherwise
to the right branch. This branching procedure continues until a leaf node is reached
where the point classification is executed.

Furthermore, it should be possible not to apply a split at a branch node. This is
done by introducing binary variables dt to track whether the splitting occurred for
each branch node, such that dt = 1 when a split is made, and dt = 0 otherwise. If a
branch node does not apply a split, then we set at = 0 and bt = 0. In this situation,
the inequality for the left branch 0 < 0 is never true, and hence all points proceed to

12

the right branch. This allows us to stop growing the tree early without having to
introduce new variables to deal with points which would not reach the bottom of the
tree otherwise. The previous mechanism is enforced by the following constraints:

p∑︂
j=1

ajt = dt, ∀t ∈ TB,

0 ≤ bt ≤ dt, ∀t ∈ TB, (1)
ajt ∈ {0, 1}, ∀j ∈ [p], t ∈ TB.

Inequality (1) is valid for bt because we know that xi ∈ [0, 1]p. The elements of at are
zero except for one, which is 1 when dt = 1. Therefore, the inequality 0 ≤ aT

t xi ≤ dt

holds for all i and t, and values for bt have to be considered only for the same range
from 0 to dt.

Next, we ensure the hierarchical design of the tree. We prohibit a split on a
branch node in the case where its parent node did not allow a split. This is ensured
by the following constraints:

dt ≤ dp(t), ∀t ∈ TB \ {1}. (2)

We do not set a constraint for the root node in (2).
Now we have formulated the model such that it captures the structure of the tree.

Next, we have to introduce binary variables zit to keep track of the points in the
tree. If a point i appears in node t, zit = 1, and zit = 0 otherwise. Binary variables
lt are also introduced, where lt = 1 if a leaf node t contains any points, and lt = 0 if
it contains none. With these variables, we can define the following constraints to
enforce the minimum number of data points Nmin in each leaf node:

zit ≤ lt, ∀t ∈ TL,
n∑︂

i=1
zit ≥ Nminlt, ∀t ∈ TL, (3)∑︂

t∈TL

zit = 1, ∀i ∈ [n], (4)

where inequality (3) ensures that restriction for the minimum number of points is not
applied if the leaf node is empty. Equality (4) ensures that every point is assigned to
exactly one leaf node.

The structure of the tree is formed by the splits made. We establish the splits by
applying constraints:

aT
mxi < bm + M1(1 − zit), ∀i ∈ [n], t ∈ TL, m ∈ AL(t), (5)

aT
mxi ≥ bm − M2(1 − zit), ∀i ∈ [n], t ∈ TL, m ∈ AR(t),

where M1 and M2 are constants large enough such that when zit = 0, the constraints
are always satisfied. The mechanism for choosing the values for these constants is
discussed further. However, we have a strict inequality in (5) which is not tractable

13

for MIO solvers. Therefore, we have to transform the strict inequality into a non-strict
one. That is done by adding a small constant ϵ on the left-hand side of the inequality:

aT
mxi + ϵ ≤ bm + M1(1 − zit), ∀i ∈ [n], t ∈ TL, m ∈ AL(t).

In order to avoid any numerical instabilities in the MIO solver, ϵ must not be too
small. Therefore, ϵ is chosen to be the biggest small enough value such that it does
not affect the functionality of the model. This could be implemented by choosing
individual values ϵj for each j. We could consider the smallest non-zero distance
between adjacent values of feature j as the largest valid value for ϵj. This distance
can be calculated as:

ϵj = min
{︃

x
(i+1)
j − x

(i)
j

⃓⃓⃓⃓
x

(i+1)
j ̸= x

(i)
j , i ∈ [n − 1]

}︃
,

where the values of jth feature are sorted from the smallest to largest, thereby x
(i)
j

is the ith smallest value. The source which we utilise as a reference for the MIO
formulation contained a misprint, as the values were sorted from the largest to the
smallest (Bertsimas and Dunn, 2019). Here, we use a corrected version of the distance
formulation. We choose to use different ϵj accordingly for every feature which is used
in the split:

aT
m(xi + ϵ − ϵmin) + ϵmin ≤ bm + M1(1 − zit), ∀i ∈ [n], t ∈ TL, m ∈ AL(t),

where ϵmin = minj{ϵj}. As am has only one element being 1 and others 0 when a
split is made, the wanted element from ϵ is yielded by a vector multiplication.

The values for the constants M1 and M2 must also be predefined. As we know,
both aT

t xi ∈ [0, 1] and bt ∈ [0, 1]. Therefore, the largest possible value for aT
t (xi+ϵ)−bt

is 1 + ϵmax, where ϵmax = maxj{ϵj}, and largest possible value for bt − aT
t xi is 1.

Therefore, we set M1 = 1+ϵmax and M2 = 1. Using these values, the final constraints
which enforce the splits in the tree are:

aT
m(xi + ϵ − ϵmin) + ϵmin ≤

bm + (1 + ϵmax)(1 − zit),
∀i ∈ [n], t ∈ TL, m ∈ AL(t),

aT
mxi ≥ bm − (1 − zit), ∀i ∈ [n], t ∈ TL, m ∈ AR(t).

The objective of the MIO problem is to minimise the misclassification error. Thus,
we set the cost of an incorrect label prediction to 1 and the cost of a correct one
to 0. We assume Nkt to be the number of points in node t labelled as k, and Nt is
assumed to be the total number of points in node t:

Nkt =
∑︂

i:yi=k

zit, ∀t ∈ TL, k ∈ [K],

Nt =
n∑︂

i=1
zit, ∀t ∈ TL.

14

In addition, we have to associate every leaf node t with a label, which we denote
by ct ∈ [K]. The leaf label is defined as the most common label from all the points
assigned to a given leaf:

ct = arg max
k∈[K]

{Nkt}. (6)

To track the assigned class label for each node, we use binary variables ckt =
1{ct = k}. We have to assign exactly one label for each leaf node that contains
points:

K∑︂
k=1

ckt = lt, ∀t ∈ TL.

We now know how to assign the optimal label for a given leaf node t using (6).
Therefore, we define the optimal misclassification loss Lt in each leaf node t to be
the number of points with the labels different from the most common class label:

Lt = Nt − max
k∈[K]

{Nkt} = min
k∈[K]

{Nt − Nkt},

which is linearized as:

Lt ≥ Nt − Nkt − M(1 − ckt), ∀t ∈ TL, k ∈ [K],
Lt ≤ Nt − Nkt, ∀t ∈ TL, k ∈ [K],
Lt ≥ 0, ∀t ∈ TL,

where M is a constant with a large enough value to ensure that the uppermost
constraint always holds. We can use M = n as an appropriate value.

With the above definitions in mind, the total misclassification error can be defined
as ∑︁

t∈TL
Lt. And the complexity of the tree C, i.e., the number of splits made in the

tree, is given by:

C =
∑︂

t∈TB

dt. (7)

In order to make the complexity parameter α independent from the size of the data
set used, the misclassification error has to be normalized against the baseline accuracy
L̂. The baseline accuracy is calculated simply by predicting the most common class
from the whole data set. Hence, we can define the objective function as:

min 1
L̂

∑︂
t∈TL

Lt + α · C. (8)

Now the objective function (8) depicts the aim to classify the data as accurately
as possible concurrently taking into account the preferable complexity of the tree
predefined by complexity parameter α.

15

With the aforementioned definitions and constraints, we can formulate the com-
plete MIO problem as follows:

min 1
L̂

∑︂
t∈TL

Lt + α · C (9)

s.t. Lt ≥ Nt − Nkt − n(1 − ckt), ∀t ∈ TL, k ∈ [K],
Lt ≤ Nt − Nkt, ∀t ∈ TL, k ∈ [K],
Lt ≥ 0, ∀t ∈ TL,

Nkt =
∑︂

i:yi=k

zit, ∀t ∈ TL, k ∈ [K],

Nt =
n∑︂

i=1
zit, ∀t ∈ TL,

K∑︂
k=1

ckt = lt, ∀t ∈ TL,

C =
∑︂

t∈TB

dt,

aT
mxi ≥ bm − (1 − zit), ∀i ∈ [n], t ∈ TL, m ∈ AR(t),

aT
m(xi + ϵ − ϵmin) + ϵmin ≤

bm + (1 + ϵmax)(1 − zit),
∀i ∈ [n], t ∈ TL, m ∈ AL(t),∑︂

t∈TL

zit = 1, ∀i ∈ [n],

zit ≤ lt, ∀t ∈ TL,
n∑︂

i=1
zit ≥ Nminlt, ∀t ∈ TL,

p∑︂
j=1

ajt = dt, ∀t ∈ TB,

0 ≤ bt ≤ dt, ∀t ∈ TB,

dt ≤ dp(t), ∀t ∈ TB \ {1},

zit, lt, ckt ∈ {0, 1}, ∀i ∈ [n], k ∈ [K], t ∈ TL,

ajt, dt ∈ {0, 1}, ∀j ∈ [p], t ∈ TB.

In the formulation (9) we have three predefined hyper-parameters to specify: D,
Nmin and α. D is the maximum depth of the tree. Nmin defines the smallest number
of data points required to be allocated to a leaf node. α is the complexity parameter
of the tree, which adjusts the trade-off between the complexity of the tree in terms
of the number of splits and the in-sample accuracy.

3.3 Warm starting OCT
To speed up the optimisation process of the MIO solver, we can utilise warm starts.
A warm start is a feasible initial solution typically obtained by heuristics. Providing a

16

strong initial solution to an MIO problem can reduce the computational time required
by the solver to find the optimal solution for the MIO problem (Jiménez-Cordero
et al., 2021).

CART can be used to generate a warm start solution for OCT problems. Due
to the analogous tree design used in CART and OCT, a CART solution can be
considered as a feasible solution for the MIO problem (9). For our purposes, providing
only the values for the binary variables of the OCT model from the CART output is
sufficient.

3.4 The maximum number of splits approach
OCT’s objective function considers a trade-off between complexity and in-sample
accuracy by means of predefined complexity parameter α. By increasing the value of
the complexity parameter, the model has an incentive to train a tree with fewer splits,
which, in turn, helps to avoid overfitting. In order to minimise overfitting, either the
value of the complexity parameter can be maximised or the number of splits can be
minimised. As an alternative to the complexity parameter, we can predetermine the
maximum number of splits allowed to be used in the tree. Hereinafter we refer to
such method as to the maximum number of splits approach.

We can easily transform the formulation (9) to introduce the maximum number
of splits approach. First of all, we have to transform (7) into an inequality:∑︂

t∈TB

dt ≤ C,

so that the number of splits is bounded by the value of C. In addition, the number
of splits C should not be treated as a variable but rather as a constant. The value of
this constant can be altered before training the OCT with the maximum number
of splits approach. Finally, the objective function must be modified accordingly as
follows:

min 1
L̂

∑︂
t∈TL

Lt.

Introducing the aforementioned changes to the original model (9) the maximum
number of splits model does not have a penalising mechanism with regard to the
number of splits made.

4 Experiments

4.1 Design of the experiments
We test OCT performance on the Iris data set, which can be found on the UCI
machine learning repository (Dua and Graff, 2017). The Iris data has 150 data points
with 4 explanatory variables, which are all decimal numbers. Each data point is
labelled with one of the 3 different classes with each class containing 50 data points.

17

Computations were done on a modern laptop (i7-8650U with 16 GB of RAM) and
the cut-off time for optimisation of a single MIO problem is set to 30 minutes (1800
seconds).

The experiments were implemented in Julia 1.8.4. The OCT was formulated
using the JuMP package (version 1.8.2) and the trees were solved using Gurobi 10.0.1.
CART solutions were discovered using the DecisionTree package (version 0.12.3).
The implementation of the model can be found at https://github.com/gamma-
opt/OptimalDecisionTrees.jl.

We train OCT for different combinations of hyper-parameters in order to test how
they affect the results and to discover well-performing combinations in the context
of the trade-off between OCT accuracy and training time. The maximum depth
D is limited to 4 because solving the OCT formulation for higher depths requires
significant computational time that does not comply with our experiments. We also
do not consider the case D = 1, i.e., the case when only a single split is possible due
to its excessive simplicity. The values of the parameter Nmin that correspond to the
minimum number of data points in the leaf are chosen to be 5% and 10% of the total
number of points in the training dataset. In absolute values Nmin was considered to
be 8 and 15 data points from the whole data set of 150 points. Finally, we choose 4
different values for the complexity parameter α: 0, 0.1, 0.5 and 0.9.

As a prediction quality of a trained decision tree, we consider the in-sample
accuracy of the trained OCT. We compare the in-sample accuracy as well as the
computational time required for training of OCT to the corresponding units acquired
from generating the decision tree using CART. To make sure the OCT algorithm
complies with CART we ensured that CART does not utilise pruning. Commonly, the
prediction quality of a decision tree is considered to be its out-of-sample accuracy. In
this case, already in-sample accuracy gives us meaningful information for comparing
the two approaches. This is because OCT and CART have the same restrictions for
their splits: they are both binary classification trees making only univariate splits
and they are trained with the same hyper-parameters.

Furthermore, we investigate the possibility of decreasing the computational time
required for training OCT by using warm starts, which are acquired by running
CART. The procedure for using a warm start is as follows. Before starting the
search algorithm for the MIO problem of OCT we run CART using the predefined
hyper-parameters and collect the values of the originated splits. Using these collected
values we can compose a corresponding feasible solution for the MIO problem which
functions as a starting point for OCT. We inject the binary values of this solution into
the according decision variables of the OCT formulation. Therefore, when initially
running CART we in fact consider a tree analogous to OCT yet we consequently
reduce the search space needed for OCT to find the optimal solution. As OCT is a
deterministic optimisation model, its optimal solution does not change with regard
to whether or not a warm start is used.

Finally, we investigate the behaviour of the OCT training time in cases when
instead of a complexity penalty the maximum number of splits is considered.

18

4.2 Results

Table 1: Performance for OCT and CART on chosen parameters. Training times are
in seconds.

D

0.000 41.260 0.960

0.100 39.070 0.960

0.500 15.880 0.960

0.900 18.660 0.667

0.000 55.870 0.960

0.100 30.050 0.960

0.500 17.150 0.960

0.900 14.220 0.667

0.000 1800.000 ‒

0.100 65.070 0.960

0.500 8.990 0.960

0.900 9.650 0.667

0.000 1800.000 ‒

0.100 42.830 0.960

0.500 5.050 0.960

0.900 20.330 0.667

0.000 1800.000 ‒

0.100 234.120 0.960

0.500 36.490 0.960

0.900 14.870 0.667

0.000 1800.000 ‒

0.100 371.820 0.960

0.500 16.090 0.960

0.900 24.940 0.667

CART

training

time

CART in-

sample

accuracy

Training

time

In-sample

accuracy

2

8 0.000 0.953

15 0.000 0.953

3

8 0.000 0.960

15 0.000 0.953

4

8 0.000 0.960

15 0.000 0.953

𝑁𝑚𝑖𝑛 𝛼

The results of computational experiments for OCT and CART algorithms are
presented in Table 1. The table represents training times in seconds and in-sample
accuracies for OCT and CART for different combinations of the chosen hyper-
parameters. Complexity parameter α relates only to OCT as we are using a version
of CART which does not take α as an input. That is, CART is analogous to OCT
with α = 0, as CART does not have a penalising mechanism for tree complexity.
As one can notice, OCT does not significantly outperform CART with respect to
in-sample accuracy for cases when the OCT model is solved to optimality within the
predefined solution time limit. The in-sample accuracy improves by less than 1% at
best and not at all in some cases when using OCT compared to CART. However, this
is reasonable as in-sample accuracy is relatively close to perfect with CART even on
a depth of 2. The OCT model is unavailable to train a tree, i.e., obtain an optimal
solution within 30 minutes, for D = 3 and D = 4 when α = 0. As lower values of α
reduce the emphasis on the simplicity of the tree structure, the in-sample accuracy of
the OCT tree could have been higher for low values of α. However, this phenomenon
can not be verified as finding the optimal OCT tree already for depths of 3 or more
exceeds the predefined solution time limit for α = 0. Nevertheless, from Table 1
one can pinpoint the correlation between the parameter α value and OCT training
time as well as in-sample accuracy. For example, when D = 3 and Nmin = 15, OCT
obtains equally accurate results when α = 0.1 or α = 0.5 with the latter computed

19

significantly faster. On the other hand, when α = 0.9, the OCT algorithm generates
the tree with a substantially lower value of the in-sample accuracy. As we can see,
training times for CART are negligible when compared to the times for OCT.

Table 2: Training times for OCT with and without CART-generated warm start.
Here α = 0 and training times are in seconds.

D

8 41.260 25.410

15 55.870 40.510

8 1800.000 1800.000

15 1800.000 1800.000

8 1800.000 1800.000

15 1800.000 1800.000

Normal OCT

With CART

warm start

2

3

4

𝑁𝑚𝑖𝑛

Table 2 presents the training times for OCT with and without a CART-generated
warm start. CART-generated warm starts are used for OCT only in cases where
α = 0 to ensure the equivalence in the number of nodes between the decision trees
resulting from CART and OCT. That is because the CART algorithm trains the tree
without taking the complexity penalty into account. Due to the technical limitations
we faced with the DecisionTree package, we were not able to implement a variant
of CART which takes complexity parameter into account. As one can observe from
table 2, utilising CART-generated warm starts do improve the training time for
the OCT model. Training time decreases significantly while using a warm start
when D = 2, yet not to the extent Bertsimas and Dunn (2017) have reported. They
discovered speed-ups around a factor of 2.5 with our corresponding results having
improvements up to a factor of 1.6 at most. Nevertheless, the training procedure of
the trees with depths D = 3 or D = 4 has shown to be unreasonably time-consuming
even with warm starts.

Table 3: OCT training time for the maximum number of splits approach. Training
time is in seconds.

D C

3 40.020 0.960

2 10.200 0.960

3 55.870 0.960

2 20.630 0.960

4 1800.000 ‒

3 583.900 0.973

2 17.340 0.960

4 1800.000 ‒

3 655.310 0.973

2 15.710 0.960

4 1800.000 ‒

3 677.540 0.973

2 10.090 0.960

4 1800.000 ‒

3 577.740 0.973

2 20.190 0.960

Training

time

In-sample

accuracy

2

3

4

8

15

8

15

8

15

𝑁𝑚𝑖𝑛

20

Table 3 presents the training time required by the OCT method assuming the
maximum number of splits being fixed. As one can notice from Table 3 even in
the case of considering a maximum number of splits in the tree the OCT approach
struggles to find an optimal solution for the trees with a depth of 3 and more when
a maximum of 4 splits are allowed. When D = 3 or D = 4, the OCT model is
solved to optimality within the predefined solution time limit only in cases when
the maximum number of splits C is up to 3. It is essential to highlight that solving
the OCT model with the maximum number of splits fixed might not necessarily
guarantee superior solution time compared to using the complexity parameter α
instead. For example, when D = 3 and Nmin = 15, solving the OCT model using the
maximum of 2 splits takes 15.71 seconds and results in the tree with an in-sample
accuracy of 0.960. However, solving the OCT model with α = 0.5 results in the
decision tree with the same number of splits and takes 5.05 seconds, as shown in
Table 1. Nevertheless, Table 3 suggests that if one was to consider the maximum
number of splits C = 3 the optimal OCT tree has the potential to have significantly
higher in-sample accuracy than CART. However, finding such a solution requires
a longer solution time compared to the one used here. As an example, for depths
of 3 and 4, the optimal OCTs have in-sample accuracy of 0.973 compared to the
corresponding accuracy of 0.960 of the session tree produced by CART, as shown in
Tables 3 and 1.

One should bear in mind that all the experiments were conducted considering a
single data set and hence, the conclusions are primarily applicable for the cases where
the training data has a similar design. The Iris data set used in the experiments has
fairly little noise. For instance, we can always manually separate the points from
the first class, Iris setosa, from the other classes using solely a single split. More
close analysis of the trained OCT and CART tree structures suggests that this split
was commonly introduced into the dataset space. It should be recognised that in
situations where a similar split was not possible OCT and CART are likely to have
different results. Nevertheless, for a more thorough and general analysis, the OCT
model should be tested considering different data sets with diverse properties.

5 Conclusions
In this thesis, we studied the training time and the in-sample accuracy, i.e., the
training accuracy, of OCT on the Iris data set using different combinations of hyper-
parameters: the maximum depth of the tree, the minimum leaf size and the complexity
parameter. The results were compared to the corresponding ones generated by CART
which is a greedy approach commonly used in the literature for the generation of a
decision tree.

Notably, the complexity parameter value had a significant impact on the training
time as well as the in-sample accuracy of the resulting OCT. The OCT method
was able to find optimally trained trees with large complexity parameter values for
tree depths up to 4. However, when the complexity parameter value was set to
zero, i.e., the complexity of the trained tree was not penalised, the training process

21

of a single tree was excessively time demanding and did not complete within the
30-minutes time limit. On the other hand, training overly simple-structured trees can
lead to drastically weaker in-sample accuracies, as was demonstrated in numerical
experiments when using the complexity parameter value 0.9. Considering the cases
where OCT was able to train a tree within a given time limit (30 minutes), the
improvement in in-sample accuracy compared to CART did not exceed 1%.

Numerical experiments suggest that utilising warm starts for training OCT reduces
computational time. We used CART-generated optimal solutions as feasible starting
values for analogous OCT problems. The training time for a tree was reduced up to
a factor of 1.6. However, the speedup is unknown for cases with depths of 3 and 4 as
the solver was not able to find a solution within the 30-minute time limit.

Finally, we also considered the case when OCT was trained such that the maximum
number of splits was predetermined to a strict value rather than penalising complexity
otherwise. This paradigm revealed the potential of optimal tree approaches further as
we were able to find solutions with significantly higher in-sample accuracies compared
to the normal OCT approach within the specified 30-minute time limit even when
the maximum depth was 3 or 4. However, with these depths, the solver was not able
to find optimal trees within the given time limit with the maximum number of splits
being 4.

For a more thorough analysis, the experiments should be conducted on a diverse
collection of data sets. Furthermore, in order to derive conclusions regarding the
prediction quality of OCT trees we should also analyse the out-of-sample accuracy.
As a logical next step for further research, similar experiments as in this thesis could
be conducted considering the OCT-H method which allows multivariate splits.

22

References
S. Aghaei, A. Gómez, and P. Vayanos. Strong optimal classification trees. arXiv

preprint arXiv:2103.15965, 2021.

D. Bertsimas and J. Dunn. Optimal classification trees. Machine Learning, 106:
1039–1082, 2017.

D. Bertsimas and J. Dunn. Machine learning under a modern optimization lens.
Dynamic Ideas LLC, Belmont, MA, 2019.

R. E. Bixby. A brief history of linear and mixed-integer programming computation.
Documenta Mathematica, pages 107–121, 2012.

R. Blanquero, E. Carrizosa, C. Molero-Río, and D. Romero Morales. Optimal
randomized classification trees. Computers Operations Research, 132:105281,
2021.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and regression
trees. Wadsworth and Brooks, Monterey, CA, 1984.

K. Chitra and B. Subashini. Data mining techniques and its applications in banking
sector. International Journal of Emerging Technology and Advanced Engineering,
3(8):219–226, 2013.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

A. Jiménez-Cordero, J. M. Morales, and S. Pineda. Warm-starting constraint
generation for mixed-integer optimization: A machine learning approach. arXiv
preprint arXiv:2103.13074, 2021.

H. Laurent and R. L. Rivest. Constructing optimal binary decision trees is
np-complete. Information processing letters, pages 15–17, 1976.

J. Lin, C. Zhong, D. Hu, C. Rudin, and M. Seltzer. Generalized and scalable optimal
sparse decision trees. arXiv preprint arXiv:2006.08690, 2020.

M. Norouzi, M. Collins, M. A. Johnson, D. J. Fleet, and P. Kohli. Efficient non-
greedy optimization of decision trees. Advances in neural information processing
systems, 28, 2015.

V. Podgorelec, P. Kokol, B. Stiglic, and I. Rozman. Decision trees: an overview and
their use in medicine. Journal of medical systems, 26:445–463, 2002.

H. Verhaeghe, S. Nijssen, G. Pesant, C. G. Quimper, and P. Schaus. Learning
optimal decision trees using constraint programming. Constraints, 25:226–250,
2020.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

23

S. Verwer and Y. Zhang. Learning optimal classification trees using a binary
linear program formulation. In Proceedings of the AAAI conference on artificial
intelligence, 33(01):1625–1632, 2019.

	Abstract
	Abstract (in Finnish)
	Contents
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Background for OCT
	3.2 MIO formulation of the OCT model
	3.3 Warm starting OCT
	3.4 The maximum number of splits approach

	4 Experiments
	4.1 Design of the experiments
	4.2 Results

	5 Conclusions

